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1. INTRODUCTION

The absence of self-control is often viewed as an important correlate of persistent poverty,
particularly (but not exclusively) in developing countries. Recent research indicates that
the poor not only borrow at high rates,1 but also forego profitable small investments.2

To be sure, traditional theory — based on high rates of discount and minimum subsis-
tence needs — can take us part of the way to an explanation. But it cannot provide a full
explanation, for the simple reason that the poor exhibit a documented desire for commit-
ment.3 The fact that individuals are often willing to pay for commitment devices, such
as illiquid deposit accounts, suggests that time inconsistency and imperfect self-control
are important explanations for low saving and high borrowing, complementary to those
based on impatience, minimum subsistence or a failure of aspirations.

A growing literature already recognizes that the (in)ability to exercise self-control is
central to the study of intertemporal behavior.4 Our interest lies in how self-control and
economic circumstances interact. If self-control (or the lack thereof) is a fixed trait, in-
dependent of personal economic circumstances, then the outlook for policy interventions
that encourage the poor to invest in their futures – particularly one-time or short-term

1Informal interest rates in developing countries are notoriously high; see, for example Aleem (1990). But
even formal interest rates are extremely high; for instance, the rates charged by microfinance organiza-
tions. Bangladesh recently capped formal microfinance interest rates at 27% per annum, a restriction
frowned upon by the Economist (“Leave Well Alone,” November 18, 2010). Banerjee and Mullainathan
(2010) cite other literature and argue that such loans are taken routinely and not on an emergency basis.
2Goldstein and Udry (1999) and Udry and Anagol (2006) document high returns to agricultural investment
in Ghana, even on small plots, while Duflo, Kremer, and Robinson (2010) identify high rates of return to
small amounts of fertliizer use in Kenya, and de Mel, McKenzie, and Woodruff (2008) demonstrate high
returns to microenterprise in Sri Lanka. Banerjee and Duflo (2011) cite other studies that also show high
rates of return to small investments.
3See, for example, Shipton (1992) on the use of lockboxes in Gambia, Benartzi and Thaler (2004) on
employee commitments to save out of future wage increases in the United States, and Ashraf, Karlan,
and Yin (2006) on the use of a commitment savings product in the Philippines. Aliber (2001), Gugerty
(2007) and Anderson and Baland (2002) view ROSCA participation as a commitment device; see also
the theoretical contributions of Ambec and Treich (2007) and Basu (2011). Duflo, Kremer, and Robinson
(2010) explain fertilizer use (or the lack of it) in Kenya as a lack of commitment. In the ongoing debate
on whether to overhaul the public distribution system for food in India to an entirely cash-based program,
individual commitment issues figure prominently; see Khera (2011).
4See, for instance, Ainslie (1975, 1992), Thaler and Shefrin (1981), Akerlof (1991), Laibson (1997),
O’Donoghue and Rabin (1999) or Ashraf, Karlan and Yin (2006). There are social aspects to the problem
as well. Excess spending may be generated by discordance within the household (e.g., husband and wife
have different discount factors) or by demands from the wider community (e.g., sharing among kin or
community).
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interventions – is not good. But another possibility merits consideration: poverty per
se may damage self-control. If that hypothesis proves correct, then the chain of causal-
ity is circular, and poverty is itself responsible for the low self-control that perpetuates
poverty.5 In that case, policies that help the poor begin to accumulate assets may be
highly effective, even if they are temporary.

The preceding discussion motivates the central question of this paper: is there some a
priori reason to expect poverty to perpetuate itself by undermining an individual’s abil-
ity to exercise self-control? Our objective requires us to define self-control formally
and precisely. The term itself implies an internal mechanism, so we seek a definition
that does not reference any externally-enforced commitment devices. Following Strotz
(1956), Phelps and Pollak (1968) and others, we adopt the view that self-control prob-
lems arise from time-inconsistent preferences: the absence of self-control is on display
when an individual is unable to follow through on a desired plan of action. What then
constitutes the exercise of self-control? We take guidance from the seminal work of the
psychologist George Ainslie (1975, 1992), who argued that people maintain personal
discipline by adopting private rules (e.g., “never eat dessert”), and then construing local
deviations from a rule as having global significance (e.g., “if I eat dessert today, then I
will probably eat dessert in the future as well”). It is natural to model such behavior as
a subgame-perfect Nash equilibrium of a dynamic game played by successive incarna-
tions of the single decision-maker.6 For such a game, any equilibrium path is naturally
interpreted as a personal rule, in that it describes the way in which the individual is sup-
posed to behave. Moreover, history-dependent equilibria can capture Ainslie’s notion
that local deviations from a personal rule can have global consequences.7 For example,
in an intrapersonal equilibrium, an individual might correctly anticipate that violating
the dictum to “never eat dessert” will trigger an undesirable behavioral pattern. Under
that interpretation, the scope for exercising self-control is sharply defined by the set of
outcomes that can arise in subgame-perfect Nash equilibria.

5Arguments based on aspiration failures generate parallel traps: poverty can be responsible for frustrated
aspirations, which stifle the incentive to invest. See, e.g., Appadurai (2004), Ray (2006), Genicot and
Ray (2009) and the United Nations Development Program Regional Report for Latin America, 2010,
which implements these ideas. However, this complementary approach does not generate a demand for
commitment devices.
6This approach is originally due to Strotz (1956).
7This interpretation of self-control has been offered previously by Laibson (1997), Bernheim, Ray, and
Yeltekin (1999), and Benhabib and Bisin (2001). See Bénabou and Tirole (2004) for a somewhat different
interpretation of Ainslie’s theory.
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We assume that time-inconsistency arises from quasi-hyperbolic discounting (also known
as βδ-discounting), a standard model of intertemporal preferences popularized by Laib-
son (1994, 1996, 1997) and O’Donoghue and Rabin (1999). To determine the full scope
for self-control, we study the set of all subgame-perfect Nash equilibria. To avoid ex-
cluding any viable personal rules, we impose no restrictions whatsoever on strategies
(such as stationarity, or the use of Markov punishments). This approach contrasts with
the vast majority of the existing literature, which focuses almost exclusively on Markov-
perfect equilibria (which allow only for payoff-relevant state-dependence), thereby rul-
ing out virtually all interesting personal rules.8 By studying the entire class of subgame-
perfect Nash equilibria, we can determine when an individual can exercise sufficient
self-control (through the use of sustainable personal rules) to accumulate greater wealth,
and when she cannot.9 In particular, we can ask whether self-control is more difficult
when initial assets are low, compared to when they are high.

The model we use is standard. There is a single asset which can be accumulated or
depleted at some fixed rate of return. By using suitably defined present values, all flow
incomes are nested into the asset itself. The core restriction is a strictly positive lower
bound on assets, to be interpreted as a credit constraint. In other words, the individual
cannot instantly consume all future income. The lower bound may be interpreted as
referring to that fraction of present-value income which she cannot currently consume.

Apart from this lower bound, the model is constructed to be scale-neutral. We as-
sume that individual utility functions are homothetic, so we deliberately eliminate any
preference-based relationship between assets and savings. (We return to this point when
connecting our model to related literature.)

It is notoriously difficult to characterize the set of subgame-perfect Nash equilibria (or
equilibrium values) for all but the simplest dynamic games, and the problem of self-
control we study here is, alas, no exception. We therefore initially examined our central

8Exceptions include Laibson (1994), Bernheim, Ray, and Yeltekin (1999), and Benhabib and Bisin (2001).
9Our distinctive focus on personal rules as history-dependent strategies can, of course, be questioned
on the grounds that human life-spans are in fact finite, causing such rules to unravel from the terminal
period. That criticism is not specific to our model, but applies to all analyses of infinite horizon games.
That literature offers a number of potential answers; e.g., the unravelling logic can be overturned by
examining epsilon-equilibria in finite horizon games (Fudenberg and Levine, 1983), introducing multiple
stage-game equilibria in finite horizon games (Benoı̂it and Krishna, 1985), or by studying games in which
the probability of continuation declines to (but does not reach) zero over time (Bernheim and Dasgupta,
1996).
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FIGURE 1. ACCUMULATION AND VALUES AT DIFFERENT ASSET LEVELS.

question by solving the model numerically using standard tools. (For a complete ex-
planation of our computational methods, and for details on all computational examples
presented in the text, see the Appendix.) Figure 1 illustrates the results of one such ex-
ercise.10 The horizontal axes in each panel measure assets in the current period. The
vertical axis in panel (A) similarly measures continuation asset choices for the next pe-
riod. Thus, points above, on, and below the 45 degree line indicate asset accumulation,
maintenance, and decumulation respectively. In this exercise, there is an asset threshold
below which all equilibria lead to decumulation; see panel (A). Starting with low as-
sets, it is impossible to accumulate assets by exercising self-control through any viable
personal rule; on the contrary, assets necessarily decline until the individual’s liquidity
constraint binds. In short, we have a poverty trap. However, above that threshold, there
are indeed viable personal rules that allow the individual to accumulate greater assets.
Moreover, as we will see later, the most attractive equilibria starting from above the
critical threshold lead to unbounded accumulation.11

10For this exercise, we set the rate of return equal to 30%, the discount factor equal to 0.8, the hyperbolic
parameter (β) equal to 0.4, and the constant elasticity parameter of the utility function equal to 0.5. We
chose these values so that the interesting features of the equilibrium set are easily visible; qualitatively
similar features arise for more realistic parameter values.
11This is a more subtle point that cannot be seen directly from Figure 1, though it is indicative. The reason
it is more subtle is that repeated application of the highest continuation asset need not be an equilibrium,
and moreover, even if it were, it need not be the most attractive equilibrium.
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The example motivates both our central conjecture and a (deceptively) simple intuitive
argument in support of it. If imperfect capital markets impose limits on the extent to
which an individual can borrow against future income, then potential intrapersonal “pun-
ishments” (that is, the consequences of deviating from a personal rule) cannot be all that
bad when assets are low. If these limited repercussions are suitably anticipated, an in-
dividual will fail to exercise self-control. However, when an individual has substantial
assets, she also has more to lose from undisciplined future behavior, and hence potential
punishments are considerably more severe (in relative terms). So an individual would
be better able to accumulate additional assets through the exercise of self-control when
initial assets are higher. Obviously, if time inconsistency is sufficiently severe, decu-
mulation will be unavoidable regardless of initial assets, and if it is sufficiently mild,
accumulation will be possible regardless of initial assets (provided the individual is suf-
ficiently patient). But for intermediate degrees of time inconsistency, we would expect
decumulation to be unavoidable with low assets, and accumulation to be feasible with
high assets.

It turns out, however, that the problem is considerably more complicated than this sim-
ple intuition suggests. (The overwhelmingly numerical nature of our earlier working
paper, Bernheim, Ray, and Yeltekin (1999), bears witness to this assertion.) The credit
constraint at low asset levels infects individual behavior at all asset levels. In particu-
lar, they affect the structure of “worst personal punishments” in complex ways as assets
are scaled up. The example of Figure 1 illustrates this point quite dramatically: there
are asset levels at which the lowest level of continuation assets jumps up discontinu-
ously. As assets cross those thresholds, the worst punishment becomes less rather than
more severe, contrary to the intuition given above. This is shown in panel (B) of the
Figure, which plots equilibrium values. By a standard recursive argument, the lowest
equilibrium value serves as the worst punishment, but notice that the lowest value jumps
upwards; indeed, it does so at several asset levels.12 Thus, on further reflection, it is not
at all clear that the patterns exhibited in Figure 1 will emerge more generally.

Our main theoretical result demonstrates, nevertheless, that the central qualitative prop-
erties of Figure 1 are quite general. For intermediate degrees of time inconsistency such
that accumulation is feasible from some but not all asset levels, there is always an asset
level below which liquid wealth is exhausted in finite time (that is, there exists a poverty

12The jagged nature of the lowest value in panel (B) is not a numerical artifact; it reflects actual jumps.
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trap), as well as a level above which the most attractive equilibria give rise to unbounded
accumulation.

One might object to our practice of examining the entire set of subgame-perfect equi-
libria on the grounds that many such equilibria may be unreasonably complex. On the
contrary, we show that worst punishments have a surprisingly simple “stick-and-carrot”
structure:13 following any deviation from a personal rule, the individual consumes ag-
gressively for one period, and then returns to an equilibrium path that maximizes her
(equilibrium) payoff exclusive of the hyperbolic factor. Thus, all viable personal rules
can be sustained without resorting to complex forms of history-dependence.14

Our analysis has a number of provocative implications for economic behavior and public
policy. We highlight five. First (and most obviously), the relationship between assets and
self-control argues for the use of “pump-priming” interventions that encourage the poor
to start saving, and rely on self-control to sustain frugality at higher levels of assets.

Second, policies that improve access to credit (thereby relaxing liquidity constraints)
reduce the level of assets at which asset accumulation becomes feasible, thereby helping
more individuals to become savers. Intuitively, with greater access to credit, the conse-
quences of a break in discipline become more severe, and hence that discipline is easier
to sustain to begin with. But there is an important qualification: those who fail to make
the transition fall further into debt.

Third, our analysis suggests a particular pattern of demand for precommitment devices
(such as retirement accounts or fixed deposit schemes) as a function of wealth. In gen-
eral, considerations of flexibility dictate that full precommitment is neither possible nor
desirable. So people must rely to some extent on internal mechanisms for self-control,
while seeking some form of supplementary external commitment mechanism. But the
use of external commitments may undermine the efficacy of internal mechanisms by
rendering personal rules ineffective. That isn’t an issue when those personal rules are
ineffective to begin with, so there should be a high demand for external commitment

13Though there is a resemblance to the stick-and-carrot punishments in Abreu (1988), the formal structure
of the models and the arguments differ considerably. Most obviously, Abreu considered simultaneous-
move repeated games, rather than sequential-move dynamic games with state variables.
14Indeed, Markov equilibria in this model appear to be more “complex,” despite their “simple” depen-
dence on just the payoff-relevant state. They typically involve several jump discontinuities, and suitably
normalized payoffs are often nonmonotonic. Also, identifying Markov equilibria is more computationally
challenging than determining the key features of subgame-perfect equilibria.
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devices in such cases (e.g., by low-wealth individuals). But other individuals will avoid
the opportunity to lock up funds, even when they wish to save, because the lock-up
moderates the consequences of a lapse in discipline, thereby making self-control more
difficult to sustain. Presumably, these are individuals with assets already beyond the
viable threshold.

Fourth, our analysis has implications for the design of programs intended to stimulate
saving by providing access to special accounts (e.g., for retirement, education, home
purchase, or other purposes). Virtually all such programs entail commitments, but the
nature of those commitments differs considerably across programs. Based on our anal-
ysis, a particularly attractive design would require the individual to establish a target
and lock up all funds until the target is achieved, at which point the lock is removed
and all funds become liquid. Pilot programs with such features have indeed been tested
in developing countries.15 Notice how this argument follows by essentially applying the
preceding observation to different levels of assets as they are endogenously accumulated.

Finally, our analysis provides a potential explanation for the observation that the mar-
ginal propensity to consume differs across classes of resource claims. In particular, the
MPC from an unforeseen increase in permanent income may be relatively high because
that development erodes self-control. Accordingly, our theory provides a new perspec-
tive on the excess sensitivity of consumption to income.

As noted above, we build on our unpublished working paper (Bernheim, Ray, and Yel-
tekin (1999)), which made its points through simulations, but did not contain analytical
results. Our questions are related to those of Banerjee and Mullainathan (2010), who
also argue that self-control problems give rise to low asset traps. Though their objective
is similar, the analysis has little in common with ours. They examine a novel model
of time-inconsistent preferences, in which rates of discount differ from one good to an-
other. “Temptation goods” (those to which greater discount rates are applied) are inferior
by assumption; this assumed non-hometheticity of preferences automatically builds in a
tendency to dissave when resources are limited, and to save when resources are high.

It is certainly of interest to study poverty traps by hardwiring non-homothetic self-
control problems into the structure of preferences. Whether a poor person spends pro-
portionately more on temptation goods than a rich person (alcohol versus iPads, say)
then becomes an empirical matter. But we avoid such hardwiring entirely by studying
15See Ashraf, Karlan, and Yin (2006), as well as Karlan, McConnell, Mullainathan, and Zinman (2010).



9

homothetic preferences in an established model of time-inconsistency. The phenomena
we study are traceable to a single built-in feature: an imperfect credit market. Every
scale effect in our setting arises from the interplay between credit constraints and the
incentive compatibility constraints for personal rules. The resulting structure, in our
view, is compelling in that it requires no assumption concerning preferences that must
obviously await further empirical confirmation. In summary, though both theories of
poverty traps invoke self-control problems, they are essentially orthogonal (and hence
potentially complementary): Banerjee and Mullainathan’s analysis is driven by assumed
scaling effects in rewards, while ours is driven by scaling effects in punishments arising
from assumed credit market imperfections.16

The rest of the paper is organized as follows. Section 2 describes the model and defi-
nition of equilibrium. Section 3 introduces the set of equilibrium values and provides
a characterization of that set. Section 4 defines self control, and Section 5 studies the
relationship between self-control and the initial level of wealth. Section 6 describes
additional implications of the theory. Section 7 presents conclusions and some direc-
tions for future research. Proofs are collected in Section 8. An Appendix describes our
computational methods, as well as details for all numerical examples.

2. MODEL

2.1. Feasible Set and Preferences. The feasible set links current assets, current con-
sumption and future assets, starting from an initial asset level A0:

(1) ct = At − (At+1/α) ≥ 0,

and, in addition, imposes a lower bound on assets

(2) At ≥ B > 0.

Our leading interpretation of the lower bound B is that it is a credit constraint.17 For
instance, if Ft stands for financial wealth at date t and y for income at each date, then

16Our model is also related to Laibson (1994) and Benhabib and Bisin (2001), except for the all-important
difference of an imperfect credit market. These two papers consider history-dependent strategies in a fully
scalable model, in which both preferences are homothetic and there is no credit constraint. It follows, as
we observe below, that every equilibrium path can be suitably scaled to all levels of initial assets, so that
there is no relationship between poverty and self-control.
17Another interpretation of B is that it is an investment in some fixed illiquid asset. We return to this
interpretation when we discuss policy implications.
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At is the present value of financial and labor assets:

At = Ft +
αy

α− 1
.

