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THE INEFFICIENT MARKETS HYPOTHESIS: WHY FINANCIAL

MARKETS DO NOT WORK WELL IN THE REAL WORLD

ROGER E.A. FARMER, CARINE NOURRY AND ALAIN VENDITTI

Abstract. Existing literature continues to be unable to offer a convincing explana-

tion for the volatility of the stochastic discount factor in real world data. Our work

provides such an explanation. We do not rely on frictions, market incompleteness or

transactions costs of any kind. Instead, we modify a simple stochastic representa-

tive agent model by allowing for birth and death and by allowing for heterogeneity

in agents’ discount factors. We show that these two minor and realistic changes

to the timeless Arrow-Debreu paradigm are sufficient to invalidate the implication

that competitive financial markets efficiently allocate risk. Our work demonstrates

that financial markets, by their very nature, cannot be Pareto efficient, except by

chance. Although individuals in our model are rational; markets are not.

I. Introduction

Discount rates vary a lot more than we thought. Most of the puzzles

and anomalies that we face amount to discount-rate variation we do

not understand. Our theoretical controversies are about how discount

rates are formed. Cochrane (2011, Page 1091).

Since the work of Paul Samuelson and Eugene Fama, writing in the 1960’s, (Samuel-

son, 1963; Fama, 1963, 1965a,b), the efficient markets hypothesis (EMH) has been

the starting point for any discussion of the role of financial markets in the allocation

of risk. In his 1970 review article, Fama (1970) defines an efficient financial market

as one that “reflects all available information”. If markets are efficient in this sense,
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THE INEFFICIENT MARKETS HYPOTHESIS 2

uninformed traders cannot hope to profit from clever trading strategies. To reflect

that idea we say there is “no free lunch”.

Although the efficient markets hypothesis is primarily about the inability to make

money in financial markets, there is a second implication of the EMH that follows

from the first welfare theorem of general equilibrium theory; this is the idea that

complete, competitive financial markets lead to Pareto efficient allocations. Richard

Thaler, (2009), writing in a review of Justin Fox’s (2009) book, The Myth of the

Rational Market, refers to this second dimension of the EMH as “the price is right”.

We argue here that unregulated financial markets do not lead to Pareto efficient

outcomes, except by chance, and that the failure of complete financial markets to

deliver socially efficient allocations has nothing to do with financial constraints, trans-

actions costs or barriers to trade. We show that the first welfare theorem fails in any

model of financial markets that reflects realistic population demographics. Although

individuals in our model are rational; markets are not.

In their seminal paper, Cass and Shell (1983) differentiate between uncertainty

generated by shocks to preferences, technology or endowments — intrinsic uncertainty

— and shocks that do not affect any of the economic fundamentals — extrinsic un-

certainty. When consumption allocations differ in the face of extrinsic uncertainty,

Cass and Shell say that sunspots matter. Our paper demonstrates that the existence

of equilibria with extrinsic uncertainty has important practical implications for real

world economies. We show that sunspots really do matter: And they matter in a big

way in any model that is calibrated to fit realistic probabilities of birth and death.

The paper is structured as follows. Sections II and III explain how our findings are

connected with the literature on the excess volatility of stock market prices. Section

IV provides an informal description of our model along with a description of our

main results. Section V provides a series of definitions, lemmas and propositions

that formalize our results. Section VI discusses the implications of our work for the

equity premium puzzle. In Section VII, we provide some computer simulations of

the invariant distribution implied by our model for a particular calibration. Finally,

Section VIII presents a short conclusion and a summary of our main ideas.

II. Related literature

Writing in the early 1980s, Leroy and Porter (1981) and Shiller (1981) showed

that the stock market is too volatile to be explained by the asset pricing equations

associated with complete, frictionless financial markets. The failure of the frictionless
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Arrow-Debreu model to explain the volatility of asset prices in real world data is

referred to in the literature as ‘excess volatility’.

To explain excess volatility in financial markets, some authors introduce financial

frictions that prevent rational agents from exploiting Pareto improving trades. Ex-

amples include, Bernanke and Gertler (1989, 2001); Bernanke, Gertler, and Gilchrist

(1996) and Carlstom and Fuerst (1997) who have developed models where net worth

interacts with agency problems to create a financial accelerator.

An alternative way to introduce excess volatility to asset markets is to drop as-

pects of the rational agents assumption. Examples of this approach include Barsky

and DeLong (1993), who introduce noise traders, Bullard, Evans, and Honkapohja

(2010) who study models of learning where agents do not have rational expectations

and Lansing (2010), who describes bubbles that are ‘near-rational’ by dropping the

transversality condition in an infinite horizon framework.

It is also possible to explain excess volatility by moving away from a standard

representation of preferences as the maximization of a time separable Von-Neuman

Morgenstern expected utility function. Examples include the addition of habit per-

sistence in preferences as in Campbell and Cochrane (1999), the generalization to

non time-separable preferences as in Epstein and Zin (1989, 1991) and the models of

behavioral finance surveyed by Barberis and Thaler (2003).

In a separate approach, a large body of literature follows Kiyotaki andMoore (1997)

who developed a model where liquidity matters as a result of credit constraints. A

list of papers, by no means comprehensive, that uses related ideas to explain financial

volatility and its effects on economic activity would include the work of Abreu and

Brunnermeier (2003); Brunnermeir (2012); Brunnermeir and Sannikov (2012); Farmer

(2013); Fostel and Geanakoplos (2008); Geanakoplos (2010); Miao and Wang (2012);

Gu and Wright (2010) and Rochetau and Wright (2010).

There is a further literature which includes papers by Caballero and Krishnamurthy

(2006); Fahri and Tirole (2011) and Martin and Ventura (2011, 2012), that explains

financial volatility and its effects using the overlapping generations model. Our work

differs from this literature. Although we use a version of the overlapping generations

framework, our results do not rely on frictions of any kind.

Models of financial frictions have received considerable attention in the wake of

the 2008 recession. But models in this class have not yet been able to provide a

convincing explanation for the size and persistence of the rate of return shocks that

are required to explain large financial crises. The importance of shocks of this kind is

highlighted by the work of Christiano, Motto, and Rostagno (2012), who estimate a
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dynamic stochastic general equilibrium model with a financial sector. They find that

a shock they refer to as a “risk shock” is the most important driver of business cycles.

In effect, the risk shock changes the rate at which agents discount the future.

New Keynesian explanations of financial crises also rely on a discount rate shock

and, to explain the data following major financial crises, this shock must be large and

persistent (Eggertsson andWoodford, 2002; Eggertsson, 2011). Eggertsson (2011), for

example, requires a 5.47% annualized shock to the time preference factor to account

for the large output and inflation declines that occurred following the stock market

crash of 1929.

The literature that we have reviewed in this section continues to be unable to

offer a convincing explanation for volatility of the stochastic discount factor of the

magnitude that is required to explain real world data. Our work provides such an

explanation. Our explanation is simple and general and the logic of our argument

applies to any model of financial markets with realistic population demographics.

We do not rely on frictions, market incompleteness or transactions costs of any

kind. Instead, we modify a simple stochastic representative agent model by allowing

for birth and death and by allowing for heterogeneity in agents’ discount factors. We

show that these two minor, and realistic, changes to the timeless Arrow-Debreu par-

adigm are sufficient to invalidate the implication that competitive financial markets

efficiently allocate risk. Our work demonstrates that financial markets, by their very

nature, cannot be Pareto efficient, except by chance. Financial markets do not work

well in the real world.

III. Why equilibria are inefficient

Inefficiency occurs in overlapping generations models for two reasons. The first,

is dynamic inefficiency that occurs because there is a double infinity of agents and

commodities. The second is sunspot inefficiency that occurs because agents are unable

to insure against events that occur before they are born.

The fact that the equilibria of overlapping generations models may be dynamically

inefficient has been known since Samuelson’s (1958) seminal paper. The cause of

that inefficiency was identified by Shell (1971) who showed that, even if all agents

could trade contingent commodities at the beginning of time, the non-stochastic OLG

model would still contain equilibria that are dynamically inefficient. The first welfare

theorem fails in that environment because the wealth of all individuals is finite in

an inefficient equilibrium even when social wealth is unbounded. We do not rely on
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dynamic inefficiency in this paper and, in the absence of uncertainty, our model has

a unique dynamically efficient equilibrium.

The second source of inefficiency in overlapping generations models arises from the

absence of insurance opportunities. In their (1983) paper, Cass and Shell showed

that equilibria may be inefficient if some agents are unable to participate in markets

that open before they are born and Azariadis (1981) provided a dynamic example

of a model where sunspots influence economic activity.1 The example that Cass and

Shell provided in the body of their paper relied on the existence of multiple equilibria

in the underlying, non-stochastic economy. As a result, the majority of the work on

sunspots that followed Azariadis and Cass and Shell has sought to construct examples

of models where there are multiple equilibria in the underlying economy as in the work

of Farmer and Woodford (1984, 1997), Benhabib and Farmer (1994); Farmer and Guo

(1994) and Wen (1998).

We depart from this literature. Unlike previous papers that have constructed cal-

ibrated examples of sunspot models, our work does not rely on randomizing over

the multiple equilibria of an underlying non-stochastic model. Instead, as in Farmer

(2012b), and the example constructed in the appendix to Cass and Shell (1983),

equilibrium in the non-stochastic version of our model is unique.

Angeletos and La’O (2011) and Benhabib, Wang, and Wen (2012) also construct

sunspot models where there is a unique underlying equilibrium. Unlike their work,

however, our model does not rely on informational frictions, nor do we assume that

there are credit constraints, borrowing constraints or liquidity constraints. Our only

departure from a frictionless, timeless, Arrow Debreu model is the assumption that

agents cannot participate in financial markets that open before they are born.

