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1 Introduction

In many countries, small firms face lighter regulation than large firms. Regulation, broadly defined, takes

many forms, from hygiene and safety rules, to mandatory elections of employee representatives, to larger

payroll taxes. The rationale for exempting small firms from some regulations is that the compliance cost

is too high relative to their sales. A necessary consequence, however, is that regulations are phased in as

the firm grows, generating an implicit marginal tax. Because regulations are typically phased in at a few

finite points, they are sometimes referred to as “threshold effects”: for instance, in the case of France, a first

important set of regulations applies to firms with more than 10 employees, and a second important set of

regulations applies to firms with more than 50 employees. As a result, the firm size distribution is distorted,

with few firms with exactly 10 (or 50) employees and a large number of firms with 9 (or 49) employees.

Figure 1 plots the firm size distribution in our French data, illustrating this well-known pattern.

These distortions have generated a large interest from public policy circles; for instance numerous com-

missions drew attention to this issue (see for instance Cahuc and Kramarz (2004)). In spite of this interest,

there is little work formally modeling these policies to understand and evaluate their effects.

On the positive side, a structural model is needed to understand the exact sources of distortion. It is

not obvious how the regulations should be modeled, given their scope and complexity (which we discuss in

detail in section 2). Are regulations equivalent to higher fixed costs, higher proportional taxes on labor, or

to a sunk cost? The puzzle that quickly emerges is, why are there any firms at all with exactly 50 employees

given the higher fixed costs? Our intuition is that many of these regulations might be better approximated

as a sunk cost (i.e. a one-time investment), since a large fraction of the cost is learning the regulation. The

presence of the sunk cost also helps explain why there are some firms that have exactly 50 employees: firms

are reluctant to have more than 50 employees the first time that they reach that limit, but they do not care

about the limit in subsequent periods, since the cost is already paid.

On the normative side, what are the potential benefits of removing, or smoothing, the regulation thresh-

olds? The visibly distorted firm distribution suggests that productivity could be increased if firms close to

the threshold grow, as labor would be reallocated towards more productive firms.

To address these questions, we introduce and estimate a simple structural model that takes into account

the phase-in of the regulation. Our model incorporates both a sunk cost of complying with the regulation

(which captures both the cost of learning the regulation and the cost of any one-time investment that it

requires), a higher per-period payroll tax and higher fixed costs. We show that the later two have similar

implications for employment, hence we concentrate on the case of the payroll tax.
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Our model can be solved using standard stochastic dynamic optimization techniques (Dixit and Pindyck

(1994), Stokey (2008)), and we obtain the cross-sectional distribution in closed form. This is useful when we

turn to the estimation because simulating accurately the highly skewed cross-sectional distribution of firms

is challenging.

For clarity, we fit two polar cases of our model to the data: first, the case where the regulation involves

only a sunk cost, and second, the case where the regulation involves only a per-period higher payroll tax.

In the first case, we find that the regulation is equivalent to a sunk cost of about one year of an average

employee wage. We next use our model estimates to infer the social cost of the regulation. Holding the num-

ber of firms constant, we find a productivity loss of 0.3% due to misallocation of labor across firms. However

when we allow the number of firms to adjust, we find a much smaller effect, around 0.04%. This suggests

that these regulations may not have large aggregative effects. In the second case, where the regulation is

modeled as a per period tax, this tax is estimated to be fairly small, about 0.26%, and its aggregate effects

are even smaller than in the sunk cost model. Finally, we also provide some evidence that the sunk cost

model fits the data better.

The rest of the paper is organized as follows. We first discuss the related literature. Section 2 presents the

data and some reduced-form evidence that motivates our analysis. Section 3 discusses the model. Section 4

covers our estimation method and presents the empirical results. Section 5 uses these estimates to conduct

some policy experiments. Section 6 concludes.

Related Literature Our paper is related to a recent growing literature which studies the effect of

misallocation on aggregate productivity and welfare. Building on Hopenhayn and Rogerson (1993), Restuccia

and Rogerson (2008) and Buera et al. (2011) suggest that misallocation is an important determinant of total

factor productivity (TFP). Hsieh and Klenow (2009) and Bartelsman et al. (2009) present empirical evidence

consistent with higher misallocation in poorer countries with lower TFP. Closely related to our paper, Guner

et al. (2008) suggest that for the same reason, size-dependent policies have a large negative impact on total

factor productivity.

In the studies of Restuccia and Rogerson (2008) and Guner et al. (2008), distortions arise due to implicit

“taxes”. However these taxes are not directly measured. The regulations that we discuss are a prime example

of these distortions, and they very clearly affect the firm distribution, consistent with these studies. While

our aim is more modest than the macro studies, since we focus on one particular distortion, we believe

that our focus allows a credible identification of the effect of government regulation on firms outcomes. In

particular, we evaluate whether it is feasible to match the distortion in the firm size distribution, which is
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the prima facie evidence that the regulation matters.

There are several existing studies documenting the distortion in size distribution in France (for instance

Cahuc and Kramarz (2004) or Ceci-Renaud and Chevalier (2011)), but we are not aware of any structural

modeling that tries to apprehend the costs of the distortion. While finishing this paper, we became aware

of a very recent working paper Garicano et al. (2012) that shares some of our goals and approach. The key

differences between our papers are that we focus on the sunk cost element of the regulation and aim to fit the

distribution around the threshold, whereas they focus on the labor tax element and aim at the entire firm

distribution. Hence, while we use similar data, we have different models, estimation methods and targets.

Overall, our results are complementary. We compare our results in more detail in sections 4 and 5.

2 Motivating Evidence

We first describe briefly the institutional background, then we present our data sources, and finally we show

some simple reduced-form evidence of the threshold effects.

2.1 Institutional Background

This section draws heavily from Ceci-Renaud and Chevalier (2011). Labor laws in France as well as various

accounting and legal rules make special provisions for firms with more than 10, 11, 20, or 50 employees.

These regulations are not all based on the same definition of “employee”. Labor laws, which are likely

the most important, are based on the full-time equivalent workforce, computed as an average over the last

12 months. The full-time equivalent workforce takes into account part-time workers, as well a temporary

workers, but not trainees or subsidized employment (contrats aidés). On the other hand, several rules are

based on sales as well as employment.

The main additional regulations as the firm reaches 50 employees are:

- possibly mandatory designation of an employee representative;

- a committee for hygiene, safety and work conditions must be formed and trained;

- a comité d’entreprise must be formed, that must meet at least every other month; this committee,

that must have some office space and receives a subsidy equal to 0.2% of the total payroll, has both social

objectives (e.g., organizing cultural or sports activities for employees) and an economic role (mostly on an

advisory basis);

- higher payroll tax subsidizing training which goes from 0.9% to 1.5% (formation professionelle);
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- in case of firing of more than 9 workers for “economic reasons”, a special legal process must be followed

(plan social). This legal process implies potentially a larger cost and higher uncertainty for the firm.

We emphasize that these are just a subset of the regulations which apply. This is enough to give a glimpse

of why one may expect them to be important, and also the difficulty of modeling these rules in a simple

model: while some are simply monetary rules (e.g., higher taxes), many add an element of uncertainty, and

many require the firm to do some organizational work.

2.2 Data

We use a panel data of firms assembled by the French National Statistical Institute (INSEE), that covers the

1994-2000 period. This panel, known as BRN (Bénéfices Réels Normaux), contains employment as well as

standard accounting information on total compensation costs, value added, current operating surplus, gross

productive assets, etc. The BRN data are exhaustive of all private companies with a sales turnover of more

than 3.5 million Francs (around 530,000 Euros) and liable to corporate taxes under the standard regime,

and include some other smaller firms. For our purpose, the 3.5 million threshold implies that we have all

firms with more than 30 employees or so. Hence we focus on the threshold at 50 employees, for which our

data is essentially exhaustive.

We removed from the sample firms with strictly less than 20 employees when we estimate the model.

This generated a sample of 44,1890 firms that we follow for 7 years, or 309,323 firm-year observations.

2.3 Preliminary data analysis

Figure 1 plots the distribution of employment for the entire period (1994-2000) and is truncated at 100

employees. Figure 2 zooms on the distribution between 40 and 60 employees. There are clearly large

discontinuities around the thresholds of 10 and 50 employees. On the other hand, the threshold for 20

employees appears less significant. Many surveys reveal “rounding” of employment, but this figure shows the

opposite pattern.

