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ABSTRACT

We estimate hedonic price indexes for clinical trial research, an important component of biomedical
R&D, using a large sample of agreements between trial sponsors and clinical investigators obtained
from Medidata Solutions Worldwide Inc.  Nominal prices measured as total grant cost per patient
rose by a factor of 4.5 between 1989 and 2011, while the NIH Biomedical R&D Price Index (BRDPI)
focused on input costs rose only 2.2-fold.  Most of the disparity appears to be attributable to changes
in the nature and organization of clinical trials: during this period the average number of patients per
site fell substantially while “site work effort” more than doubled.  After controlling for these changes
in the characteristics of investigator agreements using a variety of methods based on hedonic regressions,
we find that the estimated rate of inflation in clinical trials costs tracks the BDRPI very closely.  Results
from this study suggest that it should be feasible for statistical agencies to develop a producer price
index for this type of R&D activity, contributing to broader efforts to develop a deflator for contracted
R&D services.
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I. Introduction 

R&D expenditures are widely acknowledged to a play a key role in economic growth and 

competitiveness, and statistics on R&D are closely watched as indicators of technological change 

and national economic performance.
1
  Yet R&D has historically been treated in the national 

accounts as a business expense, rather than as an investment in knowledge capital, which has 

important implications for estimates of GDP and GDP growth.  As a first step in treating R&D as 

an investment component of GDP, the Bureau of Economic Analysis has created an R&D 

satellite account, which reports that R&D contributed 20 basis points to the re-estimated 2.9% 

average rate of real GDP growth from 1957 to 2007.
2
  But such calculations can be quite 

sensitive to the use of deflators, and the nature of R&D activities present substantial price 

measurement challenges to statistical agencies.  Although BLS has steadily expanded the scope 

of its collection of price statistics for the service sector, it does not currently publish a PPI for 

business R&D services, a major component of total R&D activity in the US.
3
  In experimenting 

with the satellite R&D accounts, the BEA has utilized various proxy deflators to construct 

measures of real business R&D output, including cost-based aggregate indexes for inputs to 

R&D (that implicitly assume no productivity growth in R&D activities), weighted combinations 

of gross output prices of industries investing in R&D, and a variety of other next best alternatives 

in lieu of actual R&D output prices.
4
  Were a broad-based PPI for contracted business R&D 

available, this could be used to develop estimates of real private sector R&D output by deflating 

                                                      
1
 Although the United States has long led the world in combined government and industry spending on research and 

development (R&D), in recent years Asian economies have increased their R&D to GDP intensity, resulting in R&D 

levels that have gained considerable ground on that of the U.S.  One estimate has 2012 US R&D expenditures of 

$418.6 billion and an R&D/GDP ratio of 2.68%, while comparable numbers for China are $197.3 billion and 1.60%, 

and for Japan $159.9 billion and 3.48%  Other countries with 2012 R&D/GDP ratios of greater than 3% include 

Finland at 3.80%, Sweden 3.62%, South Korea 3.45% and Denmark 3.08%.  Source: Battelle Institute, R&D 

Magazine, 2012 Global R&D Funding Forecast “2012 Global R&D Funding Forecast”, p. 5,  December 2011.  

Available online at http://www.battelle.org/docs/default-document-library/2012_global_forecast.pdf, last 

accessed 11 January 2013.  
2
 Lee, J and Schmidt, AG. “Research and Development Satellite Account Update: Estimates for 1959–2007” Survey 

of Current Business, 90(12):16-27. December 2010  
3
 Industry performs about 71% of R&D in the US.  Battelle Institute, R&D Magazine, 2012 Global R&D Funding 

Forecast, p. 6.   
4
 David Friedman [2010], “Developing a PPI for Scientific Research and Development NAICS 5417/ISIC 7310”, 

presentation at the 25
th

 Meeting of the Voorburg Group, Vienna, Austria, 23 September 2010.  Available online at 

http://stds.statcan.ca/english/voorburg/Documents/2010%20Vienna/Papers/2010%20-%2081.pdf, last accessed 13 

January 2013, slide 6; also see Adam Copeland and Dennis Fixler, “Measuring the Price of Research and 

Development Output”, paper presented at the National Bureau of Economic Research, Summer Institute 

Productivity Program, J:uly 2008; and Adam Copeland, Gabriel W. Medeiros and Carol A. Robbins, “Estimating 

Prices for R&D Investment in the 2007 R&D Satellite Accounte Background Paper, November 2007, both available 

at www.bea.gov.   

http://www.battelle.org/docs/default-document-library/2012_global_forecast.pdf
http://stds.statcan.ca/english/voorburg/Documents/2010%20Vienna/Papers/2010%20-%2081.pdf
http://www.bea.gov/
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a portion of the Census Bureau’s NAICS 5417 nominal expenditure estimates for “Scientific 

Research and Development Services”.   As noted by BLS Assistant Commissioner David 

Friedman, however, what is desired is an ideal PPI “that directly measures actual market 

transactions for R&D output”.
5
  

This paper contributes to this broader effort by studying measurement of such R&D 

transactions prices for the specific area of biomedical clinical research.  Biomedical research is 

the single biggest component of the R&D sector’s estimated contribution to growth: in the 

BEA’s initial estimates in the satellite account, biotechnology related industries contributed 

44%,of the total business R&D contribution to real GDP growth between 1998 and 2007, with 

information-communications-technology producing industries contributing 36%, transportation 

equipment industries 11% and all other industries 9%.
6
  Within biomedical research, clinical 

trials account for a large fraction of commercial R&D expenditure in this sector: of the $46.4 

billion spent by Pharmaceutical Research and Manufacturers of America (PhRMA) member 

companies in 2010 on R&D, $32.5 billion (70%) was spent on clinical trials involving human 

subjects, with a much smaller proportion devoted to pre-clinical and basic research.
7
  In recent 

years, clinical research has accounted for about 1/3 of the total NIH budget ($10.7 billion out of 

$30 billion in FY2010) of which a substantial fraction ($3.2 billion in FY2010) is expenditure on 

clinical trials.
8
    

Clinical research is also an activity which has seen significant organizational, 

technological and economic changes, with potentially important implications for productivity.  

Over the past three decades, the design and management of clinical trials has become 

increasingly sophisticated, and at the same time the types of organizations conducting clinical 

trials have changed.  Much of the effort in running clinical trials is increasingly contracted out to 

specialist entities called contract research organizations (CROs) rather than being incurred “in 

house” or by biopharmaceutical companies in collaborations with external academic medical 

center investigators.  Moreover, within the US, sponsors are moving trials away from academic 

                                                      
5
 Friedman [2010], slide 6. 

6
 Friedman [2010], Slide 5., 

7
Pharmaceutical Research and Manufacturers of America, Pharmaceutical Industry Profile 2011, Washington DC, 

PhRMA, April 2011, , Appendix Table 5, p. 45.  Expenditure on Phase 1 trials was $3.753 billion, Phase 2 $7.124 

billion, Phase 3 $16.300 billion, and Phase 4 5.303 billion. 
8
 See http://report.nih.gov/rcdc/categories/default.aspx, visited 11/30/2011. 
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medical centers toward physician practices, many of them for-profit.
9
  For example, while the 

number of clinical research contracts carried out annually by academic investigators remained 

relatively constant at about 3,000 between 1991 and 1999, over the same time period the number 

of trial research contracts with non-academic investigators increased from about 1,700 to 5,000.  

 Importantly, multi-site clinical trials have also become increasingly global in nature, 

recruiting patients in many countries simultaneously. For a large Phase III trial evaluating 

cardiovascular or central nervous system drugs, more than 10,000 patients will typically be 

recruited at 100-200 sites in ten or more countries worldwide.
10

  The size of dossiers filed by 

biopharmaceutical firms in support of New Drug Applications (NDAs) at the US Food and Drug 

Administration has increased over time, reflecting increased complexity and detailed site-

specific information: the mean number of pages per NDA increased from 38,000 in 1977-80 to 

56,000 in 185-88 and 91,000 in 1989-92.
11

  

To date, very little information has been available on trends in the pricing of the R&D 

services that are the inputs to clinical trials.  In 1985 the U.S. Bureau of Labor Statistics began 

publishing producer price indexes (PPIs) for various service sector industries, an effort which has 

expanded to include including PPIs for aspects of health care delivery such as hospitals and 

physician services
12

.  However these indexes do not cover contracted business R&D.   To date, 

the only published source of information on trends in pricing in the biomedical R&D sector is the 

Biomedical R&D Price Index (BRDPI) constructed by the BEA under contract with the National 

Institutes of Health (NIH).   The BRDPI is  based on a chained Laspeyres methodology using 

micro budget data from individual NIH investigator grants.  This index measures changes in the 

weighted-average of the prices of all the inputs (e.g., personnel services, various supplies, and 

equipment) that are purchased or leased with the NIH budget to support research.  Input weights 

                                                      
9
See  Pierre Azoulay, “Capturing Knowledge Within and Across Firm Boundaries: Evidence from Clinical 

Development”, American Economic Review 94(5):1591-1612, December 2004.  Available at 

http://pazoulay.scripts.mit.edu/pubs/knowledge.pdf; Pierre Azoulay and Ariel Fishman, “Doctors, $$ and Drug 

Development: The Rise for For-Profit Experimental Medicine”, paper presented at the National Bureau of Economic 

Research Location of Biopharmaceutical Activity Conference, Savannah, GA, March 7-8, 2008.  Available from 

pazoulay@mit.edu 
10

 See, for example, Fabio Thiers, Anthony J. Sinskey and  Ernst R. Berndt, “Trends in the Globalization of Clinical 

Trials”, Nature Reviews: Drug Discovery 7(1):13-14, 2008.  doi:10-1038/nrd2441. 
11

 Pierre Azoulay, “The Changing Economics of Clinical Development”, presentation to the Earth Institute, 

Columbia University, May 20, 2004, slide 7.  Available from pazoulay@mit.edu. 
12

 Roslyn Swick, Deanna Bathgate and Michael Horrigan, “Services Producer Price Indices: Past, Present, and 

Future”, paper presented at the Federal Economic Statistics Advisory Committee on June 9, 2006.    

http://pazoulay.scripts.mit.edu/pubs/knowledge.pdf
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reflect the changing actual shares of total NIH expenditures on each of the types of inputs 

purchased.
 13

  According to the NIH,  

“Theoretically, the annual change in the BRDPI indicates how much NIH 

expenditures would need to increase, without regard to efficiency gains or 

changes in government priorities, to compensate for the average increase in prices 

due to inflation and to maintain NIH-funded research activity at the previous 

year’s level.”
14

   

 

The BRDPI is published annually on a federal government fiscal year (October 1 – September 

30) basis and reaches back to 1950. 