When agents have realistic death probabilities and discount factors ranging from

2% to 10%, we find that the human wealth of new-born agents can differ by a factor

of 25% depending on whether they are born into a boom or into a recession. These

numbers are similar in magnitude to the long-term costs of job loss reported by Davis

and Von Wachter (2012) in their study of the effects of severe recessions. Although

we do not provide an explicit model of unemployment in this paper, related work

by Farmer (2012a,c, 2013), Farmer and Plotnikov (2012) and Plotnikov (2012) does

1Cass and Shell (1983) distinguished between ex ante and ex post optimality. Ex post optimality

distinguishes between the same person, call him Mr.  () who is born into state of the world 

and Mr.  (0) who is the same person born into the state of the world 0. Using an ex post Pareto

criterion, sunspot equilibria are Pareto optimal because people born into different states of the world

are different people. In this paper, we adopt an ex-ante definition of Pareto efficiency.
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provide a mechanism that translates asset price shocks into persistent unemployment.

In conjunction with these related papers, our work provides an explanation for the

large welfare costs of business cycles that Davis and Von-Wachter find in the data.

Our work has important implications for the appropriate role of central bank inter-

vention in financial markets. Farmer (2012b) argues that the inefficiency of competi-

tive financial markets provides a justification for central bank intervention to stabilize

asset prices. That argument applies, a fortiori, to the environment we develop here.

IV. An informal description of the environment

This section provides an informal description of our model. We study a pure trade

economy with a stochastic aggregate endowment, , that we refer to interchangeably

as income or GDP. Our economy is populated by patient type 1 agents and impatient

type 2 agents. Time is discrete and, as in Blanchard (1985), both types survive into

period  + 1 with age invariant probability . Each type maximizes the expected

present discounted value of a logarithmic utility function. These assumptions allow

us to find simple expressions for the aggregate consumption of type  ∈ {1 2} as a
function of type ’s wealth.

We model a stationary population by assuming that in every period a fraction

(1− ) of each type dies and is replaced by a fraction (1− ) of newborns of the

same type. Agents are selfish and do not leave bequests to their descendents. Type 1

agents own a fraction  of the aggregate endowment and type 2 agents own a fraction

1− .

We assume that there is a perfect annuities market, mediated by a set of com-

petitive, zero-profit, financial intermediaries. Agents borrow and lend to financial

intermediaries at a gross interest rate that exceeds the market rate. If an agent dies

with positive financial wealth, the agent’s assets are returned to the financial inter-

mediary and, on the other side of this market, agents who borrow are required to

take out life insurance contracts that settle their debts when they die.

IV.1. Our main results. In an earlier paper, (Farmer, Nourry, and Venditti, 2011),

we derived an explicit expression for the price of an Arrow security (Arrow, 1964) that

can be applied to stochastic versions of Blanchard’s (1985) perpetual youth model.

Here, we apply our earlier result to characterize equilibria as a pair of stochastic

difference equations in two state variables that we call 1 and .

The variable 1 is the present discounted value of the endowment of all living type

1 agents, divided by aggregate GDP. The variable  is the present discounted value

of the endowments of all living agents, (both type 1 and type 2) divided by aggregate



THE INEFFICIENT MARKETS HYPOTHESIS 7

GDP. We call these variables, the type 1 human wealth ratio and the aggregate human

wealth ratio.

Let  be a vector of random variables realized at date  that may be influenced

by either intrinsic or extrinsic uncertainty and let  ≡ {0 1} be the history of
realizations of  from date 0 to date . Subscripts denote date  realizations of  and

superscripts denote histories.

We define the pricing kernel, +1
 (+1) to be the price paid at date  in history

, in units of consumption, for delivery of one unit of the consumption commodity

at date + 1 in state +1. We define a second variable

(1) ̃+1


¡
+1

¢
= +1



¡
+1

¢  (+1)

 (+1)


where

(2) 
¡
+1

¢ ≡ +1 (
+1)

 ()


is endowment growth in history +1 and

(3) 
¡
+1

¢


is the probability that state +1 occurs conditional on history . We refer to

̃+1
 (+1) as the normalized pricing kernel.

Using the results of Farmer, Nourry, and Venditti (2011) we derive an expression

for the normalized pricing kernel as a function of the aggregate human wealth ratio

at date  and the type 1 human wealth ratio at date + 1

(4) ̃+1
 = ̃ ( 1+1) 

By applying this expression to the definitions of the type 1 human wealth ratio and to

the aggregate human wealth ratio, we are able to characterize equilibria as solutions

to the following pair of stochastic difference equations,

(5) 1 = +

n
̃ ( 1+1) 1+1

o


(6)  = 1 +

n
̃ ( 1+1) +1

o


Notice that, although the endowment fluctuates, Equations (5) and (6) do not

explicitly involve terms in the random aggregate endowment. Although human wealth

is a random variable, there is an equilibrium in which the human wealth ratio is not.

This equilibrium is represented by a non-stochastic solution to Equations (5) and (6).

Not all sequences that solve equations (5) and (6) are consistent with market clear-

ing because very high or very low values of human wealth would require negative
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consumption of one of the two types. If a sequence is consistent with an interior

equilibrium at all points in time we say that the solution is admissible. We prove

that the non-stochastic system represented by the equations

(7) 1 = + ̃ ( 1+1) 1+1

(8)  = 1 + ̃ ( 1+1) +1

has a unique admissible steady state which is a saddle. We show further that the

model has a single initial condition represented by the financial assets of type 1

agents at date 0. It follows, that the model has a unique fundamental equilibrium,

represented by the stable branch of the saddle.

We derive an explicit closed-form solution for the equation that characterizes this

equilibrium. This solution is a first order difference equation in , found by replacing

1 in Equations (7) and (8) with the equality,

(9) 1 = 

at all dates. This substitution leads to a function,  (·) for the stable branch of the
saddle which is found by solving the equation

(10)  = 1 + ̃ ( +1) +1

for +1 as a function of . Given this function, the sequence {}, defined as the
unique solution to the difference equation

(11) +1 =  ()  0 = ̄0

is an equilibrium of our model economy. The initial condition is determined by

asset and goods market clearing in the first period and it is natural to impose an

initial condition where agents of type 1 and type 2 are each born with zero financial

obligations. We refer to the sequence {}, constructed in this way, as the fundamental
equilibrium of our model economy.

IV.2. Properties of the fundamental equilibrium. The fundamental equilibrium

has the following properties. Given the initial value 0, human wealth converges to

a unique steady state value, ∗, and once this steady state has been reached, the

normalized pricing kernel remains constant at a fixed value ̃∗.

Recall that the pricing kernel is defined by the expression,

(12) +1
 = ̃∗





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where ̃∗ is the value of the normalized pricing kernel at the steady state. This

equation implies that, in the fundamental equilibrium, the price of an Arrow security

will fluctuate in proportion to shocks to the stochastic endowment process. This

mirrors the pricing equation associated with a representative agent economy where

the agent has logarithmic preferences and where ̃∗ plays the role of the representative

agent’s discount factor.

In the fundamental equilibrium, all uncertainty is intrinsic. Newborn agents trade

a complete set of Arrow securities with financial intermediaries and, depending on

type, these agents may start life as net borrowers (these are the type 2 agents) or

net lenders, (these are the type 1 agents). As time progresses, the measure of agents

born at date  shrinks exponentially. Long-lived type 1 agents eventually consume

more than their endowments as they accumulate financial assets. Long-lived type 2

agents eventually consume less than their endowments as they devote an ever larger

fraction of their incomes to debt repayment.

IV.3. Equilibria where sunspots matter. In addition to the unique fundamen-

tal equilibrium, our model has many sunspot equilibria, represented by stochastic

processes for  that satisfy the following analog of Equation (10).

(13)  = 1 +

n
̃ ( +1) +1

o


For example, let +1 be a bounded random variable, with mean 1, and consider

the equation

(14) ( − 1) +1 = ̃ ( +1) +1

Let {} be a sequence of random variables generated by the expression,

(15) +1 =  ( +1) 

where the function  ( ) is obtained by solving Equation (14) for +1 as a function

of  and +1 By taking expectations of Equation (14), using the assumption that

the conditional mean of +1 is equal to one, it follows that this sequence satisfies

Equation (13). Since this equation completely characterizes equilibrium sequences, it

follows that our economy admits sunspot equilibria.

Business cycles in our model are generated, not only by intrinsic shocks to GDP

growth, but also by sunspot shocks. For plausible values of the parameters of the

model, we show that the aggregate human wealth ratio can differ by 25% at different

points of the business cycle. If we think of a low value of the human wealth ratio as

a recession, a person of either type who is born into a recession, will find that the net
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present value of their life-time earnings is 25% lower than if they had been born into

a boom.

V. A formal description of the environment

In this section we provide a formal description of the model. Uncertainty each

period is indexed by a finite set of states S = {1     }. Define the set of -period
histories S recursively as follows:

(16)
S1 = S

S = S−1 × S  = 2   

We will use  to denote a generic element of S realized at date , 
 to denote an

element of S realized at  and |S| to denote the number of elements in S Let the
probability that +1 occurs at date  + 1, conditional on history , be given by

(+1) and assume that this probability is independent of time.

We define  to be the discount factor of type  and we assume

(17) 0  2  1  1

Throughout the paper, we use the following transformed parameters,

(18)  ≡ (1− ) 

and from Equation (17) it follows that,

(19) 2  1

A household of type , born at date , solves the problem,

(20) max

( ∞X
=

()
− log 

¡

¢)



such that

(21)

|S|X
+1∈ S

+1


¡
+1

¢


+1

¡
+1

¢ ≤ 



¡

¢
+ 

¡

¢− 




¡

¢
  =  

(22) 



¡

¢
= 0

The solution to this problem satisfies the Euler equation

(23) +1


¡
+1

¢
=

(+1)

 (

)



+1 (

+1)

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for each history  and each of its |S| successors +1, where  () is the consumption

at date  in history , of a member of type , born at date , and 

 (

) is the agent’s

financial wealth.

