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1 Introduction

Virtually every government inquiry into the 2008−2009 financial crisis has assigned some

blame to credit rating agencies. For example, the Financial Crisis Inquiry Commission

(2011, p. xxv) concludes that “this crisis could not have happened without the rating

agencies”. Likewise, the United States Senate Permanent Subcommittee on Investigations

(2011, p. 6) states that “inaccurate AAA credit ratings introduced risk into the U.S.

financial system and constituted a key cause of the financial crisis”. In announcing its

lawsuit against S&P, the U.S. government claimed that “S&P played an important role in

helping to bring our economy to the brink of collapse”. But the details of the indictments

differ slightly across the analyses. For instance, the Senate report points to inadequate

staffing as a critical factor, the Financial Crisis Inquiry Commission highlights the business

model that had firms seeking to issue securities pay for ratings as a major contributor,

while the U.S. Department of Justice lawsuit identifies the desire for increased revenue and

market share as a critical factor.1 In this paper we explore the role that these and other

factors might play in creating inaccurate ratings.

We study a one-period environment where a firm is seeking funding for a project from

investors. The project’s quality is unknown, and a credit rating agency can be hired to

evaluate the project. So, the rating agency creates value by generating information that

can lead to more efficient financing decisions. The CRA must exert costly effort to acquire

a signal about the quality of the project, and the higher the effort, the more informative the

signal about the project’s quality. The key friction is that the CRA’s effort is unobservable,

so a compensation scheme must be designed to provide incentives to the CRA to exert it.

We consider three settings, where we vary who orders a rating — a planner, the firm, or

potential investors.

This simple framework makes it possible to directly address the claims made in the

government reports. In particular, we can ask: how do you compensate the CRA to avoid

1The United States Senate Permanent Subcommittee on Investigations (2011) reported that “factors
responsible for the inaccurate ratings include rating models that failed to include relevant mortgage per-
formance data, unclear and subjective criteria used to produce ratings, a failure to apply updated rating
models to existing rated transactions, and a failure to provide adequate staffing to perform rating and
surveillance services, despite record revenues”. Financial Crisis Inquiry Commission (2011) concluded
that“the business model under which firms issuing securities paid for their ratings seriously undermined
the quality and integrity of those ratings; the rating agencies placed market share and profit considerations
above the quality and integrity of their ratings”. The United States Department of Justice Complaint
(2013) states that because of “the desire to increase market share and profits, S&P issued inflated ratings
on hundreds of billions of dollars’ worth of CDOs”.
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shirking? Does the issuer-pays model generate more shirking than when the investors pay

for ratings? In addition, in natural extensions of the basic model we can see whether a

battle for market share would be expected to reduce ratings quality, or whether different

types of securities create different incentives to shirk.

Our model explains five observations about the ratings business that are documented

in the next section, in a unified fashion. The first is that rating mistakes are in part due to

insufficient effort by rating agencies. The second is that outcomes and accuracy of ratings do

differ depending on which party pays for a rating. Third, increases in competition between

rating agencies are accompanied by a reduction in the accuracy of ratings. Fourth, ratings

mistakes are more common for newer securities with shorter histories than exist for more

established types of securities. Finally, revisions to ratings are slow.

We begin our analysis by characterizing the optimal compensation arrangement for the

CRA. The need to provide incentives for effort requires setting the fees that are contingent

on outcomes — the issued rating and the project’s performance —, which can be interpreted

as rewarding the CRA for establishing a reputation for accuracy.2 Moreover, as is often

the case in this kind of models, the problem of effort under-provision argues for giving the

surplus from the investment project to the rating agency, so that the higher the CRA’s

profits, the higher the effort it exerts.

We proceed by comparing the CRA’s effort and the total surplus in this model depending

on who orders a rating. Generically, under the issuer-pays model, the rating is acquired

less often and is less informative (i.e., the CRA exerts less effort) than in the investor-pays

model (or in the second best, where the planner asks for a rating). However, the total

surplus in the issuer-pays model may be higher or lower than in the investor-pays model,

depending on the agents’ prior beliefs about the quality of the project. The ambiguity

about the total surplus arises because even though investors induce the CRA to exert more

effort, they will ask for a rating even when the social planner would not. So the extra

accuracy achieved by having investors pay is potentially dissipated by an excessive reliance

on ratings.

We also extend the basic setup in four ways. The first extension explores the impli-

cations of allowing rating agencies to compete for business. An immediate implication of

competition is a tendency to reduce fees in order to win business. But with lower fees

comes lower effort in evaluating projects. Hence, this framework predicts that competition

tends to lead to less accurate ratings.

2We discuss this interpretation of outcome-contingent fees in more detail in Section 4.2.
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Second, we analyze the case when the CRA can misreport its information. We show

that although the optimal compensation scheme is different than without the possibility of

misreporting, our other main findings extend to this case.

The third extension considers the accuracy of ratings for different types of securities. We

suppose that some types of investment projects are inherently more difficult for the CRA

to evaluate — presumably because they have a short track record that makes comparisons

difficult. We demonstrate that in this case it is inevitable that the ratings will deteriorate.

Finally, we allow for a second period in the model and posit that investment is needed

in each of the two periods, so that there is a role for ratings in both periods. The need

to elicit effort in both periods creates a dilemma. The most powerful way to provide

incentives for the accuracy of the initial rating requires paying the CRA only when it

announces identical ratings in both periods and the project’s performance matches these

ratings. Paying the CRA if it makes a ‘mistake’ in the initial rating (when a high rating is

followed by the project’s failure) would be detrimental for the incentives in the first period’s

effort. However, refusing to pay to the CRA after a ‘mistake’ will result in zero effort in

the second period, when the rating needs to be revised. Balancing this trade-off involves

the fees in the second period after a ‘mistake’ being too low ex-post, which leads to the

CRA being slow to acknowledge mistakes.

While we find that our simple model is very powerful in that it explains the five afore-

mentioned observations using relatively few assumptions, our approach does come with

several limitations. For instance, due to complexity, we do not study the problem when

multiple ratings can be acquired in equilibrium. Thus we cannot address debates related to

rating shopping — a common criticism of the issuer-pays model.3 Also, we assume that the

firm has the same knowledge about the project’s quality ex ante as everyone else. Without

this assumption the analysis becomes much more complicated, since in addition to the

moral hazard problem on the side of the CRA there is an adverse selection problem on the

side of the firm. We do offer some cursory thoughts on this problem in our conclusions.

Despite these caveats, a strength of our model is in explaining all the aforementioned

observations using a single friction (moral hazard); in contrast, the existing literature uses

different models with different frictions to explain the various phenomena. Hence, we are

comfortable arguing that a full understanding of what went wrong with the credit rating

3See the literature review below for discussion of papers that do generate rating shopping. Notice,
however, that even without rating shopping we are able to identify some problems with the issuer-pays
model.
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agencies will recognize that there were several problems and that moral hazard was likely

one of them.

The remainder of the paper is organized as follows. The next section documents the

empirical regularities that motivate our analysis, and compares our model to others in the

literature. Section 3 introduces the baseline model. Section 4 presents our main results

about the CRA compensation as well as comparison between the issuer-pays and investor-

pays models. Section 5 covers the four extensions just described. Section 6 concludes. The

Appendix contains proofs and further discussion of some of the model’s extensions.

2 Motivating Facts and Literature Review

Given the intense interest in the causes of the financial crisis and the role that official

accounts of the crisis ascribe to the ratings agencies, it is not surprising that there has been

an explosion of research on credit rating agencies. White (2010) offers a concise description

of the rating industry and recounts its role in the crisis. To understand our contribution,

we find it helpful to separate the recent literature into three sub-areas.

2.1 Empirical Studies of the Rating Business

The first body of research consists of the empirical studies that seek to document mistakes

or perverse rating outcomes. There are so many of these papers that we cannot cover them

all, but it is helpful to note that there are five observations that our analysis takes as given.

So we will point to specific contributions that document these particular facts.

First, the question of who pays for a rating does seem to matter. The rating industry

is currently dominated by Moody’s, S&P, and Fitch Ratings which are each compensated

by issuers. So comparisons of their recent performance does not speak to this issue. But

Cornaggia and Cornaggia (2012) provide some evidence on this question by comparing

Moody’s ratings to those of Rapid Ratings, a small rating agency which is funded by

subscription fees from investors. They find that Moody’s ratings are slower to reflect bad

news than those of Rapid Ratings.

Jiang et al. (2012) provide complementary evidence by analyzing data from the 1970s

when Moody’s and S&P were using different compensation models. In particular, from

1971 until June 1974 S&P was charging investors for ratings, while Moody’s was charging

issuers. During this period the Moody’s ratings systematically exceeded those of S&P. S&P

4



adopted the issuer-pays model in June 1974, and from that point forward over the next

three years their ratings essentially matched Moody’s.4

Second, as documented by Mason and Rosner (2007), most of the rating mistakes oc-

curred for structured products that were primarily related to asset-backed securities — see

Griffin and Tang (2012) for a description of this ratings process is conducted. As Pagano

and Volpin (2010) note, the volume of these new securities increased tenfold between 2001

and 2010. As Mason and Rosner emphasize, the mistakes that happened for these new

products were not found for corporate bonds where CRAs had much more experience. In

addition, Morgan (2002) argues that banks (and insurance companies) are inherently more

opaque than other firms, and this opaqueness explains his finding that Moody’s and S&P

differ more in their ratings for these intermediaries than for non-banks.

Third, some of the mistakes in the structured products seem to be due to insufficient

monitoring and effort on the part of the analysts. For example, Owusu-Ansah (2012)

shows that downgrades by Moody’s tracked movements in aggregate Case-Shiller home

price indices much more than any private information that CRAs had about specific deals.

In the context of our model, this is akin to the CRAs not investigating enough about the

underlying securities to make informed judgments about their risk characteristics.

Interestingly, the Dodd-Frank Act in the U.S. also presumes that shirking was a problem

during the crisis and takes several steps to try to correct it. First, section 936 of the

Act requires the Securities and Exchanges Commission to take steps to guarantee that

any person employed by a nationally recognized statistical rating organization (1) meets

standards of training, experience, and competence necessary to produce accurate ratings

for the categories of issuers whose securities the person rates; and (2) that employees are

tested for knowledge of the credit rating process. The law also requires the agencies to

identify and then notify the public and other users of ratings which five assumptions would

have the largest impact on their ratings in the event that they were incorrect.

Fourth, revisions to ratings are typically slow to occur. This issue attracted considerable

attention early in the last decade when the rating agencies were slow to identify problems at

Worldcom and Enron ahead of their bankruptcies. But, Covitz and Harrison (2003) show

that 75% of the price adjustment of a typical corporate bond in the wake of a downgrade

occurs prior to the announcement of the downgrade. So these delays are pervasive.

4See also Griffin and Tang (2011) who show that the ratings department of the agencies, which are
responsible for generating business, use more favorable assumptions than the compliance department (which
is charged with assessing the ex-post accuracy of the ratings).
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Finally, it appears that competition among rating agencies reduces the accuracy of

ratings. Very direct evidence on this comes from Becker and Milbourn (2011) who study

how the rise in market share by Fitch influenced ratings by Moody’s and S&P (who had

historically dominated the industry). Prior to its merger with IBCA in 1997, Fitch had a

very low market share in terms of ratings. Thanks to that merger, and several subsequent

acquisitions over the next five years, Fitch substantially raised its market share, so that by

2007 it was rating around 1/4 of all the bonds in a typically industry. Becker and Milbourn

exploit the cross-industry differences in Fitch’s penetration to study competitive effects.

They find an unusual pattern. Any given individual bond is more likely to be rated by

Fitch when the ratings from the other two big firms are relatively low.5 Yet, in the sectors

where Fitch issues more ratings, the overall ratings for the sector tend to be higher.

This pattern is not easily explained by the usual kind of catering that the rating agencies

have been accused of. If Fitch were merely inflating its ratings to gain business with the

poorly performing firms, the Fitch intensive sectors would be ones with more ratings for

these under-performing firms and hence lower overall ratings. This general increase in

ratings suggests instead a broader deterioration in the quality of the ratings, which would

be expected if Fitch’s competitors saw their rents declining; consistent with this view, the

forecasting power of the ratings for defaults also decline.

2.2 Theoretical Models of the Rating Business

Our paper is also related to the many theoretical papers on rating agencies that have been

proposed to explain these and other facts.6 However, we believe our paper is the only one

that simultaneously accounts for the five observations described above.

The paper by Bongaerts (2013) is closest to ours in that it focuses on an optimal

contracting arrangement where a CRA must be compensated for exerting effort to generate

a signal about the quality of project to be funded by outside investors. As in our model, a

5Bongaerts et al. (2012) identify another interesting competitive effect. If two of the firms disagree
about whether a security qualifies as an investment grade, then the security does not qualify as investment
grade. But if a third rating is sought and an investment grade rating is given, then the security does qualify.
Since Moody’s and S&P rate virtually every security, this potential to serve as a tie-breaker creates an
incentive for an issuer to seek an opinion from Fitch when the other two disagree. Bongaerts et al. find
exactly this pattern: Fitch ratings are more likely to be sought precisely when Moody’s and S&P disagree
about whether a security is of investment grade quality.

6While not applied to rating agencies, there are a number of theoretical papers on delegated information
acquisition, see, for example, Chade and Kovrijnykh (2012), Inderst and Ottaviani (2009, 2011) and Gromb
and Martimort (2007).
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central challenge is to set fees for the CRA to induce sufficient effort to produce informative

ratings. He solves a planning problem, where in the base case the issuer pays for the ratings.

He then explores the effect of changing the institutional arrangements by having investors

pay for ratings, mandating that CRAs co-invest in the securities that they rate, or relying

on ratings assessments that are more costly to produce than those created by CRAs.

Bongaerts’ analysis differs from ours in three important ways. First, the risky invest-

ment projects produce both output and private benefits for the owner of the technology,

which create incentives for owners to fund bad projects. This motive is absent in our model.

Second, the CRAs effort is ex-post verifiable, while effort cannot be verified in our model.

Third, he studies a dynamic problem, where the CRA is infinitely lived, but investment

projects last for one period, investors have a one-period horizon, and new investors and new

projects arrive each period. This creates interesting and important changes in the structure

of the optimal contract. We see his results complementing ours by extending the analysis to

a dynamic environment, though the assumptions that render his more complicated problem

tractable also make comparisons between his results and ours very difficult.

Opp et al. (2013) explain rating inflation by building a model where ratings not only

provide information to investors, but are also used for regulatory purposes. As in our

model, expectations are rational and a CRA’s effort affects rating precision. But unlike

us, they assume that the CRA can commit to exert effort (or, equivalently, that effort is

observable), and they do not study optimal contracts. They find that introducing rating-

contingent regulation leads the rating agency to rate more firms highly, although it may

increase or decrease rating informativeness.

Cornaggia and Cornaggia (2012) find evidence directly supporting the prediction of

the Opp et al. (2013) model. Specifically, it seems that Moody’s willingness to grant

inflated ratings (relative to a subscription-based rating firm) is concentrated on the kinds

of marginal investment grade bonds that regulated entities would be prevented from buying

if tougher ratings were given by Moody’s.