In addition to contributing to the broader effort to construct measures of real R&D 

output, the development of a quality-constant PPI for clinical R&D would provide insights on 

important policy issues specific to this sector. For example, while total R&D spending by 

PhRMA member companies has almost doubled over the last decade
15

 (as has the overall NIH 

budget
16

), the number of new drugs and biologics approved by the FDA each year in the last 

decade has not yet returned to its mid-1990s peak levels.  One prominent study reports that the 

capitalized cost of bringing a new drug to market, adjusted for general inflation in year 2000 

dollars, more than doubled from $318 to $802 million between 1991 and 2003.
17

   

This raises some very basic—and as yet unanswered—questions.  Increases in the cost 

per approved drug are often equated with “the price of innovation”, but in fact little is known 

about how much of the increase in expenditure reflects changes in the prices of inputs to 

biomedical research and how much reflects changes in the quantity and complexity of research 

being performed.  Have the prices of inputs to clinical research increased more rapidly than 

overall inflation, or are these inputs being used more intensively, or are both occurring?  

Moreover, to what extent has the “quality” of inputs changed?  The growing complexity of 

                                                      
13

 For details on the construction of the BRDPI, see James Schuttinga, “The Biomedical Research and Development 

Price Index”, powerpoint presentation for MIT economists, March 25, 2008; National Institutes of Health, Office of 

Budget, “Biomedical Research and Development Price Index (BRDPI): Fiscal Year 2010 Update and Projections for 

FY 20110FY2016, Press Release, January 24, 2011.   Available online at 

http://officeofbudget.od.nih.gov/pdfs/FY12/BRDPI_Proj_Jan_2011_Final.pdf..   
14

 National Institutes of Health [2011], p. 1.   
15

 Total R&D spending by PhRMA member companies was $26.0 billion in 2000, and $49.4 billion in 2010, an 

increase of 90%.  Pharmaceutical Research and Manufacturers of America [2011], Appendix Table 1, p. 42. 
16

 The total NIH budget obligations in fiscal year 2000 was $l7.8 billion, and $31.0 billion in fiscal year 2010, an 

increase of 74%.  National Institutes of Health, Mechanism Detail, Actual Obligations, available at 

http://officeofbudget.od.nih.   
17

 Joseph A. DiMasi, Ronald W. Hansen and Henry G. Grabowski, “The Price of  Innovation: New Estimates of 

Drug Development Costs”, Journal of Health Economics 22(2):151-85, March 2003.  

http://officeofbudget.od.nih.gov/pdfs/FY12/BRDPI_Proj_Jan_2011_Final.pdf
http://officeofbudget.od.nih/


 

5 

clinical trials and the underlying science suggests that more time, more highly trained personnel, 

and more sophisticated equipment may be required to conduct a typical study.
18

   

Very little data is currently available to inform discussion of such issues.  While data are 

captured for some inputs to clinical research, such as salaries of post-doctoral fellows, relatively 

little is known about other important inputs to clinical research such as site administration costs, 

computational time, materials and investigator salaries.  Critically, even where good data are 

available on input prices, it is important to take into account how inputs are combined by 

focusing on an appropriate unit of analysis.
19

   

More generally, in the language of the economics of price measurement, what is needed 

is measures of  “constant-quality” changes in prices and quantities, i.e., holding the 

characteristics of the input and output activities constant when looking at changes in 

expenditures over time or cross-sectionally.  Failure to do so can result in quite misleading 

interpretations and policy recommendations.  Analyses of expenditures on personal computers, 

for example, recognize that there have been huge increases in the performance or capacity of the 

products sold, but very small changes in their nominal prices; “constant quality” prices have thus 

fallen substantially over time—various estimates suggest sustained real price declines of more 

than 25% per year over several decades.
20

   Various governmental statistical agencies now 

routinely take this phenomenon into account for many types of information technology and other 

electronic goods in developing estimates of GDP, with quite marked impacts on measures of 

economic growth and productivity.
21

  

While it is important, therefore, to quantify the “price” versus “quantity” component 

changes in R&D, adjusting both for quality, characterizing scientific research presents some very 

                                                      
18

 Kenneth A. Getz, Julia Wenger, Rafael Campo, Eward S. Seguine and Kenneth L. Kaitlin, “Assessing the Impact 

of Protocol Design Changes on Clinical Trial Performance”, American Journal of Therapeutics 15(5):450-57, 2008. 
19

 See, for example, the highly influential studies by Cutler and coauthors on the costs of treating heart attacks which 

has had a major impact on analyses of health expenditures by focusing attention on changes in the cost of an 

“episode of care” due to input substitution, rather than on changes in the per unit-price of inputs to care.  See, for 

example, David Cutler [1998], “Are Medical Prices Falling?”, Quarterly Journal of Economics, November 991-

1024; David Cutler and Mark McClellan [1998], “What Is Technological Change?”, in David Wise, ed., Inquiries in 

the Economics of Aging, Chicago: University of Chicago Press for the NBER; and David Cutler and Mark 

McClellan [2001], “Is Technological Change in Medicine Worth It?”, Health Affairs 20(1):11-29. 
20

 See, for example, Ernst R. Berndt and Neal J. Rappaport, ”Price and Quality of Desktop and Mobile Personal 

Computers: A Quarter Century Historical Overview”, American Economic Review 91(2):268-73, May 2001,  and the 

references cited therein. 
21

 For more detailed discussion, see ch. 4 in Charles L. Schultze and Christopher Mackie, eds., At What Price?  

Conceptualizing and Measuring Cost-of-Living and Price Indexes, Washington DC: National Academy Press for the 

National “Academy of Sciences, 2002. 
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substantial measurement problems.  Research activities are typically highly heterogeneous and 

idiosyncratic in nature, drawing on quite different inputs and resources to produce “output” 

which is very difficult to measure consistently.  However in one respect, clinical trials may be 

unusually tractable.  Clinical development is a highly structured activity, in which individual 

“experiments” are relatively well-defined and activity is closely tracked.  Industry trends are also 

creating an unusual opportunity to investigate these questions.  While biopharmaceutical 

companies and non-profit entities continue to be the lead sponsors of clinical trials, much of the 

effort in conducting them is increasingly outsourced to contract research organizations (“CROs”) 

rather than being incurred in-house.  At least within the US, the investigators who recruit, treat, 

and observe subjects are drawn less from academic medical centers and increasingly more from 

independent physician practices.
22

  This has meant that data on contractual terms among all these 

parties are now ever more important and increasingly visible.   

We report here results from a study directed at assessing the feasibility of constructing a 

PPI for clinical trial research, based on actual transactions data involving CRO contracts.  

Specifically, we analyse a sample of over 215,000 contracts regarding payments made by trial 

sponsors (directly or through CRO intermediaries) to clinical investigators and study sites from 

the PICAS® database maintained by Medidata Worldwide Solutions, Inc.  This sample covers 

over 24,000 distinct Phase I through Phase IV clinical study protocols conducted between 1989 

and 2011 in 52 different countries.  Using information on the protocol characteristics, we 

estimate parameters in multiple regression equations and compute hedonic price indexes that 

allow us to estimate the rate of inflation in this particular aspect of clinical research, controlling 

for changes in the characteristics of clinical trials over the sample period.  Because hedonic price 

indexes based on regression equations estimated using data pooled over time would entail 

revising the historical price index time series each time another time period of data was added to 

the sample, we also investigate use of chained indexes based on sequential “adjacent year” 

regressions, and Paasche, Laspeyres, and Fisher Ideal indexes based on single-year regression 

equations and from utilizing the “pure hedonics” approach in which year-on-year changes in the 

estimated price of characteristics are weighted by once-lagged (Laspeyres) or current period 

(Paasche) characteristics quantities.
23

 

                                                      
22

 Azoulay [2004], and Azoulay and Fishman [2008]. 
23

 We thank Marshall Reinsdorf, the discussant of a previous version of this paper, for this suggestion.  The method 

we utilize was presented by Ariel Pakes and by Ernst Berndt, Zvi Griliches and Neal J. Rappaport.  See Ariel Pakes, 
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We find that while our measure of unit costs of this aspect of conducting clinical trials 

rose rapidly over the two decades covered by this sample at about 8% per year (roughly twice the 

rate of inflation in the NIH’s Biomedical R&D Price Index), these changes in nominal costs 

appear to be driven by a variety of factors other than input costs.  At least in this sample there 

has been a substantial increase in the level of effort required by investigators, and significant 

changes in both the composition of the sample across therapeutic classes and stages of clinical 

development, as well as in the organization of trials with a trend towards smaller numbers of 

patients per site and considerable variation over time in the geographic distribution of ex-US 

sites.  After controlling for these factors using a variety of hedonic regression methods, we find 

much lower growth rates in costs, with adjusted rates of inflation between 1/3 and 2/3 lower than 

those seen in the unadjusted data.  Interestingly, we find that growth of the price index based on 

our preferred hedonic price regression specification using US data between 1989 and 2011 is 

virtually identical to that of the BRDPI.   