Table 1 reports the number of firms by number of workers over the range 40 − 60 normalized by the

fraction of firms between 40 and 60. There is a clear drop in the number of firms after 49 employees. For

example, there more than three times as many firms with 49 employees as firms with 51 employees.

A useful way to summarize the break in this distribution is to approximate it with a power law distribu-

tion. The power law assumption states that the probability that firm size is greater than x is proportional

to x−ξ. Formally, P (Size > x) = Cx−ξ where C and ξ are constants.
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Figure 1: Firm size distribution by employment between 1 and 100 employees.
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Figure 2: Firm size distribution by employment between 40 and 60 employees.
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Fraction Std. Dev. # Firms Fraction Std. Dev. # Firms
40 8.05 0.1089 5141 50 3.51 0.0721 2246
41 6.65 0.1004 4247 51 2.61 0.0651 1669
42 7.26 0.1035 4637 52 2.75 0.0655 1755
43 6.82 0.1023 4355 53 2.67 0.0648 1708
44 6.85 0.1001 4378 54 2.57 0.0631 1641
45 7.34 0.1049 4692 55 2.50 0.0617 1598
46 6.82 0.1032 4360 56 2.34 0.0564 1486
47 7.07 0.0998 4516 57 2.21 0.0587 1411
48 8.18 0.1129 5225 58 2.34 0.0583 1497
49 9.39 0.1167 6001 59 2.00 0.0564 1281

Table 1: Fraction is the number of firms for each employment size over the range 40 − 60, normalized by
the total number of firms between 40 and 60; Std. Dev is the standard error of the fraction of firms for each
employment level; and #Firms is the raw number of firms in each bin.

Figure 3 displays the results of two estimations. First, we estimate the parameters C and ξ of the

power law for firms with more than 100 employees. The power law seems to approximate well the firm size

distribution for all but the largest firms. This is a well-known result (See Axtell (2001) and Di Giovanni

et al. (2011) among others). Second, we run a regression of the log frequency on log size, with or without a

structural break at size 50. The presence of a structural break is clearly visible from this second figure. In

the Appendix, Figure 13 shows that the same pattern hold across sectors.
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Figure 3: Power Law Estimation: (a) Estimation by Maximum Likelihood for all the firms with a number of
employees greater than 100; (b) Regression of the logged number of firms on the logged number of employees
with and without a structural break at 50 for firms with employment level between 30 and 100.

The dynamics of firms around the threshold are also affected. Figure 4 reports the probability that a firm

has an employment level in particular bin in period t conditional on having employment in the same bin at

time t− 1. Each bin has a width of 5 employees. Overall, this probability declines with firm size, as inaction
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Figure 4: P (nt ∈ bin|nt−1 ∈ bin): probability that a firm has an employment level in particular bin in period
t conditional on having employment in the same bin at time t− 1. Each bin has a width of 5 employees.

is more likely for small firms. Yet, this probability increases right before the threshold. Firms in the bin

45-49 are significantly more likely to remain in that bin next year (57% compared to 47% for the bin 35-39

and 35% for the bin 55-59). This suggests that the presence of the threshold leads to inaction and hence

slows down the growth of employment. The same patterns hold if we compute the inaction rate for each level

of employment as represented in Figure 5. The probability of keeping employment constant between two

consecutive years is 34% at 49 employees which is much higher than this statistics at 40 employees (17%) or

59 employees (11%).

To assess the statistical significance of this result, we estimate a probit characterizing the probability

of not adjusting employment. Explanatory variables are a set of dummies variables indicating whether or

not last period employment was 45, ..., 55, the growth rate of production, last period employment, and a

set of time dummies capturing aggregate shocks. The estimation uses firms with at least 5 employees over

the period 1994-2000. Table 2 reports the coefficients. The probability of inaction increases for firm with a

number of employees between 45 and 49. The largest increase is observed for firms of size 49.

Finally, Figure 6 plots labor productivity by size. There are two patterns in this picture: first, labor

productivity is higher for large firms, as is well known. Second, while there is substantial noise in this figure,

a peak of labor productivity is obtained for 49 employees. This is also a natural implication of the regulation:

because firms are reluctant to go over the threshold, they hire less labor than they would, generating larger

output per worker.
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Figure 5: Inaction rate: probability that employment stays constant between two years for each employment
level between 5 and 100. Each dot represents a particular employment level. The solid line is a locally
weighted regression of the inaction rate on the employment level with bandwidth 0.8. The vertical line
represents a level of employment of 49.

Variable Coefficient (Std. Err.)
Production Growth Rate -0.2136 (0.0060)
Log of Previous Period Employment -0.4680 (0.0020)
Size 45 0.1037 (0.0235)
Size 46 0.1182 (0.0243)
Size 47 0.1398 (0.0239)
Size 48 0.3561 (0.0209)
Size 49 0.6619 (0.0185)
Size 50 0.0715 (0.0350)
Size 51 -0.1285 (0.0442)
Size 52 -0.0574 (0.0421)
Size 53 -0.0678 (0.0431)
Size 54 -0.0677 (0.0441)
Size 55 -0.0292 (0.0438)

Table 2: Estimation of a probit characterizing the probability of not adjusting employment. Dependent
variable is the inaction rate. Explanatory variables are a set of dummies variables indicating whether or not
last period employment was 45, ..., 55, the growth rate of production, last period logged employment, and a
set of time and sectoral dummies. (Standard Errors in Parentheses).
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3 Model

In this section, we introduce and solve a simple dynamic model of production and employment, based on

Lucas (1978). For simplicity we assume that there is only one threshold. Firms face a regulation which

requires them to pay a sunk cost the first time that their employment exceeds the threshold n, and firms

face higher per-period costs if they currently have more than n employees. Hence, our model incorporates

both types of costs. When we estimate the model, we consider the two polar cases of zero per-period costs

and zero sunk cost.

We start with a partial-equilibrium model, which is the basis of our estimation strategy. Section 5 embeds

our model of the firm in a general equilibrium framework to perform some policy experiments.

3.1 Model assumptions

Time is continuous and there is no aggregate uncertainty. There is a continuum of firms, which are ex-ante

homogeneous but differ in their realization of idiosyncratic shocks. Each firm operates a decreasing-return

to scale, labor-only production:

y = eznα,
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where α ∈ (0, 1) and ez is the exogenous productivity (e denotes the exponential function). For simplicity

we assume that exit is exogenous and occurs at rate λ. Note that we abstract from fixed costs in this

problem; given that we assume exogenous exit, this is without loss of generality. Fixed costs do not affect

the employment decision, and we do not use profits data in our estimation.

We assume that log productivity z follows a Brownian motion,

dz = µdt+ σdWt.

This specification is attractive not only because of its tractability, but because it is consistent with two

robust features of the data: (i) firm-level shocks are highly persistent, if not permanent; (ii) the firm size

distribution follows a Pareto distribution. As we show below (and as is well known), the geometric Brownian

motion dynamics generate a stationary distribution that is Pareto.

We also assume that all firms enter with the same productivity z0. This simplification has little impact

on our results since we do not focus our estimation on small firms (which is where the entrants start).

Employment n can be costlessly adjusted, and the wage is w. For simplicity, we assume that n is a

continuous choice (i.e., we do not impose indivisibility). If n is greater than n, a proportional tax τ applies

to the wage rate and a fixed cost cf has to be paid. We assume that the proportional tax applies to all

employment, including that below n, but this is without loss of generality, since we allow the fixed cost cf

to be negative (i.e., the tax could apply only to employment in excess of n). The first time a firm crosses

the threshold n, it has to pay a sunk cost F . This cost captures the investment necessary to comply with

the regulation, including the physical cost of buying an equipment, but also the informational costs such

as learning about the regulation and perhaps consulting with lawyers or accountants. These informational

costs may also reflect wasted managerial time.

The presence of the sunk cost makes this a dynamic optimization problem. Let s ∈ {0, 1} denote whether

a firm has already paid the sunk cost in the past. The state of the firm is summarized by (z, s).

