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Non-Cognitive Ability, Test Scores, and Teacher Quality: 
Evidence from 9th Grade Teachers in North Carolina1 

 
C. Kirabo Jackson,  

Northwestern University and NBER 
 

This paper presents a model where students have cognitive and non-cognitive ability, and a teacher’s effect on long-
run outcomes is a combination of her effects on both ability-types. Conditional on cognitive scores, an underlying 
non-cognitive factor associated with student absences, suspensions, grades, and grade progression, is strongly 
correlated with long-run educational attainment, arrests, and earnings in survey data. In administrative data, teachers 
have meaningful causal effects on both cognitive-scores and this non-cognitive factor. Calculations indicate that 
teacher effects based on test scores alone fail to identify many excellent teachers, and may greatly understate the 
importance of teachers for adult outcomes. (JEL I21, J00) 

 
"The preoccupation with cognition and academic “smarts” as measured by test scores to the 
exclusion of social adaptability and motivation causes a serious bias in the evaluation of many 
human capital interventions" (Heckman, 1999) 
 
 
There is a growing consensus that non-cognitive skills not captured by standardized tests, 

such as adaptability, self-restraint, self-efficacy, and motivation are important determinants of 

adult outcomes (Lindqvist & Vestman, 2011; Heckman & Rubinstein, 2001; Borghans, Weel, & 

Weinberg, 2008; Waddell, 2006). At the same time, many interventions that have no effect on 

test-scores have meaningful effects on long-run outcomes such as education, earnings, and crime 

(Booker, Sass, Gill, & Zimmer, 2011; Deming, 2009; Deming, 2011). Also Heckman, Pinto, & 

Savelyev (forthcoming) find that changes in personality traits explain the positive effect of the 

Perry Preschool Program on adult outcomes, and Fredriksson, Ockert, & Oosterbeek, 

(forthcoming) find that class size effects on earnings are predicted by effects on both test scores 

and non-cognitive ability. This suggests that schooling inputs produce both cognitive skills 

(measured by standardized tests) and non-cognitive skills (reflected in socio-behavioral 

outcomes), both of which determine adult outcomes. Accordingly, evaluating interventions based 

on test scores may capture only one dimension of the skills required for adult success, and “a 

more comprehensive evaluation of interventions would account for their effects on producing the 

noncognitive traits that are also valued in the market” (Heckman & Rubinstein, 2001).  

                                                            
1I thank David Figlio, Jon Guryan, Simone Ispa-Landa, Clement Jackson, Mike Lovenheim, James Pustejovsky, and 
Steven Rivkin for insightful and helpful comments. I also thank Kara Bonneau from the NCERDC and Shayna 
Silverstein. This research was supported by funding from the Smith Richardson Foundation. 
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There is broad consensus among policy makers, educators, parents, and researchers that 

teachers are one of the most important components of the schooling environment. Studies show 

that having a teacher at the 85th percentile of the quality distribution (as measured by effects on 

student test scores) versus one at the 15th percentile is associated with between 8 and 20 

percentile points higher scores in math and reading (Aaronson, Barrow, & Sander, 2007; Kane & 

Staiger, 2008; Chetty, Friedman, & Rockoff, 2011; Rivkin, Hanushek, & Kain, 2005). The focus 

on test scores is largely because they are typically the best available measure. However, research 

on non-cognitive skills provides strong reason to suspect that effects on test scores may fail to 

capture a teachers overall effect. Several districts publicly release estimates of teachers' average 

effects on student test scores (value-added) and use them in hiring and firing decisions. 

Accordingly, it is important that these measures reflect a teacher’s effect on long-run outcomes 

and not only her effect on cognitive ability. To shed light on this issue, this paper tests whether 

teachers have causal effects on both cognitive ability (measured by test scores) and non-

cognitive ability (measured by absences, suspensions, grades, and grade progression). It also 

investigates whether teachers who improve test scores also improve non-test score outcomes, and 

estimates the extent to which test score measures understate the overall importance of teachers. 

While there is a growing literature on the importance of non-cognitive skills, and a burgeoning 

literature on the effect of teachers on test scores, this paper presents the first comprehensive 

analysis of teacher effects on both cognitive and objective non-cognitive outcomes. 

 Opponents of using test-scores to infer teacher quality raise two concerns. The first 

concern is that improving test scores does not necessarily imply better long-run outcomes 

because teachers might teach to the test, test score improvements might reflect transitory student 

effort, and those skills measured by test-scores may not be those that are associated with 

improved long-term outcomes. However, Chetty, Friedman, & Rockoff (2011) assuage this 

concern by demonstrating that teachers who improve test scores also improve outcomes into 

adulthood. The second concern is that student ability is multidimensional while test-scores may 

measure only one dimension of ability. If teachers improve skills not captured by test-scores then 

(a) many excellent teachers who improve long-run outcomes may not raise test scores, (b) the 

ability to raise test scores may not be the best predictor of effects on long-run outcomes, and (c) 

a regime that emphasizes test scores might induce teachers to divert effort away from skills not 

captured by test scores to increase test score outcomes ─ potentially decreasing teacher quality 
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overall (Holmstrom & Milgrom, 1991). This paper speaks to this second critique by assessing 

whether teachers affect non-cognitive skills not captured by test scores.  