II. Data 

With the co-operation of Medidata Worldwide Solutions, Inc. (“Medidata”), we 

assembled a dataset of 216,076 observations on “investigator grants,” which are payments made 

by a trial sponsor to the individual investigators or “sites” that enroll subjects.
24

  These payments 

cover the investigators’ costs of recruiting subjects, administering the treatments, measuring 

clinical endpoints, etc., plus overhead allowances reflecting payments for the use of the site’s 

facilities.  We focus on the total grant cost per patient (“TGPP”) as the economically meaningful 

unit of analysis for understanding price trends.  Total grant cost per patient is the total amount 

paid by the sponsor under its contract with the site, divided by the number of patients planned to 

be enrolled at that site.  For about 12% of the records contained in the PICAS® database, the 

contract specifies only a per-patient amount, not the number of patients.  These contracts are 

excluded from the results reported below (although we apply certain robustness checks), since 

                                                                                                                                                                           
“A Reconsideration of Hedonic Price Indexes with an Application to PCs”, American Economic Review 93(5):1578-

1614, December 2003, and by Ernst R. Berndt, Zvi Griliches and Neal J. Rappaport, “Econometric Estimates of 

Price Indexes for Personal Computers in the 1990s”, Journal of Econometrics 68(1):243-268, July 1995, and the 

references cited therein. 
24

 The dataset was originally compiled by Fast Track Systems; Medidata acquired Fast Track in 2007.  For further 

details see Fast Track Systems, Grants Manager Data Dictionary, Conshohocken, PA: Fast Track Systems, Inc. 

Excel spreadsheet file, 2006 and Medidata Solutions Worldwide, “Medidata Solutions Partners with Fast Track 

Systems to Accelerate Enterprise-Wide Deployment of Electronic Clinical Trials”, press release, February 7,  2007-, 

accessed 7 December 2008. 
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we are unable to control for the scale of the site’s effort.  For ex-US sites where the contract is in 

a foreign currency, we convert to US dollars using the spot exchange rate.  Typically these 

payments make up about half of the total cost of a trial, the remainder being headquarters’ 

“overhead” in the form of trial design, data management and analysis, site selection and 

monitoring, etc., by the sponsors.  

Table I shows a summary of the number of records in the dataset by year each 

investigator contract was signed, along with summary statistics for the TGPP.  The dataset used 

here covers the almost quarter century period 1989 to 2011.  The number of records per year 

varies over time, with the period 1992-2002 accounting for almost 75% of the total number of 

records.  The number of records per year in our sample reached a peak in 2000 and declines 

steadily thereafter, reflecting two factors.  First, the PICAS® database was originally compiled 

from an archive of paper records, and has since transitioned to electronic source documents.  

This transition led to a temporary decline in the number of contributions from the participating 

organizations in 2004-2005.  Second, the fraction of contracts that do not specify the number of 

patients expected to be enrolled at the site (and are excluded from our sample) has increased over 

the past decade.  This trend likely reflects tighter “real time” tracking and control of patient 

enrollment by trial sponsors and challenges in sites being equally able to enroll planned number 

of patients at their sites.  

As can be seen from the table, the mean TGPP rises quite rapidly in nominal terms, just 

over four-fold over the period 1989 to 2011, from $3773 to $16567, with an average annual 

growth rate (AAGR) of 7.5%;
25

 the median value of each year increases slightly more rapidly, 

from $2779 to $13222, an AAGR of 8.2%.
26

  By comparison, between fiscal years 1989 and 

2011 the NIH’s BRDPI increased much more slowly, barely doubling at an AAGR only half as 

large at 3.7%.
27

  The distribution of TGPP is quite skewed, with the median somewhat below the 

mean value; a visual plot suggests that TGPP can be reasonably approximated with the 

lognormal distribution.  Notably, the within-year coefficient of variation is relatively large but 

stable at around 0.80 at both the beginning and end of the sample period.  While we attempt to 

account for this variation in TGPP with measured site and protocol characteristics, some part is 

                                                      
25

 These AAGRs are literally the arithmetic means of year-over-year growth rates; the compounded average annual 

growth rate (CAGR) is slightly less, at 7.0%; see note 40 below. 
26

 In the somewhat larger sample (245,803 records) that includes contracts where the number of patients is not 

specified, figures are very similar: mean TGPP rises from $3,752 to $15,567 at an AAGR of 7.1%. 
27

 National Institutes of Health [2011], Supplemental Table A, p. 6. 
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likely attributable to factors such as the conversion of foreign transactions to US $ using the spot 

exchange rate at the time of the transaction.   

Table II and Figures 1 and 2 show two important aspects of trials that impact the costs 

incurred by an investigator: site work effort and number of patients.  Site work effort (SWE) is a 

patent-pending measure of clinical trial complexity and burden developed by Medidata.  SWE 

was constructed as follows.  Based on examination of detailed protocols, inclusion and exclusion 

criteria, the number and use intensity of various procedures such as laboratory tests, blood work, 

questionnaires and subjective assessments, office consultations and examinations, and use of 

diagnostic technologies such as x-rays, imaging or heart activity assessments, relative value units 

(RVUs)
28

, or where unavailable or inapplicable, comparable Work Effort Unit (WEUs) created 

by Medidata in conjunction with researchers at the Tufts Center for Study of Drug Development, 

were assigned to each procedure in a trial protocol.  A complexity measure was computed simply 

as the number of distinct procedures in the trial protocol.  An aggregate investigative SWE 

measure was then computed as the cumulated product of the number and intensity in use of these 

procedures, in RVU/WEU units, conducted over the course of the entire protocol for each of the 

trials.
29

 It is important to note that SWE is therefore a protocol-level measure of the work effort 

required from each site, and that actual resources used by each site in implementing the protocol 

may differ to some degree.  Table II panel (a) and Figure 1 report descriptive statistics for SWE 

for the 24,236 distinct protocols in our sample. As can be seen there , mean and median values of 

SWE have increased very significantly over time, with the mean value per protocol rising almost 

three-fold between 1989 and 2011, at AAGRs of 5.2% (mean) and 6.1% (median).
30

   

By contrast, as seen in panel (b) of Table II and in Figure 2, the mean number of patients 

per site has fallen substantially over the same period from 25.48 to 11.83, a factor of about two, 

whereas the median has fallen more dramatically, from 20 to eight.  The relative volatility 

(coefficient of variation) of number patients per site has increased steadily, from about 1.3 in 

1989 to about 1.7 in 1999-2000 and to 2.0 in 2010, while that for SWE has been relatively stable 

at about 0.7.   

                                                      
28

 RVUs are measures constructed by Medicare to estimate the relative level of physician time, skill, training, and 

expertise and required equipment, supplies, rent and office staffing costs for conducting procedures, which Medicare 

relies upon to establish payment levels for physicians’ services. 
29

 For further details, see Getz, Wenger, Campo et al. [2008]. 
30

 Very similar figures are obtained for the slightly larger set of protocols where the investigator contracts do not 

specify the number of patients at a site, or from a reweighting of the protocol-level statistics by the number of 

contracts per protocol. 
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These changes in nominal TGPP, SWE, and number of patients per site suggest that 

important changes are occurring in the cost and nature of outsourced clinical research.  Of 

course, some of these trends may reflect a changing composition of the sample in the mix of 

therapeutic areas and phases of research, and in the location of sites in the US versus other 

countries.  Tables III through V provide descriptive statistics on the composition of the sample 

by various trial characteristics.  Table III breaks out the fraction of observations annually by the 

development phase of the protocol.  Clinical trials are conventionally categorized by stage of 

development.  Phase I trials typically enroll a small number of healthy volunteers, and are 

focused on safety, tolerability, dose-ranging, pharmacokinetics, etc.  Phase II trials enroll larger 

numbers of patients (not healthy volunteers) and investigate the potential for efficacy by 

assessing biological activity or effect of the treatment at alternative putatively safe doses.  Phase 

III trials focus on efficacy of the treatment in therapeutic use, enrolling large numbers of 

patients.  Phase IIIa refers to trials conducted prior to making a submission for regulatory 

approval, while Phase IIIb trials are those initiated after the submission for approval but prior to 

commercial launch.  Phase IV trials are conducted after a drug has been approved, often as part 

of continued investigation of safety. While the fraction of the sample made up by sites involved 

in Phase I, Phase IIIb, and Phase IV studies was approximately stable, there has been a 

significant swing in the shares of Phase II and Phase IIIa.  In 1989, Phase II trials made up less 

than 10% of the sample, and Phase IIIa almost 75%.  By the end of the sample period in 2011, 

Phase II studies comprised almost 30% of trials and Phase IIIa studies dropped to under 60%.  If 

early stage trials are more costly to conduct on a per patient basis, then this shift among trial 

phases may account for some of the increase in mean TGPP over time.   

Table IV presents the allocation of investigator grants over 15 different therapeutic areas.  

Reflecting the burden of disease, trials involving the six “largest” therapeutic areas (central 

nervous system, cardiovascular, respiratory system, endocrine, oncology and anti-infectives) 

make up 70% of the sample on average.  Shares of central nervous system and oncology trials 

grew somewhat over time until 2005-6, while cardiovascular shrank, suggesting that to the extent 

central nervous system and oncology trials are relatively more costly to conduct, these 

compositional changes may have some effect on increases in average TGPP up to 2005-2006. 

Table V presents the geographic breakdown of the sites in this sample.  Over the entire 

sample time period, 56% of sites were in the US, with most of the remainder in other OECD 
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countries, and only 5.4% in the rest of the world (ROW).  Interestingly, although the US share is 

about 80% in both the earliest and latest years, there is substantial year-to-year and trend 

variability.  However, as shown in Table I we observe considerably smaller numbers of 

observations in 1989-1991 and 2003-2011 relative to the 1992-2002 time period; any trend 

analysis is therefore tentative. 