If credit markets are perfect, the individual will have all of At at hand today, and B = 0.
We are not directly interested in this case (our analysis presumes B > 0) but it is easy
enough to analyze; see Laibson (1994). On the other hand, if she can borrow only some
fraction (1− λ) of lifetime income, then B = λαy/(α− 1).

Individuals have quasi-hyperbolic preferences: lifetime utility is given by

u(c0) + β

∞∑
t=1

δtu(ct),

where β ∈ (0, 1) and δ ∈ (0, 1). We assume that u has the constant-elasticity form

u(c) =
c1−σ

1− σ
for σ > 0, with the understanding that σ = 1 refers to the logarithmic case u(c) = ln c.

There is a good reason for the use of the constant-elasticity formulation. We wish our
problem to be entirely scale-neutral in the absence of the credit constraint, so as to
isolate fully the effect of that constraint. While we don’t formally analyze the case in
which B = 0, it is obvious that scale-neutrality is achieved there: any path with perfect
credit markets can be freely scaled up or down with no disturbance to its equilibrium
properties. Put another way, every scale effect in this paper will arise from the interplay
between credit constraints and the incentive compatibility constraints for personal rules.

2.2. Restrictions on the Model. The Ramsey program from A is the asset sequence
{At} that maximizes

∞∑
t=0

δt
c1−σt

1− σ
,

with initial stock A0 = A. It is constructed without reference to the hyperbolic factor β.
This program is well-defined provided utilities do not diverge, for which we assume that

(3) γ ≡ δ1/σα(1−σ)/σ < 1.

We presume throughout that the Ramsey program exhibits growth, which imposes

(4) δα > 1.
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Under (3) and (4), the value R(A) of the Ramsey program is finite, and

ct = (1− γ)At,

while assets grow exponentially:

At+1 = A0

(
δ1/σα1/σ

)t
= A0 (γα)t .

Note that when σ ≥ 1, utility is unbounded below and it is possible to sustain all sorts
of outcomes by taking recourse to punishments that either impose zero consumption
or a progressively more punitive sequence of vanishingly small consumption levels (see
Laibson (1994) for a discussion of this point). We find such punishments rather contrived
and unrealistic, and eliminate them by assuming that consumption is bounded below at
every asset level. More precisely, we assume that at every date,

(5) ct ≥ υAt,

where υ is to be thought of as a small but positive number. It is formally enough to
presume that υ < 1 − γ, so that Ramsey accumulation can occur unhindered, but the
reader is free to think of this bound as tiny. Notice that we take the lower bound on
consumption to be proportional to assets so as to avoid introducing an artificial scale
effect through this constraint.

2.3. Equilibrium. A choice of continuation assetA′ is feasible givenA, ifA′ ∈ [B,α(1−
υ)A]. A path is any sequence of assets with At+1 feasible given At; so (1), (2) and (5)
are satisfied. A history ht at date t is a “truncated path” of assets (A0, . . . , At) up to
date t. Write A(ht) = At for the asset level at the start of date t following history ht.
A policy φ specifies a continuation asset φ(ht) following every history, which must be
feasible given A(ht). If ht is a history and x a feasible asset choice, denote by ht.x the
subsequent history generated by this choice. A policy φ defines a value Vφ by

Vφ(ht) ≡
∞∑
s=t

δs−tu

(
A(hs)−

φ(hs)

α

)
,

where hs (for s > t) is recursively defined from ht by hs+1 = hs.φ(hs) for s ≥ t.
Similarly, φ also defines a payoff Pφ by

Pφ(ht) ≡ u

(
A(ht)−

φ(ht)

α

)
+ βδVφ(ht.φ(ht)),

for every history ht. Values exclude the hyperbolic factor β, while payoffs include them.



12

An equilibrium is a policy such that at every history ht and x feasible given A(ht),

(6) Pφ(ht) ≥ u
(
A(ht)−

x

α

)
+ δβVφ(ht.x).

That is, an equilibrium may be viewed as the assignment of a continuation value for
every choice of continuation asset (at any given history), where the actual continuation
asset at that history is taken to be the one that maximizes the right hand side of (6) over
all these specifications. For some of our observations, it will be useful to presume that
a convex set of equilibrium continuation values is available at every asset level. We
therefore suppose that following any asset choice, continuation values can be chosen (if
needed) using a public randomization device.18 Equivalently, an asset choice in period t
is followed by a lottery over continuation plans starting in period t+1. That implies an
obvious enlargement of the notion of a policy, the details of which we skip here.

3. EXISTENCE AND CHARACTERIZATION OF EQUILIBRIUM

For each A ≥ B, let V(A) be the set of all equilibrium values available at A. If V(A) is
nonempty, let H(A) and L(A) be its supremum and infimum values. It is obvious from
our assumed lower bound on consumption and from utility convergence (see (3)) that

−∞ < L(A) ≤ H(A) ≤ R(A) <∞,

where R(A) is the Ramsey value. Once (5) rules out unrealistic Ponzi-like cascades that
generate arbitrarily low utility, a tighter bound is available for worst values:

OBSERVATION 1. Suppose that V(A) is nonempty for every A ≥ B. Then

(7) L(A) ≥ u

(
A− B

α

)
+ δL(B) ≥ u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)

Notice how Observation 1 kicks in as long as we place any (small) lower bound on con-
sumption, as described in (5). It gives us an anchor to iterate a self-generation map, both
for analytical use and for equilibrium computation. To this end, consider a nonempty-
valued correspondenceW on [B,∞) such that for all A ≥ B,

(8) W(A) ⊆
[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)
, R(A)

]
.

18Here, “public” randomization simply means that, in each period, the individual observes the realization
of a random variable, and does not subsequently forget it.
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Say thatW supports the value w at asset level A if there is a feasible asset choice x and
V ∈ W(x) — a continuation {x, V } in short — with

(9) w = u
(
A− x

α

)
+ δV,

while for every feasible x′,

(10) u
(
A− x

α

)
+ βδV ≥ u

(
A− x′

α

)
+ βδV ′.

for some V ′ ∈ W(x′). That is, the value w at A can be created in an “incentive-
compatible way” by choosing continuation values fromW . Now say thatW generates
the correspondenceW ′ if for every A ≥ B,W ′(A) is the convex hull of all values sup-
ported at A byW . Notice how the use of the convex hull captures public randomization
(in the sense that an asset choice can yield a lottery over continuation values).

Given Observation 1 and the Ramsey upper bound on equilibrium values, standard ar-
guments tell us that the equilibrium correspondence V generates itself, and indeed, it
contains any other correspondence that does so.

Define a sequence of correspondences on [B,∞), {Vk}, by

V0(A) =

[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)
, R(A)

]
.

for every A ≥ B, and recursively, Vk generates Vk+1 for all k ≥ 0. It is obvious that the
graph of Vk contains the graph of Vk+1. We assert

PROPOSITION 1. An equilibrium exists from any initial asset level, so that the equilib-
rium correspondence V is nonempty-valued. Moreover, for every A ≥ B,

(11) V(A) =
∞⋂
k=0

Vk(A).

Also, V is convex-valued and has closed graph.

This proposition is useful in that it establishes existence of equilibrium, though the
method used may not apply more generally to all games with state variables.19 The “gen-
eration logic” of the proposition inspires algorithms for numerical calculations along
well-known lines, which we employ in all the exercises; see Appendix for details.20

19For more general existence theorems, see Goldman (1980) and Harris (1985).
20Incidentally note that the closed-graph property does not follow from a standard nested compact sets
argument, because the sets in question (the graphs of Vk) are not compact. It should also be noted that



14

V(A)

B

H(A)

L(A)

AA1 A2

FIGURE 2. EQUILIBRIUM VALUES.

Figure 2 illustrates equilibrium values. Imagine supporting the highest value H(A1) at
asset level A1. That might require the choice of A2 followed by the continuation value
H(A2). Any other choice would be followed by other continuation values designed to
discourage that choice, so that the inequality in (6) holds. The figure illustrates the “best”
way of doing this under the presumption that the equilibrium value set is compact-valued
and has closed graph: simply choose the worst continuation value L(x) if x 6= A2.

4. SELF CONTROL

Viewed in the spirit of Ainslie’s definition, the possibility of self-control via a sustainable
personal rule refers to a feature of some element of the equilibrium correspondence. One
might, for instance, say that self-control is possible if the Ramsey outcome itself is an
equilibrium. That definition would require, of course, that the agent entirely transcend
her hyperbolic urges. All other attempts, including accumulation at rates close to the
Ramsey path, must then be deemed a failure of self-control, which we find too strong.
We therefore employ a weak definition: there is self-control at asset level A if the agent
is capable of positive saving at A in some equilibrium.

To be sure, we might also be interested in whether the individual is capable of indefi-
nite accumulation. Say that there is strong self-control at A if the agent is capable of
unbounded accumulation — i.e., At →∞— along some equilibrium path from A.

public randomization is not needed to establish existence; the same argument would work without it,
except that V would not generally be convex-valued.
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Now we look at the flip side of self-control. Clearly, we must define the absence of self-
control as a situation in which accumulation isn’t possible under any equilibrium. But
that failure is compatible with several outcomes: the stationarity of assets, a downward
spiral of assets to a lower level that nevertheless exceeds the lower bound, or a progres-
sive downward slide all the way to the minimal level B. We say that self control fails at
A if every equilibrium continuation asset is strictly smaller than A, and more forcefully,
that there is a poverty trap at A if in every equilibrium, assets decline over time from A

to the lower bound B.

There is intermediate ground between strong self-control and a poverty trap: it is, in
principle, possible for an agent to be incapable of indefinite accumulation, while at the
same time she can avoid the poverty trap.

That said, there are situations in which self-control is possible at all asset levels. For
instance, if β is close to 1, there is (almost) no time-inconsistency and all equilibria
should exhibit accumulation, given our assumption that the Ramsey program involves
indefinite growth. Conversely, if the agent exhibits a high degree of hyperbolicity (β
small), there may be a failure of self-control no matter what asset level we consider.
Call a case uniform if there are no switches: either there is no failure of self control at
every asset level, or there is no self-control at every asset level.

A good example of uniformity is given by the case in which credit markets are perfect.
While we don’t study perfect credit markets in this paper, the observation is worth not-
ing: if continuation asset x can be sustained at asset level A, then continuation asset λx
can be sustained when the asset level is λA, for any λ > 0. In particular, if self-control
is possible at some asset level, it is possible at all levels. Indeed, we’ve deliberately
constructed the model in this fashion, so to understand better the scale effects created by
introducing imperfect credit markets.

Therefore, the nonuniform cases are of primary interest to us. In these cases, self-control
is possible at some asset level A, while there is a failure of self-control at some other
asset level A′. Whether A′ is larger or smaller than A, or indeed, whether there could be
several switches back and forth, are among the central issues that we wish to explore. It
should be added that while we do not have a full characterization of just when a case is
nonuniform, such cases exist in abundance (we confirm this by numerical analysis).
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We close this section with an intuitive yet nontrivial characterization of self control.
Consider the largest continuation asset: the highest value of equilibrium asset X(A)

sustainable at A. The closed-graph property of Proposition 1 guarantees that X(A) is
well-defined and usc, and a familiar single-crossing argument tells us that it is non-
decreasing. Note that X(A) isn’t necessarily the value-maximizing choice of asset; it
could well be higher than that. Yet X(A) is akin to a sufficient statistic that can be used
to characterize all the self-control concepts in this section.

PROPOSITION 2. (i) Self-control is possible at A if and only if X(A) > A.

(ii) Strong self-control is possible at A if and only if X(A′) > A′ for all A′ ≥ A.

(iii) There is a poverty trap at A if and only if X(A′) < A′ for all A′ ∈ (B,A].

(iv) There is uniformity if and only if X(A) ≥ A for all A ≥ B, or X(A) ≤ A for all
A ≥ B.

Parts (i) and (iv) are obvious, but parts (ii) and (iii), while intuitive, need a more extensive
argument. Part (iii) will follow from the additional observation that X is nondecreasing
and usc. Part (ii) will need more work to prove. Yet, if we take the proposition on
faith for now, it will help us in visualizing the proof of the main theorem. It is worth
mentioning that, under the conditions of part (ii), the value-maximizing equilibrium
involves unbounded accumulation. That is noteworthy because value-maximization may
be regarded as the most attractive from a long-run welfare perspective.21

5. INITIAL ASSETS AND SELF-CONTROL

It is obvious that if B > 0, then “scale-neutrality” fails. For instance, at asset level B,
it isn’t possible to decumulate assets (by assumption), while that may be an equilibrium
outcome at A > B. This rather simplistic failure of neutrality opens the door to all sorts
of more interesting failures. For instance, accumulation at some asset level A may be
sustained by the threat of decumulation in the event of non-compliance; such threats will
not be credible at asset levels close to B.

These internal checks and balances are not merely technical, but descriptive (we feel)
of individual ways of coping with commitment problems. One coping mechanism is

21See the “long-run” criterion for quasi-hyperbolic discounting in Bernheim and Rangel (2009).
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“external”: an individual might commit to a fixed deposit account if available, or even
accounts that force her to make regular savings deposits in addition to imposing restric-
tions on withdrawal. We will have more to say about such mechanisms below. But the
other coping mechanism is “internal”: an agent might react to an impetuous expenditure
on her part by engaging in a behavior shift; for instance, she might go on a temporary
consumption spree. In our theory, such a binge must be a valid continuation equilibrium.
The threat of a “credible binge” might then help to keep the agent in check.

With this “internal mechanism” in mind, let’s ask why an abundance of assets might help
an individual to exhibit self-control. The ability to exercise control must depend on the
severity of the consequences following an impetuous act of consumption. One simple
intuition is that those consequences are more severe when the individual has more assets,
and hence more to lose. But we know that such an argument can run either way.22

Indeed, in the context of our model, the “severity of punishment” isn’t monotonic in
assets. Recall Figure 1 in the Introduction, which makes this point. Panel (B) displays
highest and lowest value selections from the equilibrium correspondence. The lowest
selection is L(A). It jumps several times, showing that in general, punishment values
(even after deflating by higher asset values) cannot be monotonically decreasing in A.

The jump in L is related to the failure of lower hemicontinuity of the constraint set
in the implicit minimization problem that defines lowest values. That constraint set is
constructed from the graph of the equilibrium value correspondence, in which all con-
tinuation values must lie. As assets converge down to some limit, discontinuously lower
values may become available, and as the numerical example illustrates, this phenome-
non cannot be ruled out in general. We return to this point after we explain the simple
structure of worst punishments in this model.

5.1. Worst Punishments. We will show that worst punishments involve a single spell
of “excessive” expenditure, followed by a return to (approximately) the best possible
continuation value. To formally describe this property, define, for any A > B, H−(A)

by the left limit of H(An) as An ↑ A, with An < A for all n. This is a well-defined
concept because H is nondecreasing and therefore possesses limits from the left.

22For instance, in moral hazard problems with limited liability, a poor agent might face more serious
incentive problems than a rich one; see, e.g., Mookherjee (1997). On the other hand, the curvature of the
utility function will permit the inflicting of higher utility losses on poorer individuals, alleviating moral
hazard and conceivably permitting the poor to be better managers (Banerjee and Newman (1991)).
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PROPOSITION 3. The worst equilibrium value at any asset level A is implemented by
choosing the smallest possible continuation asset at A; call it Y . Moreover, if Y > B,
the associated continuation value V satisfies V ≥ H−(Y ).

The proof is simple and instructive enough to be included in the main text.

Proof. Let Y be the smallest equilibrium choice of continuation asset at A, with associ-
ated continuation value V . Then the following natural no-deviation constraint applies:

(12) u

(
A− Y

α

)
+ βδV ≥ D(A),

whereD(A) is the supremum of all “deviation payoffs,” in each of which every deviation
to an alternative asset choice is “punished” by the lowest equilibrium value available at
that asset.23 If (12) is slack, it is easy to show that Y must equal B and that V can be set
equal to L(B).24 That generates the lowest possible equilibrium value at A and there is
nothing left to prove; see the first inequality in Observation 1.

Otherwise (12) is binding for Y . In this case,

(13) u

(
A− Y

α

)
+ βδV = D(A) ≤ u

(
A− A′

α

)
+ βδV ′.

for any other equilibrium continuation {A′, V ′} at A. Because A′ ≥ Y by definition,
(13) shows that V ′ ≥ V . It follows that

(14) u

(
A− Y

α

)
+ δV ≤ u

(
A− A′

α

)
+ δV ′,

so that once again, {Y, V } implements minimum value at A.

To complete the proof, suppose that Y > B while at the same time, V < H−(Y ).
Then it is obviously possible to reduce Y slightly while increasing continuation value
at the same time.25 Moreover, the new continuation has higher payoff, so it must be
supportable as an equilibrium. Yet it has a lower continuation asset, which contradicts
the definition of Y .

23The function D(A) is formally defined in Section 8, where we deal with various technicalities arising
from lack of the continuity in the value correspondence; see equation (20). Note that Lemma 3 following
that equation establishes (12).
24For details, see Footnote 51 in Section 8.
25Because V < H−(Y ), there exists Y ′ < Y and V ′ ∈ V(Y ) such that V ′ > H−(Y ).
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The heart of the argument is (14). If two continuations have the same payoff, the one
that exhibits the larger upfront consumption must have the lower value. Payoffs include
the factor β, which devalues future consumption. When β is “removed,” as it is in the
computation of value, the continuation with higher consumption today has lower value.
That is why worst punishments exhibit a large binge to begin with; in fact, the largest
possible credible binge. The binge is then followed by a reversion to the best possible
equilibrium value — or approximately so, in a sense made precise in the proposition.26

Two more remarks are worth noting about lowest values, or optimal punishments. First,
the associated actions have an extremely simple and plausible structure. No unrealis-
tically complex rules are followed that might justify a restriction to “simpler” notions,
such as Markov punishments. An individual doesn’t fall of the wagon forever, but there
is still retribution for a deviation: a binge is followed by a further binge, the fear of
which acts as a deterrent. After that, the individual is back on the wagon. Second, there
is a sense in which these punishments are reasonably immune to renegotiation. While
the earlier, deviating self fears the low-value path, the self that inflicts the punishment
is actually treated rather well: he gets to enjoy a free binge, followed by the promise of
self-control being exercised in the future.

