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The asset market view of exchange rates is now a dominant theoretical framework in

international asset pricing.1 According to this approach, the change in the real exchange

rate between two economies is equal to the difference between the log intertemporal marginal

rates of substitution (IMRSs) of representative agents in those economies. To fix ideas,

consider the real exchange rate between the United States and the United Kingdom, and let

Amy and Bob be representative agents in these two countries. The asset market view of the

real U.S./U.K. exchange rate is encapsulated in the simple equation:

growth in the real

U.S./U.K. exchange rate
=

Bob’s log IMRS over

his consumption basket
−

Amy’s log IMRS over

her consumption basket
. (1)

The asset market view in Eq. (1) has been used to gain insights into exchange rate de-

termination, foreign exchange risk premia, and international risk sharing. There are at least

three reasons for its widespread use. First, Eq. (1) only relies on consumption aggregates

and utility functions, and does not depend on the specific nature of the market for goods and

services. For example, the composition of Amy’s and Bob’s consumption baskets could be

the same or different, and they could face the same or different prices for identical goods and

services, but Eq. (1) still holds for aggregates. Second, the right hand side of Eq. (1) is often

reinterpreted as the difference between log stochastic discount factors (SDFs) denominated

in the real currency units of the two economies,

growth in the real

U.S./U.K. exchange rate
= log SDF in real pounds − log SDF in real dollars . (2)

Since SDFs can be identified using only asset market data, Eq. (2) appears to offer insights

into exchange rates that do not rely on a fully-specified economic model. Third, the con-

nection between Eqs. (1) and (2) is believed to apply in very general asset market settings,

including incomplete markets with minimum variance linear projections, as long as there is

frictionless trade in assets and no arbitrage opportunities.

In this paper, we argue that the asset market view is not as widely applicable, or useful, as

previous literature suggests. In Section 1 we establish that Eq. (1) does not in fact hold when

agents’ IMRSs are replaced by their minimum variance linear projections onto asset returns

1Examples of papers where this approach appears include: Bansal (1997); Backus, Foresi, and Telmer
(2001); Brandt and Santa-Clara (2002); Smith and Wickens (2002); Brandt, Cochrane, and Santa-Clara
(2006); Lustig and Verdelhan (2006); Brennan and Xia (2006); Lustig and Verdelhan (2007); Bakshi, Carr,
and Wu (2008); Verdelhan (2010); Colacito and Croce (2011); Lustig, Roussanov, and Verdelhan (2011);
Bansal and Shaliastovich (2013); and Lustig, Roussanov, and Verdelhan (2014). For an overview of this
approach, see Lustig and Verdelhan (2012)’s chapter in the recent Handbook of Exchange Rates, entitled
“Exchange Rates in a Stochastic Discount Factor Framework.”
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denominated in real currency units of the two economies. Instead, it is only guaranteed

to hold in the special case that the available asset returns completely span agents’ IMRSs,

and all of the returns that are required for spanning are used in the projections. This result

directly contradicts previous claims in many papers, including Brandt, Cochrane, and Santa-

Clara (2006), Brennan and Xia (2006), Lustig and Verdelhan (2006), Alvarez, Atkeson, and

Kehoe (2007), and Lustig and Verdelhan (2012). It has important implications for economic

inferences, in these papers and others, that were previously thought to only rely on the weak

assumptions of no arbitrage opportunities and frictionless trade in assets, and not require

the much stronger assumption of complete markets. Moreover, this result is an example of

a broader point that we make in Sections 1 and 4: regardless of asset market completeness,

Eqs. (1) and (2) can always be viewed a change of numeraire units (say, from real dollars to

real pounds) for a single SDF or the IMRS of a single agent. In general, Eqs. (1) and (2) do

not hold true for separately derived SDFs or the IMRSs of different agents.

As an example of the significance of the above result, consider the paper by Brandt,

Cochrane, and Santa-Clara (2006). They observe that the volatility of exchange rates is

much smaller than the lower bound on the volatility of agents’ IMRSs that is necessary to

reconcile historical asset returns (Hansen and Jagannathan, 1991). They use this empirical

observation, together with Eq. (1), to conclude that Amy’s and Bob’s IMRSs must be highly

correlated, even if the asset market is incomplete. This conclusion—described by Brandt,

Cochrane, and Santa-Clara (2006) as logically inescapable—has spawned a new literature

that also adopts the asset market view, and seeks models in which IMRSs are both volatile

and highly correlated (e.g., see Colacito and Croce, 2011 and Stathopoulos, 2011). The infer-

ence that IMRSs must be volatile is due to a well-known result in Hansen and Jagannathan

(1991), which does not rely on complete markets. However, the conclusion that IMRSs must

be highly correlated requires that Eq. (1) holds, and therefore it can only be drawn in the

special case of complete markets. In general, with incomplete markets, as we illustrate with

a model in Section 3, the volatility of the exchange rate is not tied to the correlation of

agents’ IMRSs.

We also argue, in Section 1, that the IMRSs that appear in Eq. (1) are only uniquely

identified as Amy’s and Bob’s if there are frictions in the market for goods and services.

If there are no such frictions, then regardless of whether the asset market is complete or

incomplete, Eq. (1) can always be rewritten as a change of numeraire units for any single

agent,

growth in the real

U.S./U.K. exchange rate
=

any agent’s log IMRS

over Bob’s basket
−

that same agent’s log IMRS

over Amy’s basket
. (3)
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In other words, with frictionless trade in goods, only the different consumption baskets

are relevant in Eq. (1), not the different agents. Yet virtually all recent papers that draw

economic insights about different agents based solely on Eq. (1) do not model specific frictions

in the goods market. Indeed, much of the broad appeal of the asset market view seems to

stem from the freedom it affords to abstract from the exact nature of the market for goods

and services.

We argue that agents’ preferences over, and frictions in the market for, goods and services

are central to any explanation or interpretation of time-series variation in real exchange rates

each period. The intuition for this point is simple. The real U.S./U.K. exchange rate is

defined as the value of a unit of Bob’s consumption basket of goods and services, at prices in

the U.K., relative to a unit of Amy’s consumption basket, valued at prices in the U.S., where

both values are expressed in common units. Therefore, the real U.S./U.K. exchange rate can

only vary if either the composition of Amy’s and Bob’s consumption baskets differs, or there

are frictions in the market for goods and services, so that Amy and Bob face different prices

in that market. These two channels for exchange rate variation have very different economic

implications, but in both cases Eq. (1) holds if the asset market is complete.

For example, consider again the paper by Brandt, Cochrane, and Santa-Clara (2006).

When Eq. (1) does hold, they interpret non-zero growth in the real exchange rate as evidence

of imperfect risk sharing between Amy and Bob. However, as we discuss in Section 2, the

validity of this interpretation depends crucially on the specific nature of the market for goods

and services. In particular, if the composition of Amy’s and Bob’s consumption baskets

differs, then the real exchange rate can vary simply because it represents the relative price

of different baskets. Yet, if the asset market is complete and there are no frictions in the

market for goods and services (i.e., there are no frictions in either market), then risk sharing

is perfect.

In Section 3 we describe the necessary ingredients in any model that attempts to explain

time-series variation in exchange rates and make statements such as: “the real value of the

U.S. dollar appreciated this period because U.S. consumption growth fell relative to foreign

consumption growth.” Many papers that make such statements effectively treat aggregate

consumptions in the foreign and domestic economies as exogenous.2 However, in open (as

opposed to closed) economies, each country’s aggregate consumption is endogenous and can

differ from its aggregate output. Therefore, causal statements that treat aggregate consump-

tions as exogenous are incongruous with open economy models. Instead, any explanation of

the growth in the real exchange rate between two open economies requires a fully-specified

model that maps exogenous shocks to agents’ endowments or production technologies into

2For example, see Verdelhan (2010), Colacito and Croce (2011), and Bansal and Shaliastovich (2013).
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equilibrium consumptions and the real exchange rate.3

In Section 3.2 we provide an example of a simple two-country endowment economy,

based closely on Backus and Smith (1993). We assume that agents in the two countries

have standard preferences over two goods. One good is frictionlessly traded. We alternately

assume that the second good is not traded, or is frictionlessly traded. In this model, real

exchange rate fluctuations arise out of variation in countries’ endowments of the two goods.

But the exact nature of these fluctuations—the mapping from endowments to consumptions

and the real exchange rate—depends crucially on the precise nature of the assumed preference

differences, imperfections in goods markets, and imperfections in asset markets.

Our model also illustrates that the theoretical link between imperfect risk sharing and real

exchange rate variation (as argued by Brandt, Cochrane, and Santa-Clara, 2006) is tenuous.

We construct equilibria with lots of real exchange rate variation combined with perfect or no

risk sharing. Similarly, we construct equilibria with no real exchange rate variation combined

with perfect or no risk sharing. The weak connection between risk sharing and exchange rate

behavior is readily understood if we consider a single economy with two agents, in which all

goods have the same prices in all markets. The fact that these agents face the same prices,

and use the same numeraire to denominate those prices, does not tell us what the economy’s

overall risk sharing characteristics are. It only tells us that, if risk is not perfectly shared,

goods market imperfections play no role. More generally, in a competitive equilibrium, agents

must agree on the relative prices of all goods and assets that they can frictionlessly trade

with each other. Therefore, no model-free economic inferences about different agents can be

made using only these relative prices, regardless of whether the asset market is complete or

incomplete.

Finally, in Section 4 we consider the large literature that uses no-arbitrage models of two

(or more) SDFs to characterize and interpret exchange rate growth via Eq. (2). The models

in these papers only require that there are no-arbitrage opportunities, and thus are subject

to all the critiques and limitations that we described earlier, as well as others that we discuss.

First, we show that Eq. (2) always represents a simple change of numeraire units for a single

SDF rather than two different SDFs. Therefore, any no-arbitrage model with two SDFs

that exploits Eq. (2) is always isomorphic to a model with the exchange rate and a single

SDF. Second, we examine the common assumption of complete markets in this no-arbitrage

literature. Many papers use this assumption as justification to interpret the SDFs in their

no-arbitrage model as the IMRSs of representative agents in the two countries. However,

the point that we previously highlighted around Eq. (3) also applies to these no-arbitrage

3As we make clear in Section 3, we are not suggesting that every interesting question in international
economics must be addressed with a fully-specified economic model.
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models: regardless of asset market completeness, it is impossible to distinguish between the

IMRSs of different agents using only the returns on assets, including currencies, that they can

frictionlessly trade with each other. Moreover, since there are not any agents in no-arbitrage

models, the assumption of complete markets only ensures that every contingent claim on the

assets in a no-arbitrage model can be exactly replicated by a self-financing trading strategy.

Importantly, complete markets in a no-arbitrage model does not imply that the SDF can

be interpreted as the IMRS of a representative agent. Instead, that economic interpretation

carries the additional implication that the SDF in the model must also correctly price the

return on every asset that agents can invest in (including assets that are outside the model).

Third, we show that many papers that model multiple SDFs actually introduce additional

assumptions beyond complete markets or the mere absence of arbitrage opportunities. For

example, we show that a number of these papers assume that a common set of shocks drive

both currencies and interest rates.4 We also demonstrate that the model of two SDFs in

Brandt and Santa-Clara (2002) is not arbitrage-free.

1 Real Exchange Rates and the Asset Market View

In this section we formally develop the asset market view of real exchange rates in Eq. (1).

1.1 Defining the Real Exchange Rate

We begin with the definition of the real exchange rate between two agents, Amy and Bob.

They could be located anywhere in the world, including places that use the same nominal

currency to denominate prices (e.g., different countries within the eurozone, or different

states in the U.S.). To be concrete, we assume that they are representative agents in the

United States and the United Kingdom. We make the standard assumption that there is

frictionless trade in nominal currencies so that, without loss of generality, we use U.S. dollars

to denominate the prices of all goods and assets, regardless of their location. If the price of

a good or asset is denominated in a different nominal currency, then it can be converted to

the U.S. dollar equivalent at the relevant nominal exchange rate.

Let P be the dollar value today of one unit of Amy’s consumption basket of goods and

services, at prices in the U.S., and let P ′ be its (uncertain) dollar value next period. Similarly,

let P̃ be the U.S. dollar value today of one unit of Bob’s consumption basket, at prices in the

U.K., and let P̃ ′ be its (uncertain) dollar value next period. The real U.S./U.K. exchange

4A few examples of papers that make this assumption include: Backus, Foresi, and Telmer (2001);
Brennan and Xia (2006); Backus, Gavazzoni, Telmer, and Zin (2010); Lustig, Roussanov, and Verdelhan
(2011); and Gavazzoni, Sambalaibat, and Telmer (2013).
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rate, e, is defined as the value of a unit of Bob’s consumption basket relative to a unit of

Amy’s consumption basket,

e ≡ P̃ /P and e′ ≡ P̃ ′/P ′ . (4)

Empirically, P is usually measured as the dollar value of the basket of consumer goods

and services that is used to compute the consumer price index (CPI) in the U.S. Likewise, let

P̃ ∗ denote the U.K. pound value, measured at U.K. prices, of the basket of consumer goods

and services that is used to compute the CPI in the U.K. If S is the nominal dollar/pound

exchange rate (i.e., the U.S. dollar price of one U.K. pound), then P̃ ≡ SP̃ ∗ is the U.S. dollar

value of this U.K. basket. Therefore, the growth in the real U.S./U.K. exchange rate is

typically measured as

ln(e′/e) = ln(P̃ ∗′/P̃ ∗) + ln(S ′/S) − ln(P ′/P ) . (5)

The real U.S./U.K. exchange rate is always constant if the composition of Amy’s and

Bob’s consumption baskets is the same and they face identical prices (measured in common

units such as U.S. dollars) for the goods and services in their baskets. Therefore, the real

U.S./U.K. exchange rate can only vary over time if:

1. The composition of Amy’s and Bob’s consumption baskets is different; and/or

2. Amy and Bob face different prices, in the U.S. and the U.K., for identical goods in

their baskets (where, for comparison, prices are measured in common units).

Hence, to understand why real exchange rates vary over time, at a minimum it is necessary

to understand why different agents may face different prices for identical goods and services,

and/or why the composition of their consumption baskets may differ. We elaborate on this

point in Section 3.

From an empirical standpoint, both of these necessary conditions for a variable real

exchange rate are satisfied for virtually every country pair in the world. Different countries

use different baskets of consumer goods and services to compute their respective consumer

price indices. Also, identical goods and services frequently have different prices in different

countries (i.e., purchasing power parity does not typically hold across countries, or even in

different locations within the same country).
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1.2 Euler Equations

Let λ be Amy’s marginal utility today over units of her consumption basket, and let λ′ denote

the discounted value of her (uncertain) marginal utility next period. Amy’s intertemporal

marginal rate of substitution (IMRS), or discounted marginal utility growth, over units of

her consumption basket is m ≡ λ′/λ. Today, with one dollar, Amy can purchase 1/P units

of her consumption basket in the U.S. goods market. Therefore, Λ = λ/P is her indirect

marginal utility today over dollars, and Λ′ = λ′/P ′ is the discounted value of her indirect

marginal utility tomorrow over dollars. It follows that

M ≡ Λ′

Λ
=
λ′

λ

P

P ′
= m

P

P ′
(6)

is her IMRS over dollars.

Analogous to Amy, let λ̃ denote Bob’s marginal utility today over a unit of his con-

sumption basket and let λ̃′ denote the discounted value of his (uncertain) marginal utility

next period. Then m̃ ≡ λ̃′/λ̃ is Bob’s IMRS over units of his consumption basket. Letting

Λ̃ = λ̃/P̃ and Λ̃′ = λ̃′/P̃ ′, it follows that his IMRS over dollars is

M̃ ≡ Λ̃′

Λ̃
=
λ̃′

λ̃

P̃

P̃ ′
= m̃

P̃

P̃ ′
. (7)

As its name suggests, the asset market (or SDF) view of exchange rates emphasizes using

asset markets to improve our understanding of exchange rates. The standard assumption

in the literature is that trade in assets and currencies is frictionless. Therefore, we assume

that Amy and Bob can trade a set of k assets at the same dollar-denominated prices. Let

X be the k-dimensional vector of uncertain asset payoffs next period, and let PX be the

k-dimensional vector of asset prices today, with both being measured in U.S. dollars. For

notational convenience, denote the vector of uncertain dollar-denominated returns on the

assets by R ≡ X/PX . Then r ≡ RP/P ′ is the vector of those asset returns denominated

in units of Amy’s consumption basket in the U.S. (real dollars), and r̃ ≡ RP̃ /P̃ ′ ≡ re/e′

is the vector of the asset returns denominated in units of Bob’s consumption basket in the

U.K (real pounds).

In any standard model—for example, the one we outline in Section 3.2—if Amy maximizes

her expected discounted lifetime utility, then her first order condition for optimality (i.e.,

her Euler equation) implies that

PXΛ = E [XΛ′] , or equivalently, 1 = E [RM ] . (8)

7



In Eq. (8), 1 denotes a k-dimensional vector of 1’s and E [·] denotes the expectations operator

conditional on Amy’s current information. Likewise, Bob’s Euler equation is

1 = E[RM̃ ] , (9)

under the standard assumption that Amy and Bob have the same information.

1.3 Complete Asset Markets and the Asset Market View

Together, Eqs. (8) and (9) do not imply that Amy and Bob always equate IMRSs over dollars

(i.e., in general, M 6= M̃). However, Eqs. (8) and (9) do imply that the linear projections of

their IMRSs over dollars, onto the dollar-denominated asset returns R, must agree. In other

words,

E [RM ] = 1 = E[RM̃ ] ⇒ proj [M |R ] = proj[M̃ |R ] . (10)

When the dollar-denominated asset returns, R, completely span Amy’s and Bob’s IMRSs

over dollars in every possible state of the world next period, we get proj [M | R] = M and

proj[M̃ | R] = M̃ , so that by Eq. (10) we have

M = M̃ . (11)

That is, in the special case of complete asset markets, Amy and Bob equate IMRSs over

dollars in every state of the world next period.

Since, via a change of units, we always have M̃/M = (m̃/m) × (e/e′), Eq. (11) holds if

and only if the asset market view of exchange rates in Eq. (1) holds,

growth in the real

U.S./U.K. exchange rate︸ ︷︷ ︸
ln e′ − ln e

=
Bob’s log IMRS over

his consumption basket︸ ︷︷ ︸
ln m̃

−
Amy’s log IMRS over

her consumption basket︸ ︷︷ ︸
lnm

. (1)

Eq. (1)—or, equivalently, Eq. (11)—is an equilibrium condition in any model with frictionless

trade in assets whose returns completely span all possible states of the world next period. It

is important to emphasize that Eq. (1) is not a moment condition (such as an Euler equation)

that relates the expected (or average) growth in the real exchange rate to the expected (or

average) difference between Bob’s and Amy’s log IMRSs. Instead, when Eq. (1) applies, it

holds in every period and state of the world.

To gain some intuition for Eq. (1), note that states of the world in which an agent’s

IMRS is high are typically labeled as “bad times” for that agent, while states of the world
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where the agent’s IMRS is low are referred to as “good times.” Therefore, roughly speaking,

when Eq. (1) holds it says that the real pound always depreciates against the real dollar

whenever times improve more for Bob than for Amy, and it always appreciates whenever

times improve more for Amy than for Bob. Again, since Eq. (1) applies in every period and

state of the world, we use the term “always” rather than “tends to”, “on average,” or “is

expected to.” Also, note that we have been careful not to imply causality. Eq. (1) is only an

equilibrium condition: the right hand side of Eq. (1) does not determine the left hand side any

more than the left determines the right. Finally, there is an important caveat to our rough

economic interpretation of Eq. (1). From standard microeconomics, it is only meaningful to

compare Amy’s and Bob’s IMRSs if they are measured over identical consumption baskets.

We elaborate on this point in Section 2.