3.2 Static subproblem

We first study the static problem, to determine the firm profit function which will enter the dynamic op-

timization.1 To find the optimal labor demand and profit of the firm, we first solve the firm’s problem

conditional on operating below the threshold, then we find the solution conditional on operating above the
1This section thus does not depend on assumption that z is a Brownian motion.
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threshold, and finally we find the overall solution by combining these results.

The current-period profit function for a firm which operates below the threshold is:

πb(z) = max
0≤n<n

{eznα − wn} . (1)

The superscript b stands for “below the threshold”. Optimal employment is given by:

nb(z) =


(
α
w

) 1
1−α e

z
1−α , if z < z

n− , if z ≥ z.

where z = log
(
n1−α w

α

)
and n− indicates a value just below n. Profits are given by the formula

πb(z) = e
z

1−α

(α
w

) α
1−α

(1− α), if z < z

= eznα − wn, if z ≥ z.

The current-period profit function for a firm that decides to operate above the threshold, and hence to face

the regulation, is:

πa(z) = max
n≥n
{eznα − w(1 + τ)n− cf} . (2)

where the superscript a stands for “above the threshold”. The firm operates above the threshold if z is

greater than a cutoff value z, defined as the solution to

e
z

1−α

(
α

w(1 + τ)

) α
1−α

(1− α)− cf = eznα − wn.

It is easy to see that z > z, provided that there is a cost of operating above the threshold: τn+ cf > 0. We

will maintain this realistic assumption throughout the paper.

Summarizing, optimal employment if the firm decides to operate above the threshold is

na(z) =


n+ if z < z,(

α
w(1+τ)

) 1
1−α

e
z

1−α , if z ≥ z,
(3)
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This leads to profits

πa(z) = e
z

1−α

(
α

w(1 + τ)

) α
1−α

(1− α)− cf , if z ≥ z,

πa(z) = eznα − w(1 + τ)n− cf , if z < z.

Combining our results, we can now write the firm profit, as a function of the current productivity and state

s ∈ {0, 1} . Recall that s = 0 means that the firm has not paid the sunk cost and hence is forced to operate

below the threshold, whereas a firm with s = 1 can choose to operate either below or above the threshold.

Mathematically,

π(z, 0) = πb(z),

π(z, 1) = max
{
πa(z), πb(z)

}
.

We can obtain a formula for π(z, 1) by noting the following: (i) if z < z, πb(z) > πa(z), since the firm

pays lower wages and fixed costs; (ii) for z > z, the firm will decide to operate above the threshold; (iii) if

z ∈ (z,z), it is optimal to remain just below the threshold. Hence,

π(z, 1) = e
z

1−α

(α
w

) α
1−α

(1− α) for z < z,

= eznα − wn for z ≤ z ≤ z,

= e
z

1−α

(
α

w(1 + τ)

) α
1−α

(1− α)− cf for z > z.

For completeness, we also state the profit function:

π(z, 0) = e
z

1−α

(α
w

) α
1−α

(1− α) for z < z,

= eznα − wn for z ≥ z.

and the employment demand:

n(z, 0) =
(α
w

) 1
1−α

e
z

1−α for z < z,

= n− for z > z.

13



n(z, 1) =
(α
w

) 1
1−α

e
z

1−α for z < z,

= n− for z ≤ z ≤ z,

=

(
α

w(1 + τ)

) 1
1−α

e
z

1−α for z ≥ z.

To illustrate the logic, figure 7 plots profits as a function of employment for a high, medium and low value

of productivity. The left column is the case of a proportional wage tax while the right column represents

a fixed cost. This figure illustrates that firms with low productivity decide to operate below the threshold,

since it is where their profits are highest. The high productivity firms operate above the threshold. The

medium productivity firms operate exactly at (i.e. just below) the threshold. This figure also shows that the

two types of per-period costs (fixed cost or wage tax) lead to the same implications for employment. Unless

one uses data on productivity or profits, it is indeed impossible to distinguish the two. In our empirical work

we focus on the case of a wage tax, because one provision of the law explicitly implies higher payroll taxes.

3.3 Dynamic optimization

Given the process for z, and the probability of exit λ, the firm’s value maximization problem can be written

formally as choosing a stopping time T to cross the threshold. Formally, for a firm that has productivity z

today:

V (z, 0) = sup
T≥0

E

[ˆ T

0

e−(r+λ)tπ(zt, 0)dt+

(ˆ ∞
T

e−(r+λ)tπ(zt, 1)dt− Fe−(r+λ)T

)]
. (4)

(Note that in writing this expression, we normalized the exit value to zero; since exit is exogenous, this is

without loss of generality.) Intuitively, the firm will make the switch if its productivity becomes large enough;

denote by z∗ the cutoff that triggers the firm to pay the sunk cost. A standard option value argument implies

that z∗ will be greater than z: given that the evolution of productivity z is uncertain, the firm will delay

paying the sunk cost rather than invest as soon as it expects the investment to be just profitable in the

present discount value sense.

This section presents the solution of the model using directly some results in Stokey (2008) for a general

option exercise problem.2 First, we rewrite the problem explicitly as choosing a cutoff z∗, given the current
2An alternative solution method, using the more intuitive Hamilton-Jacobi-Bellman equations and smooth pasting conditions,

is presented in the appendix.

14



Figure 7: Profits, as a function of employment, for three different values of productivity (top, middle and
bottom panels). Left panel: Wage Tax if operate with more than 50 employees; Right panel: Fixed cost if
operate with more than 50 employees. This figure is a numerical illustration and not based on estimated
parameters.
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value z:

V (z, 0) = sup
z∗≥z

Ez

[ˆ T (z∗)

0

e−(r+λ)tπ(zt, 0)dt+ e−(r+λ)T (z∗) (V (z∗, 1)− F )

]
, (5)

with

V (z∗, 1) ≡ Ez∗
[ˆ ∞

0

e−(r+λ)tπ(zt, 1)dt

]
,

and with R1 and R2 the roots of the quadratic σ2

2 R
2 + µR − (λ+ r) = 0, i.e. with J =

√
µ2 + 2(r + λ)σ2,

we have R1 = −µ−J
σ2 < 0, and R2 = −µ+J

σ2 > 0.

The next proposition derives the optimal policy. In the language of Stokey (2008), R1 discounts the time

the process z will spend between z and z∗.

Proposition. The solution to the firm problem (equation (5)) is z∗, the unique value satisfying:

−R1

ˆ z∗

z

eR1(z∗−z) [πa(z)− πb(z)
]
dz = (r + λ)F. (6)

Proof. See appendix.

For given structural parameters {α, n, µ, σ, τ, cf , F, r, λ} , this equation allows us to find z∗ numerically

easily. We conclude this subsection by noting some intuitive comparative statics: higher uncertainty, higher

sunk costs, or higher fixed costs, all make it optimal to wait longer before crossing the threshold. This is the

standard real option effect.

Corollary. z∗ is increasing in σ2, F, τw, τf and n.

Proof. Differentiation of equation (6) gives the results.

3.4 Stationary Distribution

Given our interest in the size distribution, we derive the joint cross-sectional distribution over (z, s) in closed

form. Denote the probability density function as f(z, s). Recall that firms enter with z = z0, and z then

evolves according to a Brownian motion with parameters (µ, σ). Firms switch from s = 0 to s = 1 as soon

as z reaches z∗, and exit upon the realization of a Poisson process with parameter λ. We can write the

Kolmogorov Forward equation, which reflects the conservation of the total number of firms, net of exit:

−µ∂f(z, 0)

∂z
+
σ2

2

∂2f(z, 0)

∂z2
= λf(z, 0), (7)
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which holds for all z < z0 and all z ∈ (z0, z
∗). (See Dixit and Pindyck (1994), appendix of chapter 3, for a

heuristic derivation, and chapter 8 for an application similar to our case.) The equation needs not hold for

z = z0, since there is entry of new firms.

The same equation applies to firms which have made the switch:

−µ∂f(z, 1)

∂z
+
σ2

2

∂2f(z, 1)

∂z2
= λf(z, 1), (8)

which holds for all z ∈ (−∞, z∗) and for all z ∈ (z∗,+∞).

Last, we need to state the boundary conditions. The first one is simply the requirement that f is a

density, i.e. ˆ +∞

−∞
f(s, 1)ds+

ˆ +∞

−∞
f(s, 0)ds = 1.