Finally, while optimal punishments are reminiscent of the carrot-and-stick property for
optimal penal codes in repeated games (Abreu (1988)), there is no reason why that
property should hold, in general, for games with state variables, of which our model is
an example. In this model, the particular structure arises from the hyperbolic factor β.
That parameter dictates that the most effective punishments are achieved by as much
excess consumption “as possible” in the very first period of the punishment. From the
point of view of the deviator, that first period lies in his future, and as such it is a bad
prospect (hence an effective punishment). From the point of view of the punisher, the
punishment might actually yield pleasing equilibrium payoffs. That is, the carrot-and-
stick feature is very much in the eyes of the deviator, and not in the eye of the punisher,
a distinction that is often not present in repeated games.

5.2. The Relationship Between Wealth and Self-Control. The argument used to es-
tablish Proposition 3 is also informative on the issue of “jumps” in worst punishments.

26We note again that reversion to the best continuation value occurs, provided that the asset level post-
binge is strictly higher than B, and provided that the best value selection is continuous at that asset level.
Otherwise the return is not necessarily to the best equilibrium continuation: recall the definition of H−.
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Suppose that the continuation {Y, V } supports the lowest value atA. Let d be a “best de-
viation” choice of asset at A; namely, a choice of asset that attains the highest deviation
payoff D(A). To make our point, suppose that the no-deviation constraint is binding for
the continuation {Y, V }, as it typically will be. Then

(15) u

(
A− Y

α

)
+ βδV = u

(
A− d

α

)
+ βδL(d),

and the path associated with the initial choice of d is therefore also an equilibrium path.
Recall from Proposition 3 that Y is the lowest possible choice of continuation asset at
A. That proves that d ≥ Y . For if d were smaller, then by the same argument employed
in Section 5.1, the equilibrium value associated with d would be even smaller than that
associated with {Y, V }, a contradiction.

So d is no smaller than Y , and in general will strictly exceed Y . It is precisely then
that jumps can occur. To see this, increase A. Because d > Y , the strict concavity of
utility forces the right hand side of the no-deviation constraint (15) to go up faster than
the left hand side. To maintain that constraint, Y and V will need to change. But —
depending on the shape of the equilibrium value correspondence — no local adjustment
might suffice: the change may well have to be discrete. That will lead to an upward
jump in L.27 Numerical analysis tells us that such a scenario is chronic.

The possibility that worst equilibrium values can abruptly rise with wealth leads to the
nihilistic suspicion that there is no general connection between wealth and self-control.
Nevertheless, not one of the numerical examples that we have studied bears out this
suspicion. Bernheim, Ray and Yeltekin (1999) find through simulations that either we
are in one of the two uniform cases (accumulation possible everywhere, or accumula-
tion impossible anywhere), or the situation looks like Figure 1. Initially, there is asset
decumulation in every equilibrium, followed by the crossing of a threshold at which
indefinite accumulation becomes possible. The non-uniform cases invariably display a
failure of self-control to begin with (at low asset levels), followed by the emergence and
maintenance of self-control after a certain asset threshold has been crossed.

The main proposition of this paper supports the numerical analysis:

PROPOSITION 4. In any non-uniform case:

27More generally, the constraint set is not continuous in A, leading to a failure of the well-known “maxi-
mum theorem.”
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(i) There is A1 > B such that every A ∈ [B,A1) exhibits a poverty trap.

(ii) There is A2 ≥ A1 such that every A ≥ A2 exhibits strong self-control.

The proposition states that in any situation where imperfect credit markets are sufficient
to disrupt uniformity, the lack of scale neutrality manifests itself in a particular way.
At low enough wealth levels, individuals are unable to exert self-control through any
sustainable personal rule, and they must deplete all their wealth. Yet at high enough
wealth levels, indefinite accumulation is possible. There is, of course, no reason a pri-
ori why this must be the case. It is possible, for instance, that there is a maximal asset
level beyond which accumulation ceases altogether, or that there are (infinitely) repeated
intervals along which accumulation and decumulation occur alternately. But the propo-
sition rules out these possibilities.

Notice that the proposition fails to establish the existence of a unique asset threshold
beyond which there is self-control, and below which there isn’t. A demonstration of this
stronger result is hindered in part by the possibility that worst punishments can move
in unexpected ways with the value of initial assets. In fact, a “single crossing” of the
highest asset choice X(A) over the 450 line may not be guaranteed, at least under the
assumptions that we have made so far.28 From this perspective, the fact that after a
finite threshold all such crossings must cease — which is part of the assertion in the
proposition — appears surprising, and the remainder of this section is devoted to an
informal exposition of the proof.

5.3. An Informal Exposition of the Main Proposition. As we’ve mentioned, imper-
fect credit markets destroy scale-neutrality in our theory. (The constant elasticity of pref-
erences assures us that otherwise, the model would be fully scale-neutral.) Yet variations
of scale-neutrality survive. One variation that is particularly germane to our argument is
given in Observation 2 below. To state it, define an asset level S ≥ B to be sustainable
if there exists an equilibrium that permits indefinite maintenance of S. It is important to
appreciate that a sustainable asset level need not permit strict accumulation, and more
subtly, an asset level that permits strict accumulation need not be sustainable.29

28We have neither been able to rule out multiple crossings nor to find a numerical example with multiple
crossings.
29The continuation values created by continued accumulation might incentivize accumulation from A,
while a stationary path may not create enough incentives for self-sustenance.
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OBSERVATION 2. Let S > B be a sustainable asset level. Define µ ≡ S/B > 1.
Then for any initial asset level A ≥ B, if continuation asset A′ can be supported as an
equilibrium choice, so can the continuation asset µA′ starting from µA.

To understand this result, first think of S as a new lower bound on assets. Then the
constant elasticity of utility together with linearity in the rate of return to assets together
guarantee that any equilibrium action (following any history) under the old lower bound
B can be simply scaled up using the ratio of S to B, which is µ. That is, if we replaced
the word “sustainable” by the phrase “physical minimum,” then the Observation would
be trivial. However, S is not a physical minimum. Deviations to asset levels below S

are available, and there is no version of such a deviation in the earlier equilibrium that
can be rescaled (deviations below B are not allowed, after all). Nevertheless, the proof
of Observation 2 (see the formal statement and proof as Lemma 8 in Section 8) shows
that given the concavity of the utility function, such deviations can be suitably deterred.
Thus, while S isn’t a physical lower bound, it permits us to carry out the same scaling
we would achieve if it were.

Let’s use Observation 2 to see why the first part of the proposition is true:

(i) There is A1 > B such that every A ∈ [B,A1) exhibits a poverty trap.

Recall thatX(A) is the largest continuation asset in the class of all equilibrium outcomes
at A. By Proposition 2, we will need to show that there is an asset level A1 > B such
that X(A) < A for all A ∈ (B,A1). Suppose, now, that the proposition is false; then —
relegating the impossibility of ever-more-rapid wiggling of X(A) back and forth across
the 450 line (as A ↓ B) to the more formal arguments — there is M > B such that
X(A) ≥ A for all A ∈ [B,M ]. Figure 3 illustrates this scenario.

Because we are in a non-uniform case, there is A∗ at which self-control fails, so by
Proposition 2, X(A∗) < A∗. Let S be the supremum value of assets over [B,A∗] for
which A ∈ [B, S] implies X(A) ≥ A. Note that at S, it must be the case that X(S)

equals S.30 BecauseX(S) = S, S is sustainable, though this needs a formal argument.31

30It can’t be strictly lower, for then X would be jumping down at S, and it can’t be strictly higher for then
we could find still higher asset levels for which X(A) ≥ A.
31After all, it isn’t a priori obvious that “stitching together” theX(A)s starting from any asset level forms
an equilibrium path. When X(A) = A, it does.



23

AB SM µA1

X(A)

A1

450

FIGURE 3. ESTABLISHING THE EXISTENCE OF A POVERTY TRAP.

Now Observation 2 implies that X(A) must exceed A just to the right of S: just scale
up X(A1) (for some A1 close to B) to µX(A1) at µA1, where µ ≡ S/B. But that is a
contradiction to the way we’ve defined S, and shows that our initial presumption is false.
Therefore X(A) < A for every A close enough to B. That establishes the existence of
an initial range of assets for which a poverty trap is present, and so proves (i).

Next, we explain:

(ii) There is A2 ≥ A1 such that every A ≥ A2 exhibits strong self-control.

By nonuniformity, there is certainly some value of A for which X(A) > A. If the same
inequality continues to hold for allA′ > A, then by Proposition 2 (ii), strong self-control
is established, not just at A but at every asset level beyond it. So the case that we need
to worry about is one in which X(A′) ≤ A′ for some asset level still higher than A.
See Figure 4. Following panel (A) of that figure, begin with a first zone over which
X(A) > A, and then let S∗ be the first asset level thereafter for which X(A) = A. As
in the exposition for part (i), S∗ is sustainable.

By Observation 2, the function X(A) on [B, S∗] can be scaled and replicated as an
equilibrium choice over [S∗, S1], where S1 bears the same ratio to S∗ as S∗ does to B.32

32The actual proof turns considerably more complex at this point. Section 8 makes the complete argument.
Briefly, the domain of interest is not exactly [S∗, S1], but an interval of the form [S∗∗, S1], where S∗∗ might
coincide with S∗ but generally will not. (We proceed here on the assumption that S∗∗ does coincide with
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FIGURE 4. THRESHOLD FOR STRONG SELF-CONTROL.

Figure 4 shows these choices as the dotted line with domain [S∗, S1]. Because there is
a poverty trap near B, the line lies below the 450 line to the right of B and to the right
of S∗. However — and this is at the heart of the argument to be made below — that line
does not coincide with X(A) on [S∗, S1].

To see this, consider one feature near S∗ that cannot be replicated near B. Just to the
right of S∗, one can implement even smaller continuation assets by dipping into the zone
to the left of S∗, and then accumulating upwards along X(A) back towards S∗. Because
these choices — shown by the solid line to the right of S∗ in Figure 4 — favor current
consumption over the future, they generate even lower equilibrium values, but they earn
high enough payoffs so that they can be successfully implemented as equilibria. These
lower values do a better job of forestalling deviations at even higher asset levels, and in
this way greater punishment ability percolates upward from S*. In particular, for asset
levels close to S1, the incentive constraints are relaxed and larger values of continuation
assets (see the solid line segment in this region) are implementable. In particular, while
S1 is a sustainable asset level, it also permits accumulation: X(S1) > S1.

This argument creates a zone (possibly a small interval, but an interval nonetheless)
just above S1, call it (S1, S2), over which (a) X(A) > A, and (b) both S1 and S2 are
sustainable. Part (a) follows from the fact that X(S1) > S1 and that X is nondecreasing.

S∗.) There are several associated complications, and the interested reader is referred to Section 8 not just
for the formalities, but also for further intuitive discussion.
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Part (b) follows from the fact that assets just to the right of S1 were at least “almost
sustainable” by virtue of the scaling argument of Observation 2, but are actually fully
sustainable, given the additional punishment power that has percolated upward from S∗.

Panel B of Figure 4 now focusses on this zone and its implications. The following
variation on Observation 2, stated and proved formally as Lemma 16 in Section 8, forms
our central argument:

OBSERVATION 3. Suppose that S1 and S2 are both sustainable, and that X(A) > A for
all A ∈ (S1, S2). Then there exists Â such that X(A) > A for all A > Â.

The proof of the observation is illustrated in the second panel of Figure 4. Define µi = Si
B

for i = 1, 2. Then for all positive integers k larger than some threshold K, the intervals
(µk1S1, µ

k
2S2) and (µk+1

1 S1, µ
k+1
2 S2) must overlap. It is easy to see why: µk2S2 is just

µk+1
2 B while µk+1

1 S1 is µk+2
1 B, and for large k it must be that µk+1

2 exceeds µk+1
1 .

Once this is settled, we can generate any asset level A > µK1 S1 by simply choosing an
integer k ≥ K, an integer m between 0 and k, and A′ ∈ (S1, S2) so that

A = µm1 µ
k−m
2 A′.

But X(A′) > A′, so that repeated application of Observation 2 proves that X(A) > A.
That proves Observation 3.

But now the proof of the theorem is complete: by part (ii) of Proposition 2, ifX(A) > A

for all A sufficiently large, the required threshold A2 must exist.

6. SOME ADDITIONAL IMPLICATIONS OF THE THEORY

In this section, we explore the broader implications of our analysis for behavior and
policy (aside from the value of ”priming the pump” for those caught in the poverty trap).
We touch on four topics: first, the effect on saving of easier access to credit; second,
the demand for external commitment devices; third, the design of accounts to promote
saving; and fourth, the observed variation in marginal propensities to consume from
wealth across classes of resource claims.

6.1. The Effects of Easier Access to Credit. It has been widely conjectured that the
decline in saving rates among U.S. households during the latter part of 20th century
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was at least in part attributable to institutional developments that provided progressively
easier access to credit.33 Conventional theory would indeed suggest that more abundant
(and cheaper) credit could be expected to reduce aggregate saving. However, in the
context of our model, the effects of relaxing credit constraints are more nuanced.

The central theme in this paper is that there is a systematic link between credit limits
and the ability to exercise self-control. When an individual’s net worth is near the small-
est level consistent with credit constraints, he has little scope for disciplining himself
through personal rules that “punish” profligacy with decumulation. In contrast, when
the same individual has sufficient wealth, it may become feasible for him to adopt and
adhere to personal rules that support sustained accumulation.

Within the context of our model, comparative statics with respect to the level of the
borrowing constraint (B) are straightforward. Although a fixed borrowing constraint
destroys scale neutrality, the model remains scale-neutral in the sense that the ratio of
assets A to the constraint B fully determines an individual’s ability to exercise self-
control. Indeed, we can restate all our observations in terms of this ratio. In particular,
Proposition 4 can be interpreted as showing that there are two values, µ′ and µ′′, with
1 < µ′ ≤ µ′′ <∞, such that a poverty trap exists whenever A/B < µ′, while unlimited
accumulation is possible whenever A/B > µ′′.

It follows that the effect on saving of relaxing the credit limit depends on the level of
initial assets, A, and is thus ambiguous. The direct effect of such a relaxation is to
reduce B, e.g., from B1 to B2 < B1, thereby increasing the ratio A/B for each and
every individual. That change may allow an individual to escape the poverty trap (i.e.,
if A/B1 < µ′ < A/B2), and may even enable him to accumulate assets indefinitely
(i.e., if in addition A/B2 > µ′′). However, there is also a downside to easy credit: those
whose assets remain below µ′B2 will slide into an even deeper poverty trap. In any given
context, either the first effect or the second may be more prevalent. Notably, Karlan and
Zinman (2011) report the results of a field experiment showing that expanded access to
costly consumer credit in South Africa on average improved economic self-sufficiency,
intra-household control, community status, and overall optimism.

33See, e.g., Bacchetta and Gerlach (1997), Ludvigson (1999), Parker (2000) and Glick and Lansing
(2011).
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6.2. The Demand for Commitment Devices. Over the last few decades, time incon-
sistency has emerged as a central theme in behavioral economics. Yet any consumer
sufficiently self-aware to notice her time-inconsistent tendencies should exhibit a de-
mand for precommitment technologies. At a minimum, consumers should acquire such
self-awareness with respect to frequently repeated activities for which they consistently
fail to follow through on prior intentions. As noted in Section 1, a demand for pre-
commitment has indeed been documented for poor households in developing countries.
However, there is surprisingly little evidence that this demand is more widespread,34 and
so nagging doubts about the importance of time inconsistency persist. Skeptics wonder
why, if time inconsistency is so prevalent, the market provides few commitment devices,
and why unambiguous examples in the field are so difficult to find.

Our analysis provides a potential resolution to this puzzle. Because full-precommitment
is neither possible nor desirable (due to the value of flexibility), people must rely to
some extent on internal mechanisms for self-control. Significantly, the use of external
commitments may undermine the efficacy of those internal mechanisms by rendering
effective personal rules infeasible. As an illustration, consider an external commitment
that “locks up” assets in an illiquid savings account. The direct effect of that commit-
ment is to increase B, the lower bound on net worth, say from B1 to B2 > B1. The
impact on saving is then the same as for a tightening of the credit constraint. In par-
ticular, defining µ′ and µ′′ as above, for an individual with A/B1 > µ′′ > A/B2 the
external commitment could impair internal self-control to the point where indefinite ac-
cumulation becomes impossible. If in addition µ′ > A/B2, the failure of self-control is
so severe that the individual is trapped into depleting assets except those made illiquid
via the external commitment mechanism. Accordingly, such individuals have powerful
reasons to avoid (partial) external commitments.

In our model, the individuals who value external commitments are those who are asset-
poor relative to their credit limits. The asset-rich would rather save on their own. By
the same reasoning, if we assume that B is a constant fraction of permanent income,
the income-rich would exhibit a desire for external commitment, while the income-poor

34Studies documenting a demand for precommitment in developed countries are scarce. Exceptions in-
clude Ariely and Wertenbroch (2002) on homework assignments, Beshears, Choi, Laibson, and Madrian
(2011) on commitment savings devices in the U.S., and Houser et al. (2010) for a laboratory experiment
in which subjects gain relevant experience. Gine, Karlan, and Zinman (2010) write that “there is little
field evidence on the demand for or effectiveness of such commitment devices.” For recent surveys, see
Bryan et al. (2010) and DellaVigna (2009).
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would prefer to rely on internal mechanisms. To be sure, the income-rich may also
be asset-rich, so that the net effect is ambiguous. Nevertheless, the theory informs an
empirical specification which is, in principle, testable.

6.3. Designing Accounts to Promote Saving. Policy makers often try to encourage
saving by establishing special accounts for specific purposes, such as retirement, edu-
cation, medical expenses, or the purchase of a home. Virtually all such accounts en-
tail commitments, but the nature of those commitments differs considerably across pro-
grams. As an example, consider retirement savings programs. In almost all cases, funds
are to some degree “locked up” until retirement, but the degree of lock-up varies. For
public pension programs (e.g., social security) and many private plans (especially of the
defined benefit variety), lock-up is absolute. For IRAs it is enforced by a moderate early
withdrawal penalty of 10%. For 401(k)s and 403(b)s, the same 10% penalty applies, but
employers can also impose additional restrictions and, as an example, often limit such
withdrawals to funds contributed by the employee. After retirement, the lock-up contin-
ues in a modified form for public pension programs and many private plans: income is
paid out at a specified rate, or investment in annuities is mandated. In contrast, IRAs and
many other private plans effectively unlock the funds at retirement, making them com-
pletely liquid. In addition, participants in retirement savings programs often precommit
to contributions. For social security and many private plans, contributions are inflexible.
For 401(k)s and 403(b)s, they are adjustable, but only with a significant lag (e.g., a pay
period). Only IRA contributions are fully flexible.

