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1 Introduction

Until the last couple of years, most central banks around the world conducted monetary policy

by setting targets for short-term interest rates, and letting the quantity of money adjust in

response to demand. Maneuvering interest rates as a way to achieve low and stable inflation is

now regarded as a success story. Yet this was not always the case. As mentioned by Sargent [11],

the German Reichsbank also discounted treasury and commercial bills at fixed nominal interest

rates in 1923; but, rather than contributing to stabilizing the value of the mark, the policy added

fuel to the hyperinflation by causing the Reichsbank to greatly increase the money supply and

transferring this money to the government and to those private entities lucky enough to borrow

from the Reichsbank at the official discount rate. In our paper, we study the extent to which

setting a short-term interest rate can be used as a way of implementing a unique equilibrium in

a monetary economy.

We conduct our analysis in a simple environment that features flexible prices and a standard

cash-in-advance constraint, where the intuition for our results is simple and transparent; however,

our results would extend to models with frictions. In this setup, we consider the properties of an

interest rate rule, whereby the central bank sets a price at which private agents are free to trade

currency for one-period debt; this price need not be fixed, but rather may depend in arbitrary

ways on all the information that the central bank has at the moment it makes its decision. We

show that setting a policy rate in this way leads to multiple equilibria when the central bank

faces a limit to its ability to print money, or when private agents are limited in the amount of

bonds that can be pledged to the central bank in exchange for money.1 Some of the equilibria

are familiar and common to the environments where limits to money growth are not considered.

However, new equilibria emerge, where money growth and inflation are higher. These equilibria

involve a run on the central bank’s interest target: households borrow as much as possible from

1The source of this multiplicity is very different from (and complementary to) that identified by Benhabib,

Schmitt-Grohé and Uribe [5]. While they identify a class of interest-rate rules for which an undesired low-inflation

equilibrium emerges, the speculative runs that we identify involve high inflation and more severe monetary

distortions than the equilibria that do not feature a run.
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the central bank, and the shadow interest rate in the private market is different from the policy

target.

To the extent that monetary policy is primarily conducted by open market operations that

exchange money for government bonds (or government-backed bonds), fiscal policy plays a promi-

nent role in defining the characteristics of equilibria that feature runs. This happens because

the amount of bonds held by the private sector determines the size of the run in the event of a

run. This is a new channel by which excessive deficits threaten price stability, and is indepen-

dent of the familiar unpleasant monetarist arithmetic of Sargent and Wallace [13] and the fiscal

theory of the price level (Leeper [9], Sims [14], Woodford [15]). In fact, we deliberately rule out

these alternative channels of monetary-fiscal interaction by postulating fiscal rules that ensure

long-term budget balance independently of the path of inflation.

Our research implies that interest-rate targets are an incomplete description of the way mod-

ern central banks have succeeded in establishing low and stable inflation, and suggests a new

role for the “twin-pillar” doctrine of paying attention to monetary aggregates (both broad and

narrow) as well as interest rates in designing appropriate monetary policy rules.2

2 The basic cash-in-advance model

Consider a version of the cash-in-advance model. There are a continuum of households of unit

mass and a government/monetary authority. Time is discrete with dates t ∈ {0, 1, 2, . . .}. In

each period, the timing is as follows: First, households pay lump sum nominal taxes Tt levied

by the government and asset markets open. In these asset markets, households can buy (or

sell) government bonds, acquire money, as well as trade zero-net supply securities with other

households. At this same time, the government can print and destroy money, borrow and lend.

After the asset markets, a goods market opens. In the goods market, households produce

the consumption good using their own labor for the use of other households (but, as usual, not

their own household) and the government. Each household has one unit of time and a constant-

returns-to-scale technology that converts units of time into units of the consumption good one

2For a discussion of the twin-pillar doctrine, see Lucas [10].
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for one. Households use money to purchase units of the consumption good produced by other

households. The government uses either money or bonds (it is immaterial which) to purchase

Gt = G ∈ (0, 1) units of the consumption good.

Let Mt denote the amount of money in circulation at the end of the asset market in period

t, after taxes are paid. Let Bt−1 be the nominal amount of government bonds payable at date

t. (If Bt−1 < 0 then it represents a debt that households owe the government at date t.) The

households start with initial nominal claims W−1 against the government.3

Consider a price sequence {Pt, Rt, R̂t}∞t=0, where Pt is the nominal price of a unit of the

consumption good at date t, Rt is the nominal risk-free rate between period t and t+ 1 at which

the government trades with private agents, and R̂t is the rate at which households trade with

each other. A government policy {Tt,Mt, Bt}∞t=0 is said to be feasible given {Pt, Rt, R̂t}∞t=0 if for

all t > 0

Bt = (1 +Rt)
[
Pt−1G− Tt −Mt +Mt−1 +Bt−1

]
, (1)

with the initial condition

B0 = (1 +R0)[W−1 −M0 − T0]. (2)

In what follows, we use lower-case letters to indicate individual household choices and upper-

case variables to indicate aggregates: as an example, mt are individual money holdings, and Mt

are aggregate money holdings. In equilibrium, lower and upper-case variables will coincide, since

we consider a representative household.

Households are subject to a cash-in-advance constraint: their consumption must be purchased

with money. A household’s path is given by {ct, yt, b̂t, bt,mt}∞t=0, where b̂t are holdings of privately-

issued bonds maturing in period t + 1.4 In addition, households are potentially constrained in

their holdings of government securities to a set Bt. We will first explore the case in which Bt
is the entire real line, and we will then explore the implications of setting a limit to private

indebtedness against the government.

3These claims represent money and maturing bonds, before paying period 0 taxes.
4In equilibrium, b̂t ≡ 0.
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A household path is feasible if for all t > 0

b̂t

1 + R̂t

+
bt

1 +Rt

= Pt−1(yt−1 − ct−1)− Tt −mt +mt−1 + b̂t−1 + bt−1, (3)

mt ≥ Ptct, (4)

together with the initial condition

b̂0

1 + R̂0

+
b0

1 +R0

= W−1 −m0 − T0 (5)

and the no-Ponzi condition

b̂t + bt ≥ At+1 := −Pt −mt + Tt+1+

∞∑
j=1

{( j∏
v=1

1

1 + R̂t+v

)[
Tt+j+1 − Pt+j −max

b̂∈Bt
[b̂

(
1

1 + R̂t+j

− 1

1 +Rt+j

)
]

]}
.

(6)

Equation (6) imposes that households cannot borrow more than the present value of working 1

unit of time while consuming nothing, holding no money in every period after t, and maximally

exploiting any price discrepancy between government-issued and private securities. This present

value is evaluated at the sequence of intertemporal prices {R̂s}∞t=0.