1.4 Uniqueness of Agents in the Asset Market View

The IMRSs in Eq. (1) are only uniquely identified as Amy’s and Bob’s if there are frictions

in the market for goods and services so that prices in the U.S. differ from those in the U.K.

To appreciate this point, it is first helpful to understand that a version of Eq. (1) can always

be viewed as a change of numeraire units from any agent’s IMRS over Amy’s basket to that

same agent’s IMRS over Bob’s basket (and vice versa). To illustrate, suppose that there are

no frictions in the goods market, so that Amy and Bob always face the same prices in the

U.S. and the U.K. for identical goods and services in their baskets. In that case, in the U.S.

Amy can trade a unit of Bob’s basket today for e units of her basket, and next period she

can trade one for e′ units. Therefore, her marginal utility today over units of Bob’s basket

is λe and her IMRS over units of his basket is me′/e. Thus, regardless of whether Eq. (1)

holds, we can always rewrite this change of numeraire units for Amy (or any other agent) as

growth in the real

U.S./U.K. exchange rate︸ ︷︷ ︸
ln e′ − ln e

=
Amy’s log IMRS

over Bob’s basket︸ ︷︷ ︸
ln(me′/e)

−
Amy’s log IMRS

over Amy’s basket︸ ︷︷ ︸
lnm

. (12)

Eq. (12) is simply the formal version of Eq. (3) in the introduction (applied to Amy).

Likewise, if today Bob can trade a unit of Amy’s basket for 1/e units of his basket in the

U.K., then his marginal utility today over units of Amy’s basket is λ̃/e, and his IMRS over

units of her basket is m̃ e/e′ (again, this change of numeraire units always applies, regardless

9



of asset market completeness). In that case, if Eq. (1) holds then so too does

growth in the real

U.S./U.K. exchange rate︸ ︷︷ ︸
ln e′ − ln e

=
Amy’s log IMRS

over Bob’s basket︸ ︷︷ ︸
ln(me′/e)

−
Bob’s log IMRS

over Amy’s basket︸ ︷︷ ︸
ln(m̃ e/e′)

. (13)

Intuitively, if Amy and Bob can frictionlessly trade the goods and services in their consump-

tion baskets, then they must agree on the relative price of those baskets, and therefore it is

impossible to distinguish between them using only that relative price.

There are (at least) two important implications of the fact that Amy and Bob are only

uniquely identified in Eq. (1) by frictions they face in the market for goods and services.

First, since trade in currencies (and derivatives on currencies) is almost always assumed

to be frictionless, the asset market view in Eq. (1) cannot be used as the sole basis to

infer differences between Bob and Amy from the returns to currency investments (including

the prices and returns on currency derivatives). Second, and related, Eq. (1) cannot be

used as the sole basis to explain returns on currency investments, or growth in the real

exchange rate. To elaborate on this second point, note that if there are no frictions in the

market for goods and services, then Amy and Bob are not uniquely identified in Eq. (1), and

therefore it cannot serve as the sole basis for an explanation (an analogous argument applies

to nominal currencies with frictionless trade). On the other hand, if there are frictions in

the goods market, then any explanation of growth in the real exchange rate also requires

an understanding of the specific impact of those frictions. We elaborate on these points in

Sections 2, 3, and 4.

1.5 Projections of IMRSs onto Asset Returns

Many papers claim that Eq. (1) holds more broadly, in incomplete markets, when agents’

IMRSs—m and m̃—are replaced by their minimum variance linear projections onto asset

returns—proj[m
∣∣r] and proj[m̃

∣∣r̃]—denominated in real currency units of the two economies.

Papers that make this claim include Brandt, Cochrane, and Santa-Clara (2006, p. 675),

Brennan and Xia (2006, p. 759), Lustig and Verdelhan (2006, p. 648), Alvarez, Atkeson, and

Kehoe (2007, p. 342), and Lustig and Verdelhan (2012, p. 395).5

5For example, Brandt, Cochrane, and Santa-Clara (2006, p. 675) states that:

These discount factors are the projections of any possible domestic and foreign discount factors
onto the relevant spaces of asset payoffs, and they are also the minimum-variance discount
factors. We show that Eq. (1) continues to hold with this particular choice of discount factors.
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This claim is incorrect. In general,

ln e′ − ln e 6= ln (proj[m̃ | r̃]) − ln (proj[m | r]) . (14)

Eq. (14) follows immediately from the observation that, in general,

proj[m | r] × e′/e 6= proj[m̃ | r̃] . (15)

To illustrate, suppose that r is a k-dimensional vector. The left hand side of Eq. (15) is

linear in re′/e, so that

proj[m | r]× e′/e = β · r e′/e , (16)

for a k-dimensional vector β (where · denotes the dot product of two vectors). The right

hand side of Eq. (15) is not linear in re′/e, but instead is linear in r̃ = re/e′. In general,

β · re′/e is not in the linear span of r̃ = re/e′.6 To be more specific, suppose that there are

n > k states of the world next period, indexed by ω = 1, . . . , n. For example, the k asset

returns could be log-normally distributed in discrete time, in which case the number of states

of world next period is infinite (i.e., n =∞ > k). Let r (ω) denote the k-dimensional vector

of asset returns in state ω and let e′ (ω) denote the real U.S./U.K. exchange rate in that

state. In general, there does not exist a k-dimensional vector β̃ that satisfies the necessary

n > k equations:

β̃ · r (ω) e/e′ (ω) = β · r (ω) e′ (ω) /e , ω = 1, . . . , n . (17)

So, an equation that plays a prominent role in the asset market view of exchange rates

does not hold. Instead, it only holds in the special case that the available asset returns

completely span agents’ IMRSs, and all of the returns that are required for spanning are

used in the projections. In other words, Eq. (1) is not guaranteed to hold if the asset market

is incomplete, and therefore it cannot serve as the basis for economic insights in that case.

For example, in the introduction we highlighted that Brandt, Cochrane, and Santa-Clara

6Brandt, Cochrane, and Santa-Clara (2006), and others, incorrectly claim otherwise. For example,
Brandt, Cochrane, and Santa-Clara (2006, p. 675) state that:

If we start with md
t+1 ∈ X, form mf

t+1 = md
t+1× et+1/et to satisfy (1), we can quickly see that

mf
t+1 is in the payoff space available to the foreign investor.

The error in this statement is that if md
t+1 ∈ X is in the payoff space denominated in real domestic currency

units, then md
t+1 × et/et+1 is always in the payoff space denominated in real foreign currency units, but, in

general, md
t+1×et+t/et is not in that space. Brandt, Cochrane, and Santa-Clara (2006) also prove this claim

in Appendix A of their paper. The error in their proof is that they show the result in a continuous-time
diffusion setting, which is actually a complete market setting (for example, see Harrison and Pliska, 1981,
1983), and therefore cannot be used to prove that the result holds, in general, with incomplete markets.
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(2006)’s inference about international risk sharing, based on Eq. (1), does not apply if the

asset market is incomplete (we expand on this point in Section 2). As another specific

example of the significance of the result in Eq. (14), consider the paper by Alvarez, Atkeson,

and Kehoe (2007) who use the asset market view of exchange rates in Eq. (1) to argue that

changes in nominal interest rates by central banks must have a large impact on the difference

between the conditional variances of representative agents’ IMRSs. Again, to generalize their

argument beyond the special case of complete markets, they suggest that Eq. (1) continues

to hold for minimum variance linear projections.7

Our paper is not about whether the asset market is complete or incomplete. Instead,

in Section 2, we question the premise of Brandt, Cochrane, and Santa-Clara (2006) that

Eq. (1) can be used to measure risk sharing without making important assumptions about

the underlying economic model.8 We show that any inference about risk sharing that is

drawn from Eq. (1) requires strong assumptions. In Section 3 we argue that even when

Eq. (1) does hold, it is not sufficient to explain or interpret time-series variation in real

exchange rates. That objective requires a more fully specified model in order to understand

the mapping between exogenous shocks and exchange rates. In Section 3.2 we provide a

model to illustrate these points. Finally, in Section 4 we discuss limitations of no-arbitrage

models that are used to understand and explain exchange rates via Eq. (2).

2 Correlated IMRSs and International Risk Sharing

In this section we provide a more detailed analysis of Brandt, Cochrane, and Santa-Clara

(2006), and the subsequent literature that builds on their work.

As their starting point, Brandt, Cochrane, and Santa-Clara (2006) calculate the variance

of both sides of Eq. (1) and rearrange the result as:

cov(ln m̃, lnm) = 1
2
{var(ln m̃) + var(lnm)− var(ln[e′/e])}. (18)

7To be clear, we take no stand on whether changes in nominal interest rates by central banks have a
large or small impact on the difference between the conditional variances of representative agents’ IMRSs.
Rather, our point is that Eq. (1) is only guaranteed to hold if the asset market is complete, and therefore it
cannot be used to generalize arguments beyond this special case.

8For example, on page 673 of Brandt, Cochrane, and Santa-Clara (2006) they state:

Yet the conclusion is hard to escape. Our calculation uses only price data, and no quantity
data or economic modeling (utility functions, income or productivity shock processes, and
so forth). A large degree of international risk sharing is an inescapable logical conclusion of
Eq. (1), a reasonably high equity premium (over 1%, as we show below), and the basic economic
proposition that price ratios measure marginal rates of substitution.

12



From the abstract of Brandt, Cochrane, and Santa-Clara (2006):

Exchange rates depreciate by the difference between domestic and foreign marginal

utility growth or discount factors. Exchange rates vary a lot, as much as 15% per

year. However, equity premia imply that marginal utility growth varies much

more, by at least 50% per year. Therefore, marginal utility growth must be

highly correlated across countries.

The point of the example in their abstract is that the data inform us that var(ln m̃) and

var(lnm) are much larger than var(ln[e′/e]). This empirical observation leads to their infer-

ence, from Eq. (18), that cov(ln m̃, lnm) is large so that Amy’s and Bob’s IMRSs are highly

correlated.

Eq. (18) has spawned a new literature that also adopts the asset market view, and seeks

models in which IMRSs are both volatile and highly correlated (e.g., see Colacito and Croce,

2011 and Stathopoulos, 2011). For example, from Colacito and Croce (2011, p. 154):

We like to view this as an international equity premium puzzle. In a one-country

model, consumption growth does not vary enough to explain the excess return

over the risk-free rate. In a two-country model, consumption growth does not

covary enough to track movements in the exchange rate and returns. This di-

chotomy of prices and quantities strikes us as an important unresolved puzzle in

international finance.

The assumption that IMRSs must be volatile follows from Hansen and Jagannathan (1991)’s

well-known results, which do not rely on complete markets. However, Eq. (18) is an impli-

cation of Eq. (1), which is only guaranteed to hold in complete markets. Therefore, the

conclusion that highly correlated IMRSs are necessary for exchange rates to vary much less

than IMRSs can only be drawn in the special case of complete markets. In general, with in-

complete markets, as we illustrate with a model in Section 3.2, the volatility of the exchange

rate is not tied to the correlation of agents’ IMRSs.

2.1 What Can We Learn from Projections?

As we discussed in Section 1.5, Brandt, Cochrane, and Santa-Clara (2006) claim that Eq. (1)

continues to hold for the linear projections, proj[m
∣∣r] and proj[m̃

∣∣r̃]. They argue that this

result makes their inference robust to the case in which asset markets do not completely

span agents’ IMRSs. In Section 1.5, we showed that Eq. (1) does not hold for these linear

projections. However, irrespective of that result, we argue that it is impossible to draw

conclusions about the correlation of m and m̃ from the correlation of proj[m
∣∣r] and proj[m̃

∣∣r̃].
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More generally, projections can only be informative about commonalities of m and m̃, not

about differences.

To better understand this point, it is helpful to imagine a case where the projections are

done onto returns denominated in the same units. For example, it might be natural to project

Amy’s IMRS, M , and her neighbor Amelia’s IMRS, M̌ , onto a vector of asset returns, R,

measured in dollars. Both of these projections are equal to R>E
[
RR>

]−1
1, and are there-

fore perfectly correlated, but we cannot infer that Amy and Amelia’s IMRSs are perfectly

correlated. Although we learn that their IMRSs share the component R>E
[
RR>

]−1
1, the

projection exercise sheds no light on the size of the unshared components.9 The unshared

components include all of Amy’s and her neighbor’s risks that go unshared due to asset

market incompleteness, as well as any shared risk that happens to not be spanned by the

specific asset returns used in the empirically-implemented projections.

A similar argument applies for the projections of Amy’s and Bob’s respective IMRSs onto

asset returns measured in real dollars and pounds:

m = proj [m | r] + ε , where E [rε] = 0 , (19)

and

m̃ = proj[m̃ | r̃] + ε̃ , where E [̃rε̃] = 0 . (20)

The projections, themselves, are uninformative about ε and ε̃, the components of the IMRSs

that are orthogonal to the available asset returns.

More broadly, in any competitive equilibrium, agents must agree on the relative prices

of all goods and assets that they can frictionlessly trade with each other. Therefore, no

model-free economic inferences about different agents can be made using only these relative

prices, regardless of whether the asset market is complete or incomplete.

In Section 4 we discuss no-arbitrage (statistical) models of asset returns that also provide

a stochastic discount factor (SDF) for those returns. In the no-arbitrage literature, SDFs

are frequently modeled (or can be expressed) as functions of the asset returns themselves.

Since the projections in Eq. (14) are linear in the asset returns, the inequality in Eq. (14)

obviously remains if the functional form of the SDF is linear in the asset returns. However,

in Section 4.5 we provide two examples of functional forms for an SDF where the inequality

in Eq. (14) becomes an equality: if the inverse of the SDF is linear in the asset returns, or

if the log of the SDF is linear in the log of the asset returns.10 Nevertheless, the broader

9Putting it differently, the projections put a lower bound on the variance of every agent’s IMRS over
dollars (Hansen and Jagannathan, 1991). We can’t infer anything about the correlation of IMRSs from this
lower bound unless we also have an upper bound on the variance of the agents’ IMRSs.

10Affine models of asset returns often assume that the log of the SDF is linear in the log of the asset
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economic point—that the returns on frictionlessly traded assets can only be informative

about commonalities of m and m̃, but not about differences—always applies, irrespective of

the functional form that a no-arbitrage model assumes for an SDF, or whether the inequality

in Eq. (14) becomes an equality for that particular functional form.

2.2 Inference About International Risk Sharing

As we mentioned in the introduction, Brandt, Cochrane, and Santa-Clara (2006) interpret

non-zero growth in the real exchange rate as evidence of imperfect risk sharing between

Amy and Bob. They use Eq. (18) to compute cov(ln m̃, lnm), which they interpret as a

measure of the degree of international risk sharing. Using this measure, and fixing var(lnm)

and var(ln m̃), they argue that a high volatility of the exchange rate indicates a low degree

of international risk sharing, and vice versa. In fact, if var(ln[e′/e]) = 0, then Brandt,

Cochrane, and Santa-Clara (2006) would infer that risk sharing is perfect between foreign

and domestic investors. What exactly constitutes perfect risk sharing, and how is it related

to the difference in agents’ IMRSs (or discounted marginal utility growths)? To consider

these issues, we return to the example of Amy and Bob.

Amy and Bob share risk perfectly if they equate IMRSs over all individual goods and

services, and all common baskets of goods and services, in every state of the world next

period. As a helpful example, consider again the setup in Section 1.4. Suppose that Amy

and Bob face the same prices for identical goods and services in their baskets. Then Amy

can trade one unit of Bob’s basket for P̃ /P ≡ e units of her basket. Therefore, her marginal

utility over units of Bob’s basket is λe and her IMRS over units of his basket is me′/e.

Likewise, Bob’s marginal utility over units of Amy’s basket is λ̃/e (since he can trade a unit

of Amy’s basket for P/P̃ ≡ 1/e units of his basket), so his IMRS over units of her basket is

m̃e/e′. If, in addition, we assume that asset markets are complete, then in every state of the

world next period,

Amy’s IMRS over Amy’s basket︸ ︷︷ ︸
m

= Bob’s IMRS over Amy’s basket︸ ︷︷ ︸
m̃e/e′

, (21)

or equivalently,

Amy’s IMRS over Bob’s basket︸ ︷︷ ︸
me′/e

= Bob’s IMRS over Bob’s basket︸ ︷︷ ︸
m̃

. (22)

returns. For example, see Backus, Foresi, and Telmer (2001); Brandt and Santa-Clara (2002); Brennan and
Xia (2006); and Lustig, Roussanov, and Verdelhan (2011).

15



So, in this example, Amy and Bob equate IMRSs over each others’ baskets in every

possible state of the world next period. It is straightforward to extend this analysis to show

that, when asset markets are complete, Amy and Bob equate IMRSs over any individual

good, or basket of goods and services, that they can frictionlessly trade with each other

(i.e., for which they face identical prices). Therefore, Amy and Bob share risk perfectly in

this example with complete markets and identical prices for the same goods and services.

However, note that even if Amy and Bob share risk perfectly, their IMRSs in Eq. (1) can

still differ when they are measured over different baskets of goods and services. In this case,

the real exchange rate can also still vary because it too reflects the relative price of different

baskets.11

With frictionless trade in assets, risk sharing can only be imperfect if asset markets

are incomplete and/or agents face different prices for identical goods and services. If asset

markets are incomplete, then Amy’s and Bob’s IMRSs can differ across states of the world

that are not spanned by the available assets. If they face different prices for identical goods

and services, then there must be a friction in that market that prevents these prices from

being equal in different locations, and that friction can also prevent perfect risk sharing.

Contrary to the premise of Brandt, Cochrane, and Santa-Clara (2006), the conditions re-

quired for imperfect risk sharing do not completely overlap with the conditions for a variable

real exchange rate. For example, as we noted earlier, if the composition of Amy’s and Bob’s

consumption baskets is the same and they face identical prices for the goods and services in

their baskets, then the real exchange rate is constant. Yet, risk sharing can still be imperfect

if asset markets are incomplete. Here, Brandt, Cochrane, and Santa-Clara would draw the

wrong inference because Eq. (1) does not hold in this setting, and therefore neither does

Eq. (18). Conversely, if the asset market is complete and agents face identical prices for the

goods and services in their baskets, then risk sharing is perfect (since they always equate

IMRSs over any common basket of goods and services). Yet the exchange rate can still vary

11This point is certainly not new, as it is contained in most standard texts on microeconomics. The point
is also not new to the international economics literature. For example, from Colacito and Croce (2011,
p. 156–157):

Is correlation the same as risk sharing?—Not necessarily, as this crucially depends on the
model’s assumptions. For example, consider an economy populated by two consumers with
standard time-additive preferences defined over an aggregate of two tradable goods (e.g., one
domestic and one foreign good). Risk sharing implies that the intertemporal marginal rates of
substitution (IMRS) with respect to each good are equalized and therefore perfectly correlated
across agents. If agents’ preferences are biased toward the consumption of opposite goods (e.g.,
there is consumption home bias), however, their IMRS with respect to the consumption bundle
will be less than perfectly correlated, even if in equilibrium all risk-sharing opportunities have
been exhausted.
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if the composition of Amy’s and Bob’s consumption baskets differs. Here, Brandt, Cochrane

and Santa-Clara would draw the wrong inference because the covariance between ln m̃ and

lnm is not informative about risk sharing when Amy’s and Bob’s baskets differ.

Composition of
Consumption Baskets

Asset Markets Identical Different

Complete Yes No
Incomplete No No

Table 1: Does a variable real exchange rate directly reflect imperfect risk sharing?