Our analysis potentially sheds light on the ways in which savings are affected by the
commitment features of special savings accounts. Caution is warranted, inasmuch as
the model lacks a retirement period, and therefore maps imperfectly to a realistic life-
cycle planning problem. Still, one can interpret it as providing a stylized representation
of saving decisions during the accumulation phase of the life cycle.

Following the logic of Section 6.2, it would appear that lock-in has both an upside and
a downside. The upside is that it can compensate for the absence of self-control when
assets are low; the downside is that it can undermine internal self-control mechanisms
when assets are high. Because these effects materialize at different asset levels, it is in
principle possible to design programs that capitalize on the upside while avoiding the
downside. Intuitively, it would seem that a policy could accomplish that dual objective
by requiring the individual to lock up all funds until some asset target is achieved, at
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which point the lock is removed (irreversibly) and all funds become liquid. Because the
poverty trap threshold presumably varies from person to person, each individual would
ideally be allowed to select his or her own threshold. Pilot programs with such features
have indeed been tested in developing countries.35

Formalizing the preceding intuition is less straightforward than one might think. Within
the context of our simple model, lock-up would prevent people with low assets from
decumulating, but it would not necessarily enable them to employ personal rules that
support contributions to the account in the first place, particularly inasmuch as lock-
up tends to moderate punishments. Furthermore, there is an obviously superior policy
alternative: if we simply allow participants to select (and commit to) their contributions
one period in advance, the Ramsey outcome will be achievable from all asset levels.

Despite these issues, our intuition concerning account design is borne out in a slightly
more elaborate model that incorporates preference shocks (e.g., reflecting transient needs
associated with illnesses requiring costly medical care). In such cases, an exclusive re-
liance on external commitment is unwarranted and our intuitive statements come more
fully into play. Suppose in particular that flow utility is given by

u(c, η) = η
c1−σ

1− σ
,

where η is an iid random variable realized at the outset of each period. In such settings,
committing to contributions one period in advance sacrifices the individual’s ability to
condition consumption on the realization of η, and consequently does not automatically
deliver the generalized Ramsey solution. Moreover, if the distribution of η encompasses
sufficiently low values, the individual will contribute to a lock-up account in some states
of nature even when assets are low.

Due to the complexity of the extended model, we analyze it computationally rather than
analytically. For details, see the Appendix.36 Numerical solutions generally confirm
our intuition. Figures 5 and 6 depict results for an illustrative case. Figure 5, panel
(A), shows the highest achievable equilibrium value as a function of initial assets for
two policy regimes: in the first, only a standard savings account is available; in the
second, the individual has access to a lock-up account that unlocks once an appropriately
35See Ashraf, Karlan, and Yin (2006), as well as Karlan, McConnell, Mullainathan, and Zinman (2010).
36For the parameters, we take A = 1.3, σ = 0.5, δ = 0.8, and β = 0.4. The taste shock η takes two
values, 0.8 (with probability 0.3) and 1.1 (with probability 0.7). The horizontal axis starts atB = 0.5, and
υ is taken to be a tiny number.
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FIGURE 5. EQUILIBRIUM VALUES: LOCKBOX WITH UNLOCKING.

chosen threshold is reached. The “standard model” exhibits a jump in highest value once
an individual can effectively save on her own. We’ve chosen the exogenous lockbox
threshold (shown by AT ) so that it is slightly higher than the jump point: anything
lower, and the agent will slide back into the poverty trap once the account is unlocked.

At “low” asset levels below the jump point, the individual fares better under the regime
with the lock-up account than the one with the standard account. For asset values that
exceed the lockbox threshold, there is effectively no lockbox any longer and the two
curves must obviously coincide. The figure also shows the value function for the gener-
alized Ramsey solution. Notice that the lock-up regime allows the individual to achieve
outcomes close to that theoretical maximum. In our example, it doesn’t quite reach
that limit, and panel (B) of Figure 5, which amplifies the value functions around the
threshold, shows this clearly.

Observe that once the jump point is crossed, the individual can save on her own. Hav-
ing a threshold that strictly exceeds the jump point creates an interval over which the
continuing lock-up may undermine the effectiveness of personal rules, thereby inflicting
losses on the individual. Thus, both the lock-up and its subsequent release are important.
Figure 6 replicates the highest equilibrium value function for the lock-up policy regime,
and adds two new lines, representing the highest value attainable under two alternative
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FIGURE 6. ALTERNATIVE LOCKBOX REGIMES.

regimes. For the first of these, we eliminate the threshold: principal in the special ac-
count remains locked up forever, but the individual can always withdraw current interest.
For the second regime, we assume as before that contributions to the lock-up account
stop once the threshold is reached (with subsequent saving placed into conventional ac-
counts), but the principal remains locked up forever.

Comparisons with these regimes illustrate the value of both the threshold and the un-
locking feature. Values from the first regime are depicted by the dot-dash line in Figure
6; one might view this as the equilibrium values generated by a huge threshold. The
figure shows that this regime reduces equilibrium value relative to the “lockbox with
unlock” policy of Figure 5 (and panel (B) amplifies the area around the jump point for
clarity). A lockbox is needed, but it must be dismantled as well, so as to permit personal
rules to come into play.

The second regime illustrates the importance of fully unlocking the lockbox. Here, the
individual does have access to conventional savings devices after the threshold, but the
principal in the lockbox remains locked. It turns out that the half-step towards unlocking
could be even worse (over a subdomain of A) than not unlocking at all; this is shown by
the lower dotted line in Figure 6. Briefly, the failure to free the principal is equivalent
to a scaling-up of B to the threshold AT , which creates a new “poverty trap” (relative
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to the scaled-up B, that is). In short, given the half-measure, our exercise shows that it
might be better to keep the lockbox active, and not have a threshold to begin with.37

A full analysis of lockbox regimes, with and without unlocking, is beyond the scope of
the present paper. But it is hoped that this preliminary analysis will provide a different
perspective on the design of such accounts in the presence of hyperbolic agents.

6.4. Asset-Specific Marginal Propensities to Consume. A final implication is that the
model naturally generates different marginal propensities to consume across classes of
resource claims (e.g., between income flows and liquid assets). This phenomenon is
documented in Hatsopoulos, Krugman and Poterba (1989), Thaler (1990) and Laibson
(1997), though admittedly the empirical evidence for it may be somewhat debatable. To
understand the implication, recall from Section 2.1 that we may interpret B, the lower
bound on assets, as some function of permanent income, presumably one that is related
to the fraction of future labor income that lenders can seize in the event of a default. In
other words, if Ft stands for financial assets at date t and y for income at every date, then
At is the present value of financial and labor assets:

At = Ft +
α

α− 1
y

while
B = λ

α

α− 1
y

for some λ ∈ (0, 1). With this in mind, consider an increase in current financial assets
Ft. ThenB is unchanged, so thatAt/B must rise. Our proposition suggests that this will
enhance self-control, so that accumulation is possible in a situation where previously it
was not. In that case, the marginal propensity to consume out of an unforeseen change
in financial assets could be quite low.

In contrast, consider an equivalent jump in y, so thatAt rises by the same amount. Under
our specification, B/y is constant so that A/B must fall. According to the ratio inter-
pretation of Proposition 4, self-control is damaged: therefore, the marginal propensity to
consume from an unforeseen change in permanent income will be high. Indeed, as long
as B is an increasing function of permanent income (even if it is more complex), there
will be a tendency to observe a higher marginal propensity to consume from permanent

37That isn’t to say that the half-step is invariably worse than the “fully locked” policy; indeed, that isn’t
the case even in this example.
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income than from liquid assets. Accordingly, our theory provides a new perspective on
the “excess sensitivity” of consumption to income.

7. CONCLUSION

It is evident that if individuals fundamentally differ in their capacities for exercising
self-control in intertemporal choices, then the more impulsive of them are likely to end
up with poorer asset positions. There is little we have to say about a worldview of
poverty that is anchored on the premise of intrinsic differences. What we emphasize,
in contrast, is a notion of poverty that feeds back to the capacity for self-control. One
way to describe this view is that all individuals have the same mapping that runs from
their economic position to their behavioral proclivities (in this case, their ability to ex-
ercise self-control). The shape of that mapping will determine whether initial poverty
(or wealth) subsequently eliminates or amplifies those initial states. In line with a recent
and growing literature that emphasizes hysteresis in a variety of settings, we find that
poverty damages self-control, while wealth can sustain it. This leads to a new and com-
plementary notion of history-dependence that is rich both in description as well as in its
implications for policy.

Specifically, we study a standard model of intertemporal allocation. Agents have quasi-
hyperbolic preferences and therefore exhibit present bias (or “impulsiveness”). They
seek to control such biases using a system of personal rules (Ainslie 1975, 1992), which
we interpret here as history-dependent equilibrium strategies in an intrapersonal dy-
namic game. Our model is deliberately set up for scale neutrality: the returns to invest-
ment are linear, and preferences exhibit constant elasticity. The one feature that breaks
this neutrality is an imperfect capital market, modeled as the existence of a strictly lower
bound on assets. Our main result is that scale neutrality is broken in favor of the rich
and against the poor: there is an asset threshold above which unbounded accumulation
is possible, whereas there is a threshold below which the individual must spiral into
poverty trap.

Our analysis fits into a large ambient literature on poverty traps, behavioral and other-
wise, to which we have referred at various points in this paper. But our particular focus
on the links between poverty and self-control deserves further attention along a number
of different avenues. Most specifically, our main theorem leaves open the possibility
that between the thresholds that define a poverty trap and unbounded accumulation,
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there may be an intermediate zone which displays neither the inevitability of a poverty
trap nor the ability to accumulate in a sustained fashion. Whether that zone is empty or
not is an open question which would be important to settle.

Next, while our analysis points to some intriguing relationships between external com-
mitment devices (such as fixed deposit or lockbox retirement accounts) and the efficacy
of personal rules, a systematic analytical study of these relationships remains beyond
the scope of the present paper. In particular, it would be interesting to study the decision
to adopt external commitments for saving, and determine the asset and income levels at
which the demand for such devices is maximal.

Finally, and at the broadest level, this paper is a contribution to the behavioral economics
of poverty, a subject on which there has been recent empirical focus but little theoretical
work. Self-control is one of several behavioral features; others include internally and so-
cially generated aspirations, the reliance on role models, decisions to acquire systematic
knowledge about the rate of return from investments in health and education, and infor-
mational and psychological distortions that are caused more generally by conditions of
poverty. Which of these features amplify initial conditions, and which work to nullify
those conditions and create convergence? A taxonomy of behavioral economics along
these lines would be of immense significance.
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8. PROOFS

LEMMA 1. For any equilibrium continuation {x, V } at A,

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
αβ

u′
(
A− B

α

)
(x−B)

≥
[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)]
+

1− β
αβ

u′
(
A− B

α

)
(x−B).

Proof. The payoff associated with {x, V } is (1− β)u
(
A− x

α

)
+ βV , so

(1− β)u
(
A− x

α

)
+ βV ≥ u

(
A− B

α

)
+ βδL(B),

because (x, V ) is an equilibrium. With u concave, it follows that

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
β

[
u

(
A− B

α

)
− u

(
A− x

α

)]
≥

[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
αβ

u′
(
A− B

α

)
(x−B).(16)

By (5) and At ≥ B at any date t, we have u(ct) ≥ u(υB) for any ct at date t, so that
L(A) ≥ (1 − δ)−1u(υB) > −∞. Now, by applying (16) to A = B and V = L(B), or
(if needed) a sequence of equilibrium values in V(B) that converge down to L(B),

(17) L(B) ≥ u

(
B − B

α

)
+ δL(B).

Combining (16) and (17), the proof is complete.

Proof of Observation 1. This is an immediate consequence of Lemma 1.

Proof of Proposition 1. Claim: if W is nonempty, has closed graph, and satisfies (8),
then it generatesW ′ with the same properties (plus convex-valuedness). We first prove
thatW ′ is nonempty-valued. Consider the functionHW on [B,∞) defined byHW(A) ≡
maxW(A) for all A ≥ B. It is easy to see that HW is usc. It follows that the problem
maxx∈[0,α(1−υ)A] u (A− x/α) + βδHW(x) is well-defined and admits a (possibly non-
unique) solution for every A ≥ B. Let x(A) denote some solution at A, and define

w ≡ u

(
A− x(A)

α

)
+ δHW(x(A)).
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Clearly, w is supported at A byW . (9) is satisfied: pick x = x(A) and V = HW(x(A)).
And (10) is satisfied: for each alternative x′, take V ′ to be any element ofW(x′).

Claim: W ′ has closed graph. Take any sequence {An, wn} such that (i) wn is supported
atAn byW for all n, and (ii) (An, wn)→ (A,w) (finite) as n→∞; then w is supported
at A by W . To see this, note that for each n, there is xn feasible for An and value
Vn ∈ W(xn) such that (9) and (10) are satisfied. Obviously {xn, Vn} is a bounded
sequence; pick any limit point (x, V ). Then x is certainly a feasible asset choice at A,
and V ∈ W(x) (because W has closed graph by assumption). Using the continuation
(x, V ) at A, it is immediate that (9) is satisfied for w. To prove (10), let x′ be any
feasible asset choice at A. Then there is {x′n}, with x′n feasible for An for all n, such
that x′n → x′. Because wn is supported at An byW , and (xn, Vn) satisfies (10), there is
V ′n ∈ W(x′n) such that

(18) u
(
An −

xn
α

)
+ βδVn ≥ u

(
An −

x′n
α

)
+ βδV ′n

for every n. Let V ′ be any limit point of {V ′n}. Then, because W has closed graph,
V ′ ∈ W(x′). Choose an appropriate subsequence of n such that {x′n, V ′n} converges to
(x′, V ′). Passing to the limit in (18), we must conclude that (10) holds for (A,w) at x′.

These arguments prove that claim that the limit value w is supported at A byW . With
the claim in hand, by taking suitable convex combinations it is easy to prove that the
correspondenceW ′ generated byW has closed graph. It is trivially convex-valued.

Now, consider the sequence {Vk}. Because V0 is nonempty-valued with closed graph,
and satisfies (8), the same is true of the Vk’s. Moreover, for each t ≥ 0 and all A ≥ B,

Vk(A) ⊇ Vk+1(A).

Take infinite intersections of these nested compact sets (at each A) to argue that

V∗(A) ≡
∞⋂
t=0

Vk(A)

is nonempty for every A. Furthermore, because Vk(A) is convex for all k ≥ 0, so is
V∗(A). Moreover, V∗ has compact graph on any compact interval [B,D],38 and therefore
it has closed graph everywhere. We will show that V∗ generates itself. To this end, we

38On any compact interval, the (restricted) graphs of the Vk’s are compact and their infinite intersection is
the graph of V∗ on the same interval, which must then be compact.
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first show for each A, every w supported at A by V∗ lies in V∗(A). Pick such a value w
at A. Then there is a feasible continuation asset choice x at A and V ∈ V∗(x) such that
(9) holds, and for every feasible choice x′ atA, there is V ′ ∈ V∗(x′) such that (10) holds.
But these continuations are available in Vk for every k, which means that w is supported
at A by every Vk. It follows that w ∈ Vk+1(A) for every k, so that w ∈ V∗(A).

We complete the argument by showing that for every A, maxV∗(A) and minV∗(A) are
supportable at A by V∗.39 The same argument works in either case, so we show this for
maxV∗(A). Because V∗(A) =

⋂∞
t=0 Vk(A), the sequence of values wk ≡ maxVk(A)

converges to H(A). Moreover, wk cannot be a proper convex combination of other
values in Vk(A), so wk is supportable at A by Vk, for every k. That is, for each k, there
is xk feasible forA and value Vk ∈ Vk(xk) such that (9) and (10) are satisfied forwk. It is
easy to see that {xk, Vk} is a bounded sequence. Pick any limit point (x, V ) of {xk, Vk}.
Then x is a feasible choice at A, and V ∈ V∗(x).40 Using the continuation (x, V ) at A,
then, (9) is satisfied for w = maxV∗(A) (under V∗).

Now, let x′ be any feasible asset choice at A. Because wk is supported at A by Vk, and
(xk, Vk) has been chosen such that (10) is satisfied, there exists V ′k ∈ Vk(x′) such that

(19) u
(
A− xk

α

)
+ βδVk ≥ u

(
A− x′

α

)
+ βδV ′k

for every k. Let V ′ be any limit point of {V ′k}. Then, by the argument already used (see
footnote 40), V ′ ∈ V∗(x′). Choose an appropriate subsequence of n such that {x′n, V ′n}
converges to (x′, V ′). Passing to the limit in (19), we see that (10) holds for (A,w) at x′.

This shows that V∗ generates V∗. It is immediate that V∗ contains every correspondence
that generates itself,41 so it is the same as our equilibrium correspondence V .

Given Proposition 1, let H(A) and L(A) be the maximum and minimum values of the
equilibrium value correspondence V . Because the graph of V is closed,H is usc and L is
lsc. In what follows we take care to account for possible discontinuities in L, which are

39Because V∗(A) is convex, it equals [minV∗(A),maxV∗(A)]. We’ve shown that all w supportable
at A by V∗ must indeed lie in V∗(A). So, provided we can show that maxV∗(A) and minV∗(A) are
supportable at A by V∗, it must follow that V∗(A) is the convex hull of all values supported at A by V∗.
40To see why, pick any n in the sequence. Then for k ≥ n, Vk ∈ Vk(xk) ⊆ Vn(xk), so that V ∈ Vn(x)
by the closed-graph property of Vn. It follows that V ∈ Vn(x) for every n, so that V ∈ V∗(x) as asserted.
41Let V ′ be any self-generating correspondence. Then if V ′ ⊆ Vk, we have V ′ ⊆ Vk+1. But V ′ ⊆ V0, so
it follows that V ′ ⊆ Vk for every k, which implies V ′ ⊆ V∗.
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unfortunately endemic. Let x be a feasible choice of continuation asset at A. Consider
all limits of sequences of the form {L(xn)}, where xn ∈ [B,α(1 − υ)A] for all n and
xn → x. Each limit is an equilibrium value at x, because V has closed graph. Moreover,
the collection of all such limits at x (given A) is compact, so a largest value M(x,A)

exists. That defines the function M(x,A) for A ≥ B and x ∈ [B,α(1 − υ)A]. An
individual can guarantee herself a continuation value that is arbitrarily close toM(x,A),
starting from A (by making an asset choice arbitrarily close to x).