To derive the other boundary conditions, the easiest approach is to approximate the Brownian motion with

a discrete random walk, as in Dixit and Pindyck (1994). This yields the conditions

f(z∗, 0) = 0,

and f(., 0) must be continuous at z0, while f(., 1) must be continuous at z∗ :

lim
s→z−0

f(s, 0) = lim
s→z+0

f(s, 0),

lim
s→z∗−

f(s, 1) = lim
s→z∗+

f(s, 1).

Finally, a balance condition holds for z = z∗, reflecting that the number of firms which reach z∗ and have

s = 0 is equal to the number of firms which enter at s = 1 with z = z∗, and is equal to the number of firms

with s = 1 which exit in any time period: this leads to

−σ
2

2
f ′(z∗, 0) = λ

ˆ ∞
−∞

f(s, 1)ds.

Given these boundary equations, solving for the cross-sectional distribution involves some simple algebra,
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which is relegated to the appendix. The result is:

f(z, 0) =
β1β2

β1 − β2

(
eβ2(z−z0) − eβ1(ẑ−z0)eβ2(z−ẑ)

)
, for z < z0,

=
β1β2

β1 − β2

(
eβ1(z−z0) − eβ1(ẑ−z0)eβ2(z−ẑ)

)
, for z∗ > z > z0,

and

f(z, 1) =
β1β2

β1 − β2
eβ1(ẑ−z0)eβ2(z−ẑ), for z < z∗,

=
β1β2

β1 − β2
eβ1(z−z0), for z > z∗.

This expression implies that z has an exponential distribution in the upper tail. Since log employment and

log sales are both proportional to z, employment and sales follow Pareto distributions, and the c.d.f. of

employment is proportional to n to the power β1(1− α).3

Figure 8 below illustrates some properties of our model. (This figure is drawn using our parameter

estimates.) For now focus on the left column. The second panel from the top shows the distribution in the

absence of regulation - it is is Pareto. The bottom panel depicts the distribution with a per-period wage tax

(here too, the results would be similar with a fixed cost). There is a substantial “hole” in the distribution

with no firms whatsoever between 50 and 54 employees. This figure presents an empirical challenge, because

in the data there are many firms with an employment level slightly greater than 49. It would be incredible

to attribute the presence of all these firms to measurement error. Last, the third row shows the impact of

a sunk cost on the firm size distribution. The sunk cost model does not suffer from the same deficiency as

the fixed cost model: there are no holes in the distribution, and in particular some firms have exactly 50

employees. These are firms that crossed the threshold in the past and that were subsequently hit by negative

productivity shocks. Finally, the right hand column adds some classical measurement error to employment,

which obviously helps smoothing out the distribution.

To establish the economic relevance of these regulations, we now turn back to the data and propose a

simple structural estimation of our model.
3Note that this implies some restrictions on β1 to ensure that employment be finite. This in turn restricts the parameters

µ, λ, σ2. Our estimated parameters satisfy these restrictions, so we do not need to impose them in practice.
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4 Estimation

This section proposes a simple estimation of our model using indirect inference. We take advantage of our

closed form solutions which make calculating model moments computationally easy.

As discussed below, we incorporate classical measurement error in (log) employment; the standard de-

viation of measurement error is σmrn. Table 3 lists our parameters. The full set of structural parameters

is the vector θ = (r, w, α, z0, λ, µ, σ, τ, F, σmrn). We partition this vector into two vectors, i.e. θ = (θp, θe)

where θp = (r, w, α, z0) includes parameters that are set a priori, and θe = (λ, µ, σ, τ, F, σmrn) is the vector

of estimated parameters.

Like calibration, indirect inference works by selecting a set of statistics of interest, which the model is

asked to reproduce.4 These statistics are called sample auxiliary parameters Ψ̂ (or target moments). For an

arbitrary value of θe, we use the structural model to generate S statistically independent simulated data set

and compute simulated auxiliary parameters Ψs(θe). The parameter estimate θ̂e is then derived by searching

over the parameter space to find the parameter vector which minimizes the criterion function:

θ̂e = arg min
θe∈Θe

(
Ψ̂− 1

S
Ψs(θe)

)′
W

(
Ψ̂− 1

S
Ψs(θe)

)

where W is a weighting matrix and Θe the estimated parameters space. We choose the identity matrix as

using the optimal weighting matrix is fraught with a well-known small sample bias problem (Altonji and

Segal (1996)). This procedure generates a consistent estimate of θe. The minimization is performed using

Nelder-Mead simplex algorithm. We used different starting values to find the global minima. To simulate

the model, we draw from the stationary distribution derived in the previous section.

The standard errors are obtained using 500 bootstrap repetitions. In each bootstrap repetition, a new set

of data auxiliary parameters is produced using Block-Bootstrap (Hall and Horowitz (1996)). An estimator

θ̂be is found by minimizing the weighted distance between the recentered bootstrap auxiliary parameters and

the recentered simulated auxiliary parameters.

4.1 Predefined Parameters

Some parameters are not estimated because they are either normalization or are fairly standard. We set the

real interest rate r to 5 percent. The wage rate is normalized to 1. We assume that α equals 0.66, as in

Cooper et al. (2007). This parameter is a reduced form for the labor share, decreasing returns to scale and
4See Gourieroux et al. (1993) for a general discussion of indirect inference.
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Parameters Definition
r interest rate fixed
α curvature profit function fixed
z0 Entry TFP level fixed
w wages normalized
λ death probability estimated
µ drift estimated
σ std dev shocks estimated
τ proportional tax on wages estimated
F sunk cost estimated
σmrn measurement error estimated

Table 3: Economic Parameters

the elasticity of demand.5 Finally, the parameter z0 is irrelevant for the statistics that we target given the

Pareto distribution implied by our model.

4.2 Measurement Error

There is likely to be some measurement error in our employment variable, which is the arithmetic average

of the number of employees at the end of each quarter. Further, it is the relevant measure of employment

for some but not all of the regulations. For instance, some regulations are based on employment measured

in full-time equivalent and some other regulations apply if there is more than 50 employees in the firm for

more than 12 months. Finally, measurement error also more broadly captures time aggregation problems as

well as adjustment cost or search frictions which lead to an imperfect control of the size of the workforce.

However, since our data is based on administrative sources, it has a relatively high quality, and we think

measurement error is limited.

We explicitly introduce measurement error into the simulated moments to mimic the bias these impute

into the actual data moments. We do so by multiplying employment by mrnit that is i.i.d over firm and

time and follow a log-normal distribution with mean − 1
2σ

2
mrn and standard deviation σmrn.6

4.3 Auxiliary Parameters and Identification

Table 5 lists the auxiliary parameters (target moments) that we picked. We set to match bins of the

distribution of employment around the thresholds, the average and volatility of growth in employment, the
5There is little agreement on this parameter. We have experimented with different values. While the precise value of α

does matter for some of our parameter estimates, it has a small effect on our policy experiments. This is because a higher α
implies a lower volatility of fundamental shocks to fit the size distribution, and these also have offsetting effects on the benefits
to reallocation.

6We also estimated the model with measurement error represented as the difference of two Poisson distributed random
variables and we have found very similar results to those we report here.
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Sunk Cost Model Proportional Tax Model
λ 0.0499 (0.0016) 0.0205 (0.0003)
µ 0.0029 (0.0002) -0.0035 (0.0001)
σ 0.0842 (0.0015) 0.0751 (0.0008)

σmrn 0.0107 (0.0005) 0.0377 (0.0010)
F 1.0810 (0.0672) 0
τ 0 0.0026 (0.0001)

Table 4: Parameter Estimates (Standard Errors in Parentheses)

slope of the power law. The rationale for the bins is that we want to reproduce well the firm size distribution

jump that is the visual evidence that the regulation matters. The rational for the last three moments is that

we want the model to be consistent with key features of firm dynamics.

Identification of the models’s parameters is achieved by a combination of functional form and distribu-

tional assumptions, and is difficult to prove, but the intuition is straightforward. Heuristically, the median

net employment growth is informative about the drift µ. The bins between 40 and 60 are informative re-

garding the frictions parameters τ and/or F and the variance of measurement error σmrn. The variance of

employment growth is informative about the variance of productivity shocks σ and the variance of measure-

ment error σmrn. The slope of the power law is informative regarding the variance of productivity shocks σ,

the drift µ and the exit rate λ.