A recent paper by Cole and Cooley (2014) also argues that distorted ratings during the

financial crisis were more likely caused by regulatory reliance on ratings rather than by the

issuer-pays model. We agree that regulations can influence ratings, but we see our results

complementing the analysis in Opp et al. (2013) and Cole and Cooley (2014) and providing

additional insights on issues they do not explore.

Bolton et al. (2012) study a model where a CRA receives a signal about a firm’s quality,

and can misreport it (although investors learn about a lie ex post). Some investors are naive,
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which creates incentives for the CRA — which is paid by the issuer — to inflate ratings.

The authors show that the CRA is more likely to inflate (misreport) ratings in booms,

when there are more naive investors, and/or when the risks of failure which could damage

CRA reputation are lower. In their model, both the rating precision and reputation costs

are exogenous. In contrast, in our model the rating precision is chosen by the CRA; also,

our optimal contract with performance-contingent fees can be interpreted as the outcome

of a system in which reputation is endogenous. Similar to us, the authors predict that

competition among CRAs may reduce market efficiency, but for a very different reason than

we do: the issuer has more opportunities to shop for ratings and to take advantage of naive

investors by only purchasing the best ratings. In contrast, we assume rational expectations,

and predict that larger rating errors occur because of more shirking by CRAs.

Our result that competition reduces surplus is also reminiscent of the result in Strausz

(2005) that certification constitutes a natural monopoly. In Strausz this result obtains

because honest certification is easier to sustain when certification is concentrated at one

party. In contrast, in our model the ability to charge a higher price increases rating accuracy

even when the CRA cannot lie.

Skreta and Veldkamp (2009) analyze a model where the näıveté of investors gives issuers

incentives to shop for ratings by approaching several rating agencies and publishing only

favorable ratings. They show that a systematic bias in disclosed ratings is more likely to

occur for more complex securities — a finding that resembles our result that rating errors

are larger for new securities. Similar to our findings, in their model, competition also

worsens the problem. They also show that switching to the investor-pays model alleviates

the bias, but as in our set up the free-rider problem can then potentially eliminate the

ratings market completely.

Sangiorgi and Spatt (2012) have a model that generates rating shopping in a model

with rational investors. In equilibrium, investors cannot distinguish between issuers who

only asked for one rating, which turned out to be high, and issuers who asked for two

ratings and only disclosed the second high rating but not the first low one. They show that

too many ratings are produced, and while there is ratings bias, there is no bias in asset

pricing as investors understand the structure of equilibrium. While we conjecture that a

similar result might hold in our model, the analysis of the case where multiple ratings are

acquired in equilibrium is hard since, unlike in Sangiorgi and Spatt, the rating technology

is endogenous in our setup.

Similar to us, Faure-Grimaud et al. (2009) study optimal contracts between a rating
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agency and a firm, but their focus is on providing incentives to the firm to reveal its

information, while we focus on providing incentives to the CRA to exert effort. Goel and

Thakor (2011) have a model where the CRA’s effort is unobservable, but they do not

analyze optimal contracts; instead, they are interested in the impact of legal liability for

‘misrating’ on the CRA’s behavior.

As we later discuss, the structure of our optimal contracts can be endogenously embody-

ing reputational effects. Other papers that model reputational concerns of rating agencies

include, for example, Bar-Isaac and Shapiro (2013), Fulghieri et al. (2011), and Mathis

et al. (2009).

2.3 Policy Analysis of the Rating Business

Finally, the third body of research which relates to our paper includes the many policy-

oriented papers that discuss potential reforms of the credit rating agencies. Medvedev and

Fennell (2011) provide an excellent summary of these issues. Their survey is also repre-

sentative of most of the papers on this topic in that it identifies the intuitive conflicts of

interest that arise from the issuer-pays model, and compares them to the alternatives prob-

lems that arise under other schemes (such as the investor-pays, or having a government

agency issue ratings). But all of these analyses are partly limited by the lack of microe-

conomic foundations underlying the payment models being contrasted. By deriving the

optimal compensation schemes, we believe we help clarify these kinds of discussions.

3 The Model

We consider a one-period model with one firm, a number (n ≥ 2) of investors, and one

credit rating agency. All agents are risk neutral and maximize expected profits.

The firm (the issuer of a security) is endowed with a project that requires one unit

of investment (in terms of the consumption good) and generates the end-of-period return,

which equals y units of the consumption good in the event of success and 0 in the event of

failure. The likelihood of success depends on the quality of the project, q.

The quality of the project can be good or bad, q ∈ {g, b}, and is unobservable to

everyone.7 A project of quality q succeeds with probability pq, where 0 < pb < pg < 1. We

assume that −1 + pby < 0 < −1 + pgy, so that it is profitable to finance a high-quality

7We discuss what happens if the issuer has private information about its type in the conclusions.
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project but not a low-quality one. The prior belief that the project is of high quality is

denoted by γ, where 0 < γ < 1.

The CRA can acquire information about the quality of the project. It observes a signal

θ ∈ {h, ℓ} that is correlated with the project’s quality. The informativeness of the signal

about the project’s quality depends on the level of effort e ≥ 0 that the CRA exerts.

Specifically,

Pr{θ = h|q = g, e} = Pr{θ = ℓ|q = b, e} =
1

2
+ e, (1)

where e is restricted to be between 0 and 1/2. Note that if effort is zero, the conditional

distribution of the signal is the same regardless of the project’s quality, and therefore

the signal is uninformative. Conditional on the project being of a certain quality, the

probability of observing a signal consistent with that quality is increasing in the agent’s

effort. So higher effort makes the signal more informative in Blackwell’s sense.8

Exerting effort is costly for the CRA, where ψ(e) denotes the cost of effort e, in units of

the consumption good. The function ψ satisfies ψ(0) = 0, ψ′(e) > 0, ψ′′(e) > 0, ψ′′′(e) > 0

for all e > 0, and lime→1/2 ψ(e) = +∞ (which is a sufficient but not necessary condition to

guarantee that the project’s quality is never learned with certainty). The assumptions on

the second and third derivatives of ψ guarantee that the CRA’s and planner’s problems,

respectively, are strictly concave in effort. We also assume that ψ′(0) = 0 and ψ′′(0) =

0, which guarantee an interior solution for effort in the CRA’s and planner’s problems,

respectively.

To keep the analysis simple, we will assume that the CRA cannot lie about a signal

realization so the rating it announces will be the same as the signal. We describe what

happens if we dispose of this assumption in Section 5.2. While allowing for misreporting

changes the form of the optimal compensation to the CRA, it does not affect any other

key results, as we illustrate in the Appendix. We also assume that the CRA is protected

by limited liability, so that all payments that it receives must be non-negative.

The firm has no internal funds, and therefore needs investors to finance the project.9

Investors are deep-pocketed so that there is never a shortage of funds.10 They behave

competitively and will make zero profits in equilibrium.

8See Blackwell and Girshick (1954), chapter 12.
9We make this assumption for expositional convenience. Our results would not change if the firm had

initial wealth which is strictly smaller than one — the amount of funds needed to finance the project.
10It is not necessary for our results to assume that each investor has enough funds to finance the project

alone. As long as each investor has more funds than what the firm borrows from him in equilibrium, our
results still apply.
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We will consider three scenarios depending on who decides whether a rating is ordered

— the social planner, the issuer, or each of the investors. Let X refer to the identity of the

player ordering a rating. The timing of events, illustrated in Figure 1, is as follows.

At the beginning of each period, the CRA posts a rating fee schedule — the fees to be

paid at the end of the period, conditional on the history. When X is the firm, it might

not be able to pay for a rating if the fee structure requires payments when no output is

generated, as it has no internal funds. Thus we assume that in this case each investor

offers rating financing terms that specify the return paid by the issuer when it has output

in exchange for the investor paying the fee on the issuer’s behalf. Then X decides whether

to ask for a rating, and chooses whether to reveal to the public that a rating has been

ordered. If a rating is ordered, the CRA exerts effort and announces the rating to X,

who then decides whether it should be published (and hence made known to other agents).

Given the rating or the absence of one, each investor announces project financing terms

(interest rates). The firm decides whether to borrow from investors in order to finance

the project.11 If the project is financed, its success or failure is observed. The firm repays

investors, and the CRA collects its fees.12

We are interested in analyzing Pareto efficient perfect Bayesian equilibria in this envi-

ronment. We will compare effort and total surplus depending on who orders a rating. The

rationale for considering total surplus comes from thinking about a hypothetical consumer

who owns both the firm and CRA, in which case it would be natural for the social planner

to maximize the consumer’s utility. In our static environment, we will not always be able to

Pareto rank equilibria depending on who orders the rating. However, it can be shown that

constraints that lead to a lower total surplus in the static model, lead to Pareto dominance

in a repeated infinite horizon version of the model.

4 Analysis and Results

Before deriving any results, it will be convenient to introduce some notation. First, let π1

denote the ex-ante probability of success (before observing a rating), so π1 = pgγ+pb(1−γ).

Next, let πh(e) denote the probability of observing a high rating given effort e, that is,

11We assume that if the firm is indifferent between investors’ financing terms, it obtains an equal amount
of funds from each investor. If each investor can fund the project alone, this is also equivalent to the firm
randomizing with equal probabilities over which investor to borrow from.

12We assume that X can commit to paying the fees due to the CRA, and that the firm can commit to
paying investors.

11



The CRA sets 

history-contingent 

rating fees

!!

X decides whether "

to order a rating

!!

If the rating is ordered, "

the CRA exerts effort, "

reveals the rating to X, "

who decides whether to "

announce it to other agents 

#

If the project is "

financed, success or 

failure is observed

!!

The firm repays "

investors, the CRA 

collects the fees

!!

If X is the firm, 

investors offer 

interest rates "

for financing the 

rating fees

!!

The firm decides 

whether to borrow 

from investors in 

order to finance the 

project

Investors offer 

interest rates for 

financing the project

!!

Figure 1: Timing.

πh(e) = (1/2+e)γ+(1/2−e)(1−γ). The probability of observing a low rating given effort

e is then πℓ(e) = 1− πh(e). Also, let πh1(e) and πh0 denote the probabilities of observing a

high rating followed by the project’s success/failure given effort e: πh1(e) = pg(1/2+ e)γ+

pb(1/2 − e)(1 − γ) and πh0(e) = (1 − pg)(1/2 + e)γ + (1 − pb)(1/2 − e)(1 − γ). Similarly,

the probabilities of observing a low rating followed by success/failure given e are πℓ1(e) =

pg(1/2− e)γ+ pb(1/2+ e)(1− γ) and πℓ0(e) = (1− pg)(1/2− e)γ+(1− pb)(1/2+ e)(1− γ).

The probability of observing a high rating bears directly on the earlier discussion of

the possibility that rating agencies issued inflated ratings for securities that eventually

failed. In our model, when the CRA puts insufficient effort, its ratings will be unreliable.

Thus, for bad projects, the under-provision of effort will lead to a more likely (incorrect)

assignment of high ratings. The assumed connection between the CRA’s effort and the

signal distribution given by (1) implies that the probability of giving a high rating to a

bad-quality project is the same as the probability of giving a low rating to a good-quality

project. Thus unconditionally the high rating is produced more often if less effort is put

in whenever γ < 1/2. (Formally, π′
h(e) < 0 for γ < 1/2.) The cutoff value of 1/2 arises

because of the symmetric structure of (1). If instead we had adopted a more general signal

structure such as Pr{θ = h|q = g, e} = α + βhe and Pr{θ = h|q = b, e} = α − βℓe, then

the cutoff value for γ that governs when erroneous ratings will be too high would differ.

In particular, the lower the ratio βh/βℓ (i.e., the more important is the CRA’s effort in

detecting bad projects relative to recognizing good ones), the higher will be the cutoff.13

13Formally, πh(e) = (α+βhe)γ+(α−βℓe)(1−γ), which is decreasing in e if and only if γ < βℓ/(βℓ+βh).
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4.1 First Best

As a benchmark, we begin by characterizing the first-best case, where the CRA’s effort is

observable, and the social planner decides whether to order a rating.14 Given a rating (or

the absence of one), the project is financed if and only if it has a positive NPV. Thus, the

total surplus in the first-best case is

SFB = max
e

−ψ(e) + πh(e)max

{

0,−1 +
πh1(e)

πh(e)
y

}

+ πℓ(e)max

{

0,−1 +
πℓ1(e)

πℓ(e)
y

}

,

where πi1(e)/πi(e) is the conditional probability of success after a rating i ∈ {h, ℓ} given

the level of effort e. Notice that since πh1(e)/πh(e) ≥ πℓ1(e)/πℓ(e), with strict inequality

if e > 0, the project will never be financed after the low rating if it is not financed after

the high rating. So only the following three cases can occur: (i) the project is financed

after both ratings, (ii) the project is not financed after both ratings, and (iii) the project

is financed after the high rating but not after the low rating. It immediately follows from

the structure of the problem that in cases (i) and (ii) the optimal choice of effort is zero.

This result is very intuitive — it cannot be efficient to expend effort if the information it

produces is not used. In case (iii), the optimal effort is strictly positive — denote it by e∗

— and (given our assumptions) e∗ uniquely solves maxe−ψ(e) − πh(e) + πh1(e)y. Thus,

the problem of finding the first-best surplus can be simplified to

SFB = max{0,−1 + π1y,max
e

−ψ(e)− πh(e) + πh1y}.

The following lemma shows which of the three alternatives (i)−(iii) the planner chooses

depending on the prior γ (where we denote the first-best effort by eFB).

Lemma 1 There exist thresholds γ and γ̄ satisfying 0 < γ < γ̄ < 1, such that

(i) eFB = 0 for γ ∈ [0, γ], and the project is never financed;

(ii) eFB = 0 for γ ∈ [γ̄, 1], and the project is always financed;

(iii) eFB > 0 for γ ∈ (γ, γ̄), and the project is only financed after the high rating.

The intuition behind this result is quite simple. If the prior belief about the project

quality is close to either zero or one, so that investment opportunities are thought to be

either very good or very bad, then it does not pay off to acquire additional information

about the quality of the project.

14In fact, it is easy to check that when effort is observable, the total surplus is the same regardless of
who orders a rating.
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We now turn to the analysis of the more interesting case when the CRA’s effort is

unobservable, and payments are subject to limited liability. The CRA will now choose its

effort privately, given the fees it expects to receive at the end of the period.

4.2 Second Best – the Social Planner Orders a Rating

To understand the logic of our model it is simplest to start by analyzing the case where the

planner gets to decide whether to order a rating and in doing so sets the fee structure. This

construct allows us to write a standard optimal contracting problem. In this setup, we will

characterize the constrained Pareto frontier (optimal contract), and consider an equilibrium

on the frontier where the total surplus is maximized. Then we will demonstrate that the

resulting equilibrium is the same as when the CRA chooses the fees (which is the actual

assumption in our analysis).