In existing work, Alexander, Entwisle, & Thompson (1987), Ehrenberg, Goldhaber, & 

Brewer (1995) and  Downey & Shana (2004) find that students receive better teacher evaluations 

of behavior when students and teachers are more demographically similar, and Jennings & 

DiPrete (2010) finds that certain kindergarten classrooms are associated with meaningful 

differences in teacher evaluations of student behavioral skills. However, these studies may reflect 

differences in teacher perception rather than actual student behavior.2 Accordingly, the extent to 

which teachers affect non-cognitive outcomes remains unclear.3 

This paper is organized into three sections. The first section presents a latent factor model 

following Heckman, Stixrud, & Urzua (2006) in which both student ability and teacher ability 

have a cognitive and a non-cognitive dimension. It shows that a teacher's effect on long-run 

outcomes can be expressed as a combination of her effect on predicted cognitive ability (a factor 

that is highly correlated with test scores) and her effect on predicted non-cognitive ability (a 

factor that is a weighted average of several non-test score outcomes). The second section uses 

longitudinal survey data to form predicted non-cognitive ability, and demonstrates the extent to 

which predicted non-cognitive ability in 8th grade predicts adult outcomes conditional on test 

scores. The third section uses administrative data to estimate 9th grade Algebra and English 

teacher effects on test-scores and predicted cognitive and non-cognitive ability. Using these 

estimates within the context of the model, this paper investigates how well test-score measures 

alone identify teachers that have large predicted effects on long-run adult outcomes.  

There are two distinct empirical challenges to credibly identifying teacher effects in high-

school: The first challenge is that differences in outcomes across teachers may be due to 

selection of students to teachers; The second challenge is that even with random assignment of 

students to teachers, in a high-school setting, students in different tracks may be exposed to both 

different teachers and different "track treatments" outside the classroom that influence classroom 

performance and confound teacher effects (e.g. students in the gifted track take Algebra with Mr. 

Smith and also take a study skills class that has a direct effect on their Algebra test 

                                                            
2 Moreover, these studies are based on single cohorts of nationally representable samples that have too few student 
observations per school and teacher for credible identification of individual teacher effects. 
3In related work Koedel (2008) estimates high school teacher effects on graduation. However, he does not 
differentiate between effects that are due to improved cognitive skills versus non-cognitive skills. 
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performance).4 To address both these challenges, this paper follows Jackson (2012) and 

estimates models that condition on a student’s school-track (the unique combination of school, 

courses taken, and level of courses taken) so that all comparisons are made among students at the 

same school and in the same academic track — precluding any bias due to student selection to 

tracks or treatments that vary across tracks. In such models, variation comes from comparing the 

outcomes of students in the same track and school but who are exposed to different teachers 

either due to (a) changes in the teachers for a particular course and track over time, or (b) schools 

having multiple teachers for the same course and track in the same year. Because personnel 

changes within schools over time may be correlated with other changes within schools, I 

estimate models that also include school-by-year fixed effects. The remaining concern is that 

comparisons among students within the same track may be susceptible to selection bias. While 

most plausible stories of student selection involve selection to tracks rather than to teachers 

within tracks, this paper presents several empirical tests that suggest little to no selection bias. 

Using the National Educational Longitudinal Study 1988 (NELS-88), a standard 

deviation increase in estimated non-cognitive ability in 8th grade (a weighted average of 

attendance, suspensions, grades, and grade progression) is associated with larger improvements 

in arrests, college-going, and wages than a standard deviation increase in test scores or estimated 

cognitive ability. Non-cognitive ability is particularly important at the lower end of the earnings 

distribution. Using administrative data, 9th grade Algebra and English teachers have meaningful 

effects on test-scores, the same non-test score outcomes, and estimated cognitive and non-

cognitive ability. Calculations suggest that teacher effects on college-going and wages may be as 

much as five times larger than that predicted based on test scores alone. As such, more than half 

of teachers who would improve long-run outcomes may not be identified using test scores alone.  

This paper presents the first evidence that teachers have meaningful effects on non-

cognitive outcomes that are strongly associated with adult outcomes and are not captured by test 

scores. This has important implications regarding measuring teacher quality, and suggests that 

one might worry that test-based accountability may induce teachers to divert effort away from 

improving students’ non-cognitive skills in order to improve test scores. Also, the finding that 

teachers have effects on ability unmeasured by test scores offers a potential explanation for the 
                                                            
4 This is not a student selection problem, but an Omitted Variables Bias problem that may exist when teachers are 
not randomly assigned to tracks, such that other classes, other inputs, and peer quality are not balanced across 
teachers. See Jackson (2012) for an illustration of this kind of teacher sorting and the resulting bias.   
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empirical regularity that interventions that have test score effects that “fade out” over time can 

have lasting effects on adult outcomes (Chetty et. al. 2011; Cascio & Staiger, 2012).   

 The remainder of this paper is organized as follows: Section II presents the theoretical 

framework. Section III presents evidence that both test score and non-test score outcomes in 8th 

grade predict important adult outcomes. Sections IV and V present the data and empirical 

strategy, respectively. Sections VI and VII present the results and Section VIII concludes. 

 

II Theoretical Framework 

A Model of Multidimensional Teacher and Student Ability  

Following Heckman, Stixrud, & Urzua (2006), this section presents a latent two-factor model 

where all student outcomes are a linear combination of students’ cognitive and non-cognitive 

ability. Teachers vary in their ability to increase student cognitive and non-cognitive ability. 

Unlike a model with uni-dimensional student ability where a teacher who improves one outcome 

(such as test scores) necessarily improves all student outcomes (such as crime and adult wages), 

a model with multidimensional student ability has predictions that differ in important ways.  

Student ability: Student ability is two-dimensional. One dimension is cognitive skills (e.g. 

content knowledge and computation speed), and the other dimension is non-cognitive or socio-

behavioral skills (e.g. agreeableness, motivation, and self-control). Each student i has a two-

dimensional ability vector , ,( , )i c i n i   , where the subscript c denotes the cognitive dimension 

and the subscript n denotes the non-cognitive dimension.  