4.4 Estimation Results

We do not attempt to estimate a model with both sunk cost and wage tax since identification is delicate.

Rather we compare the model with sunk cost and the model with per-period wage tax.

Table 4 reports the structural parameters estimates together with estimated standard errors. The first

column estimates the sunk cost model with τ = 0 and the second column estimates the proportional tax

model with F = 0. In the appendix, we present and discuss the estimation results when splitting our sample

into four sectors (manufacturing, retail, construction and services).

The data are consistent with a regulation that acts like a sunk cost of about one year of a worker wages

or a small proportional tax on wages of 0.26%. The estimates for the drift and the variance are not very

sensitive to the specification of the regulation. Shocks to total factor productivity are estimated to be 8%

per year, which is in line with standard estimates.

Measurement error is much larger for the model with a proportional tax than for the model with a sunk

cost. The main reason is that the model with a proportional tax implies that firms do not want to operate

on the right side of the threshold. Even with a small estimated tax, the model predicts that when it is
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Data Sunk Cost Model Proportional Tax Model
# firms
40-45 0.3565 0.3392 0.3395
45-50 0.3883 0.3852 0.3847
50-55 0.1413 0.1517 0.1504
55-60 0.1140 0.1238 0.1253

Median ∆ log n 0 0.0054 -0.0096
V (∆ log n) 0.0485 0.0607 0.0516
Power Law 1.1417 1.1471 1.1503

Table 5: Auxiliary Parameters

Data Proportional Tax Sunk Cost
Fraction of firms

>200 0.4711 0.4505 0.4515
>500 0.1615 0.1570 0.1578
>1000 0.0674 0.0707 0.0713
>5000 0.0059 0.0111 0.0112

Table 6: Firm Size Distribution - share of firms among firms with more than 100 employees, in the data, in
the model with tax cost, and in the model with sunk cost.

optimal to cross the threshold, firms operate at a size of at least 55 employees. Without measurement error,

there are no firms with an employment level between 50 and 55. This is illustrated in the bottom left panel

of Figure 8. The model with a sunk cost does not suffer from this feature. Some firms operate naturally to

the right of the threshold: firms that have crossed the threshold in the past and that were subsequently hit

by negative productivity shocks. As a result, the amount of measurement error is much lower in the sunk

model, with an estimated standard deviation of 1% compared to the model with a proportional tax that

implies a measurement error close to 4%.

The exit rate is estimated to be 5% in the sunk cost model and 2% in the proportional tax model. This

is low, and reflects that our model do not allow for endogenous exit. Hence the mode underpredicts the exit

rate of small firms and is better description of the exit behavior of larger firms.

Table 5 reports the fit of the models. They are both able to fit the moments well, and in particular the

jump in the bins distribution between 45-49 and 50-54. Figure 9 reproduces the log frequency - log size

regression using simulated data from the model with a sunk cost. Both model reproduces the discontinuity

at 50 and the change in the constant of the power law distribution observed in the data.

We finally examine the ability of the model to account for the large firms’ size distribution. Table 6

reports the fraction of firms above 200, 500, 1000 and 10000 employees normalized by the fraction of firm of

more than 100 employees. Although these moments are not directly targeted in the estimation, both models

do a reasonable job.
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Figure 8: Distribution of firm employment (between 40 and 59 employees), in the data and in the model.
The distribution is normalized by the total number of firms between 40 and 59 employees.
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Figure 9: Broken Power Law: Regression of the logged number of firms on the logged number of employees
with and without a structural break at 50 for firms with employment level between 30 and 100 using (1) the
data, (3) simulated data from the sunk cost model and (3) simulated data from the proportional tax model.
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We close by asking, is there any additional means of distinguishing the sunk cost and wage tax model?

First, as figure 8 shows, the wage tax model implies that the true distribution of employment (without

measurement error) has a very large spike at 49, about 50% larger than the sunk cost model, and in addition

there are, in reality, no firms with employment just above 50. With measurement error, the model also

mechanically underpredicts the distribution to the right of the threshold since the spike is smoothed out

by measurement error. We are somewhat skeptical that measurement error is so large in our data which is

based on administrative sources.7

A more direct test of the sunk cost model is to calculate the firm size distribution, conditional on having

been above 50 in the past.8 In the sunk cost model, this conditional distribution should not exhibit a spike

at 49, so this is a stringent test of our theory. First, figure 10 compares the conditional and unconditional

distribution in the data. While there is still a spike at 50, its size is dramatically reduced by conditioning.

Whereas in the unconditional distribution, there are 2.7 times more firms with 49 employees than with 50, in

the conditional distribution, this ratio is only 1.5. To go further and see how measurement error affects this

statistic, figure 11 presents the results for the data and for the models at estimated parameter values. The

second panel on the left confirms that without measurement error, there is no spike altogether. With our

small measurement error, there is a small spike, similar to the data. The intuition is that the conditioning (on

employment being greater than 50 in the past) is slightly noisy since employment is not perfectly measured;

hence we capture some firms that are still below the threshold, and remain there. In contrast, the wage

tax model produces a large spike that is smoothed out by measurement error. Overall, the sunk cost model

appears closer to the data.

5 Policy Experiments

In the previous section, we estimated the regulatory cost as perceived by firms. In this section, we use our

estimates to infer the aggregate effect of the regulation on output, employment and productivity.

From the point of view of a social planner, the regulation misallocates labor across firms and hence reduces

total factor productivity. Moreover, the regulation affects the incentives of firms to enter. To demonstrate

this, we consider three experiments, which differ in the set of equilibrium feedback that they allow. We first

discuss the conceptual framework for our experiments, then we present and discuss the results.
7Garicano et al. (2012) using a similar model also estimate large measurement error.
8We thank Theodore Papageorgiou for this suggestion.
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Figure 10: Distribution of firm employment (between 40 and 59 employees). Left Panel: unconditional.
Right Panel: conditional on having had more than 50 employees in the past.

5.1 Three Experiments

For the purpose of estimation, we do not need to take a stand on the determination of the number of firms

or of market prices: given the observed number of firms and factor prices, we use cross-sectional information

to identify our parameters. However, for our policy experiments, it can matter whether the number of firms,

or prices adjust in response to a change in the regulation. Our three experiments differ in their assumptions

about these equilibrium feedbacks.

Our first experiment abstracts from all feedbacks and considers the effect of removing entirely the reg-

ulation, holding the wage, the interest rate and the number of firms fixed. Concretely, we first solve the

firm problem with our estimated regulation, and obtain firm’s optimal decisions, n(z;w, θ), y(z;w, θ) and

z∗(w, θ) where for clarity we now index all policy functions by the wage w as well as θ, the vector of pa-

rameters (which includes the regulation). We then calculate aggregate employment and output using the

cross-sectional distribution f(z; θ) :

N(w, θ) =

ˆ ∞
−∞

n(z;w, θ)f(z; θ)dz,

Y (w, θ) =

ˆ ∞
−∞

y(z;w, θ)f(z; θ)dz.

We can compute the policy rules, cross-sectional distributions, and aggregate labor and output for dif-

ferent regulations, corresponding to different vectors θ; in particular if we remove the regulation entirely, we

set θ = θ0 and employment and output are N(w, θ0) and Y (w, θ0). We then calculate the percentage change

in N and Y from θ to θ0. This experiment implicitly assumes a perfectly elastic supply of labor, and an
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Figure 11: Distribution of firm employment (between 40 and 59 employees), conditional on having had more
than 50 employees in the past, in the data and in the model. The distribution is normalized by the total
number of firms between 40 and 59 employees.
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inelastic supply of firms. We also discuss briefly the effect of applying the regulation to all firms, and to

move the threshold to 75 employees rather than 50 employees; these all correspond to different vectors θ.

Our second experiment asks, how much of an increase in output can we obtain, holding total employment

constant, simply by reallocating labor across firms. That is, suppose we solve the allocation problem:

Y (N ; θ) = max
{n(z)}∞z=−∞

ˆ ∞
−∞

ezn(z)αf(z; θ)dz

s.t. :

ˆ ∞
−∞

n(z)f(z; θ)dz ≤ N,

where n(z) is the employment of firms with productivity z. This is the solution of the aggregate production

function (expressing maximum possible aggregate output as a function of available aggregate labor). We

report the percentage change in Y (N ; θ) as θ is varied. An alternative way to think about this experiment

is that labor supply is fully inelastic and the wage adjusts to keep the same total employment.