LEMMA 2. For given A, M(x,A) is usc in x, and for given x, it is nondecreasing in A,
and independent of A as long as x < α(1− υ)A.

Proof. Pick xn feasible for A such that xn → x ∈ [B,α(1 − υ)A] and a corresponding
sequenceMn = M(xn, A). Suppose without loss of generality thatMn →M . For each
n, there is yn ∈ [B,α(1−υ)A] such that |yn−xn| < 1/n, and |L(yn)−Mn| < 1/n. It is
then easy to see that yn → x and L(yn)→M . So M is a limit value at x, which implies
M(x,A) ≥M . Therefore M(x,A) is usc in x. To prove that M(x,A) is nondecreasing
in A, observe that every sequence of the form {L(xn)}, where xn ∈ [B,α(1 − υ)A], is
fully available at A′ > A, whenever it is available at A. It is also obvious that for any
x, exactly the same limit values of {L(xn)} are available when x < α(1− υ)A, so that
M(x,A) is then unchanging in A whenever the strict inequality holds.

Lemma 2 implies that the following “best deviation payoff” at A is well-defined:

(20) D(A) = max
x

u
(
A− x

α

)
+ βδM(x,A),

where it is understood that x ∈ [B,α(1−υ)A]. Lemma 2 also implies thatD(A) is an in-
creasing function. Note that D does not necessarily use worst punishments everywhere,
but nonetheless a deviant can get payoff arbitrarily close to D(A). That implies:

LEMMA 3. The pair (x, V ) is an equilibrium continuation at A if and only if x ∈
[B,α(1− υ)A], V ∈ V(x) and

(21) u
(
A− x

α

)
+ βδV ≥ D(A).

Proof. Sufficiency: if (x, V ) is not an equilibrium continuation, then there exists y 6= x

such that u(A − x/α) + βδV < u(A − y/α) + βδL(y). But L(y) ≤ M(y, A), so
u(A− x/α) + βδV < u(A− y/α) + βδM(y, A) ≤ D(A).
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Necessity: if (x, V ) is an equilibrium continuation at A, then x ∈ [B,α(1 − υ)A] and
V ∈ V(x). Moreover, for every feasible y, and sequence of feasible {yn} with yn → y,

u
(
A− x

α

)
+ βδV ≥ u

(
A− yn

α

)
+ βδL(yn),

where the inequality holds trivially for yn = x (because V ≥ L(x)) and by incentive
compatibility for yn 6= x. Passing to the limit in that inequality, we must conclude that

u
(
A− x

α

)
+ βδV ≥ u

(
A− y

α

)
+ βδM(y, A).

Maximizing the right hand side of this inequality over y, we obtain the desired result.

LEMMA 4. If d solves (20), then {d,M(d,A)} is an equilibrium continuation at A.

Proof. Because V has closed graph, M(d,A) ∈ V(d). Now apply Lemma 3.

LEMMA 5. L(A) is increasing on [B,∞).

Proof. Let A′′ > A′ ≥ B. Consider the equilibrium that generates value L(A′′) starting
from A′′, with associated continuation {A′′1, V ′′}. By Lemma 3,

(22) u

(
A′′ − A′′1

α

)
+ βδV ′′ ≥ u

(
A′′ − x

α

)
+ βδM(x,A′′)

for x ∈ [B,α(1− υ)A′′]. It follows that V ′′ > M(x,A′′) for all x < A′′1, which implies

(23) L(A′′) = u

(
A′′ − A′′1

α

)
+ δV ′′ > u

(
A′′ − x

α

)
+ δM(x,A′′)

for all x < A′′1. Now construct an equilibrium from A′: the choice A′′1 (if feasible) is
followed by V ′′, while each other x ∈ [B,α(1− υ)A′] is followed by M(x,A′).42 Note
that

u

(
A′ − A′′1

α

)
+ βδV ′′ > u

(
A′ − x

α

)
+ βδM(x,A′′)

≥ u
(
A′ − x

α

)
+ βδM(x,A′),(24)

for x ∈ (A′′1, α(1 − υ)A′] (assuming this set is non-empty), where the first inequality
uses the strict concavity of u, A′ < A′′ and (22), and the second uses Lemma 2.

To complete the description of equilibrium, we must choose a particular continuation at
A′: pick continuation {y, V } to maximize payoff over the specified continuations above.

42Recall that M(x,A′) is indeed an equilibrium value at x because V has closed graph.
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Given (24), that is tantamount to choosing from the greatest of the payoffs

u
(
A′ − x

α

)
+ βδM(x,A′)

for x ∈ [B,min{α(1− υ)A′, A′′1}], and the payoff at x = A′′1 (if feasible), which is

u

(
A′ − A′′1

α

)
+ βδV ′′,

and a solution is well-defined, because M is usc in x, and the replacement of M(A′′1, A)

by V ′′ at A′′1 (if feasible for A′) only increases payoff. The chosen continuation {y, V }
must be an equilibrium, and by (24), y ≤ A′′1. If y < A′′1, then by (23) and Lemma 2,

L(A′′) > u
(
A′′ − y

α

)
+ δM(y, A′′) > u

(
A′ − y

α

)
+ δM(y, A′) ≥ L(A′),

and if y = A′′1, then again

L(A′′) = u

(
A′′ − A′′1

α

)
+ V ′′ > u

(
A′ − y

α

)
+ V ′′ ≥ L(A′).

So in both cases, L(A′′) > L(A′), as desired.

Lemma 5 makes it easy to visualize M(x,A). With L increasing, let L+(A) denote the
right hand limit of L at A; i.e., the common limit of all sequences {L(An)} as An ↓ A,
with An > A for all n. Clearly, L+ is an increasing, right-continuous function.

LEMMA 6. For any A and x ∈ [B,α(1− υ)A), M(x,A) equals L+(x). At x = α(1−
υ)A, it equals L(x).

Proof. Obvious, given Lemma 5 and the definitions of L and M .

LEMMA 7. (a) Let d(A) solve (20). If A1 < A2, then d(A1) ≤ d(A2). Moreover, a
largest solution d∗(A) is well-defined for each A, and it is nondecreasing in A.

(b) d∗(A) is right-continuous at any A such that limn d
∗(An) < α(1− υ)A for An ↓ A.

Proof. Let xi ≡ d(Ai) for i = 1, 2. Suppose, on the contrary, that x1 > x2. Notice that
x1 is feasible at A2 (because A1 < A2 and x1 is feasible at A1), and that x2 is feasible at
A1 (because x2 < x1). Therefore

u
(
Ai −

xi
α

)
+ βδM(xi, Ai) ≥ u

(
Ai −

xj
α

)
+ βδM(xj, Ai)
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for i = 1, 2 and j 6= i. Combining these two inequalities, and using Lemma 2 to
conclude that M(x1, A2) ≥M(x1, A1), while M(x2, A2) = M(x2, A1),43[

u
(
A2 −

x2
α

)
− u

(
A2 −

x1
α

)]
≥
[
u
(
A1 −

x2
α

)
− u

(
A1 −

x1
α

)]
.

But the above inequality contradicts the strict concavity of u. So x1 ≤ x2, as desired.

Next we show that a largest maximizer d∗(A) exists at each A. Let dn each solve (20) at
A, and say that dn → d. Because M(x,A) is usc in x (Lemma 2),

lim
n→∞

u

(
A− dn

α

)
+ βδM(dn, A) ≤ u

(
A− d

α

)
+ βδM(d,A),

but the left-hand side of this inequality is the maximized value of (20) for every n, so
the right-hand side must have the same value, which shows that d also solves (20). That
proves the existence of a largest maximizer d∗(A) at every A, and the arguments so far
show that d∗(A) is nondecreasing, so the proof of part (a) is complete.

For part (b), fix A and let d ≡ limn d
∗(An) < α(1 − υ)A for An ↓ A (noting that

{d∗(An)} is monotone). Clearly, d is feasible at A. To prove the right continuity of d∗ at
A, we show that d maximizes (20) at A. Suppose not. Let d′ maximize (20) at A; then

(25) u

(
A− d′

α

)
+ βδM(d′, A) > u

(
A− d

α

)
+ βδM(d,A).

Notice that d′ ≤ d (by part (a), already proved), so d′ < α(1−υ)A ≤ α(1−υ)An for all
n. So by Lemma 2, M(x,A) is independent of A at (d′, A), and an analogous assertion
is true of An. Therefore, not only is d′ feasible for all An, we also have

(26) lim
n
u

(
An − d′

α

)
+ βδM(d′, An) = u

(
A− d′

α

)
+ βδM(d′, A).

Define dn ≡ d∗(An), and note that for n large, dn < α(1 − υ)A ≤ α(1 − υ)An. Using
the independence of M in An and recalling that M(x,A) is usc in x (Lemma 2),

(27) lim
n
u

(
An − dn

α

)
+ βδM(dn, An) ≤ u

(
A− d

α

)
+ βδM(d,A).

Combining (25)–(27), we must conclude that for n large,

u

(
An − d′

α

)
+ βδM(d′, An) > u

(
An − dn

α

)
+ βδM(dn, An),

which contradicts the fact that dn maximizes (20) for all n.

43Note that x2 < x1 ≤ α(1− υ)Ai for i = 1, 2. By Lemma 2, M(x2, A2) =M(x2, A1).
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Define the maintenance value of an asset level A by V s(A) ≡ 1
1−δu

(
α−1
α
A
)
, and the

maintenance payoff by P s(A) ≡
[
1 + βδ

1−δ

]
u
(
α−1
α
A
)
. Say that an asset level S is

sustainable if there is a stationary equilibrium path from S, or equivalently (by Lemma
3) if P s(S) ≥ D(S).

LEMMA 8 (Observation 2 in main text). Let S > B be a sustainable asset level, and
µ ≡ S/B. Then, if {A∗t} is an equilibrium path from A0:

(a) {µA∗t} is an equilibrium path from µA0.

(b) For all t with µA∗t > S and for every A < S,

u

(
µA∗t −

µA∗t+1

α

)
+β

∞∑
s=t+1

δs−tu

(
µA∗s −

µA∗s+1

α

)
> u

(
µA∗t −

A

α

)
+βδM(A,A∗t ).

Proof. Part (a). Let policy φ sustain {A∗t} from A0. Define a new policy ψ:

(i) For any ht = (A0 . . . At) with As ≥ S for s = 0, . . . , t, let ψ(ht) = µφ
(
ht
µ

)
.

(ii) For ht with Ak < S for some smallest k ≤ t, define h′t−k = (Ak . . . At). Let
ψ(ht) = φ`(h

′
t−k), where φ` is the equilibrium policy with value L(Ak) at Ak.

For any history ht with As ≥ S for s = 1, . . . , t, the asset sequence generated through
subsequent application of ψ is the same as the sequence generated through repeated
application of φ from ht

µ
, but scaled up by the factor µ. It follows that

(28) Pψ(ht) = µ1−σPφ

(
ht
µ

)
and Vψ(ht) = µ1−σVφ

(
ht
µ

)
.

We now show that ψ is an equilibrium. First, consider any ht such that Ak < S at some
first k ≤ t. Then as of period k the policy function ψ shifts to the equilibrium with value
L(Ak). So ψ(ht) is optimal given the continuation policy function.

Next consider any ht such that As ≥ S for all s ≤ t. Consider, first, any deviation to
A ≥ S. Note that ht/µ is a feasible history under the equilibrium φ, while the deviation
to (A/µ) ≥ (S/µ) = B is also feasible. It follows that

Pφ

(
ht
µ

)
≥ u

(
At
µ
− A

µα

)
+ βδVφ

(
ht.A

µ

)
.
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Multiplying through by µ1−σ and using (28), we see that

(29) Pψ(ht) ≥ u

(
At −

A

α

)
+ βδVψ(ht.A),

which shows that no deviation to A ≥ S can be profitable.

Now consider a deviation to A < S. Because S is sustainable,

(30) P s(S) ≥ D(S) ≥ u

(
S − A

α

)
+ βδM(A, S)

by Lemma 3. At the same time, (29) applied to A = S implies

(31) Pψ(ht) ≥ u

(
At −

S

α

)
+ βδVψ(ht.S).

Using (28) along with L(B) ≥ V s(B) (see Observation 1), (31) becomes

Pψ(ht) ≥ u

(
At −

S

α

)
+ βδµ1−σVφ

(
ht
µ
.B

)
≥ u

(
At −

S

α

)
+ βδµ1−σL(B)

≥ u

(
At −

S

α

)
+ βδµ1−σV s(B)

= u

(
At −

S

α

)
+ βδV s(S)

=

[
u

(
At −

S

α

)
− u

(
S

(
1− 1

α

))]
+ P s(S).(32)

Combining (30) and (32),

Pψ(ht) ≥
[
u

(
At −

S

α

)
− u

(
S

(
1− 1

α

))]
+ u

(
S − A

α

)
+ βδM(A, S)

=

[
u

(
At −

S

α

)
− u

(
S − S

α

)]
−
[
u

(
At −

A

α

)
− u

(
S − A

α

)]
+u

(
At −

A

α

)
+ βδM(A, S)

≥ u

(
At −

A

α

)
+ βδM(A, S)(33)

where the second inequality follows from the concavity of u and the fact that A < S ≤
At. But, because M(A, S) ≥ L(A) = Vψ(ht.A), the right hand side of (33) is at least as
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large as the payoff from the deviation, which is u (At − [A/α])+βδVψ(ht.A). It follows
that the deviation A is unprofitable, so that ψ is an equilibrium.

Part (b). The second inequality in (33) holds strictly when At > S and A < S, by the
strict concavity of u. Apply (33) (with strict inequality) at date t, with ht equal to the
history on the equilibrium path and setting M(A, S) = M(A,A∗t ) (Lemma 2).

LEMMA 9. For any asset level A and any path {At} with At ≤ A for all t ≥ 0,

(34) V s(A)−
∞∑
t=0

δtu

(
At −

At+1

α

)
≥ u′

(
α− 1

α
A

)(
δ − 1

α

)
(A− A1) ≥ 0.

Proof. Let ∆ stand for the left hand side of (34); then

∆ =
∞∑
t=0

δt
[
u

(
α− 1

α
A

)
− u

(
At −

At+1

α

)]

≥ u′
(
α− 1

α
A

) ∞∑
t=0

δt
[
A− A

α
− At +

At+1

α

]

= u′
(
α− 1

α
A

) ∞∑
t=0

δt
[
(A− At)−

A− At+1

α

]

= u′
(
α− 1

α
A

)[
(A− A0) +

(
δ − 1

α

) ∞∑
t=0

δt (A− At+1)

]

≥ u′
(
α− 1

α
A

)(
δ − 1

α

)
(A− A1) ≥ 0,

where the first inequality uses the concavity of u and the last uses δα > 1.

Let X(A) be the largest and Y (A) the smallest equilibrium asset choice at A.

LEMMA 10. X (A) and Y (A) are well-defined and non-decreasing, and X is usc.

Proof. By Lemma 3, X(A) (resp. Y (A)) is the largest (resp. smallest) value of A′ ∈
[B,α(1− υ)A] satisfying

(35) u

(
A− A′

α

)
+ βδH(A′) ≥ D(A)

X(A) and Y (A) are well-defined because H is usc.
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To show that X is nondecreasing, pick A1 < A2. (35) implies that

u

(
A1 −

X(A1)

α

)
+ βδH(X(A1)) ≥ u

(
A1 −

y

α

)
+ βδL(y)

for all y ∈ [B,α(1− υ)A]. It follows from the concavity of u that

(36) u

(
A2 −

X(A1)

α

)
+ βδH(X(A1)) ≥ u

(
A2 −

y

α

)
+ βδL(y)

for all y ∈ [B,X(A1)]. If the inequality extends to all y ∈ [B,α(1 − υ)A], the claim
would be established. Otherwise there is x′ ∈ (X(A1), α(1− υ)A2] such that

(37) u

(
A2 −

X(A1)

α

)
+ βδH(X(A1)) < u

(
A2 −

x′

α

)
+ βδL(x′).

Combine (36) and (37) to see that

u

(
A2 −

x′

α

)
+ βδL(x′) > u

(
A2 −

X(A1)

α

)
+ βδH(X(A1))(38)

≥ u
(
A2 −

y

α

)
+ βδL(y)

for all y ≤ X(A1). We now construct an equilibrium starting from A2 as follows:
any choice A < X(A1) is followed by the continuation equilibrium generating L(A),
and any choice A ≥ X(A1) is followed by the continuation equilibrium generating
H(A). Because H is usc, there exists some z∗ that maximizes u

(
A2 − z

α

)
+ βδH(z)

on [X(A1), α(1 − υ)A2]; in light of (38) and the fact that u
(
A2 − x

α

)
+ βδH(x) ≥

u
(
A2 − x

α

)
+ βδL(x), all choices A < X(A1) are strictly inferior to z∗. Thus z∗ is an

equilibrium choice at A2, so that X(A2) ≥ z∗ ≥ X(A1).

To show that Y (A) is non-decreasing, pick A1 < A2. If Y (A2) ≥ α[1 − υ]A1, we’re
done, so suppose that Y (A2) < α[1 − υ]A1. Construct an equilibrium from A1 as
follows. For any A ∈ [B, Y (A2)], assign the continuation value H(A), and for A ∈
(Y (A2), α[1 − υ]A1], assign the continuation value L(A). Finally, for the equilibrium
asset choice at A1, assign A′, where A′ solves

max
A∈[B,Y (A2)]

u

(
A1 −

A

α

)
+ βδH(A)

(Because H is usc, a solution exists.) We claim that A′ maximizes payoff over all the
above specifications, so that {A′, H(A′)} is an equilibrium continuation. It certainly
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does so over choices in [B, Y (A2)], by construction. For A ∈ (Y (A2), α[1− υ]A1],

u

(
A2 −

Y (A2)

α

)
+ βδH(Y (A2)) ≥ u

(
A2 −

A

α

)
+ βδM(A,A2),

so by the concavity of u and Lemma 2,

u

(
A1 −

Y (A2)

α

)
+ βδH(Y (A2)) ≥ u

(
A1 −

A

α

)
+ βδM(A,A2)

≥ u

(
A1 −

A

α

)
+ βδM(A,A1),

which proves the claim. Because A′ ≤ Y (A2), it follows that Y (A1) ≤ Y (A2).