Teacher ability: Each teacher j has a two-dimensional ability vector  , ,( , )j c j n j   such that

[ ] (0,0)E   , which describes how much teacher j changes each dimension (cognitive or non-

cognitive) of student ability. The total ability of student i with teacher j is thus ij i j    .  

Outcomes: There are multiple outcomes yz observed for each student i. Each outcome z is a 

particular linear function of the ability vector such that ' ( ) 'zij ij z i j z ziy           where 

, ,( , )z c z n z   and '[ | , , ] 0zi z iE      . Vector z  captures the fact that while some outcomes 

may depend on cognitive ability (such as test scores) others may depend on non-cognitive skills 

(such as attendance). The variable zi captures the fact that outcomes are measured with random 

student-level error. Following Heckman, Stixrud, & Urzua (2006), the ability types are 
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uncorrelated so , ,cov( , ) 0c ij n ij   . In the factor model representation, the two factors are the 

total ability of student i with teacher j in cognitive and non-cognitive ability, and the parameter 

vector z  is the factor loadings for student outcome z. The two-factor model is illustrated in a 

path diagram in Figure 1. 

Teacher Effects: The difference in student outcomes between teacher j with , ,( , )j c j n j   and 

an average teacher with (0,0)   is a measure of j’s effect (relative to the average teacher). 

Teacher j’s effect for outcome z is therefore 'zj j z   . Teacher j’s effect for long-run outcome 

*y  is * * ,* , ,* ,'j j c c j n n j          where ,* ,* 0c n   . The long-run outcome is not observed 

and policy-makers wish to predict teacher effects for long-run outcome *y .  

 

Proposition 1: A teacher's effect on the long-run outcome may be correlated with her effect on 

multiple short-run outcomes, even if her effects on these short-run outcomes are not correlated 

with each other. 

Consider the case with two outcomes y1
 and y2. Each outcome reflects only one 

dimension of ability so that 1 ,1 ,j c c j    and 2 ,2 ,j n n j    where ,1 ,2 0c n   . The two 

dimensions of teacher ability are uncorrelated so , ,cov( , ) 0c j n j   . In this scenario, the 

covariance between teacher effects across all three outcomes are given by [1] through [3] below.   

1 2 ,1 , ,2 , ,1 ,2 , ,cov( , ) cov( , ) cov( , ) 0c c j n n j c n c j n j                [1] 

1 * ,1 , ,* , ,1 , ,* , ,1 ,* ,cov( , ) cov( , ) cov( , ) var( ) 0c c j c c j c c j n n j c c c j                   [2] 

2 * ,2 , ,* , ,2 , ,* , ,2 ,* ,cov( , ) cov( , ) cov( , ) var( ) 0n n j c c j n n j n n j n n n j                 [3] 

 

Proposition 2: With multiple short-run outcomes that reflect a mix of both ability types, one can 

uncover estimates of a students’ two-dimensional ability vector. 

 Because the outcomes are linear combinations of the underlying ability types, any two 

outcomes are correlated iff they share the same mix of ability types. As such, outcomes that are 

based mostly on cognitive skills will be highly correlated and these will be weakly correlated 

with outcomes that are based largely on non-cognitive skills. For simplicity, we can standardize 

the variance of each ability-type so that , ,var( ) var( ) 1c ij n ij   . From above, given that 
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, , , ,z c z c ji n z n ji ziy        , and , ,cov( , ) 0c ij n ij   , it follows that all covariance across 

outcomes are due to commonality in the underlying ability types across these outcomes so that 

1 2 ,1 , ,1 , 1 ,2 , ,2 , 2 ,1 ,2 ,1 ,2( , ) cov( , )c c j n n j i c c j n n j i c c n ncov y y                     . As such, the 

covariance of the outcomes is given by [4], where E is a diagonal variance of the error terms. 

  

,1 ,1 ,1 ,1 ,1 , ,1 ,1

,1 , ,1 , , , , ,

... ...

... ... ... ...
var '

... ... ... ...

... ...

c c n n c c z n n z

c c z n n z c z c z n z n zz

y

E E

y

       



       

   
  
        
  
       

 [4]  

It also follows that , , , , , ,( , ) cov( , )z c c z c j n z n j zi c j c zcov y           
 

and similarly

, , , , , ,( , ) cov( , )z n c z c j n z n j zi n j n zcov y            . Accordingly, 
Y


 
 
 

 is distributed with mean 

0

 
 
 

 and variance 
'

'

E

I

 

 

 
 

. From Johnson and Wichern (2007), the conditional 

expectation of the underlying factor vector α is given by [5] below.5  

   1( | ) '( ' ) ( )E Y E Y            [5] 

As such, the best linear unbiased predictor of each underlying factor is a linear combination of 

each of the outcomes y such that 1 1ˆ m Y   and 2 2ˆ m Y  , where m1 and m2 are defined from [5]. 

Simply put, one can predict student non-cognitive ability with a weighted average of their short-

run non-test-score outcomes and one can predict student cognitive ability with a weighted 

average of their short-run test-score outcomes.   

  

Proposition 3: One can express a teacher’s overall effect on the long-run outcome as a linear 

combination of her effect on the predicted cognitive and non-cognitive factors. 