Our third experiment adds endogenous entry and labor supply to the model by embedding our firm

dynamics in a general equilibrium framework as in Hopenhayn and Rogerson (1993). Since this model is

well know, we describe it only briefly here. First, there is a representative agent with utility function

ˆ ∞
0

e−ρt

(
log (Ct)−B

N1+φ
t

1 + φ

)
dt.

This agent supplies work to the market, at the wage wt, and buys or sells assets at the interest rate rt. In

equilibrium, the only assets are the firms. We consider a steady-state stationary equilibrium: there is no

aggregate variation, since a law of large numbers apply, and macroeconomic aggregates are constant. As a

result, the interest rate is constant, rt = r = ρ.

For a given wage, we can solve the value function V (z, s;w, θ), policy functions n(z, s;w, θ) and z∗(w, θ),

and stationary distribution f(z, s;w, θ) as in section 3. We have added the wage as an explicit argument

to these functions to emphasize the dependence. Since all firms enter with a productivity z0, the free entry

condition reads,

k = V (z0, 0;w, θ). (9)

Denote the flow of firms entering per unit of time E, and denoteMf(z, s;w) the stationary distribution of

firms. With exogenous exit at rate λ, the flow of entrants per unit of time E must equal λM in a stationary

equilibrium.
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Total output is then given by

Y (w; θ) = M

ˆ ∞
−∞

ezn(z;w, θ)αf(z; θ)dz, (10)

and total labor is

N(w; θ) = M

ˆ ∞
−∞

n(z;w, θ)f(z; θ)dz. (11)

Labor supply satisfies the first order condition

B.Ct.N
φ
t = wt, (12)

and the goods market constraint is

Ct + Etk = Yt. (13)

A stationary equilibrium is then given by {Y,C,E,M,w,N} such that E = λM and the equations (9)-(13)

are satisfied. In this model, the free entry condition pins down the equilibrium wage. Given this wage, the

number of firms adjusts the scale of the economy so that labor demand equals labor supply; that is, there is

a perfectly elastic supply of firms.

This third experiment is itself divided in two different cases, labeled (a) and (b): we first consider the

case of perfectly inelastic labor supply (B = 0 and N = N), and then we consider the case of an elastic labor

supply (B > 0).

We close by mentioning three issues that affect all experiments. First, we need to take a stand on whether

the regulation cost is a real resource cost (that must be deducted from the resource constraint) or is a transfer

(which is rebated lump-sum to households). In reality it is likely that both components are present. Hence

we will present the results for the two possible assumptions. Second, the calculations above focus on steady-

state effects and abstract from transitional dynamics. We believe this is appropriate to examine the long-run

productive effects of the regulation, but of course this makes the welfare comparison inaccurate. Last, our

calculations have little to say on the desirability of the regulations themselves since we do not model the

benefits of the regulation.

5.2 Results

Table 7 and 8 present the results of our three experiments for the sunk model and for the proportional tax

model. In all cases, we adjust z0 so that the wage is one, as assumed in our estimation. For experiment 3a, we
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Experiment Y N w M C
1:Partial Equilibrium 0.866 0.885
2:Pure Reallocation 0.288
3a:GE, Inelastic Labor -0.009 0.0097 -0.849 0.046
3b:GE, Elastic Labor -0.027 -0.018 0.0097 -0.867 0.028

Table 7: Policy Experiments for the model estimated with sunk cost

Experiment Y N w M C
1:Partial Equilibrium 0.337 0.510
2:Pure Reallocation 0.099
3a:GE, Inelastic Labor -0.162 0.011 -0.477 -0.149
3b:GE, Elastic Labor -0.082 0.080 0.011 -0.397 -0.069

Table 8: Policy Experiments for the model estimated with wage tax

calibrate the entry cost k to replicate the average firm size (7.5 employees per firm). For experiment 3b, we

further need to calibrate labor supply preferences. We set an elasticity of labor φ = 1 (see Chetty (2012) for

a discussion), and B such that total employment is 0.25. These are standard values in the macroeconomics

literature.

The first experiment shows that removing the sunk cost regulation leads to a significant increase in output

and employment, close to one percent, as many medium-sized firms grow by going over the threshold and

hence increase labor demand. Average labor productivity falls sightly as many firms that were previously

constrained in their employment are now able to increase it. Interestingly, and this holds for all our exper-

iments, the output (and employment) gains from extending the threshold to 75 employees rather than 50

are only 0.12 percent (not reported in the table), much smaller than the gains from entirely eliminating the

threshold.9

Our second experiment shows what happens if we force total employment to remain constant. This

is equivalent to taking the results of the first experiment and increasing the wage to make employment

return to its initial value. In this case, the output gain is more modest. Very large firms and very small

firms contract because of the higher wage. But intermediate firms grow as they now go over the threshold.

The productivity gains from the reform are significant. We note that this result goes some way towards

addressing the observation that France has relatively less medium-sized firms than comparable countries

(See Bartelsman et al. (2009) or Bartelsman et al. (2013) among others).

Our third experiment, that adds endogenous entry, yields quite different results. Allowing the number

of firms to adjust reduces dramatically the steady-state output gains. Since firms close to the threshold
9Of course, if the threshold is pushed sufficiently high, the gains converge to those obtained by fully eliminating the thresholds;

but this convergence is slow.
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can grow, the economy needs fewer firms, which economizes on entry costs. Overall, output actually falls

slightly in the new steady-state, but the reduced entry costs imply that consumption rises.10 If labor supply

is elastic, the wealth gains from removing the threshold further reduce labor supply and output. However,

this effect is fairly small. This points to another of our results: whether we model the regulation as a tax

or as a real resource cost has very little effect on these experiments. For instance, if in experiment 3b the

regulation was a transfer instead of a real resource cost, the decline of output would be -0.024 percent instead

of -0.027 percent, and employment would contract by -0.022 percent instead of -0.018 percent (unreported

in the table).

The same kind of intuition for the policy experiments applies if the regulation is a wage tax rather than

a sunk cost. The effects are smaller because we estimate a fairly small tax. The main difference is that the

wage tax directly affects the demand for labor, leading to a relatively larger decline of employment.

Finally, the motivation for the phase-in of the regulation at 50 employees is that it is too costly to impose

the compliance cost on small firms. We can evaluate this argument by considering the counterfactual, what

would happen if all firms were subject to the regulation? With free entry, this would have dramatic effects

on the number of firms. For instance, in experiment 3b, the effect of imposing the sunk cost on everyone is

to reduce output by 3.80 percent, with the number of firms declining by a whooping 11.45 percent. It is safe

to say, then, that applying the regulation to all firms would be quite costly, which suggests that the phase-in

is perhaps not such a bad policy.11

One criticism of these experiments is that the free entry assumption is too extreme. In this spirit, figure

12 presents the results where we vary the elasticity of supply of firms. To do so, we extend this model by

relaxing the assumption that entry is perfectly elastic at cost k. To generate an upward-sloping supply of

entrants to the economy, we suppose that in each period there is a pool N of potential entrants, which differ

in their entry cost. The entry cost is distributed according to the cumulative distribution function H. In a

given period, only potential entrants with an entry cost below V (z0, 0;w) will enter. Denote k∗ the threshold

value for k. The flow of entrants E will equal NH(k∗) and the free entry condition is V (z0, 0;w) = k∗.

We parametrize the c.d.f. H as a log-normal distribution with standard deviation σv. This parameter

captures the heterogeneity of entry costs and hence the (inverse) elasticity of supply of entrants. For each

value of σv, we recalibrate the model and run the policy experiments. Figure 12 shows that as we reduce σv,

the results approach experiment 3, where entry is perfectly elastic: there is a large decline in the number of
10Our results echo those of Jaef (2012), who shows that incorporating entry and exit reduces the gains to reallocation.
11The study of Garicano et al. (2012) obtains large welfare gains in part because they estimate a large tax and large

measurement error, and in part because of different assumptions about the equilibrium feedback.
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Figure 12: Comparative Statics of Policy Experiments: change in the number of firms and in total output
when the sunk cost is removed, as a function of the standard deviation of entry costs.
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firms M and a smaller increase, or even a decrease, in output Y . As we increase heterogeneity in entry costs

σv and hence reduce the elasticity of firms, we see a smaller reaction in the number of firms and a larger

increase in output. It is however difficult to pin down a realistic value for σv from cross-section data alone.