Finally, we show that X is usc. For any A∗ ≥ B, limA↑A∗ X(A) ≤ X(A∗) be-
cause X(A) is nondecreasing. Now consider any decreasing sequence Ak ↓ A∗, and
let X∗ denote the (well-defined) limit of X(Ak). For each k, u

(
Ak −X(Ak)/α

)
+

βδH(X(Ak)) ≥ D(Ak). BecauseH is usc andD(A) is nondecreasing, u (A∗ −X∗/a)+

βδH(X∗) ≥ limk→∞D(Ak) ≥ D(A∗). That implies X(A∗) ≥ X∗ = limA↓A∗ X(A).
(In fact, because X(A) is non-decreasing, X(A∗) = limA↓A∗ X(A).)

LEMMA 11. If X(A) = A, then A is sustainable.

Proof. Let A1 = A along with some value V1 be an equilibrium continuation at A. Then

u

(
α− 1

α
A

)
+ βδV1 ≥ D(A)

by Lemma 3. By Lemmas 9 and 10, V1 ≤ (1 − δ)−1u
(
α−1
α
A
)
. Using this in the

inequality above, we see that P s(A) ≥ D(A), so that A is sustainable.

LEMMA 12. In the nonuniform case, βδ(α− 1)/(1− δ) < 1.

Proof. We claim that if βδ(α − 1)/(1 − δ) ≥ 1, then there exists a linear Markov
equilibrium policy function φ(A) = kA with k > 1, which implies uniformity.

To this end, assume that all “future selves” employ the policy function φ(A) = kA with
k ∈ [1, α] for all A ≥ B. The individual’s current problem is to solve

max
x∈[B,α(1−υ)A]

1

1− σ

[(
A− x

α

)1−σ
+ βδQx1−σ

]
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where

(39) Q ≡ (α− k)1−σ

α1−σ (1− δk1−σ)

The corresponding necessary and sufficient first-order condition is

1

α

(
A− x

α

)−σ
= βδQx−σ.

After some manipulation, we obtain

(40)
A

x
=

1

α
+

(
1

αβδQ

)1/σ

≡ 1

k∗

Note that x = k∗A. Accordingly, the policy function is an equilibrium if k∗ = k.
Substituting (39) into (40) and rearranging yields

(41) kσ = αβδ + (1− β) δk

Define Λ(k) ≡ kσ and Φ(k) = αβδ + (1− β) δk. Notice that Λ(1) ≤ Φ(1) (given
that βδ(α − 1)/(1 − δ) ≥ 1), and Λ(α) > Φ(α) (given the transversality condition
δα1−σ < 1). By continuity, it follows that there exists a solution on the interval [1, α),
which establishes the claim and hence the lemma.

LEMMA 13. Under nonuniformity, the problem

max
x∈[0,α(1−υ)A]

[
u
(
A− x

α

)
+ βδV s(x)

]
.

has a unique solution x(A) with x(A) = ΓA, where 0 < Γ < 1. Moreover, the maxi-
mand is strictly decreasing in x for all x ≥ x(A).

Proof. The maximand is a continuous, strictly concave function, so it has a unique,
continuous solution x(A) for each A. Moreover, by strict concavity, the maximand must
strictly decline in x for all x ≥ x(A). Define ξ = βδ(α− 1)/(1− δ). By nonuniformity
and Lemma 12, we have ξ < 1. Routine computation reveals that x(A) = ΓA, where

Γ =
α

1 + ξ−
1
σ (α− 1)

which (given σ > 0 and ξ < 1) implies Γ < 1.

LEMMA 14. For any A0 ≥ B, maximize
∑∞

t=0 δ
tu
(
At − At+1

α

)
, subject to At+1 ∈

[B,α(1 − υ)At], and At+1 ≤ X(At) for all t ≥ 0. Then a solution exists, and any
solution path {A∗t} is also an equilibrium path starting from A0.
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Proof. u is continuous and X(At) is usc (Lemma 10), so a solution {A∗t} exists. Let
{V ∗t } be the sequence of continuation values associated with {A∗t}. Consider an equilib-
rium path from date t, call it {Aτ}, sustaining X(A∗t ) at A∗t and providing continuation
value H(X(A∗t )) thereafter. This path necessarily satisfies Aτ+1 ≤ X(Aτ ) for all τ ≥ t,
so the definitions of {A∗t} and {V ∗t } imply that

(42) u

(
A∗t −

A∗t+1

α

)
+ δV ∗t+1 ≥ u

(
A∗t −

X(A∗t )

α

)
+ δH(X(A∗t ))

Also, because A∗t+1 ≤ X(A∗t ) and β < 1, we have

(43)
(

1

β
− 1

)
u

(
A∗t −

A∗t+1

α

)
≥
(

1

β
− 1

)
u

(
A∗t −

X(A∗t )

α

)
Adding (42) to (43) and multiplying through by β, we obtain

(44) u

(
A∗t −

A∗t+1

α

)
+ βδV ∗t+1 ≥ u

(
A∗t −

X(A∗t )

α

)
+ βδH(X(A∗t )) ≥ D (A∗t ) ,

where the second inequality follows from the fact that {X(A∗t ), H(X(A∗t )} is support-
able at A∗t . Because (44) holds for all t ≥ 0, {A∗t} is an equilibrium path.

LEMMA 15. Suppose that for some A∗ ≥ B, X(A) > A for all A ≥ A∗. Then starting
from any A ≥ A∗, there is an equilibrium path with monotonic and unbounded accu-
mulation, so that strong self-control is possible. Moreover, some such equilibrium path
maximizes value among all equilibrium paths from A.

Proof. We first claim that for any A > A∗ with limA′↑AX(A′) = A, there is ε > 0 with

(45) X(A′) = A for A′ ∈ (A− ε, A).

Suppose on the contrary that there is A > A∗ and η > 0 such that A′ < X(A′) < A for
all A′ ∈ (A− η, A). Because X(A) > A, Lemma 14 and δα > 1 together imply

(46) H(A) > V s(A) + γ

for some γ > 0.44 Consider any equilibrium continuation {X(A′), V1} from A′ ∈ (A−
η, A). Because A′′ < X(A

′′
) < A for all A′′ in that interval, A′t < A for the resulting

equilibrium path. It follows from Lemma 9 that V s(A) > V1. Combining this inequality

44If δα > 1 and X(A) > A, then the problem of Lemma 14 isn’t solved by the stationary path from A: a
small increase in assets followed by asset maintenance would achieve greater value.
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with (46) and noting that X(A′)→ A as A′ → A,

u

(
A′ − A

α

)
+ βδH(A) > u

(
A′ − X(A′)

α

)
+ βδV1 ≥ D(A′)

for all A′ < A but close to A. So all such A′ possess an equilibrium continuation of
{A,H(A)}, which contradicts X(A′) < A′, and establishes the claim.

We now complete the proof by claiming that any path {At} from A ≥ A∗ which solves
the problem of Lemma 14 involves monotonic and unbounded accumulation. Suppose
this assertion is false. Then at least one of the following must be true:

(i) there exists some date τ such that Aτ ≥ Aτ+1 ≤ Aτ+2, and/or

(ii) the sequence {At} converges to some finite limit.

Let {ct} be the consumption sequence generated by {At}. In case (i), cτ ≥ cτ+1. Re-
calling that δα > 1, we therefore have

(47) u′(cτ ) < δαu′(cτ+1).

Moreover, because X(Aτ ) > Aτ and Aτ ≥ Aτ+1, we have

(48) Aτ+1 < X(Aτ ).

In case (ii), there exists T such that, for τ > T , (47) again holds because cτ and cτ+1 are
close. As far as (48) is concerned, there are two subcases to consider:

(a) There is τ > T with Aτ+1 ≤ Aτ . Here, (48) holds because X(Aτ ) > Aτ ≥ Aτ+1.

(b) For t > T , At is strictly increasing with limit Ā < ∞. If limt→∞X(At) > Ā, (48)
plainly holds for some τ sufficiently large. Otherwise limt→∞X(At) = Ā. But in this
case, we know from the first claim above that for some τ , X(Aτ ) = Ā > Aτ+1, so that
(48) holds yet again for some τ sufficiently large.

In short, (47) and (48) always hold (for some τ ). Now alter the path {At} by increasing
the period-(τ + 1) asset level from Aτ+1 to Aτ+1 + η, leaving asset levels unchanged for
all other periods. Because X(A) is non-decreasing, Aτ+2 ≤ X(Aτ+1 +η), and for small
η we have Aτ+1 + η < X(Aτ ) by (48); thus, the new path is feasible and also satisfies
the constraints that define the value-maximizing path {At}. Taking the derivative of
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period-τ value with respect to η,

dVτ
dη

= δτ
[
−u′(cτ )

1

α
+ δu′(cτ+1)

]
> 0,

where the inequality holds as a consequence of (47). This contradicts the definition of
{At} as a path that solves the problem in Lemma 14, and so establishes the lemma.

Proof of Proposition 2. Part (i) is obvious. “Only if” in part (ii) is also obvious, while
“if” follows from Lemma 15. Likewise, the “only if” part of part (iii) is obvious, while
the “if” part is a consequence of the fact that X is usc. Part (iv) once again is obvious.

Proof of Proposition 4, part (i). First suppose that there is ε > 0 with X(A) ≥ A

on [B,B + ε]. By nonuniformity, X(A′) < A′ for some A′. X is nondecreasing, so
X(S) = S for some S > B, with X(A′) < A′ for some A′ ∈ (S, S + ε′), for every
ε′ > 0.45 By Lemma 11, S is sustainable. Define µ ≡ S/B. By Lemma 8 (a), µX(A′/µ)

is an equilibrium choice for every A′ ∈ [S, S + µε]. But then X(A′) ≥ µX(A′/µ) ≥ A′

for all such A′, a contradiction.

It follows immediately that X(B) = B, and for all ε > 0, there exists Aε ∈ (B,B + ε)

such that X(Aε) < Aε. But if the result is false, there is also A′ε ∈ (B,Aε) with
X(A′ε) ≥ A′ε. Because X(A) is nondecreasing, these observations imply the existence
of Sε ∈ (B,B + ε) such that X(Sε) = Sε. By Lemma 11, Sε is sustainable for all ε > 0.
But for ε sufficiently small,

D(Sε) ≥ u

(
Sε −

B

α

)
+ βδL(B) ≥ u

(
Sε −

B

α

)
+ βδV s(B) > P s(Sε)

where the first inequality follows from the definition of D, the second from Lemma 1,
and the third from Lemma 13. This is a contradiction.

LEMMA 16 (Observation 3 in main text). Suppose that asset levels S1 and S2, with
S1 < S2, are both sustainable, and that X(A) > A for all A ∈ (S1, S2). Then there
exists A∗ ≥ B such that X(A) > A for all A > A∗.

Proof. Let µi ≡ Si/B for i = 1, 2; then µ1 < µ2. We claim that there is A∗ ≥ B such
that for all A > A∗, there are Ã ∈ (S1, S2) and integers (m,n) ≥ 0 with A = µn1µ

m
2 Ã.

45Take S to be the infimum of all A with X(A) < A.
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We first show that there is A∗ such that for all A > A∗, A ∈ (µk1S1, µ
k
2S2) for some k.

Because µ1 < µ2, there is an integer ` with µk+2
1 < µk+1

2 for all k ≥ `. For all such
k, (µk1S1, µ

k
2S2) = (µk1S1, µ

k+1
2 B) overlaps with (µk+1

1 S1, µ
k+1
2 S2) = (µk+2

1 B, µk+1
2 S2).

So ∪∞k=`(µk1S1, µ
k
2S2) =

(
µ`1S1,∞

)
. Take A∗ to be any number greater than µ`1S1.

Next we show that for each integer k ≥ 1 and A ∈ (µk1S1, µ
k
2S2), there is Ã ∈ (S1, S2)

along with an integer m ∈ {0, . . . , k} such that A = µm1 µ
k−m
2 Ã. Divide the inter-

val (µk1S1, µ
k
2S2) (which is the same as the interval (µk+1

1 B, µk+1
2 B)) into a sequence

of semi-open sub-intervals (preceded by an open interval) that coincide at their end-
points: (µk+1

1 B, µk1µ2B), [µk1µ2B, µ
k−1
1 µ2

2B), . . . , [µ1µ
k
2B, µ

k+1
2 B). A must lie in

one of these intervals; call it [µm+1
1 µk−m2 B, µm1 µ

k−m+1
2 B), which we can rewrite as

[µm1 µ
k−m
2 S1, µ

m
1 µ

k−m
2 S2). (The left edge is open if it is the first interval.) Thus, set-

ting Ã = Aµ−m1 µm−k2 , we have Ã ∈ (S1, S2) and A = µm1 µ
k−m
2 Ã, as desired.

To complete the proof, pick any A > A∗ along with some Ã ∈ (S1, S2), integer k ≥ 1

and m ∈ {0, . . . , k} for which A = µm1 µ
k−m
2 Ã. By repeated application of Lemma 8

(a), we see that X(A) ≥ µm1 µ
k−m
2 X(Ã); noting that X(Ã) > Ã, we have X(A) > A.

Let us refer to the assertion of Proposition 4, part (ii), as the Conclusion. Lemma 16 (to-
gether with Lemma 15) implies the Conclusion, provided that the supposition of Lemma
16 is satisfied. Via Lemma 16, several other situations also imply the Conclusion. Define
E(A) ≡ P s(A)−D(A).

LEMMA 17. E(A) > 0 for some A > B implies the Conclusion.

Proof. Because u is continuous andD is increasing, there is an interval [S1, S2] such that
E(A′) > 0 for all A′ ∈ [S1, S2] (e.g., take S2 = A and S1 to be an asset level slightly
below S2). Clearly, S1 and S2 are both sustainable (indeed, every A′ ∈ [S1, S2] is).

For each A′ ∈ [S1, S2), define z(A′) as the largest value in [S1, S2] satisfying

(49) u

(
A′ − z(A′)

α

)
+ βδV s(z(A′)) ≥ D(A′).

Because E(A′) > 0, we have z(A′) > A′. Moreover, because E(z(A′)) > 0, we know
that z(A′) is sustainable. So (49) and Lemma 3 imply the existence of an equilibrium
starting from A′ in which assets increase to z(A′) immediately and then remain at z(A′)

forever. It follows that X(A′) ≥ z(A′) > A′ for all A′ ∈ (S1, S2). Therefore the
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condition of Lemma 16 is satisfied: there are assets S1 and S2 with S1 < S2, both
sustainable, with X(A′) > A′ for all A′ ∈ (S1, S2). The Conclusion follows.

Say that a sustainable asset S is isolated if there is an interval around S with no other
sustainable asset in that interval.

LEMMA 18. If S is sustainable and not isolated, then the Conclusion is true.

Proof. Assume that S is sustainable and not isolated. By nonuniformity and Lemma
8, there is A∗ > S with X(A∗) > A∗. If X(A′) > A′ for all A′ ≥ A∗, the Conclu-
sion follows (Lemma 15). Otherwise, X(A′) ≤ A′ for some A′ > A∗. Because X
is nondecreasing, there is S∗ > A∗ such that X(S∗) = S∗, and X(A′) > A′ for all
A′ ∈ [A∗, S∗).46 By Lemma 11, S∗ is sustainable.

Because S isn’t isolated, for every ε > 0 there is sustainable S ′ with |S ′ − S| < ε. Let
µ ≡ S/B and µ′ ≡ S ′/B. By Lemma 8 (a), S1 ≡ µS∗ and S2 ≡ µ′S∗ are sustainable.
Remember that X(A′) > A′ for all A′ ∈ [A∗, S∗). Using this information, it is easy to
see that if S and S ′ are close enough, then X(A) > A for all A ∈ (S1, S2),47 because
all such A can then be written in the form µ′A′ for some A′ ∈ (A∗, S∗). But now all the
conditions of Lemma 16 are met, so that the Conclusion follows.

A special case of a sustainable asset level is what we will refer to as an upper sustainable
asset level Ŝ, one for which X(Ŝ) = Ŝ, while X(A) > A over an interval of the form
[Ŝ − θ, Ŝ) for some θ > 0. (Note that by Lemma 11, Ŝ is sustainable.)

LEMMA 19. Let Ŝ be upper sustainable. Then there is ε > 0, such that for every
A ∈ [Ŝ, Ŝ + ε], there is an equilibrium which involves first-period continuation asset
A1 < Ŝ, and has value V (A) < V s(Ŝ).

Proof. Using Lemma 13 and the fact that Ŝ is upper sustainable, there are ζ > 0 and
ε1 > 0 such that for every A ∈ [Ŝ, Ŝ + ε1],

(50) u

(
A− Ŝ − ζ

α

)
+ βδV s(Ŝ − ζ) ≥ u

(
A− A1

α

)
+ βδV s(A1)

46To see this, pick S > A∗ such that X(S) = S, and now take the infimum over all such values of S; call
it S∗. Clearly, S∗ > A∗ because X(A∗) > A∗ and X is nondecreasing.
47We presume that S < S′ without loss of generality.
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whenever A1 ≥ Ŝ, while at the same time,

(51) X(A′′) > A′′ for all A′′ ∈ [Ŝ − ζ, Ŝ).

By part (i) of this proposition, there is Ã > B such that every equilibrium from A ∈
[B, Ã) monotonically descends to B. By Lemma 8 (a) and the fact that Ŝ is sustainable,
there must be a corresponding equilibrium which monotonically descends from A to Ŝ
for every A ∈ [Ŝ, µ̂Ã), where µ̂ = Ŝ/B. Define ε2 ≡ min{ε1, µ̂Ã− Ŝ}.

Using the first inequality in (34) of Lemma 9,

V s(Ŝ) ≥
∞∑
t=0

δtu

(
At −

At+1

α

)
+ u′

(
α− 1

α
Ŝ

)(
δ − 1

α

)
ζ

for any path {At} starting from Ŝ with the property that At ≤ Ŝ for all t ≥ 0, and
A1 ≤ Ŝ − ζ . But then there exists ε3 > 0 such that

(52) V s(Ŝ) >
∞∑
t=0

δtu

(
At −

At+1

α

)
for any path {At} with At ≤ Ŝ for all t ≥ 1, A1 ≤ Ŝ − ζ , and A0 ≤ Ŝ + ε3. Define
ε ≡ min{ε2, ε3}.