Let  (
) be type 0 human wealth, defined as

(24) 
¡

¢
= 

¡

¢
+ 

X
+1

+1


¡
+1

¢
+1

¡
+1

¢
  = 0 

Since each member of type  has the same endowments and the same probability of

dying, the human wealth of all members of type  will be the same across generations.

We assume that

(25) lim
→∞

−1
−1

¡

¢


¡

¢
= 0, for all  ∈ S 

which implies that human wealth is well defined and can be represented as the net

present value of future endowments summed over all possible future histories,

(26) 
¡

¢
=

∞X
=

|S |X
∈S

−
 (

) (
) 

Using these results and the properties of logarithmic preferences, we have that,

(27) 



¡

¢
= 

£




¡

¢
+ 




¡

¢¤


Next, we apply the methods developed in Farmer, Nourry, and Venditti (2011) to

find the following expression for the pricing kernel,

Proposition 1. The pricing kernel can be expressed as

(28) +1


¡
+1

¢
=

 (+1) (1−)  (
)

+1 (+1)− (1− )+1 (+1)


where  (
) is the aggregate consumption of all agents of type  alive at date  in

history  and +1 (
+1) is the human wealth of agents of type  at date  + 1 in

history +1.

Proof. See Appendix A. ¤

V.1. Competitive equilibria. In this section, we find simple expressions for the

equations that define an equilibrium. We begin by normalizing the variables of our

model by the aggregate endowment,  (
). Since this is an endowment economy,

this variable is our measure of GDP, equal to income; hence we refer to this procedure

as normalizing by income.
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Let A be the index set of all agents alive at date . Using this definition, we

aggregate the consumption function, Equation (27) over all agents of type  alive at

date , and divide by income to generate the following expression,

(29) 
¡

¢
= 

£


¡

¢
+ 

¡

¢¤


The terms


¡

¢
=

P
∈A



 (

)

 ()
  () =

P
∈A



 (

)

 ()
(30)

and 
¡

¢
=

P
∈A



 (

)

 ()


represent consumption, financial wealth, and human wealth of all members of type ,

expressed as fractions of GDP. We refer to these variables as the consumption share,

the asset ratio and the human wealth ratio for type .

Since there are two types of agents, we define

(31) 
¡

¢ ≡ 1

¡

¢


and we refer to  (
) as simply, the consumption share. From the goods market

clearing equation, the consumption shares of the two types must sum to unity, which

implies that the consumption share of type 2 agents is given by the expression,

(32) 2(
) = 1− (

)

Similarly, we refer to



¡

¢ ≡ 1

¡

¢


as the asset ratio, since from the asset market clearing equation, the financial assets

of type 1 agents must equal the financial liabilities of type 2 agents, and

(33) 2
¡

¢
= −

¡

¢


Corresponding to the definition of  () as the share of income consumed by type

1 agents, we will define 

(34)  =
1



 1−  =
2





to be the share of income owned by type 1 agents.

Using these newly defined terms, we have the following definition of a competitive

equilibrium.
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Definition 1. A competitive equilibrium is a set of sequences for the consumption

share, { ()}, the asset ratio { (
)}, and the human wealth ratios {1 ()}

and { ()} and a sequence of Arrow security prices ©+1
 (+1)

ª
such that each

household of each generation maximizes expected utility, taking their budget con-

straint and the sequence of Arrow security prices as given and the goods and asset

markets clear. An equilibrium is admissible if { ()} ∈ (0 1) for all 

In the remainder of the paper, we drop the explicit dependence of    , 1

and  on  to make the notation more readable.

V.2. Equilibria with intrinsic uncertainty. In their paper, ‘Do Sunspots Mat-

ter?’ Cass and Shell (1983) distinguish between intrinsic uncertainty and extrinsic

uncertainty. Intrinsic uncertainty in our model is captured by endowment fluctua-

tions. In this section, we study the case where this is the only kind of uncertainty

to influence the economy. Before characterizing equilibrium sequences, we prove the

following lemma.

Lemma 1. Let  = 12 and  = 11 and recall that 2  1. There exists

an increasing affine function  : ̂ ≡ [ ] → [0 1] such that for all values of the

aggregate human wealth ratio,  ∈ ̂ the equilibrium consumption share  ∈ [0 1] is
given by the expression

(35)  =  () ≡ 12

2 −1

µ
 − 1

2

¶


Define the real number

(36) 0 = 1 (2 −1) 

Then, in a competitive equilibrium, the aggregate human wealth ratio , the human

wealth ratio of type 1, 1 and the asset share , are related by the affine function,

(37) 01 −12 + 0 +1 = 0

Proof. See Appendix B. ¤

Using Lemma 1, we establish the following Proposition which characterizes the

fundamental equilibrium.
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Proposition 2. Define the real numbers,

1 = 2 − (1−1) + (1− )(1 −2)

2 = −2(1− )− 12  0(38)

3 = (2 −1)(1− )  0

4 = 2 −  (1−1) = 1 + 3

In the case when all uncertainty is intrinsic, the following pair of non-stochastic

difference equations describes the evolution of the human wealth ratio of type 1 1

and of the human wealth ratio,  in a competitive equilibrium,

1+1 =
− 1

1 + 2 + 31
(39)

+1 =
1− 

1 + 2 + 31
(40)

In period 0, 10 and 0 are linked by the initial condition,

(41) 010 −120 + 00 +1 = 0

where

(42) 0 = ̄0

is the initial asset ratio. The normalized pricing kernel is related to  and 1 by the

expression

(43) ̃+1
 =

−1


µ
4 + 2

1 + 31+1

¶


The consumption share  and the asset ratio,  are given by equations (44) and

(45),

(44)  =
12

2 −1

µ
 − 1

2

¶


(45)  = −1
0
+
(12 − 0)

0


Proof. See Appendix C. ¤

Equations (39) and (40) constitute a two-dimensional system in two variables with

a single initial condition, represented by Equation (41). These equations are non-

stochastic, even when the economy is hit by fundamental shocks, because we have

normalized  1 and ̃
+1
 by the random endowment. Although  and 1 fluctuate

in response to random shocks,  and 1 do not.



THE INEFFICIENT MARKETS HYPOTHESIS 15

Removing the time subscripts from equations (39) and (40) we define a steady state

equilibrium to be a solution to the equations

1 (1 + 2 + 31) = − 1(46)

 (1 + 2 + 31) = 1− (47)

The following proposition characterizes the properties of a steady state equilibrium

and finds two equivalent representations of an equilibrium sequence; one using  as

a state variable and one using ̃+1
 .

Proposition 3. Equations (46) and (47) have a unique admissible steady state equi-

librium, {∗ ∗1} such that ∗ ∈ ( ) and ∗1 = ∗. The Jacobian of the system

(39) and (40), evaluated at {∗ ∗}, has two real roots, one less than 1 in absolute
value and one greater than 1. It follows that {∗ ∗} is a saddle. The stable branch
of this saddle is described by a set ̂ ≡ [ ] and a function  (·) : ̂ → ̂ such that

the first order difference equation

(48) +1 =  () 

where

(49) () ≡ 1− 

1 + (2 + 3)


defines a competitive equilibrium sequence for {+1}. For all initial values of 0 and
10 where

(50)
0 ∈ ̂

10 = 0

 converges to 
∗. There is an equivalent representation of equilibrium as a difference

equation in ̃. In this representation there exists a set ̂ = [ ] and a function

 (·) : ̂→ ̂, such that any sequence
n
̃+1


o
generated by the difference equation

(51) ̃+2
+1 = 

³
̃+1


´
 1

0 ∈ ̂

is a competitive equilibrium sequence. The set ̂ and the function  (·) are defined
by equations (52) and (53),

(52)  = −1 + (2 + 3) 


  = −1 + (2 + 3) 




(53) 
³
̃+1


´
≡ 1− 1


− (1−1)(1−2)

̃+1



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Every sequence generated by Equation (51), converges to the steady state ̃∗ where

̃∗ is defined in Equation (54),

(54) ̃∗ ≡ −1 + (2 + 3) 
∗


=
1− 1 +

p
(1 + 1)2 + 4(2 + 3)

2


Proof. See Appendix D. ¤

Proposition 3 implies that the two-dimensional dynamical system in { 1} can
be reduced to a one-dimensional difference equation, represented by Equation (49),

which describes the dynamics of the system on the saddle path.

In Figure 1 we have plotted +1− on the vertical axis and  on the horizontal axis.
This figure illustrates the dynamics of , the human wealth ratio, for a parameterized

example. To construct this figure, we set the survival probability to 098, which

implies that the expected lifetime, conditional on being alive today, is 50 years. The

discount factor of type 1 agents is 098, the discount factor of type 2 agents is 09 and

there are equal shares of each type in the population.
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Figure 1: The dynamics of the human wealth equation

We refer to the area between the two vertical dashed lines, one at  ≡ −12 and

one at  ≡ −11 as ̂ ≡ [ ]; this is the set of admissible initial conditions for an
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interior equilibrium. When 0 is equal to 
−1
2 , 0 = 0, and type 2 agents consume the

entire endowment. When 0 = −11 , 0 = 1, and type 1 agents consume the entire

endowment.

V.3. Equilibria with extrinsic uncertainty. Although we assume that agents are

able to trade a complete set of Arrow securities, that assumption does not insulate the

economy from extrinsic uncertainty. In our model, the human wealth ratio  and the

normalized pricing kernel ̃+1
 can fluctuate simply as a consequence of self-fulfilling

beliefs. That idea is formalized in the following proposition.