When Bt = R, a no-arbitrage condition will ensure R̂t+j = Rt+j, making the corresponding

term disappear from (6). When limits to household indebtedness against the government are

present, we will study equilibria where government securities have a different price than equivalent

privately-issued securities, in which case household can profit from the mispricing (at the expense

of the government), and the corresponding profits are part of their budget resources.5 Facing

prices {Pt, Rt, R̂t}∞t=0, tax policy {Tt}∞t=0, and given initial nominal wealth, a household’s problem

is to choose {ct, yt, b̂t, bt,mt}∞t=0 to solve

max
∞∑
t=0

βtu(ct, yt) (7)

5Of course, in equilibrium the aggregate profits of the households from this activity are matched by lump-sum

taxes that the government has to impose, so that in the aggregate this limited arbitrage opportunity is a zero-sum

game.

4



subject to (3), (4), (5), (6), and bt ∈ Bt. We assume that u is continuously differentiable, that

both consumption and leisure are normal goods, and that the following conditions hold:

lim
c→0

uc(c, y) =∞ ∀ y > 0, lim
y→1

uy(c, y) = −∞ ∀ c > 0, (8)

and

∀ y > 0 ∃ uy(y) > 0 : |uy(c, y)| > uy(y) ∀ c ≥ 0. (9)

Equation (8) is a standard Inada condition; it will ensure an interior solution to our problem.

Equation (9) imposes that the marginal disutility of labor is bounded away from zero in equilibria

in which production is also bounded away from zero.

3 An interest rate policy

In this section, we construct equilibria for an economy in which the government/monetary au-

thority sets an interest rate rule, without imposing limits to household trades with the central

bank. In particular, suppose the central bank offers to buy or sell any amount of promises to pay

$1 at date t + 1 for 1/(1 + Rt) < 1 dollars at date t.6 This interest rate Rt can be an arbitrary

function of past history, and Bt = R.

We suppose that the government sets a “Ricardian” fiscal rule, i.e., a rule such that the

set of equilibrium price levels is not restricted by the requirement of the present-value budget

constraint of the government. We choose such a fiscal policy because we are interested in the

set of equilibria that can arise when money is not directly backed by tax revenues, as it happens

when the fiscal theory of the price level holds. We will specify a class of fiscal rules that satisfies

sufficient conditions for this requirement below.

An equilibrium is then a sequence {Pt, R̂t, Rt, Tt, Ct, Yt, B̂t, Bt,Mt}∞t=0 such that {Ct, Yt, B̂t, Bt,Mt}∞t=0

solves the household’s problem taking {Pt, R̂t, Rt, Tt}∞t=0 as given, and such that markets clear

for all t ≥ 0:

Ct = Yt −G (10)

6We assume that nominal interest rates remain strictly positive (Rt > 0). This greatly simplifies the analysis,

since the cash-in-advance constraint will always be binding, but it does not play an essential role in our analysis.
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and

B̂t = 0. (11)

In order for the household problem to have a finite solution, it is necessary that the prices of

government and private assets be the same:

R̂t = Rt. (12)

When (12) fails, households can exploit the difference in price to make infinite profits. In addition

to (6) and (12), necessary and sufficient conditions from the household optimization problem yield

the following conditions for all t ≥ 0:

−uy(Ct, Yt)
uc(Ct, Yt)

=
1

1 + R̂t

, (13)

uy(Ct+1, Yt+1)

uy(Ct, Yt)
=

1

β(1 + R̂t+1)

Pt+1

Pt
, (14)

Mt/Pt = Ct, (15)

and the transversality condition

lim
t→∞

(
t∏

j=0

1

1 + R̂j

)
(B̂t +Bt − At+1) = 0. (16)

Substituting (10) and (12) into (13), we obtain

−uy(Ct, Ct +G)

uc(Ct, Ct +G)
=

1

1 +Rt

. (17)

We now turn to constructing equilibria. The initial price level, P0, is not determined. For

each initial price P0, one can use the interest rate rule Rt and equations (1), (2), (10), (14), (15),

and (17) to sequentially solve for a unique candidate equilibrium allocation and price system.7

That is, given R0, the fiscal policy rule determines T0, equation (17) solves for C0 and equation

(10) then implies Y0 and equation (15) implies M0. Finally, equation (2) determines B0. With all

7The Inada condition and the assumptions of normal goods ensure that an interior solution can be found

and that (17) is strictly monotone in Ct. In our analysis, we do not rule out explosive paths, for the reasons

highlighted in Cochrane [6].
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time-0 variables now determined, the monetary policy rule determines R1, which by no arbitrage

is equal to R̂1 when B = R. As in period 0, equation (17) solves then for C1 and equation (10) for

Y1. Knowing C1 and Y1, equation (14) can be solved for P1, and equation (15) for M1. Equation

(1) then yields B1, and from there the process continues to period 2 and on.

To verify whether the candidate equilibrium allocation and price system we derived above is

an equilibrium, we need only to check that the household transversality and no-Ponzi conditions

(6) and (16) hold. To this end, we first restrict fiscal policy to a (broad) class which ensures the

policy is Ricardian, and second, we make the following assumption:

Assumption 1 ∃ R : Rt ≤ R.

Assumption 1 imposes an upper bound on nominal interest rates. The appendix studies more

general cases where Assumption 1 is not necessary; in those cases, it may not be possible to find

equilibria with a perfectly anticipated run on the central bank’s interest rate peg, such as the

one we will study in section 4, but there will instead be equilibria where runs occur with positive

probability.

The role of Assumption 1 is to ensure that the amount of seigniorage revenues that the

government can raise remains bounded, which (together with the path of fiscal policy specified

below) ensures that the household budget constraint is well specified.

As a specific example of Ricardian fiscal policy, we assume Tt satisfies

Assumption 2 There exist finite B > 0 and T such that

• if Bt−1 ∈ [−BPt−1, BPt−1], Tt is unrestricted except |Tt|Pt−1 ≤ T ,

• if Bt−1 > BPt−1, Tt ∈ [αBt−1, Bt−1], and

• if Bt−1 < −BPt−1, Tt ∈ [−Bt−1,−αBt−1].

Essentially, we require that if real debt is neither too high nor too low, taxes may be any

function of past information subject only to a uniform bound in real terms. But when real debt

exceeds a threshold (in absolute value), taxes cover at least a fraction α of debt, putting the

brakes to a debt spiral.
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We relegate the proof that (6) and (16) hold (and thus the candidate equilibrium is an

equilibrium) to the appendix.

In the construction we just completed, P0 is indeterminate, but once a value of P0 is specified,

there exists a unique equilibrium allocation and price system. Moreover, whenever the nominal

rate set by the central bank is low, so is inflation. In particular, if Rt = 1
β
− 1 for all t ≥ 0, then

inflation is exactly zero in all periods.