Pick any A ∈ [Ŝ, Ŝ + ε], and consider any “descending equilibrium” as described just
after (51), with payoff P (A). Suppose that it has continuation (A1, V1). By Lemma 9,
we know that V1 ≤ V s(A1), so

(53) u

(
A− A1

α

)
+ βδV s(A1) ≥ P (A).

Combining (50) and (53), we must conclude that

(54) u

(
A− Ŝ − ζ

α

)
+ βδV s(Ŝ − ζ) ≥ P (A).

Now observe that (51), coupled with Lemma 14, implies that H(Ŝ − ζ) ≥ V s(Ŝ − ζ).
Using this information in (54), we must conclude that

(55) u

(
A− Ŝ − ζ

α

)
+ βδH(Ŝ − ζ) ≥ P (A).
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So the continuation {Ŝ − ζ,H(Ŝ − ζ)} is an equilibrium from every A ∈ [Ŝ, Ŝ + ε].
To complete the proof, note that any path {At} associated with this equilibrium satisfies
At ≤ Ŝ for all t ≥ 1,48 A1 ≤ Ŝ− ζ , and A0 ≤ Ŝ+ ε ≤ Ŝ+ ε3. Therefore (52) applies.

Recall the definition of d∗(A) as the largest maximizer of (20).

LEMMA 20. If d∗(A) = A and d∗(A′) ≤ A′ over A′ ∈ [A,A + ε] for some ε > 0, then
A is sustainable.49

Proof. We first show that

(56) L+(A) ≤ V s(A).

By Lemma 5, L is increasing. So there is a sequence {An} with An ↓ A and L(An) (and
L+(An)) converging to L+(A). For each n, consider an equilibrium with the lowest
value V (An) among those that implement Y (An).50 Then

(57) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) ≥ D(An),

for all n. If strict inequality holds along a subsequence of n, then it’s easy to see that
L(An) ≤ V (An) = u(An − B/α) + δL(B) along that subsequence.51 Passing to the
limit, L+(A) ≤ u(A − B/α) + δL(B) ≤ V s(A), where the second inequality comes
from part (i) of the Proposition, already proved, which yields L(B) = V s(B), together
with Lemma 9. So (56) holds in this case. In the other case, we may presume that

(58) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) = D(An)

for all n. But in turn,

(59) D(An) = u

(
An −

d∗(An)

α

)
+ βδM(d∗(An), An).

48This follows from X(Ŝ) = Ŝ and the fact that X is nondecreasing.
49In fact, a stronger property holds: if d∗(A) ≥ A, then A is sustainable. That result follows directly
from the existence of an everywhere-non-accumulating Markov-perfect equilibrium. Because we do not
use the stronger property, nor do we focus on Markov equilibrium, we omit the proof.
50In line with Proposition 3, this value equals L(An), but we do not use this fact anywhere in the proofs.
51We know that Y (An) can be implemented by the continuation value H(Y (An)), and that it satisfies
(35). If strict inequality holds in (35), reduce continuation assets, always using a continuation on the
upper envelope of the value correspondence, and sliding down the vertical portion of H at any point of
discontinuity. (Public randomization allows us to do this.) Note that payoffs and continuation values
change continuously as we do this. Eventually we come to Y (An) = B with continuation value L(B).
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Combining (58) and (59), we see that for every n,

(60) (1−β)u

(
An −

Y (An)

α

)
+βV (An) = u

(
An −

d∗(An)

α

)
+βδM(d∗(An), An).

Now we pass to the limit in (60). By assumption, d∗(An) ≤ An for all n large, so
limn d

∗(An) < α(1 − υ)A.52 By Lemma 7, d∗ is right continuous at A, and so d∗(An)

converges to d∗(A) = A. By Lemma 6, M(d∗(An), An) = L+(d∗(An)) for all n large
enough, which converges to L+(d∗(A)) = L+(A). Letting (Y, V ) denote any limit point
of {Y (An), V (An)}, we therefore have

(61) (1− β)u

(
A− Y

α

)
+ βV = u

(
α− 1

α
A

)
+ βδL+(A).

It follows that

β(1− δ)L+(A) ≤ βV − βδL+(A)

= u

(
α− 1

α
A

)
− (1− β)u

(
A− Y

α

)
≤ u

(
α− 1

α
A

)
− (1− β)u

(
α− 1

α
A

)
= β(1− δ)V s(A),(62)

where the first inequality uses V (An) ≥ L(An) for all n, so that V ≥ L+(A), the equal-
ity follows from transposing terms in (61), and the second inequality uses d∗(An) ≥
Y (An) for all n, and d∗(An)→ A, so that A ≥ Y . But (62) again implies (56).

With (56) in hand, we must conclude that

u

(
α− 1

α
A

)
+ βδV s(A) ≥ u

(
α− 1

α
A

)
+ βδL+(A)

= u

(
α− 1

α
A

)
+ βδM(A,A)

= D(A)

(where the last equality follows from d∗(A) = A), which means that A is sustainable.

In the rest of the proof, we make the assumption (by way of ultimate contradiction) that
the Conclusion is false. Note that because many of the steps to follow are based on this
presumption, they cannot all be regarded as relationships that truly hold in the model.

LEMMA 21. Suppose that the Conclusion is false. Then

52That follows from α(1− υ) > 1, given αδ > 1 and 1− υ > γ, where γ is the Ramsey rate of saving.
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(a) d∗(Ŝ) < Ŝ for any upper sustainable asset level Ŝ, and

(b) d∗(A) ≤ A for all A ≥ B, with strict inequality whenever X(A) 6= A.

Proof. Part (a). Suppose not; then, since X(Ŝ) = Ŝ (by the upper sustainability of Ŝ), it
follows from Lemma 4 that d(Ŝ) = Ŝ. We know that M(Ŝ, Ŝ) = L+(Ŝ) (see footnote
52 and recall Lemma 6), but by Lemma 19,

M(Ŝ, Ŝ) = L+(Ŝ) < V s(Ŝ).

Invoking (20) along with d(Ŝ) = Ŝ, we must therefore conclude that

D(Ŝ) = u

(
α− 1

α
Ŝ

)
+ βδM(Ŝ, Ŝ) < u

(
α− 1

α
Ŝ

)
+ βδV s(Ŝ) = P s(Ŝ),

or E(Ŝ) = P s(Ŝ)−D(Ŝ) > 0. By Lemma 17, the Conclusion follows, a contradiction.

Part (b). If false, then d∗(A) > A for some A ≥ B, or d∗(A) ≥ A for some A ≥ B with
X(A) 6= A. By Lemma 4, X(A) ≥ d∗(A), so in either case X(A) > A. Note that there
is A′ > A such that X(A′) ≤ A′, otherwise Lemma 15 assures us that the Conclusion
holds. Define Ŝ by the infimum value of such A′. Then it is immediate that Ŝ is upper
sustainable, and that X(A′′) > A′′ for all A′′ ∈ [A, Ŝ).

Recall that d∗(A) ≥ A, that d∗ is nondecreasing and that d(Ŝ) < Ŝ by the upper sus-
tainability of Ŝ and part (a) of this lemma. So there is S ∈ [A, Ŝ) with d∗(S) = S and
d∗(S ′) ≤ S ′ for all S ′ in an interval to the right of S.53 By Lemma 20, S is sustainable.

Set S = S1 and Ŝ = S2. Recall that X(A′′) > A′′ for all A′′ ∈ [A, Ŝ), so the inequal-
ity holds in particular on (S1, S2). Now all the conditions of Lemma 16 are satisfied.
Together with Lemma 15, we see that the Conclusion must hold, a contradiction.

Part (i) of the proposition, along with some of the foregoing lemmas, generates the
following construction, on the assumption that the Conclusion is false. X(A) starts out
below A near B (there is a poverty trap by part (i)). By nonuniformity, X(A) > A

for some A; let A∗ be the infimum value. X(A) > A on an interval to the right of
A∗; if not, sustainable stocks cannot all be isolated, and the Conclusion would follow

53To make this entirely clear, let S ≡ sup{S′ ∈ [A, Ŝ)|d∗(S′) > S′}. Because d∗ is nondecreasing,
d∗(S) ≥ S. Moreover, d∗(S) > S violates the definition of S (again, because d∗ is nondecreasing).
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FIGURE 7. THE TWO SUSTAINABLE ASSETS S∗ AND S∗.

from Lemma 18.54 Moreover, by Lemma 15, if the Conclusion is false, there is S∗ <∞,
defined as the supremum of all asset levels S greater thanA∗ such thatX(A) > A for all
A ∈ (A∗, S). Note that S∗ is upper sustainable. (Also note that X(A∗) > A∗, otherwise
the Conclusion is implied by setting S1 = A∗ and S2 = S∗, and applying Lemma 16.)

Part (i) of the proposition also tells us that d∗(B) = B. Let S∗ be the largest asset level
in [B, S∗] for which d∗(S) = S.

LEMMA 22. S∗ is well-defined, with B ≤ S∗ < S∗, and X(S∗) = S∗.

Proof. By Lemmas 18 and 21, there is a finite set of points in [B, S∗], all strictly smaller
than S∗, for which d∗(S) = S. (B is one such point.) So S∗ is well-defined and B ≤
S∗ < S∗. That X(S∗) = S∗ follows from part (b) of Lemma 21 and d∗(S∗) = S∗.

Figure 7 summarizes the construction as well as the properties in Lemma 22. Panel A
illustrates a case in which S∗ > B, and Panel B, a case in which S∗ = B. (Note: it is
possible that X(A) = A to the right of S∗ and before S∗, though by Lemma 18, this can
only happen at isolated points if the Conclusion is false.)

54By definition of A∗, there is {A′n} converging down to A∗ with X(A′n) > A′n. If the assertion in the
text is false, there is {A′′n} also converging down to A∗ along which X(A′′n) ≤ A′n. But then, using the
fact that X is nondecreasing, there must be a third sequence along which equality holds, which proves
that non-isolated sustainable assets must exist.
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Define Y +(A) as the limit of Y (An) as An converges down to A. Given Lemma 10,
Y +(A) is well-defined and Y +(A) ≥ Y (A).

LEMMA 23. If the Conclusion is false, Y +(S∗) ≥ S∗.

Proof. If S∗ = B the result is trivially true, so assume that S∗ > B. Suppose, on the
contrary, that Y +(S∗) < S∗. We first establish a stronger version of (56); namely, that

(63) L+(S∗) < V s(S∗).

By part (b) of Lemma 21, d∗(A) ≤ A in a neighborhood to the right of S∗ (indeed,
strict inequality holds). With this in mind, carry out exactly the same argument as in the
proof of Lemma 20, starting right after (56) and leading to (62), with S∗ in place of A.
We need two modifications to ensure that strict inequality in (56) holds. First, in case
strict inequality holds in (57) along a subsequence, then Y (An) = B and continuation
values equal L(B) along that subsequence, just as in the proof of Lemma 20, with the
additional observation that (56) must indeed hold strictly, giving us (63). Otherwise,
equality holds in (57), and (62) follows as before, with the additional implication that the
second inequality in (62) — again, with S∗ in place of A — must hold strictly, because
S∗ > Y +(S∗) ≥ Y (S∗). We must therefore conclude that (63) holds, and therefore that

u

(
α− 1

α
S∗

)
+ βδV s(S∗) > u

(
α− 1

α
S∗

)
+ βδL+(S∗)

= D(S∗),

where the equality follows from d∗(S∗) = S∗ < α(1 − υ)S∗, so that L+(S∗) =

M(S∗, S∗) by Lemma 6. In other words, we have E(S∗) > 0. But then Lemma 17
assures us that the Conclusion must follow, which is a contradiction.

Let µ ≡ S∗/B, and ρ ≡ S∗/B; then µ > ρ ≥ 1. Let S∗∗ ≡ µS∗, and S∗∗ ≡ µS∗. Note
that S∗∗ = µS∗ = ρS∗, so S∗∗ is also a scaling of S∗ by the factor ρ. (By Lemmas 11
and 22, S∗ is sustainable, so Lemma 8 applies with both the scalings µ and ρ.)

Here is an outline of the remainder of the proof. Refer to Figure 8. By Lemma 8 (a),
equilibria at assets to the right of S∗ and to the left of S∗ can be “scaled up” to assets
beyond S∗∗, using the factor µ. Asset choices for such equilibria are partly indicated by
the upper line to the right of S∗∗ and the lower line to the left of S∗∗. But S∗∗ is also a
scaling of S∗ (using ρ), so other equilibrium scalings are possible. In particular, Lemmas
8 and 19 tell us that equilibria with even lower values (and lower continuation assets)
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FIGURE 8. OUTLINE OF THE PROOF STARTING FROM LEMMA 24.

are achievable just above S∗∗; see the lower segment to the right of S∗∗. These values
serve as punishments for deviations from even higher assets, and so support, in turn,
larger asset choices near S∗∗ relative to the earlier set of scaled equilibria; see the upper
line around S∗∗. That creates a zone beyond S∗∗ in which X(A) > A. If X(A) > A

for all A > S∗∗, Lemma 15 applies and the proof is complete. Otherwise, there is a
first asset level beyond S∗∗ at which X(A) = A yet again. Now Lemma 17 applies, and
contradicts the starting point of this entire construction: that the Conclusion is false.

Recall the definition of L+(x), and Lemma 6, which states that M(x,A) = L+(x) when
x < α(1− υ)A. This property will play a more active role now.

LEMMA 24. Suppose that the Conclusion is false. (a) For all x ≥ B,

(64) L(µx) ≤ µ1−σL(x).

and in particular,

(65) M(µx, µA) ≤ µ1−σM(x,A)

for all A ≥ B and x ∈ [B,α(1− υ)A].

(b) For every A > S∗ with Y (µA) < S∗∗ and for all A′ ∈ [S∗, A),

(66) L+(µA′) < µ1−σL+(A′).
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Proof. It is easy to see that Lemma 8 (a) implies (64). (65) follows for x ∈ [B,α(1 −
υ)A) by taking right-hand limits of L, and for x = α(1 − υ)A by applying (64) di-
rectly. To prove part (b), pick A > S∗ with Y (µA) < S∗∗. Let Ã ∈ (S∗, A]. Because
Y +(S∗) ≥ S∗ (by Lemma 23), any equilibrium from Ã that implements L(Ã) has con-
tinuation {Ã1, Ṽ1} with Ã1 ≥ S∗ (by Lemma 10). By Lemma 8 (a), {µÃ1, µ

1−σṼ1} is
an equilibrium continuation at Ã′′ ≡ µÃ > S∗∗. So

(67) u

(
Ã′′ − µÃ1

α

)
+ βδµ1−σṼ1 ≥ D(Ã′′),

and

(68) µÃ1 ≥ µS∗ = S∗∗.

Consider an equilibrium with the lowest continuation value — call this V — among
those that implement Y (Ã′′) from Ã′′. Then

(69) u

(
Ã′′ − Y (Ã′′)

α

)
+ βδV ≥ D(Ã′′).

If (69) does not bind, then we know that Y (Ã′′) = B and V = L(B) (see footnote 51).
Recalling that Ã′′ = µÃ, we must therefore have

L(µÃ) ≤ u

(
µÃ− B

α

)
+ δL(B)

≤ u

(
µÃ− µÃ1

α

)
+ δµ1−σṼ1 −

1− β
αβ

u′
(
µÃ− B

α

)
(µÃ1 −B)

≤ u

(
µÃ− µÃ1

α

)
+ δµ1−σṼ1 −

1− β
αβ

u′
(
µA− B

α

)
(S∗∗ −B)

= µ1−σL(Ã)− 1− β
αβ

u′
(
µA− B

α

)
(S∗∗ −B),(70)

where the first inequality uses the definition of L, the second inequality uses Lemma 1,
and the third inequality invokes (68) and Ã ≤ A. On the other hand, if (69) does bind,
then using (67) and noting that Ã′′ = µÃ,

(71) u

(
µÃ− µÃ1

α

)
+ βδµ1−σṼ1 ≥ u

(
µÃ− Y (µÃ)

α

)
+ βδV .
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Let ζ ≡ S∗∗ − Y (µA). Because Y is nondecreasing, we have Y (µÃ) ≤ S∗∗ − ζ ≤
µÃ1−ζ . Using this information in (71) and observing that µÃ ≤ µA, we must conclude
that there exists η1 > 0 with µ1−σṼ1 ≥ V + η1, where η1 might depend on A but can be
chosen independently of Ã. Therefore, using (71) again, there is η2 > 0 such that

u

(
µÃ− µÃ1

α

)
+ δµ1−σṼ1 ≥ u

(
µÃ− Y (µÃ)

α

)
+ δV + η2,

or equivalently, µ1−σLÃ) ≥ L(µÃ) + η2. Combining this inequality with (70) and
defining η ≡ min{η2, [(1− β)/αβ]u′ (µA−B/α) (S∗∗ −B)}, we have

(72) µ1−σL(Ã) ≥ L(µÃ) + η

for all Ã ∈ (S∗, A]. Taking right-hand limits as Ã ↓ A′ ∈ [S∗, A) in (72) then implies
that L+(µA′) < µ1−σL+(A′) for all A′ ∈ [S∗, A).

LEMMA 25. Suppose that the Conclusion is false, and that for some A ≥ B,

(73) L+ (d∗(µA)) < µ1−σL+ (d∗(µA)/µ) .

Then

(74) D(µA) < µ1−σD(A).

Proof. By Lemma 21, d∗(A′) ≤ A′ for all A′ ≥ B, so by Lemma 6, M(A′, A′) =

L+(A′). Using this observation along with (73), we see that

D(µA) = u

(
µA− d∗(µA)

α

)
+ βδM(d∗(µA), µA)

= µ1−σu

(
A− d∗(µA)

µα

)
+ βδM(d∗(µA), µA)

= µ1−σu

(
A− d∗(µA)

µα

)
+ βδL+ (d∗(µA))

< µ1−σ
[
u

(
A− d∗(µA)

µα

)
+ βδL+

(
d∗(µA)

µ

)]
≤ µ1−σ

[
u

(
A− d∗(A)

α

)
+ βδL+ (d∗(A))

]
= µ1−σ

[
u

(
A− d∗(A)

α

)
+ βδM (d∗(A), A)

]
= µ1−σD(A),
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where the second equality uses the constant-elasticity form of u, the strict inequality
invokes (73), and the weak inequality follows from the definition of d∗(A).

LEMMA 26. If the Conclusion is false, L+(µA) < µ1−σL+(A) for all A ∈ [S∗, S
∗].