To find the optimal contract (or the optimal fee structure) that provides the CRA with

incentives to exert effort, we want to allow for as rich as contract space as possible. This

is accomplished by supposing that fees can be made contingent on possible outcomes. Just

as in the first-best case, it is straightforward to show that there are three options — do not

acquire a rating and do not finance the project, do not acquire a rating and finance the

project, and acquire a rating and finance the project only if the rating is high. In the first

two cases the CRA exerts no effort, so only in the third case is there a non-trivial problem

of finding the optimal fee structure. In this case, there are three possible outcomes: the

rating is high and the project succeeds, the rating is high and the project fails, and the

rating is low (in which case the project is not financed). Let fh1, fh0, and fℓ denote the

fees that the CRA receives in each scenario.

On the Pareto frontier, the payoff to one party is maximized subject to delivering at

least certain payoffs to other parties. Investors behave competitively and thus always earn

zero profits. Therefore, we can maximize the value to the firm subject to delivering at

least a certain value v to the CRA. Let u(v) denote the value to the firm given that the

value to the CRA is at least v, and the project is only financed after the high rating.

Since investors earn zero profits, the firm extracts all the surplus generated in production,

net of the expected fees paid to the CRA. Then the Pareto frontier can be written as

14



max{0− v,−1 + π1y − v, u(v)}, where

u(v) = max
e,fh1,fh0,fℓ

−πh(e) + πh1(e)y − πh1(e)fh1 − πh0(e)fh0 − πℓ(e)fℓ (2)

s.t. − ψ(e) + πh1(e)fh1 + πh0(e)fh0 + πℓ(e)fℓ ≥ v, (3)

ψ′(e) = π′
h1(e)fh1 + π′

h0(e)fh0 + π′
ℓ(e)fℓ, (4)

e ≥ 0, fh1 ≥ 0, fh0 ≥ 0, fℓ ≥ 0. (5)

Constraint (3) ensures that the CRA’s profits are at least v. Constraint (4) is the

CRA’s incentive constraint, which reflects the fact that CRA chooses its effort privately.

Accordingly, this constraint is obtained by maximizing the left-hand side of (3) with respect

to e. The constraints in (5) reflect limited liability and the nonnegativity of effort. Finally,

we assume that the firm can choose not to operate at all, so its profits must be nonnegative,

i.e., u(v) ≥ 0 (which restricts the values of v that can be promised).

Our first main result demonstrates how the optimal compensation scheme must be

structured in order to provide incentives to the CRA to exert effort.

Proposition 1 (Optimal Compensation Scheme) Suppose the project is financed only

after the high rating. Define the cutoff value γ̂ = 1/(1 +
√

pg/pb).

(i) If γ ≥ γ̂, then it is optimal to set fh1 > 0 and fℓ = fh0 = 0.

(ii) If γ ≤ γ̂, then it is optimal to set fℓ > 0 and fh1 = fh0 = 0.

The proposition states that there is a threshold level for the prior belief, above which

the CRA should be rewarded only if it announces the high rating and it is followed by

success, and below which the CRA should be rewarded only if it announces the low rating.

Notice that, quite intuitively, the CRA is never paid for announcing the high rating if it

is followed by the project’s failure. The proof relies on the standard maximum likelihood

ratio argument: the CRA should be rewarded for the event whose occurrence is the most

consistent with its exerting effort, which in turn depends on the agents’ prior.

Our presumption that the fees are contingent on the rating and the project’s perfor-

mance at first might appear unrealistic. Instead, one might prefer to analyze a setup where

fees are paid upfront. But, in any static model an up-front fee will never provide the CRA

with incentives to exert effort — the CRA will take the money and shirk. So in any static

model it is necessary to introduce some sort of reputational motive to prevent shirking.

Many papers in this literature model such reputation mechanisms as exogenous; for

example, Bolton et al. (2012) (see also references therein) introduce exogenous reputation
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costs — the discounted sum of future CRA profits, which, in their case, are available when

the CRA is not caught lying. In our paper, the payoff to the CRA that varies depending

on the outcome can be interpreted in precisely this way, except that the reputation costs

are endogeneous because the compensation structure is endogenous.

To see that outcome-contingent payments can be interpreted as the CRA’s future profits

in a more elaborate dynamic model, consider instead the following repeated setting. In each

period the CRA charges an upfront (flat) fee, but the fee can vary over time depending on

how the firm’s performance compared with the announced ratings. Technically, the optimal

compensation structure written in a recursive form will require the CRA’s ‘continuation

values’ (future present discounted profits) to depend on histories.15 Thus even if the fees

are restricted to be paid upfront in each period, the CRA will be motivated to exert

effort by the prospect of higher future profits — via higher future fees — that follow

from developing a ‘reputation’ by correctly predicting the firm’s performance. To put

it differently, equilibrium strategies and expectations of market participants in a Pareto

optimal equilibrium depend on histories in such a way that the CRA expects to be able

to charge higher fees and earn higher profits (because market participants are willing to

pay those higher fees given their beliefs about the CRA’s diligence) if the market observes

outcomes that are are most consistent with the CRA exerting effort.

The fee structure in our static model can then be viewed as a shortcut for such a

reputation mechanism. We set up the repeated model with up-front fees in Section A.3 of

the Appendix, and briefly discuss which predictions of our model still apply in that model.

The dynamic model is much more complicated to analyze, and at the same time does not

offer any new important insights, which is why we choose to focus on the static model

instead. So outcome-contingent fees should not be interpreted literally, but instead should

be recognized as a simplification to bring reputational considerations into the analysis in

a tractable way. It is worth pointing out that even though we model reputation in such

a ‘reduced form’ way, we are able to match several facts about the rating business, which

suggests that the mechanisms operating in our model are certainly not unreasonable.

With this interpretation in mind, let us return to the analysis of the static model. The

next proposition derives several properties of the Pareto frontier which will be important

for our subsequent analysis.

15Claim 4 in the Appendix, which is the analog of Proposition 1 in the dynamic case, shows how the
continuation values optimally vary depending on histories.
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Proposition 2 (Pareto Frontier) Suppose the project is financed only after the high rat-

ing.

(i) There exists v∗ such that for all v ≥ v∗ e(v) = e∗, but u(v) < 0.

(ii) There exists v0 > 0 such that (3) is slack for v < v0 and binds for v ≥ v0. Moreover,

e(v0) > 0.

(iii) Effort and total surplus are increasing in v, strictly increasing for v ∈ (v0, v
∗).

Part (i) of the proposition says that there exists a threshold promised value, v∗, above

which the first-best effort is implemented. However, the resulting profit to the firm is strictly

negative, violating individual rationality, and so this arrangement cannot be sustained in

equilibrium. It will be handy to denote the highest value that can be delivered to the CRA

without leaving the firm with negative profits by v̄ ≡ max{v|u(v) = 0} < v∗.

There is an interesting economic reason why implementing the first-best effort requires

the firm’s profits to be negative. Suppose for concreteness γ ≥ γ̂ (the other case is similar),

so that the CRA gets paid after history h1. Then the intuition is as follows. When effort is

observable, the problem can be recast as saying that the firm chooses to acquire information

itself rather than delegating this task to the CRA. But when the firm is making the effort

choice, it accounts for two potential effects of increasing effort. One benefit is the increased

probability that a surplus is generated. The other is that investors will lower the interest

rate to reflect a more accurate rating, leading to an increase in the size of the surplus. When

the CRA is doing the investigation and its effort is unobservable, the CRA internalizes the

fact that more effort generates a higher probability of the fee being paid. But it cannot get

a higher fee based on higher effort. So the only way to induce the CRA to exert the first-

best level effort is to set an extraordinarily generous fee that leaves the firm with negative

profits.16

Part (ii) of Proposition 2 identifies the lowest value that can be delivered to the CRA

on the Pareto frontier. This value, denoted by v0, is strictly positive. So the rating agency

will still be making profits and will exert positive effort. It immediately follows from (ii)

that for v ≤ v0 u(v) does not depend on v and hence is constant; while if v > v0, constraint

(3) binds, which means that u(v) must be strictly decreasing in v.

16Formally, the firm’s problem in the first-best case is maxe −ψ(e)+πh1(e)(y−R(e)), where the interest
rate R(e) solves the investors’ break even condition −πh(e) + πh1(e)R(e) = 0. This implies that 1/R(e)
equals the conditional probability of success given the high rating, π1|h(e) = πh1(e)/πh(e), which is strictly
increasing in effort. The CRA’s problem is maxe −ψ(e)+πh1(e)fh1, where fh1 does not depend on e. Thus,
in order to induce eFB , fh1 must exceed y−R(e), leaving the firm with negative profits: πh1(e)(y−R(e)−
fh1) < 0.
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Figure 2: The Pareto frontier (the shaded area of the u(v) curve) when the project is
financed only after the high rating.

Finally, part (iii) shows that the higher the CRA’s profits, the higher the total surplus,

and the higher the effort. This is an important result, and will be crucial for our further

analysis. Intuitively it follows because unobservability of effort leads to its under-provision.

To implement the highest possible effort, one needs to set the fees as high as possible,

extracting all surplus from the firm and giving it to the CRA. However, as part (i) im-

plies, implementing the first-best level of effort would result in negative profits to the firm.

Combining (i) and (iii) tells us that the level of effort that can be implemented is strictly

smaller than the first-best one.

Notice also that the firm’s profits are maximized at v0. This follows immediately from

part (ii) of Proposition 2. Thus the firm prefers a less informative rating than is socially

optimal (as effort at v0 is lower than that at v̄ or v∗), but the firm still prefers to have a

informative rating (because effort is positive at v0).

The function u(v) is graphed in Figure 2. Recall that u(v) only describes the part of

the Pareto frontier which corresponds to the situation when the project is financed after

the high rating and not financed after the low rating. The whole Pareto frontier is given by

max{−v,−1 + π1y − v, u(v)}, and the corresponding total surplus is max{0,−1 + π1y, v +

u(v)}.

To summarize, the fact that the CRA chooses its effort privately (and is protected by

limited liability) delivers two important results. First, the optimal compensation must

involve outcome-contingent fees, which can be interpreted as rewards for establishing a
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good reputation. Second, the CRA exerts less effort, and hence there are more rating

errors compared to the case when the CRA’s effort is observable. These results are general

— they do not depend on who orders a rating, and they will also hold in the extensions of

the basic model that we will consider in Section 5.

Clearly, our assumption of limited liability plays an important role in these results.

Without it, it would be possible to punish the CRA in some states and achieve the first

best for all v. In particular, selling the project to the CRA and making it an investor would

provide it with incentives to exert the first-best level of effort.17

Recall that we are considering equilibria where the total surplus is maximized. It

immediately follows from Proposition 2 that if the project is financed only after the high

rating, then the planner will choose the point (v̄, u(v̄)) on the frontier. This corresponds to

maximum feasible CRA profits and effort, and zero profits for the firm. The implemented

effort, which we denote by eSB (where SB stands for the second best), is strictly smaller

than eFB.

To close the loop, let us return to the issue of what happens if instead of the planner

setting the fees, the CRA does. As we showed, when the planner sets the fees (and the

project is financed only after the high rating), the CRA captures all the surplus. Therefore

the fees set by the CRA will choose the same ones as selected by the planner.

We summarize our results in the following proposition.

Proposition 3 (X = Planner) If the social planner is the one who decides whether a

rating should be ordered, then

(i) The maximum total surplus in equilibrium is SSB = max{0,−1 + π1y, v̄ + u(v̄)};

(ii) eSB ≤ eFB, SSB ≤ SFB, with strict inequalities if eFB > 0.

Figure 3 uses a numerical example to compare the total surplus and effort in the first-

and second-best cases as functions of γ, depicted with solid blue and dashed gray lines,

respectively.18 The thin dotted line in the left panel is −1 + π1y, the total surplus if

the project is financed without a rating. The total surplus if the project is not financed

without a rating is zero. Therefore, the total surplus in the first-best case, SFB, is the

17However, forcing rating agencies to co-invest does not appear to be a practical policy option, as it
would require them to have implausibly large levels of wealth, given that they rate trillions of dollars’
worth of securities each year.

18Notice slight kinks in the second-best surplus and effort that occur at γ̂ — which equals .366 for the
given parameter values — due to the different fee structures above and below γ̂.
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Figure 3: The total surplus (left) and effort (right) as functions of the prior belief γ.
Parameter values: y = 1.8, pg = .9, pb = .3, ψ(e) = 1.5e4.

upper envelope of three lines, 0, −1 + π1y, and v
∗ + u(v∗). Similarly, the total surplus in

the second-best case, SSB, is the upper envelope of 0, −1 + π1y, and v̄ + u(v̄).

From Figure 3 it is apparent that the planner decides not acquire a rating for some

values of γ when one would be acquired if effort were observable. The reduced propensity

to get the rating occurs because the total surplus from acquiring the rating is lower. Thus,

graphically, the interval on which the upper envelope of the three lines equals v̄ + u(v̄) is

smaller than that in the first-best case.

Next, we will analyze how maximum total surplus and the corresponding effort in cases

where the issuer or investors order ratings, compare to the second best case. We will ask

ourselves: does it matter who orders ratings? We will show that the answer is no in “bad

times”, when the average project has negative NPV (formally, −1 + π1y ≤ 0), and the

answer is yes in “good times”, when the expected NPV is positive (−1 + π1y > 0).

4.3 The Issuer Orders a Rating

Consider the case where the firm decides whether to order a rating(which, as we will see,

will be very similar to the case when the planner chooses whether to order a rating). Recall

that in setting its fees the CRA picks the highest ones that the firm is willing to pay. The
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firm’s willingness to pay equals its profit if it chooses not to order a rating. Without a

rating, investors finance the firm’s project if and only if −1 + π1y > 0. Since investors

break even, the firm’s profit in this case is u ≡ max{0,−1 + π1y}.
19 Thus, if a rating is

acquired in equilibrium, the firm receives u, and the corresponding value to the CRA is

viss ≡ max{v|u(v) = u} ≤ v̄, with strict inequality if −1 + π1y > 0 since u(v) is strictly

decreasing in v for v > v0. Denote the total surplus and effort in the issuer-pays case by

Siss and eiss, respectively. Recall from Proposition 2 that the total surplus and effort are

increasing in v. This leads us to the following result:

Proposition 4 (X = Issuer) Suppose the firm decides whether to order a rating. Then

(i) The maximum total surplus in equilibrium is Siss = max{0,−1+π1y, v
iss+u(viss)};

(ii) If −1 + π1 ≤ 0, then Siss = SSB and eiss = eSB. If −1 + π1y > 0, then Siss ≤ SSB

and eiss ≤ eSB, with strict inequalities if eSB > 0.

As usual, the firm will decide not to ask for a rating if the prior belief γ is sufficiently

close to zero or one. Moreover, since the implemented effort with the firm choosing whether

to request a rating is lower relative to when the planner picks, rating acquisition will occur

on a smaller set of priors in the former case than in the latter.

The total surplus and implemented effort in the case when the issuer orders a rating are

depicted with solid gray lines on Figure 3. As described in Proposition 4, when−1+π1y > 0,

the total surplus and effort are lower than when the planner orders a rating. Notice that

eiss decreases with γ when −1+π1y > 0 because the firm’s outside option is −1+π1y, and

π1 increases with γ.