The appendix considers a more general case, in which uncertainty is present and sunspot

equilibria may arise (particularly if assumption 1 is retained). But, even in that case, a low

official interest rate translates into a limit on expected inflation. To see this, note that the

intratemporal optimization condition (13) and the market clearing condition (10) still hold in a

world with sunspots, so equation (17) still holds. Thus consumption and labor in each period

are pinned down by the interest rate policy. If Rt is constant then consumption and labor are

constant. If Rt = 1
β
− 1, the stochastic version of the consumption Euler equation becomes

Et
Pt
Pt+1

= 1. (18)

The expected real value of a dollar remains constant into the future. Furthermore, if we assume

a bound ε on how fast the price level can drop (i.e., we impose Pt/Pt+1 < 1/ε almost surely ∀t),

then the law of large numbers will apply, and average inverse inflation over long horizons will be

0:

lim
T→∞

1

T

T∑
s=1

Ps
Ps+1

= 1 almost surely. (19)

In the next section, we show that a very different type of equilibrium emerges when households

are not allowed to borrow unlimited funds from the central bank. In these equilibria, a low interest

rate set by the central bank may well lead to high inflation instead.

4 Limits to Central Bank Lending

Suppose now we impose the additional constraint on the households that Bt ≥ 0, t ≥ 0: house-

holds are not allowed to borrow from the government/central bank (or, equivalently, they are
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allowed to borrow from the central bank only by posting government bonds as collateral). That

the borrowing limit is precisely zero is not central to our analysis, but simplifies exposition some-

what. In this section, we construct additional deterministic equilibria which do not exist when

Bt = R.

With the no-borrowing limit we just imposed, the official rate Rt only becomes a lower bound

for the private-sector rate R̂t. When households are at the borrowing limit with the central

bank, private nominal interest rates may exceed the official rate. The no-arbitrage condition

(12) becomes

R̂t ≥ Rt, Bt > 0 =⇒ R̂t = Rt. (20)

All other equilibrium conditions remain the same, except that the private rate R̂t replaces the

government rate Rt in equation (17):

−uy(Ct, Ct +G)

uc(Ct, Ct +G)
=

1

1 + R̂t

. (21)

The allocation of section 3 remains part of an equilibrium even when the central bank limits

its lending, provided that households have nonnegative bond holdings in all periods. For a

given sequence of prices, interest rates, consumption and work levels, household holdings of

government debt in this equilibrium depend on the sequence of taxes. Government debt will be

strictly positive in each period t > 0 if and only if the following condition is satisfied:

Tt
Pt−1

< G+
Bt−1

Pt−1
+
Mt−1

Pt−1
− βĉ(Rt)(1 +Rt)ûy(Rt)

ûy(Rt−1)
, (22)

where ĉ(R) is the consumption implied by equation (21) when R̂t = R and ûy(R) := uy(ĉ(R), G+

ĉ(R)). It is straightforward to see that there are fiscal rules that satisfy (22) and Assumption 2.8

We assume that fiscal policy is run by one such rule.

In period 0, government debt will be nonnegative if

T0 ≤ W−1 − ĉ(R0)P0. (23)

8As an example, choose Tt = (1 − α)(Bt−1/Pt−1) + T̂t, with T̂t < Pt−1G −Mt−1 − Pt−1βĉ(0)(1+R)ûy(R)
ûy(0)

and

α ∈ (0, 1).
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An interior equilibrium will only exist if

T0 < W−1, (24)

which we will assume. While P0 can take any positive value in section 3, now equation (23)

imposes a ceiling.

4.1 Additional Equilibria: A Single Run

The simplest equilibrium that may arise when a limit to private indebtedness is introduced is a

run on government debt where Bs = 0 for a single date s > 0. We now provide conditions under

which such an equilibrium exists.

Assumption 3 Define

uy := max
R∈[0,R]

ĉ(R)(1 +R)|ûy(R)|.

We assume that fiscal policy satisfies the following stronger version of (22):

Tt
Pt−1

< G+
Bt−1

Pt−1
+
Mt−1

Pt−1
− βuy

uy(G)
. (25)

Equation (22) guarantees that in each period there are positive bonds that can be converted

into money and initiate a speculative run. The stronger condition (25) ensures that, after a

period in which a run occurred and thus previous government debt was monetized, there are

enough new bonds for the economy to return to a path where households hold positive amounts

of government debt and equation (14) holds.

Proposition 1 Let {Pt, R̂t, Rt, Tt, Ct, Yt, B̂t, Bt,Mt}s−1t=0 be determined as in the equilibrium of

section 3, with P0 satisfying (23), and let fiscal policy satisfy Assumption 2. A necessary and

sufficient condition for the existence of a different (deterministic) equilibrium in which Bs = 0

is that the following equation admits a solution for R̂s > Rs:

βûy(R̂s)(1 + R̂s)ĉ(R̂s)

(
Ps−1

Ms−1 +Bs−1 + Ps−1G− Ts

)
= ûy(Rs−1). (26)

A sufficient condition (based on preferences alone) for (26) to have a solution with R̂s > Rs is

lim
R→∞

|ûy(R)|(1 +R)ĉ(R)→∞. (27)

10
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¯

roof: The proof works by construction. Starting from an arbitrary price level P0 that satisfies

(23), the equilibrium allocation, price system, and government policy are solved as in section 3

up to period s − 1. Specifically, we use the interest rate rule Rt and the fiscal policy rule with

equations (10), (14), (15), and (17) to sequentially solve for the unique candidate equilibrium

allocation and price system.

In period s, in order for R̂s > Rs to be an equilibrium, the constraint Bs ≥ 0 must be binding,

which implies
Ms−1 +Bs−1

Ps−1
+G =

Ts
Ps−1

+ ĉ(R̂s)
Ps
Ps−1

. (28)

Furthermore, equations (14) and (21) require

β(1 + R̂s)ûy(R̂s)
Ps−1
Ps

= ûy(Rs−1). (29)

Substituting (28) into (29), we obtain (26), which is a single equation to be solved for R̂s. If

this equation does not admit a solution for R̂s > Rs, then it is impossible to satisfy all of the

necessary conditions for an equilibrium with Bs = 0. If a solution exists, then we can retrieve

consumption in period s as Cs = ĉ(R̂s) (the unique solution that satisfies equation (21)), and

hence (by market clearing) Ys = Cs + G. We can then solve equation (28) for the candidate

equilibrium level of Ps. Equation (22) ensures that the solution for Ps is strictly positive.

From period s+1 onwards, the allocation and price system is once again uniquely determined

(sequentially) by the interest rate rule Rt, the fiscal policy rule, and equations (10), (14), (15),

and (17). Equation (25) ensures that the resulting sequence for government debt is strictly

positive. Once again, the proof that (6) and (16) hold is relegated to the general proof in the

appendix.

Finally, to verify the sufficient condition (27), set R̂s = Rs. Equations (14) and (22) imply

β|ûy(Rs)|(1 +Rs)ĉ(Rs)

(
Ps−1

Ms−1 +Bs−1 + Ps−1G− Ts

)
< |ûy(Rs−1)|. (30)

Since |ûy(R)|(1 +R)ĉ(R) is a continuous function of R, when equation (27) holds, equation (30)

ensures the existence of a solution of (26) with R̂s > Rs. QED.