Proof. Because S∗ is upper sustainable, Lemma 19 applies, so there is ε′ > 0 such that
for every A′ ∈ (S∗, S∗+ ε′], Y (A′) < S∗. Because S∗∗ = ρS∗, Lemma 8 (a) implies that
Y (ρA′) < S∗∗ for all suchA′. In turn, this implies that for everyA′′ ∈ (S∗, S∗+ε], where
ε ≡ ρε′/µ, we have Y (µA′′) < S∗∗. By part (b) of Lemma 24, L+(µA) < µ1−σL+(A)

for all A ∈ [S∗, S∗ + ε).

Suppose, by way of contradiction, that L+(µA) = µ1−σL+(A) for some A ∈ [S∗, S
∗].

Let A∗ be the infimum over such A. Then A∗ ≥ S∗ + ε (by the conclusion of the last
paragraph), and by the right-continuity of L+,

(75) L+(µA∗) = µ1−σL+(A∗).

Define A′ ≡ µA∗. There are now two cases to consider. First, if d∗(A′)/µ > d∗(A∗),

D(µA∗) = D(A′) = u

(
A′ − d∗(A′)

α

)
+ βδM(d∗(A′), A′)

= µ1−σu

(
A∗ − d∗(A′)

µα

)
+ βδM(d∗(A′), A′)

≤ µ1−σ
[
u

(
A∗ − d∗(A′)

µα

)
+ βδM

(
d∗(A′)

µ
,
A′

µ

)]
< µ1−σD(A∗),(76)

where the weak inequality invokes (65), and the strict inequality the fact that d∗(A∗) is
the largest maximizer of u (A∗ − x/α) + βδM (x,A∗), while d∗(A′)/µ > d∗(A∗).

In the second case, d∗(A′)/µ ≤ d∗(A∗). Notice that (66) fails at A = A∗, so using part
(b) of Lemma 24, Y (µA) ≥ S∗∗ for allA > A∗. At the same time, d∗(µA) ≥ Y (µA) for
all A (by Lemma 4). Combining these two observations, d∗(µA) ≥ S∗∗ for all A > A∗.

By part (b) of Lemma 21, d∗(µA) ≤ µA for all A, so limA↓A∗ d
∗(µA) ≤ µA∗ <

α(1 − υ)µA∗. So Lemma 7 (b) applies, and d∗ is right continuous at µA∗. Passing
to the limit in the last inequality of the previous paragraph as A ↓ A∗, it follows that
S∗∗ ≤ d∗(µA∗) = d∗(A′), or S∗ ≤ d∗(A′)/µ. So in this second case,

(77) S∗ ≤ d∗(A′)/µ ≤ d∗(A∗) < A∗,
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the last inequality following part (b) of Lemma 21, along with the fact that A∗ > S∗, the
latter being the largest value of A ∈ [B, S∗] with d∗(A) = A.

In particular, (77) along with the definition of A∗ allows us to verify condition (73) of
Lemma 25 with A set equal to A∗. It follows that (74) holds at A∗. Recalling (76), we
see then that in both cases

(78) D(µA∗) < µ1−σD(A∗).

Let {A1, V1} be the equilibrium continuation that implements L(A∗). By Lemma 8 (a),
{µA1, µ

1−σV1} is an equilibrium at µA∗, it has value equal to µ1−σL(A∗), and moreover,
by the incentive constraint for {A1, V1} coupled with (78),

u

(
µA∗ − µA1

α

)
+ βδµ1−σV1 ≥ µ1−σD(A∗) > D(µA∗).

This strict inequality, along with the fact that µA1 > B, proves that one can lower
equilibrium value at µA beyond the value created by scaling {A1, V1}, which shows that

L(µA∗) < µ1−σL(A∗).

This contradicts the definition of A∗, and so completes the proof.

Proof of Proposition 4, part (ii). Assume the Conclusion is false. We claim that

(79) E(S∗∗) = P s(S∗∗)−D(S∗∗) > 0.

There are three possibilities to consider. First, d∗(S∗∗)/µ ≥ S∗. We verify condition (73)
of Lemma 25 with S∗ in place of A. To do so, note that d∗(S∗∗)/µ = d∗(µS∗)/µ ≥ S∗,
and also that d∗(µS∗)/µ ≤ S∗ by part (b) of Lemma 21. So we may apply Lemma 26 to
A = d∗(µS∗)/µ, and conclude that (74) is true for A = S∗. It follows that

(80) D(S∗∗) < µ1−σD(S∗).

Because P s(S∗∗) = µ1−σP s(S∗) and P s(S∗) ≥ D(S∗), (80) immediately implies (79).

The second possibility is that d∗(S∗∗)/µ < B, so that d∗(S∗∗) < µB = S∗. Now apply
part (b) of Lemma 8 by setting the path {µA∗t} in that lemma to the constant path with
asset level S∗∗ = µS∗ at every date.55 It follows right away that P s(S∗∗) > D(S∗∗),
which establishes (79).

55This is our only use of part (b) of Lemma 8.
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So the only remaining possibility is that

(81) S∗ > d∗(S∗∗)/µ ≥ B.

Let d be a generic continuation asset choice that solves (20) at S∗. By Lemma 7 and the
fact that d∗(S∗) = S∗, it must be the case that d ≥ S∗. Because S∗ is upper sustainable
and so sustainable, and d ≥ S∗ > d∗(S∗∗)/µ ≥ B, we see that if we define A1 ≡
d∗(S∗∗)/µ, then

(82) P s(S∗) ≥ D(S∗) > u

(
S∗ − A1

α

)
+ βδM(A1, S

∗).

Keeping in mind that S∗∗ = µS∗ and d∗(S∗∗) = µA1, we must conclude that

P s(S∗∗) = µ1−σP s(S∗) > µ1−σ
[
u

(
S∗ − A1

α

)
+ βδM(A1, S

∗)

]
= u

(
S∗∗ − d∗(S∗∗)

α

)
+ βδµ1−σM(A1, S

∗)

≥ u

(
S∗∗ − d∗(S∗∗)

α

)
+ βδM(d∗(S∗∗), S∗∗)

= D(S∗∗),

where the first inequality uses (82) and the second inequality uses (65). That gives us
(79) again.

By Lemma 17, this immediately precipitates a contradiction, because (79) implies that
the Conclusion follows, while we have been working with the presumption that the
Conclusion is false.
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APPENDIX A. ALGORITHM

This section describes the iterative computational algorithm for obtaining an approxi-
mation to the equilibrium value correspondence V(A) through the sequence of corre-
spondences {Vk} (See Section 3). Our initial correspondence is

V0(A) =

[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)
, R(A)

]
in light of Observation 1.

The computational algorithm proceeds in four steps.1 First, we consider a finite grid on
the action and utility spaces. Second, given that continuation payoffs are governed by
some correspondence Vk, we determine the best-deviation payoffs at each asset level A
(assuming the worst feasible punishments in the continuation set, which are well-defined
given the discrete grid).

Third, we maximize and minimize value at each A subject to the no-deviation constraint
and constraints on continuation utilities (that they be suitably drawn from Vk). For this
optimization step, we think of the individual as choosing the continuation level of assets
rather than current consumption. This is convenient from a computational perspective.2

Finally, we use public randomization to construct Vk+1 from the maximum and mini-
mum values in Step 3, and test to see if convergence has occurred. The convergence
criterion measures the largest difference (in the L∞ norm) in utility bounds for each as-
set level between successive approximations. We end our iterations when this difference
is “small,” or more precisely, when

max
A∈A
{max{ |Lk(A)− Lk+1(A)|, |Hk(A)−Hk+1(A)| }} < ε

for some given precision parameter ε > 0, where A is the discretized, finite action set
from Step 1.

More formally, for a given set of parametric assumptions, our computational algorithm
repeatedly applies the following four steps until convergence is achieved:

1This iterative numerical algorithm is a variation of the method of computing equilibria of supergames
developed by Judd, Yeltekin and Conklin (2003).
2If consumption remains the choice variable, then we would need to discretize the consumption set. Ad-
ditionally, the technology would have to be modified to ensure that for each current asset level and con-
sumption choice, next period’s assets are in the discretized asset set.
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Step 1. Initialization.

1.1. Let A be a finite set of assets, chosen suitably fine and with a large upper bound.

1.2. Determine initial utility bounds [L0(A), H0(A)] for each A ∈ A.

Step 2. Best Deviations.

2.1. Let A(Aj) = {Ai ∈ A|Aj ≥ c(Ai, Aj) ≥ νAj} where c(Ai, Aj) = Aj − Ai/α.

2.2. For each Ai ∈ A(Aj) compute

D̃(Ai, Aj) = u(c(Ai, Aj)) + δβLk(Ai).

2.3. For each Aj ∈ A compute D(Aj) = maxAi∈A(Aj) D̃(Ai, Aj).

Step 3. Highest and Lowest Values.

3.1. Compute
Hk+1(Aj) = max

Ai∈A(Aj)
{u(c(Ai, Aj)) + δVi}

subject to the no-deviation constraint:

(a.1) u(c(Ai, Aj)) + δβVi ≥ D(Aj),

and the feasibility condition on continuation value:

(a.2) Vi ∈ Vk(Ai).

3.2. Compute
Lk+1(Aj) = min

Ai∈A(Aj)
{u(c(Ai, Aj)) + δVi}

subject to exactly the same constraints (a.1) and (a.2).

Step 4. Public Randomization and Convergence.

4.1. Set Vk+1(A) = [Lk+1(A), Hk+1(A)] (public randomization). Stop if convergence is
reached; else return to Step 2.

Note that, in the maximization problem of Step 3.1, we must always set Vi = Hk(Ai)

as the continuation utility. After all, if any continuation value satisfies the no-deviation
constraint (a.1), then so does the highest feasible continuation value, and that raises the
overall value of the maximand as well. In contrast, in the minimization problem of
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Step 3.2, we do not generally use Lk(Ai) as the continuation utility, because the lowest
feasible continuation value does not necessarily satisfy the no-deviation condition (a.1).3

For the results reported in Figure 1, we set σ = 0.5, so that

u(c) =
1

2
c1/2.

Assets take on 8001 values between [B, Ā]. We set Ā = 200 and B = 0.5.4 For the
exercise depicted in Figure 1, we set the rate of return equal to 30%, the discount factor
equal to 0.8, the hyperbolic parameter (β) equal to 0.4. Figure 1 Panel A plots the highest
equilibrium asset choice, X(A) and lowest equilibrium asset choice, Y (A). Panel B
plots the equilibrium value correspondence. For this particular exercise, a poverty trap
exists below an asset level of 3.47. For initial asset levels above 3.47, however, there is
indefinite accumulation.

APPENDIX B. POLICY REGIMES

In this section, we describe in more detail the extended model with taste shocks used in
Section 6.3, as well as the policy regimes displayed in Figures 5 and 6. These regimes
have a lockbox feature: assets are kept in an account with a rule specifying when and
how much of the funds can be accessed. Each regime considers a different rule.

When αδ > 1, complete reliance on a lockbox always dominates internal rules provided
that all consumption expenditures are perfectly foreseen; see discussion in main text. For
these examples to have non-trivial solutions, we extend the original model to include an
iid taste shock η (with probability distribution p(η)) that takes values in some finite set
N and affects the flow utility in a multiplicative way. In every period, individuals make
their saving/consumption decision after the realization of the current taste shock.

3However, Proposition 2 in the main text can be adapted to show that a carrot-and-stick structure obtains,
so that often the highest continuation value (or some minor variant thereof) is also chosen in this problem.
4The analytical results allow for unbounded asset accumulation. An unbounded state space is not feasible
computationally, but to ensure that the asset bound does not impact the policy and value functions reported
in any significant way, we proceed in the following way. We choose an initial asset bound and note the
asset level below this bound where the value and policy functions converge to the Ramsey solution (β = 0
case). We use the analytical Ramsey solution to approximate the value and policy functions beyond this
intermediate asset value. We repeat this for a variety of intermediate asset values and initial asset bounds
to check the robustness of the results for asset values below the intermediate asset level.
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We first describe the baseline solution of this model without any lockboxes; it is a
straightforward extension of solution with no taste shocks. Specifically, we can think
of an expected value correspondence V∗(A;B) at the start of any date that defines the
set of expected equilibrium values, the expectation taken over the taste shock which is
about to be realized at that date, for every asset level. (For reasons that will become
clear below, we explicitly carry the lower bound B, to be thought of as unchanging for
all dates.) Because η is iid, V∗ is the same at all dates. Thinking of these as continuation
values from, say, date t+1, we can now define V∗(A, η;B) as the set of generated values
at date t for any individual with asset level A ≥ B, who has just experienced the taste
shock η. The fixed-point logic of equilibrium generation then tells us that

V∗(A;B) =
∑
η∈N

p(η)V ∗(A, η;B)

for every A ≥ B, where we define the above convex combination of sets as the the
collection of all elements that are themselves the same convex combinations of elements
drawn from the individual sets.5

This value correspondence can be generated by a variation of the same iterated procedure
described in Appendix A.

Now we consider regimes with lockboxes and thresholds. All the regimes we consider
have the following lockbox properties: interest can always be withdrawn from the lock-
box, which pays the same rate α−1 as a conventional savings account. No conventional
savings is allowed until a threshold (AT ) is reached.6 At that point, some or all of the
lockbox principal is unlocked and made available. Let B̂ denote the amount that still
remains locked.

Recall that by convention, A includes non-financial labor income assets and an amount
B is always “locked up” by the imperfect credit market. Therefore, we must constrain all
our regimes by the property that AT ≥ B̂ ≥ B.7 In particular, we recover the standard
problem by setting AT = B̂ = B. Note that once past the threshold, the remainder of

5Under public randomization, each set is an interval and so all we need to do is convexity the best elements,
and likewise the worst elements, and then draw the interval between these two numbers.
6The exercises we conduct are meant to be illustrative, and so we do not allow for contemporaneous
savings while the lockbox is “active”. These more realistic modifications can be easily studied, at least
numerically.
7So, really, the financial assets in the lockbox are given by A−B, and all thresholds and locked amounts
must be reinterpreted accordingly.
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the problem facing the individual is exactly as in the standard case, without a lockbox
feature, provided we replace the lower bound on assets by B̂. So we can conceive of
the overall problem as follows: at any date t, an individual is either “free” or “locked”,
depending on whether she has ever crossed the asset threshold AT before date t. If she
is free, then her (expected) value correspondence from that date onwards is governed by
V∗(A, B̂). We can use this fact to anchor the construction of her value correspondence
in the locked state. Denote this latter correspondence by V̂ . It is to be noted that V̂
depends on the three parameters (B,AT , B̂), but we don’t need to carry this dependence
explicitly in the notation and so suppress it.

We can now determine best deviation payoffs (for every realization of the taste shock),
as well as highest and lowest values, in the locked state. For every η and A in the locked
state, consider the problem of finding

(a.3) D̂(A, η) ≡ sup
A′∈[A,α(1−υ)A]

ηu

(
A− A′

α

)
+ βδL(A′),

subject to

(a.4) L(A′) =

{
inf V∗(A′, B̂) if A′ ≥ AT

inf V̂(A′) if A′ < AT

Notice how the constraint in (a.3) requires A′ ≥ A: assets cannot be run down in the
locked state. The second constraint describes where worst punishments following the
deviation come from: if the choice of A′ “frees” the individual, then it is drawn from the
equilibrium value correspondence V∗(A′, B̂) corresponding to the subsequent free state,
and if the individual is still locked, it must come from the lowest value in V̂(A′). As a
matter of fact, both infima in (a.4) can be shown to be attained, while in the discretized,
finite computational problem under consideration, the “sup” in (a.3) can be replaced by
“max”.

With D̂ in hand, we can turn to the problem of generating values at each A and η in the
locked state. It is possible to generate any value V such that

V = ηu

(
A− A′

α

)
+ δV ′

for some A′ with A′ ≥ A, and V ′ satisfying

V ′ ∈

{
V∗(A′, B̂) if A′ ≥ AT

V̂(A′) if A′ < AT
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as long as the no-deviation constraint is also met:

ηu

(
A− A′

α

)
βδV ′ ≥ D̂(A, η).

Let Ĥ(A, η) and L̂(A, η) be the largest and smallest such values,8 and recalling public
randomization, define

V̂(A, η) ≡ [L̂(A, η), Ĥ(A, η)].

These are the “η-specific” value correspondences, and now we impose the fixed point
consideration that

V̂(A) =
∑
η∈N

p(η)V̂(A, η)

for every A ∈ [B,AT ].

From a computational perspective, we discretize the space of assets and proceed exactly
as in Appendix A to calculate V̂ . That is, a two-stage procedure is employed, the first
to determine the standard value correspondence V∗ (for the lower bounds B and B̂),
followed by a similar process to obtain V̂ . We omit the details here.

The text considers three regimes, all drawn from the class above. In Regime 1, plotted
as a solid black line in Figures 5 and 6, the principal in the locked account is fully
accessible after a specified AT > B is reached; so B̂ = B.

In Regime 2, shown as the dot-dash line in Figure 6, the threshold is eliminated. This
corresponds to setting AT equal to infinity in the above problem (the value of B̂ is
irrelevant). The individual can always withdraw current interest, but can never access
the principal.

In Regime 3, corresponding to the dashed lines in Figure 6, contributions to the lock-up
account stop once the threshold is reached, but the principal remains locked up forever.
That is, AT = B̂ > B. In this case, a switch to the standard problem occurs once the
threshold is passed, but to a different standard problem, one characterized by the lower
bound AT on assets.

For the results displayed in Figures 5 and 6, the taste shock η takes two values, {0.8, 1.1},
with the associated probabilities p(η = 0.8) = 0.3 and p(η = 1.1) = 0.7. All other
parameters are the same as in the earlier numerical results: the hyperbolic discount factor

8Once again, we disregard questions of attaining the maximum and minimum, which are trivial in the
current finite context, but which can be affirmatively settled anyway.
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(β) is 0.4, the geometric discount factor (δ) is 0.8, the constant elasticity parameter (σ)
is 0.5, and B and Ā are set to 0.5 and 200 respectively. The standard problem with no
lockbox features a poverty trap at low asset values. For η = 0.8, there is a poverty trap
for A < 4.42 and for the high shock η = 1.1, a poverty trap exists when A < 5.35. For
the first and third lock-up regimes, AT is set to 5.5, slightly above the poverty threshold
for the high taste shock state.