From above, * ,* , ,* , *ij c c ij n n ij iy        . Because , ,
ˆ( )c ij c ijE    and  , ,

ˆ( )n ij n ijE   , the 

conditional expectation of long-run outcome based on all the available short-run outcomes is 

                                                            

5 The general statement is that  if 1

2

X
X

X

 
  
 

 is distributed with mean 1

2





 

  
 

 and variance 11 12

21 22

  
     

and 

22| | 0  . Then the conditional expectation of X1 given X2=x2 is 1
1 2 1 12 22 2 2( | ) ( )E X x x     . See  Johnson 

and Wichern (2007) for a formal proof. A condition for identification is that the number of outcomes be equal to or 
greater than the number of factors. As such, the two factors can be only be identified with more than one outcome. 
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* * ,* , ,* ,
ˆ ˆˆ [ | ]ij ij c c ij n n ijy E y Y       . From the law of iterated expectations, a teacher's predicted 

effect on the long-run outcome is her effect on the predicted long-run outcome, which is a 

weighted average of her effects on the predicted cognitive and non-cognitive factors. 

Specifically, ˆ ˆ* ,* ,*
ˆ

c nj c j n j        where ˆc j and ˆn j   are teacher j’s effects on predicted 

cognitive and predicted non-cognitive ability, respectively.   

 

Discussion of the model: The model highlights that if test scores largely measure cognitive skills, 

improvements in test scores will be a good measure of how much a teacher improves cognitive 

skills but may not reflect the extent to which a teacher improves non-cognitive skills. The model 

further indicates that non-test score outcomes that are sensitive to non-cognitive skills might 

allow one to predict students’ non-cognitive ability and thus identify teacher effects on non-

cognitive skills. Because long-run outcomes reflect a combination of cognitive and non-cognitive 

skills, if we know the relationship between cognitive skills, non-cognitive skills, and long-run 

outcomes and we have a mix of test score and non-test score outcomes, one can identify teachers 

that are excellent at improving long-run student outcomes even if their effect on long-run 

outcomes are not directly observed and such teachers have small effects on test scores. I aim to 

use the implications of the model to (a) form predictions of student cognitive and non-cognitive 

ability, (b) estimate teacher effects on both cognitive and non-cognitive ability, (c) determine the 

extent to which teachers who improve test scores also improve non-cognitive outcomes, and (d) 

form estimates of a teacher’s effect on long-run outcomes to determine the extent to which 

teacher effects on test scores may understate the overall effect of teachers on long-run outcomes. 

 

Section III Test Scores, Non-Cognitive Ability, and Long-Run Outcomes. 

 This section uses data from the National Educational Longitudinal Survey of 1988 

(NELS-88) to empirically test the underlying assumptions and implications of the model. 

Specifically, evidence is presented that (a) there are two underlying factors that explain most of 

the covariance between test score and non-test score outcomes in 8th grade that can be identified 

as cognitive and non-cognitive ability; (b) test scores are a good proxy for cognitive ability; (c) 

both higher cognitive and non-cognitive ability are independently associated with better adult 

outcomes; (d) as the model indicates, teacher effects on long-run outcomes should reflect the 

combination of her effects on the cognitive factor and the non-cognitive factor. 
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 The NELS-88 is a nationally representative sample of respondents who were eighth-

graders in 1988. These data contain information on short-run outcomes (absences, suspensions, 

GPA, grade repetition, and math and reading test scores) and long-run outcomes (being arrested 

or having a close friend who has been arrested, attending a post-secondary institution, and 

income in 1999 when most respondents were 25 years old). The left side of the top panel of 

Table 1 presents the correlations between the short-run outcomes in these data.  

The first notable pattern is that test score outcomes are relatively strongly correlated with 

each other (math scores and reading scores have correlation≈0.8), are moderately correlated with 

grade point average (correlation≈0.38 for math and correlation≈0.34 for reading), and are weakly 

correlated with other non-test-score outcomes (the average absolute value of the individual 

correlations is 0.098). This is suggestive of an underlying cognitive factor that is highly 

predictive of standardized test scores, is moderately related to grades, and is largely unrelated to 

socio-behavioral outcomes. The other pattern is that the non-test score outcomes are more 

strongly correlated with each other (average correlation of 0.16) than with the test score 

outcomes (the average absolute value of the individual correlations is 0.098), and are moderately   

correlated with GPA (correlation≈0.35). This suggests that there is a non-cognitive factor that 

explains correlations between the non-test score outcomes, is an important determinant of grades, 

and is unrelated to test scores. The fact that GPA is correlated with both sets of variables is 

consistent with research (e.g. Howley, Kusimo, & Parrott, 2000; Brookhart, 1993) finding that 

most teachers base their grading on some combination of student product (exam scores, final 

reports etc.), student process (effort, class behavior, punctuality, etc.) and student progress — so 

that grades reflect a combination of cognitive and non-cognitive skill.  

  To assess the degree to which the variables can be classified as measuring cognitive and 

non-cognitive skills, I estimate the factor analytical model outlined in section II. From the model 

we know that 1( | ) '( ' ) ( )E Y E Y      and the covariance of the short-run outcomes is

' E  . With a sufficiently large sample, the sample covariance matrix S is a consistent 

estimate of ' E  . If the error vector is normally distributed, one can estimate the factor 
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loadings β by maximum likelihood.6 As suggested in Johnson and Wichern (2007), I use 

1ˆ ˆˆ ' ( )S Y y    as my estimate of the underlying factor vector. If the model is reasonable, 

there should be two factors that are identifiable as measuring cognitive and non-cognitive skills.  

Linear regressions reveal that the first estimated factor explains about 90 percent of the 

variability in math and reading scores, 18 percent of the variation in GPA, and less than 5 

percent of the variability of all the other outcomes (right side of Table 1) — consistent with this 

factor measuring cognitive skills and test scores being a good proxy for cognitive skills. The 

second factor explains 45 percent of the variability in suspensions, 28 percent of the variation in 

absences, 47 percent of the variation in GPA, 20 percent of the variation in grade repetition, and 

less then five percent of the variation in math and reading test scores. This second factor explains 

much variability in socio-behavioral outcomes and is weakly correlated with the standardized 

test scores. It is reasonable to call this factor a measure of non-cognitive skill. 