Proposition 4. Let  be a sunspot random variable with support  ≡ [ ] where

(55)  =
−[4(1− 3) + 22] +

q
[4(1− 3) + 22]2 − 24(1 + 3)2

(1 + 3)2


(56)  =
(4 + 2)

(1− )(1 + 3)


and  [] = 1. Then there exist sets  ≡ [1 ], and  ≡ [ ]  a function

 (·) : ×  →  and a stochastic process defined by the equation

(57) +1 =  ( +1) 

where

(58)  ( +1) ≡ (1− ) +1
(4 − 3+1) + (2 + 3+1) 



such that any sequence {} generated by (58) for 0 ∈ , is a competitive equilibrium

sequence. Further, there is an equivalent representation of equilibrium as the solution

to a stochastic difference equation in. In this representation, there exists a function

 ( 0 ), such that

(59) ̃+1
 = 

³
̃
−1 +1 

´


where,

(60) 
³
̃
−1 +1 

´
≡  ( +1) +

 ( +1)

̃
−1



(61)  ( +1) ≡ 1



½
 (2 + 3+1)

(2 + 3)
− 4 + 3+1

¾


and

(62)  ( +1) ≡ 1

2

½
 (2 + 4) (2 + 3+1)

(2 + 3)

¾

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The sequence
n
̃+1



o
, generated by a solution to Equation (59), is a competitive

equilibrium sequence for .

Proof. See Appendix E. ¤

Figure 2 illustrates the method used to construct sunspot equilibria. The solid curve

represents the function  ( 1) and the upper and lower dashed curves represent the

functions  ( ) and  ( ). We have exaggerated the curvature of the function

 (·) by choosing a value 1 = 098 and 2 = 03. The large discrepancy between 1

and 2 causes the slopes of these curves to be steeper for low values of  and flatter

for high values, thereby making the graph easier to read.
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Figure 2: The dynamics of sunspot equilibria

Figure 2 also contrasts the admissible set ̂ ≡ [ ] with the support of the in-
variant distribution  ≡ [1 ]  The three vertical dashed lines represent the values
 1 and  The lower bound of the largest possible invariant distribution, 1 is de-

fined as the point where  ( ) is tangent to the 45
◦ line. Recall that the admissible

set is the set of values of  for which the consumption of both types is non-negative

and notice that 1 is to the right of , the lower bound of the admissible set. Figure
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2 illustrates that the support of the largest possible invariant distribution is a subset

of the admissible set. It follows from the results of Futia (1982) that, as  fluctuates

in the set [ ],  converges to an invariant distribution with support  ≡ [1 ].2

VI. Some Important Implications of our model for asset pricing

In addition to the excess volatility puzzle, the frictionless Arrow Debreu model has

trouble explaining why the return on risky assets is so much higher than the safe return

in U.S. data. This anomaly, first identified by Rajnish Mehra and Edward Prescott

in (1985), is known in the literature as the equity premium puzzle. A common way

of measuring the equity premium is to take the ratio of the mean excess return in a

finite sample of time series data and divide it by the volatility of the risky rate. That

statistic is known as the Sharpe ratio.

Part of the problem faced by representative agents models when confronting asset

market data is the inability of those models to generate a sufficiently volatile pricing

kernel (Cochrane, 2011). Since our model does not suffer from this defect, it is

plausible that our work could offer a more satisfactory explanation of the equity

premium. When sunspots are uncorrelated with fundamentals and preferences are

logarithmic, our model does not deliver a large equity premium in infinite samples.

However, we show that discount rate volatility is so large in our model that there is

a significant probability of observing a high Sharpe ratio.

To make these points we show, first, using a local approximation argument, that

sunspot volatility does not affect the asymptotic value of the equity premium when

sunspots are uncorrelated with fundamentals. Then we compute the invariant distri-

bution of the safe and risky returns for a calibrated example, and we compute the

Sharpe ratio in 10 000 draws of 60 years of data. We show, in our calibrated example,

that there is 12% probability of observing a Sharpe ratio of at least 02

To construct a local approximation, we first provide a model of consumption growth

as a first order autocorrelated process,

(63) log +1 =  log  + (1− ) log + log 

Here,  is an autocorrelation parameter and log  is a fundamental, normally dis-

tributed i.i.d. shock,

(64) log  ∼ 

µ
−

2


2
 2

¶


2The proof, which is available upon request, is based on various Definitions and Theorems provided

in Futia (1982) (see Theorem 4.6, Proposition 4.4, Definition 2.1, Theorem 3.3 and Theorem 2.9).
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with () = 1. These assumptions imply that the unconditional distribution of 

is log-normal with mean  and variance 
2
, where

3

 = log −
2

2(1− )
(65)

2 =
2

1− 2
(66)

From the properties of the log-normal distribution we also have that,

(67)  () = 
−2

2 

To describe extrinsic uncertainty, we assume that  is a log normal random vari-

able, with mean −22 and variance 2:

(68) log  ∼ 

µ−2
2

 2

¶


so that  [] = 1. Although this process is not bounded, by making the variance

of  small we can make the probability that  lies in a bounded interval arbitrar-

ily close to 1. In the following analysis we assume that  and  are log-normal

and we use this assumption to derive approximations to the value of the equity pre-

mium. We also assume here that the log-normal distributions of these two shocks are

independent.

To get an approximation to the importance of extrinsic volatility, we log linearize

Equation (59) around the non-stochastic steady state, ̃∗. The following lemma

derives a log-normal approximation to the distribution of ̃+1
 that is valid for small

noise.

Lemma 2. The stochastic process described by Equation (59) has the following ap-

proximate representation

(69) log ̃+1
 =  log ̃

−1 + (1− ) log ̃∗ + 1 log +1 + 2 log  +
¡
2
¢


3Using Equations (63) and (64), it follows that

 (log ) = log +
(log )

1− 
= log −

2
2(1− )

≡  

and

  (log ) =
 (log )

1− 2
=

2
1− 2

≡ 2

Further, log  is normally distributed,

log  ∼ 
¡
 

2


¢

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where

(70)  =
(1−1)(1−2)

(̃∗)2


and 1 and 2 are computed as the logarithmic derivatives with respect to +1 and

 of the function  in Equation (59) evaluated at its non-stochastic steady state,

̃∗. The approximation error is  (2) where  is the difference of log ̃
−1 from

log ̃∗ It follows from the linearity of (69), that ̃+1
 is approximately log-normal

with unconditional mean

(71) 
h
̃+1


i
= ̃∗ exp

Ã
2
̃

2

∙
1− (1 + )

µ
1 + 2
21 + 22

¶¸!


or equivalently

(72) log ̃+1
 ∼ 

³
̃ 

2
̃

´


where

(73) ̃ ≡ log ̃∗ −
(1 + 2)

2


2(1− )


and

(74) 2
̃
≡ (

2
1 + 22)

2


1− 2


Proof. See Appendix F. ¤

Next, we use Lemma 2 to derive approximate formulae for the price of a riskless

and a risky security. Consider first, a riskless bond that pays a gross return 
+1
 in

every state. Here we use the superscript  to denote ‘safe’. Using the no arbitrage

assumption, the return to this riskless asset is given by the expression,

(75) 
+1
 =

1P
0 

+1




Now consider a risky security that pays  at date  where  is a real number

between zero and one. This is the model analog of equity since it represents a claim

to a fraction of the risky endowment stream. If this security sells for price  then the

risky return between periods  and + 1, +1
 , is given by the expression,

(76) 
+1
 =

+1 + +1




where the superscript  denotes ‘risky’. We may then compute approximations to

the safe return, the return to a risky security and the equity premium.
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Proposition 5. Let

(77) 
+1
 =

1



h
̃+1
 −1+1

i
be the return to a risk free real bond and let  be the price of a security that pays a

fraction  of the endowment  in all future states. Let

(78) 
+1
 =

+1 + +1




be the return to this risky security. Assume further that intrinsic and extrinsic un-

certainty are uncorrelated,

(79)  (+ +) = 0 for all  

Then i) the safe return is given by the approximation

(80)  ' 

̃∗
−

2 (2+)

2
−
2
̃


1−(1+)


1+2
21+

2
2


2 

ii) The risky return is given by the approximation

(81)  ' 

̃∗

−2
2
−
2
̃


1−(1+)


1+2
21+

2
2


2 

iii) The equity premium is given by the expression

(82)



' 

2
 

Proof. See Appendix G. ¤

Proposition 5 establishes that, in the case where sunspot uncertainty is uncorrelated

with fundamental uncertainty, the variance of the sunspot term does not enter the

expression for the equity premium. Sunspot uncertainty adds noise to the risky return,

but it does not explain why a risky security should pay systematically more than a

safe bond.

What if sunspots are correlated with consumption growth? Here there is some hope

that sunspots may contribute to an explanation of the equity premium. To illustrate

this point, we solved the full non-linear model for a series of calibrated examples. The

following section reports the result of this exercise.
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VII. Simulating the invariant distribution

To compute moments of the invariant distribution, we used the difference equation

(57), to construct an approximation to the transition function

(83)  () 

where  ≡ { } is the value of the state at date  and  is a set that represents

possible values that  and  might take at date + 1. For every value of ,  (· )
is a measurable function and for every value of   ( ·) is a probability measure
(Stokey, Lucas, and Prescott, 1989, Chaper 8). If  () is the probability that the

system is in state  at date  then

(84) 0 (0) =
Z


 ( 0)  () 

is the probability that it is in state 0 at date  + 1 By iterating on this operator

equation for arbitrary initial  we arrive at an expression for the invariant measure.

This invariant measure,  (), is the unconditional probability of observing the system

in state  = { }. We now explain how to compute a discrete approximation to this
invariant measure.

Let  be the set  ≡ [1 ] and define Γ = [1 2] as the set inhabited by  when
 is generated by Equation (63) and  ∈ . We divided  and Γ into  and ,

equally spaced intervals and we approximated the operator  with a matrix ̃ by

breaking the state space into × intervals. In practice, we found that  = 30 and

 = 10 leads to a fine enough approximation to give good results while remaining

computationally manageable.

We need to compute state transition matrices that are 2× 2 where  =  × .

For  = 30 and  = 10,  = 300 and 2 = 90 000. For these values, our code

takes approximately 5 seconds in Matlab on an Apple Mac with dual 2.13 GHZ Intel

processors.