Table 1 provides the necessary conditions such that variation in the real exchange rate

is a direct reflection of imperfect risk sharing. When the composition of Amy’s and Bob’s

consumption baskets is identical, the exchange rate can only vary if they face different prices

for identical goods and services in their baskets. Likewise, if asset markets are complete, then

risk sharing can only be imperfect if there are frictions in the market for goods and services

that prevent prices from being the same in different locations. In other words, under these

specific assumptions, both imperfect risk sharing and variation in the real exchange rate can

only occur if there are frictions in the market for goods and services.12 Unfortunately, as

Table 1 indicates, the link between risk sharing and a volatile real exchange rate only holds

in this one special case. As previously noted, the difference in composition of Amy’s and

Bob’s consumption baskets can contribute to variation in the real exchange rate, but it need

not affect risk sharing. Likewise, incomplete asset markets can contribute to imperfect risk

sharing, without affecting the volatility of the real exchange rate.

To emphasize, if we only observe variation in the real exchange rate, and nothing more,

then we cannot be sure of the extent to which that variation reflects the relative prices of

different baskets of goods and services, versus different prices for identical goods and services

in those baskets. Similarly, incomplete asset markets are a source of imperfect risk sharing,

but one cannot learn the extent of market incompleteness (i.e., the extent to which agents’

IMRSs are not spanned by asset returns) from asset returns alone (including the returns on

currencies). Therefore, very specific assumptions are required to make any inferences about

international risk sharing using only observations of asset returns and variation in the real

exchange rate. Any such inferences are not robust to different assumptions.

12Backus and Smith (1993) develop a model with complete markets and identical consumption baskets in
order to study the impact of non-traded goods (i.e., frictions in the market for goods and services) on real
exchange rates. In Section 3.2 we extend Backus and Smith (1993) to allow for incomplete markets, different
preferences over goods across countries, and the possibility of frictionless trade in all goods. The model in
Section 3.2 serves as a specific example to illustrate our points in Table 1.

17



3 Explaining Real Exchange Rates with a Model

In this section we discuss models of real exchange rate growth. In Section 3.1 we provide

necessary ingredients for any model that is designed to explain real exchange rate growth.

We also discuss recent papers that attempt to do so with models that treat aggregate con-

sumptions in each country as exogenous. In Section 3.2 we provide an example of a model

to illustrate these necessary ingredients.

3.1 Necessary Ingredients to Explain Exchange Rate Growth

A number of recent papers use Eq. (1) to bring insights about the nature of preferences from

the asset pricing literature to the study of exchange rates. For example, Verdelhan (2010)

uses representative agents with external habit preferences (see Campbell and Cochrane,

1999), while Colacito and Croce (2011) and Bansal and Shaliastovich (2013) use represen-

tative agents with Epstein-Zin recursive utility functions (see Epstein and Zin, 1989) who

also face long-run risk (see Bansal and Yaron, 2004). Each of these papers use Eq. (1) to

argue that shocks to the real exchange rate can be explained (or, are determined) by exoge-

nous shocks to aggregate consumption growth in country.13 For example, the introduction

of Verdelhan (2010, p. 124) states that:

When markets are complete, the real exchange rate, measured in units of domes-

tic goods per foreign good, equals the ratio of foreign to domestic pricing ker-

nels. Exchange rates thus depend on foreign and domestic consumption growth

shocks. If the conditional variance of the domestic stochastic discount factor

(SDF) is large relative to its foreign counterpart, then domestic consumption

growth shocks determine variation in exchange rates.

What are the necessary ingredients of a model that attempts to explain real exchange

rates? By “explain” we mean that the model provides a mapping from exogenous structural

shocks (such as those to endowments or the production technology) into outcomes for the

real exchange rate and agents’ IMRSs. Without such a mapping, it is impossible to make

13Colacito and Croce (2011) treat aggregate endowments as exogenous, but they assume complete home
bias in preferences so that aggregate consumptions equal aggregate endowments in each country. With
complete home bias, the real exchange rate is not uniquely determined. Any real exchange rate clears the
market since agents are assumed to have no desire to consume goods that they are not endowed with,
regardless of the exchange rate. However, Colacito and Croce (2011) use the asset market view of real
exchange rates in Eq. (1) to uniquely characterize the growth in the real exchange rate, even though it
is not uniquely determined in their setup. Similarly, Gourio, Siemer, and Verdelhan (2013) assume that
goods market frictions make trade in goods impossible, yet the real exchange rate between two countries is
determined by Eq. (1).
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a statement—such as the one above from Verdelhan (2010)—that “the real exchange rate

appreciated or depreciated because X occurred.”

As we argued in Section 1, real exchange rates don’t vary over time unless agents have

different consumption baskets and/or they face different prices for identical goods and ser-

vices. Therefore, a model that is designed to explain real exchange rate growth must either

specify the source of differences in basket composition (such as differences between agents’

preferences over goods), or it must make specific assumptions about goods market frictions

(such as tradability of different goods, or the magnitude of trade costs) that cause prices to

differ across locations.

All of the papers that we referenced above are missing key ingredients that are necessary

to explain real exchange rates. The models in all of these papers treat aggregate consump-

tion growth in the foreign and domestic economies as exogenous structural shocks. In a

closed endowment economy without physical investment or government purchases, aggre-

gate consumption growth can be treated as exogenous because it must always equal the

growth in aggregate endowment. However, there is a fundamental distinction between open

and closed endowment economies: in an open economy, each country’s aggregate consump-

tion can differ from its aggregate output. To explain how the real exchange rate between

two open economies is determined, such a model must map both countries’ endowments

into both countries’ aggregate consumptions and the real exchange rate between them. Any

model of open economies that treats aggregate consumption in each country as exogenous

is silent about this map and, hence, is silent on the economic mechanism that determines

real exchange rates. There may be asset markets, endowments (production technology),

goods market frictions, and preferences over goods that could generate the assumed aggre-

gate consumption processes of each country. Our point is that these elements are required to

understand how aggregate consumptions and the real exchange rate are jointly determined

in open economies. In contrast to the papers that we referenced above, in a recent paper,

Colacito, Croce, Ho, and Howard (2013) provide a fully-specified model that maps exogenous

shocks into IMRSs and exchange rates. This model has a richer set of implications for the

joint behavior of consumptions, outputs, and the real exchange rate.

To be clear, we are not suggesting that every interesting question in international eco-

nomics must be addressed with a fully-specified economic model. For example, there is no

issue in open economies with the standard empirical exercise in consumption-based asset

pricing that uses data on aggregate consumption and asset returns to directly test Euler

equations (e.g., Eqs. 8 and 9 for Amy and Bob). As Hansen and Singleton (1982) illustrate,

that approach can be fruitful for understanding the average (or expected) returns on differ-

ent investments based on how the returns on those investments covary with a representative
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agent’s IMRS. Additionally, there is no issue with closed-economy models that map triv-

ially from endowments to consumptions and then to returns. Our point is simply that open

economy models that treat shocks to consumption in each country as exogenous are not

particularly useful for understanding or interpreting changes in real exchange rates in each

period (rather than average, or expected, changes).

To illustrate our point with a specific example from the recent literature, consider the

paper by Lustig and Verdelhan (2007). In Section I.D (“US Investor’s Euler Equation”) they

specify a utility function over aggregate consumption growth for the representative agent in

the U.S. (i.e., Amy). In Section II (“Does Consumption Risk Explain Foreign Currency

Excess Returns?”) they test Amy’s first order condition in Eq. (8) using aggregate U.S.

consumption growth and returns on portfolios of foreign currencies that are formed based

on short-term interest rates. For this exercise, the exogeneity or endogeneity of aggregate

U.S. consumption growth is irrelevant, as the question is simply whether the average, or

expected, returns on these currency portfolios can be rationalized by their covariance with

Amy’s IMRS. Put differently, the specific economic mechanism that generates the joint

distribution of Amy’s IMRS with the returns on currency portfolios is not central to the

question that is addressed in Section II of Lustig and Verdelhan (2007).

In Section III (“Mechanism”) of Lustig and Verdelhan (2007) they aim to explain the

covariance between the currency returns and Amy’s IMRS, which is a much more ambitious

objective. Their explanation for this covariance appeals to the asset market view of exchange

rates in Eq. (1). From Lustig and Verdelhan (2007, p. 104) in Section III.B (“Where Do

Consumption Betas of Currencies Come From?”):

The answer is time variation in the conditional distribution of the foreign stochas-

tic discount factor mi. Investing in foreign currency is like betting on the dif-

ference between your own and your neighbor’s IMRS. These bets are very risky

if your IMRS is not correlated with that of your neighbor, but they provide a

hedge when her IMRS is highly correlated and more volatile.

Here is exactly where we disagree. As we argued above, a model that treats aggregate

consumption growth (or the IMRSs of representative agents) in each economy as exogenous is

not useful for understanding the economic mechanism that determines the joint distribution

of those aggregate consumptions with the growth in the real exchange rate.

The explanation in Lustig and Verdelhan (2007) actually just restates the change of

numeraire units that we described in Eqs. (3) and (12). For example, take the common as-

sumption in this literature that there is frictionless trade in assets and currencies. Analogous

to the change of numeraire analysis in Section 1.4, if M is Amy’s IMRS over U.S. dollars,
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and she can purchase S dollars with a U.K. pound, then MS ′/S is her IMRS over pounds.

We can always rewrite this change of numeraire as

lnS ′ − lnS = Amy’s log IMRS over pounds︸ ︷︷ ︸
ln(MS′/S)

− Amy’s log IMRS over dollars︸ ︷︷ ︸
lnM

. (23)

Following Lustig and Verdelhan (2007), one could use Eq. (23) to argue that investing in

U.K. pounds is like betting on the difference between Amy’s log IMRS over pounds and

her log IMRS over U.S. dollars (or, more generally, the difference between any agent’s log

IMRS over pounds and that same agent’s log IMRS over dollars, where the agent could live

anywhere in the world). This reasoning simply restates Amy’s first order condition that must

hold in any equilibrium. If the objective is to explain growth in the dollar/pound exchange

rate, then obviously Amy’s IMRS over dollars and her IMRS over pounds cannot be treated

as exogenous. If the asset market is complete then, as Eq. (13) illustrates, one can switch

Bob for Amy in either or both places in Eq. (23), but the same logic still applies.

One final point is worth highlighting. We have argued that models with exogenous

consumption growth in each country are not useful for explaining real exchange rate growth

via Eq. (1). Nevertheless, for any given model, it could still be the case that Eq. (1) provides

a good empirical fit to the data. However, to date, we are not aware of any recent papers

that treat consumption growth in each country as exogenous and empirically test whether

Eq. (1) holds in every period and state of the world (rather than simply on average, or in

expectation).14

Again, to be clear, we are not suggesting that any paper that assumes complete markets

must empirically test whether Eq. (1) holds in every period. Models of exchange rates that

contain the necessary ingredients we described above often assume complete markets for clar-

ity and tractability. For example, Backus and Smith (1993) assume complete markets (i.e.,

completely frictionless asset markets) so as to focus exclusively on the role of nontradable

goods (i.e., frictions in the goods market). In those papers, it may well be more appropriate

14Backus and Smith (1993) develop a model of open endowment economies with complete markets and
non-tradable goods. They provide empirical evidence that Eq. (1) for their model does not hold in every
period. From Backus and Smith (1993, p. 312-313):

Further implications of the theory are that the growth rates of consumption ratios and of real
exchange rates should have identical dynamics and be perfectly correlated. Fig. 2 shows that
the growth rates of all 28 bilateral real exchange rates are positively autocorrelated, while 27
of the growth rates of consumption ratios are negatively autocorrelated. In addition, the cross-
correlation between the growth rate of the consumption ratio and the growth rate of the real
exchange rate, averaged across countries, is 0.045, with a range of [-0.08, 0.17]. Thus there is
little evidence in favor of either of these implications of the theory.
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to empirically test the central mechanism in the model, rather than the specific assumption

of complete markets that is made to emphasize that mechanism. However, as we have argued

above, papers that treat consumption growths as exogenous, do not completely specify the

economic mechanism by which exchange rates are determined in open economies.

3.2 An Example of an Endowment Economy

In this section we provide an example of a full-fledged model to illustrate how aggregate

consumptions and the real exchange rate are jointly determined in equilibrium. The model

is a generalization of Backus and Smith (1993) along three dimensions. First, we allow for

preference differences across countries. Second, we allow for incomplete markets. Third, like

Backus and Smith (1993) we have two goods, but we explicitly compare the case where the

second good is non-traded to the case in which it is frictionlessly traded. We don’t view this

model as a solution to existing exchange rate puzzles. Rather, it is merely illustrative of our

point about the joint determination of consumptions and the real exchange rate.15

We describe an endowment economy with two countries (“home” and “foreign”) and

representative households within each country. Utility is defined over two goods, A and B.

All goods are perishable and households live for two periods.

The representative household in the home economy has an instantaneous utility function

U(cA, cB) = u[c(cA, cB)], (24)

where cA and cB denote, respectively, the consumption of goods A and B by the home

household, c(·) is a homogeneous of degree one quasi-concave function of its arguments, and

u is a monotonic function with standard properties. Similarly, the representative household

in the foreign economy has the instantaneous utility function

Ũ(c̃A, c̃B) = u[c̃(c̃A, c̃B)], (25)

where c̃A and c̃B denote, respectively, the consumption of goods A and B by the foreign

household, and c̃(·) is a homogeneous of degree one quasi-concave function of its arguments.

Both economies are cashless and use good A as the numeraire. Our model would have

15Dating back, at least, to the contributions of Stockman (1980) and Lucas (1982), a large literature has
developed explicit equilibrium models of the exchange rate. To name but a few, Cole and Obstfeld (1991);
Backus, Kehoe, and Kydland (1992); Dumas (1992); Backus and Smith (1993); Baxter and Crucini (1995);
Obstfeld and Rogoff (1995); Sercu, Uppal, and Van Hulle (1995); Stockman and Tesar (1995); Bekaert (1996);
Betts and Devereux (1996); Chari, Kehoe, and McGrattan (2002); Apte, Sercu, and Uppal (2004); Bacchetta
and Wincoop (2006); Kocherlakota and Pistaferri (2007); Pavlova and Rigobon (2007); Bodenstein (2008);
Benigno and Thoenissen (2008); Corsetti, Dedola, and Leduc (2008); and Corsetti, Dedola, and Viani (2011).
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the same implications for the real exchange rate if we chose different numeraires. Goods

markets meet sequentially. Good A is frictionlessly tradable. We alternately assume that

good B is frictionlessly tradable or non-tradable. We let PB and P ′B denote the prices of

good B in the home economy in the first and second periods. Similarly, we let P̃B and P̃ ′B
denote the prices of good B in the foreign economy in the first and second periods. When

good B is frictionlessly tradable, its price must be the same in both countries,

PB = P̃B and P ′B = P̃ ′B . (26)

The natural definition of the consumer price index (CPI) in the home country is a variable

P such that cA + PBcB = P c(cA, cB). Since c(·) and c̃(·) are homogeneous of degree one

functions, it can be shown that there are homogeneous of degree one functions H(·) and

H̃(·) whose form depends on c(·) and c̃(·), such that the home and foreign CPIs are:16

P = H(1, PB) and P̃ = H̃(1, P̃B) . (27)

Similarly the CPIs in period two are

P = H(1, P ′B) and P̃ ′ = H̃(1, P̃ ′B) . (28)

Identical to Eq. (4) in Section 1, the real exchange rates in periods one and two are

e ≡ P̃ /P and e′ ≡ P̃ ′/P ′. (29)

In the special case where preferences are identical in the two countries, we have H(·) = H̃(·).
If, additionally, both goods are traded, e = 1 = e′, regardless of the asset market structure. If

preferences differ across countries and both goods are traded, variation in the real exchange

rate can arise even though P̃B = PB. All that is needed is variation in PB. We can make

these statements even though we’ve said nothing about asset markets. This is one concrete

sense in which the link between exchange rates and asset markets is tenuous.

As was the case in Section 1, we assume that there are k assets with k× 1 random payoff

vector X. The k × 1 price vector today for these assets is PX . The payoffs and prices of

the assets are measured in units of good A. The asset payoffs, and all variables in period

two, depend on the state of the world in period two. For notational simplicity, however, we

suppress the dependence of period two variables on the state of the world.

The household in the home country chooses cA, cB, c′A, c′B, and the k × 1 vector a, to

16For details, see the section on price aggregation in the appendix.
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maximize

u[c(cA, cB)] + β E {u[c(c′A, c
′
B)} , (30)

subject to

cA + PBcB + PX · a = yA + PByB and c′A + P ′Bc
′
B = y′A + P ′By

′
B +X · a . (31)

Here 0 < β < 1, cA and cB are the household’s current consumption of the two goods, c′A
and c′B are the household’s plans for future consumption of the two goods (in every possible

state of the world), the jth element of a is the household’s net purchases of asset j, and yA,

yB, y′A and y′B are the household’s current and future endowments of the two goods.

Similarly, the foreign household chooses c̃A, c̃B, c̃′A, c̃′B, and ã to maximize

u[c̃(c̃A, c̃B)] + β E {u[c̃(c̃′A, c̃
′
B)]} , (32)

subject to

c̃A + P̃B c̃B + PX · ã = ỹA + P̃B ỹB and c̃′A + P̃ ′B c̃
′
B = ỹ′A + P̃ ′B ỹ

′
B +X · ã . (33)

Here c̃A and c̃B are the household’s current consumption of the two goods, c̃′A and c̃′B are

the household’s plans for future consumption of the two goods (in every possible state of the

world), ã is a k × 1 vector whose jth element is the household’s net purchases of asset j,

and ỹA, ỹB, ỹ′A and ỹ′B are the household’s current and future endowments of the two goods.

The market clearing conditions for good A are

cA + c̃A = yA + ỹA and c′A + c̃′A = y′A + ỹ′A . (34)

When good B is tradable we have the following market clearing conditions

cB + c̃B = yB + ỹB and c′B + c̃′B = y′B + ỹ′B . (35)

When it is non-tradable, instead, we have

cB = yB , c̃B = ỹB , c′B = y′B and c̃′B = ỹ′B . (36)

The market clearing condition in asset markets is

a+ ã = 0 . (37)
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Definition. A competitive equilibrium is values of the quantities cA, cB, c′A, c′B, a, c̃A,

c̃B, c̃′A, c̃′B, ã and prices, PB, P ′B, P̃B, P̃ ′B, and PX such that the quantities solve the home

and foreign country optimization problems (taking the prices as given), and such that the

market clearing conditions are satisfied. When good B is frictionlessly traded, Eq. (26) must

also be satisfied.

3.3 Risk Sharing and IMRSs

The two countries’ discounted marginal utility growths, or IMRSs, defined over aggregate

consumption are

m ≡ βuc(c
′)/uc(c) and m̃ ≡ βuc̃(c̃

′)/uc̃(c̃) . (38)

Similarly, we can define the two countries’ IMRSs over goods A and B:

mA ≡ βucA(c′)/ucA(c) , m̃A ≡ βuc̃A(c̃′)/uc̃A(c̃) , (39)

mB ≡ βucB(c′)/ucB(c) , m̃B ≡ βuc̃B(c̃′)/uc̃B(c̃) . (40)

Definition. Perfect risk sharing describes any competitive equilibrium in which m̃A = mA

and m̃B = mB in every possible state of the world next period.

Our definition of perfect risk sharing is the same as the one in Section 1. For any individual

good, the IMRSs are equated across agents. For any identical basket of goods, suitably

defined, the same is true.

As we show in the Appendix, equilibrium in the goods market always produces the

intuitive result that

uc(c)

ucA(c)
= P ,

uc(c
′)

ucA(c′)
= P ′ ,

uc̃(c̃)

uc̃A(c̃)
= P̃ , and

uc̃(c̃
′)

uc̃A(c̃′)
= P̃ ′ . (41)

Combining Eq. (41) with the definitions of IMRSs in Eqs. (38) and (39), produces

m

mA

=
P ′

P
and

m̃

m̃A

=
P̃ ′

P̃
, (42)

so that
m̃

m
=
e′

e
Ξ , with Ξ ≡ m̃A

mA

. (43)

In Eq. (43), Ξ = 1 whenever risk sharing is perfect in frictionlessly traded goods, and Ξ 6= 1

when risk sharing in those goods is imperfect. For example, when asset markets are complete,

agents equate IMRSs across frictionlessly traded goods, and so mA = m̃A and therefore
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Ξ = 1. But in any incomplete asset markets setting, in general, mA 6= m̃A and thus Ξ 6= 1.