III. Hedonic Price Index Methodology 

The hedonic pricing approach has a long tradition in economic measurement, going back 

almost a century.
31

  In essence, the hedonic approach treats the item being priced as a bundle of 

observed characteristics, and using multivariate regression methods, estimates “shadow prices” 

of each of the observed characteristics and the aggregate price index as a composite of the 

observed characteristics each multiplied by its shadow price.  In practice, given observations in 

each period t on the prices Pit of a set of items i with characteristics Xit, this means estimating a 

regression model on pooled data of the form log(Pit) = Xitβ+Ztγ+εit where Zt is a set of dummy 

variables for each period and εit is a random error term.  This semi-log functional form is widely 

used in hedonic price analysis.
32

  Predicted values from this regression provide the basis for 

computing changes in a “quality-adjusted” composite price index Pt: with a set of time dummies 

in the regression, the change in the composite index relative to the base period is given by the 

exponentiated values of their estimated coefficients (  ).  Although E[exp(P)] ≠ exp(E[P]) and εit  

may not be homoscedastic, suggesting a “smearing” adjustment of the type discussed in the 

medical costs literature,
33

 with time dummies in the regression these adjustment factors will 

typically be small.
 34

  (In the case where residuals are homoscedastic within time periods but 

heteroscedastic across time, adjustments such as the nonparametric method proposed by Duan 

                                                      
31

 For an historical overview of hedonic price analysis, see ch. 4 in Ernst R. Berndt, The Practice of Econometrics: 

Classic and Contemporary, Reading, MA: Addison-Wesley Publishing Company, 1991 also see Ernst R. Berndt, 

Zvi Griliches and Neal J. Rappapor [1995]; and Berndt and Rappaport [2001], “Price and Quality of Desktop and 

Mobile Personal Computers: A Quarter Century Historical Overview”, American Economic Review 91(2):268-273, 

May.. 
32

 See Berndt [1991], ch. 4, and Jack E. Triplett, Handbook on Hedonic Indexes and Quality Adjustment in Price 

Indexes, Paris, Organization for Economic Community Development, 2006 for further discussion. 
33

 Applications are primarily in modeling health care costs and outcomes.  See, for example, Nathan Duan 

“Smearing Estimate: A Nonparametric Retransformation Method”, Journal of the American Statistical Association 

78:605-10, 983;, Willard G. Manning and John Mullahy, “Estimating log mod els: To Transform or Not to 

Transform?”, Journal of Health Economics 20:461-94, 2001; Willard G. Manning, “The Logged Dependent 

Variable, Heteroskedasticity, and the Retransformation Problem”, Journal of Health Economics 17:283-95,  1998;  

and John Mullahy, “Much Ado About Two:  Reconsidering Retransformation and the Two-Part Model in Health 

Econometrics, Journal of Health Economics 17:247-81,  1998.   
34

 See Triplett [2006] p.34, footnote 41. 



 

12 

will give estimates that are numerically identical to non-adjusted ones.
35

  We found very similar 

adjusted and unadjusted estimated index values, and here we report only estimates with no 

further adjustment for cross-year heteroscedasticity.) 

In this application, the “priced item” is the investigator total grant cost per patient. TGPP, 

and our hedonic regression takes the form log(TGPPit) = Xitβ+Ztγ+εit, with X containing site and 

trial characteristics including planned number of patients at the investigator’s site, location and 

number of sites and countries participating in the trial, phase of development, therapeutic area, 

and the site work effort (SWE) measure of trial burden and complexity.
36

  Zt are annual indicator 

variables.  Estimated standard errors are Huber-White robust, clustered by trial protocol; 

computations were carried out in STATA.   

IV. Estimation and Price Index Results 

We now report results based on various regressions, and calculate corresponding average 

annual growth rates (AAGRs) of implied hedonic price indexes.  Although all regressions have 

as regressors indicator variables for therapeutic class and year, we pool over and then run 

separate regressions by trial phase; in terms of time periods, we pool over the entire 1989-2011 

time period, and then run separate regressions for the 1989-1999 and 2000-2011 subperiods.
37

  In 

all cases the dependent variable is the logarithm of total grant cost per patient (ln TGPP).
38

    

Of particular interest to us are the coefficient estimates on two clinical trial characteristics 

variables—the logarithm of number patients at the site (LPATIENTS) and site work effort 

(SWE).
39

  Note that we have no expectation regarding the sign of the coefficient on the 

LPATIENTS variable; a negative estimate implies economies of scale at the site level, whereas a 

positive estimate corresponds to diseconomies of scale.  Because SWE measures the cumulative 

burden of various clinical trial protocol procedures, we expect it to have a positive coefficient.  

                                                      
35

 See Duan reference in footnote 33 above. 
36

 Using log(SWE) does not change the sign or significance of the estimated SWE-related coefficient, or result in 

material differences in the other estimates. 
37

 In all models, tests of the joint null hypothesis that coefficient estimates on SWE, LPATIENTS and the various 

indicator variables were stable over the two time intervals were decisively rejected. 
38

 When pooled over time, the number of observations in the top panel regressions is 207,950  (All), 118,477  (US 

Only), and 89,473  (Rest of World); for the 1989-1999 (2000-2009) regressions, the corresponding numbers of 

observations are 125,736 (82,217), 66,246 (52,231) and 59,490 (29,983).  Of course the number of observations in 

the various by phase regressions is smaller, with the smallest number being 2,738 for the 2000-2011 Phase I 

regressions. 
39

 The log transform is used for patients because of the high degree of skewness and wide range of this variable.  

SWE falls in a much tighter range.  No substantial differences in the results were obtained using log(SWE). 
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Parameter estimates on these two variables, under alternative models and time periods, are 

presented in Table VI.  With two exceptions (both involving LPATIENTS in Phase II trials), all 

of the estimated coefficients are statistically significant at the 1% level, based on robust standard 

errors.   

A number of results are striking.  As shown in the top panel of Table VI, when pooled 

over all phases (but including trial phase as indicator variables), globally and for ex-US (Rest of 

World), in all three time period regressions the estimated coefficient on LPATIENTS is positive 

and highly significant; however, for the US Only model the coefficient estimate is negative and 

significant.  The implied estimated elasticities of TGPP with respect to patients range from  

-0.122 to 0.183.   

The pattern of estimates on LPATIENTS becomes a bit more nuanced when separate 

regressions are run by trial phase.  Specifically, a general pattern that prevails is that negative 

estimates occur for the Phase I and Phase II regressions for the All and Rest of World 

regressions, but these estimates become positive and ever larger as one moves to the increasingly 

larger patient size trials.  In Phase IIIA, Phase IIIB and Phase IV trials, almost all the estimates 

are positive and significant even at p-values <0.01.  Also notable is the substantial range in 

estimates of the elasticity of TGPP with respect to patients, from -0.176 to 0.320 in the pooled 

1989-2011 regressions, even larger from -0.219 to 0.305 in the 1989-1999 regressions, and in the 

2000-2011 regressions, ranging from -0.190 to 0.272.  The pooled phases and by phase 

regressions based on US only data reveal considerably greater stability, both across the various 

time period regressions and across trial phases. 

A second set of striking findings in Table VI is that every one of the estimates on the 

SWE variable is positive and statistically significant at p-values < 0.01, with the general (but not 

quite universal) pattern being that the positive estimates increase monotonically as one moves 

from the small Phase I to the larger Phase IIIB and Phase IV trials.  The steepness of the positive 

slope with larger trial phase is flatter for the US Only regressions, however, than for the All and 

Rest of World regressions, with the Phase IV All and Rest of World estimates being particularly 

large; the vast majority of estimates on the SWE variable are in the range of 0.01 to 0.03. Using a 

mean value of SWE of about 25 (see Table II), a one-unit increase in SWE changes it by about 

4% (1/25), leading to about on average a 2% increase in TGPP, suggesting an elasticity of TGPP 
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with respect to SWE of about 0.50 (= 0.02/0.04) when evaluated at the sample means.  That is a 

very substantial effect. 

A third implication of findings in Table VI is that they help explain factors affecting 

increases in trial costs, particularly for the US.   The regression results suggests that increases in 

TGPP over time have been driven by increases in SWE and decreases in the number of patients 

at each site (particularly in the US where for each phase coefficient estimates on LPATIENTS 

are mostly negative.) Whether the changing composition among trial phases (towards Phase II 

and away from Phase IIIA—see Table III) can “explain” the increase in TGPP merits further 

examination.   

We now move on to consider implications of these various regression models for the 

growth rate of our price indexes.  As discussed above, annual values of an hedonic price index 

can be constructed from estimated coefficients on indicator variables by year.  We summarize 

the growth rate of this index by computing the Annual Average Growth Rate (AAGR), which is 

the mean of year-on-year percentage changes in the index values.
40

  In the top panel of Table VII 

we report estimates of AAGRs in a “base” hedonic model that excludes our two prominent 

quality measures, namely, LPATIENTS and SWE, which from Table VI we have observed as 

being highly statistically significant.  To quantify the importance of including these trial site 

quality characteristics in our hedonic regression equation, we compare AAGRs of predicted 

ln TGPP with and without the LPATIENTS and SWE variables included by examining the 

relative growth of coefficients on the yearly indicator variables.  The results are quite striking.  

With the pooled 1989-2011 regression, relative to the base model, TGPP grows much more 

slowly when the trial site characteristics are included—4.31%/6.96% for All (38% lower 

AAGR), 3.62%/7.01% for US Only (48% smaller AAGR), and 6.05%/8.70% for Rest of World 

(30% lower AAGR).  For the 1989-1999 regressions (second last column), the corresponding 

percent reductions in AAGRs are more modest—6% All, 31% US Only, and 19% for Rest of 

World, but for the most recent 2000-2011 time period regressions (last column), they are not 

only large proportionately—40% lower AAGR for All, 56% for US Only, and 28% for Rest of 

World, but the absolute differences in AAGRs are substantial as well—3.95% (9.93% - 5.98%) 

for All, 3.52% (12.36% - 8.84%) for Rest of the World, and  4.10% (7.38% - 3.28%)  for the US 

                                                      
40

 These arithmetic AAGRs were more stable than were estimates of compounded AGRs, since the latter were 

sensitive to choice of initial and end-year time periods. 
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Only. We conclude, therefore, that controlling for the clinical trial quality characteristics 

LPATIENTS and SWE results in much lower AAGRs, and helps explain in part why it is that 

TGPP has been increasing steadily over the last two decades.  

The bottom three panels of Table VII report AAGRs based on separate regressions by 

trial phase.  As seen in the first column of Table VII based on pooled 1989-2011 regressions, 

over all trial phases US Only AAGRs are smaller than the All regression AAGRs, with the Rest 

of World regression AAGRs being greater than those in All for Phases I, II, Phases IIIA, and 

IIIB, but less than All for Phase IV.  The variation in AAGRs within each set of regressions is 

quite large—from 3.78% to 11.91% in All, and 6.29% to 15.51% in the Rest of World, but only 

3.48% to 6.78% in US Only regressions.  AAGRs are generally lowest in Phase IIIA and IIIB, 

and mostly highest in Phase II and Phase IV.  Even though the regressions involve pooled 1989-

2011 data, as seen in the second and third column there is considerable variation across the two 

time intervals within the pooled regression, though less in US only than in the All and Rest of 

World regressions. 