6 Conclusion

Our paper studies a particular regulation which clearly distorts the firm size distribution, leading to an

obvious misallocation of labor - a channel that has been emphasized in the recent literature. Our results

provide a “case study” that is complementary to broader macro approaches (Hopenhayn and Rogerson (1993),

Restuccia and Rogerson (2008) and Buera et al. (2011)).

We obtain plausible estimates of the costs of the regulation and find that their aggregate effects are

significant if firm entry is inelastic. However these effects are limited if firm entry is elastic enough.

There are several interesting extensions. First, incorporating labor adjustment costs or search frictions

would be useful to take into account the imperfect, and costly control over the size of the labor force. Second,

introducing in the model other inputs, such as capital, would generate some factor substitution close to the

threshold: if firms do not want to increase employment, they may react by using other factors. Finally, given

the limitations of our data for small firms, we have abstracted from the existence of other thresholds (at 10

and 20 employees), but incorporating them would be useful to quantify the total effect of these regulations

on a firm’s life-cycle.
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Appendix

This appendix is not intended for publication. The first section presents estimation results for each of four

broad sectors of the economy (manufacturing, construction, retail and services). The second section presents

the proofs of some model results and formulas.

A Sectoral Results

Tables 9 and 10 report the structural parameters estimates (with standard deviation in parenthesis) of the

sunk cost model and the proportional tax model respectively, for each major sector of the economy. Tables

11 and 12 present the model fit for each sector.

There is some heterogeneity across sectors. Most notably, firms in the service sector have more volatile

employment growth. The model interprets this fact as a higher volatility of productivity/demand shock z.

Given that the Pareto power law exponent is not too different across sector, the model requires a higher exit

rate of the service sector. However, the firm size distortion around 50 is comparable in all sectors, as shown

in figure 13 and table 11. As a result, the estimated regulation costs are fairly similar. The estimated sunk

cost varies between 90% and 115% of a worker annual wages. Similarly, the estimated proportional tax on

wages varies between 0.25% and 0.29%. Hence, overall our results are robust across these subsamples.
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Figure 13: Broken Power Law:Regression of the logged number of firms on the logged number of employees
with and without a structural break at 50 for firms with employment level between 30 and 100.
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All Manufacturing Construction Trade Services

λ 0.0499 0.0401 0.0499 0.0510 0.0798
(0.0016) (0.0004) (0.0008) (0.0016) (0.0056)

µ 0.0029 0.0077 0.0071 0.0046 0.0068
(0.0002) (0.0001) (0.0002) (0.0005) (0.0016)

σ 0.0842 0.0575 0.0535 0.0700 0.0985
(0.0015) (0.0003) (0.0009) (0.0012 ) (0.0019)

σmrn 0.0107 0.0132 0.0164 0.0134 0.0113
(0.0005) (0.0009) (0.0015) (0.0012 ) (0.0009)

F 1.0810 1.1486 1.1011 1.0666 0.9027
(0.0672) (0.0612) (0.0881) (0.0858) (0.0789)

Table 9: Sunk Cost Model - Parameter Estimates (Standard Error in Parentheses)

All Manufacturing Construction Trade Services

λ 0.0205 0.0246 0.0387 0.0303 0.0581
(0.0003) (0.0004) (0.0007) (0.0007) (0.0013)

µ -0.0035 0.0024 0.0044 -0.0009 0.0011
(0.0001) (0.0001) (0.0003) (0.0002) (0.0003)

σ 0.0751 0.0593 0.0525 0.0705 0.0968
(0.0008) (0.0012) (0.0010) (0.0007) (0.0007)

σmrn 0.0377 0.0399 0.0390 0.0409 0.0350
(0.0010) (0.0016) (0.0022) (0.0017) (0.0013)

τ 0.0026 0.0026 0.0025 0.0026 0.0029
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Table 10: Proportional Tax Model - Parameter Estimates (Standard Error in Parentheses)
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All Manufacturing Construction Trade Services
Data Model Data Model Data Model Data Model Data Model

# firms
40-45 0.3565 0.3392 0.3609 0.3369 0.3682 0.3496 0.3672 0.3458 0.3349 0.3359
45-50 0.3883 0.3852 0.3877 0.3791 0.3819 0.3769 0.3849 0.3802 0.3956 0.3954
50-55 0.1413 0.1517 0.1378 0.1497 0.1396 0.1522 0.1393 0.1523 0.1486 0.1483
55-60 0.1140 0.1238 0.1136 0.1341 0.1104 0.1214 0.1087 0.1216 0.1209 0.12033

Median ∆ log n 0 0.0054 0 0.0194 0 0.0179 0 0.0108 0.0080 0.0163
V (∆ logn) 0.0485 0.0607 0.0319 0.0286 0.0306 0.0250 0.0437 0.0422 0.0839 0.0829
Power Law 1.1417 1.1471 1.0600 1.0628 1.3300 1.3331 1.2600 1.2632 1.1600 1.1603

Table 11: Auxiliary Parameters - Sunk Cost Model

All Manufacturing Construction Trade Services
Data Model Data Model Data Model Data Model Data Model

# firms
40-45 0.3565 0.3395 0.3609 0.3343 0.3682 0.3494 0.3672 0.3461 0.3349 0.3367
45-50 0.3883 0.3847 0.3877 0.3815 0.3819 0.3752 0.3849 0.3761 0.3956 0.3963
50-55 0.1413 0.1504 0.1378 0.1580 0.1396 0.1529 0.1393 0.1552 0.1486 0.1480
55-60 0.1140 0.1253 0.1136 0.1261 0.1104 0.1225 0.1087 0.1226 0.1209 0.1190

Median ∆ log n 0 -0.0096 0 0.0052 0 0.0110 0 -0.0020 0.0080 0.0010
V (∆ logn) 0.0485 0.0516 0.0319 0.0337 0.0306 0.0269 0.0437 0.0463 0.0839 0.0832
Power Law 1.1417 1.1503 1.0600 1.0568 1.3300 1.3380 1.2600 1.2557 1.1600 1.1583

Table 12: Auxiliary Parameters - Proportional Tax Model

B Proofs

B.1 Proof of Proposition 1

First, note that the function V (., 1) is twice continuously differentiable (see Stokey (2008) Chapter 5.6 for a

proof). Using the previously computed π(z, 1) gives:

V (z∗, 1) =
1

J

[ˆ ∞
z∗

eR2(z∗−z)π(z, 1)dz +

ˆ z∗

−∞
eR1(z∗−z)π(z, 1)dz

]
,

=
1

J

[ˆ ∞
z∗

eR2(z∗−z)πa(z)dz +

ˆ z∗

z

eR1(z∗−z)πa(z)dz

+

ˆ z

z

eR1(z∗−z)πb(z)dz +

ˆ z

−∞
eR1(z∗−z)πb(z)dz

]
.
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Define, for all x ≤ z∗,

H(x, z∗) ≡ Ex

[ˆ T (z∗)

0

e−(r+λ)tπ(zt, 0)dt+ e−(r+λ)T (z∗) (V (z∗, 1)− F )

]
,

=
1

J

[ˆ z∗

x

eR2(x−z)π(z, 0)dz +

ˆ x

−∞
eR1(x−z)π(z, 0)dz − eR2(x−z∗)

ˆ z∗

−∞
eR1(z∗−z)π(z, 0)dz

]
+eR2(x−z∗) (V (z∗, 1)− F ) .