 While I am agnostic about what exact set of skills are captured by this factor, studies 

suggest that each of these non-test score outcomes is associated with the same personality traits. 

Psychologists typically classify non-cognitive traits in terms of five dimensions; Neuroticism, 

Extraversion, Openness to Experience, Agreeableness, and Conscientiousness. Low levels of 

agreeableness and high neuroticism are associated with higher school absences, higher 

externalizing behaviors, greater juvenile delinquency and lower educational attainment 

(Lounsbury, Steel, Loveland, & Gibson, 2004; Barbaranelli, Caprara, Rabasca, & Pastorelli, 

2003; John, Caspi, Robins, Moffit, & Stouthamer-Loeber, 1994; Carneiro, Crawford, & 

Goodman, 2007). High conscientiousness is associated with fewer absences, fewer externalizing 

behaviors, higher grades, more on-time grade progression, and higher educational attainment 

(Duckworth, Peterson, Matthews, & Kelly, 2007). This suggests that the factor explaining 

covariation between absences, grade progression, suspensions, and grades reflects a skill-set that 

is associated with high conscientiousness, high agreeableness, and low neuroticism. Consistent 

with this factor being largely unrelated to test scores, cognitive ability is associated with high 

openness, but largely unrelated to the other traits (Furnham, Monsen, & Ahmetoglu, 2009).      

                                                            

6 The likelihood of the data is 
1
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   , where p is the number of 

short-run outcomes. Because the covariance matrix ' E    is a function of the factor loading vector β, the 

maximum likelihood estimate ̂ of β is the one that maximizes this likelihood (Johnson and Wichern 2007). 
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 In Table 2, I show that both cognitive and non-cognitive ability independently predict 

long-run outcomes. I regress various adult outcomes on these two ability measures. Test scores 

and the two factors are standardized to be mean zero unit variance. To remove correlation 

between these ability measures and adult outcomes due to differences in socioeconomic status or 

demographic differences, all models include controls for household income, whether English is 

the primary language at home, whether the student lives with their mother or father or both, the 

mothers and father highest level of education, family size, student race and student gender. 

Columns 1 through 4 show that while test scores and cognitive ability have little relation to 

whether a student is arrested or has had a close friend who was arrested, a one standard deviation 

increase in the non-cognitive factor is associated with a 5.6 percentage point reduction (a 25 

percent reduction relative to the sample mean). Column 1 presents results for the individual non-

test score outcomes, and columns 2 and 3 show results using math and English test scores as a 

proxy for cognitive ability. Columns 5 through 8 predict college attendance based on a linear 

probability model. Column 8 indicates that a one standard deviation increase in cognitive ability 

is associated with a 6.3 percentage point increase in college going, while a one standard 

deviation increase in non-cognitive ability is associated with a 10.6 percentage point increase in 

college going (the baseline level is 0.79). Columns 6 and 7 indicate that using English or math 

test scores as proxies for cognitive ability yield similar results. 

Columns 9 through 12 show marginal effects on the natural log of earnings based on 

unconditional quantile regression (Firpo, Fortin, & Lemieux, 2009) evaluated at the median of 

the earnings distribution.7 The coefficients in column 12 indicate that a one standard deviation 

increase in cognitive ability is associated with 4.17 percent higher earnings, while a one standard 

deviation increase in non-cognitive ability is associated with an even larger 6.14 percent higher 

earnings. In recent findings, Lindqvist & Vestman (2011) and Heckman, Stixrud, & Urzua 

(2006) find that non-cognitive ability is particularly important at the lower end of the earnings 

distribution. To ensure that my measure of non-cognitive ability is valid, it is important to show 

similar relationships in these data. To test for this, I estimate quantile regressions to obtain the 

marginal effect on log wages at different points in the earnings distribution and present the 

estimated coefficients in Figure 2. The results are strikingly similar to Lindqvist & Vestman, 

                                                            
7 I look at income conditional on any income data. Because roughly 90 percent of observations have income data the 
quantile regression results are similar for any reasonable treatment of missing data. 
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(2011). Specifically, cognitive ability is similarly important over all parts of the earnings 

distribution, while non-cognitive ability is very important at the lower end of the earnings 

distribution and becomes less important at higher ends of the distribution. This is consistent with 

the effects on arrests and echoes findings in the literature— thereby suggesting that this factor is 

a reasonable measure of non-cognitive ability.  

 The results indicate that student outcomes are indeed a reflection of both cognitive and 

non-cognitive ability, and in many cases the effect of non-cognitive ability is larger than that of 

cognitive ability. While the results indicate that students with higher test scores do tend to have 

higher non-cognitive ability on average, there is much variation in non-cognitive ability that is 

unmeasured by test scores and has important effects on long-run adult outcomes. Accordingly, 

teachers who improve non-cognitive ability may have important effects on adult outcomes even 

if they have no effects on test scores. In light of these relationships, the remainder of the paper 

aims to estimate the extent to which 9th grade teachers improve test scores, non-test score 

outcomes, and predicted cognitive and non-cognitive ability. I then aim to use these estimates to 

uncover teacher effects on long-run outcomes through both dimensions of ability, and determine 

the extent to which test score measures of quality may understate the importance of teachers. 