To be concrete, consider the following numerical example. Let the monetary authority set

Rt = 1
β
− 1, where β = 1/1.01, for all t and all histories (and thus we can set R = 1

β
− 1 as well.)
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Next, let u(ct, yt) = c1−σ

1−σ − y
ψ, with σ = 3 and ψ = 1.1, and let G = .1. Given these, equation

(25) becomes

Tt < Bt−1 +Mt−1 − 1.12Pt−1. (31)

Thus we assume Tt = .5(Bt−1 +Mt−1)− 1.12Pt−1 which satisfies (31) whenever Bt−1 +Mt−1 > 0

(which holds throughout the example). Finally, assume P0 = 1 and W−1 = 2.57.

Given these assumptions, one equilibrium of this economy is a steady state: In each period t ≥

0, Pt = 1, Ct = Mt = .96, Yt = 1.06 and Bt = 1.5. And for the given P0, when households have

an unlimited ability to borrow from the government, this is the unique deterministic equilibrium.

Next suppose households face a restriction that Bt ≥ 0 for all t ≥ 0. Then, the following is a

deterministic equilibrium for any date s > 0. In the first s− 1 periods, all variables are equal to

their values under the steady state equilibrium just defined. At date s, the run occurs. For the

chosen parameters, if Bs = 0, then Ps = 4.07, Ms = 2.46, Cs = .6, Ys = .7, and R̂s = 3.28. In all

subsequent periods t > s, R̂t = Rt, Pt = 4.24, Mt = 4.09, and real variables Ct and Yt return to

their pre-run steady-state values. Government debt Bt then gradually approaches a new steady

state from below, where Bt/Pt returns to its previous steady state value.

To see why this is an equilibrium, notice first that, when the run occurs, all government

debt is converted into money; this largely increases the money supply. Furthermore, if a run

occurs, then the private-sector interest rate R̂t must be greater than the interest rate set by the

central bank, which is constant at 1/β − 1. The intratemporal optimality condition (21) implies

that consumption decreases in period s when the run occurs. With consumption down and the

money supply up, the price level must jump up so that the (binding) cash-in-advance constraint

holds. Whether such a candidate allocation can be supported as an equilibrium depends on

whether these changes can be made consistent with the household Euler equations for leisure

and consumption, which are respectively (14) and

uc(Ct+1, Yt+1)

uc(Ct, Yt)
=

1

β(1 + R̂t)

Pt+1

Pt
. (32)

Specifically, in order to have a perfectly anticipated run in period s (and not before), it must be

the case that households are willing to lend to the government in period s−1 (i.e., R̂s−1 = Rs−1)

even though the nominal interest rate by the central bank is constant and expected inflation
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between period s− 1 and period s is high. Since households expect a consumption drop between

periods s − 1 and s, this can be the case, but only if either the drop in consumption (and, by

market clearing, in the labor supply) is very steep or the intertemporal elasticity of substitution

of consumption is sufficiently low. Equation (21) implies that the consumption drop is steeper,

the less curvature there is in the marginal disutility of labor and in the marginal utility of

consumption. So, less curvature in uy(c, c+G) unambiguously helps in satisfying equation (32).

Less curvature in uc(c, c + G) has an ambiguous effect, since (for given R̂s) it creates a bigger

drop in consumption, but it also implies a greater intertemporal elasticity of substitution. The

second effect turns out to be the relevant one, so that a perfectly anticipated run can happen

when the curvature is low and hence the function ĉ is not very responsive to R. From these

observations, we can thus understand the role of assumption A2. We can also understand why

a run can happen under much weaker assumptions if it occurs with probability smaller than

one, as described in the appendix: in this case, the potentially negative effect of a run on the

households’ willingness to save between periods s− 1 and s is tempered by the lower probability

of the occurrence. In the limit, as the probability of a run goes to 0, households are content to

save at the rate 1/β − 1 between periods s− 1 and s when the no-run allocation remains at the

steady state throughout.

Next, we consider the other intertemporal choice that households face in their decision to

save between periods s−1 and s, i.e., their labor supply. Because of the cash-in-advance timing,

this decision is related to the household labor supply in periods s − 2 and s − 1, as shown by

equation (14). Since the allocation and inflation are at the no-run steady state values in these

two periods, the relevant Euler equation for leisure is automatically satisfied. For this reason,

the intertemporal elasticity of substitution of leisure does not play the same role as the one of

consumption in determining whether a perfectly anticipated run can occur.

Having discussed the economic forces that lead households to save between periods s − 1

and s, we next consider the elements that pertain to the private-market interest rate between

periods s and s + 1, in the period of the run. This time, it is simpler to start from the Euler

equation for labor, equation (14). The relevant margin of choice for households is their labor

13



supply in period s − 1 (paid in period s) vs. period s. Here, it is straightforward to see why

households optimally choose not to invest in government bonds in period s at the nominal rate

1/β − 1. First, the nominal wage (which is equal to the price level) increases from period s− 1

to period s, which yields an incentive to postpone labor when the nominal interest rate does not

adjust correspondingly. Second, the equilibrium features actually a lower labor supply in period

s than in period s− 1, providing a further incentive not to save in period s− 1 and to postpone

work. Both of these channels imply that the interest rate offered by the government within the

equilibrium allocation is too low for households to be willing to lend to the government, and

that the private-market interest rate that justifies the labor decision is instead higher. Similarly,

on the consumption side (where the relevant margin is once again shifted one period forward),

households look forward to an increase in consumption between periods s and s + 1, and hence

they require a higher real interest rate to be willing to save than the one offered by the govern-

ment. This is particularly true because further inflation occurs between periods s and s + 1, as

we establish next, in our discussion of how the run ends.

After the run ends, households resume lending to the government at the rate Rs+1 = 1/β− 1

in period s + 1. With a fixed nominal interest rate, inflation between period s and s + 1 must

adjust so that households find it optimal to increase their labor supply between the crisis period

s and the return to normalcy in period s + 1. By equation (14), this requires further inflation

between periods s and s + 1. The increase in both prices and production (and consumption)

between periods s and s + 1 implies that money supply must also grow. Since the crisis wiped

out government debt, households cannot acquire this additional money by selling government

debt. While part of the money can be acquired through the sales of output to the government

in period s, a crisis will also require that fiscal policy generates new nominal liabilities through

a tax cut at the beginning of period s+ 1, as implied by Assumption 3.

From that point onward, output and consumption return to their pre-run steady state, while

government debt (in real terms) converges back to the steady state gradually.
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4.2 Other Equilibria

By repeating the steps outlined in section 4.1, it is easy to construct equilibria in which runs

occur repeatedly, and it is also possible to construct equilibria in which runs last for more than

one period. The conditions under which such equilibria exist are similar to those for a single

run (in particular, Assumptions 1, 2, and 3 are sufficient conditions). In more general cases,

the appendix considers stochastic equilibria, where runs can emerge with probability less than

1. In these stochastic run equilibria, even when the official interest Rt is constant, the levels

of consumption and labor are not constant because the effective interest rate in the household

optimization conditions, R̂t, is not constant. Further, when Rt = 1
β
− 1, it is no longer the case

that on average, Pt/Pt+1 = 1. Setting a low nominal rate no longer guarantees low average real

depreciation of the currency.