Then, V (x, 0) = supz∗≥xH(x, z∗). Note that H(x, z∗) is twice continuously differentiable. The FOC for a

maximum at z∗ ≥ z is

0 ≤ fz∗(x, z
∗)

=
1

J

[
eR2(x−z∗)π(z∗, 0) +R2e

R2(x−z∗)
ˆ z∗

−∞
eR1(z∗−z)π(z, 0)dz

]

+
1

J

[
−eR2(x−z∗)π(z∗, 0)−R1e

R2(x−z∗)
ˆ z∗

−∞
eR1(z∗−z)π(z, 0)dz

]
−R2e

R2(x−z∗) (V (z∗, 1)− F ) + eR2(x−z∗)Vz∗(z
∗, 1)

= eR2(x−z∗)

[
R2 −R1

J

ˆ z∗

−∞
eR1(z∗−z)π(z, 0)dz −R2 (V (z∗, 1)− F ) + Vz∗(z

∗, 1)

]
,

with equality if z∗ > z. Hence,

V (z∗, 1)

=
1

J

[ˆ ∞
z∗

eR2(z∗−z)πa(z)dz +

ˆ z∗

z

eR1(z∗−z)πa(z)dz +

ˆ z

z

eR1(z∗−z)πb(z)dz +

ˆ z

−∞
eR1(z∗−z)πb(z)dz

]
Vz(z

∗, 1)

=
R2

J

ˆ ∞
z∗

eR2(z∗−z)π(z, 1)dz +
R1

J

ˆ z∗

−∞
eR1(z∗−z)π(z, 1)dz

=
R2

J

ˆ ∞
z∗

eR2(z∗−z)πa(z)dz

+
R1

J

[ˆ z∗

z

eR1(z∗−z)πa(z)dz +

ˆ z

z

eR1(z∗−z)πb(z)dz +

ˆ z

−∞
eR1(z∗−z)πb(z)dz

]
.

Plugging ing the FOC gives

(R1 −R2)

ˆ z∗

z

eR1(z∗−z) [πa(z)− πb(z)
]
dz +R2JF = 0,
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which simplifies to

R1

ˆ z∗

z

eR1(z∗−z) [πa(z)− πb(z)
]
dz + (r + λ)F = 0.

It is easy to see that there exists a unique value of z∗ that satisfies the preceding equality. Moreover, one

can compute these integrals easily given our formulas for πa(z) and πb(z).

B.2 Alternative Derivation of Optimal Policy using Dynamic Programming

We start by writing the Hamilton-Jacobi-Bellman equation satisfied by V :

(r + λ)V (z, 1) = π(z, 1) + µVz(z, 1) +
σ2

2
Vzz(z, 1), (14)

for any z, and

(r + λ)V (z, 0) = π(z, 0) + µVz(z, 0) +
σ2

2
Vzz(z, 0), (15)

for z < z∗. Note that π(z, 0) and π(z, 1) are only C1 (continuous differentiable): the second derivative is

discontinuous at z =z for π(., 0) and π(., 1), and at z = z for π(., 1).

The boundary conditions given by value matching:

V (z∗, 1) = V (z∗, 0)− F, (16)

and by the smooth pasting condition:

Vz(z
∗, 1) = Vz(z

∗, 0). (17)

The general solution of the associated homogeneous ODE (i.e., without the term π) is A1e
R2z +A2e

R1z,

where R1 and R2 are the roots of the quadratic

σ2

2
X2 + µX − (r + λ) = 0, (18)

i.e.R2 =
−µ+
√
µ2+2(r+λ)σ2

σ2 > 0 and R1 =
−µ−
√
µ2+2(r+λ)σ2

σ2 < 0.

The specific forms of π(z, 0) and π(z, 1) make it possible to find particular solutions. Starting with the
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first equation, we guess that

Ṽ (z, 0) = b0e
z

1−α , for z < z,

= b1e
z + b2, for z > z,

is a solution of 15, for constants b0, b1, b2 to be determined.

Ṽ satisfies the ODE for z <z, provided that b0 solves:

(r + λ)b0 =
(α
w

) α
1−α

(1− α) + µ
b0

1− α
+
σ2

2

b0
(1− α)2

,

or

b0 =

(
α
w

) α
1−α (1− α)

r + λ− µ
1−α −

σ2

2(1−α)2

.

For z >z, we require that

(r + λ) (b1e
z + b2) = eznα − wn+ µb1e

z +
σ2

2
b1e

z,

i.e.

b2 = − wn

r + λ
,

b1 =
nα

r + λ− µ− σ2

2

.

The general solution of the first equation is thus

V (z, 0) = Ṽ (z, 0) +A1e
R2z +A2e

R1z

=

(
α
w

) α
1−α (1− α)

r + λ− µ
1−α −

σ2

2(1−α)2

e
z

1−α +A1e
R2z +A2e

R1z, for z < z

=
nα

r + λ− µ− σ2

2

ez − wn

r + λ
+A1e

R2z +A2e
R1z, for z ≥ z.
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Turning to the second equation, we again look for one solution, which we guess as

Ṽ (z, 1) = e
z

1−α b3, for z < z,

= ezb4 + b5, for z > z > z,

= e
z

1−α b6 + b7, for z > z.

The scalars b3, b4, b5, b6, b7 must satisfy:

b3 =

(
α
w

) α
1−α (1− α)

r + λ− µ
1−α −

σ2

2(1−α)2

= b0,

b4 =
nα

r + λ− µ− σ2

2

= b1,

b5 = − wn

r + λ
= b2,

b6 =

(
α

w(1+τ)

) α
1−α

(1− α)

r + λ− µ
1−α −

σ2

2(1−α)2

=
b0

(1 + τ)
α

1−α
,

b7 = − cf
r + λ

,

and the general solution is

V (z, 1) = Ṽ (z, 1) +A3e
R2z +A4e

R1z

Finally we need to determine A1, A2, A3, A4 and z∗. A standard argument implies that A3 = 0 (the investment

option values goes to 0 if z →∞). Moreover, A4 = 0 since as z → −∞ the firm value remains finite. Last,

A2 = 0 for the same reason. The two scalars A1 and z∗ are thus determined by the following system of two

equations in two unknowns:

Ṽ (z∗, 1) = Ṽ (z∗, 0) +A1e
R2z

∗
− F,

Ṽz(z
∗, 1) = Ṽz(z

∗, 0) +A1R2e
R2z

∗
.

Given the formulas for Ṽ and that z∗ > z >z, this can be rewritten as:

e
z∗

1−α b6 + b7 =
nα

r + λ− µ− σ2

2

ez
∗
− wn

r + λ
+A1e

R2z
∗
− F
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e
z∗

1−α
b6

1− α
=

nα

r + λ− µ− σ2

2

ez
∗

+A1R2e
R2z

∗
.

This characterizes entirely the solution. It is easy to verify that this yields the same results as those obtained

in the main text using the theoretical results of Stokey (2008).

B.3 Derivation of the Stationary Cross-Sectional Distribution

To solve for f, first note that the general solution of the ODE 7 is

f(z, 0) = D0e
β1z +D1e

β2z,

where β1 < 0 < β2 are the two real roots of the characteristic equation:

λ = −µX +
σ2

2
X2.

This equation must be solved separately on each interval. Given that f is a density, the exponential

terms which do not go to 0 must disappear. This yields the following simpler form:

f(z, 0) = C1e
β2z, for z < z,

= C2e
β1z + C3e

β2z, for z∗ > z > z,

and

f(z, 1) = C4e
β2z, for z < z∗,

= C5e
β1z, for z > z∗.

The boundary conditions can then be expressed as a system of five linear equations in five unknowns. First,

f is a p.d.f., i.e. its integral is one:

C1

β2
eβ2z +

C2

β1

(
eβ1z

∗
− eβ1z

)
+
C3

β2

(
eβ2z

∗
− eβ2z

)
+
C4

β2
eβ2z

∗
− C5

β1
eβ1z

∗
= 1.

Second, f(., 0) is continuous at z :

C1e
β2z = C2e

β1z + C3e
β2z,
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Third, f(., 0) is continuous at z∗ :

C2e
β1z
∗

+ C3e
β2z
∗

= 0,

Fourth, f(., 1) is continuous at z∗ :

C5e
β1z
∗

= C4e
β2z
∗
.

And finally the boundary condition at z∗ :

−σ
2

2

(
C2β1e

β1z
∗

+ C3β2e
β2z
∗
)

= λ

(
C4

β2
eβ2z

∗
− C5

β1
eβ1z

∗
)
.

This system of equations can be solved analytically using Mathematica, yielding the results in the main text.
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