 

IV Data: 

 To estimate the effect of teachers on student outcomes, this paper uses data on all public 

middle- and high-school students in North Carolina from 2005 to 2010 from the North Carolina 

Education Research Data Center (NCERDC). The data include demographics, transcript data on 

all courses taken, middle-school test scores, end of course scores for Algebra I and English I and 

codes allowing one to link students' end of course test-score data to individual teachers who 

administered the test.8 I limit the analysis to students who took either the Algebra I or English I 

course (the two courses for which standardized tests have been consistently administered over 

time). Over 90 percent of all 9th graders take at least one of these courses so that the resulting 

sample is representative of 9th graders as a whole. To avoid endogeneity bias that would result 

from teachers having an effect on repeating 9th grade, the master data is based on only the first 

observation for when a student is in 9th grade. Summary statistics are presented in Table 3. 

                                                            
8 Because the teacher identifier listed is not always the student’s teacher, I use an algorithm to ensure high quality 
matching of students to teachers. I detail this in Appendix note 1. 
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 These data cover 348,547 9th grade students in 619 secondary schools in classes with 

4296 English I teachers, and 3527 Algebra I teachers. While roughly half of the students are 

male, about 58 percent are white, 29 percent are black, 7.5 percent are Hispanic, 2 percent are 

Asian, and the remaining one percent is Native American, mixed race, or other. About 7.5 

percent of students have the highest parental education level (i.e. the highest level of education 

of the student's two parents) below high-school, 40 percent with a high school degree, about 15 

percent with a junior college or trade school degree, 20 percent with a four year college degree or 

greater, and 6.4 percent with an advanced degree (about 10 percent of students are missing data 

on parental education). The test score variables have been standardized to be mean zero with unit 

variance for each cohort and test. Incoming 7th and 8th grade test scores in the final 9th grade 

sample are approximately 8 percent of a standard deviation higher than that of the average in 7th 

or 8th grade. This is because the sample of 9th grade students is less likely to have repeated a 

grade and to have dropped out of the schooling system.  

Looking to the outcomes, the average number of absent days is 3 and the average of the 

log of days absent is 0.585. About 85 percent of students were in 10th grade the following year, 

and about 5.6 percent of all 9th graders had a school suspension. The lower panel of Table 1 

shows the correlations of these outcomes in the NCERDC data. While not identical, these 

variables have a similar correlational structure to the NELS-88 data such that students with better 

test scores do not necessarily have better non-test score outcomes. Specifically, test scores are 

strongly correlated with each other (corr = 0.616) and with GPA (corr ≈ 0.55), have a moderate 

correlation with being in 10th grade on time (corr ≈ 0.32), and weak correlations with absences, 

and being suspended. To obtain measures of cognitive and non-cognitive skills that improve 

adult outcomes, I recreated the factors in the NCERDC data using the factor weights derived 

from the NELS-88 data. As in the NELS-88 data, cognitive ability explains much more 

variability in test scores than the non-cognitive factor, and the non-cognitive factor explains 

much more variation in GPA, on time grade progression, absences, and suspensions than the 

cognitive factor.9 While there are some differences, the correlations between the non-cognitive 

                                                            
9 The correlation between the non-cognitive factor using the correlational structure in the NCERDC data and the 
non-cognitive factor as predicted using the correlational structure in the NELS data is 0.98. Even though the results 
are similar, because I aim to use the same factor that is demonstrated to improve adult outcomes in the NELS-88 
data, I create the factor using the weights derived from the correlational structure in the NELS-88 data. 
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factor and the outcomes are similar to those in the NELS-88 data such that there is much 

variation in non-cognitive ability that is unrelated to test scores. 10 

Measuring Tracks 

 Even though schools may not have explicit labels for tracks, most do practice de-facto 

tracking by placing students of differing levels of perceived ability into distinct groups of courses 

(Sadker & Zittleman, 2006; Lucas & Berends, 2002). As highlighted in Jackson (2012) and 

Harris & Anderson (2012), it is not just the course that matters but also the levels at which 

students take a course. Indeed, even among students taking Algebra I or English I courses, there 

are three different levels of instruction (advanced, regular, and basic). As such, I exploit the 

richness of the data and take as my measure of a school-track, the unique combination of the 10 

largest academic courses, the level of Algebra I taken, and the level of English I taken in a 

particular school.11 As such, only students who take the same academic courses, and take the 

same level of English I, and the same level of Algebra I, all at the same school are in the same 

school-track.12 Defining tracks flexibly at the school-by-course-group-by-course-level level 

allows for different schools to have different selection models and treatments for each track. 

Because many students pursue the same course of study, only 3.7 percent of all student 

observations are in singleton tracks, most students are in school-tracks with more than 50 

students, and the average student is in a school-track with 117 other students.    

 

V Empirical Strategy    

This section outlines the strategy to estimate teacher effects on test score outcomes, non-

test-score outcomes, and predicted cognitive and non-cognitive ability. The empirical approach 

is to model student outcomes as a function of lagged student achievement and student covariates, 

with the additional inclusion of controls for student selection to tracks and any treatments that 

are specific to tracks that might affect student outcomes directly. This removes the influence of 

                                                            
10 One difference between the two datasets is that the non-cognitive factor explains more of the variation in test 
scores in the NCERDC data than in the NELS-88 data. This is likely due to the fact that the NELS test data were 
zero stakes, while the test data in the NCERDC has some stakes and may reflect a greater amount of non-cognitive 
ability (such as motivation). This is evidenced by test scores being more strongly correlated with on time grade 
progression and GPA in the NCERDC data than in the NELS. 
11 While there are hundreds of courses that students can take (including special topics and reading groups), there 10 
academic courses that constitute two-thirds of all courses taken. They are listed in Appendix Table A1.  
12 Students taking the same courses at different schools are in different school-tracks. Students at the same school 
taking a different number of courses or at least one different course are in different school-tracks. Students at the 
same school taking the same courses but taking Algebra or English at different levels are in different school-tracks. 
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track-level treatments and selection to tracks on estimated teacher effects by comparing student 

outcomes across teachers within groups of students in the same track at the same school. 