Comparing 1989-1999 AAGRs from the pooled regression (column two) with those from 

the separate 1989-1999 regression (column four), and the 1999-2011 AAGRs from the pooled 

regression (column three) with those from the separate 2000-2011 regression (last column) 

provides some evidence regarding parameter stability.  The 1989-1999 relative rankings of 

AAGRs across trial phases in columns two and four is quite robust, but slightly less so when 

comparing relative rankings in columns three and five.  Particularly notable is the uniformly 

greatest growth rate during the 2000s in Phase IV trials, with substantial but less uniformly large 

AAGRs in Phase I studies.  

Of particular interest is a comparison of growth rates of price indexes derived from 

parameters of the base hedonic model including indicator variables for trial phase, therapeutic 

area, and year, the augmented hedonic model with SWE and LPATIENTS added to the base 

hedonic model as regressors, and the BRDPI published by the NIH under contract to BEA (the 

last based on only NIH funded research, and performed primarily but not exclusively at 

academic medical centers).  In Figure 3 we plot the annual time series of the three price indexes, 

based on US-only regression estimates for the two hedonic equations, with the normalized series 

for mean TGPP included for reference.  The results are striking.  Indexed to 1.000 in 1989, in 

2011 the BRDPI is 2.205, very close to the augmented hedonic price index value of 2.138; with 
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very similar AAGRs and compound annual growth rates (CAGRs) over the period: 3.66% 

AAGR and CAGR for the BRDPI and 3.63% AAGR and 3.31% CAGR for the augmented 

hedonic index.  By contrast, the 2011 price index derived from the base hedonic model (omitting 

the SWE and LPATIENTS quality variables) has a value of 4.178, and an AAGR of 7.01% and 

CAGR of 6.71%.  Thus the input cost based BRDPI and augmented hedonic model price indexes 

grow much more slowly—at about one half of the rate as those derived from the base hedonic 

model, which controls only for changes in the “mix” of the sample over trial phases and 

therapeutic classes.   

Tables VIII and IX present results of two sets of exploratory findings.  Although issues of 

sample size are likely to become important, we estimate ln TGPP equations at the level of the 

therapeutic class, pooled 1989-2011 and separately for 1989-1999 and 2000-2011; as before we 

do three geography-based estimations—All, US-Only and Rest of World.  There are 15 

therapeutic classes in our trial data, 14 of them involving biopharmaceuticals plus a devices and 

diagnostics category.  In Table VIII we report AAGRs by therapeutic class for the US-Only and 

Rest of World regressions; note that because of the absence of any observations in some years, 

there is some variability from the 1989-2011, 1989-99 and 2000-11 beginning and ending years, 

as is described at the bottom of the table.  The most striking feature of Table VIII is the 

substantial variability in the AAGRs; not shown is the even greater variability in the estimates on 

the year indicator variables within each therapeutic class.  While is it likely that there is in fact 

substantial variation across therapeutic classes in the rate of change of trial costs, at least some of 

the variation is likely attributable to the smaller sample sizes in certain years that result from 

disaggregating into 15 therapeutic classes.  This makes it difficult to estimate the hedonic index 

values precisely, and particularly outside the US there are only enough observations for some 

therapeutic classes to estimate the index values in a limited number of years.  

We conclude that constructing price indexes for clinical trials at the level of therapeutic 

classes (in our case, which number 15) is likely to be infeasible because of sample size issues, 

particularly for ex-US sites.   

Our final exploratory price index analysis involves aggregating up from individual 

multiple sites within a given trial to the trial level at which there is a common protocol.  This 

allows us to examine whether number of trial sites and the geographical scope of the sites affects 

our dependent variable, ln TGPP.  This aggregation reduces our sample size from the 207,950 
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sites in Table VI to 24,172 distinct trials.  We construct two new variables that vary at the level 

of the individual trial protocol:  number of sites, and number of sites per country.  We also 

recalculate the dependent variable, LPATIENTS and the SWE variable at the trial level of 

aggregation.  We do not have a prior expectation regarding the sign of the coefficient on total 

number of sites per trial.  This coefficient will capture whether or not there are cost impacts of 

allocating a given number of patients across different numbers of sites.  To the extent there are 

fixed costs incurred at each site for setting up patient recruitment, independent of the number of 

patients enrolled at a given site, then holding the numbers of trial patients constant, the aggregate 

TGPP would be expected to increase with the number of sites.  On the other hand, if fixed costs 

are largely trial specific rather than site-specific, and are carried in the “overhead” part of trial 

costs which we do not observe in these data, then they will either not affect site-level costs, i.e. 

no observable impact of number of sites on aggregate TGPP, or to the extent that they reduce 

site-specific costs otherwise borne by investigators, will result in a negative relationship between 

aggregate TGPP and number of sites.   

Some of these trial-level fixed costs are likely to be country-specific, reflecting factors 

such as national institutional review boards, import duties and tariffs, medical licensing 

conventions or other costs of conforming to a given country’s regulatory framework and medical 

infrastructure.  To the extent that these costs are “pushed down” to individual sites, rather than 

absorbed in the overall “overhead” cost of the trial then aggregate TGPP may be affected by the 

number of sites per country.  We therefore also control for each trial’s number of sites per 

country.    

In Table IX, we report coefficient estimates on the number of sites, and the number of 

sites per country, for regressions at two levels of aggregation:  Pooled over phases (but with 

phase indicator variables included as regressors), and separately by trial phase.
41

  When pooled 

over phases, the estimate on number of sites is positive and strongly significant, while the  

number of sites per country is negative  but not significant.  When estimated separately by phase, 

signs on the number of sites variable are mixed but monotonically decline moving from early to 

late phases, although none is statistically significant.   However, all but one of the estimates on 

the number of sites per country are positive, and statistically significant in the case of Phase II 

                                                      
41

 SWE, LPATIENTS, and year, therapeutic class and phase indicators are also included in the regressions.  

Estimated coefficients on SWE and LPATIENTS were similar in magnitude to those obtained in the site-level 

regressions, and statistically significant at the 1% level. 
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and IIIA trials.  In almost all cases, however, the absolute magnitudes of the coefficient estimates 

are very small—an order of magnitude or smaller than those on the LPATIENTS and SWE 

variables reported in Table VI.  We conclude that at the level of a clinical trial protocol, the 

number of sites and number of sites per country do not appear to have a material effect on the 

total grant cost per patient. These trial characteristics might, however, have varying effects on 

the sponsors’ overall “headquarters” overhead costs, which we do not observe. 

V. Alternate Index Methodologies 

One important practical issue with hedonic indexes such as those estimated in the 

previous section is that of updating and revisions: over time as new data are acquired, statistical 

agencies undertaking re-estimation of the pooled regression model for the expanded and updated 

data set will likely find there are changes in the estimated time dummy coefficients and thus in 

the historical hedonic price index values derived from them.  Revising historical time series of 

price indexes each time a new time period is added is an unattractive feature of the pooled 

hedonic price index methodology.  One way to avoid this problem is to construct an index based 

on results from a set of sequentially estimated “adjacent year” regressions: for any year t, 

estimate the model on data only for years t and t-1, with the coefficient on a dummy variable for 

year t providing an estimate of the change in a quality-adjusted or characteristics-adjusted index 

over the two periods. Year-on-year changes can be then be chained to create an index for the 

whole time period. 

Focusing on the US-only sample, we find that indexes constructed using this method 

track the hedonic index estimated from the pooled sample quite closely.  For the “base” model 

that controls only for phase and therapeutic class, the AAGR of the adjacent-years index is 

7.47%, compared to the 7.01% for the pooled hedonic (and 7.52% for the mean nominal TGPP).  

For the hedonic models that include SWE and LPATIENTS, the AAGR for the adjacent-year 

index is 3.73%, compared to 3.62% for the pooled hedonic.  (Recall that the AAGR for the 

BRDPI is 3.66%.)  These results reflect remarkably similar growth rates based on alternative 

price index methodologies over almost a quarter century time period.  While a formal statistical 

test rejects equality of the coefficients on all the variables across all pairs of adjacent years, 

visual examination of the coefficients in each of the adjacent-year regressions (not presented 

here) shows them to be quite stable over time. 
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An even more general alternative approach to estimating the constant-characteristics 

change in price (sometimes known as the Pure Hedonic method, see Pakes (2003), and Berndt, 

Griliches and Rappaport (1995)) is to estimate regression coefficients separately for each year, 

and then compute Paasche-style or Laspeyres-style index ratios using alternative fixed quantity 

(characteristic) weights..  For example, if     are the characteristics for each observation in year 

0 and     are hedonic coefficients estimated from the year 0 regression, and     and     are the 

characteristics for each observation and hedonic coefficients estimated for year 1, then a 

Laspeyres-type measure of the change in constant-characteristics prices can be calculated as 

    
       

       
 and the corresponding Paasche-type index as     

       

       
 , with the Fischer Ideal 

index given by          .   

The advantage of this method over the adjacent-years dummy variable method is that in 

the adjacent year regressions the only parameters that is allowed to vary between the two 

adjacent years is the year dummy variable, whereas in the Pure Hedonic method all coefficient 

estimates (interpreted as shadow prices of the characteristics) can change between years.  In the 

Pure Hedonic method, these yearly shadow prices are weighted by fixed weights—either the 

base period (Laspeyres) or the current period (Paasche) characteristics.   

A potential problem with the chained L1 and P1 price indexes is “drift.”   If there is 

“bouncing” (upward changes followed by downward changes) of relative prices over a multi-

year period, then negative autocorrelations in prices combined with  negative correlations 

between price and quantity changes, can generate an upward “drift” in the chained L1 index and 

a downward “drift” in the P1 index.
42

  . Although the theoretical foundations have to the best of 

our knowledge not been derived, it is possible that a superlative chained Fisher Ideal index that is 

the geometric mean of a chained Laspeyres and chained Paasche index would embody offsetting 

drifts, thereby resulting in a more reliable chained index than either the Laspeyres or Paasche. 