4.3 Alternative Strategies to Mitigate and/or Prevent Runs

The simplest way to prevent runs is of course not to adopt an interest rate rule in the first

place. As an example, if preferences are u(c, l) = log c− κ(l), a fixed money supply will deliver

a unique equilibrium. More in general, Atkeson et al. [3], following the methods in Bassetto [4],

devise more sophisticated strategies to achieve unique implementation by reverting to money

supply rules when the inflation rate deviates from its target.9 But, as is well known (see e.g.

Woodford [15]), money supply rules may also be subject to multiple equilibria. More importantly,

our aim is not to assess the relative merits of interest-rate rules compared to money supply rules

or other, more sophisticated strategies, but rather to point out a danger that arises specifically

when a central bank commits to any given interest rate.

The presence of runs generates a new channel of interaction between monetary and fiscal

policy. Note that, when we restrict discussion to Ricardian fiscal policies and equilibria without

borrowing limits, fiscal policy is irrelevant in determining equilibrium consumption and labor

levels. (In fact, this is the entire point of Ricardian equivalence.) When limits are present and

9Atkeson et al. also consider sophisticated strategies that only rely on interest rates, but those would be

subject to the runs described in this paper.
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the equilibrium features runs, this is no longer the case: intuitively, the consequences of a run will

be more severe, the greater the pool of bonds that is available to be monetized. As an example,

consider the run equilibrium of the section 4.1, but with a different tax policy. In particular,

instead of Tt = .5(Bt−1 + Mt−1) − 1.12Pt−1, let Tt = .6(Bt−1 + Mt−1) − 1.12Pt−1. This leaves

consumption and output unchanged in the no-run equilibrium, but decreases the steady state

level of debt from 1.5 to 1.09. Now, at date s (when the run occurs), Bs = 0 (as before), but

since Bs−1 is now lower, there is less debt to convert into money, and thus the money rises less

from period s− 1 to period s. In this new example, Ps rises from 1 to 3.08 (instead of rising to

4.08), Ms rises from .96 to 2.04 (instead of rising to 2.46), Cs falls from .96 to .66 (instead of

falling to Cs = .6), and R̂s rises to 2.22 instead of rising to 3.28. Overall, that the increase in

the money supply is smaller due to the smaller date s − 1 debt causes smaller real effects (on

consumption and output) from the run.

An alternative strategy to mitigate the consequences of a run is to assume that the central

bank only sets the price of a subset of bonds. In the real world, this naturally happens due to

the presence of long-term debt, whose price is not directly targeted by the central bank. Here,

both to sharpen our point and to simplify the notation, we consider the case in which there

are two types of bonds, “red” bonds and “blue” bonds, both with one-period maturity, whose

only difference stems from their treatment by the central bank, as opposed to having the central

bank target rates for some maturities and not others. Specifically, we assume that, when asset

markets open, the central bank sets the interest rate on red bonds, being willing to purchase or

sell them at a rate Rt (which may depend on past history, as before). In contrast, blue bonds are

auctioned. From the fiscal perspective, red bonds and blue bonds are identical: both constitute

a promise to deliver a dollar to the holder at the beginning of the subsequent period. We assume

that taxes are set according to a fiscal policy rule that satisfies Assumptions 2 and 3, where Bt

refers to the total amount of bonds (red and blue). In addition, we need to specify a rule that

describes the supply of blue bonds at auction, as a function of past history. Letting BB
t be the

amount of blue bonds being auctioned in period t and maturing in period t+ 1, we assume that
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this rule satisfies the following assumption:10

Assumption 4

0 ≤ BB
t < Pt−1G+Bt−1 +Mt−1 −

βPt−1uy

uy(G)
− Tt. (33)

It is straightforward to prove that Assumption 4 is sufficient for the existence of an interior

equilibrium, in which private agents hold a strictly positive amount of red bonds. The allocation

and price system in this equilibrium coincides with the one computed in Section 3. In this

equilibrium, blue bonds, red bonds, and privately-issued bonds are perfect substitutes from the

household perspective, and trade at the same interest rate. That the central bank targets a

narrower segment of the bond market is thus immaterial for its ability to control inflation and

real activity.

In the event of a run, the presence of blue bonds makes a difference. Households again

perceive blue bonds, red bonds, and privately-issued bonds as perfect substitutes. But if a run

occurs in period t, the interest rate Rt sanctioned by the central bank for red bonds is lower

than the private-sector rate R̂t, and consequently households do not buy any red bonds. At the

same time, if a positive amount of blue bonds is offered at auction, households will bid for them,

at the interest rate R̂t. The evolution of money supply in period t will thus be governed by the

following equation:11

Mt = Pt−1G+Mt−1 +Bt−1 −
BB
t

1 + R̂t

. (34)

Ceteris paribus, the sale of blue bonds reduces the monetization of maturing government debt,

alleviating the consequences of the run. We can illustrate this point using our numerical example

once again. Let all the parameter values, the initial conditions, and the rules for Tt and Rt be

those of Section 4, but assume that, in each period, blue bonds are supplied according to the

following rule: BB
t = .4(Bt−1 +Mt−1), so that, in steady state, blue bonds represent roughly 2/3

of government debt. In this case, if a run occurs in period s, government debt Bs does not drop

from 1.51 to 0, but to 0.99. Because of this, the increase in money supply is more contained:

money supply rises from .96 to 2.18 (rather than 2.46). This in turn alleviates the effect on

10Assumption 3 ensures that the interval for BBt is nonempty after all histories.
11This equation is derived from (1), by assuming that in the event of a run red bonds are 0 and thus Bt = BBt .
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consumption, that falls from .96 to .64 (rather than .6), on the nominal interest rate (rising to

2.56 rather than 3.28), and prices (rising on impact to 3.52 rather than 4.08).12

The blue bond-red bond model suggests that a central bank would be well advised to peg

the interest rate in a narrow segment of the market, rather than across the entire spectrum of

available bonds. When no run occurs, the two strategies implement the same set of equilibria.

But, when the risk of runs is present, the consequences of a broad peg are more acute than those

of a policy that sets the price in a narrower market. This conclusion provides a rationale for

the widespread practice among central banks to set interest rate targets only for very short-term

rates, rather than trying to impose an entire yield curve on the market. Even in recent times,

when several central banks have tried to affect the yield curve by policies of “quantitative easing,”

it is noteworthy that they chose to do so by setting an interest rate target for the short end, and

a quantity target for their purchases of longer-term securities.13 (It is also noteworthy that the

Fed’s attempt to peg the entire yield curve in the 1940’s ultimately led the Fed to be the sole

purchaser of short-term Treasury debt.)

5 Discussion

In this paper, we have shown that considering bounds on open market operations may be crucial

in determining the size of the set of monetary equilibria under interest rate rules. Policies which

have unique equilibria in environments with no bounds may instead have many new equilibria

when bounds are introduced. The particular bound we studied was on the size of privately held

government debt – we assumed it must not be negative.