Also, note that Ξ is the same for any frictionlessly traded good (or basket of goods). Thus,

m̃B/mB = m̃A/mA ≡ Ξ whenever good B is frictionlessly traded.

3.4 Four Specific Examples

This section discusses four specific examples of our model, which combine different assump-

tions about financial markets (complete markets vs. financial autarky) and goods market

frictions (good B is frictionlessly traded vs. good B is non-traded). By explicitly solving

for the equilibrium in these four cases, we demonstrate that real exchange rates and agents’

IMRSs are jointly determined by the laws of motion of the endowments, together with our

assumptions about preferences, goods market frictions, and asset markets. We also illustrate

a point we made in Section 1: The conditions under which risk sharing is imperfect, and

those under which the real exchange rate varies, are different.

We adopt the assumption that u(c) = ln c, and the consumption aggregates in the two

countries are c = cθAc
1−θ
B , and c̃ = c̃θ̃Ac

1−θ̃
B . These assumptions are useful because equilibrium

prices and quantities can be worked out with pencil and paper. They imply that the CPIs

in the two countries, measured in units of good A, are

P = ρP 1−θ
B , and P̃ = ρ̃ P̃ 1−θ̃

B , (44)

with ρ = θ−θ(1− θ)θ−1, and ρ̃ = θ̃−θ̃(1− θ̃)θ̃−1. The real exchange rates in periods one and

two are

e = (ρ̃/ρ)P̃ 1−θ̃
B /P 1−θ

B and e′ = (ρ̃/ρ)P̃ ′B
1−θ̃/P ′B

1−θ . (45)

We derive all of the solutions in detail in the Appendix. We use some notation in what

follows. The global endowment of good A in period one is YA = yA + ỹA, while in period

two it is Y ′A = y′A + ỹ′A. Analogously, for good B we have YB = yB + ỹB, and Y ′B = y′B + ỹ′B.

The growth rates of the global endowments are GA = Y ′A/YA and GB = Y ′B/YB. We also

define gA = y′A/yA, gB = y′B/yB, g̃A = ỹ′A/ỹA and g̃B = ỹ′B/ỹB. The home country’s shares of

the global endowment of good A are sA = yA/YA and s′A = y′A/Y
′
A, in periods one and two,

respectively. Similarly, sB = yB/YB and s′B = y′B/Y
′
B. We let s̄′A = E[s′A] and s̄′B = E[s′B]

denote the home country’s average shares of the global endowments in period two.

3.4.1 Complete Markets, No Goods Market Frictions

When asset markets are complete internationally and there are no goods market frictions

(i.e., good B is frictionlessly traded), then PB = P̃B and P ′B = P̃ ′B, and IMRSs in the
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individual goods are always equated across countries. As we show in the Appendix, in good

A the IMRS is β/GA. In good B the IMRS is β/GB. Risk is shared perfectly, regardless of

preferences.

In the case where preferences are identical, e = 1 and e′ = 1. When preferences differ

across countries the expressions in Eq. (45) simplify to e = (ρ̃/ρ)P θ−θ̃
B and e′ = (ρ̃/ρ)P ′B

θ−θ̃,

where PB = κYA/YB, P ′B = κY ′A/Y
′
B and

κ =
(1− θ̃)(1 + β) + (θ̃ − θ)(sA + βs̄′A)

θ̃(1 + β) + (θ − θ̃)(sB + βs̄′B)
. (46)

Hence,

ln(e′/e) = (θ − θ̃) ln(P ′B/PB) = (θ − θ̃) ln(GA/GB) . (47)

Real exchange rate fluctuations are driven by differences in the global growth rates of the

endowments of goods A and B. We see that if the global endowment of good A grows

faster than the global endowment of good B, then good B’s relative price rises. If the

foreign country’s preferences put more weight on good B than home country preferences

(i.e., θ̃ < θ), then the foreign basket becomes relatively more expensive (the foreign country’s

real exchange rate appreciates).

3.4.2 Complete Markets, Good B is Non-traded

Now consider the case where asset markets are complete internationally, but good B is

non-traded. In this case, in general, PB 6= P̃B. IMRSs in good A are always equated

across countries: mA = m̃A = β/GA. IMRSs in good B are, respectively, mB = β/gB and

m̃B = β/g̃B, so risk is not shared perfectly unless gB = g̃B in every possible state of the

world next period.

When preferences differ across countries the real exchange rates are given by Eq. (45),

with prices given by

PB = κ
YA
yB

, P̃B = κ̃
YA
ỹB

, P ′B = κ
Y ′A
y′B

, P̃ ′B = κ̃
Y ′A
ỹ′B

, (48)

and

κ =
1− θ

(1 + β)θ
(sA + βs̄′A) , κ̃ =

1− θ̃
(1 + β)θ̃

[1− sA + β(1− s̄′A)] . (49)
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This implies that

ln(e′/e) = (1− θ) ln gB − (1− θ̃) ln g̃B + (θ − θ̃) lnGA . (50)

Here, the real exchange rate depends on the relative growth rates of the endowment of

good B in the two countries, but the two growth rates matter to different extents due to

preference differences. Additionally, as was the case when good B was traded, if the foreign

country’s preferences put more weight on good B than home country preferences (θ̃ < θ)

then, other things being equal, the foreign county’s real exchange rate appreciates when the

global endowment of good A grows.

If preferences are identical, then the real exchange rate in Eq. (45) simplifies to e =

(P̃B/PB)1−θ and e′ = (P̃ ′B/P
′
B)1−θ with prices still given by Eq. (48), but Eq. (49) becomes

κ =
1− θ

(1 + β)θ
(sA + βs̄′A) , κ̃ =

1− θ
(1 + β)θ

[1− sA + β(1− s̄′A)] . (51)

This means that

ln(e′/e) = (1− θ) ln(gB/g̃B) . (52)

Here, the real exchange rate depends entirely on the relative growth rates of the endowment

of good B in the two countries. If the endowment grows more slowly in the foreign country,

its basket becomes relatively more expensive and its real exchange rate appreciates.

3.4.3 Financial Autarky, No Goods Market Frictions

The third case we consider is where no assets are traded internationally, but goods markets

are frictionless. In this case, PB = P̃B and P ′B = P̃ ′B in every possible state of the world

next period. Risk sharing, in general, is imperfect. As we show in the Appendix, the ratio

of IMRSs in the two countries is the same in goods A and B. That is

m̃A

mA

=
m̃B

mB

= Ξ =
θ(1− sA) + (1− θ)(1− sB)

θ̃sA + (1− θ̃)sB
× θ̃s′A + (1− θ̃)s′B
θ(1− s′A) + (1− θ)(1− s′B)

. (53)

This expression is the same when preferences are identical, except that θ = θ̃.

In the case where preferences are identical, e = 1 and e′ = 1 in every possible state of

the world next period. Risk sharing, on the other hand, can be good or bad. Suppose,

for example, that the home country’s shares of the global endowments vary and comove

positively. In this case, Ξ deviates from one a lot, implying that risk sharing is limited.
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On the other hand, suppose that business cycles are strongly correlated across countries, so

that the home country’s shares of the global endowments do not change very much across

different states of the world next period. In this case, Ξ will be close to one in all states,

implying a high degree of risk sharing.

When preferences differ across countries then e = (ρ̃/ρ)P θ−θ̃
B and e′ = (ρ̃/ρ)P ′B

θ−θ̃, where

PB = κYA/YB, P ′B = κ′Y ′A/Y
′
B, and

κ =
1− θ̃ + (θ̃ − θ)sA
θ̃ + (θ − θ̃)sB

, κ′ =
1− θ̃ + (θ̃ − θ)s′A
θ̃ + (θ − θ̃)s′B

. (54)

Hence,

ln (e′/e) = (θ − θ̃) [ln(GA/GB) + ln (κ′/κ)] . (55)

As in the case of complete markets, real exchange rate fluctuations are driven by differences in

the growth rates of the two endowments. If the global endowment of good A grows faster than

the global endowment of good B, then good B’s relative price rises. If the foreign country’s

preferences put more weight on good B than home country preferences (θ̃ < θ) then the

foreign basket becomes relatively more expensive (the foreign country’s real exchange rate

appreciates). But the way in which the countries’ shares of the global endowments fluctuate

also matters for the real exchange rate. In the example we just described, the real exchange

rate rises more in states of the world where κ′ > κ. This could reflect, for example, a rise in

the foreign country’s share of the global endowment of good A (a drop of s′A) at the same

time as the global endowment of A rises relative to the global endowment of B.

3.4.4 Financial Autarky, Good B is Non-traded

The final case we consider combines financial autarky with the assumption that good B is

non-traded. In this case, each country simply consumes its own endowments. IMRSs in the

individual goods are determined by the country-specific endowment growth rates. For good

A they are mA = β/gA and m̃A = β/g̃A. In good B they are mB = β/gB and mB = β/g̃B.

Risk is not shared unless growth rates happen to coincide. The real exchange rates in the

two periods are given by Eq. (45), with

PB =
(1− θ)
θ

yA
yB

, P̃B =
(1− θ̃)
θ̃

ỹA
ỹB

, P ′B =
(1− θ)
θ

y′A
y′B

, and P̃ ′B =
(1− θ̃)
θ̃

ỹ′A
ỹ′B
. (56)

Hence

ln(e′/e) = (1− θ̃) ln(g̃A/g̃B)− (1− θ) ln(gA/gB). (57)
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Suppose endowment growth rates are identical across goods; i.e., gA = gB and g̃A = g̃B.

Notice that this implies e = e′. There is no variation in the real exchange rate. The extent

of risk sharing, in contrast, depends only on whether gA = g̃A and gB = g̃B. It could be good

or bad. Suppose, on the other hand, that risk sharing is perfect; i.e., gA = g̃A and gB = g̃B.

We only get the result that e = e′ if θ = θ̃.

3.4.5 Discussion

Consider Table 1 from Section 2.2. It states that under complete markets, the observa-

tion that real exchange rates are variable only implies imperfect risk sharing when the two

countries have the same consumption basket. In our model, the countries have identically-

composed consumption baskets if and only if θ = θ̃, because θ and θ̃ are the constant

expenditure shares of good A in the two countries.

So suppose that θ = θ̃. Under complete markets, we saw that ln(e′/e) = 0 and risk sharing

is perfect if trade in both goods is frictionless. On the other hand, ln(e′/e) = (1−θ) ln(gB/g̃B)

and m̃B/mB = gB/g̃B if good B is non-traded. If one is willing to assume that markets

are complete, and that countries have identical preferences, risk sharing and exchange rate

changes are intimately linked in our model.

Under incomplete markets, however, there is no link, in general, between risk sharing

and exchange rates, even when θ = θ̃. When θ = θ̃, and trade in both goods is friction-

less, ln(e′/e) = 0 yet Ξ can depart arbitrarily from one, and therefore risk sharing can

be arbitrarily imperfect. When θ = θ̃, and good B is non-traded, ln(e′/e) = 0 when risk

sharing happens to be perfect (i.e., when gA = g̃A and gB = g̃B in every possible state

of the world next period), but we also have ln(e′/e) = 0 when risk sharing is “poor” and

gA = gB 6= g̃A = g̃B.

More generally, our model illustrates that there is no direct link between the degree of

risk sharing and real exchange rate variability.

4 No-Arbitrage Models of Asset Returns

In this section we discuss the large literature that uses no-arbitrage models of two (or more)

stochastic discount factors (SDFs) to characterize and interpret exchange rate growth via

Eq. (2).17 Papers in this literature typically assume that there are two distinct SDFs in

17Examples of papers that pursue this modeling approach include: Bansal (1997); Backus, Foresi, and
Telmer (2001); Brandt and Santa-Clara (2002); Brennan and Xia (2006); Brandt, Cochrane, and Santa-Clara
(2006); Bakshi, Carr, and Wu (2008); Lustig, Roussanov, and Verdelhan (2011); and Lustig, Roussanov, and
Verdelhan (2014).
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Eq. (2). However, we show that Eq. (2) actually characterizes the change of numeraire units

for any single SDF. In other words, the two SDFs in Eq. (2) actually represent the same SDF

simply denominated in different units. This result is analogous to the change of numeraire

units for any single agent’s IMRS, which we illustrated in Eqs. (3), (12), and (23). The flip

side of this result is that Eq. (2) does not hold for two different SDFs. We are not aware of

any benefit of modeling more than one SDF in a no-arbitrage model. However, we illustrate

at least point potential pitfall: we show that Brandt and Santa-Clara (2002)’s model of two

distinct SDFs is not arbitrage-free because it assigns different prices to the same zero-coupon

bond.

Papers in this literature also frequently assume complete markets. This assumption is

often used as justification to economically interpret the SDF denominated in a country’s

(real or nominal) currency as the IMRS of a representative agent in that country. However,

since there are not any agents in no-arbitrage models, complete markets only implies that

every contingent claim on the assets in the model can be exactly replicated by a self-financing

trading strategy. The additional assumption that the asset returns in the model completely

span agents’ IMRSs implies that the SDF in the model must also be consistent with the

returns on all of the assets that agents can invest in, including assets that are outside of

the model. Moreover, even if agents’ IMRSs are completely spanned, it is impossible to

distinguish between those agents using only the returns on assets, including currencies, that

they can frictionlessly trade with each other. We made this same point in Section 1.4,

Eq. (13), and in Section 1.5.

Finally, we show that many papers that model two (or more) SDFs also assume that

currency returns are driven by the same shocks as the returns on other assets.18 This

relationship is not an implication of either no-arbitrage or complete markets, and existing

empirical evidence strongly suggests that it does not hold in the data. We also show that it

is challenging to relax this assumption in a model of two SDFs, but it is trivial to do so in

a model where exchange rate growth or currency returns are modeled directly.

4.1 Stochastic Discount Factors

We begin by formalizing the notion of a stochastic discount factor (SDF). Consider again the

setup in Section 1. LetR denote a k-dimensional random vector of asset returns denominated

in nominal U.S. dollars. An SDF for these dollar-denominated asset returns is any strictly

18For instance, examples of papers that assume that currencies and interest rates are driven by a common
set of shocks include: Backus, Foresi, and Telmer (2001); Brennan and Xia (2006); Backus, Gavazzoni,
Telmer, and Zin (2010); Lustig, Roussanov, and Verdelhan (2011); and Gavazzoni, Sambalaibat, and Telmer
(2013).
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positive random variable M > 0 such that

1 = E [RM ] . (58)

From Eqs. (8) and (9) in Section 1.2, Amy’s and Bob’s IMRSs over nominal U.S. dollars are

both examples of SDFs for the asset returns denominated in dollars. By the Fundamental

Theorem of Asset Pricing (e.g., see Dybvig and Ross, 2003 or Dybvig and Ross, 2008), there

are no arbitrage opportunities within a set of asset returns R if and only if there exists an

SDF that satisfies Eq. (58) for those returns.

An SDF effectively assigns a strictly positive dollar value to each state of the world next

period. To illustrate, suppose that the returns on the k assets vary over n ≥ k states of the

world next period, indexed by ω = 1, 2, . . . , n. Let π(ω) be the probability that state ω

occurs next period, so that Eq. (58) can be written more explicitly as

1 = E [RM ] ≡
n∑

ω=1

R(ω)M (ω) π (ω) . (59)

In Eq. (59), M (ω) π (ω) is commonly interpreted as the dollar price today of a claim that

pays one dollar next period when state ω occurs (i.e., the price of an Arrow-Debreu state

contingent claim), whether or not such claims are available in asset markets.

In a reduced-form statistical model of arbitrage-free asset returns, it is not necessary

to explicitly construct, or model, an SDF for those returns.19 However, most recent asset

pricing papers provide an SDF because it serves (at least) two convenient purposes. First, an

SDF that satisfies Eq. (58) guarantees—by the Fundamental Theorem of Asset Pricing—that

there are no arbitrage opportunities within the set of asset returns in the model. Second,

an SDF can be used to conveniently compute arbitrage-free prices of contingent claims on

those assets (e.g., see Harrison and Kreps, 1979; and Harrison and Pliska, 1981, 1983).

4.2 Change of Numeraire for an SDF

Suppose that we denominate the asset returns in a different numeraire with dollar-price ζ

today and ζ ′ (ω) in state ω next period. What price today does an SDF, M , for the asset

returns denominated in nominal U.S. dollars, assign to a claim that pays one unit of this

different numeraire in state ω next period?

19For instance, early examples of papers that provide arbitrage-free models of asset returns, but do not
explicitly model an SDF, include Black and Scholes (1973), Merton (1973), and Vasicek (1977). Of course,
since these models are arbitrage-free, by the Fundamental Theorem of Asset Pricing there always exists an
SDF for the asset returns. Our point is simply that, even though it may be convenient to explicitly model
an SDF, it is not strictly necessary to do so.
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A claim that pays one unit of the new numeraire in state ω next period is equivalent to

ζ ′ (ω) units of a claim that pays one U.S. dollar in state ω next period. From Eq. (59), one unit

of this U.S. dollar state contingent claim is worth M (ω)π (ω) dollars today. Therefore, ζ ′ (ω)

units of it are worth M (ω) π (ω) ζ ′ (ω) dollars today, or equivalently, M (ω) π (ω) ζ ′ (ω) /ζ

units of the new numeraire today (since one dollar today is worth 1/ζ units of the new

numeraire). Thus, if M is an SDF for the dollar-denominated asset returns, R, then Mζ ′/ζ

is that same SDF when the same asset returns, R ζ/ζ ′, are instead denominated in the new

numeraire with dollar price ζ. It is straightforward to verify that this mapping corresponds

to the change of numeraire units for an SDF, since

R ζ
ζ′
M ζ′

ζ
= RM implies that 1 = E [RM ] ⇔ 1 = E

[
R ζ

ζ′
M ζ′

ζ

]
. (60)

As an example of this change of numeraire, if M is an SDF for the asset returns denom-

inated in nominal U.S. dollars, then MS ′/S is that same SDF when the same asset returns,

RS/S ′, are instead denominated in nominal U.K. pounds. If the same asset returns, RP/P ′,

are instead denominated in units of Amy’s consumption basket in the U.S., then MP ′/P

is that same SDF. If the same asset returns, RP̃ /P̃ ′, are denominated in units of Bob’s

consumption basket in the U.K., then MP̃ ′/P̃ ≡ (MP ′/P ) e′/e is that same SDF. If G is

the dollar price of an ounce of gold, then RG/G′ are the same asset returns denominated

in ounces of gold, and MG′/G is that same SDF for those gold-denominated returns. And

so on. Analogous to Eqs. (3), (12), and (23), this change of numeraire units for an SDF can

always be written as

growth in nominal

dollar/pound

exchange rate︸ ︷︷ ︸
lnS′ − lnS

=

log SDF for asset

returns denominated

in nominal pounds︸ ︷︷ ︸
ln (MS′/S)

−
log of same SDF for same

asset returns denominated

in nominal dollars︸ ︷︷ ︸
lnM

, (61)

or, equivalently,

growth in real

dollar/pound

exchange rate︸ ︷︷ ︸
ln e′ − ln e

=

log SDF for asset

returns denominated

in real pounds︸ ︷︷ ︸
ln
(
MP̃ ′/P̃

)
−

log of same SDF for same

asset returns denominated

in real dollars︸ ︷︷ ︸
ln(MP ′/P )

. (62)
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4.3 Alternative Modeling Approach

As we mentioned in Section 4.1, an SDF is a convenient, but not a necessary, element of a

no-arbitrage model of asset returns. However, SDFs play a central role in the formulation of

many no-arbitrage models in which the asset returns include bank accounts denominated in

more than one currency. We’ll use a simple example to illustrate this alternative modeling

approach that is common in the recent international asset pricing literature.