Specifically, I model the outcomes Yicjgys of student i in class c with teacher j in school-track g, at 

school s, in year y with [6] below (note: most teachers are observed in multiple classes). 

  Yicjgys = Aiy-1δ+ Xiβ + Iji·θj + Igi θg+Isy θsy + ϕc +εicjgys   [6] 

Aiy-1 is a matrix of incoming achievement of student i (8th grade and 7th grade math and reading 

scores), Xi is a matrix of student-level covariates (parental education, ethnicity, and gender), Iij is 

an indicator variable equal to 1 if student i has teacher j and equal to 0 otherwise so that  θj is a 

time-invariant fixed effect for teacher j, Igi is an indicator variable equal to 1 if student i is in 

school-track g and 0 otherwise so that  θg is a time-invariant fixed effect for school-track g,13 Isy 

is an indicator variable denoting whether the student is in school s in year y so that θsy is a 

school-by-year fixed effect, ϕc  is a random classroom-level shock, and εijgy is mean zero random 

error term. In these models, by conditioning on school-tracks, one can obtain consistent estimates 

of the teacher effects θj as long as there is no selection to teachers within a school-track. In these 

models, the teacher effects are teacher-level means of the outcome after adjusting for incoming 

student characteristics, school-by-year level shocks and school-by-track effects. For test score 

outcomes, this model is just a standard value-added model with covariate adjustments.  

 Because the main models include school-by-track effects, all inference is made within 

school-tracks so that identification of teacher effects comes from two sources of variation; (1) 

comparisons of teachers at the same school teaching students in the same track at different points 

in time, and (2) comparisons of teachers at the same school teaching students in the same track at 

the same time. To illustrate these sources of variation, consider the simple case illustrated in 

Table 4. There are two tracks A and B in a single school. There are two math teachers at the 

school at all times, but the identities of the teachers change from year to year due to staffing 

changes. The first source of variation is due to changes in the identities of teachers over time due 

to staffing changes within schools. For example, between 2000 and 2005 teacher 2 is replaced by 

teacher 3. Because, teachers 2 and 3 both teach in track B (in different years) one can estimate 

the effect of teacher 2 relative to teacher 3 by comparing the outcomes of students in track B 

with teacher 2 in 2000 with those of students in tracks B with teacher 3 in 2005. To account for 

                                                            
13 Note: In expectation, the coefficient on the school-track indicator variable reflects a combination of both the 
unobserved treatment specific and selection to school-track g. 
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differences in outcomes between 2000 and 2005 that might confound comparisons within tracks 

over time (such as school-wide changes that may coincide with the hiring of new teachers), one 

can use the change in outcomes between 2000 and 2005 for teacher 1 (who is in the school in 

both years) as a basis for comparison. In a regression setting this is accomplished with the 

inclusion of school-by-year fixed effects (Jackson & Bruegmann, 2009). This source of variation 

is valid as long as students do not select across cohorts (e.g. skip a grade) or schools in response 

to changes in Algebra I and English I teachers. Tests in section VI provide little evidence of such 

selection. The second source of variation comes from having multiple teachers for the same 

course in the same track at the same time. In the example, because both teachers 1 and 2 taught 

students in track B in 2000, one can estimate the effect of teacher 1 relative to teacher 2 by 

comparing the outcomes of teachers 1 and 2 among students in track B in 2000. This source of 

variation is robust to student selection to school-tracks and is valid as long as students do not 

select to teachers within school-tracks. Tests in section VI show that the findings are not driven 

by student selection within school-tracks. 

 To illustrate how much variation there is within school-tracks during the same year 

versus how much variation there is within school-tracks across years (cohorts), I computed the 

number of teachers in each non singleton school-track-year-cell for both Algebra I and English I 

(Appendix Table A2). About 63 and 51 percent of all school-track-year cells include one teacher 

in English and Algebra, respectively, so that for more than half the data the variation is based on 

comparing single teachers across cohorts within the same school-track. It follows that more than 

one-third of the variation is within school-track-year cells. Section V.4 shows that results using 

variation within school-track-cohort cells are similar to those obtained using only variation 

within school-tracks but across cohorts. 

Illustrating the importance of accounting for tracks 

Because including school-track effects is nonstandard, it is important to illustrate the 

importance of conditioning on tracks. I do this by showing how conditioning on school-tracks 

affects the relationship between teacher experience and test scores. To do this, I regress English I 

and Algebra I scores on 8th and 7th grade math and reading scores and indicator variables for each 

year of teacher experience. I estimate models with school fixed effects, and then with track-by-

school fixed effects. I plot the estimated coefficients on the years of experience indicator 

variables in Figure 3. Across all models, students perform better with Algebra teachers who have 
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more years of experience (top panel), but models with track-by-school effects are about 25 

percent smaller than those without. The results for English are even more dramatic. Models with 

track-by-school effects are 66 percent smaller than those without. This suggests that either (a) 

more experienced teachers select into tracks with unobservably higher achievement students, or 

(b) tracks with more experienced teachers provide other supports (outside the teachers own 

classroom) that directly improve outcomes— indicating that failing to account for school-tracks 

may lead to much bias. For both subjects, about 60 percent of the variation in teacher experience 

occurs within school-tracks. Accordingly, a lack of variability within tracks cannot explain the 

reduced effects— underscoring the importance of accounting for school-tracks. 