Results from calculating these indexes and chaining for all years in the US-only sample 

are broadly consistent with the results from the adjacent-years method.  For the regression 

specification that includes SWE and LPATIENTS, the AAGR for a Laspeyres-type pure hedonic 

index was 5.40%, 2.44% for a Paasche-type pure hedonic index, and 3.89% for the Fischer-Ideal 

                                                      
42

 For a discussion of drift in the context of alternative direct and chained index numbers, see Bohdan J. Szulc, 

“Linking Price Index Numbers”, in W. Erwin Diewert and Claude Montmarquette, eds., Price Level Measurement: 

Proceedings from a conference sponsored by Statistics Canada, Ottawa, Canada: Ministry of Supply and Services 

Canada, December 1983, pp. 537-566. 
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pure hedonic index.  We plot the various hedonic indexes (based on the augmented regression) in 

Figure 4.  There it is seen that the pooled hedonic, adjacent-years hedonic and pure hedonic 

Fisher Ideal indexes track each other (and the BRDPI) quite closely.  Values of these four 

indexes are remarkably close to each other in 2011: 2.046 for the pooled hedonic, 2.138 for the 

adjacent-years hedonic, and 2.221 for the pure hedonic Fisher-Ideal, compared to 2.205 for the 

BRDPI.  These four indexes have very similar AAGRs (3.62%, 3.73%, 3.89%, and 3.66%, 

respectively) and CAGRs (3.31%, 3.52%,3.69%, and 3.66%, respectively.  In contrast, the 

chained pure hedonic Paasche (with potential downward drift) and the chained pure hedonic 

Laspeyres (with possible upward drift) have 2011 index values well below and above the other 

four.  The Paaache index value for 2011 was only 1.627 (AAGR of 2.4% and CAGR of 2.24%) 

while the Laspeyres was 3.033 (AAGR of 5.40% and CAGR of 5.17%).  

The close correspondence between the results for all three of hedonic index methods 

(pooled time dummy, adjacent-years time dummy, and “pure hedonic”) suggest to us that the 

underlying relationship between the observed nominal transaction prices and the key 

characteristics of each contract (SWE, LPATIENTS, phase and therapeutic class) is quite robust, 

at least within the US-only sample.  It would therefore appear to be reasonable to develop a 

periodically updated index using either the pure hedonic Fisher Ideal or adjacent-year time 

dummy methods with US data, 

VI. Summary, Conclusions, Limitations and Future Research 

Expenditures on clinical trials undertaken to develop new drugs have increased 

dramatically over the past 30 years.  To better understand the underlying causes it is critical to be 

able to decompose increases in total spending into the “price effect”, the “quantity effect,” and 

the “quality” effect.   Are biopharmaceutical companies doing more clinical research, has the 

cost of doing a given amount of research increased, or are both occurring?  In this study we focus 

on the “unit costs” of certain aspects of conducting clinical trials.  These have risen substantially 

in recent decades, outpacing general inflation and other measures of changes in costs of other 

inputs to biomedical R&D.  Our results suggest that these increases in trial costs are not solely 

attributable to changes in input costs such as wages, equipment, and facilities.  They also appear 

to have been driven to a substantial extent by two other phenomena: smaller numbers of patients 

per site, and increases in the “effort” level required by investigators as study protocols have 

required more costly and complex monitoring and testing of subjects.  Evaluated at the sample 
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means, our estimated elasticity of TGPP with respect to SWE is about 0.5.  Over the 1989-2011 

time period, mean values of SWE have varied by as much as a factor more than three, generally 

rising but not quite monotonically over time (Table I).  This suggests that increased trial intensity 

and trial design complexity—as measured by SWE—have been major drivers of the increase in 

nominal TGPP, over and above changes in input costs.  By comparison, our estimates of the 

elasticity of TGPP with respect to patients per site is much smaller in absolute magnitude (about 

-0.120 for the US, see Table VI), and since the relative decrease in patients over time is smaller 

than the relative increase in SWE, declining site “size” is not as large a driver of TGPP increases 

as are changes in SWE.  While the trends in SWE and patients per site are in turn likely driven to 

some extent by cost differences across therapeutic classes and phases of clinical development, 

the effects we find are estimated controlling for such study characteristics, and are not just an 

artifact of changes in the composition of the sample.  The size of the effects that we find implies 

that any effort to track costs of clinical research should pay close attention to the nature of study 

protocols and the organization and management of trials.  The extent to which increases in SWE 

are attributable to increased regulatory requirements and scrutiny versus evolving commercial 

product differentiation strategies is unknown and merits further analysis.  Our findings point to 

the value of using the hedonic regression methodology in this context. 

The price indexes for commercial clinical research constructed here appear to behave 

remarkably similar to those computed by BEA on behalf of NIH for input costs for public sector 

biomedical R&D, once one controls for SWE and LPATIENTS in the commercial trials; this 

unexpected congruence merits more careful attention and confirmation by government statistical 

agencies and other entities with an interest in tracking R&D costs in this sector.  Specifically, the 

AAGR of a price index that controls only for therapeutic class and phase of development grows 

almost twice as fast as the NIH BRDPI input costs index.  Interestingly, once the scale of 

investigator/site activity and the effort required by a study protocol are also controlled for, the 

estimated “quality-adjusted” rate of inflation within the US is remarkably similar to the BRDPI.  

This suggests that increases in commercial clinical trial costs are driven primarily by changes in 

the nature of clinical research rather than by inflation in input costs.   

Commercial databases such as the one we have used here appear to have great potential 

as a source of data for such price index measurement purposes, particularly if restricted to the US 

context.  Using these data it would appear to be feasible to reliably compute measures of price 
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inflation for this aspect of clinical research, to do this separately for different phases of clinical 

development, and for some but not all therapeutic classes.  The geographic reach of these data 

sources also presents interesting opportunities to benchmark R&D costs across different regions 

within the US, as well as across countries.  However, care needs to be taken to ensure that the 

number of observations is adequate in each of the annual therapeutic class data cells. 

There are some important limitations to this study.  In particular, we look only at one 

component of trial costs: payments to clinical investigators.  In this dataset, these account for 

about one half of the total cost of a trial.  It may well be that some of the higher per-patient costs 

created by having fewer patients per site and increased effort required by the protocol are offset 

by savings in the sponsors’ headquarters’ costs of centralized administration and coordination of 

trials that we do not observe here.  Limited availability of data prevents us from drawing strong 

conclusions about trends in total trial costs and underlying factors in recent years.  As noted 

above, the prices we observe are only for the payments made by the trial sponsor to investigators, 

either directly or through a CRO, and additional costs for trial design and administration are not 

included.  To the extent these additional “overhead” costs are understood as internal headquarters 

costs of the entity purchasing the R&D output of trial sites, then our focus on investigator 

contracts has the appropriate scope for purposes of developing a PPI for contracted R&D 

services.  On the other hand, if costs of trial design and administration are understood as R&D 

costs, then our focus may be too narrow.  In many instances, and increasingly over time, trial 

sponsors contract with a CRO to perform some or all of these functions, and such payments may 

well be considered part of the contracted R&D services. This is an issue that warrants further 

investigation, but would require additional data on the nature of payments by trial sponsors to 

CROs, and development of a linkage between these contracts and the investigator payments 

analyzed here.  In this context it is unclear how well the measure of “site work effort” used here 

captures differences in the burden imposed by, for example, running more complex trial 

protocols, where some of the “overhead” associated with management and administration is 

being borne by the site as opposed to the sponsor or CRO, as distinct from increased use of more 

costly interventions or methods of measuring trial endpoints.   

A second limitation of this study is that we cannot evaluate how representative is the 

universe of clinical trial contracts in the Medidata sample—over time, across therapeutic classes, 

and geographically.  Lastly, since the identity of study sponsors and investigators was not 
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available to us, we were not able to investigate differences in costs across (for example) trials 

sponsored by large versus small commercial entities, or where public sector or non-profit 

organizations are involved as sponsors or investigators rather than industry. 

 We look forward to addressing these questions in future research. 
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Table I: Total Grant Cost per Patient (TGPP) 

year mean p50 sd N 

     
1989 3772.59 2779.43 2921.34 1370 

1990 4385.77 3147.77 4016.57 3443 

1991 3774.43 2774.83 4186.06 9288 

1992 3493.63 2399.00 6129.31 14126 

1993 3664.58 2325.45 4254.28 15733 

1994 3911.39 2882.35 3925.46 16625 

1995 4183.00 3203.85 3941.90 15670 

1996 4884.89 3748.77 4708.14 14442 

1997 4549.12 3200.00 4422.39 13321 

1998 5393.70 3948.38 5445.89 14370 

1999 5501.08 4361.94 4874.07 13943 

2000 6220.42 4682.79 6243.02 18671 

2001 6078.96 4777.00 5150.11 16864 

2002 6567.58 4744.10 5984.32 12201 

2003 8147.90 6765.00 6866.55 6515 

2004 10264.00 8582.72 7758.22 3216 

2005 11412.77 9682.02 7828.89 2693 

2006 12364.68 10900.00 7460.17 4012 

2007 13001.19 10738.47 8863.90 4764 

2008 14834.64 12720.94 10328.42 3216 

2009 16518.28 13965.42 12550.80 4591 

2010 15099.19 12581.93 10860.27 4814 

2011 16566.55 13222.14 13556.92 2188 

    
 Total 6191.80 4195.07 6860.91 216076 
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Table II: SWE and Patients per Sitge  

 
(a) Site Work Effort (SWE) 