Let RB be the certain dollar-denominated gross return from today to next period on

a dollar-denominated default-free bank account (or, equivalently, a one-period default-free

dollar-denominated bond). Similarly, let R∗B be the certain pound-denominated gross return

over that period on a pound-denominated default-free bank account. LetRY be the uncertain

dollar-denominated gross returns from today to next period on a set Y of assets, and let

R∗Z be the uncertain pound-denominated gross returns on a different set Z of assets over

that same period.20 Let S and S ′ be the dollar/pound exchange rate today and next period.

Then R∗BS
′/S is the uncertain dollar-denominated gross return on the pound-denominated

default-free bank account and R∗ZS
′/S are the uncertain dollar-denominated gross returns

on the set Z of assets. The vector of dollar-denominated gross returns on all these assets

stacked together is

R =
[
RB , RY , R∗ZS

′/S , R∗BS
′/S

]
. (63)

First, consider the standard approach that is typically employed in the broader asset pric-

ing literature that develops reduced-form statistical models of arbitrage-free asset returns.

In this approach, the joint distribution of the asset returns—in this example, RY , R∗Z , and

S ′/S—are modeled directly.21 A model might also explicitly construct an SDF for the asset

returns in the model. In this particular example, any such SDF M > 0, must satisfy

1 = RBE
[
M
]
, 1 = E

[
RYM

]
, 1 = E

[
R∗Z

S′

S
M
]
, and 1 = R∗BE

[
S′

S
M
]
, (64)

where 1 denotes a vector of 1’s with the appropriate dimension in each equation. As we

highlighted above, it is not necessary to explicitly formulate an SDF for the asset returns,

but one is often included as a means to demonstrate the absence of arbitrage opportunities

in the model, and/or to conveniently compute arbitrage-free prices of contingent claims on

20In many international asset pricing papers, RY are the dollar-denominated returns on dollar-
denominated long-term bonds and, similarly, R∗Z are the pound-denominated returns on pound-denominated
long-term bonds. For example, see: Bansal (1997); Backus, Foresi, and Telmer (2001); Brandt and Santa-
Clara (2002); and Brennan and Xia (2006).

21Note that the joint distribution of RY , R∗Z , and S′/S completely characterizes the joint distribution of
the vector of dollar-denominated asset returns, R, in Eq. (63), and vice versa.
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the assets in the model. As we also highlighted above, if the same asset returns are instead

denominated in pounds, then MS ′/S is the same SDF for those pound-denominated returns.

Many papers in the international asset pricing literature do not directly model the growth

in the dollar/pound exchange rate, but instead model it indirectly. These papers model the

joint distribution of the asset returns, RY and R∗Z , together with the distribution of an

SDF, M , for the dollar-denominated returns on the assets, and an SDF, M∗, for the pound-

denominated asset returns. If M and M∗ represent the same SDF, simply denominated in

different units, then from Eq. (61), the dollar/pound exchange rate must be

lnS ′ − lnS = lnM∗ − lnM . (65)

Likewise, papers that work with real (rather than nominal) asset returns model an SDF,

m, for the asset returns denominated in units of Amy’s consumption basket, and an SDF,

m∗, for the same asset returns denominated instead in units of Bob’s consumption basket.

Again, if m and m∗ represent the same SDF, then from the change of numeraire units in

Eq. (62), we have

ln e′ − ln e = lnm∗ − lnm. (66)

In theory, these two modeling approaches are isomorphic. Models that rely on Eq. (65)

or Eq. (66) produce a joint distribution of the arbitrage-free asset returns RY , R∗Z , and

S ′/S = M∗/M . Going in the other direction, if the asset returns are modeled in an arbitrage-

free fashion then the Fundamental Theorem of Asset Pricing ensures that there exists a

strictly positive SDF, M > 0, that satisfies Eq. (58). The change of numeraire in Eqs. (61)

and (62) immediately implies Eqs. (65) and (66), with M∗ defined as M∗ ≡MS ′/S and m∗

defined as m∗ ≡ me′/e.

In general, there is not a unique SDF that satisfies Eq. (58), yet Eq. (65) or Eq. (66) still

holds for any single SDF expressed in different numeraire units. Therefore, if Eq. (65) does

not hold, i.e.,

M∗S/S ′ 6= M , (67)

then M and M∗S/S ′ are simply different SDFs for the same dollar-denominated asset returns

R. Although there can be more than one SDF that satisfies Eq. (58), we are not aware of

any benefit of modeling more than one SDF in a no-arbitrage model of asset returns.

Brandt and Santa-Clara (2002) model more than one SDF. In particular, they provide

models of M and M∗, and assume that

MS ′/S = M∗O , or equivalently,
S ′

S
=
M∗

M
O , (68)

35



where E [O] = 1 and O is independent of M , M∗, and all assets.22 Since Eq. (68) implies

Eq. (67), Brandt and Santa-Clara (2002) model two different SDFs. However, those two

SDFs cannot both satisfy Eq. (58) for all of the asset returns in their model. To illustrate,

note that Brandt and Santa-Clara (2002) use their model of M and M∗ to price foreign

and domestic zero-coupon bonds with certain returns, R∗B and RB, denominated in the local

currency. If M and M∗S/S ′ both satisfy Eq. (58) for the dollar-denominated zero-coupon

bond, then

1 = RBE [M ] and 1 = RBE[M∗ S
S′

] . (69)

However, Eq. (68) is inconsistent with Eq. (69) since, by Jensen’s inequality,

1/RB = E[M∗ S
S′

] = E[M/O] = E [M ]E [1/O] > E [M ] /E [O] = E [M ] = 1/RB . (70)

In other words, the model in Brandt and Santa-Clara (2002) is not free of arbitrage oppor-

tunities (i.e., it is not internally consistent), since it assigns two different prices to the same

dollar-denominated zero-coupon bond.23

4.4 Complete Markets in No-Arbitrage Models

In the international asset pricing literature, many papers that model the growth in the ex-

change rate via Eq. (65) or (66) assume that there is a unique SDF that satisfies Eq. (58).

The motivation for this assumption is twofold. First, if there is a unique SDF that satis-

fies Eq. (58) then Eqs. (65) and (66) must hold. However, as we illustrated in Section 4.2,

Eqs. (61) and (62) always hold as a change of numeraire for any single SDF. In other words,

uniqueness of the SDF in Eq. (58) is a sufficient, but not a necessary condition for Eqs. (65)

and (66) to hold. Moreover, as we mentioned in Section 4.3, even if there is more than

one SDF that satisfies Eq. (58), we are not aware of any benefit of modeling more than one

SDF in a no-arbitrage model of asset returns (and the arbitrage opportunity in Brandt and

Santa-Clara (2002) demonstrates at least one potential pitfall).

The second motivation for assuming uniqueness of the SDF in Eq. (58) is the desire to

economically interpret the SDFs in Eq. (65) or (66) as the IMRSs of representative agents

22See Eq. (24) in Brandt and Santa-Clara (2002, p. 176). They state that “the key insight of our model
is that when markets are incomplete, the volatility of the exchange rate is not uniquely determined by the
domestic and foreign stochastic discount factors. ... If markets are incomplete, the volatility of the exchange
rate can contain an element that is orthogonal to the priced sources of risk in both countries. ... To capture
this excess volatility, we specify a stochastic process for the degree of market incompleteness.”

23Similarly, Anderson, Hammond, and Ramezani (2010) show that, in the special case of an affine setting,
the assumptions in Brandt and Santa-Clara (2002) are infeasible. Eq. (68) illustrates that the internal
inconsistency (i.e., the arbitrage opportunity) applies more generally, beyond the specific affine structure.
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in the two countries. For example, the introduction of Bakshi, Carr, and Wu (2008, p. 133)

states that:

In particular, because the ratio of the stochastic discount factors in two economies

governs the exchange rate between them, the exchange rate market offers a direct

information source for assessing the relative risk-taking behavior of investors in

international economies.

As another example, from Lustig, Roussanov, and Verdelhan (2011, p. 26):

We derive new restrictions on the stochastic discount factors (at home and

abroad) that need to be satisfied in order to reproduce the carry trade risk pre-

mium that we have documented in the data.

In Section 1.4, Eq. (13), and in Section 1.5 we argued that it is impossible to distinguish

between agents using only the returns on assets, including currencies, that they can friction-

lessly trade with each other. That same point also applies to no-arbitrage models, regardless

of whether there is a unique SDF that satisfies Eq. (58). Furthermore, as we discuss below,

the notion of complete markets, or a unique SDF, has a different connotation in no-arbitrage

models.

Following Harrison and Kreps (1979) and Harrison and Pliska (1981, 1983), there is a

unique SDF in a no-arbitrage model of asset returns if the payoff on every square-integrable

contingent claim on the assets can be exactly replicated by a self-financing trading strategy

in those assets (see also Section 6I in Duffie, 2001).24 For example, there is a unique SDF in

the simple binomial tree model of Cox, Ross, and Rubinstein (1979) that is frequently used

to illustrate the pricing of contingent claims (e.g., options) on a single asset such as a stock.

However, it is important to recognize that uniqueness of this SDF does not imply that it

is equal to the IMRS of a representative agent. Instead, if there is a unique SDF in a no-

arbitrage model of asset returns, then as Eq. (71) illustrates, we can only say that it is equal

to the conditional expectation of any agent’s IMRS given the returns on those specific assets.

To go a step further, and assume that the unique SDF in a no-arbitrage model is equal to

a representative agent’s IMRS (rather than just the conditional expectation of their IMRS),

one must also assume that the specific set of asset returns in the model completely span the

agent’s IMRS. Moreover, even if there is some set of assets that completely span the agent’s

IMRS, if a no-arbitrage model only contains a subset of those assets that are necessary for

24In Eq. (71) we highlighted that in no-arbitrage models of asset returns alone, it is only possible to learn
about the conditional expectation, E

[
M
∣∣R], of an SDF given those returns. Therefore, in those models,

uniqueness of an SDF is defined over the space of stochastic processes that are adapted to the filtration
generated by the asset returns themselves.
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spanning, then the SDF in that model cannot be interpreted as a representative agent’s

IMRS. Yet papers in this literature that economically interpret an SDF as the representative

agent’s IMRS typically model only a very small subset of the assets that are available for

agents to invest in. Therefore, this interpretation carries with it the the implicit assumption

that the small set of assets in the model completely spans agents’ IMRSs (i.e., spans all of

the risks that agents care about).

Since there are not any agents in a no-arbitrage model of asset returns, it is impossible to

test whether the IMRS of a representative agent is completely spanned by the asset returns

in a no-arbitrage model. Nevertheless, that assumption and the economic interpretation of

an SDF as a representative agent’s IMRS has an important testable implication; namely,

the SDF must be also be consistent with the expected returns on all assets—including all

(foreign and domestic) equities, bonds, currencies, commodities, and derivatives on those

assets. Put differently, the returns on any assets outside of the model must only depend on

their exposure to (i.e., covariance with) the returns on the specific set of assets in the model.

To be clear, this additional implication does not apply to every no-arbitrage model of asset

returns. Rather, it only applies to models in which the SDF is economically interpreted as

the IMRS of a representative agent. For example, consider a no-arbitrage model for the term

structure of U.S. dollar interest rates. An SDF in that model does not necessarily price the

returns on other assets, such as equities, that are not completely spanned by those bond

returns. However, if the SDF in that model is economically interpreted as the IMRS of a

representative agent, then the implicit assumption is that any risks that are independent of

U.S. bond returns do not carry a risk premium. Thus, with this economic interpretation,

the SDF must also be consistent with the expected returns on all assets (i.e., not just the

dollar-denominated bonds in the model).

4.5 SDFs Conditional on Asset Returns

Note that if M is an SDF that satisfies Eq. (58) for a vector of asset returns R, then so

too is E
[
M
∣∣R]ξ, where E

[
M
∣∣R] is the conditional expectation of M given R, and ξ is any

random variable that is independent of R, with ξ > 0 and E [ξ] = 1.25 To be more explicit,

1 = E [RM ] = E
[
RE

[
M
∣∣R]] = E

[
RE

[
M
∣∣R]]E [ξ] = E

[
RE

[
M
∣∣R]ξ] . (71)

No-arbitrage models of asset returns are necessarily silent about random variables, such as

ξ above, that are independent of those returns. Therefore, in a no-arbitrage model of asset

25It is important to note that the conditional expectation of M given R, E
[
M
∣∣R], is not the same as the

linear projection of M onto R.
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returns alone, it is only possible learn about the conditional expectation of an SDF, M , given

those returns (i.e., E
[
M
∣∣R]).

Many (if not most) no-arbitrage models provide an SDF that can be written explicitly

as a function of the asset returns themselves, so that E
[
M
∣∣R] = M , and the conditioning

argument above is trivially satisfied. For example, the minimum variance SDF, which is the

unique SDF that is linear in the asset returns, is given by

M = β ·R , where E [RM ] = 1 ⇒ β =
(
E
[
RR>

])−1
1 . (72)

From Long (1990) we know that another example of an SDF that can be formed from

the asset returns is

M = (Θ ·R)−1 , where Θ = arg max
Θ·1=1

E [ln (Θ ·R)] . (73)

It is the unique SDF who’s inverse is linear in the asset returns. Finally, we have the SDF

that is used in many no-arbitrage models that assume log-normally distributed asset returns,

M =
exp (−Γ · lnR)

1
k
1 · E [R exp (−Γ · lnR)]

, (74)

where k is the number of assets and Γ is the unique k-dimensional vector such that E [RM ] =

1 and Γ · 1 = 1.26 It is the unique SDF whose log is affine in the log asset returns.27 Note

that if there is a unique SDF that satisfies Eq. (58) then the SDFs in Eqs. (72), (73), and

(74) must all be equal.

So, as Eq. (71) illustrates, SDFs in no-arbitrage models are effectively functions of the

asset returns that they are constructed to price.28 This fact has an important implication

for papers that model two SDFs, say M and M∗, and use Eq. (65) or (66) to characterize

the growth in the exchange rate. The asset returns that M and M∗ are constructed to price,

depend on the growth in the exchange rate, which therefore appears on both the left hand

side and the right hand side of Eq. (65) or (66). For example, consider a model of M and

M∗ that are assumed to satisfy Eq. (65) and price the asset returns in Eq. (63). Intuitively,

an SDF must price the dollar-denominated returns, RY , on the set Y of assets, but it must

26Note that if R is strictly positive, then M in Eq. (74) is also strictly positive, but M in Eqs. (72) and
(73) is not always guaranteed to be strictly positive.

27A few examples of papers that use the SDF in Eq. (74) include: Backus, Foresi, and Telmer (2001);
Brennan and Xia (2006); and Lustig, Roussanov, and Verdelhan (2011). More generally, it is commonly
used in affine models.

28More formally, E
[
M
∣∣R] ∈ σ (R) is measurable with respect to the σ-algebra, σ (R), generated by the

asset returns R.
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also price the dollar-denominated returns, RBS/S
′ and R∗ZS/S

′, on the pound-denominated

bank account and set Z of assets. In this case, to emphasize the dependence of M and M∗ on

the asset returns that they are constructed to price, Eq. (65) can be written more explicitly

as

lnS ′ − lnS = lnE
[
M∗∣∣RY ,R

∗
Z ,

S′

S

]
− lnE

[
M
∣∣RY ,R

∗
Z ,

S′

S

]
, (75)

or equivalently,

E
[
M∗∣∣RY ,R

∗
Z ,

S′

S

]
= S′

S
E
[
M
∣∣RY ,R

∗
Z ,

S′

S

]
≡ E

[
M S′

S

∣∣RY ,R
∗
Z ,

S′

S

]
. (76)

As Eqs. (75) and (76) emphasize, the growth in the (nominal or real) exchange rate is a

necessary input to the right hand side of Eqs. (65) and (66), and therefore it cannot be

treated as an output on the left hand side of these equations.

Finally, as a brief mathematical aside, we return to the reduced-form SDFs in Eqs. (72),

(73), and (74) and consider the following question: for which SDFs does the change of nu-

meraire units maintain the same functional form? If we use a different numeraire with dollar

price ζ, then the asset returns denominated in this numeraire are R ζ/ζ ′. The corresponding

change of numeraire units for the linear (i.e., minimum variance) SDF, M = β ·R, is not

linear in those returns, since Mζ ′/ζ = β · R ζ ′/ζ. In other words, if M is the minimum

variance (i.e., linear) SDF for a set of dollar-denominated asset returns, then Mζ ′/ζ is not

the minimum variance SDF when the same set of asset returns are denominated in a different

numeraire with dollar price ζ (since, in general, Mζ ′/ζ = β ·R ζ ′/ζ is not linear in the asset

returns, R ζ/ζ ′, denominated in that numeraire). We made this same point in Eq. (15).

Although the change of numeraire units does not maintain the same functional form

for the linear SDF in Eq. (72), it does maintain the same functional form for the SDFs in

Eqs. (73) and (74). In particular, for the SDF in Eq. (73) we have

Mζ ′/ζ = (Θ ·R)−1 ζ ′/ζ ≡ (Θ ·R ζ/ζ ′)
−1

. (77)

Similarly, for the SDF in Eq. (74) we have

Mζ ′/ζ =
exp (−Γ · lnR)

1
k
1 · E [R exp (−Γ · lnR)]

ζ ′/ζ ≡
exp

(
−Γ · ln

(
R ζ/ζ ′

))
1
k
1 · E [(R ζ/ζ ′) exp (−Γ · ln (R ζ/ζ ′))]

, (78)

since

Γ · 1 = 1 ⇒ exp
(
−Γ · lnR

)
ζ ′/ζ = exp

(
−Γ · ln

(
R ζ/ζ ′

))
. (79)

As we emphasized in Section 2.1, it is only a matter of mathematics, and not economics,

whether the change of numeraire units for a particular specification of a a reduced-form SDF
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maintains the same functional form.

4.6 Where Two Equivalent Modeling Approaches Diverge

In the alternative modeling approach that we described in Section 4.3, the joint distribution

of asset returns, RY and R∗Z , is modeled together with the distribution of an SDF, M , for

the asset returns denominated in dollars, and an SDF, M∗, for the same asset returns denom-

inated in pounds. We showed that this alternative approach is isomorphic to a direct model

of the arbitrage-free distribution of asset returns, together with the growth in the exchange

rate. Since these two modeling approaches are exactly equivalent, in theory it shouldn’t mat-

ter which approach a particular paper employs. However, in practice, many (if not most)

papers that directly model M and M∗ assume that the growth in the exchange rate, S ′/S,

is perfectly known given the returns on the two sets of assets, RY and R∗Z . This additional

assumption is not an implication of no-arbitrage or complete markets, and it represents an

important distinction that leads these models to differ along a critical dimension.

As a concrete example, many papers assume that the exchange rate between two curren-

cies is driven by exactly the same shocks that drive interest rates (i.e., the yield curve) in

those currencies (e.g., see Backus, Foresi, and Telmer, 2001; Brandt and Santa-Clara, 2002;

Brennan and Xia, 2006; Backus, Gavazzoni, Telmer, and Zin, 2010; Lustig, Roussanov, and

Verdelhan, 2011; and Gavazzoni, Sambalaibat, and Telmer, 2013). In other words, these pa-

pers assume that the growth in the exchange rate between two currencies can be expressed

as a function of the change in the yield curves in those currencies.29 More formally, these

papers assume that the growth in the exchange rate is measurable with respect to the σ-

algebra generated by the other asset returns, so that S ′/S ∈ σ
(
RY ,R

∗
Z

)
. In that case,

E
[
·|RY ,R

∗
Z ,

S′

S

]
= E [ ·|RY ,R

∗
Z ] and therefore Eq. (75) can be equivalently written as

lnS ′ − lnS = lnE
[
M∗∣∣RY ,R

∗
Z

]
− lnE

[
M
∣∣RY ,R

∗
Z

]
. (80)

Brennan and Xia (2006) make an even stronger assumption than Eq. (80). They empiri-

cally test whether Eq. (80) holds for an SDF, E
[
M
∣∣RY

]
, that they estimate using only the

dollar-denominated returns on long-term bonds, and a separate SDF, E
[
M∗
∣∣R∗Z], that they

estimate using only the returns on long-term bonds in other currencies (denominated in

those currencies).