To summarize, in “good times” the issuer-pays model leads to lower rating precision

and total surplus than the planner would attain, because the option of receiving financing

without a rating reduces the firm’s willingness to pay for a rating. That is, our model

predicts that the issuer-pays model is indeed associated with more rating errors than is

socially optimal. As we will see in the next section, in some cases the rating errors are also

larger than when the investors order ratings.

19This argument relies on the assumption that the firm can credibly announce that it did not get rated.
Without this assumption the issuer’s payoff is still strictly positive when −1+π1y > 0, although it is lower
than −1 + π1y — see Claim 1 in the Appendix.
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4.4 Investors Order a Rating

Consider finally the case when each investor decides whether to order a rating. We will

show that this case results in a lower total surplus relative to the planner’s case because

investors are competing over the interest rates that they offer to the firm conditional on

the rating. As we will see, the comparison of the total surplus and effort relative to the

issuer-pays case will depend on the prior γ.

The assumption that investors who do not pay for a rating can be excluded from learning

it is critical. If this is not the case and the spread of information cannot be precluded,

investors will want to free-ride on others paying for a rating. As a result, no rating will

be acquired in equilibrium, and investors will make their financing decisions solely based

on the prior. Until the mid 1970s, the investor-pays model was widely used. However,

the rise of photocopying made protecting the sort of information described above became

increasingly impractical, which arguably resulted in the switch to the issuer-pays model.

The following lemma shows an important inefficiency specific to the investor-pays model.

Recall that for γ sufficiently close to one, it is socially optimal not to ask for a rating and

always finance the project, so that SSB (and Siss) equal −1 + π1y. However, financing

without a rating never happens in the investor-pays case; investors always ask for a rating,

even when it is inefficient.20

Lemma 2 Suppose that −1 + π1y > 0. Then there is no equilibrium where investors do

not ask for a rating and always finance the project. That is, in (any) equilibrium einv > 0.

The intuition is as follows. If the project is financed without a rating, then all surplus

from the production, −1 + π1y, goes to the firm, while the CRA earns nothing. The CRA

can try to sell a rating; it would not succeed if the planner controls whether it should be

ordered, unless the generated surplus is at least −1 + π1y (or unless the firm’s profit is

at least that amount, in case the firm orders a rating). However, when investors order a

rating, they are not concerned with the total or the firm’s surplus. They make zero profits,

and they can always pass along the costs of getting a rating to the firm, while the CRA

generates profits.

But why do investors necessarily choose to order a rating if they earn zero profits either

way? To show that this must be the case, suppose instead that no one asks for a rating

regardless of what the fees are. Then we prove that if fees are low enough, one investor

20Thus in this case equilibrium payoffs actually lie inside the (constrained) Pareto frontier.
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could generate profits by ordering a rating, hiding it from other investors, only investing

if it is high, but charging the same or a slightly lower rate of return as other investors.

Knowing this, the CRA can set fees low enough to entice someone to ask for a rating and

hence break any equilibrium where no one is ordering a rating.

Building upon Lemma 2, the following proposition describes the total surplus and effort

in the investor-pays case.

Proposition 5 (X = Investors) Suppose investors decide whether to order a rating.

(i) If −1 + π1y ≤ 0, then Sinv = SSB and einv = eSB.

(ii) Suppose that −1+π1y > 0. If −πℓ(e
inv)+πℓ1(e

inv)y ≤ 0, then Sinv = vinv+u(vinv),

where viss < vinv < v̄. If −πℓ(e
inv) + πℓ1(e

inv)y > 0, then Sinv = −ψ(einv) − 1 + π1y <

1 + π1y.
21 In both cases, Sinv < SSB. Furthermore, eiss < einv, and einv < eSB as long as

eSB > 0.

When the project is not optimal to finance ex-ante, the investor-pays model delivers

the same total surplus and effort as when the planner or the firm decides whether to order

a rating.

Important differences arise only when the project is ex-ante profitable. As we showed

in Lemma 2, investors necessarily ask for a rating in this case. But, investors, may choose

to fund the project even with a low rating if the precision of the rating is sufficiently low

(so that the project’s NPV after the low rating is positive).22 So when γ is high enough,

the outcome is worse than in the second-best or issuer-pays cases where the project is also

always financed, but no effort is wasted.

Put differently, in the second-best and issuer-pays cases, not ordering a rating and

always financing the project is an equilibrium, and it dominates ordering a rating and always

financing the project. The problem in the investor-pays model, illustrated by Lemma 2, is

that financing without a rating is not an equilibrium.

Another important result contained in Proposition 5 is that when the project is only

financed after the high rating, the value to the CRA in the investor-pays case, denoted by

21In this case, Sinv is no longer equal to v + u(v) for some v, as u(v) is defined as the Pareto frontier,
while it is not Pareto optimal to implement positive effort and then finance the project regardless of the
rating.

22Since financing takes place after both ratings, the set of possible histories now is {h1, h0, ℓ1, ℓ0}. We
show in the proof of Proposition 5 that the only positive fee in equilibrium is either fh1 or fℓ0 depending on
whether γ is above or below a certain threshold. For simplicity, all of our subsequent results are stated and
proven for the case when the set of possible outcomes after the CRA exerts positive effort is {h1, h0, ℓ},
but appropriate modifications for the case when this set is {h1, h0, ℓ1, ℓ0} would be trivial.
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vinv, is strictly between viss and v̄. Therefore by Proposition 2, the implemented effort (and

hence the rating precision) if investors ask for a rating is lower than if the planner asks

for a rating, but higher than if the issuer does. The reason for vinv < v̄ is that the option

to finance without a rating caps interest rates, and therefore caps fees that investors are

willing to pay to the CRA. (This interest rate cap is R̂ = 1/π1, which solves −1+π1R̂ = 0.)

And vinv > viss because the firm pays the same rate of return to investors as if there was

no rating (R̂, defined above), but receives financing less often — only when the rating is

high (without a rating, it would be financed with probability one). Hence the firm’s profits

are lower when the investor pays than when the issuer does, u(vinv) < u(viss), which in

turn implies that vinv > viss.

The total surplus and effort in the case when investors order a rating are plotted with

dashed-dotted blue lines on Figure 3. As one can see, the comparison between the total

surplus in the issuer-pays and investor-pays cases depend on the prior belief about the

project’s quality. In “bad times”, when the project is not profitable to finance ex-ante, i.e.,

when −1+π1y ≤ 0, the total surplus and effort in both models are equal, and coincide with

what the planner achieves. However, in “good times”, when −1 + π1y > 0, the issuer-pays

model leads to a lower total surplus than the investor-pays model for intermediate values

of γ, but performs better if γ is sufficiently high.

To summarize, the investor-pays model yields higher rating accuracy than the issuer-

pays model, but lower than under the planner. The reason is that investors do not care

about the firm’s outside option, but the option to finance without a rating caps interest

rates, and hence fees. On the other hand, investors ask for a rating too often, even when

it is socially inefficient to do so.

5 Extensions

We now consider four variants of the baseline model. Our first extension explores the effect

of allowing more than one rating agency. Next, we consider the implications of allowing

the CRA to misreport its information. Third, we look at differences in ratings for securities

which differ in their ease of monitoring. The last modification introduces a second period

in the model so that the propensity to downgrade a security can be studied.
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5.1 Multiple CRAs

If multiple ratings are acquired in equilibrium, the problem becomes quite complicated. In

particular, contracts will depend on CRAs’ relative performance (i.e., a CRA’s compen-

sation would in part depend on other CRAs’ ratings).23 In fact, it may advantageous to

order an extra rating only to fine-tune the contract structure, while planning to ignore that

rating for the purpose of the financing decision. Furthermore, because different CRAs rely

on models and data that have common features, it would seem doubtful that the signals

from the various CRAs would be conditionally independent. This adds further modelling

complications, but also implies the benefits of having more information will be smaller if

the signals are more correlated. Finally, if ratings are acquired sequentially and are only

published at the end, in the issuer-pays model the firm’s decision whether to acquire the

second rating will depend on its first rating. Since this rating is the firm’s private informa-

tion, it introduces an adverse selection problem. For all these reasons, the analysis of this

problem is sufficiently complicated that we leave it for future research.

Instead, as a first step, we restrict our attention to the case when, even though there

are multiple rating agencies, only one rating is acquired in equilibrium.24 (Of course, this

may or may not happen in equilibrium, so we simply operate under the assumption that it

does.)

We modify the timing of our original model as follows. The game starts by CRAs

simultaneously posting fees. The issuer then chooses which CRA to ask for a rating. Under

these assumptions the problem becomes very simple to analyze. CRAs compete in fees,

which leads to maximizing the issuer’s profits. Recall from Proposition 2 that the firm’s

profits are maximized at v0.
25 Hence, the total surplus in this case, denoted by Sissmany,

equals max{0,−1 + π1y, v0 + u(v0)}. Let eissmany denote the corresponding level of effort.

Since v0 < viss, it immediately follows from part (iii) of Proposition 2 that eissmany ≤ eiss

and Sissmany ≤ Siss, with strict inequalities if eiss > 0.

We find this extension interesting because it suggests that a battle for market share and

23An example of a paper that considers relative performance incentives is Che and Yoo (2001).
24As we argue in the Appendix, even with this assumption analyzing competition in a dynamic model

is very complicated. So while the other results we emphasize in the body of the paper more or less carry
over to a dynamic setup, these would not necessarily apply.

25Of course, now there are more players in the game. If there are N CRAs and the firm randomizes
between whom to ask for a rating if it is indifferent, then each CRA receives v0/N in expectation. The
frontier on Figure 2 shows the surplus division between the CRA whose rating is ordered and the firm
after the outcome of the randomization is observed, with other CRAs (as well as investors) receiving zero
profits.
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desire to win business will lead to lower fees, which means less accurate ratings and lower

total surplus. However, the firm’s surplus is higher despite the lower overall surplus. Also

note that despite the possibility of Bertrand competition, the CRAs still make positive

profits, because v0 > 0.

It is instructive to compare the outcomes of the issuer-pays model and the planner’s

problem with multiple CRAs. The planner will always want to order the most precise

rating possible. This will prevent the CRAs from attempting to undercut each others’ fees,

because doing so will not gain them any business. Therefore, the optimal level of effort in

this case will be the same as with one CRA. Hence the problem of increased rating errors

associated with competition is specific to the issuer-pays model.26

5.2 Misreporting a Rating

We next return to our original model with one CRA. So far we assumed that the CRA

cannot misreport its signal; now we relax this assumption and suppose that the CRA can

lie. In addition to moral hazard, this creates an adverse selection problem. Solving for

the optimal contract requires imposing additional constraints to our optimal contracting

problem (2)−(5).

It is easy to see that if the CRA intends to lie, the most profitable way to do so is

a double deviation: exert no effort, and always report whatever rating yields the highest

expected fee. This should not be surprising because if the CRA intends to misreport,

exerting effort is wasteful. Thus, the additional constraint that needs to be imposed in

order to deliver a truthful report is

− ψ(e) + πh1(e)fh1 + πh0(e)fh0 + πℓ(e)fℓ ≥ max{π1fh1 + π0fh0, fℓ}, (6)

which is equivalent to imposing the following two constraints:

−ψ(e) + πh1(e)fh1 + πh0(e)fh0 + πℓ(e)fℓ ≥ π1fh1 + π0fh0, (7)

−ψ(e) + πh1(e)fh1 + πh0(e)fh0 + πℓ(e)fℓ ≥ fℓ. (8)

The left-hand side of (6) shows the CRA’s payoff if it exerts effort and truthfully reports

26We do not explore the effects of competition in the investor-pays model because it is impossible to do
so without checking investors’ deviations that involve the acquisition of multiple ratings (i.e., analyzing
out of equilibrium behavior where different investors acquire ratings from different CRAs).
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the acquired signal. The right-hand side is the value from exerting no effort and always

reporting the rating that delivers the highest expected fee (or randomizing between the

two, if the fees are the same).

The next proposition shows how the optimal compensation must be structured if the

possibility of misreporting is present.

Proposition 6 (Optimal Compensation under Misreporting) Suppose the project is

financed only after the high rating. Then for each γ it must be the case that fh1 > 0, fℓ > 0,

and fh0 = 0. Furthermore, (7) will bind for γ ≥ γ̂ and (8) will bind for γ < γ̂, so long as

the implemented effort is below the first-best level e∗.

Recall from Proposition 1 that when the CRA cannot misreport its signal, only one of

the two fees, fh1 or fℓ, is strictly positive. The situation is different with the possibility of

misreporting: both fh1 and fℓ must be strictly positive. The reason for paying in both cases

is intuitive. In particular, without misreporting the CRA would only be paid for issuing

a high rating followed by success if the prior about the project’s quality is high enough.

But if the CRA can misreport its signal, it would always issue a high rating given this

compensation scheme. To prevent the CRA from lying, it must be also paid for issuing a

low rating.

Since constraint (6) binds, the total surplus generated if the rating is ordered when the

CRA can lie is lower than in the case when it cannot lie. Also, the range of priors for which

the rating will be ordered (by any agent) is smaller than when the CRA cannot lie. This

is not surprising since essentially the option to lie gives the CRA leverage that allows it to

extract fees in order to tell the truth. These fees were previously unnecessary and mean

that the agents now become more cautious about using the CRA.

While the optimal compensation scheme is affected by the possibility of misreporting,

our other results still apply — the proofs that require modification are provided in the

Appendix.

5.3 New Securities

We will now use our results from Section 5.2 to analyze the case where the CRA must rate

new securities. Suppose some types of investment projects are inherently more difficult for

the CRA to evaluate — presumably because they have a short track record that makes

comparisons difficult, and there is no adequate rating model that has been developed yet.
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One way to analyze this in our framework is to parametrize the cost of effort as ψ(e) =

Aϕ(e), with A > 0, and think of a new type of security as the one with a higher value of

A.27 A higher value of A means that it is more costly for a CRA to obtain a rating of the

same quality for a new security, or, alternatively, paying the same cost would produce a

less accurate rating.

Suppose that A increases to A′. We consider two scenarios. In the first scenario, the

increase in A is unanticipated. In this case, fees remain unchanged. If the CRA cannot

misreport a rating, the CRA’s incentive constraint immediately implies that it will exert

less effort. Now consider a more interesting case when the CRA can misreport its rating.

Claim 2 in the Appendix shows that in this case constraint (6) with A′ instead of A will

be violated (recall from Proposition 6 that it was binding with A). Thus, when the CRA

realizes that the cost of evaluating the security is higher than expected, its optimal response

is to exert zero effort and always report either h or ℓ, depending on the prior. In particular,

when the prior is above γ̂, the CRA always reports the high rating.

Now consider the second scenario where the shift in A is anticipated, and thus rating

fees change appropriately. Claim 3 in the Appendix shows that it is optimal to implement

lower effort with A′ than with A, which results in more rating inaccuracies. (This result

holds regardless of whether the CRA can or cannot misreport its rating.) Intuitively, since

the marginal cost of information acquisition is higher, it is optimal to implement a lower

level of effort.28

Thus, our model predicts that under both scenarios the quality of ratings deteriorates

for new securities.