Suppose instead we had assumed that if a run is seen as occurring, the monetary authority

stops it by not letting, say, government debt fall below 90% of its previous value. That is, the

12At first blush, the effect of blue bonds on the allocation and prices may seem surprisingly small, considering

that they represent 2/3 of government debt in steady state. This happens because, according to the rule that we

specified, the government auctions a fixed nominal future repayment. Given the very high nominal interest rates

that prevail in a run, the real revenues raised by the auction in the event of a run are comparatively modest.
13In our simple model, of course, quantitative easing would have no effect on the equilibrium allocation and

prices. But our results would apply equally well to richer environments where a preferred habitat is present.
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central bank abandons the interest rate peg at that point. Then, of course, it is impossible for

debt to go to zero in one period as in our examples. On the other hand, the same logic as

our examples still holds, except that the lower bound on debt is no longer zero, but 90% of its

previous value. What causes these additional equilibria is the existence of the bounds themselves,

not their particular values.

Also, in the simple setup that we described, a run on an interest peg triggers immediate

monetization of all of the government debt. This may be a good description of the experience of

the Reichsbank during the German hyperinflation, but it is unlikely that a run would suddenly

appear in this form in an economy that has previously experienced stable inflation and macroe-

conomic conditions. In practice, the unfolding of a run would be slowed by a number of frictions

that may prevent households from immediately demanding cash for all of their government bond

holdings; these frictions may take the form of limited participation in bond markets (see e.g.

Grossman and Weiss [8], Alvarez and Atkeson [1], and Alvarez, Atkeson, and Edmond [2]), noisy

information about other households’ behavior, or the presence of long-term bonds whose price

is not pegged by the central bank.

The questions we addressed are particularly important in the wake of quantitative easing. In

our model, we do not distinguish between the monetary authority and the fiscal authority. In

our run equilibrium, in essence, the monetary authority monetizes the debt. If that monetary

authority proposed to limit such a run by not letting debt fall below 90% of its previous value,

it could do this by simply abandoning the interest rate target and not buying government debt

at some point. With quantitative easing, however, central banks themselves now owe large debts

to private institutions in the form of excess bank reserves. We interpret excess reserves in our

model to be part of Bt, not Mt, since in equilibrium they must pay the market rate of interest.

While a central bank can refuse to turn government debt into cash by simply not purchasing it, it

is unclear to us how a central bank can refuse to turn excess reserves into cash without explicitly

or implicitly defaulting. Thus the dangers we outline in this paper may be more relevant now

than ever.

19



A Analysis of the General Stochastic Case

A.1 The Environment with Sunspots

We modify the environment described in section 2 by introducing a sunspot variable st in each

period. Without loss of generality, st is i.i.d. with a uniform distribution on [0, 1]. Its realization

at time t is observed before any action takes place. All variables with a time-t subscript are

allowed to be conditional on the history of sunspot realizations {sj}tj=1.

We assume that the government only trades in one-period risk-free debt, but we allow the

households to trade state-contingent assets, and we denote by at+1 the amount of nominal claims

that a household purchases in period t maturing in period t + 1 (conditional on the sunspot

realization st+1). Without uncertainty, at+1 ≡ b̂t. Equation (3) is thus replaced by

Et[at+1Qt+1] +
bt

1 +Rt

= Pt−1(yt−1 − ct−1)− Tt −mt +mt−1 + at + bt−1, (35)

where Qt+1 is the stochastic discount factor of the economy. For the later analysis, it is convenient

to define R̂t := 1/EtQt+1− 1. This definition is consistent with the notation that we used in the

main text for the deterministic case: R̂t is the one-period nominal risk-free rate in the market

for private credit.

In period 0, the household budget constraint becomes

E0[a1Q1] +
b0

1 +R0

= W−1 −m0 − T0. (36)

The no-Ponzi condition (6) generalizes to

at+1 + bt ≥ At+1 := −Pt −mt + Tt+1+

Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)[
Tt+j+1 − Pt+j −max

b̂∈Bt
[b̂

(
Et+jQt+j+1 −

1

1 +Rt+j

)
]

]}
.

(37)

With these changes, an equilibrium is defined as in section 3; the market-clearing condition

(11) becomes

At+1 = 0. (38)
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The conditions characterizing an equilibrium are given by (10), (15), (21), (38), the stochastic

Euler equation
uy(Ct+1, Yt+1)

uy(Ct, Yt)
=
Qt+1(1 + R̂t)

β(1 + R̂t+1)

Pt+1

Pt
, (39)

the transversality condition, which in the stochastic case becomes14

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
(At+1 +Bt − At+1)

]
= 0, (40)

and finally the no-arbitrage condition for interest rates. This last condition states R̂t = Rt when

B = R and (20) when Bt ≥ 0 is imposed.

In the main text, we adopted Assumption 1 to ensure that seigniorage revenues remain

bounded and hence that the present-value budget constraint of the households is well defined.

When Assumption 1 is violated, such as in the case of Taylor rules that have no upper bound

on the interest rate, an alternative (sufficient) condition that we can adopt is given by

Assumption 5

lim
R→∞

ĉ(R)(1 +R) = 0. (41)

Notice that Assumption 5 is incompatible with the sufficient condition (27) in Proposition 1.

When Assumption 5 is adopted, often perfectly anticipated runs will fail to exist (but probabilistic

runs will continue to occur).

A.2 Verification of the Transversality and no-Ponzi conditions

Proposition 2 Let a sequence {Pt, Qt+1, Tt, Rt, Ct, Yt, At+1, Bt,Mt}∞t=0 satisfy equations (10),

(11), (15), (21), (35), (36),and (39), and let fiscal policy satisfy Assumption 2. Assume also

that either Assumption 1 or Assumption 5 holds. Then equations (37) and (40) hold.

We prove this proposition in 3 steps. First, we prove that At+1, as defined in (37), is well

defined. Second, we prove that (40) holds, and finally that (37) holds.

14See Coşar and Green [7].
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A.2.1 At+1 is well defined.

We work backwards on the individual components of the sum defining At+1 in equation (37).

From (20) we obtain15

max
b̂∈Bt

[b̂

(
Et+jQt+j+1 −

1

1 +Rt+j

)
] = 0. (42)

Next, use (39) to get

Et+1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ ûy(0)Et+1

{( j∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)

}
=

ûy(0)Et+1

{(j−1∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)
Et+jQt+j+1

}
=

ûy(0)Et+1

{(j−1∏
v=1

Qt+v+1

) Pt+j

ûy(R̂t+j)(1 + R̂t+j)

}
=

βûy(0)Et+1

{(j−2∏
v=1

Qt+v+1

) Pt+j−1

ûy(R̂t+j−1)(1 + R̂t+j−1)

}
=

βj−1
ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)

(43)

Equation (43) implies16

Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)
, (44)

which proves that the second piece of the infinite sum defining At+1 is well defined. From

Assumption 2, we have |Tt+j+1| ≤ TPt+j + |Bt+j|, and so∣∣∣∣∣Et+1

∞∑
j=1

{( j∏
v=1

Qt+v+1

)
Tt+j+1

}∣∣∣∣∣ ≤
∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)[
Pt+jT + |Bt+j|

]}
. (45)