(Protocol level)  
(b) Patients 

(Site level) 
YEAR MEAN MEDIAN STD. DEV. N 

 
MEAN MEDIAN STD. DEV. N 

          
1989 17.07 13.29 12.88 240 

 
25.48 20.00 33.2476 1370 

1990 16.94 13.44 13.38 512 
 

21.26 15.00 27.3178 3443 

1991 14.85 11.16 12.11 1280 
 

20.64 15.00 32.4249 9288 

1992 17.74 13.46 15.45 1833 
 

18.50 12.00 25.253 14126 

1993 18.92 13.66 17.79 2024 
 

17.04 12.00 24.5758 15733 

1994 21.58 16.22 18.20 1967 
 

16.37 12.00 24.6318 16625 

1995 23.41 18.11 21.20 1826 
 

14.39 10.00 26.52 15675 

1996 23.69 18.64 19.32 1791 
 

14.83 10.00 36.2925 14444 

1997 24.93 19.26 20.11 1540 
 

14.14 10.00 17.6792 13321 

1998 25.77 19.64 19.81 1495 
 

14.60 10.00 24.9971 14370 

1999 26.87 20.55 23.89 1369 
 

13.85 10.00 17.0209 13944 

2000 28.18 22.44 22.47 1890 
 

11.27 9.00 14.7171 18696 

2001 29.91 22.78 24.18 1920 
 

12.11 10.00 13.8476 16907 

2002 28.91 21.97 24.06 1389 
 

12.07 10.00 12.2206 12250 

2003 35.46 29.29 27.26 933 
 

13.30 10.00 18.5263 6629 

2004 43.57 34.33 34.09 569 
 

12.18 9.00 14.5193 3362 

2005 47.65 39.06 38.04 307 
 

10.73 10.00 14.041 2784 

2006 45.53 35.62 35.96 274 
 

11.80 10.00 9.62717 4027 

2007 37.71 30.58 22.10 227 
 

10.30 9.00 8.47037 4784 

2008 48.64 41.55 37.49 183 
 

11.10 7.00 19.9492 3291 

2009 48.98 41.76 33.86 263 
 

11.81 8.00 15.4748 4729 

2010 46.16 38.52 33.39 275 
 

11.79 8.00 23.6707 4907 

2011 45.69 41.31 30.59 129 
 

11.83 8.00 17.0184 2224 

          
Total 25.94 19.21 23.28 24236 

 
14.42 10.00 22.58 216929 
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Table III: Development Phase Percentages 

Year Phase I Phase II Phase IIIA Phase IIIB Phase IV 

      
1989 2.12% 9.12% 72.55% 6.35% 9.85% 

1990 3.08% 13.94% 69.53% 5.84% 7.61% 

1991 3.45% 15.13% 50.67% 12.75% 18.01% 

1992 3.58% 14.14% 58.47% 6.98% 16.82% 

1993 3.96% 18.34% 56.79% 4.74% 16.16% 

1994 3.70% 18.80% 58.69% 7.65% 11.16% 

1995 4.20% 20.52% 54.23% 6.63% 14.41% 

1996 4.84% 23.09% 52.94% 8.55% 10.58% 

1997 4.14% 18.08% 56.53% 8.85% 12.40% 

1998 3.63% 19.08% 49.45% 13.84% 13.99% 

1999 4.06% 20.35% 49.25% 14.08% 12.26% 

2000 3.39% 17.59% 49.86% 17.72% 11.44% 

2001 3.64% 16.60% 50.21% 14.95% 14.60% 

2002 3.00% 20.99% 46.78% 16.56% 12.68% 

2003 4.06% 17.79% 45.26% 16.52% 16.38% 

2004 4.49% 23.38% 42.15% 18.59% 11.39% 

2005 2.33% 26.08% 51.33% 9.05% 11.21% 

2006 3.25% 15.50% 69.23% 3.35% 8.67% 

2007 2.17% 25.90% 49.85% 15.49% 6.58% 

2008 2.98% 23.06% 48.40% 16.38% 9.18% 

2009 3.45% 23.41% 58.64% 7.76% 6.75% 

2010 2.45% 31.97% 46.06% 11.98% 7.54% 

2011 1.66% 25.99% 55.35% 6.74% 10.25% 

      
Total 3.67% 19.26% 53.07% 11.18% 12.83% 

 

 

Table entries are the fraction of investigator contracts in that year for studies at each phase of 

clinical development.  Based on 216,929 total observations. 
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Year 
Anti-

Infective 
Cardio-
vascular 

Central 
Nervous 
System 

Dermatology 
Devices and 
Diagnostics 

Endocrine 
Gastro-

intestinal 

        
1989 7.66% 14.82% 14.38% 4.09% 0.00% 3.28% 10.07% 

1990 9.09% 21.64% 9.70% 2.27% 0.20% 7.29% 9.00% 

1991 8.81% 18.62% 14.69% 2.45% 0.12% 6.01% 13.18% 

1992 8.10% 16.69% 15.33% 2.63% 0.27% 5.88% 9.80% 

1993 10.13% 19.70% 14.37% 2.58% 0.35% 7.29% 9.92% 

1994 11.56% 20.82% 16.72% 2.15% 0.48% 6.42% 6.35% 

1995 8.09% 18.65% 16.66% 2.07% 0.05% 6.46% 4.43% 

1996 8.42% 16.45% 17.50% 1.88% 0.18% 7.57% 3.82% 

1997 6.58% 15.54% 19.06% 1.73% 0.29% 9.10% 4.51% 

1998 7.24% 15.85% 15.49% 2.75% 0.15% 11.69% 1.88% 

1999 5.49% 18.89% 14.08% 2.36% 0.32% 11.93% 2.76% 

2000 6.93% 15.28% 14.85% 2.40% 0.52% 13.61% 3.36% 

2001 10.56% 9.39% 13.95% 2.83% 0.15% 14.83% 5.20% 

2002 6.39% 8.42% 13.84% 2.02% 0.17% 17.37% 3.85% 

2003 8.63% 9.94% 22.85% 6.14% 0.86% 12.25% 2.16% 

2004 5.68% 12.31% 27.96% 1.81% 1.04% 13.06% 0.39% 

2005 4.92% 21.62% 21.12% 3.84% 1.11% 5.28% 2.12% 

2006 2.36% 12.14% 27.04% 2.48% 0.15% 19.44% 3.30% 

2007 4.77% 4.52% 17.52% 1.17% 0.31% 18.42% 7.46% 

2008 3.77% 6.05% 17.23% 3.80% 0.64% 21.27% 5.62% 

2009 9.45% 1.69% 18.95% 1.78% 2.24% 23.77% 4.95% 

2010 6.64% 1.26% 12.43% 5.05% 2.71% 31.57% 4.18% 

2011 1.35% 0.63% 14.88% 6.07% 6.03% 28.46% 0.05% 

        
Total 7.87% 14.79% 16.21% 2.56% 0.47% 11.44% 5.29% 

 

 

Table entries are the fraction of investigator contracts in that year for studies in each therapeutic 

area.  Based on 216,929 total observations 

  

Table IV: Distribution of Sample by Therapeutic Class 



 

28 

 

 

 

 

Year 
Genitourinary 

System 
Hematology 

Immuno-
modulation 

Oncology 
Ophthal-
mology 

Pain and 
Anesthesia 

Pharmaco-
kinetics 

Respiratory 
System 

         
1989 10.51% 0.58% 18.76% 5.84% 1.68% 1.61% 1.68% 5.04% 

1990 5.14% 1.95% 7.75% 8.51% 8.19% 0.46% 1.54% 7.26% 

1991 5.33% 0.39% 8.57% 4.94% 2.57% 1.07% 2.02% 11.24% 

1992 8.58% 0.42% 6.26% 5.12% 0.68% 3.27% 2.10% 14.87% 

1993 9.76% 0.70% 6.06% 3.37% 0.66% 0.90% 2.07% 12.15% 

1994 5.73% 0.94% 6.09% 4.84% 1.41% 0.87% 2.36% 13.27% 

1995 7.45% 0.54% 5.33% 8.22% 1.07% 1.33% 2.29% 17.34% 

1996 4.94% 1.70% 7.55% 9.62% 0.80% 2.85% 2.51% 14.21% 

1997 6.51% 0.62% 5.33% 10.81% 1.70% 1.37% 2.67% 14.17% 

1998 8.20% 1.75% 5.82% 10.51% 1.34% 1.51% 2.39% 13.43% 

1999 6.66% 3.13% 10.23% 10.44% 1.78% 2.20% 2.57% 7.16% 

2000 5.60% 3.29% 7.05% 11.26% 0.59% 2.12% 1.87% 11.27% 

2001 7.58% 1.41% 9.30% 10.46% 1.20% 2.98% 1.87% 8.28% 

2002 9.82% 1.89% 9.63% 10.21% 1.52% 4.58% 1.56% 8.73% 

2003 4.89% 2.07% 6.46% 10.47% 1.28% 4.16% 1.89% 5.96% 

2004 8.36% 3.84% 9.52% 10.14% 0.54% 0.27% 2.23% 2.86% 

2005 2.26% 6.07% 7.79% 18.25% 0.36% 1.51% 1.01% 2.73% 

2006 3.43% 0.30% 8.12% 11.12% 1.04% 6.48% 0.60% 1.99% 

2007 11.64% 0.65% 9.49% 8.38% 0.92% 7.34% 0.10% 7.32% 

2008 5.89% 0.58% 15.16% 14.80% 2.25% 2.22% 0.21% 0.52% 

2009 7.74% 1.61% 7.70% 14.55% 1.46% 1.97% 0.68% 1.48% 

2010 5.34% 1.87% 5.24% 11.98% 2.65% 6.07% 0.79% 2.20% 

2011 3.06% 10.12% 5.35% 12.55% 6.07% 1.17% 2.52% 1.71% 

         
Total 6.99% 1.62% 7.43% 9.00% 1.40% 2.35% 1.98% 10.59% 

 

  

Table IV (cont.): Distribution of Sample by Therapeutic Class 
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Table V: Geographic Distribution of Sites 

 
(a) US vs. Ex-US (b)       Ex-US 

Year US RoW OECD Other 

 
 

  
  

1989 81.82% 18.18% 100.00% 0.00% 

1990 77.17% 22.83% 99.11% 0.89% 

1991 67.51% 32.49% 99.83% 0.17% 

1992 49.19% 50.81% 99.79% 0.21% 

1993 47.31% 52.69% 99.59% 0.41% 

1994 46.57% 53.43% 99.64% 0.36% 

1995 47.50% 52.50% 99.54% 0.46% 

1996 55.23% 44.77% 99.72% 0.28% 

1997 48.18% 51.82% 98.87% 1.13% 

1998 46.09% 53.91% 98.06% 1.94% 

1999 53.49% 46.51% 96.62% 3.38% 

2000 56.33% 43.67% 92.05% 7.95% 

2001 56.54% 43.46% 89.06% 10.94% 

2002 54.08% 45.92% 90.19% 9.81% 

2003 52.69% 47.31% 90.66% 9.34% 

2004 54.46% 45.54% 84.91% 15.09% 

2005 62.75% 37.25% 83.32% 16.68% 

2006 85.10% 14.90% 83.50% 16.50% 

2007 87.54% 12.46% 58.89% 41.11% 

2008 68.82% 31.18% 55.36% 44.64% 

2009 77.65% 22.35% 62.25% 37.75% 

2010 76.56% 23.44% 68.87% 31.13% 

2011 68.03% 31.97% 53.59% 46.41% 

  
  

  
Total 55.65% 44.35% 94.61% 5.39% 

 

 

Table entries are the fraction of investigator contracts in that year located in each geographic 

area.  Panel (a) shows the breakdown between US and all other countries.  Panel B breaks out the 

Ex-US countries into OECD member countries (Canada, Austria, Belgium, Ireland, 

Luxembourg, Monaco, Netherlands, Switzerland, Finland, France, Norway, Germany, Italy, 

Spain, Sweden, Denmark, Japan, Australia, New Zealand, United Kingdom) versus all others.  