Eq. (80) requires an additional assumption over and above complete markets or the ab-

29In these papers, the other assets are bonds in the two currencies. In that case, RY are the dollar-
denominated returns on dollar-denominated long-term bonds, and similarly, R∗Z are the pound-denominated
returns on pound-denominated long-term bonds.
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sence of arbitrage opportunities. Moreover, it is a crucial assumption in papers, such Backus,

Foresi, and Telmer (2001), that use no-arbitrage models to connect currency returns to the

returns on other assets (such as the returns on long-term bonds denominated in the two

currencies). Alone, the absence of arbitrage does not provide strong restrictions on the joint

distribution of currency returns with the returns on other assets. Instead, no-arbitrage only

restricts the joint distribution of asset returns that are exposed to a common (small) set of

risks, or shocks.30 In Appendix B we consider a specific example of a no-arbitrage model

with log-normal asset returns to explicitly illustrate the restrictions that the additional as-

sumptions in Eq. (80) impose, over and above complete markets or the absence of arbitrage

opportunities.

To be clear, our point is not that Eq. (80) is necessarily wrong, or that it violates a

fundamental economic principal (such as the absence of arbitrage). Ultimately, it is an

empirical question whether the assumption in Eq. (80) holds in the data. In other words,

it is an empirical question whether currency returns are completely spanned by the returns

on other assets such as bonds in the two currencies. If Eq. (80) does indeed hold, then it is

a useful starting point for deriving restrictions implied by the absence of arbitrage. On the

other hand, if Eq. (80) does not hold in the data, then there is not reason to expect that any

no-arbitrage restrictions derived from Eq. (80) should hold in the data either (though they

might). Put differently, if Eq. (80) does not hold in the data, then it is not puzzling that

no-arbitrage restrictions derived from (or that rely on) Eq. (80) also do not hold in the data.

To date, the existing empirical evidence suggests that the assumption in Eq. (80) does

not in fact hold in the data. Brandt and Santa-Clara (2002) provide empirical evidence

that currency returns are not well-spanned by bond returns. Burnside (2012) shows that

factors that price the cross-section of equity returns do not price the cross-section of currency

returns. In their empirical section, Lustig, Roussanov, and Verdelhan (2011) argue that a

separate currency factor is necessary to understand that the cross-section of returns on

portfolios of currencies.31 All of this existing empirical evidence does not imply that there

cannot be some set of asset returns for which the assumption in Eq. (80) holds in the data.

However, one of the major puzzles in the economics of exchange rates is that, empirically,

time-series variation in exchange rates is not tightly related to time-series variation in any

30For example, no-arbitrage models have been particularly fruitful for understanding the relationship
between prices of options with different strikes and maturities, as well as the term structure of yields on
bonds with different maturities (e.g., see Black and Scholes, 1973; Merton, 1973; and Vasicek, 1977). In
both of these cases, the absence of arbitrage is useful for understanding the relative prices of many different
securities that are jointly driven by a smaller set of underlying risks, or shocks.

31Lustig, Roussanov, and Verdelhan (2011) provide empirical evidence that equity market volatility has
some explanatory power for the cross-section of currency returns. However, in a horse race they find that
their currency-specific factor drives out the equity volatility factor.
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other variables. Indeed, for this reason, currencies are often considered to be a separate asset

class.

If the assumption in Eq. (80) does not hold in the data, then it may be necessary for SDFs

in no-arbitrage models of currency returns to depend on the currency returns themselves. As

the SDFs in Eqs. (72)—(74) make clear, this feature is trivial to incorporate into no-arbitrage

models that take the standard approach and treat the returns on currency investments the

same as the returns on any other asset.32 However, it is much more difficult (but not

impossible) to incorporate this feature into models in which the exchange rate is indirectly

characterized as the ratio of an SDF denominated in the two currencies. To appreciate this

challenge, substitute M∗/M = S ′/S into Eq. (76), which then becomes

E
[
M∗∣∣RY ,R

∗
Z ,

M∗

M

]
= M∗

M
E
[
M
∣∣RY ,R

∗
Z ,

M∗

M

]
, (81)

or equivalently,

M E
[
M∗∣∣RY ,R

∗
Z ,

M∗

M

]
= M∗E

[
M
∣∣RY ,R

∗
Z ,

M∗

M

]
. (82)

It is not a trivial exercise to directly parameterize a no-arbitrage model of two (or more)

SDFs that satisfies Eq. (81), with the additional feature that the ratio of the two SDFs (i.e.,

the indirect model of the growth in the exchange rate) is not completely spanned by the

other assets in the model. For example, as we illustrated in Eq. (70), Brandt and Santa-

Clara (2002) tried to relax the assumption in Eq. (80), but in process they introduced an

arbitrage opportunity into their model. By contrast, in any no-arbitrage model where the

exchange rate is modeled directly together with a single SDF for the asset returns in the

model, it always trivially holds that

E
[
M S′

S

∣∣RY ,R
∗
Z ,

S′

S

]
= S′

S
E
[
M
∣∣RY ,R

∗
Z ,

S′

S

]
, (83)

or equivalently,

lnS ′/S = lnE
[
M S′

S

∣∣RY ,R
∗
Z ,

S′

S

]
− lnE

[
M
∣∣RY ,R

∗
Z ,

S′

S

]
. (84)

5 Conclusion

The recent literature in international finance has used the asset market view of real exchange

rates, encapsulated by Eqs. (1) and (2), to explain and interpret time-series variation in real

and nominal exchange rates and the returns to speculation in currencies. In this paper we

32We provide a specific example in Appendix B.
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showed that the asset market view is not as widely applicable, or useful, as the previous

literature suggests.

We have shown, via the arguments in Sections 1, 2 and 3, that in order to explain

how real exchange rates are determined, or economically interpret time-series variation in

exchange rates, it is necessary to make specific assumptions about preferences, frictions in

the market for goods and services, the assets agents can trade, and the nature of endowments

or production.

Additionally, in Sections 1, 2 and 4 we have pointed out some misconceptions, and

clarified assumptions made, in the literature that models reduced-form SDFs for different

numeraires. Most importantly, we have argued that when Eq. (2) holds, a model of reduced-

form SDFs for different numeraires is isomorphic to a direct statistical model of arbitrage-free

exchange rate dynamics. As such, the economic content in these two equivalent modeling

approaches is exactly the same.
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A Section 3.2 Appendix

In this appendix we provide detailed solutions for the model in Section 3.2. It is only for

completeness and is not intended for publication.

A.1 Aggregate Prices

The overall consumption aggregate for the domestic household is c(cA, cB). Given a particular

set of prices (in an arbitrary numeraire) for the individual goods, we can solve the household’s

static expenditure minimization problem

min
cA,cB

PAcA + PBcB subject to c = c(cA, cB) . (85)

Because c(·) is a homogenous of degree one function, minimized expenditure is equal to Pc

where P = H(PA, PB). The function H(·) is also homogenous of degree one in its arguments,

and is related to the function c(·) [see Varian (1984)]. The aggregate price index has the

interpretation of being the Lagrange multiplier on the constraint at the optimum. To see

this, notice that the first order conditions for the expenditure minimization problem are

PA = θccA(cA, cB) PB = θccB(cA, cB) . (86)

Multiplying these through these conditions by cA and cB and adding up you get PAcA +

PBcB = θc hence P = θ. We also have

H(PA, PB) = H[PccA(·), P ccB(·)] = PH[ccA(·), ccB(·)] ,

establishing that at the optimum, H[ccA(·), ccB(·)] = 1.

Of course, a similar approach may be used for the foreign household.

A.2 Overall Marginal Utility

The asset payoffs, and all variables in period two, depend on the state of the world in period

two. For concreteness, in this appendix we assume that the state of the world is indexed

by z ∈ Z = {1, 2, . . . , n}, with n finite. The assumption that the number possible states of

the world in period two is finite, or even countable, is not important and is only for ease of

exposition.

By nesting the expenditure minimization problem described in Section A.1 within the

domestic household’s problem, we can rewrite the latter as follows. The household in the
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home country chooses c, c′(z), and a to maximize

u(c) + β
n∑
z=1

u [c′(z)]π(z) (87)

subject to

Pc+ PX · a = yA + PByB , (88)

P ′(z)c′(z) = y′A(z) + P ′B(z)y′B(z) + X (z) · a , z = 1, . . . , n. (89)

The first order conditions for c, c′(z), and a are

uc(c) = Pλ , (90)

βuc[c
′(z)]π(z) = P ′(z)µ(z) , z = 1, . . . , n, (91)

PXλ =
n∑
z=1

µ(z)X(z) . (92)

Here λ is the Lagrange multiplier on the constraint (90), and µ(z) is the Lagrange multiplier

on the constraint (91). So, combining (90) and (91), we get the following expression for

the home household’s discounted marginal utility growth, or intertemporal marginal rate of

substitution, defined over its basket:

m(z) =
βuc[c

′(z)]

uc(c)
=
P ′(z)

P

µ(z)

λπ(z)
. (93)

The household in the foreign country chooses c̃, {c̃′(z)}nz=1, and ã to maximize

u(c̃) + β
n∑
z=1

u [c̃′(z)]π(z) (94)

subject to

P̃ c̃+ PX · ã = ỹA + P̃B ỹB , (95)

P̃ ′(z)c̃′(z) = ỹ′A(z) + P̃ ′B(z)ỹ′B(z) + X (z) · ã , z = 1, . . . , n. (96)

The first order conditions for c̃, {c̃′(z)}nz=1, and ã are

uc(c̃) = P̃ λ̃ , (97)

βuc[c̃
′(z)]π(z) = P̃ ′(z)µ̃(z) , z = 1, . . . , n, (98)
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PXλ̃ =
n∑
z=1

µ̃(z)X(z) . (99)

Here λ̃ is the Lagrange multiplier on the constraint (97), and µ̃(z) is the Lagrange multiplier

on the constraint (98). So, combining (97) and (98), we get the following expression for

the home household’s discounted marginal utility growth, or intertemporal marginal rate of

substitution, defined over its basket:

m̃(z) =
βuc[c̃

′(z)]

uc(c̃)
=
P̃ ′(z)

P̃

µ̃(z)

λ̃π(z)
. (100)

Notice that m is an SDF for payoffs and prices measured in home country basket units.

This is because Eqs. (92) and (93) combined imply

PX

P
=

n∑
z=1

m(z)
X(z)

P ′(z)
π(z) . (101)

Similarly, m̃ is an SDF for payoffs and prices measured in foreign country basket units. This

is because Eqs. (99) and (100) combined imply

PX

P̃
=

n∑
z=1

m̃(z)
X(z)

P̃ ′(z)
π(z) . (102)

From (93) and (100), the ratio of m̃ to m is

m̃(z)

m(z)
=

[
P̃ ′(z)

P̃

µ̃(z)

λ̃

]
/

[
P ′(z)

P

µ(z)

λ

]
=

[
e′(z)

e

]
·
[
µ̃(z)

λ̃

]
/

[
µ(z)

λ

]
. (103)

We define

Ξ(z) =

[
µ̃(z)

λ̃

]
/

[
µ(z)

λ

]
.

Notice that since good A is the numeraire, the first order conditions for cA and c̃A, given in

Eq. (86), along with Eqs. (90) and (97) imply that the time one marginal utilities of good A

in the two countries are

uc(c)ccA(cA, cB) = λ uc(c̃)c̃cA(c̃A, cB) = λ̃ . (104)

Similarly, when these first order conditions are combined with Eqs. (91) and (98), we get
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expressions for the time two discounted marginal utilities of good A in the two countries:

βuc[c
′(z)]ccA [c′A(z), c′B(z)] = µ(z)/π(z) , z = 1, . . . , n, (105)

βuc[c̃
′(z)]c̃cA [c̃′A(z), c̃′B(z)] = µ̃(z)/π(z) , z = 1, . . . , n. (106)

Thus, mA(z) = µ(z)/[λπ(z)] and m̃A(z) = µ̃(z)/[λ̃π(z)] are the discounted marginal utility

growths of good A in the two countries. Consequently,

m̃(z)

m(z)
=

[
e′(z)

e

]
· Ξ(z) , (107)

with Ξ(z) = m̃A(z)/mA(z) being a measure of risk sharing in the frictionlessly traded good

(good A).

The first order conditions for cB and c̃B, given in Eq. (86), along with Eqs. (90) and (97)

imply that the time one marginal utilities of good B in the two countries are

uc(c)ccB(cA, cB) = λPB uc(c̃)c̃cB(c̃A, cB) = λ̃P̃B . (108)

Similarly, when these first order conditions are combined with Eqs. (91) and (98), we get

expressions for the time two discounted marginal utilities of good B in the two countries:

βuc[c
′(z)]ccB [c′A(z), c′B(z)] = µ(z)P ′B(z)/π(z) , z = 1, . . . , n, (109)

βuc[c̃
′(z)]c̃cB [c̃′A(z), c̃′B(z)] = µ̃(z)P̃ ′B(z)/π(z) , z = 1, . . . , n. (110)

Thus, mB(z) = mA(z)P ′B(z)/PB and m̃B(z) = m̃A(z)P̃ ′B(z)/P̃B are the discounted marginal

utility growths of good B in the two countries. Consequently, Ξ(z)[P̃ ′B(z)/P̃B]/[P ′B(z)/PB]

is a measure of how well risk is shared in good B. If good B is frictionlessly traded the price

terms in this expression cancel out and the measure of risk sharing in good B is also Ξ(z).

When the securities span variation in households’ marginal utilities (i.e., if financial

markets are complete) the first order conditions for a and a become equivalent to

ψλ = µ , ψλ̃ = µ̃ , (111)

where µ is an n×1 vector whose zth element is µ(z), µ̃ is an n×1 vector whose zth element

is µ̃(z) and ψ is an n × 1 vector whose zth element is ψ(z), the price of a claim that pays

one unit of good A in state z. Notice that when financial markets are complete, this implies

mA(z) = m̃A(z) = ψ(z)/π(z) and Ξ(z) = 1.
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A.3 Equilibrium in the Special Cases

To solve the model in the special cases we assume from the start that there is a complete

set of state contingent securities indexed by z. Security z pays one unit of good A in state z

and zero otherwise. It’s price is ψ(z) in the home country and ψ̃(z) in the foreign country. If

there is international trade in these assets (the complete markets case), we have ψ(z) = ψ̃(z).

Under financial autarky, the prices can be different.

The first order conditions for the individual consumption goods and holdings of the

securities are

θc−1A = λ, (112)

(1− θ)c−1B = PBλ, (113)

βθc′A(z)−1π(z) = µ(z), z = 1, . . . , n, (114)

β(1− θ)c′B(z)−1π(z) = P ′B(z)µ(z), z = 1, . . . , n, (115)

ψ(z)λ = µ(z), z = 1, . . . , n. (116)

θ̃c̃−1A = λ̃, (117)

(1− θ̃)c̃−1B = P̃Bλ̃, (118)

βθ̃c̃′A(z)−1π(z) = µ̃(z), z = 1, . . . , n, (119)

β(1− θ̃)c̃′B(z)−1π(z) = P̃ ′B(z)µ̃(z), z = 1, . . . , n, (120)

ψ̃(z)λ̃ = µ̃(z), z = 1, . . . , n. (121)

We can rewrite the first order conditions for the consumptions, using the first order conditions

for the securities, as:

θ = λcA (122)

1− θ = λcBPB (123)

βθ =
ψ(z)λ

π(z)
c′A(z) (124)

β(1− θ) =
ψ(z)λ

π(z)
c′B(z)P ′B(z) (125)

θ̃ = λ̃c̃A (126)

1− θ̃ = λ̃P̃B c̃B (127)
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βθ̃ =
ψ̃(z)λ̃

π(z)
c̃′A(z) (128)

β(1− θ̃) =
ψ̃(z)λ̃

π(z)
P̃ ′B(z)c̃′B(z) (129)

Here, we have dropped the z = 1, . . . , n, from the equations for convenience.

In what follows we will use the notation L = λ−1, L̃ = λ̃−1. From Eqs. (122), (122),

(122) and (122), we see that L and L̃ are the households’ respective total expenditures on

goods in period one. We also define the global endowments: YA = yA + ỹA, YB = yB + ỹB,

Y ′A(z) = y′A(z) + ỹ′A(z), Y ′B(z) = y′B(z) + ỹ′B(z). Additionally we define GA(z) = Y ′A(z)/YA,

GB(z) = Y ′B(z)/YB, gA(z) = y′A(z)/yA, gB(z) = y′B(z)/yB, g̃A(z) = ỹ′A(z)/ỹA, g̃B(z) =

ỹ′B(z)/ỹB, We also use the following notation

sA = yA/YA sB = yB/YB s′A(z) = y′A(z)/Y ′A(z) s′B(z) ≡ y′B(z)/Y ′B(z)

s̄′A =
n∑
z=1

s′A(z)π(z) s̄′B =
n∑
z=1

s′B(z)π(z)

A.3.1 When International Asset Markets are Complete

Here we have ψ(z) = ψ̃(z), which allows us to rewrite the first order conditions for the

consumptions as

θL = cA (130)

(1− θ)L = cBPB (131)

βθL =
ψ(z)

π(z)
c′A(z) (132)

β(1− θ)L =
ψ(z)

π(z)
c′B(z)P ′B(z) (133)

θ̃L̃ = c̃A (134)

(1− θ̃)L̃ = P̃B c̃B (135)

βθ̃L̃ =
ψ(z)

π(z)
c̃′A(z) (136)

β(1− θ̃)L̃ =
ψ(z)

π(z)
P̃ ′B(z)c̃′B(z) (137)
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The home country household’s lifetime budget constraint is

cA + PBcB +
n∑
z=1

ψ(z) [c′A(z) + P ′B(z)c′B(z)] = yA + PByB +
n∑
z=1

ψ(z) [y′A(z) + P ′B(z)y′B(z)]

(138)

From Eqs. (130), (132), (130), and (132) we see that discounted marginal utility growth

in good A in the two countries are equated:

mA(z) = β
cA
c′A(z)

=
ψ(z)

π(z)
m̃A(z) = β

c̃A
c̃′A(z)

=
ψ(z)

π(z)
(139)

From Eqs. (131), (133), (131), and (133), discounted marginal utility growths in good B are

mB(z) = β
cB
c′B(z)

=
ψ(z)

π(z)

P ′B(z)

PB
β

c̃B
c̃′B(z)

=
ψ(z)

π(z)

P̃ ′B(z)

P̃B
(140)

A.3.2 When Good B is Traded

The market clearing conditions for good A are

cA + c̃A = YA (141)

c′A(z) + c̃′A(z) = Y ′A(z) (142)

cB + c̃B = YB (143)

c′B(z) + c̃′B(z) = Y ′B(z) (144)

These market clearing conditions, together with the first order conditions, (130)–(137), imply

θL+ θ̃L̃ = YA (145)

β(θL+ θ̃L̃) =
ψ(z)

π(z)
Y ′A(z) (146)

(1− θ)L+ (1− θ̃)L̃ = PBY B (147)

β[(1− θ)L+ (1− θ̃)L̃] =
ψ(z)

π(z)
P ′B(z)Y ′B(z) (148)

Given a value of L we can solve the Eqs. (145) and (147) for L and PB:

L̃ =
YA

θ̃
− θ

θ̃
L (149)
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PB =
θ̃−θ
θ̃
L+ (1−θ̃

θ̃
)YA

YB
(150)

If you combine Eqs. (145) and (146) you get

mA(z) = βGA(z)−1 =
ψ(z)

π(z)
(151)

If you combine Eqs. (147) and (148) and previous results you get

P ′B(z)/PB = GA(z)/GB(z) (152)

Marginal utility growth in good B is

mB(z) = mA(z)P ′B(z)/PB = βGB(z)−1 (153)

Marginal utility growths are across countries in both goods (but not across goods) are

equated: mA(z) = m̃A(z) and mB(z) = m̃B(z). This is true regardless of preferences.