We analyze equation (45) in pieces. Using (44), we have

T
∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)
Pt+j

}
≤ T ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)
. (46)

15If the borrowing limit is not 0, the expression in (42) would not be 0, but it can be proven that At+1 is

nonetheless well defined.
16We can interchange the order of the sum and the expectations since all elements of the sum have the same

sign.
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To work on the sum of debt, notice first that equation (1) continues to hold even if we replace

Rt by R̂t. This is because Bt = 0 in the periods and states of nature in which R̂t > Rt. If

Assumption 1 is retained, define S := maxR∈[0,R][ĉ(R)(1 + R)]; alternatively, if Assumption 5 is

adopted instead, define S := maxR∈[0,∞][ĉ(R)(1 +R)]. Finally, notice that Assumption 2 implies

|Tt+j −Bt+j−1| ≤ Pt+j−1(T +B) + (1− α)|Bt+j−1|. (47)

We can then use (1), (15), (39), and (47) to get

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
= Et+1

{(j−1∏
v=1

Qt+v+1

)∣∣∣∣[Pt+j−1G−
Tt+j +Bt+j−1 + ĉ(R̂t+j−1)Pt+j−1 − ĉ(R̂t+j)Pt+j

]∣∣∣∣} =

Et+1

{(j−1∏
v=1

Qt+v+1

)∣∣∣∣[Pt+j−1G− Tt+j +Bt+j−1 + ĉ(R̂t+j−1)Pt+j−1−

βPt+j−1ĉ(R̂t+j)(1 + R̂t+j)ûy(R̂t+j)

ûy(R̂t+j−1)

]∣∣∣∣} ≤
Et+1

{(j−1∏
v=1

Qt+v+1

)[(
G+ T +B +

βûy(0)S

ûy(R̂t+j−1)
+ ĉ(0)

)
Pt+j−1+

(1− α) |Bt+j−1|
]}
.

(48)

Using (43) and (48), we obtain (for j > 1)

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
≤ Et+1

{ j∑
s=2

(1− α)j−s
[(s−1∏

v=1

Qt+v+1

)
·

[(
G+ T +B +

βûy(0)S

uy(R̂t+s−1)
+ ĉ(0)

)
Pt+s−1

]}
+ (1− α)j−1

|Bt+1|
1 + R̂t+1

≤

ûy(0)Pt+1

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)

j∑
s=2

[
βs−2(1− α)j−s

]
+ (1− α)j−1

|Bt+1|
1 + R̂t+1

=

ûy(0)Pt+1 [(1− α)j−1 − βj−1]
(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)(1− α− β)

+ (1− α)j−1
|Bt+1|

1 + R̂t+1

.

(49)
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Using (49) we get

∞∑
j=1

Et+1

{( j∏
v=1

Qt+v+1

)
|Bt+j|

}
≤

ûy(0)Pt+1

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂t+1)(1 + R̂t+1)α(1− β)

+
|Bt+1|

α(1 + R̂t+1)

(50)

Collecting all terms, equations (44), (46), and (50) imply

|At+1| ≤
ûy(0)Pt+1

ûy(R̂t+1)(1 + R̂t+1)(1− β)

[
1 + T+(

1

α

)(
G+ T +B + βS + ĉ(0)

)]
+

|Bt+1|
α(1 + R̂t+1)

+ Pt
[
1 + ĉ(0) + T

]
+ |Bt|.

(51)

A.2.2 Equation (40) holds.

Use (49) to obtain

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|Bt|

]
≤

ûy(0)P0

(
G+ T +B + βS + ĉ(0)

)
ûy(R̂0)(1 + R̂0)(1− α− β)

lim
t→∞

[
(1− α)t − βt

]
+

|B0|
1 + R̂0

lim
t→∞

(1− α)t = 0.

(52)

We then use (39), (51), and (52) to prove

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|At+1|

]
≤ ûy(0)

1− β

[
1 + T+

(
1

α

)(
G+ T +B + βS + ĉ(0)

)]
lim
t→∞

E0

[(
t+2∏
j=1

Qj

)
Pt+1

ûy(R̂t+1)

]
+

1

α
lim
t→∞

E0

[(
t+2∏
j=1

Qj

)
|Bt+1|

]
+ ûy(0)

[
1 + ĉ(0) + T

]
lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
Pt

ûy(R̂t)

]
+

lim
t→∞

E0

[(
t+1∏
j=1

Qj

)
|Bt|

]
=

ûy(0)P0

(1 + R̂0)ûy(R̂0)

{
β

1− β

[
1 + T+(

1

α

)(
G+ T +B + βS + ĉ(0)

)]
+ 1 + ĉ(0) + T

}
lim
t→∞

βt = 0.

(53)
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Equations (11), (52), and (53) imply (16).

A.2.3 Equation (37) holds.

The same steps used to prove (52) can also be used to prove

lim
j→∞

Et

{(j+1∏
v=1

Qt+v

)
|Bt+j|

}
= 0. (54)

As previously noted, equation (1) continues to hold even if we replace Rt with R̂t, since the two

values only differ when Bt = 0. We can then iterate (1) forward, taking expectations conditional

on time-t+ 1 information, and use (54) to obtain

Bt = Mt+1 −Mt − Tt+1 − PtG+ Et+1

{ ∞∑
s=1

[( s∏
v=1

Qt+v+1

)
·

(
Mt+s+1 −Mt+s + Tt+s+1 − Pt+sG

)]}
> At+1,

(55)

which completes the proof. Equation (55) relies on G < 1 (government spending must be less

than the maximum producible output) and on

Et+s [Mt+s(1−Qt+s+1)] =
R̂t+sMt+s

1 + R̂t+s

≥ 0.

This completes the proof of proposition 2.

B Other Equilibria of the Stochastic Economy

The perfectly anticipated run described in section 4.1 relies on strong assumptions about pref-

erences. As an example, if we assume that preferences are given by u(ct, yt) = c1−σ

1−σ − y
ψ, such

an equilibrium will always fail to exist for σ ≤ 1, since a solution to (26) cannot be found (with

R̂ > R). Nonetheless, even for these preferences other equilibria that feature runs exist, provided

that the occurrence of a run is sufficiently small. Moreover, these equilibria exist even when the

central bank sets no upper bound to its interest rate (provided, of course, that preferences are

such that the present value of seigniorage remains finite).
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As is known since Sargent and Wallace [12], even without considering runs, setting monetary

policy as an interest rate rule leaves open the possibility of sunspot equilibria. But equilibria with

runs are qualitatively very different from these sunspot equilibria. In a standard environment

where B = R and no runs can occur, the nominal interest rate is closely related to expected

(inverse) inflation, so that setting the nominal interest rate still allows the central bank a con-

siderable degree of control, at least over long periods of time. This relationship between nominal

interest rates and expected inflation is lost in equilibria that feature runs, and the dangers from

relying purely on the nominal interest rate as a policy instrument are correspondingly more

acute.