To compute the invariant distribution in a parameterized example, we used values

of  = 098  = 05 1 = 098, 2 = 09 and we set the autocorrelation parame-

ter  = 0, and the standard deviation of the shocks at  = 005 and  = 006.

We partitioned the space  =  × Γ into 300 cells and for each pair of cells,

{ = { }   = {0 0}} we computed the pair of shocks, { } needed to get
from the midpoint of cell  = { } to the midpoint of cell  = {0 0}. Here  and
0, are elements of  and  and 0 are elements of Γ. This process generated a grid,

300 × 300 and 90 000 pairs of numbers  = { } associated with each cell
of the grid.
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To compute the probability of any pair of numbers  = { } we used a
discrete approximation to a normal distribution. First we associated a weight

(85)  = exp
¡− ( − )Σ−1 ( − )

¢


with each value of  = { }  Here

(86) Σ =

"
2 

 2

#


is the variance covariance matrix of the shocks and  = [ ; ] is a vector of centrality

parameters.

In our baseline case we set  = 0 but we also experimented with the correlated

case by choosing values of the correlation coefficient,

(87)  =





between −095 and +095.
To compute a discrete approximation to the operator  we constructed a Markov

matrix ̃ by normalizing the weights . This process led to a set of  discrete

probability measures , where

(88)  =
P
 



is one row of the Markov matrix

(89) ̃ =
h
̃

i


Next, we used Newton’s method to adjust the centrality parameters, , to ensure

that, for each ,

(90)  () =
X


 ()

"




#
−
"
1

1

#
= 0

This step ensures that the discrete probability measures  for each  are consistent

with the assumptions that  [] = 1 and  [ ] = 1. Figure 3 illustrates the invariant

joint distribution over  and  that we computed using this method.
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Figure 3: The joint invariant distribution of consumption growth and the human wealth ratio
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Figure 4: The marginal invariant distribution of the human wealth ratio
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We can also compute the marginal distribution of human wealth which we report in

Figure 4. The median human wealth ratio is a little over 20, but there is considerable

probability mass that this ratio will be less than 18 or greater than 23. That difference

represents twenty five percent of the median human wealth. If we define a recession

to be a value of the human wealth ratio less than 18 and a boom, a ratio greater

than 23, then a person of either type who is born into a recession will have lifetime

wealth that is approximately twenty five percent lower than a similar person born in

a boom. These are big numbers.

VII.1. The equity premium in simulated data. Since the equity premium can

always be increased by leverage, a better measure of excess returns is the Sharpe

ratio; this is the ratio of the excess return of a risky to a safe security, divided by the

standard deviation of the risky security. In U.S. data, the Sharpe ratio has historically

been in the range of 0.25 to 0.5, depending on the sample length and the frequency

of observation.
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Figure 5: The Sharpe ratio and the correlation coefficient

To explore the role of correlated shocks in determining the Sharpe ratio, we com-

puted the invariant distribution for a sequence of economies in which the shocks to

growth,  were correlated with extrinsic uncertainty, . For each case, we held the

parameters of the model constant at the same values used to construct Figure 3, but

we allowed the correlation coefficient, , between intrinsic and extrinsic shocks to
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vary from −095 to +095. The results of this exercise are reported in Figure 5 which
shows that the value of the Sharpe ratio in the invariant distribution varies from

−003, when  = −095 to +003, when  = +095 These numbers do not depend on
a local approximation, they are computed using a grid approximation to the entire

invariant distribution.

The Sharpe ratio increases as the correlation coefficient increases because a risky

security becomes less attractive to hold if its payoff is correlated with consumption.

In a representative agent model, consumption and the endowment are the same thing.

Figure 4 shows that the same logic holds in the two agent economy where the con-

sumption of the agent holding the risky security is not perfectly correlated with GDP.

But although the model can generate a positive Sharpe ratio, the largest value

in our calibrated economy is closer to 003 than to 05, the value observed in U.S.

data. Theoretically, one could make the value of the Sharpe ratio arbitrarily large

by increasing the volatility of the sunspot shock. But there is an upper bound on

sunspot volatility determined by the difference between the time preference rate of

the patient and impatient individuals. This difference determines the range of feasible

values of  which, in turn, determines a bound on the volatility of .
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Figure 6: The empirical distribution of Sharpe ratios
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Although the theoretical value of the Sharpe ratio is small, the high volatility of

equity returns implies that there is a significant probability of observing a high Sharpe

ratio in any given sample. To explore the possibility that a high Sharpe ratio is an

artifact of sampling variation, we simulated 10 000 samples of length 60. Figure 6

reports the result of that exercise.

We calibrated the model parameters to annual data so each sample represents an

observation of 60 years of data. The figure reports the empirical frequency distribution

of Sharpe ratios across these 10 000 samples and it is clear from the figure that there

is a high probability of observing a Sharpe ratio greater than 02. In the empirical

distribution, 33% of the observed Sharpe ratios were greater than 01, 21% were

greater than 015 and 12% were 02 or larger. There is however, almost no probability

of observing a Sharpe ratio of 05. In our experiment, only 6 out of 10 000 draws

were greater than 05.4

To give some idea of the time series properties of data generated by our model,

Figure 7 reports the values of six time series for a single draw of 60 years of data.

The sequence of sunspot shocks used for this simulation were uncorrelated, implying

that the theoretical value of the Sharpe ratio is around 1% (see Figure 5). The draw

used for this simulation has a Sharpe ratio of 024

The two top left panels of Figure 7 show that the risky return is much more volatile

than the safe return and, for this particular draw, the risky return has a higher mean.

The bottom left panel illustrates aggregate consumption growth which varies by a

little more than plus or minus 4% and has a standard deviation of 003 which matches

the volatility of consumption growth in post-war U.S. data.

The top two panels on the right of the figure illustrate the share of consumption

going to type 1 agents, and the value of the pricing kernel. These panels show that

even though aggregate consumption growth is relatively smooth, the consumption

growth of type 1 agents can vary by as much as 30% over the business cycle. It is the

4Remember, however, that we are maintaining the assumption of logarithmic preferences and

we conjecture that by relaxing that assumption and allowing for constant relative risk aversion

preferences, we will multiply the range of observed Sharpe ratios by a factor proportional to the

coefficient of relative risk aversion. That exercise is feasible using the results we report in Farmer,

Nourry, and Venditti (2011), but the exercise of computing the invariant distribution is significantly

more complicated since it involves solving for an additional functional equation. We explore that

extension in work in progress.
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volatility of individual consumption growth rates that allows this model to generate

a volatile pricing kernel.5
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Figure 7: Six time series generated by simulating sixty years of data

The bottom right panel shows what’s happening to the price-earnings ratio which

takes long slow swings varying over a range from 30 to 40. Although this range is

smaller than observed price earnings ratios in U.S. data, which vary from 10 to 45,

our price earning statistic does not allow for leverage which is both high and variable

in the data.

5Although 30% is high relative to aggregate consumption volatility, there is evidence that high

income individuals who own stock have consumption growth that is four times as volatile as average

consumption growth (Malloy, Moskowitz, and Vissing-Jorgensen, 2009).



THE INEFFICIENT MARKETS HYPOTHESIS 30

VIII. Conclusion

The first welfare theorem of general equilibrium theory asserts that every compet-

itive equilibrium is Pareto optimal. When financial markets are complete, and when

all agents are able to participate in financial markets, this theorem implies that un-

restricted trade in financial assets will lead to the efficient allocation of risk to those

who are best able to bear it.

We have shown, in this paper, that unregulated financial markets do not lead to

Pareto efficient outcomes and that the failure of complete financial markets to deliver

socially efficient allocations has nothing to do with financial constraints, transactions

costs or artificial barriers to trade. The first welfare theorem fails because participa-

tion in financial markets is necessarily incomplete as a consequence of the fact that

agents cannot trade risk in financial markets that open before they are born. For this

reason, financial markets do not work well in the real world.

The Ramsey-Cass-Koopmans model (Ramsey, 1928; Koopmans, 1965; Cass, 1965)

underpins not only all of modern macroeconomics, but also all of modern finance

theory. Existing literature modifies this model by adding frictions of one kind or

another to explain why free trade in competitive markets cannot achieve an efficient

allocation of risk. It has not, as yet, offered a convincing explanation for the volatility

of the stochastic discount factor in real world data. The most surprising feature of

our work is how close it is to the Ramsey-Cass-Koopmans model; yet we do not need

to assume frictions of any kind. We have shown that financial markets cannot be

Pareto efficient, except by chance. Although individuals, in our model, are rational;

markets are not.
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Appendix

Appendix A.

Proof of Proposition 1. If we sum Equation (23) over all agents of type  who were

alive at date , we arrive at the equation,

(A.1) +1


¡
+1

¢
=

 (+1)
P

∈A


 (

)P
∈A



+1 (

+1)


The consumption at date +1 of everyone of type  who was alive at date , is equal

to the consumption of all agents of type  minus the consumption of the new borns.

For any date +1 and any variable  let  be the quantity of that variable held by a

household of generation  and let  be the aggregate quantity. Let A be the index

set of all agents alive at date  and let N+1 denote the set of newborns at period

+ 1. Then,

(A.2) 
X
∈A



+1 +

X
∈N+1



+1 =

X
∈A+1



+1 = +1

Using Equation (A.2) we can write the denominator of Equation (A.1) as,

(A.3)
X
∈A



+1

¡
+1

¢
=
1



⎛⎝ X
∈A+1



+1

¡
+1

¢− X
∈N+1



+1

¡
+1

¢⎞⎠ 

The first term on the right-hand-side of this equation is aggregate consumption of

type , which we define as

(A.4) +1
¡
+1

¢ ≡ X
∈A+1



+1

¡
+1

¢


The second term is the consumption of the newborns of type . Because these agents

are born with no financial assets, their consumption is proportional to their human

wealth. This leads to the expression

(A.5)
X

∈N+1



+1

¡
+1

¢
=  (1− )+1

¡
+1

¢


where the coefficient (1− )  is the fraction of newborns of type . Using equations

(A.3)-(A.5) we can rewrite (A.1) as

(A.6) +1


¡
+1

¢
=

 (+1) (1−)  (
)

+1 (+1)− (1− )+1 (+1)


which is Equation (28), the expression we seek. ¤
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Appendix B.