5.4 Delays in Downgrading

Finally, we demonstrate that a straightforward extension of our model can explain delays

in downgrading. Suppose that there are two periods. The project requires investment in

both periods, and the project quality is the same in both periods. The CRA exerts effort in

each period to rate the project. In the optimal contract, all payments to the CRA will be

27We do assume that everything else, in particular, parameters pb, pg, y, and γ remain the same.
28The result that information acquisition is decreasing in the cost parameter is also obtained in Opp

et al. (2013). However, in their case this result is obvious since the CRA can commit to any level of effort,
and will choose less effort if its marginal cost is higher. This result is similar to our result in the case of
an unanticipated change without the possibility of misreporting. With an anticipated change, our result is
less straightforward since fees are optimally chosen, but nonetheless the new optimal fee structure results
in lower effort.
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made at the end of the second period, conditional on the history. Denote these payments

by fi,j, where i, j ∈ {h1, h0, ℓ}, whenever positive effort is exerted in both periods.

Suppose the CRA announced a high rating in period 1, which was followed by the

project’s failure. We call this outcome a ‘mistake’, because the project’s performance did

not match the rating. By the same argument as in Proposition 1, to provide incentives for

the second period effort at this point, the CRA should be paid either fh0,h1 > 0 or fh0,ℓ > 0,

depending on whether the posterior after h0 is above or below γ̂. We are interested in the

scenario when after a mistake the market is sufficiently pessimistic about the security that

the CRA is expected to downgrade it, i.e., announce the low rating in period 2. That is,

after h0 the best way to provide incentives for effort is to reward the CRA for announcing

the low rating (i.e., to pay fh0,ℓ > 0).

Now consider how offering this payment affects incentives for effort in period 1. As we

show in the Appendix, paying fh0,ℓ is never the best way to provide incentives for effort

in period 1. In fact, unless the prior is very high, paying fh0,ℓ actually reduces effort in

the first period. So, from the point of view of incentive provision for the initial rating, the

contract should never reward the CRA for changing its rating after a mistake.

This means that there is a trade-off between providing incentives for effort in period 1

(the initial rating) and effort in period 2 after a mistake. The optimal contract is designed

to balance this trade-off. The desire to support effort in period 1 makes the fee structure

after a mistake ex-post suboptimal. The fee fh0,ℓ is reduced relative to what is optimal

ex-post (after the initial effort has been exerted), or could even be set to zero and replaced

with fh0,h1 if paying such a fee increases effort after h0. That is, either the reward for

downgrading the security after a mistake is too low, or the CRA is being paid for sticking

with the high rating after the project has failed instead of being rewarded for downgrading.

As fees after a mistake are ex-post suboptimal, the effort level in period 2 after a mistake

is too low ex post. This means that if the agents were to renegotiate fees after the CRA has

initially evaluated the security, they would set them to implement a higher level of effort

after a mistake.29 (Of course, ex ante it is optimal to commit not to renegotiate fees.) As

a result of the low effort ex post, the probability of not downgrading conditional on the

project quality being bad is too high ex post. Hence, the CRA will appear too slow to

acknowledge mistakes. Remarkably, this inertia seems to be a very general property of an

optimal compensation scheme. We want to stress that such delays in downgrading are not

inefficient — quite the opposite, they arise as part of an optimal arrangement.

29See the Appendix for the formal analysis.
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6 Conclusions

We develop a parsimonious optimal contracting model that addresses multiple issues re-

garding ratings performance. We show that when the CRA’s effort is unobservable, a rating

is less precise, and is acquired less often (on a smaller set of priors) than in the first-best

case. Giving all surplus to the CRA maximizes rating accuracy and total surplus.

Regarding the question of pros and cons of the issuer- and investor-pays model, we find

that in the issuer-pays model the rating is less accurate than in the second-best case. The

reason is that the option to finance without a rating puts a bound on the firm’s willingness

to pay for one. The investor-pays model generates a more precise rating than the issuer-pays

model, although still not as precise as what the planner could attain. However, investors

tend to ask for a rating even when it is socially inefficient, in particular, when the prior

about the project quality is sufficiently high. In addition, the investor-pays model suffers

from a potential free-riding problem, which can collapse security rating all together.

We show under certain conditions that battling for market share by competing CRAs

leads to less accurate ratings, which yields higher profits to the firm. We also find that rating

errors tend to be larger for new securities. Finally, we demonstrate that optimal provision

of incentives for initial rating and revision naturally generates delays in downgrading.

While we view the mileage that is possible with our very parsimonious framework as

impressive, there are many ways in which the modelling can be extended. Perhaps most

natural would be to allow the firm to have superior information about its investment

opportunities relative to other agents. While a general analysis of moral hazard combined

with adverse selection is typically quite complicated, there are a few things we can see in

some interesting special cases.

First, suppose that the firm knows the quality of its project perfectly. Then if a sep-

arating equilibrium exists, the bad type must receive no financing, since investors know

that the bad project has a negative net present value. If the firm has no initial wealth as

in our original model, there is no way to separate the two types of firms in equilibrium.

The reason is that the only (net) payment that the firm can possibly make occurs when

project succeeds, and either both types will want to make such a payment, or neither one

will. Thus only a pooling equilibrium exists, and the analysis is essentially the same as in

our original model. By continuity, the same will be true if the initial wealth is positive but

sufficiently small.

If the firm has sufficient internal funds (but not enough to fund the project), then even
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in the absence of a rating agency investors can separate firms with different information

about their projects. They could do so by requiring the issuer to make an upfront payment

in addition to a payment in the event of success (or, equivalently, requiring the issuer to

invest its own funds into the project).

A more interesting but also a more complicated problem is when the firm has some

private information about the project quality, but does not know it perfectly. In this case,

even in the absence of internal funds it might be possible to use the CRA to separate

different types of firms by inducing them to choose different fees and thus produce ratings

with different degrees of precision. In particular, suppose that there are two types of firms,

one being more optimistic about its project than the other, and there are no internal funds.

Then one can show that in a separating equilibrium where both types get rated, the firm

that has a lower prior about its quality must receive a more precise rating.

Notice that different rating precision means that the same signal for different types will

lead to different posterior beliefs about the project’s quality. The different posteriors can be

interpreted as reflecting different ratings. That is, with two signals there can be effectively

four different ratings in equilibrium, associated with four different posteriors.

We leave a more complete treatment of this problem and the associated issues for future

work.
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A Appendix

Proof of Lemma 1. The total surplus in the first-best case is SFB = max{0,−1 +

π1y,maxe−ψ(e)−πh(e)+πh1(e)y}, where the third term can be rewritten as maxe−ψ(e)+

(1/2 + e)(−1 + pgy)γ + (1/2 − e)(−1 + pby)(1 − γ). At γ = 0, the first term in the

expression for SFB exceeds the other two terms: 0 > −1 + π1y = −1 + pby and 0 >

maxe−ψ(e)+ (1/2− e)(−1+ pby). At γ = 1, the second term exceeds the other two terms:

−1 + π1y = −1 + pgy > 0 and −1 + pgy > maxe−ψ(e) + (1/2 + e)(−1 + pgy). Hence at

γ = 0 (γ = 1) it is optimal not to acquire a rating and never (always) finance the project.

Define γ∗ such that −1+π1y = (−1+pby)γ+(−1+pby)(1−γ) = 0 at γ = γ∗. We claim

that at γ = γ∗, the third term in the expression for SFB exceeds the other two terms, and

hence it is optimal to acquire a rating and only finance the project after the high rating. To

see this, consider the first-order condition of the maximization problem in the third term,

ψ′(e) = (−1 + pgy)γ − (−1 + pby)(1− γ). (9)

The right-hand side of this equation is strictly positive at γ = γ∗. Hence (9) has a unique

solution e > 0 at γ∗. Moreover, it is always possible to obtain zero surplus by choosing

e = 0. Since the problem is strictly concave in effort, −ψ(e) − πh(e) + πh1(e)y must be

strictly positive at the optimal e.

Next, we show that the term maxe−ψ(e) − πh(e) + πh1(e)y is strictly increasing and

convex in γ. It will then follow that it must single-cross 0 at γ ∈ (0, γ∗) and −1 + π1y at

γ̄ ∈ (γ∗, 1), proving the interval structure stated in the lemma. Indeed, by the Envelope

theorem, ∂[−ψ(e)− πh(e) + πh1(e)y]/∂γ = (1/2 + e)(−1 + pgy)− (1/2− e)(−1 + pby) > 0.

Differentiating again yields ∂2[−ψ(e)−πh(e)+πh1(e)y]/∂γ
2 = (−1+pgy−1+pby)∂e/∂γ =

(−1 + pgy − 1 + pby)
2/ψ′′(e) ≥ 0, where the last equality follows from differentiating (9)

with respect to γ, which completes the proof. �

Proof of Proposition 1. Let λ and µ denote the Lagrange multipliers on constraints

(3) and (4), respectively. The first-order condition of problem (2)−(5) with respect to fi,

i ∈ {h1, h0, ℓ} is

(−1 + λ)πi(e) + µπ′
i(e) ≤ 0, fi ≥ 0,

with complementary slackness. Dividing by πi(e), one can see that the first-order condition

that will hold with equality (resulting in the strictly positive corresponding fee) is the one

that corresponds to the highest likelihood ratio, π′
i(e)/πi(e). Straightforward algebra shows
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that

π′
h1

πh1
R
π′
ℓ

πℓ
⇔ γ R

1

1 +
√

pg/pb
,

π′
h1

πh1
>
π′
h0

πh0
for all γ,

which completes the proof. �

Proof of Proposition 2. In this proof, we only consider the case when γ ≥ γ̂, as the

other case is analogous.

(i) Define f ∗
h1 = ψ′(e∗)/π′

h1(e
∗) — the fee that implements e∗ — and let v∗ = −ψ(e∗) +

πh1(e
∗)f ∗

h1. Thus by construction e∗ can be implemented at v = v∗. For v > v∗, it can be

implemented by paying the fee f ∗
h1 plus an upfront fee equal to v − v∗.

We now show that u(v∗) < 0. Since u(v) = u(v∗) − (v − v∗) for v ≥ v∗, it will follow

that u(v) < 0 for v ≥ v∗. Using (9), for the first-best effort to be implemented it must be

the case that π′
h1f

∗
h1 = (−1 + pgy)γ − (−1 + pby)(1 − γ). Substituting this into the firm’s

payoff, obtain

u(v∗) = −πh + πh1y − πh1f
∗
h1 = (1/2 + e)(−1 + pgy)γ + (1/2− e)(−1 + pby)(1− γ)

−[(1/2 + e)pgγ + (1/2− e)pb(1− γ)]
(−1 + pgy)γ − (−1 + pby)(1− γ)

pgγ − pb(1− γ)

= γ(1− γ)[pb − pg]y < 0,

where the last equality follows from straightforward algebra.

(ii) Consider maximizing the firm’s payoff while omitting constraint (3). Using the

incentive constraint ψ′(e) = π′
h1(e)fh1, the firm’s payoff can be written as −πh(e)+πh1(e)y−

πh1(e)fh1 = (−1 + pgy)(1/2 + e)γ + (−1 + pby)(1/2− e)(1− γ)− πh1(e)ψ
′(e)/π′

h1(e). The

first-order condition with respect to effort is 0 = [(−1+pgy)γ− (−1+pby)(1−γ)]−ψ
′(e)−

ψ′′(e)πh1(e)/(pbγ − pg(1 − γ)). The term in the square brackets is strictly positive, while

the last two terms are zero at e = 0 by our assumptions ψ′(0) = ψ′′(0) = 0. Thus e = 0

cannot maximize the firm’s profits, and hence the optimal level of effort when (3) does not

bind is strictly positive.

To see that (3) indeed does not bind for v low enough, consider the CRA’s pay-

off Π(e) = −ψ(e) + πh1(e)ψ
′(e)/π′

h1(e), where Π(0) = 0. Differentiating yields Π′(e) =

ψ′′(e)πh1(e)/(pbγ − pg(1− γ)) ≥ 0, with strict inequality for e > 0. Therefore, at v = 0 (3)

cannot bind, and by continuity it will not bind for v below some threshold value, which we
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denote by v0. Thus for v ∈ [0, v0] the optimal contract is the same, and the optimal level

of effort is strictly positive.

(iii) For v ≤ v0, constraint (3) does not bind, and hence the total surplus and effort are

constant. For v ≥ v∗, e = e∗ and the total surplus equals SFB. Suppose that v ∈ (v0, v
∗).

Then (3) holds with equality: −ψ(e)+πh1(e)ψ
′(e)/π′

h1(e) = v, where we used the incentive

constraint to substitute for fh1. Differentiating the left-hand side with respect to e and

using the fact that π′
h1(e) = pgγ − pb(1− γ) is independent of e, yields πh1(e)ψ

′′(e)/π′
h1(e),

which is strictly positive for e > 0 as ψ′′(e) > 0 and π′
h1 > 0 for γ ≥ γ̂. Thus the optimal

choice of e must be strictly increasing in v. Since the total surplus −ψ(e)−πh(e)+πh1(e)y is

strictly increasing in e for e < e∗, it follows that the total surplus is also strictly increasing

in v. �

Proof of Proposition 4. Part (i) is shown in the main text. Part (ii) immediately

follows from part (iii) of Proposition 2 and the fact that viss ≤ v̄, with strict inequality

if −1 + π1y > 0. Given our assumption that the firm can credibly announce that it did

not get rated, it immediately follows that if −1 + π1y > 0, then u = −1 + π1y, and thus

viss < v̄, as described in the main text. Claim 1 in this Appendix shows how the results

change if the firm could not credibly reveal to investors that it did not order a rating. �

Proof of Lemma 2. Suppose first that −1 + π1y > 0. We want to show that

financing the project without a rating cannot happen in equilibrium. In particular, we will

demonstrate that it cannot happen that no investor orders a rating when fees are sufficiently

low, and thus the CRA can sell a rating to investors by posting fees low enough.

Suppose that investors do not order a rating regardless of the fees. In such an equi-

librium, the CRA and investors earn zero profits, while the firm captures all the surplus,

−1+π1y. Investors always finance the project, and charge the gross rate of return R̂ = 1/π1

that solves −1 + π1R̂ = 0.