B.1 Sunspot Equilibria with no Runs

We can construct sunspot equilibria recursively as follows. For any arbitrary initial price P0, the

variables R0, T0, C0, Y0, M0, and B0 are determined as in section 3. The time-0 variables and

the policy rules determine R1 and T1, also as in section 3, which then pin down C1 and Y1; this

implies that C1 and Y1 are known as of period 0.17 But now the deterministic Euler equation

(14) is replaced by its stochastic counterpart, (39). In an equilibrium with no runs, we know

that R̂1 = R1. Substituting this into (39), rearranging and taking expected values we obtain

E0
P0

P1

=
uy(C0, Y0)

βuy(C1, Y1)(1 +R1)
. (56)

We can then pick P1 as an arbitrary function of the sunspot s1, subject to the single restriction

(56) on its expected value. Given the realization of s1 and thus P1, equation (15) determines

M1, equation (1) yields B1, and the process can be repeated for period 2.

Provided that either Assumption 1 or 5 hold, Proposition 2 ensures that the transversality

and no-Ponzi conditions are satisfied for the sequences that we constructed: as discussed in

Cochrane [6], in this model only fiscal policy can provide a boundary condition to rule out some

of these arbitrary paths.18

17We assume that the monetary and fiscal authorities follow deterministic rules; this is immaterial to our results.
18Notice that uniqueness results based on the failure of both Assumptions 1 and 5 relate to fiscal policy: some

sunspot paths can be ruled out because seigniorage revenues become infinite, making it impossible for fiscal policy
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While sunspot equilibria imply that inflation is indeterminate, equilibria that feature no runs

still display remarkable similarities across each other. As an example, suppose that monetary

policy sets Rt ≡ 1/β−1 unconditionally. It is straightforward to verify that equation (17) implies

a constant allocation, and that (39) implies (18): the expected real value of a dollar remains

constant. Equation (18) and the assumption of a uniform bound on Pt/Pt+1 in turn imply (19).

B.2 A Probabilistic Run in Period s > 0.

We now construct an equilibrium where a run occurs in period s with probability φ ∈ (0, 1).

As was the case in section 4.1, fiscal policy plays an important role in ensuring that households

have enough nominal wealth to acquire their desired money balanced, and we assume that (25)

holds. Starting from an arbitrary initial price level P0, we construct recursively a deterministic

allocation and price system up to period s− 1 as we did in section 4.1. For period s, we consider

an equilibrium with just two realizations of the allocation and price level: with probability φ,

the price level is PH
s and a run occurs (R̂H

s > Rs), and with probability 1 − φ the price level is

PL
s and the private nominal interest rate coincides with the public one: R̂L

s = Rs. In order for

R̂H
s > Rs to be an equilibrium, the constraint Bs ≥ 0 must be binding, which implies

Ms−1 +Bs−1

Ps−1
+G =

Ts
Ps−1

+ ĉ(R̂H
s )

PH
s

Ps−1
. (57)

Given any arbitrary value R̂H
s > Rs, and given the predetermined time-s − 1 variables and the

fiscal policy rule for Ts, equation (57) can be solved for PH
s /Ps−1, the level of inflation that will

occur if a run on the interest rate peg materializes in period s. As was the case in section 4.1, since

ĉ is a decreasing function and taxes satisfy (22), inflation in the event of a run will necessarily

be strictly greater than inflation in the equilibrium in which no run can take place.

To determine PL
s /Ps−1, we rely on the household Euler equation (39). Rearranging terms

and taking the expected value as of period s− 1, we obtain

β

[
φûy(R̂

H
s )(1 + R̂H

s )
Ps−1
PH
s

+ (1− φ)ûy(Rs)(1 +Rs)
Ps−1
PL
s

]
= ûy(Rs−1). (58)

to be Ricardian.
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Generically, this equation can be solved for PL
s /Ps−1. However, we need to ensure that the

solution is nonnegative, and that it entails nonnegative bond holdings, i.e., that

Ms−1 +Bs−1 + Ps−1G ≥
Ts
Ps−1

+ ĉ(Rs)
PL
s

Ps−1
(59)

A sufficient condition for both is that φ be sufficiently small.19

If ûy does not decline too fast with R, then equation (58) will imply that PL
s /Ps−1 is lower

than in the deterministic equilibrium with no runs. Because of this, the possibility of a run may

cause the central bank to undershoot inflation while the run is not occurring, further undermining

inflation stability.

From period s onwards, the characterization of the equilibrium proceeds again deterministi-

cally and recursively, separately for the branch that follows PH
s and PL

s ; this follows the same

steps as in section 4.1. The construction of the equilibrium is completed by Proposition 2 that

ensures that the transversality and no-Ponzi conditions are satisfied for the sequences that we

constructed.

The nature of the equilibrium that we constructed is quite different from those of section B.1.

To see this more in detail, consider again the case in which the central bank sets Rt ≡ 1/β − 1

in every period. It is now no longer true that consumption is then fixed. If a run occurs, the

relevant shadow cost of consumption in equation (21) is RH
s , and consumption drops. This also

implies that consumption is not predetermined, but it depends on the realization of the sunspot.

Moreover, using (21) and (39), we obtain

uc(Cs−1, Cs−1 + Ḡ) = β2(1 +Rs−1)Es−1

[
(1 + R̂s)

Ps−1
Ps+1

uc(Cs+1, Cs+1 + Ḡ)

]
.

With the constant interest rate above, and taking into account that the run occurs in period s

only, consumption is the same in periods s− 1 and s+ 1 and we thus find

1 = βEs−1

[
(1 + R̂s)

Ps−1
Ps+1

]
. (60)

19Note that, as φ→ 0, PLs /Ps−1 converges to the inflation in the deterministic equilibrium with no runs, where

(22) guarantees that (59) holds.
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We know that β(1 + R̂s) ≥ β(1 + Rs) = 1, and the inequality is strict with probability φ. This

implies

1 > Es−1
Ps−1
Ps+1

.

When runs can occur, setting the nominal interest rate is not sufficient to even control the

expected real value of a dollar.

B.3 Recurrent Runs

We can generalize the example of subsection B.2 to construct equilibria in which runs can occur

in any number of periods. As an example, there are equilibria in which runs occur with i.i.d.

probability φ in each period. Once again, we construct the allocation and price system recursively,

as we did in section B.2. In each period t, the history of runs up to period t−1 is taken as given,

and (57) and (58) are used to solve for PH
t /Pt−1 and PL

t /Pt−1.

To contrast these equilibria with the usual sunspot equilibria where no runs occur, consider

again the interest rule Rt ≡ 1/β − 1, and assume that preferences are linear in leisure, i.e.,

u(c, l) = v(c)− l. In this case, equation (39) becomes

1 = βEs

[
(1 + R̂s+1)

Ps
Ps+1

]
=⇒ 1 > Es

Ps
Ps+1

.

We then get

lim
T→∞

1

T

T∑
s=1

Ps
Ps+1

< 1 almost surely:

if runs are a recurrent event, average inverse inflation is necessarily less than 1 over long horizons.
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