Identical Preferences If preferences are identical we have θ = θ̃ so that Eqs. (150) be-

comes

PB =
1− θ
θ

YA
YB

(154)

and Eq. (152) implies

P ′B(z) =
1− θ
θ

Y ′A(z)

Y ′B(z)
(155)

Since trade is frictionless and preferences are identical e = e′(z) = 1.

We can solve for allocations by solving for L. To do this we consider the lifetime budget

constraint, (138), and use the results (and notation) so far to write it as

(1 + β)L =

[
sA + βs̄′A + (

1− θ
θ

)(sB + βs̄′B)

]
YA (156)

This implies

L =
θ(sA + βs̄′A) + (1− θ) (sB + βs̄′B)

θ(1 + β)
YA (157)

Eq. (149) then implies that

L̃ =
θ[(1− sA) + β(1− s̄′A)] + (1− θ)[(1− sB) + β(1− s̄′B)]

θ(1 + β)
YA (158)
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Different Preferences With different preferences we need to solve for L. To do this we

consider the lifetime budget constraint, (138), and use the results (and notation) so far to

write it as

(1 + β)L =

[
sA + βs̄′A + (

1− θ̃
θ̃

)(sB + βs̄′B)

]
YA +

θ̃ − θ
θ̃

(sB + βs̄′B)L (159)

This implies

L =
θ̃(sA + βs̄′A) + (1− θ̃) (sB + βs̄′B)

θ̃(1 + β) + (θ − θ̃) (sB + βs̄′B)
YA (160)

Eq. (149) then implies that

L̃ =
θ[(1− sA) + β(1− s̄′A)] + (1− θ)[(1− sB) + β(1− s̄′B)]

θ̃(1 + β) + (θ − θ̃) (sB + βs̄′B)
YA (161)

and (150) implies that

PB =
(1− θ̃) (1 + β) +

(
θ̃ − θ

)
(sA + βs̄′A)

θ̃ (1 + β) +
(
θ − θ̃

)
(sB + βs̄′B)

YA
YB

, (162)

Given Eq. (152) we have

P ′B(z) =
GA(z)

GB(z)
PB =

(1− θ̃) (1 + β) +
(
θ̃ − θ

)
(sA + βs̄′A)

θ̃ (1 + β) +
(
θ − θ̃

)
(sB + βs̄′B)

Y ′A(z)

Y ′B(z)
. (163)

Since good B is traded, P̃B = PB and P̃ ′B(z) = P ′B(z) so

e = (ρ̃/ρ)P θ−θ̃
B e′(z) = (ρ̃/ρ)P ′B(z)θ−θ̃

But this means

ln [e′(z)/e] = (θ − θ̃) ln [P ′B(z)/PB] = (θ − θ̃) ln [GA(z)/GB(z)]

A.3.3 When Good B is Non-traded

The market clearing conditions for good A are (141) and (142). For good B they are

cB = yB , c̃B = ỹB (164)
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c′B(z) = y′B(z) , c̃′B(z) = ỹ′B(z) (165)

The market clearing conditions and the first order conditions together imply that Eqs. (145)

and (146) hold along with

(1− θ)L = PByB (1− θ̃)L̃ = P̃B ỹB (166)

β(1− θ)L =
ψ(z)

π(z)
P ′B(z)y′B(z) , β(1− θ̃)L̃ =

ψ(z)

π(z)
P̃ ′B(z)ỹ′B(z) (167)

Given the results so far, the lifetime budget constraint of the home household, (138),

becomes:

(1 + β)θL = κYA,

where κ = sA + βs̄′A, and implies

L =
κ

θ(1 + β)
YA. (168)

If we combine Eqs. (145) and (168) we have

L̃ =
κ̃

θ̃(1 + β)
YA (169)

where κ̃ = 1− sA + β(1− s̄′A).

Combining Eqs. (145) and (146) you get

mA(z) = βGA(z)−1 =
ψ(z)

π(z)
(170)

Combining Eqs. (166), (168) and (169) we have

PB =
(1− θ)κ
θ(1 + β)

YA
yB

P̃B =
(1− θ̃)κ̃
θ̃(1 + β)

YA
ỹB
. (171)

If we combine (166) and (167), and make use of (170) we get

P ′B(z)

PB
=
GA(z)

gB(z)

P̃ ′B(z)

P̃B
=
GA(z)

g̃B(z)
. (172)

Therefore, we can write

P ′B(z) =
(1− θ)κ
θ(1 + β)

Y ′A(z)

y′B(z)
P̃ ′B(z) =

(1− θ̃)κ̃
θ̃(1 + β)

Y ′A(z)

ỹ′B(z)
. (173)
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Discounted marginal utility growth in good B is

mB(z) =
ψ(z)

π(z)

P ′B(z)

PB
= β/g′B(z) m̃B(z) =

ψ(z)

π(z)

P̃ ′B(z)

P̃B
= β/g̃B(z) (174)

Identical Preferences We have

e =
(
P̃B/PB

)1−θ
=

(
κ̃

κ

yB
ỹB

)1−θ

.

e′(z) =
(
P̃ ′B(z)/P ′B(z)

)1−θ
=

[
κ̃

κ

y′B(z)

ỹ′B(z)

]1−θ
.

And this means

ln[e′(z)/e] = (1− θ) ln [g′B(z)/g̃′B(z)]

Different Preferences

e = (
ρ̃

ρ
)
P̃ 1−θ̃
B

P 1−θ
B

= (
ρ̃

ρ
)

[
(1−θ̃)
(1+β)θ̃

κ̃YA
ỹB

]1−θ̃
[

(1−θ)
(1+β)θ

κYA
yB

]1−θ = (
θ

θ̃
)

(
κ̃ỹ−1B

)1−θ̃(
κy−1B

)1−θ ( YA
1 + β

)θ−θ̃
.

e′(z) = (
ρ̃

ρ
)
P̃ ′B(z)1−θ̃

P ′B(z)1−θ
= (

θ

θ̃
)
[κ̃ỹ′B(z)−1]

1−θ̃

[κy′B(z)−1]1−θ

[
Y ′A(z)

1 + β

]θ−θ̃
So

ln[e′(z)/e] = (1− θ) ln g′B(z)− (1− θ̃) ln g̃′B(z) + (θ − θ̃) lnG′A(z)

A.3.4 Financial Autarky

Since the countries are in financial autarky, we no longer have ψ(z) = ψ̃(z), so the rearranged

first order conditions for the consumptions are

θL = cA (175)

(1− θ)L = cBPB (176)

βθL =
ψ(z)

π(z)
c′A(z) (177)

β(1− θ)L =
ψ(z)

π(z)
c′B(z)P ′B(z) (178)
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θ̃L̃ = c̃A (179)

(1− θ̃)L̃ = P̃B c̃B (180)

βθ̃L̃ =
ψ̃(z)

π(z)
c̃′A(z) (181)

β(1− θ̃)L̃ =
ψ̃(z)

π(z)
P̃ ′B(z)c̃′B(z) (182)

The home country’s flow budget constraints must be satisfied with no asset holdings so we

have

cA + PBcB = yA + PByB (183)

c′A(z) + P ′B(z)c′B(z) = y′A(z) + P ′B(z)y′B(z). (184)

Using the first order conditions for the consumptions we get expressions for discounted

marginal utility growth:

mA(z) = β
cA
c′A(z)

=
ψ(z)

π(z)
m̃A(z) = β

c̃A
c̃′A(z)

=
ψ̃(z)

π(z)
(185)

Discounted marginal utility growth in good B is

mB(z) = β
cB
c′B(z)

=
ψ(z)

π(z)

P ′B(z)

PB
m̃B(z) = β

c̃B
c̃′B(z)

=
ψ̃(z)

π(z)

P̃ ′B(z)

P̃B
(186)

A.3.5 When Good B is Traded

The market clearing conditions for goods are Eqs. (141)–(144). The market clearing condi-

tions and the first order conditions together imply

θL+ θ̃L̃ = YA (187)

θ

ψ(z)
L+

θ̃

ψ̃(z)
L̃ =

1

βπ(z)
Y ′A(z) (188)

(1− θ)L+ (1− θ̃)L̃ = PBYB (189)

(1− θ) L

ψ(z)
+ (1− θ̃) L̃

ψ̃(z)
=

1

βπ(z)
P ′B(z)Y ′B(z) , z = 1, . . . , n, (190)
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We can rearrange Eqs. (187) and (189) to get:

L̃ =
1

θ̃
(YA − θL) (191)

PB =
1

θ̃

(θ̃ − θ)L+ (1− θ̃)YA
YB

, (192)

We can rearrange Eqs. (188) and (190) to get:

βπ(z)

ψ̃(z)
L̃ =

1

θ̃

[
Y ′A(z)− θβπ(z)

ψ(z)
L

]
. (193)

P ′B(z) =
1

θ̃

(θ̃ − θ)βπ(z)
ψ(z)

L+ (1− θ̃)Y ′A(z)

Y ′B(z)
(194)

The flow budget constraint, (183), and Eq. (192) imply that

L = yA +
θ̃−θ
θ̃
L+ (1− θ̃)YA

θ̃

YB
yB

or

L =
θ̃sA + (1− θ̃)sB
θ̃ + (θ − θ̃)sB

YA (195)

The flow budget constraint, (184), and Eq. (194) imply that

βπ(z)

ψ(z)
L =

θ̃s′A(z) + (1− θ̃)s′B(z)

θ̃ + (θ − θ̃)s′B(z)
Y ′A(z). (196)

Using (195) we then have

mA(z) =
ψ(z)

π(z)
= β

ξA(z)

GA(z)
with ξA(z) =

θ̃sA+(1−θ̃)sB
θ̃+(θ−θ̃)sB

θ̃s′A(z)+(1−θ̃)s′B(z)

θ̃+(θ−θ̃)s′B(z)

(197)

Substituting (195) into (191) we get

L̃ =
θ(1− sA) + (1− θ) (1− sB)

θ + (θ̃ − θ)(1− sB)
YA (198)

Substituting (196) into (193) we get

βπ(z)

ψ̃(z)
L̃ =

θ[1− s′A(z)] + (1− θ)[1− s′B(z)]

θ + (θ̃ − θ)[1− s′B(z)]
Y ′A(z) (199)
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Given these results, discounted marginal utility growth in good A in the foreign country is

m̃A(z) =
ψ̃(z)

π(z)
= β

ξ̃A(z)

GA(z)
with ξ̃A(z) =

θ(1−sA)+(1−θ)(1−sB)

θ+(θ̃−θ)(1−sB)

θ[1−s′A(z)]+(1−θ)[1−s′B(z)]

θ+(θ̃−θ)[1−s′B(z)]

(200)

Substituting (195) into (192)

PB =
1− θ̃ + (θ̃ − θ)sA
θ̃ + (θ − θ̃)sB

YA
YB

(201)

Substituting (196) into (194)

P ′B(z) =

[
1− θ̃ + (θ̃ − θ)s′A(z)

θ̃ + (θ − θ̃)s′B(z)

]
Y ′A(z)

Y ′B(z)
(202)

Discounted marginal utility growth in good B in the two countries is

mB(z) = β
ξA(z)

GA(z)

P ′B(z)

PB
= β

ξA(z)

GB(z)
ξB(z) with ξB(z) =

1−θ̃+(θ̃−θ)s′A(z)

θ̃+(θ−θ̃)s′B(z)

1−θ̃+(θ̃−θ)sA
θ̃+(θ−θ̃)sB

(203)

m̃B(z) = β
ξ̃A(z)

GA(z)

P ′B(z)

PB
= β

ξ̃A(z)

GB(z)
ξB(z) (204)

Identical Preferences If preferences are identical we have θ = θ̃ so that Eqs. (201) and

(202) simplify to

PB =
1− θ
θ

YA
YB

(205)

P ′B(z) =
1− θ
θ

Y ′A(z)

Y ′B(z)
(206)

Since both goods are frictionlessly traded and preferences are identical e = e′(z) = 1.

The expressions for ξA and ξ̃A in Eqs. (197) and (200) simplify to

ξA(z) =
θsA + (1− θ)sB

θs′A(z) + (1− θ)s′B(z)
(207)

ξ̃A(z) =
θ(1− sA) + (1− θ) (1− sB)

θ[1− s′A(z)] + (1− θ)[1− s′B(z)]
(208)
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The expression for ξB in Eq. (203) simplifies to ξB(z) = 1, implying that

mB(z) = β
ξA(z)

GB(z)
m̃B(z) = β

ξ̃A(z)

GB(z)
(209)

The wedge between marginal utility growths in good A, good B, and in terms of aggregate

consumption is

m̃A(z)/mA(z) = m̃B(z)/mB(z) = m̃(z)/m(z) = ξ̃A(z)/ξA(z).

Different Preferences Given the expressions for prices, above,

e = (ρ̃/ρ)P θ−θ̃
B = (ρ̃/ρ)

1− θ̃ +
(
θ̃ − θ

)
sA

θ̃ +
(
θ − θ̃

)
sB

YA
YB

θ−θ̃

and

e′(z) = (ρ̃/ρ)P ′B(z)θ−θ̃ = (ρ̃/ρ)

(
1− θ̃ + (θ̃ − θ)s′A(z)

θ̃ + (θ − θ̃)s′B(z)

Y ′A(z)

Y ′B(z)

)θ−θ̃

A.3.6 When Good B is Non-traded

Because the B good cannot be traded the goods market clearing conditions and the home

household budget constraints together imply,

cA = yA , c̃A = ỹA (210)

c′A(z) = y′A(z) , c̃′A(z) = ỹ′A(z) (211)

cB = yB , c̃B = ỹB , (212)

c′B(z) = y′B(z) , c̃′B(z) = ỹ′B(z) , (213)

So

L = yA/θ, (214)

PB =
1− θ
θ

yA
yB

(215)

ψ(z)

π(z)
= β/gA(z) (216)
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P ′B(z) =
1− θ
θ

y′A(z)

y′B(z)
(217)

L̃ = ỹA/θ̃ (218)

P̃B =
1− θ̃
θ̃

ỹA
ỹB
, (219)

ψ̃(z)

π(z)
= β/g̃A(z) (220)

P̃ ′B(z) =
1− θ̃
θ̃

ỹ′A(z)

ỹ′B(z)
(221)

Discounted marginal utility growths in goods A and B are

mA(z) = β/gA(z) m̃A(z) = β/g̃A(z)

mB(z) = β/gB(z) m̃B(z) = β/g̃B(z)

Identical Preferences If preferences are identical we have θ = θ̃ so that

e =

(
ỹA/ỹB
yA/yB

)1−θ

=

(
(1− sA)/sA
(1− sB)/sB

)1−θ

.

e′(z) =

(
ỹ′A(z)/ỹ′B(z)

yA(z)/yB(z)

)1−θ

=

(
[1− s′A(z)] /s′A(z)

[1− s′B(z)] /s′B(z)

)1−θ

.

Different Preferences

e = (ρ̃/ρ)[
1− θ̃
θ̃

ỹA
ỹB

]1−θ̃/[
1− θ
θ

yA
yB

]1−θ.

e′(z) = (ρ̃/ρ)[
1− θ̃
θ̃

ỹ′A(z)

ỹ′B(z)
]1−θ̃/[

1− θ
θ

y′A(z)

y′B(z)
]1−θ.

B Section Appendix

As we mentioned earlier, many papers in this literature use the SDF in Eq. (74) together

with the assumption of log-normal asset returns.33 Here we include an illustrative example of

33A few examples include: Bansal (1997); Backus, Foresi, and Telmer (2001); Brandt and Santa-Clara
(2002) ; Brennan and Xia (2006); and Lustig, Roussanov, and Verdelhan (2011).
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this setup to highlight the role of the asset market view in Eq. (65), or equivalently Eq. (66),

in these models.

For simplicity, consider an arbitrage-free model of the returns on four assets. Two assets

are default-free bank accounts.One default-free bank account is denominated in U.S. dollars

and pays a continuously-compounded interest rate i from time t to t+∆t, so that the certain

dollar-denominated gross return on this bank account is exp (i∆t). The other default-free

bank account is denominated in U.K. dollars and pays a continuously-compounded interest

rate i∗. Let S and S ′ denoted the spot dollar/pound exchange rate at time t and t + ∆t.

Then the dollar-denominated gross return on this bank account from time t to t + ∆t is

exp (i∗∆t)S ′/S. The other two assets are not bank accounts. They could be long-term

bonds, stocks, or any other assets located anywhere in the world. Let Y and Y ′ be the dollar-

denominated prices at time t and t + ∆t of an asset that pays a continuously-compounded

dividend δ over that period. Similarly, let Z∗ and Z∗′ be the pound-denominated prices at

time t and t + ∆t of different asset that pays a continuously-compounded dividend δ∗ over

that period. The vector of dollar-denominated gross returns on these four assets is

R =
[

exp
(
i∆t

)
, exp

(
i∗∆t

)
S′

S
, exp

(
δ∆t

)
Y ′

Y
, exp

(
δ∗∆t

)
S′Z∗′

SZ∗

]
. (222)

A common assumption in this literature (and asset pricing in general) is that the asset

returns are log-normally distributed, with

[
lnS ′/S , lnY ′/Y , lnZ∗′/Z∗

]
∼ N (µ∆t,Ω∆t) . (223a)

We’ll decompose the covariance matrix, Ω, as

Ω = ΣPΣ with Σ =

 σ

σd

σf

 and P =

 1 ρd ρf

ρd 1 ρ

ρf ρ 1

 . (223b)

To ensure that there are no arbitrage opportunities within the asset returns (as we’ll discuss

below), it is convenient to parameterize the mean vector, µ, as

µ =
[
i− i∗ + ϕ− 1

2
σ2 , i− δ + ϕd − 1

2
σ2
d , i∗ − δ∗ + ϕf − 1

2
σ2
f − σf σρf

]
, (223c)

where

[
ϕ , ϕd , ϕf

]
= Ω Υ and Υ =

[
γ + γf , γd , γf

]
, (223d)
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for parameters γ, γd, and γf . In Section B.1 we use this illustrative no-arbitrage model to

analyze specific papers in this literature, but first we briefly discuss its relevant features.

In the general case, this simple model of log-normal asset returns has 13 free parameters.

The continuously-compounded dividend yields on the four assets are described by {i, i∗, δ, δ∗}.
There are three relative asset returns to consider (once we arbitrarily choose one of the assets,

or a portfolio of them, as the numeraire to denominate returns). The volatility of the three

asset returns are described by
{
σ, σd, σf

}
, which are contained within the matrix Σ. The

correlation of the three asset returns are described by
{
ρd, ρf , ρ

}
, which are contained within

the matrix P . Finally, given the other parameters, the mean of the three log asset returns

are characterized by the parameters
{
γ, γd, γf

}
, which are contained within the vector Υ.

For this example, we’ll focus on the specific SDF in Eq. (74), since it is used by much of

the literature that works with log-normal models of asset returns. It is straightforward to

verify that E(Rm = 1) for the SDF in Eq. (74) when

Γ =
[

1− γ − γd − γf γ γd γf
]
, (224)

for γ, γd, and γf in Eq. (223d). By the Fundamental Theorem of Asset Pricing (e.g., see

Dybvig and Ross, 2003 or Dybvig and Ross, 2008), there are no arbitrage opportunities

within a set of returns R if there is a strictly positive SDF, M , that satisfies Eq. (58)

for those returns. Thus, the parameterization in Eq. (223) ensures that there are no ar-

bitrage opportunities within the asset returns, R, in Eq. (222). Put differently, the ab-

sence of arbitrage opportunities does not impose any restrictions on the 13 parameters,

{i, i∗, δ, δ∗, σ, σd, σf , ρd, ρf , ρ, γ, γd, γf}, in Eq. (223).