Proof of Lemma 1. From Equation(29), evaluated for types 1 and 2 we get

(B.1)  =


1
− 1

(B.2) − =
1− 

2
− 2

Summing (B.1) and (B.2) and rearranging leads to Equation (35). The fact that  is

increasing in  follows from the assumption, 2  1 The domain of  is found by

evaluating −1 for values of  = 0 and  = 1.

From (35) we have that,

(B.3)  =
12

2 −1

µ
 − 1

2

¶


which expresses the consumption share as a function of the aggregate human wealth

ratio. From the consumption function of type 1 agents, Equation (29), we have the

following expression linking the consumption share with the asset share, and with the

type 1 human wealth ratio,

(B.4)  = 1 ( + 1) 

Combing equations (B.3) and (B.4) gives

(B.5) 1 ( + 1) =
12

2 −1

µ
 − 1

2

¶


Using definition, (36), this leads to Equation (37), the expression we seek. ¤

Appendix C.

Proof of Proposition 2. From Proposition 1 and the restriction to perfect foresight

equilibria, we have that

(C.1)  =
12

2 −1

µ
 − 1

2

¶


Leading Equation (C.1) one period gives,

(C.2) +1 =
12

2 −1

µ
+1 − 1

2

¶


Dividing the numerator of Equation (28), by  and dividing the denominator by

+1 leads to the following expressions that relate the normalized pricing kernel to

the consumption share and to the human wealth ratio of each type,

(C.3) ̃+1
 =

(1−1)
+1 −1 (1− ) 1+1


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(C.4) ̃+1
 =

(1−2) (1− )

(1− +1)−2 (1− ) 2+1


These expressions follow from the fact that agents of each type equate the marginal

rate of substitution to the pricing kernel, state by state.

Next, we divide the human wealth equation, (24), by the aggregate endowment.

That leads to the following difference equation in the human wealth ratio for type ,

(C.5)  =  + 

h
̃+1

 +1

i


Adding up Equation (C.5) over both types leads to the following expression for the

aggregate human wealth ratio,

(C.6)  = 1 + 

h
̃+1

 +1

i


From equations (C.3) and (C.4),

(C.7) ̃+1
 =

(1−2) (1− )

1− +1 −2 (1− ) 2+1


(C.8) ̃+1
 =

(1−1)
+1 −1 (1− ) 1+1



Substituting for  and +1 from equations (C.1) and (C.2) into (C.4), we obtain the

following expression for 2+1 as a function of  and 1
6

(C.9) 2+1 = −(1 −1 − 12) 1 +  + (1 −  + 2) 1 − 1
(2 −2 − 12)  + (2 +  (1 − 1)) 

Define the following transformed parameters

(C.10)

1 = 2 − (1−1) + (1− )(1 −2)

2 = −2(1− )− 12  0

3 = (2 −1)(1− )

4 = 2 −  (1−1) = 1 + 3

Combining equation (C.1)—(C.3), with (C.5) gives the following expression for the

normalized pricing kernel,

(C.11) ̃+1
 = −1 + 3 + 2

1 + 31+1
= − 4 + 2

1 + 31+1


Because we have normalized all variables by income, none of the equations of our

model contain random variables. Hence we may drop the expectations operator and

write the human wealth equations, (C.5) and (C.6) as follows,

(C.12) 1 = + ̃+1
 1+1

6The algebra used to derive (C.9) was checked using Maple in Scientific Workplace. The code is

available from the authors on request.
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(C.13)  = 1 + ̃+1
 +1

Rearranging Equations (C.12) and (C.13), replacing ̃+1
 from (C.11), gives,

(C.14) 1+1 =
− 1

1 + 2 + 31


(C.15) +1 =
1− 

1 + 2 + 31


which are the expressions for equations (39) and (40) that we seek. The initial condi-

tion, Equation (41), follows from Proposition 1 and the expression for the normalized

pricing kernel. ¤

Appendix D.

Proof of Proposition 3. Evaluating equations (C.14) and (C.15) evaluated at a steady

state, it follows that a steady state equilibrium is a solution of the following second

degree polynomial

(D.1) P() = 2(2 + 3) + (1 + 1)− 1 = 0
Define the discriminant

(D.2) ∆ = (1 + 1)
2 + 4(2 + 3)

Using the fact that 2  1, it follows from the definitions of 1, 2 and 3 that

1  2 − (1 − 1), 3  0 and hence 2 + 3  2. Using these inequalities to

replace (2 + 3) by 2 and replacing 2 by its definition, it follows that

(D.3) ∆  [2 + 1− (1−1)]
2− 42[1− (1−1)] = [2− 1 + (1−1)]

2 ≥ 0
Since the discriminant is non-negative, there exist two real solutions to Equation

(D.1), ∗ and ∗∗ given by the expressions,

(D.4) ∗ = −1 + 1 +
√
∆

2(2 + 3)
 ∗∗ = −1 + 1 −

√
∆

2(2 + 3)


We next need to check that these two solutions belong to the admissible set ( ).

Consider first the lower solution ∗∗. From the definition of ∗∗ it follows that ∗∗ 

 ≡ 12 if and only if

(D.5) 1 + 1 +
2(2 + 3)

2

√
∆

Squaring both sides of (D.5) and substituting for ∆ from (D.2) implies that, equiva-

lently,

(D.6) 1 + 1 −2 +
2 + 3

2
 0
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Substituting the expressions for 1, 2 and 3 into this inequality and rearranging

terms leads to the following expression for the left-hand side of (D.6),

(D.7) (1− )(2 −1)
1−2

2
 0

where the inequality in (D.7) follows since 1  2  1  0 and   1. It follows

that ∗∗   and hence 
∗∗ is not an admissible steady state.

Consider now the larger of the two solutions, ∗. The same computation as previ-

ously allows us to conclude that ∗  . We must next show that 
∗   ≡ 11.

Using the definition of ∗, this occurs if and only if

(D.8) 1 + 1 +
2(2 + 3)

1
 −
√
∆

A necessary condition for this inequality to hold is that the left-hand side is negative.

Using the definitions of 1 2 and 3, we may write the left side of (D.8) as the

following second degree polynomial in 1

G(1) = 1 [1 +2 − (1−1) + (1− )(1 −2)]

−2 [2(1− ) + 12 + (1− )(1 −2)]  0(D.9)

Notice that G(1) is convex for 1 ∈ (0 2). Further, we have that that G(0) = 0
and G(2) = −2(1−)(1−2)  0. It follows that for any 1 ∈ (0 2), G(1)  0
and thus the left-hand side of (D.8) is negative. It follows that inequality (D.8) holds

if

(D.10) 1 + 1 −1 +
2 + 3

1
 0

Substituting the expressions for 1, 2 and 3 into this inequality and simplifying the

expression yields

(D.11) −(1− )(1− )(1−1)(2 −1)  0

This inequality establishes that ∗ ∈ ̂ and hence ∗ is an admissible steady state.

We study the stability properties of ∗by linearizing the dynamical system (39)—(40)

around ∗. Using the steady state relationships (46) and (47), we get after some

simplification, the following Jacobian matrix

(D.12) J =

Ã
∗−1
∗ (1 + 2

∗) (∗ − 1)3
(∗ − 1)2 ∗−1

∗ (1 + 3
∗)

!

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The associated characteristic polynomial is∙
∗ − 1
∗

(1 + 2
∗)− 

¸ ∙
∗ − 1
∗

(1 + 3
∗)− 

¸
− (∗ − 1)223

=

µ
− ∗

∗ − 1
¶µ

− 1− 1
∗

∗ − 1
¶
= 0(D.13)

with characteristic roots

1 =
∗

∗ − 1  1(D.14a)

2 =
1− 1

∗

∗ − 1 (D.14b)

Notice that the dynamical system (39) and (40) admits 1 =  for all  as a

solution. It follows that the two-dimensional dynamical system in ( 1) can be

reduced to the one-dimensional difference equation defined by Equation (49). We

next establish that this system is a saddle and that the one-dimensional difference

equation (49) is globally stable. Since, from (D.14a), 1 is positive and greater than

one, we need only establish a general property to guarantee global conclusion and

that −1  2  1 Let us first consider the derivative of () for any , 0() =

(1− 1)( − 1). Since   1, we have 0() ≥ −1 for any  ∈ ( ) if 1− 1 ≥ 0,
which holds since 2  1. This property implies that 2  −1. Moreover, we get
0()  0 if and only if 2−1  0, which again holds as 2  1. We then establish

that 2  1. From (D.14b), this follows if and only if 2− (1+1)
∗  0. Equivalently

using the definitions of 1 and ∗, together with the fact that 2+ 3  0, 2  1 if

and only if

4(2 + 3) + (1 + 1)
h
1 + 1 +

√
∆
i
= ∆+ (1 + 1)

√
∆

=
√
∆
h
1 + 1 +

√
∆
i
 0(D.15)

We derive from (C.10) that

(D.16) 1 + 1 = 2 [1− (1− )] +1(1− ) + 1− (1−1)  0

and thus 2  1. Since 1  1 we conclude that 
∗ is saddle-point stable. Further, ∗

is globally stable for any  ∈ ̂

Next we turn to an equivalent representation of the system using ̃+1
 as a state

variable. Replacing 1+1 from (39) in Equation (43), and simplifying the resulting

expression gives,

(D.17) ̃+1
 = −1 + 2 + 31



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Substituting the restriction 1 =  into Equation (D.17) and inverting the equation

to find  as a function of ̃
+1
 , leads to

(D.18)  = −̃
+1
 + 1

2 + 3


Substituting this expression into (49) and rearranging terms leads to the difference

equation

(D.19) ̃+2
+1 = 

³
̃+1


´


where

(D.20) 
³
̃+1


´
≡ 1− 1


+

1 + 2 + 3

2̃+1


=
1− 1


− (1−1)(1−2)

̃+1




which provides an equivalent representation of the equilibrium in terms of ̃. Using

the same arguments as previously, it follows that for all 1
0 ∈ ( ) with

(D.21)  = −1 + (2 + 3) 


  = −1 + (2 + 3) 




there exists a sequence of equilibrium asset prices described by the difference equation

(D.19), that converges to the steady state pricing kernel. ¤

Appendix E.