Suppose the CRA were to offer a flat fee f plus a history-contingent fee fi, where

π′
i(e)/πi(e)(> 0) is the highest likelihood ratio for all possible equilibrium histories i (see

the proof of part (ii) of Proposition 5 for details). The level of effort that these fees induce

solves ψ′(e)/π′
i(e) = fi. Consider a deviation by one investor who orders a rating, only

invests if the rating is high, and asks the issuer for the same rate of return as everyone

else. Net of the flat fee f , the profits to the CRA and the investor are ΠCRA(e) = −ψ(e) +

πi(e)ψ
′(e)/π′

i(e) and Πinv(e) = [−πh(e)+πh1(e)/π1]/n−πi(e)ψ
′(e)/π′

i(e), respectively, where
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π′
i(e) is independent of e since π(e) is linear in e.30 Given our assumptions, ΠCRA(0) =

Πinv(0) = 0. Furthermore, Π′
CRA(e) = ψ′′(e)πi(e)/π

′
i(e), which equals zero at e = 0 since

ψ′′(0) = 0. Also, Π′
inv(e) = [−π′

h(e)+π
′
h1(e)/π1]/n−[ψ′(e)+ψ′′(e)πi(e)/π

′
i(e)]. Since ψ

′(0) =

ψ′′(0) = 0, the second term is zero at e = 0, while straightforward algebra shows that the

first term is strictly positive. Thus Π′
inv(0) > 0, as the marginal cost of implementing an

arbitrarily small level of effort is zero, while the marginal benefit is positive. Therefore

the deviating investor can generate strictly positive profits by requesting a rating, and will

agree to any strictly positive flat fee f that is strictly lower than these profits. This in turn

means that the CRA can sell a rating by setting fees low enough.

We have shown that all investors not asking for a rating and always financing the project

cannot be part of equilibrium. Thus, in equilibrium at least some investors must be ordering

a rating, and the rating must be informative, i.e., einv > 0. As we will demonstrate in the

proof of Proposition 5, it in fact must be the case that in equilibrium all investors ask for

a rating. �

Proof of Proposition 5. (i) Suppose that −1 + π1y ≤ 0. We want to show that in

this case Sinv = SSB. Suppose first that if the planner is the one who orders a rating, then

asking for the rating and financing only after the high rating results in a negative total

surplus. In this case, it is optimal not to ask for a rating and never finance, so that SSB = 0.

If investors are the ones who order a rating, then by definition Sinv ≤ SSB. Ordering a

rating cannot be part of an equilibrium strategy, since it would result in a negative payoff

to at least one player. Hence in this case investors do not order a rating and never finance,

so that Sinv = SSB. Now suppose that SSB = v̄ + u(v̄). All surplus in the second-best

case is captured by the CRA, and the firm and investors earn zero. Clearly, this is also an

equilibrium when investors order a rating, and the one that maximizes the total surplus.

Thus in this case Sinv = SSB.

(ii) Suppose that −1 + π1y > 0. We first prove that in equilibrium investors who ask

for a rating earn zero profits after the low rating (not taking into account possible fee

payments), and charge the gross rate of return equal to R̂ = 1/π1 after the high rating.

To see that investors who ask for a rating must earn zero profits after the low rating,

suppose not. If the profit after the low rating is negative, then there is a profitable deviation

30The expression for Πinv(e) uses the assumption that if the firm is indifferent between investors’ offers,
it obtains an equal amount of funds from each investor (or randomizes between whom to borrow from with
equal probabilities). This assumption is not crucial here, and with minor modifications the proof goes
through by having the deviating investor offer R̂− ε, where ε > 0 is arbitrarily small.
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of offering the same interest rate as after the high rating, and offering no financing after

the high rating. And if the profit after the low rating is positive and the investors who ask

for a rating charge Rℓ after the low rating, then there is a profitable deviation to not ask

for a rating and always offer Rℓ.

Suppose that investors who ask for a rating charge Rh > R̂ after the high rating.

Then there is a profitable deviation by one investor, namely, do not order a rating and

offer R′ ∈ (R̂, Rh). The firm prefers R′ to Rh, and this investor makes positive profits:

−1 + π1Rh > −1 + π1R̂ = 0. In the investor-pays model, interest rates are used to finance

rating fees. So in the equilibrium where the CRA charges the highest fees (which yields to

the the highest payoff to the CRA and the highest surplus), the interest rate after the high

rating must also be the highest possible, i.e., exactly equal to 1/π1.

Next, we will show that in equilibrium all investors must ask for a rating. To the

contrary, suppose that there is an equilibrium where k < n investors ask for a rating and

n−k investors do not and always finance. Investor who do not ask for a rating (uninformed

investors) must earn zero profit, and hence must charge R̂ = 1/π1. Investor who ask for a

rating and only invest if the rating is high (informed investors) also charge R̂. Recall our

assumption that the firm borrows equal amounts (or one unit with equal probabilities) from

investors between whose offers it is indifferent.31 Hence the firm borrows equally from all

investors (informed and uninformed) when the rating is high, and borrows equally from all

uninformed investors when the rating is low. Denote πℓ1(e) ≡ π1 − πh1(e), the probability

that the low rating is followed by the project’s success. Then the expected profit of an

uninformed investor is [−πh + πh1/π1]/n + [−πℓ + πℓ1/π1]/(n − k) < [−πh + πh1/π1]/n +

[−πℓ + πℓ1/π1]/n = 0, as −πℓ + πℓ1/π1 < 0 < −πh + πh1/π1. A contradiction.

Let f̃i denote the fee conditional on outcome i charged by the CRA, so that the total

fee collected from n investors after outcome i is fi = nf̃i. Each investor earns [−πh(e) +

πh1(e)/π1 −
∑

i πi(e)fi]/n. The CRA’s problem can be written as maxe≥0,{fi≥0}i∈I
−ψ(e) +

∑

i∈I πi(e)fi subject to −πh(e) + πh1(e)/π1 −
∑

i∈I πi(e)fi = 0, and ψ′(e) =
∑

i∈I π
′
i(e)fi,

where I = {h1, h0, ℓ} if −πℓ(e) + πℓ1(e) ≥ 0 and I = {h1, h0, ℓ1, ℓ0} otherwise. Taking

first-order conditions with respect to fi and following the same arguments as in the proof

of Proposition 1, one can show that the only positive fee is the one for which the likelihood

ratio π′
i(e)/πi(e) is the largest. When I = {h1, h0, ℓ}, the optimal fee structure is as

described in Proposition 1. If I = {h1, h0, ℓ1, ℓ0}, then straightforward algebra shows that

31Without this assumption, the proof applies with the modification that informed investors must charge
1/π1 − ε, where ε > 0 is arbitrarily small.
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fh1 > 0 for γ > 1/(1 +
√

pg(1− pg)/[pb(1− pb)])(> γ̂) and fℓ0 > 0 otherwise.

Let i denote the equilibrium history for which the likelihood ratio π′
i(e)/πi(e) is the

highest, so that fi is the only positive fee. From the CRA’s incentive constraint fi =

ψ′(e)/π′
i(e). Hence to find the equilibrium level of effort in the investor-pays model, we

need to find e that solves the zero-profit condition for the investors, −πh(e) + πh1(e)/π1 =

πi(e)ψ
′(e)/π′

i(e). Denote the left- and right-hand sides of this equation by l(e) and r(e),

respectively. Given our assumptions, l(0) = r(0) = 0, l′(e) > 0 for all e, l′′(e) = 0 for all e,

r′(0) = 0, r′(e) > 0 and r′′(e) > 0 for all e > 0. Thus there are two solutions to the above

equation, one equal to zero and the other e > 0. Since zero effort (i.e., not asking for a

rating) cannot be an equilibrium, there is a unique equilibrium effort level einv, and it is

strictly positive.

Recall that the investors will finance the project whenever the project’s value is positive

given the rating. At γ = γ∗ ≡ (1/y − pb)/(pg − pb) such that −1 + π1y = 0, for any e > 0

we have that −1 + [πℓ1(e)/πℓ(e)]y < 0, i.e., the project’s NPV after the low rating is

negative. By continuity, since einv > 0, this is also true for γ > γ∗ close enough to γ∗, and

thus investors only finance after the high rating. In this case the total surplus is given by

u(vinv)+vinv, where vinv is such that the payoff to the firm is u(vinv) = πh1(e
inv)(y−1/π1),

as it receives financing after the high rating only and pays the interest rate of 1/π1. Notice

that u(v̄) = 0 < πh1(e
inv)(y − 1/π1) < π1(y − 1/π1) = −1 + π1y = u(viss), where the first

inequality follows from −1 + π1y > 0, and the second inequality follows from πh1(e) < π1

for any e > 0. Thus u(v̄) < u(vinv) < u(viss), which by part (iii) of Proposition 2 implies

viss < vinv < v̄ and eiss < einv < eSB. For high enough γ, the project’s value after the low

rating is positive, and hence the investors provide financing after both ratings. The total

surplus in this case is −ψ(einv)− 1 + π1y < −1 + π1y. The comparison of effort levels and

surpluses stated in this proposition then follows immediately. �

The argument behind the proof of Proposition 4 relied on the assumption that the firm

can credibly announce that it did not get rated. The claim below demonstrates how the

results change if we dispose of this assumption.

Claim 1 Suppose that the firm cannot credibly reveal to investors that it did not order a

rating. Then the maximum total surplus and effort in the issuer-pays case are the same as

in the investor-pays case, Sinv and einv.

Proof. When −1+π1y ≤ 0, the analysis is the same as before. Suppose that −1+π1y >

0. If the issuer cannot credibly announce that it did not order a rating, investors’ contracts
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cannot distinguish between events when a rating has not been ordered, and when it has

been ordered, but the firm chose not to reveal it. Furthermore, if investors financed the

project without a rating but not with a low rating, then the firm with the low rating would

choose not to announce it. Therefore the argument provided in the main text for showing

that u = −1 + π1y when −1 + π1y > 0 does not apply.

We first show that financing without a rating cannot happen in equilibrium. Suppose

the opposite is true. Then it must be the case that regardless of the fees charged by the

CRA, investors finance without a rating and the firm does not ask for a rating. (Indeed,

if this was not true, then the CRA would charge fees for which a rating is ordered, and

earn profits.) Investors charge the interest rate that breaks them even, i.e., R̂ = 1/π1.

Now, suppose the CRA posts fees that would implement a positive level of effort if a rating

was ordered. (Specifically, let i be the outcome corresponding to the highest likelihood

ratio, so that fi is the only positive fee.) Given the fees, if investors were to observe the

high rating, they would charge a different, lower, interest rate than if they see no rating:

Rh(e) = πh(e)/πh1(e), where e is the level of effort implemented given the fees. But then

suppose the firm orders a rating and only discloses it if it is high. The firm receives financing

at the rate 1/π1 if the rating is low (in which case the firm will not show it to investors)

and at Rh(e) if the rating is high. The firm therefore earns Πiss(e) = πh1(e)(y − Rh(e)) +

πℓ1(e)(y−1/π1)−πi(e)ψ
′(e)/π′

i(e) = −1+π1y−πh(e)+πh1(e)/π1−πi(e)ψ
′(e)/π′

i(e). Notice

that Πiss(0) = −1 + π1y and straightforward algebra reveals that Π′
iss(0) > 0. Thus if the

fee is small enough, the firm earns profits strictly above −1+π1y by ordering a rating. Thus

it cannot be the case that the rating is not ordered regardless of the fees when −1+π1y > 0.

Then what is the equilibrium? Suppose the implemented effort is e(> 0). Consider the

following equilibrium candidate. If −πℓ(e) + πℓ1(e)y ≤ 0, then investors finance after the

high rating at the gross interest rate πh1(e)/πh(e)(< 1/π1), and do not finance if the rating

is low or if there is no rating. And if −πℓ(e) + πℓ1(e)y > 0, then investors finance after the

high rating at πh1(e)/πh(e), and finance at πℓ1(e)/πℓ(e)(> 1/π1) if the rating is low or if

there is no rating. What are the highest fees that the CRA can charge? It must be the

case that no investor finds it profitable to deviate by offering financing regardless of the

rating. Such a deviation yields negative profits if the firm orders a rating, borrows from

other investors if the rating is high, and only borrows from the deviating investor if the

rating is low. Consider the profits that the firm earns after the high rating depending on

whom it chooses to borrow from. If the firm borrows from investors who finance after the

high rating at πh1(e)/πh(e), it earns Π1 ≡ πh1(e)(y−πh(e)/πh1(e))−
∑

i πi(e)fi. If the firm
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borrows from the deviating investor after the high rating, it earns Π2 = πh1(e)(y − Rd),

where Rd is the gross interest rate charged by the deviating investor. The issuer will order

a rating and choose the first option after the high rating — and thus the deviating investor

will earn negative profits — if the first payoff exceeds the second one.32 This restriction

imposes an upper bound ẽ on the effort level that can be implemented in equilibrium. The

higher the fees and the effort, the higher the payoff to the CRA and the lower the payoff

Π1 (so long as the payoff to the CRA exceeds v0). The highest fee/effort for which Π1

just equals Π2 can be found by setting Π2 as low as possible. The lowest interest rate that

such a deviating investor can charge is R̂ = 1/π1 (charging anything lower would earn him

negative profits). Thus, denoting the outcome with the highest likelihood ratio by i and

using the CRA’s incentive constraint ψ′(ẽ) = π′
i(ẽ)fi, the equation that ẽ solves becomes

πh1(ẽ)[y − πh(ẽ)/πh1(ẽ)] − πi(ẽ)ψ
′(ẽ)/π′

i(ẽ) = πh1(ẽ)(y − 1/π1) or −πh(ẽ) + πh1(ẽ)/π1 =

πi(ẽ)ψ
′(ẽ)/π′

i(ẽ). Notice that this condition, which pins down the equilibrium level of

effort, is exactly the same as in the investor-pays case — see the proof of Proposition 5.

Thus ẽ = einv.

Finally, recall that when −πℓ(ẽ) + πℓ1(ẽ)y > 0, investors finance after the low rating or

no rating at πℓ1(ẽ)/πℓ(ẽ). We need to verify that in this case the firm has no incentives not

to order a rating and receive financing at this rate. By ordering a rating, the firm’s gain

from a lower interest rate after the high rating is πh1(πh/πh1−πℓ/πℓ1) = −πh+πh1πℓ/πℓ1 =

−πh+ (πh1/π1)(π1πℓ/πℓ1) > −πh+ πh1/π1, where the right-hand side equals πifi = πiψ
′/π′

i

at the equilibrium level of effort. Thus the gain from ordering a rating is indeed larger than

the cost, implying that it is not profitable for the firm to deviate.

Note that the payoff to the firm is positive. But since the firm’s payoff of not ordering a

rating is zero when it receives no financing without a rating, why does not the CRA charge

higher fees than those implementing ẽ in that case? The answer is that if it did, then the

equilibrium strategy of the firm and investors would be different — investors would finance

at 1/π1 if they see no rating (and at a lower interest rate if they see a high rating), and the

firm would not order a rating. The firm will have no incentives to deviate by ordering a

rating and only revealing it if it is high since for e > ẽ, πh1(e)(y−πh1(e)/πh(e))−πi(e)fi <

πh1(e)(y − 1/π1), or πh1(e)(y − πh1(e)/πh(e))− πi(e)fi + πℓ1(y − 1/π1) < y − 1/π1. �

Proof of Proposition 6. The first-order conditions of problem (2)−(5) subject to

additional constraints (7)−(8) with respect to fi, i ∈ {h1, h0, ℓ} — with ξh and ξℓ denoting

32An implicit assumption is that the firm cannot commit not to borrow at a lower interest rate if one is
available, and thus cannot commit to borrow from an uninformed investor in all states.
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the Lagrange multipliers on these constraints — can be written as

−1 + λ+ ξh + ξℓ − ξh
π1

πh1(e)
+ µ

π′
h1(e)

πh1(e)
≤ 0, fh1 ≥ 0, (10)

−1 + λ+ ξh + ξℓ − ξh
π0

πh0(e)
+ µ

π′
h0(e)

πh0(e)
≤ 0, fh0 ≥ 0, (11)

−1 + λ+ ξh + ξℓ − ξℓ
1

πℓ(e)
+ µ

π′
ℓ(e)

πℓ(e)
≤ 0, fℓ ≥ 0, (12)

all with complementary slackness. Straightforward algebra shows that π′
h0(e)/πh0(e) <

π′
h1(e)/πh1(e) and π0/πh0(e) < π1/πh1(e) for all e and all γ. Thus the left-hand side of (11)

is always strictly smaller than the left-hand side of (10), and thus fh0 = 0.