It is important to recognize that, in general, the SDF in Eq. (74) is not the unique SDF

consistent with the returns. For example, the SDF in Eq. (73) is also consistent with the

returns, and it differs from the SDF in Eq. (74) when there is a continuous state space in

discrete time with a finite number of asset returns. However, the continuous-time counterpart

of this model with log-normal returns does have a unique SDF (e.g., see Harrison and Pliska,

1981, 1983). That continuous-time counterpart of Eq. (223) is given by,

d lnSt =
(
i− i∗ + ϕ− 1

2
σ2
)
dt+ σ dWt , (225a)

d lnXt =
(
i− δ + ϕd − 1

2
σ2
d

)
dt+ σd dW

d
t , (225b)

d lnZ∗t =
(
i∗ − δ∗ + ϕf − 1

2
σ2
f − σf σρf

)
dt+ σf dW

f
t , (225c)

where W , W d, and W f are Brownian motions with correlation matrix P in Eq. (223b). The

continuous-time dynamics of the unique dollar-denominated SDF for the asset returns in
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Eq. (225) are

dMt = −Mt

[
i dt+

(
γ + γf

)
σ dWt + γd σd dW

d
t + γf σf dW

f
t

]
, (226a)

and the continuous-time dynamics of hat same unique SDF when the returns are instead

denominated in pounds are

d
(
MtSt

)
= −

(
MtSt

)[
i∗dt+

(
γ + γf − 1

)
σ dWt + γd σd dW

d
t + γf σf dW

f
t

]
. (226b)

It is important to recognize that uniqueness of the SDF in this case requires both continuous-

time and continuous sample paths (i.e., a continuous diffusion without any jumps).34

In many examples in this literature, the vector of mean log asset returns, µ, and the co-

variance matrix, Ω, in Eq. (223) are state dependent (for example, they are allowed to depend

on the short-term interest rate in each currency). We have omitted this state dependence

purely for notational simplicity. For the same reason, we have also omitted the dynamics of

the short-term interest rates, i and i∗, in the two currencies because they are not central to

our analysis. In most dynamic term structure models (including the models that are used

in this literature), short-term interest rates and long-term yields in a currency are driven

by the same shocks. In this case, dynamic term structure models are useful for modeling

and understanding the no-arbitrage relationship between yields with different maturities.35

Our analysis below does not depend on the specific relationship between short-term interest

rates and long-term yields in a currency, so for simplicity we omit those details. Instead,

when the two asset that are not bank accounts are long-term bonds in dollars and pounds,

we focus directly on the relationship between the exchange rate and long-term yields in the

two currencies, which is the object of interest.

As we highlighted in Section 4.3, much (if not most) of the international asset pricing

literature uses an alternative, but equivalent, parameterization of the log-normal asset return

dynamics in Eq. (223). Rather than model the three asset returns directly, these papers

instead model the returns on the two assets that are not bank accounts, together with an

SDF denominated in both dollars and pounds. In Section 4.3 we argued that these two

modeling approaches are isomorphic to each other. In particular, using Eq. (223) and the

SDF in Eq. (74) we can write

[
lnMS ′/S , lnM , lnX ′/X , lnZ∗′/Z∗

]
∼ N (µM∆t,ΩM∆t) , (227a)

34Jarrow and Madan (1995, 1999) highlight that SDFs are not unique in continuous-time models with a
finite number of a securities and jumps that have a continuous distribution.

35See Dai and Singleton (2003) for a review of this literature
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with

µ>M =


−i∗ − 1

2
Υ∗Ω Υ>∗

−i− 1
2
Υ Ω Υ>

i− δ + ϕd − 1
2
σ2
d

i∗ − δ + ϕ∗f − 1
2
σ2
f

 , (227b)

and

ΩM =


Υ∗Ω Υ>∗ Υ∗Ω Υ> −ϕ∗d −ϕ∗f
Υ Ω Υ>∗ Υ Ω Υ> −ϕd −ϕf
−ϕ∗d −ϕd σd σdσfρ

−ϕ∗f −ϕf σdσfρ σ2
f

 , (227c)

where, for notational convenience, we’ve defined the analog of Eq. (223d) as

Υ∗ =
[
γ + γf − 1 , γd , γf

]
and

[
ϕ∗ , ϕ∗d , ϕ∗f

]
= Ω Υ∗ . (227d)

Note that, with these definitions,

[
ϕ− ϕ∗ , ϕd − ϕ∗d , ϕf − ϕ∗f

]
=
[
σσ , σd σρd , σf σρf

]
. (228)

Papers that parameterize the model using Eq. (227) instead of Eq. (223) often attach

different labels to the variables and parameters. For example, MS ′/S is often labeled as M∗

or M̃ . Other parameters that are often given different labels include

λ = σ
(
γ + γf

)
, λd = σd γd , λf = σf γf , (229a)

λ∗ = σ
(
γ + γf − 1

)
= λ−σ , λ∗d = λd−σρd , λ∗f = λf −σρf . (229b)

(Sometimes a ∼ on top of the parameter is used instead of a superscript ∗.) These two

parameterizations are exactly equivalent, since one can always recover the original parameters

in Eq. (223) as

σ = λ− λ∗ , ρd =
λd−λ∗d
λ−λ∗ , ρf =

λf−λ∗f
λ−λ∗ , (230a)

γ + γf = λ
λ−λ∗ , γd = σ−1d λd , γf = σ−1f λf . (230b)

Obviously different parameterizations of the same no-arbitrage model are innocuous.

However, much of this literature attaches different economic interpretations to this alterna-

tive modeling approach and parameterization. For example, even though there are not any

agents in no-arbitrage models, λ, λd, and λf are often interpreted as market prices of risk that

apply to domestic (U.S.) investors, while λ∗, λ∗d, and λ∗f are viewed as market prices of risk
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that apply to foreign (U.K.) investors. Moreover, many papers use language which suggests

that M and MS ′/S are different SDFs that are associated with different economies. For

example, Bakshi, Carr, and Wu (2008) provide a no-arbitrage model using this alternative

approach and on page 135 they write:

In complete markets, the stochastic discount factor for each economy is unique.

Hence, the ratio of two stochastic discount factors uniquely determines the ex-

change rate dynamics between the two economies.

Similarly, Brandt and Santa-Clara (2002) also provide a no-arbitrage model and on page 173

they write:

The key insight of our model is that when markets are incomplete, the volatility

of the exchange rate is not uniquely determined by the domestic and foreign

stochastic discount factors.

Again, to emphasize, the model in Eq. (223) only imposes that there are no arbitrage op-

portunities between these four assets. There are no agents or separate economies. There is

no requirement that the asset market is complete. There is no economic mechanism in the

no-arbitrage model that determines the exchange rate. Eqs. (227) and (229) provide an alter-

native parameterization of this same no-arbitrage model, but an alternative parameterization

does not alter any of these statements.

Without loss of generality, for the remainder of this section we’ll work with the model

formulation in Eq. (223) because our view is that it affords the most transparent analysis.

B.1 Literature Discussion

Backus, Foresi, and Telmer (2001) was one of the first papers to consider a model of the

form in Eq. (223). In their setup, Y is the price of a dollar-denominated long-term bond

and Z∗ is the price of a pound-denominated long-term bond. They argue that the forward

premium anomaly for currencies, together with the restriction of no arbitrage, has “strong

implications for the structure and parameter values of affine models.” The forward premium

anomaly pertains to the mean of the change in the log exchange rate. In particular,

ϕ− 1
2
σ2 = α + β

(
i− i∗

)
. (231)

To understand the source of the restrictions that Backus, Foresi, and Telmer (2001) derive,

it is first important to recognize that if the covariance matrix, Ω, in Eq. (223) is invertible,

then the absence of arbitrage does not impose any restrictions on the model. In that case,
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the vector of mean log asset returns, µ, could literally be anything and one can still solve

for γ, γd, and γf in Eq. (223) as

[
γ + γf , γd , γf

]
(232)

= Ω−1µ−Ω−1
[
i− i∗ − 1

2
σ2 , i− δ − 1

2
σ2
d , i∗ − δ∗ − 1

2
σ2
f − σf σρf

]
.

The intuition behind the lack of no arbitrage restrictions is straightforward. If the covariance

matrix is invertible, then the three asset returns are driven by three linearly independent

shocks. The absence of arbitrage only restricts the returns on assets that are exposed to the

same shocks.

Thus, if the covariance matrix, Ω, in Eq. (223) is invertible (i.e., nonsingular) then the

model is completely free to match the forward premium anomaly (i.e., no-arbitrage does not

impose any restrictions on the model that prevent it from matching the forward premium

anomaly). Backus, Foresi, and Telmer (2001) assume that the covariance matrix, Ω, is

singular so that the three asset returns are driven by only two sources of uncertainty. The

restrictions they derive are primarily driven by this assumption. Intuitively, a singular

covariance matrix implies that the return on any of the four assets can be exactly replicated

by trading in the other three (i.e., one of the four assets is redundant). For example, if the

covariance matrix is singular, then the pound-denominated bank account could be exactly

replicated with a portfolio of the two non-bank account assets and the dollar-denominated

bank account. Therefore, the return on the pound-denominated bank account must exactly

match the return on the portfolio that replicates it.

To illustrate, if

1− ρ2d − ρ2f − ρ2 + 2ρdρfρ = 0 , (233)

then the correlation matrix, P , in Eq. (223) is singular and can be written as

P =


ρd−ρfρ
1−ρ2

ρf−ρdρ
1−ρ2

1 0

0 1

[ 1 ρ

ρ 1

]
ρd−ρfρ
1−ρ2

ρf−ρdρ
1−ρ2

1 0

0 1


>

. (234)

Therefore, in the continuous-time limit,36 one can replicate the pound-denominated bank

account using a portfolio with weights ωd in the dollar-denominated asset (that is not a bank

account), ωf in the pound-denominated asset (that is not a bank account), and 1− ωd − ωf
36Technically speaking, the covariance matrix of the log of the returns is singular, not the covariance

matrix of the gross returns. Therefore, there is only exact replication in the continuous-time limit of the
model (i.e., as ∆t→ 0).
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in the dollar-denominated bank account, where

ωd =

(
ρd − ρfρ

)
σσf[(

ρf − ρdρ
)
σ +

(
1− ρ2

)
σf
]
σd

and ωf =

(
ρf − ρdρ

)
σ(

ρf − ρdρ
)
σ +

(
1− ρ2

)
σf

. (235)

With some algebra, one can verify ωd and ωf solve the replicating problem since

[
ωf , ωd , ωf

]
Σ


ρd−ρfρ
1−ρ2

ρf−ρdρ
1−ρ2

1 0

0 1

 (236)

=
[

1 , 0 , 0
]
Σ


ρd−ρfρ
1−ρ2

ρf−ρdρ
1−ρ2

1 0

0 1

 .

The model in Eq. (225), which is the continuous-time limit of the model in Eq. (223),

naturally incorporates this no-arbitrage restriction. In particular, Eq. (236) implies that

[
ωf , ωd , ωf

]
Ω =

[
1 , 0 , 0

]
Ω , (237)

and therefore

Et
[
(1− ωd − ωf ) i dt+ ωd

(
dXt

Xt

+ δ dt

)
+ ωf

(
d (StZ

∗
t )

(StZ∗t )
+ δ∗ dt

)]
=
(
i+
[
ωf , ωd , ωf

]
ΩΥ

)
dt , (238a)

=
(
i+
[

1 , 0 , 0
]
ΩΥ

)
dt = Et

[
dSt
St

+ i∗ dt

]
. (238b)

That is, the return on the pound-denominated bank account exactly matches the return

on the portfolio that replicates it. Equivalently, the singular covariance matrix in Eq. (234)

implies that one of the elements (or a linear combination of the elements) in Υ is redundant

and can be set to zero. For example, if Eq. (234) holds then the first element of Υ could be

set to zero, since


ρd−ρfρ
1−ρ2

ρf−ρdρ
1−ρ2

1 0

0 1


>

ΣΥ =


ρd−ρfρ
1−ρ2

ρf−ρdρ
1−ρ2

1 0

0 1


>

Σ


0

(ρd−ρfρ)σ
(1−ρ2)σd

(γ + γf ) + γd
(ρf−ρdρ)σ
(1−ρ2)σf

(γ + γf ) + γd

 . (239)

Eqs. (234) and (239) effectively reduce the number of free parameters in the general model

of Eq. (225) from 13 down to 11.
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There are a couple of points worth emphasizing. First, Backus, Foresi, and Telmer

(2001) assume that currency returns are completely spanned by long-term bond returns in

the two currencies (i.e., currencies and interest rates are driven by the same shocks). This

spanning assumption (i.e., a singular covariance matrix) is the primary source of the no-

arbitrage restrictions that they derive, but it is not an implication of the absence of arbitrage

opportunities.37 When the dollar/pound exchange rate is indirectly modeled via an SDF

denominated in both dollars and pounds, this assumption, and its importance, may be less

transparent. Second, as we illustrated above, an SDF in not necessary to understand or derive

the no-arbitrage restrictions in Backus, Foresi, and Telmer (2001), because those restrictions

follows immediately from a simple static replication problem in Eq. (236). Put differently,

given the assumption of a singular covariance matrix, one can derive the restrictions implied

by no-arbitrage, without specifying, or explicitly solving for, an SDF. Third, as we have

shown, the singular correlation matrix in Eq. (234) immediately implies (via no arbitrage)

that the expected return on the exchange rate is directly related to the expected return on

long-term bonds in the two currencies according to Eq. (238). Backus, Foresi, and Telmer

(2001) find that the restriction in Eq. (238) has undesirable features that do not match the

data well. It seems most natural to start by testing whether correlation matrix is close to

singular (i.e., test whether exchange rates are spanned by movements in the two long-term

bonds denominated in their respective currencies). If the covariance matrix is not singular

then one should not expect the restriction in Eq. (238) to hold (since it relies on a singular

covariance matrix).

Brandt and Santa-Clara (2002) provide empirical evidence that exchange rates are not

spanned by movements in long-term bonds in both currencies. They interpret this empirical

evidence as an indication that the asset market is incomplete, so that there is not a unique

SDF. In that case, Eqs. (65) and (66) do not necessarily hold for any two SDFs denominated

in different units. As we described in Section 4.4, Brandt and Santa-Clara (2002) model

two separate SDFs, M and M∗, together with a third stochastic process, O, that they claim

captures the degree of market incompleteness. On page 164 they state that the stochastic

process, O, in their model captures the notion that “if markets are incomplete, the volatility

of the exchange rate can contain an element that is orthogonal to the priced sources of risk

in both countries.”

In Section 4.4 we illustrated that the model in Brandt and Santa-Clara (2002) is not

arbitrage-free. Here we describe the restrictions that their model imposes relative to the

general model that we provided in Eq. (223). First, based on their empirical evidence that

37Lustig, Roussanov, and Verdelhan (2011) also assume that currency returns are completely spanned by
long-term bond returns (i.e., they assume that currencies and interest rates are driven by the same shocks) .
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exchange rates are not spanned by interest rates, they relax Eq. (233) and allow for a non-

singular correlation/covariance matrix. However, as we illustrated in Eqs. (225) and (226),

there is a unique SDF in the continuous-time diffusion counterpart of the model in Eq. (223),

even when the correlation/covariance matrix is nonsingular. In other words, the fact that

currency returns are not well-spanned by the returns on other assets does not imply that the

market is incomplete or that there is not a unique SDF in a no-arbitrage model.

Second, regardless of whether the market is complete or incomplete, the exchange rate

cannot contain an element that is orthogonal to an SDF denominated in both dollars and

pounds (in the language of Brandt and Santa-Clara (2002), the exchange rate cannot contain

an element that is orthogonal to the priced sources of risk in both countries). This assump-

tion in Brandt and Santa-Clara (2002) is the source of the arbitrage opportunity that we

demonstrated in Eq. (70). As an alternative proof of that result (and a less general proof

than the one we provided in Section 4.4), note that Brandt and Santa-Clara (2002) use the

alternative parametrization in Eq. (229). They argue that if the market is incomplete, then it

can be the case that λ = 0 = λ∗ and the growth in the exchange rate can contain an element

that is orthogonal to both M and M∗. As Eqs. (70) and (230) illustrate, λ and λ∗ can only

be equal if σ = 0. It is true that it can be the case that either λ = 0 or λ∗ = 0 (i.e., either

σ (γ + γf ) = 0 or σ (γ + γf − 1) = 0), but Jensen’s inequality ensures that both conditions

cannot hold simultaneously unless σ = 0. If we overlook this error in their model, Brandt

and Santa-Clara (2002) effectively relax Backus, Foresi, and Telmer (2001)’s assumption of

a singular covariance matrix in Eq. (234). However, they still restrict the general model in

Eq. (223) by assuming that shocks to exchange rates that are independent of shocks to other

assets must also be independent of SDFs that are consistent with the returns on those assets.

Again, as the the general model in Eq. (223) illustrates, this restriction is not an implication

of no-arbitrage or (in)complete markets.

As a third and final example we consider the paper by Brennan and Xia (2006). They

estimate an SDF, M , that is consistent with the dollar-denominated returns on the dollar-

denominated default-free bank account and long-term dollar-denominated bonds. Separately,

they estimate an SDF, M∗, for the pound-denominated returns on the pound-denominated

default-free bank account and long-term pound-denominated bonds. Then they test whether

the asset market view in Eq. (65) holds for these two, separately identified, SDFs.

For ease of exposition, we’ll translate the exercise in Brennan and Xia (2006) to the

continuous-time counterpart in Eq. (225) of the general model in Eq. (223).38 Let Y denote

the dollar price of a dollar-denominated long-term bond, and let Z∗ denote the pound price of

a pound-denominated long-term bond. Let M̌ denote the SDF is that is consistent with the

38Brennan and Xia, 2006 also use a continuous-time model.
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dollar-denominated returns on the dollar-denominated bank account and long-term bond.

Then the dynamics of M̌ are given by

dM̌t = −M̌t

{
i dt+ [ρdσ (γ + γf ) + σdγd + ρσfγf ] dW

d
t

}
. (240)

Similarly, let M̌∗ denote the SDF is that is consistent with the pound-denominated returns

on the pound-denominated bank account and long-term bond. Then the dynamics of M̌∗

are given by

dM̌∗
t = −M̌∗

t

{
i∗ dt+ [ρfσ (γ + γf − 1) + ρσdγd + σfγf ] dW

f
t

}
. (241)

Therefore, Brennan and Xia (2006) interpret Eq. (65), or equivalently Eq. (66), as restricting

exchange rate dynamics as follows

d lnSt = d ln M̌∗
t − d ln M̌t . (242)

They claim that Eq. (242) is an implication of integrated capital markets.

From Eqs. (240–242), it is clear that Brennan and Xia (2006) inherit Backus, Foresi, and

Telmer (2001)’s assumption that shocks to currencies are completely spanned by shocks to

interest rates in each currency. However, Brennan and Xia (2006) make a much stronger

assumption: they assume that the SDFs in Eq. (65), or equivalently Eq. (66), can be identi-

fied using distinct sets assets. From Eqs. (240–242), this additional assumption reduces the

number of free parameters from 11 in Backus, Foresi, and Telmer (2001) down to 4 (5 if we

also include the unspecified correlation between W d and W f ) in Brennan and Xia (2006).

Instead, as we illustrated in Section 4, Eq. (66) only holds if M and M∗ are the same SDF

(that price the same assets) denominated in different units. In general, Eqs. (65) and (66)

do not need to hold for SDFs derived from distinct sets of assets, even if capital markets are

completely integrated.
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