Proof of Proposition 4. Consider the definition of human wealth,

(E.1)  = 1 +

h
̃+1

 +1

i


In Proposition 2, Equation (C.11), we derived an expression for the pricing kernel

̃+1
 ( 1+1), that we write below as Equation (E.2).

(E.2) ̃+1
 = −

µ
4 + 2

1 + 31+1

¶


Replacing (E.2) in (E.1), and restricting attention to the stable branch of the saddle

by setting 1 = , we arrive at a the following functional equation,

(E.3)  = 1 + 

∙
−
µ

4 + 2

1 + 3+1

¶
+1

¸


Since Equation (E.3) characterizes equilibria, it follows that any admissible sequence

{} that satisfies Equation (E.3) is an equilibrium sequence. We now show how to

construct a stochastic process for {} that generates admissible solutions to (E.3).
Let +1, be a bounded, i.i.d. random variable with support  ≡ [ ] such that

(E.4)  (+1) = 1
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and consider sequences for {},  ∈  ≡ (1 ) that satisfy the equation,

(E.5) ( − 1) +1 = −
µ

4 + 2

1 + 3+1

¶
+1

Rearranging (E.5), using the fact that 4 − 3 = 1, we may define a function

 (·) :  × → 

(E.6) +1 =
(1− ) +1

(4 − 3+1) + (2 + 3+1) 
=  ( +1) 

This is the analog of Equation (49) in Proposition 3. Any admissible sequence must

lie in the set ̂ ≡ [ ] where  ≡ −12 and  ≡ −11 . We now show how to

construct the largest set  ⊂ ̂ such that all sequences {} generated by (E.6) are
admissible. Note first, that

(E.7)
( )


=

(1− ) (4 + 2)

[(4 − 3) + (2 + 3) ]
2 

where 4 + 2 = 2(1 − )  0 and 4 + 2 = (1 − )[1 + 2(1 − )]  0.

Because   1, it follows that ( )  0 for any  ∈ ( ). Moreover,
(1 ) = 0 for any . We conclude that the graph of the function ( ) rotates

counter-clockwise around  = 1 as  increases. The upper bound  is then obtained

as the solution of the equation,  =  ( ). A straightforward computation yields

(E.8)  =
(4 + 2)

(1− )(1 + 3)


Starting from the upper bound ,  can be decreased down to the point where

the graph of the function ( ) becomes tangent with the 45
◦ line. Consider the

equation ( ) =  which can be rearranged to give the equivalent second degree

polynomial

(E.9) 2(2 + 3) + [4 + (1− 3)]−  = 0

We denote by 1, the value of  for which the two roots of (E.9) are equal and hence

the discriminant of (E.9) is equal to zero. Equation (E.10) defines a polynomial in 

such that this discriminant condition is satisfied and  is the larger of the two values

of  such that this condition holds;

(E.10)
[4 + (1− 3)]

2 + 4(2 + 3) = 0

⇔ 2(1 + 3)
2 + 2[4(1− 3) + 22] + 24 = 0
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Using the formula for the roots of a quadratic, we obtain the following explicit ex-

pression for ;

(E.11)  =
−[4(1− 3) + 22] +

q
[4(1− 3) + 22]2 − 24(1 + 3)2

(1 + 3)2


This establishes the first part of Proposition 4.

We now derive an equivalent difference equation in ̃+1
 . Here we use (E.2) and

(E.3) to give the following expression for ̃+1
 

(E.12) ̃+1
 =

− (4 − 3+1)− (2 + 3+1) 




Rearranging (E.12) gives,

(E.13)  = −(4 − 3+1)

(2 + 3+1)
− ̃+1



(2 + 3+1)


Substitute (E.12) into (E.13) to give

(E.14) ̃+1
 =  ( +1) +

 ( +1)

̃
−1

≡ 
³
̃
−1 +1 

´


where, using the fact that 1 + 2 + 3 ≡ 2 + 4, we define,

(E.15)  ( +1) ≡ 1



½
 (2 + 3+1)

(2 + 3)
− 4 − 3+1

¾


(E.16)  ( +1) =
1

2

½
 (2 + 4) (2 + 3+1)

(2 + 3)

¾


Equation (E.14) is the analog of Equation (51). This establishes the second part of

Proposition 4. ¤

Appendix F.

Proof of Lemma 2. Taking logs of Equation (59), using the equations (60)—(62), leads

to the equivalent expression

(F.1)

log ̃+1
 (0) = log 1



½
log (2+3log +1)

(2+3log )
− 4 + 3

log +1

+ 1
2

½

log (2+4)(2+3log +1)

(2+3log )

¾
1


log ̃−1()

¾
Log-linearizing this expression gives

(F.2)

log ̃+1
 (0) = log ̃∗ +  log ̃+1

 (0)
 log ̃

−1()

¯̄̄
̃

h
log ̃

−1()− log ̃∗
i

+  log ̃+1
 (0)

 log +1

¯̄̄
̃
log +1 +

 log ̃+1
 (0)

 log 

¯̄̄
̃
log 
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with

(F.3)

 log ̃+1
 (0)

 log ̃
−1()

¯̄̄
̃
= − (11)

(̃∗)2 = − 2+4
2(̃∗)2 =

(1−1)(1−2)
(̃∗)2 ≡ 

 log ̃+1
 (0)

 log +1

¯̄̄
̃
= 3

2+3

1+2+3+
1+2+3

̃∗
1−1+ 1+2+3

̃∗
≡ 1

 log ̃+1
 (0)

 log +1

¯̄̄
̃
= 2

2+3

1+
1+2+3

̃∗
1−1+1+2+3

̃∗
≡ 2

It follows that

(F.4) log ̃+1
 =  log ̃

−1 + (1− ) log ̃∗ + 1 log +1 + 2 log 

Let us first compute the unconditional expectation of log ̃+1
 . From equation (F.4)

we get

(F.5) (log ̃+1
 ) = log ̃∗ +

(1 + 2)(log )

1− 


Since we have assumed that

(F.6) log  ∼ 

µ−2
2

 2

¶


we derive

(F.7) (log ̃+1
 ) = log ̃∗ − (1 + 2)

2


2(1− )


Let us now compute the unconditional variance of log ̃+1
 . From equation (F.4) we

get

(F.8)  (log ̃+1
 ) =

(21 + 22) (log )

1− 2
=
(21 + 22)

2


1− 2
≡ 2

̃


From the properties of the log-normal distribution, we then have that

(F.9) log ̃+1
 ∼ 

³
log ̃∗ − (1+2)

2


2(1−) 
(21+

2
2)

2


1−2
´


and the unconditional mean of ̃+1
 is

(F.10) 
h
̃+1


i
= ̃∗ exp

Ã
2
̃

2

∙
1− (1 + )

µ
1 + 2
21 + 22

¶¸!


¤
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Appendix G.

Proof of Proposition 5. From equations (1) and (75), we get the following expression

for the gross safe real rate of return, ,

(G.1)  =
1P

0 
+1


=
1



h
̃+1

 −1+1
i 

The safe rate of return is a random variable because income growth is autocorrelated

and governed by Equation (63) and also because now the pricing kernel is subject to

sunspot shocks. Assuming that intrinsic and extrinsic uncertainty are uncorrelated,

(G.2)  (+ +) = 0 for all  

we derive that the unconditional mean of the safe return is

(G.3)  =
1


h
̃+1


i

£
−1+1

¤ 
Using the properties of the log-normal distribution, we derive from (65) the following

expression for the unconditional expectation of −1+1

(G.4) 
£
−1+1

¤
= −1 

2 (2+)

2 


h
̃+1


i
is given by equation (71) in Lemma 2. Substituting this into (G.3) gives

(G.5)  =


̃∗
−

2 (2+)

2
−
2
̃


1−(1+)


1+2
21+

2
2


2 

We then derive Part i) of Proposition 5.

Consider next, a security that pays a fraction  of the endowment +1 (
0) in state

0. From no-arbitrage pricing, we have that,

(G.6)  = 

(
̃+1


+1
[+1 + +1]

)


Using the definitions,

(G.7) +1 (
0) =

+1



 ̂() =






we get the equivalent expression

(G.8) ̂ = 

n
̃+1
 [̂+1 + 1]

o


The realized return from holding a risky security is then given by the expression

(G.9) 
+1
 =

+1 [̂+1 + 1]

̂

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Taking the unconditional expectation of (G.8) using (G.2) yields

(G.10)
1

(̃+1
 )

=
 [̂+1 + 1]

̂


with (̃+1
 ) as given by equation (71) in Lemma 2. Consider now the return to a

risky security (G.10). Using equation (67), we easily derive the unconditional expec-

tation of the risky return

(G.11)

 = 

½
+1 [̂+1 + 1]

̂

¾
= 

©
+1

ª


½
̂+1 + 1

̂

¾
=



̃∗

−2
2
−2[21+22−(1+)(1+2)]

2(1−2) 

We then derive Part ii) of Proposition 5. Finally, taking the ratio of (G.11) to (G.5)

gives

(G.12)



= 

©
+1

ª

©
−1+1

ª
= 

2

1−2 = 
2
 

This establishes Part iii) of Proposition 5. ¤



THE INEFFICIENT MARKETS HYPOTHESIS 43

References

Abreu, D., and M. K. Brunnermeier (2003): “Bubbles and Crashes,” Econo-

metrica, 71(1), 173—204.