To show that both fh1 and fℓ must be strictly positive, suppose, for example, that

fℓ = 0. Then from (7), using fh0 = fℓ = 0, we have −ψ(e) + πh1(e)fh1 ≥ π1fh1, or

−ψ(e) − πℓ1(e)fh1 ≥ 0, where πℓ1(e) ≡ π1 − πh1(e). But the left-hand side is strictly

negative since e > 0 (which is the case when the project is only financed after the high

rating). A contradiction. A similar argument supposing fh1 = 0 and using (8) also arrives

to a contradiction.

Since both fh1 > 0 and fℓ > 0, constraints (10) and (12) must both hold with equality.

Subtracting one from the other, obtain:

µ

[

π′
h1(e)

πh1(e)
−
π′
ℓ(e)

πℓ(e)

]

=
ξhπ1
πh1(e)

−
ξℓ

πℓ(e)
.

Suppose that γ > γ̂, so that π′
h1/πh1 − π′

ℓ/πℓ > 0 (see the proof of Proposition 1), and

(7) does not bind. Then ξh = 0 and the right-hand side of the above equation is non-

positive. On the other hand, as long as the incentive constraint binds so that µ > 0, the

left-hand side of (7) is strictly positive, a contradiction. An analogous argument shows

that ξℓ must be strictly positive when γ < γ̂. When γ = γ̂, π′
h1(e)/πh1(e) = π′

ℓ(e)/πℓ(e), so

that incentives for effort can be provided equally well with fh1 and fℓ, and thus (6) can be

satisfied without any cost. Without loss of generality, we can assume that (7) is satisfied

with equality at γ = γ̂. �

Claim 2 Suppose fh1 and fℓ are the optimal choices of fees in problem (2)−(6), where

ψ(e) = Aϕ(e). If the CRA chooses effort facing such fees and A′ < A, then (6) is violated,

and hence the optimal response of the CRA is to exert zero effort and always report h if

γ ≥ γ̂ and ℓ otherwise.
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Proof. The CRA’s profits if it chooses to exert effort are π(A) ≡ maxe−Aϕ(e) +

πh1(e)fh1+πℓ(e)fℓ. By the Envelope theorem, π′(A) = −ϕ(e) < 0. Therefore the left-hand

side of (6) with A′ is strictly lower than that with A. Since the right-hand side of (6) does

not change, and the constraint was binding with A, it now becomes violated. Which report

the CRA makes then follows from Proposition 6. �

Claim 3 Suppose that ψ(e) = Aϕ(e). Then the optimal level of effort in problem (2)−(5)

strictly decreases with A.

Proof. We use strict monotone comparative statics results from (Edlin and Shannon,

1998) to show that e is strictly decreasing in A. Define a = 1/A. Consider the case

γ ≥ γ̂ (the other case is analogous). Using Proposition 2 and substituting from (4),

problem (2)−(5) can be written as maxe−πh(e) + πh1(e)y − πh1(e)ϕ
′(e)/(aπ′

h1(e)) subject

to −ϕ(e) + πh1(e)ϕ
′(e)/π′

h1(e) ≥ va, where π′
h1(e) = pgγ − pb(1− γ). Denote the objective

function by F (e, a). Differentiating with respect to e, Fe = −π′
h(e) + π′

h1(e)y − [ϕ′(e) +

πh1(e)ϕ
′′(e)/π′

h1(e)]/a. Since ϕ′(e) > 0 and ϕ′′(e) > 0 for e > 0, and π′
h1 > 0 for γ ≥ γ̂, it

follows that Fea > 0. Next, differentiating the left-hand side of the constraint with respect

to e, obtain ∂[−ϕ(e) + πh1(e)ϕ
′(e)/π′

h1(e)]/∂e = πh1(e)ϕ
′′(e)/π′

h1(e) > 0 for e > 0. Thus,

the constraint can be written as g(e) ≥ va, where g is a strictly increasing function, or,

equivalently, e ∈ Γ(a), where Γ is nondecreasing in a in the strong set order. Therefore the

optimal choice of effort is strictly increasing in a, or strictly decreasing in A. �

A.1 Delays in Downgrading

Consider the extension to two periods. To simplify the analysis, assume that if the project

is not financed in the first period, it is not productive in the second period. This implies

that if in the first period the project is not financed after the low rating, the CRA will

not rate the security again in the second period. Let e and ei denote effort levels in the

first period and in the second period after the outcome i ∈ {h1, h0}, respectively. Also,

introduce the following notation for the probabilities of outcomes {i, j} occurring, where
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i ∈ {h1, h0} and j ∈ {h1, h0, ℓ}:

πh1,h1 = p2g

(

1

2
+ eh1

)(

1

2
+ e

)

γ + p2b

(

1

2
− eh1

)(

1

2
− e

)

(1− γ),

πh1,h0 = (1− pg)pg

(

1

2
+ eh1

)(

1

2
+ e

)

γ + (1− pb)pb

(

1

2
− eh1

)(

1

2
− e

)

(1− γ),

πh1,ℓ = pg

(

1

2
− eh1

)(

1

2
+ e

)

γ + pb

(

1

2
+ eh1

)(

1

2
− e

)

(1− γ),

πh0,h1 = pg(1− pg)

(

1

2
+ eh0

)(

1

2
+ e

)

γ + pb(1− pb)

(

1

2
− eh0

)(

1

2
− e

)

(1− γ),

πh0,h0 = (1− pg)
2

(

1

2
+ eh0

)(

1

2
+ e

)

γ + (1− pb)
2

(

1

2
− eh0

)(

1

2
− e

)

(1− γ),

πh0,ℓ = (1− pg)

(

1

2
− eh0

)(

1

2
+ e

)

γ + (1− pb)

(

1

2
+ eh0

)(

1

2
− e

)

(1− γ).

For simplicity, we will focus on the case where positive effort is implemented in the

second period after h1 and h0. Denote I = {h1, h0}, and J = {h1, h0, ℓ}. The problem of

finding the optimal fees given that in the first period the project is financed only after the

high rating can be written as follows:

max
e,eh1,eh0,fℓ,{fi,j}i∈I,j∈J

−πh(e) + πh1(e)y − πh1,h(e, eh1) + πh1,h1(e, eh1)y

−πh0,h(e, eh0) + πh0,h1(e, eh0)y − πℓ(e)fℓ −
∑

i∈I,j∈J

πi,j(e, ei)fi,j

s.t. − ψ(e) +
∑

i∈I

[

−πi(e)ψ(ei) +
∑

j∈J

πi,j(e, ei)fi,j

]

+ πℓ(e)fℓ ≥ v,

ψ′(e) =
∑

i∈I,j∈J

∂πi,j(e, ei)

∂e
fi,j +

∂πℓ(e)

∂e
fℓ,

πi(e)ψ
′(ei) =

∑

j∈J

∂πi,j(e, ei)

∂ei
fi,j for i ∈ I,

e ≥ 0, ei ≥ 0, fℓ ≥ 0, fi,j ≥ 0 for i ∈ I, j ∈ J.

Let λ, µ, and µi denote the Lagrange multipliers on the first, second, and third constraints,

respectively. Then the first-order condition with respect to fi,j is

−1 + λ+
1

πi,j

[

µ
∂πi,j(e, ei)

∂e
+ µi

∂πi,j(e, ei)

∂ei

]

≤ 0, fi,j ≥ 0, (13)
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with complementary slackness.

It is straightforward to check that

∂πh1,h1(e, eh1)/∂e

πh1,h1
>
∂πh1,j(e, eh1)/∂e

πh1,j
for j ∈ {h0, ℓ},

i.e., providing incentives for effort in period 1 by paying fh1,h1 is more effective than by

paying fh1,h0 or fh1,ℓ. It is also easy verify that

∂πh1,h1(e, eh1)/∂e

πh1,h1
>
∂πh0,ℓ(e, eh0)/∂e

πh0,ℓ
,

which means that providing incentives for effort in period 1 by paying fh1,h1 is always more

effective than by paying fh0,ℓ. In other words, if there was no need to provide incentives for

effort after a mistake, the fee fh0,ℓ would never be positive. Moreover, ∂πh0,ℓ(e, eh0)/∂e < 0

if and only if

γ <

[

1 +
1− pg
1− pb

1/2− eh0
1/2 + eh0

]−1

,

the right-hand side of which is very close to one if (1 − pg)/(1 − pb) is low enough. This

means that unless γ is very high, paying fh0,ℓ actually reduces effort in period 1.

Finally,
∂πh0,h1(e, eh0)/∂e

πh0,h1
>
∂πh0,j(e, eh0)/∂e

πh0,j
for j ∈ {h0, ℓ},

that is, providing incentives for effort in period 1 by paying fh0,h1 is more effective than by

paying fh0,h0 or fh0,ℓ.

For concreteness, suppose that γ is high enough so that

∂πh1,h1(e, eh0)/∂e

πh1,h1
>
∂πℓ(e)/∂e

πℓ
,

and thus fℓ = 0. (The case when the comparison of the likelihood rations for h1h1 and ℓ is

reverse can be treated similarly.) Suppose further that the best way to provide incentives for

effort in period 2 after h1 and h0 is to pay fh1,h1 and fh0,ℓ, respectively. Consider the optimal

contract that provides incentives for effort in both periods after all histories. Two scenarios

are possible: either fh1,h1 > 0 and fh0,ℓ > 0, or fh1,h1 > 0 and fh0,h1 > 0. (The latter can

only happen if ∂πh0,h1(e, eh0)/∂eh0 > 0.) Consider the first scenario first, and look at the

point in time when effort in period 1 has already been exerted. How would the fees change if
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the contract could be optimally modified at this point given that the CRA’s expected profits

must be πh1(e)vh1 + πh0(e)vh0 = v + ψ(e), where vi = −ψ(ei) +
∑

j∈J πi,j(e, ei)fi,j/πi(e)

for i ∈ I? Notice that both fh1,h1 and fh0,ℓ cannot decrease, because then vh1 and vh0

both decrease, and the CRA’s profits will be less than v + ψ(e). Similarly, they cannot

both increase assuming that the promised value to the CRA in the first period is exactly

v (which is true as long as v is above the analog of v0 in the two-period case). Thus fh1,h1

and fh0,ℓ will either remain unchanged, or change in the opposite directions.

Given the previous comparisons of likelihood ratios, paying fh1,h1 always dominates

paying fh0,ℓ from the point of view of incentive provision in period 1. Moreover, unless γ

is very high, paying fh0,ℓ reduces effort in period 1. Thus the optimal contract that takes

into account incentive provision in both periods would have a lower fh0,ℓ relative to what

is ex-post optimal. In other words, once effort in period 1 is sunk, it is optimal to increase

fh0,ℓ — which would lead to higher effort after h0 — and decrease fh1,h1.

Now consider the second scenario where fh0,h1 > 0 instead of fh0,ℓ > 0 in the optimal

contract. Since by assumption fh0,ℓ dominates fh0,h1 for incentive provision after h0, in the

renegotiated contract fh0,h1 would be replaced with fh0,ℓ. But would this increase effort

after h0? The answer is yes if vh0 decreases, which happens if fh1,h1 is more effective than

fh0,h1 in providing incentives for effort in period 1. How can we guarantee that this is the

case? It is straightforward to check that

∂πh1,h1(e, eh1)/∂e

πh1,h1
>
∂πh0,h1(e, eh0)/∂e

πh0,h1
(14)

if and only if

pg(1/2 + eh1)

pg(1/2 + eh1) + pb(1/2− eh1)
>

(1− pg)(1/2 + eh0)

(1− pg)(1/2 + eh0) + (1− pb)(1/2− eh0)
. (15)

That is, fh1,h1 dominates fh0,h1 for incentive provision in period 1 if and only if (15) holds.

What this condition means is that observing success in the first period followed by the high

rating (with effort eh1) necessarily results in a higher posterior belief about the project’s

quality than observing failure followed by the high rating (with effort eh0). Notice that if

eh1 ≥ eh0, (15) holds automatically, but it might be violated if eh0 is sufficiently higher

than eh1. In order for (15) to hold, it must be the case that even if the rating in the second

period after h0 is more precise than after h1, the market will still believe that the project

is not as good after h0h as it is after h1h. In other words, the project’s success/failure is
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always a more informative signal than a high rating.

In order to insure that this is true, it is enough to impose an upper bound on effort, ē,

so that ψ(ē) is large enough, for instance, ψe→ē(e) = +∞. To derive this upper bound, set

eh1 = 0 and eh0 = ē in (15), and replace the inequality with equality:

pg
pg + pb

=
(1− pg)(1/2 + ē)

(1− pg)(1/2 + ē) + (1− pb)(1/2− ē)
.

Rearranging terms yields

ē =
1

2

pg
pg

1−pb
1−pg

− 1
pg
pg

1−pb
1−pg

+ 1
.

A.2 Proofs in the Case of Misreporting

The proofs of Propositions 3 and 4 (as well as the proof of Claim 1) extend to the case

of misreporting without changes. The proofs of Propositions 2 and 5 and Claim 3 for this

case are provided below. When it is important to distinguish functions and variables with

and without misreporting, we mark those in the latter case with tilde.

First consider the payoff to the CRA,−ψ(e)+πh1(e)fh1+πℓ(e)fℓ, which from Proposition

6 equals π1fh1 if γ ≥ γ̂ and fℓ if γ < γ̂. In the case of γ ≥ γ̂, (7) holding with equality

implies πℓfℓ = ψ+πℓ1fh1. Substituting this into the incentive constraint ψ′ = π′
h1fh1+π

′
ℓfℓ,

obtain ψ′ = π′
h1fh1 + (ψ + πℓ1fh1)π

′
ℓ/πℓ or ψ

′ − ψπ′
ℓ/πℓ = [π′

h1 + πℓ1π
′
ℓ/πℓ]fh1. We can then

express fh1 and substitute it into the payoff to the CRA to express the latter as a function

of effort only. Similarly, for γ < γ̂, (8) holding with equality implies πh1fh1 = ψ + πhfℓ.