Based on 216,929 total observations. 
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TABLE VI:  PARAMETER ESTIMATES ON LOG PATIENTS AND SITE WORK EFFORT 
TRIAL CHARACTERISTICS VARIABLES 
 

 
Pooled 1989-2011 1989-1999  2000-2011  

 
LPATIENTS SWE LPATIENTS SWE LPATIENTS SWE 

Phases Pooled 
             All             0.148 0.0205 0.183 0.0279 0.0419 0.0152 

       US Only  -0.122 0.0171 -0.120 0.0219 -0.117 0.0143 

       Rest of World 0.124 0.0225 0.128 0.0296 0.0541 0.0161 

       By Phase 
            All 
               Phase I   -0.145 0.0130 -0.168 0.0164 -0.0966 0.00972 

         Phase II  -0.0173 0.0182 -0.011† 0.0222 -0.0321 0.0149 

         Phase IIIA    0.120 0.0198 0.173 0.0285 -0.0240 0.0137 

         Phase IIIB     0.155 0.0284 0.226 0.0341 0.0299 0.0244 

         Phase IV 0.320 0.0344 0.305 0.0489 0.272 0.0253 

       By Phase 
            US Only 
               Phase I   -0.176 0.0143 -0.219 0.0194 -0.104 0.0102 

         Phase II  -0.164 0.0159 -0.197 0.0173 -0.125 0.0144 

         Phase IIIA    -0.102 0.0164 -0.0986 0.0239 -0.0940 0.0127 

         Phase IIIB     -0.0631 0.0257 -0.0541 0.0238 -0.0513 0.0263 

         Phase IV -0.170 0.0247 -0.153 0.0273 -0.190 0.0217 

       By Phase 
            Rest of World 
               Phase I   -0.120 0.0109 -0.131 0.0134 -0.0799 0.00788 

         Phase II  -0.01 0.0186 -0.0313 0.0265 -0.0080† 0.0143 

         Phase IIIA    0.0826 0.0220 0.121 0.0277 -0.0588 0.0157 

         Phase IIIB     0.101 0.0276 0.115 0.0372 0.0409 0.0213 

         Phase IV 0.217 0.0482 0.171 0.0619 0.225 0.0322 
 

 

Notes:  Table entries are the estimated coefficients on LPATIENTS and SWE in a regression of 

log(TGPP) on these and other explanatory variables.  With the exception of the coefficients marked †, all 

coefficients in the table were statistically distinguishable from zero at the p<0.01 level using robust 

standard errors, clustered by trial protocol. The phases pooled regression includes a constant, indicator 

variables for therapeutic class, trial phase, and years.  The by phase regressions include a constant and 

indicator variables for therapeutic class and year.  Number of observations was 207,950  in the top panel 

All regressions, 118,477  in the US Only regressions, and 89,473  in the Rest of World regressions. 
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TABLE VII:  AVERAGE ANNUAL GROWTH RATES OF CLINICAL TRIAL COSTS – 
ALTERNATIVE MODELS AND TIME PERIODS 
 

 
1989-2011 Regression AAGR 1989-1999  2000-2011  

 

1989-

2011 

1989-
1999 

  1999-
2011  

Regression  
AAGR 

Regression 
AAGR 

Base Model^ 
            All                6.96%    3.98%    9.45%    3.79%    9.93% 

       US Only  7.01 5.80 8.01 5.70 7.38 

       Rest of World 8.70 6.66 10.39 6.54 12.36 

      Add SWE and 
     LPATIENTS^ 
         All 4.31 3.96 4.59 3.54 5.98 

    US Only 3.62 4.28 3.07 3.92 3.28 

    Rest of World  6.05 6.02 6.08 5.29 8.84 

      With SWE and 
     LPATIENTS by 

phase^^ 
           All 
              Phase I      7.48%    5.67%    8.98%    5.19%    9.08% 

         Phase II  6.01 6.58 5.54 6.91 5.98 

         Phase IIIA    4.04 3.88 4.18 3.25 5.16 

         Phase IIIB     3.78 2.32 5.00 1.79 5.65 

         Phase IV 11.91 9.25 14.13 8.17 15.75 

      US Only 
              Phase I   6.78 5.72 7.66 5.07 8.58 

         Phase II  6.00 7.77 4.52 7.61 4.32 

         Phase IIIA    3.78 4.33 3.32 3.68 2.93 

         Phase IIIB     3.48 3.92 3.11 4.24 3.34 

         Phase IV 6.43 8.02 5.11 7.80 4.03 

      Rest of World 
              Phase I   15.51 11.69 18.70 10.62 23.96 

         Phase II  7.64 8.48 6.95 8.65 9.52 

         Phase IIIA    6.29 6.87 5.81 6.30 7.87 

         Phase IIIB     12.29 15.54 9.59 13.72 11.55 

         Phase IV 9.36 10.73 8.22 8.87 11.74 
 

 

Notes:  Table entries are the annual average growth rate (AAGR) of an hedonic price index constructed 

from the estimated coefficients on indicator variables for year.  See text.   ^Regressions also include 

constant and indicator variables for therapeutic class, and trial phase.   ^^Regressions also include 

constant and indicator variables for therapeutic class. 
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TABLE VIII:  AVERAGE ANNUAL GROWTH RATES OF CLINICAL TRIAL COSTS  
BY THERAPEUTIC AREA AND TIME PERIOD 

 

 

1989-2011 Regression 1989-99 Regression 2000-2011 Regression 
Therapeutic Class 1989-2011 AAGR 1989-99 AAGR 2000-2011 AAGR 

    

 

US Only Regressions 

    Anti-infective    4.73%    0.81%    7.65% 
Cardiovascular 18.64 4.95 14.10 

Central Nervous System 5.05 5.00 5.35 
Dermatology 6.56 9.18 2.10 
Devices & Diagnostics  17.62a   18.32b 22.08 
Endocrine 4.94 5.60 4.20 

Gastrointestinal 7.11 5.77 3.14 
Genitourinary System 9.02 9.96 8.87 
Hematology 11.17 25.24 2.71 
Immunomodulation 6.08 6.77 5.82 
Oncology 6.70 3.81 6.51 
Ophthalmology 9.67 8.96 21.97 

Pain & Anaesthesia 10.07 9.59 11.25 

Pharmacokinetics 6.84 5.27 8.98 

Respiratory System 8.56 5.84 12.13 

    
 

1989-2011 Regression 1989-99 Regression 2000-2011 Regression 
Therapeutic Class 1989-2011 AAGR 1989-99 AAGR 2000-2011 AAGR 

    

 

Rest of World Regressions 

    Anti-infective    10.19%    12.66%    14.13% 

Cardiovascular 15.88 13.24 13.95 

Central Nervous System 9.68 6.18 13.32 

Dermatology  15.99c 15.06 -1.41 

Devices & Diagnostics  17.50d  -9.97 g  30.61h 

Endocrine 6.10 7.66 5.83 
Gastrointestinal 20.14 3.27 23.55 

Genitourinary System 6.58 4.75 9.01 
Hematology  11.40e 19.24  2.38i 

Immunomodulation 13.17 18.07 12.01 
Oncology 9.60 6.39 14.40 

Ophthalmology 29.60 42.85 17.69 

Pain & Anaesthesia  43.98f 47.61 45.37 
Pharmacokinetics  7.99f 1.65   12.93k 
Respiratory System 11.52 10.25   20.09k 

   

 

Notes:  
a
1999-2011; 

b
1990-94; 

c
1990-2003; 

d
1992-98; 

e
1989-2005; 

f
1989-2006;

g
1993-99; 

h
2009-11; 

 

i
2000-5;

 k 
2000-06  
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TABLE IX:  PARAMETER ESTIMATES IN MODEL ESTIMATED AT THE TRIAL LEVEL 
WITH ADDITIONAL TRIAL-SPECIFIC EXPLANATORY VARIABLES,  

POOLED 1989-2011 
 

DEPENDENT VARIABLE: ln TGPP 
 

  
No. Sites No. Sites/Country 

 
Sample Size 

      Pooled Over Phases 
 

0.00164*** -0.000979 
 

24,172 

      By Phase 
              Phase I   
 

0.0223 0.0102 
 

5,557 

         Phase II  
 

0.00116 0.00506*** 
 

5,775 

         Phase IIIA    
 

0.000371 0.00161* 
 

8,953 

         Phase IIIB     
 

-0.000837 0.000454 
 

1,735 

         Phase IV 
 

-0.00206 -0.00126 
 

2,152 

 

 
Notes:  ***, ** and * denote statistical significance at p-values of 0.01, 0.05 and 0.10, respectively.  The 

phases pooled regression includes a constant, LPATIENTS, SWE, and indicator variables for therapeutic 

class, trial phase and years.  The by phase regressions include a constant, LPATIENTS, SWE, and 

indicator variables for therapeutic class and year. Regressions are pooled into All, 1989-2011.     
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Figure 2: Patients per Site Over Time

mean patients per site median patients per site

0

10

20

30

40

50

60

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Figure 1: Site Work Effort (SWE) Over Time
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Figure 4: Alternate Hedonic Indexes
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Figure 3: Nominal TGPP, BRDPI, and Hedonic Indexes
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