Angeletos, G.-M., and La’O (2011): “Comunication and the Origin of Fluctua-

tions,” MIT working paper 11-09.

Arrow, K. J. (1964): “The Role of Securities in the Optimal Allocation of Risk

Bearing,” Review of Economic Studies, 31(2), 91—96.

Azariadis, C. (1981): “Self-fulfilling Prophecies,” Journal of Economic Theory,

25(3), 380—396.

Barberis, N., and R. Thaler (2003): “A survey of behavioral finance,” in Hand-

book of the Economics of FInance, ed. by R. Stulz, and M. Harris. Noth Holland,

Amsterdam.

Barsky, R. B., and J. B. DeLong (1993): “Why Does the Stock Market Fluctu-

ate,” Quarterly Journal of Economics, 107, 291—311.

Benhabib, J., and R. E. A. Farmer (1994): “Indeterminacy and Increasing Re-

turns,” Journal of Economic Theory, 63, 19—46.

Benhabib, J., P. Wang, and Y. Wen (2012): “Sentiments and Agregate Demand

Fluctuations,” NBER working paper 18413.

Bernanke, B., M. Gertler, and S. Gilchrist (1996): “The Financial Acceler-

ator and the Flight to Quality,” The Review of Economics and Statistics, 78(1),

1—15.

Bernanke, B. S., and M. Gertler (1989): “Agency costs net worth and business

fluctuations,” American Economic Review, 79(1), 14—31.

(2001): “Should Central Banks Respond to Movements in Asset Prices?,”

American Economic Review, 91(2), 253—257.

Blanchard, O. J. (1985): “Debt, Deficits, and Finite Horizons,” Journal of Political

Economy, 93(April), 223—247.

Brunnermeir, M. K. (2012): “Macroeconomics with Financial Frictions,” in Ad-

vances in Economics and Econometrics. Cambridge University Press.

Brunnermeir, M. K., and Y. Sannikov (2012): “Redistributive Monetary Pol-

icy,” Paper presented at the 2012 Jackson Hole Conference, August 31st - Septem-

ber 2nd 2012.

Bullard, J., G. Evans, and S. Honkapohja (2010): “A model of near-rational

exuberance,” Macroeconomic Dynamics, 14, 106—88.

Caballero, R. J., and A. Krishnamurthy (2006): “Bubbles and Capital Flow

Volatility: Causes and Risk Management,” Journal of Monetary Economics, 53(1),



THE INEFFICIENT MARKETS HYPOTHESIS 44

35—53.

Campbell, J. Y., and J. H. Cochrane (1999): “By force of habit: A consumption-

based explanation of of aggregate stock market behavior,” Journal of Political

Economy, 107, 205—251.

Carlstom, C., and T. S. Fuerst (1997): “Agency costs, net worth and busi-

ness fluctuations: A computable general equilbrium analysis,” American Economic

Review, 87(5), 893—910.

Cass, D. (1965): “Optimum growth in an aggregative model of capital accumula-

tion,” Review of Economic Studies, 32, 233 — 240.

Cass, D., and K. Shell (1983): “Do Sunspots Matter?,” Journal of Political Econ-

omy, 91, 193—227.

Christiano, L., R. Motto, and M. Rostagno (2012): “Risk Shocks,” North-

western University mimeo.

Cochrane, J. H. (2011): “Presidential Adress: Discount Rates,” The Journal of

Finance, 66(4), 1047—1108.

Davis, S. J., and T. Von Wachter (2012): “Recessions and the costs of job loss,”

Prepared for the Brookings Papers on Economic Activity.

Eggertsson, G. (2011): “What Fiscal Policy is Effective at Zero Interest Rates?,”

in NBER Macroeconomics Annual 2010, vol. 25, pp. 59—112. National Bureau of

Economic Research Inc.

Eggertsson, G. B., and M. Woodford (2002): “The zero bound on interest

rates and optimal monetary policy,” Brookings Papers on Economic Activity, 2,

139—211.

Epstein, L., and S. Zin (1989): “Substitution, Risk Aversion and the Temporal

Behavior of Consumption and Asset Returns: An Empirical Analysis.,” Journal of

Political Economy, 99, 263—286.

(1991): “Substitution, Risk Aversion and the Temporal Behavior of Con-

sumption and Asset Returns: A Theoretical Framework.,” Econometrica, 57, 937—

969.

Fahri, E., and J. Tirole (2011): “Bubbly Liquidity,” NBER working paper 16750.

Fama, E. F. (1963): “Mandelbrot and the stable Paretian hypothesis,” Journal of

Business, 36, 420—429.

(1965a): “The behavior of stock market prices,” Journal of Business, 38,

34—105.

(1965b): “Random walks in stock market prices,” Financial Analysts Jour-

nal, 21, 55—59.



THE INEFFICIENT MARKETS HYPOTHESIS 45

(1970): “Efficient Capital Markets: A Review of Theory and Empirical

Work,” Journal of Finance, 25(2), 383—417.

Farmer, R. E. A. (2012a): “Confidence, Crashes and Animal Spirits,” Economic

Journal, 122(559).

(2012b): “Qualitative Easing: How it Works and Why it Matters,” NBER

working paper 18421 and CEPR discussion paper 9153.

(2012c): “The Stock Market Crash of 2008 Caused the Great Recession:

Theory and Evidence,” Journal of Economic Dynamics and Control, 36, 697—707.

(2013): “Animal Spirits, Financial Crises and Persistent Unemployment,”

Economic Journal, 568, forthcoming.

Farmer, R. E. A., and J. T. Guo (1994): “Real Business Cycles and the Animal

Spirits Hypothesis,” Journal of Economic Theory, 63, 42—73.

Farmer, R. E. A., C. Nourry, and A. Venditti (2011): “Debt Deficits and

Finite Horizons, the Stochastic Case,” Economics Letters, 111, 47—49.

Farmer, R. E. A., and D. Plotnikov (2012): “Does Fiscal Policy Matter? Blinder

and Solow Revisited,” Macroeconomic Dynamics, 16(Supplement 1), 149—166.

Farmer, R. E. A., and M. Woodford (1984): “Self-fulfilling Prophecies and the

Business Cycle,” Caress Working Paper 84-12.

(1997): “Self-fulfilling Prophecies and the Business Cycle,” Macroeconomic

Dynamics, 1(4), 740—769.

Fostel, A., and J. Geanakoplos (2008): “Leverage Cycles and the Anxious

Economy,” American Economic Review, 98(4), 1211—1234.

Fox, J. (2009): The Myth of the Rational Market. Harper Collins.

Futia, C. A. (1982): “Invariant Distributions and the Limiting Behavior of Mar-

kovian Economic Models,” Econometrica, 50(2), 377—408.

Geanakoplos, J. (2010): “The Leverage Cycle,” in NBER Macroeconomics Annual

2009, ed. by D. Acemoglu, K. Rogoff, and M. Woodford. University of Chicago

Press.

Gu, C., and R. Wright (2010): “Endogenous Credit Cycles,” University of Wis-

consin, mimeo.

Kiyotaki, N., and J. H. Moore (1997): “Credit Cycles,” Journal of Political

Economy, 105(3), 739—764.

Koopmans, T. C. (1965): “On the Concept of Optimal Economic Growth,” in The

Econometric Approach to Development Planning, pp. 225—300. North Holland.

Lansing, K. J. (2010): “Rational and Near-Rational Bubbles Without Drift,” Eco-

nomic Journal, 549, 1149—1174.



THE INEFFICIENT MARKETS HYPOTHESIS 46

Leroy, S., and R. Porter (1981): “Stock Price Volatitlity: A Test based on

Implied Variance Bounds,” Econometrica, 49, 97—113.

Malloy, C. J., T. J. Moskowitz, and A. Vissing-Jorgensen (2009): “Long-

run stockholder cosumption risk and asset returns,” The Journal of Finance, 64(6),

2427—2479.

Martin, A., and J. Ventura (2011): “Theoretical Notes on Bubbles and the

Current Crisis,” IMF Economic Review, 59(1), 6—40.

(2012): “Economic Growth with Bubbles,” American Economic Review,

102(6), 3033—3058.

Mehra, R., and E. C. Prescott (1985): “The Equity Premium: A Puzzle,”

Journal of Monetary Economics, 15, 145—161.

Miao, J., and P. Wang (2012): “Bubbles and Total Factor Productivity,” American

Economic Review: Papers and Proceedings, 102(3), 82—87.

Plotnikov, D. (2012): “Hysterisis in unemployment and jobless recoveries,”mimeo,

UCLA.

Ramsey, F. P. (1928): “A Mathematical Theory of Saving,” Economic Journal,

Vol. 38, No 152, pp.543-559, 38(152), 543—559.

Rochetau, G., and R. Wright (2010): “Liquidity and Asset Market Dynamics,”

University of Wisconsin mimeo.

Samuelson, P. A. (1958): “An Exact Consumption-Loan Model of Interest with

or without the Social Contrivance of Money,” Journal of Political Economy, 66,

467—482.

(1963): “Proof that properly anticipated prices fluctuate randomly,” Indus-

trial Management Review, 6, 41—49.

Shell, K. (1971): “Notes on the Economics of Infinity,” Journal of Political Econ-

omy, 79, 1002—1011.

Shiller, R. J. (1981): “Do stock prices move too much to be justified by subsequent

changes in dividends?,” American Economic Review, 71, 421—436.

Stokey, N. L., R. E. Lucas, Jr., and w. E. C. Prescott (1989): Recursive

Methods in Economic Dynamics. Harvard University Press, Cambridge, MA.

Thaler, R. (2009): “Markets can be wrong and the price is not always right,”

Financial Times, August 4th.

Wen, Y. (1998): “Capacity Utilization under Increasing Returns to Scale,” Journal

of Economic Theory, 81(1), 7—36.

UCLA, University of Mediterranean and GREQAM, CNRS-GREQAM and EDHEC