Substituting into the incentive constraint, obtain ψ′ −ψπ′
h1/πh1 = fℓ[π

′
ℓ+ πhπ

′
h1/πh1]. This

leads to the following expression for the payoff to the CRA as a function of effort only,

which we denote by V (e):

V (e) ≡







π1

[

ψ′(e)−ψ(e)π′

ℓ
(e)/πℓ(e)

π′

h1
(e)+πℓ1(e)π

′

ℓ
(e)/πℓ(e)

]

, if γ ≥ γ̂,
ψ′(e)−ψ(e)π′

h1
(e)/πh1(e)

π′

ℓ
(e)+πh(e)π

′

h1
(e)/πh1(e)

, if γ < γ̂.
(16)

Also denote C(e) ≡ ψ(e) + V (e), the expected fees that implement effort e.

Proof of Proposition 2 under Misreporting. (i) Define ṽ∗ = V (e∗). By construc-

tion, e∗ can be implemented at v = v∗. For v > v∗, e∗ can be implemented by paying the

same history-contingent fees as at v∗ plus an upfront fee equal to v − v∗.

Next we show that ũ(ṽ∗) < 0. Since ũ(v) ≤ u(v) for all v and ũ(v) = u(v) = SFB − v
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for v ≥ max{v∗, ṽ∗}, it follows that ṽ∗ ≥ v∗. Thus ũ(ṽ∗) ≤ ũ(v∗) ≤ u(v∗) < 0, where the

last inequality follows from part (ii) of Proposition 2.

(ii) Consider maximizing the firm’s payoff while omitting constraint (3). The firm’s

payoff can be written as −πh(e) + πh1(e)y − πh1(e)fh1 − πℓ(e)fℓ = (−1 + pgy)(1/2 + e)γ +

(−1 + pby)(1/2 − e)(1 − γ) − C(e). The first-order condition with respect to effort is 0 =

[(−1+pgy)γ−(−1+pby)(1−γ)]−C
′(e). The term in the square brackets is strictly positive,

while straightforward algebra shows that C ′(e) equals zero at e = 0 by our assumptions

ψ(0) = ψ′(0) = ψ′′(0) = 0. Thus e = 0 cannot maximize the firm’s profits. The CRA’s

payoff at e = 0 is V (0) = −ψ(0)+C(0) = 0. Moreover, as we will show in the proof of part

(iii) below, V (e) must be strictly increasing in e for e > 0. Therefore, for v below some

threshold value, denoted by ṽ0, (3) does not bind. Moreover, the optimal level of effort for

v ≤ ṽ0 is strictly positive.

(iii) For v ≤ ṽ0 effort is constant at e(ṽ0), and for v ≥ ṽ∗ it is constant at e∗. Suppose

that v ∈ (ṽ0, ṽ
∗). To show that the implemented effort is strictly increasing in v on this

interval, it is enough to show that V (e) is strictly increasing in e. Since the total surplus

−ψ(e) − πh(e) + πh1(e)y is strictly increasing in e for e < e∗, it will then follow that the

total surplus is also strictly increasing in v.

We will only consider the case of γ ≥ γ̂, as the other case is analogous. The derivative

of the numerator in the top expression in (16) with respect to e is ψ′′ + (π′
ℓ/πℓ)

2 −ψ′π′
ℓ/πℓ,

which is strictly positive if π′
ℓ ≤ 0. As for the denominator, π′

h1 = pbγ − pg(1 − γ) and

π′
ℓ = 1 − 2γ are independent of e. In addition, πℓ1(e)/πℓ(e) = π1|ℓ(e), the probability of

success conditional on the low rating, is strictly decreasing in e. Thus the denominator

is strictly decreasing in e, while the numerator is strictly increasing in e if π′
ℓ ≤ 0. Since

for v ∈ (ṽ0, ṽ
∗) the left-hand side of (16) is equal to v, the implemented effort is strictly

increasing in v if π′
ℓ ≤ 0.

Now suppose that π′
ℓ > 0, and suppose that as v increases, the optimal level of effort

remains unchanged or falls. The latter is not possible, since it is feasible to increase all fi,

i ∈ {h1, h0, ℓ}, by the same amount, thereby keeping e unchanged; this dominates a lower

effort since the total surplus is strictly increasing in effort for e < e∗. If effort does not

change, then an increase in v can be delivered by increasing all fi by the same amount.

But as the proof of Proposition 6 shows, it is never optimal to increase fh0 unless e < e∗.

By keeping fh0 unchanged and increasing only fh1 and fℓ, effort inevitably increases from

(4) since π′
h1 > 0 (for γ ≥ γ̂) and π′

ℓ > 0 (by supposition). A contradiction. The above

argument also implies that V (e) must be strictly increasing in e (even if π′
ℓ > 0). �
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Proof of Proposition 5 under Misreporting. The proof is a straightforward modi-

fication of the proof of Proposition 5 without misreporting. The fact that the marginal cost

of implementing an arbitrarily uninformative rating with the possibility of misreporting is

zero was shown in the proof of part (ii) of Proposition 2 under misreporting: C ′(0) = 0. �

Proof of Claim 3 under Misreporting. The proof is a straightforward extension of

the proof of Claim 3 without misreporting. Let a = 1/A, and define Vϕ(e) as V (e) given

in (16) where ψ is replaced by ϕ. Then the maximization problem (2)−(6) can be written

as maxe−πh(e) + πh1(e)y − [Vϕ(e) + ϕ(e)]/a subject to Vϕ(e) ≥ va. Denote the objective

function by F̃ (e, a). Differentiating with respect to a, Fa = [Vϕ(e) + ϕ(e)]/a2. Since Vϕ(e)

and ϕ(e) are both strictly increasing in e (the former is shown in the proof of Proposition

2 under misreporting), it follows that F̃ea > 0. In addition, the constraint can be written

as e ∈ Γ(a), where Γ is nondecreasing in a in the strong set order. Therefore the optimal

choice of effort is strictly increasing in a, or strictly decreasing in A. �

A.3 Dynamic Model

As we discussed in the body of the paper, the outcome-contingent fee structure in our

static model is essential for providing a CRA with incentives to exert effort. However, in a

dynamic model, positive effort can be sustained even if the payment structure is restricted

to flat up-front fees.

One quick way to illustrate this is by considering the following two period model. Sup-

pose for simplicity that the project quality is i.i.d. in the two periods, and the CRA’s

effort is observable in the second period but not in the first period. The CRA charges flat

up-front fees in both periods, where the fee in the second period potentially depends on

what happened in the first period. Since effort in the second period is observable, the CRA

will always exert the first-best level of effort in the second period, and will get paid its fee

as long as it is optimal (for X) to acquire a rating in the second period. Optimally choosing

the fees that the CRA will charge in the second period allows us to give incentives to the

CRA to exert effort in the first period, much in the same way as outcome-contingent fees

in our original model do.33

Perhaps a more realistic — although also much more complicated — model where

up-front fees can implement effort is a repeated infinite-horizon model, where effort is

33In this two period model we would have to assume that the CRA can commit in the first period to the
fees that it will charge in the second period.
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unobservable in every period. To show that our static model shares important similarities

to this set up, let us describe an optimal contracting problem in such a model.

To be specific, consider an environment with one infinitely-lived rating agency and a

sequence of short-run players — firms and investors — each living for one period only,

but who are informed of all previous play and correctly form expectations about all future

play when choosing their actions. Project quality is i.i.d. over time. Future profits are

discounted at rate β ≡ (1 + rf )−1 ∈ (0, 1), where rf is the risk-free interest rate.

What can we say about the optimal equilibrium assuming that only up-front fees can be

used? Let USB(v), U iss(v), and U inv(v) denote the expected present discounted value to all

of the firms’ profits when the value to the CRA is v, and X is the planner, the issuer, and

each investor, respectively. The first two functions will be directly related to the following

function. Let Ûz(v) denote the highest possible expected present discounted value of firms’

profits that can be achieved when the value to the CRA is v, when the planner sets the fees

and chooses whether to ask for a rating, and z is a parameter that denotes the minimum

payoff that each firm must receive. We can formulate the recursive problem for Ûz(v) using

the promised value v as a state variable, and continuation values as control variables.34

Define I = {h1, h0, ℓ1, ℓ0} — the set of all potentially possible one-period histories. Then

the recursive problem for Ûz can be written as follows:35,36

Ûz(v) = max
e,f,{vi}i∈I

−f + E[max{−πh(e) + πh1(e)y, 0}+max{−πℓ(e) + πℓ1(e)y, 0}

+β
∑

i∈I

πi(e)Ûz(vi)] (17)

s.t. f + E[−ψ(e) + β
∑

i∈I

πi(e)vi] = v, (18)

ψ′(e) = β
∑

i∈I

π′
i(e)vi, (19)

34The classic reference is Spear and Srivastava (1987).
35The expectation sign in the objective function and the promise-keeping constraint (18) is added because

with deterministic contracts the problem is in general not concave, and thus the use of lotteries over
continuation values and the implemented effort can improve welfare. The use of lotteries ensures that the
value function is concave, which in turn guarantees that the fixed point of the Bellman operator exists,
and also justifies using first-order and Envelope conditions.

36Note that a solution to this problem may not exist if v is large enough. For example, suppose that
z = 0 and γ is very close to zero. Then the only equilibrium is not to order a rating and not to finance
the project in every period, and the only v for which the above problem has a solution is v = 0, with the
corresponding value of the firms’ profits equal to Û0(0) = 0.
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−f + E[max{−πh(e) + πh1(e)y, 0}+max{−πℓ(e) + πℓ1(e)y, 0}] ≥ z, (20)

Ûz(vi) ≥
z

1− β
for all i ∈ I, (21)

vj1 = vj0 if − πj(e) + πj1(e)y < 0, j ∈ {h, ℓ}, (22)

e ≥ 0, f ≥ 0, vi ≥ 0 for all i ∈ I. (23)

Notice that the incentive constraint (19) is essentially the same as the incentive con-

straint (4) in the static problem except now the discounted continuation values to the CRA,

βvi, appear instead of the outcome-contingent fees, fi. Making the CRA’s future profits

depend on the history will create incentive to exert effort even though only up-front fees

are allowed.37 The intuition is that the CRA expects to be able to charge different fees in

the future depending on today’s performance. We can think of choosing vi’s optimally as

designing the optimal ‘reputation system’ for the CRA. In particular, the analog of Propo-

sition 1 (that follows straightforwardly from the first-order and envelope conditions of the

above problem) is as follows:

Claim 4 Suppose the project is financed only after the high rating. Define γ1 = 1/2,

γ2 = 1/(1+ pg/pb), and γ3 = 1/(1+ [1− pg]/[1− pb]). (Recall that γ̂ = 1/(1+
√

pg/pb) and

notice that γ1 < γ̂ < γ2 < γ3.)

(i) If γ ⋚ γ1, then it is optimal to set vℓ R v. If γ R γ2, then it is optimal to set vh1 R v.

If γ R γ3, then it is optimal to set vh0 R v.

(ii) If γ R γ̂, then it is optimal to set vh1 R vℓ. Setting vh1 > vh0 is optimal regardless

of γ.

Next, consider how USB and U iss are related to Ûz. When X is the planner, the lowest

payoff he can deliver to each firm in equilibrium is zero. Thus z = 0 in this case so that

USB = Û0, and the Pareto frontier in this case is {(v, USB(v))|v ≥ 0, USB(v) ≥ 0}. When

X is the issuer, the lowest payoff that each firm can guarantee itself by simply not asking

for a rating is u = max{0,−1 + π1y}. Thus z = u in this case so that U iss = Ûu, and

the Pareto frontier is {(v, U iss(v))|v ≥ 0, U iss(v) ≥ u}. It is straightforward to show (21)

binds when vi is high enough. Using this, one can show that U iss(v) ≤ USB(v) for all v,

with strict inequality if −1 + π1y > 0. Notice that the result is stronger than in the static

37Constraint (22) ensures that the continuation values do not depend on success/failure event if the
project is not financed.
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model: the second-best arrangement Pareto dominates the issuer-pays model rather than

just yielding a higher total surplus.

As for the investor-pays case, just as in the static model one can show that when

−1 + π1y > 0, (i) it is not an equilibrium for investors not to ask for a rating, and (ii)

when investors finance after the high rating only, the lowest equilibrium value to the firm

is lower than in the issuer-pays case but higher than in the second best. However, carefully

writing down the recursive problem in the investor-pays case when −1 + π1y > 0 is rather

cumbersome. The reason is that two cases are possible: 1) investors may finance a project

only after the high rating, and 2) they may finance it after both ratings. However, in

the second case the problem does not have the same structure as the problem (17)−(23),

because it is not Pareto optimal to implement positive effort and then finance the project

after both ratings. Whether case 1) or case 2) occurs depends on the implemented level

of effort, which in turn depends on the promised value v, so which of these cases occurs in

the next period, and thus which function the firm’s value is given by, depends on vi. So

the equilibrium value function U inv(v) has to combine both of the cases.

Thus, for simplicity we are not going to write down the full problem in the investor-pays

case. However, we can still derive many of the results in this case. For instance, (i) and

(ii) imply that when −1 + π1y > 0, U inv(v) < USB(v) for all v. On the other hand, the

comparison between U iss(v) and U inv(v) when −1+π1y > 0 is in general ambiguous. As in

the static model, when −1+π1y ≤ 0, equilibrium welfare and effort are the same regardless

of who orders the rating.

When −1 + π1y > 0, comparing the optimal effort levels analytically for different X

is rather complicated. We conjecture that in this case, if for a given v positive effort is

implemented in the second-best case, then eiss(v) < einv(v) < eSB(v), so as in the static

case, ratings are less precise when issuers orders them than when investors do, and both

models have more rating errors compared to what the planner could achieve. We leave

verification of this conjecture for future work.

As for the model extensions that we analyzed in Section 5, results for some of those still

go through, while others are more difficult to analyze in the infinite-horizon model. For

example, it would be quite challenging to analyze effects of competition in the repeated

framework. One of the difficulties is that even if we assume that each firm orders only one

rating, in the recursive problem with, say, two CRAs one has to keep track of promised

values to both of them. Moreover, evolution of promised values must be consistent with

firms’ decisions regarding which CRA to order a rating from. Thus the problem structure
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becomes rather complicated, and also quite different from the one with a single CRA, which

makes it hard to directly compare solutions to the two problems.

Regarding our analysis of new securities, the result that effort drops to zero if the

CRA can misreport the rating and an increase in the cost parameter A is unanticipated

(shown in Claim 2 in the static case) would go through. This result is quite general and

only relies on the binding truth-telling constraint. Showing the analog of Claim 3 is much

more challenging in particular because the value function that enters into the problem

is endogenous and itself depends on A. However, it still seems rather intuitive that the

optimal level effort should be reduced when the rating technology is less productive.

Finally, our result of delays in downgrading is also quite general because it only uses

the comparison of likelihood ratios, and it would still apply in an environment where our

two-period model is repeated infinitely many times.

Overall, even though less can be said analytically in the repeated infinite-horizon model,

most of the main effects that we saw in the static model are still present, and many of our

results still apply. At the same time, the dynamic model does not really add any new

important insights, while its analysis is considerably more complicated. This is the reason

why we analyze the static model in the body of the text.
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