Estimating the Variance of Teacher Effects 

 It is known that the variance of the estimated teacher effects̂  from [6] will overstate the 

variance of true teacher quality because of sampling variation and classroom-level shocks. As 

such, I follow Kane & Staiger (2008), Jackson (forthcoming) and Chetty, Friedman, & Rockoff 

(2011) and use the covariance between mean classroom-level residuals for the same teacher as 

my measure of the variance of teacher effects. This is done in two steps: 

Step 1:  Estimate equation [7] below.  

  Yicjgys = Aiy-1δ+ Xiβ + Igi θg+ Isy θsy + ϕc + θj +εicjgys    [7] 

There are no teacher (or classroom) indicator variables so the total error term is ε*=ϕc + θj +εigjy 

(i.e. a teacher effect, a classroom effect, and the error term). I then compute mean residuals from 

[7] for each classroom *
 ˆc j c ce       where ˆc is the classroom-level mean error term.  

Step 2:  Link every classroom-level mean residual and pair it with a random different classroom 

level mean residual for the same teacher and compute the covariance of these mean residuals. 

That is, compute *
'( , * | )c ccov e e J j . To ensure that the estimate is not driven by any particular 

random pairing of classrooms within teachers, replicate this calculation 100 times and take the 

median of the estimated covariance as the parameter estimate.  If the classroom errors ϕc are 

uncorrelated with each other (recall that the model includes school-by-year fixed effects) and are 

uncorrelated with teacher quality θj, the covariance of mean residuals within teachers but across 

classrooms is a consistent measure of the true variance of persistent teacher quality (Kane & 
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Staiger, 2008). That is, * 2
'( , * | ) cov( , ) var( )

jc c j j jcov e e J j        .14 

 As discussed in Jackson (2012) because the variance of the true teacher effects can be 

estimated by a sample covariance, one can compute confidence intervals for the sample 

covariance. I use the empirical distribution of 100 randomly computed “placebo” covariances 

(i.e. sample covariance across classrooms for different teachers) to form an estimate of the 

standard deviation of the sampling covariance across classrooms for the same teacher. I use this 

“bootstrapped” standard deviation of the covariance for normal-distribution-based hypothesis 

testing. Because most studies report the standard deviation of teacher effects, I report the square 

root of the sample covariance and the square root of the confidence bounds.  

 

VI Main Results 

 Table 5 presents the estimated covariance across classrooms for the same teachers under 

three different models. Because standard deviations are positive by definition, when the sample 

covariance is negative (note that none of the negative covariance estimates is statistically 

significantly different from zero at the 5 percent level), I report the standard deviation to be zero. 

I present naïve models that include school fixed effects and attempt to account for tracking with 

peer characteristics (mean peer 8th and 7th grade math and reading scores in addition to mean 

peer demographics). I then present models that account for tracking with school-track fixed 

effects. And finally I estimate the preferred models that include both school-track fixed effects 

and school-by-year effects to account for both bias due to tracking and any school-wide shocks 

that might be confounded with teacher effects.  

 In models that include school effects and peer characteristics, the estimated standard 

deviation of Algebra teacher effects on Algebra test scores (left panel) is 0.12σ (in student 

outcome units). This is similar to estimates found in other studies of high school teachers that do 

not account for tracking explicitly. In this naïve model, Algebra teachers have statistically 

significant effects on all outcomes except for English scores, and the standard deviations of 

Algebra teacher effects on cognitive and non-cognitive ability are 0.085σ and 0.146σ, 

respectively. For English teachers (right panel), the models indicate that the standard deviation of 

English teacher effects on English scores is 0.049σ. In this naïve model, English teachers have 

                                                            
14 Note: ' ' ' ' ' 'cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) cov( , ) 0j c j jgyc c j c c c jgyc jgyc j jgyc c jgyc jgyce e e e e e                  
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significant effects on all non-test score outcomes, and the standard deviations of English teacher 

effects on cognitive and non-cognitive ability are 0.052σ and 0.106σ, respectively. 

 The middle panel presents results that include track-by-school fixed effects instead of 

peer characteristics to account for tracking. In such models, the estimated effects fall by about 20 

percent relative to only including peer level characteristics. Adding additional controls for 

school-by-year effects reduces the effects by a further 30 to 50 percent— suggesting that there 

may be bias associated with omitting both school-track effects and not accounting for school-by 

year shocks. In the preferred model (lowest panel), the standard deviation of the Algebra teacher 

effect on Algebra test scores is 0.066σ; an estimate about half the size as that obtained in the 

naïve model that does not account for tracking or school specific shocks. The estimated teacher 

effects are statistically significantly different from zero for some non-cognitive outcomes such 

that the standard deviation of teacher effects on GPA is 0.045σ and that on enrolling in 10th grade 

is 0.025. Algebra teachers do appear to influence both students’ cognitive and non-cognitive 

ability such that the standard deviation of the effects on cognitive and non-cognitive ability are 

0.046σ and 0.069σ, respectively. To assuage concerns that the effects on non-cognitive ability 

are due to the correlation with test scores, I took the estimated non-cognitive ability and removed 

any correlation with test scores so that any effects on this measure will not be detected by 

changes in test scores. The correlation between this orthonogalized non-cognitive measure and 

the raw measure is 0.87. The lower panel shows that the standard deviation of the effects on non-

cognitive ability (that is not captured by test scores) is 0.064σ.    

Looking to English I teachers, in the preferred model (right lower panel), the standard 

deviation of English teacher effects on English test scores is 0.03σ (about half the magnitude of 

most estimates in the literature). While there is no effect of English teachers on Algebra scores, 

the estimated teacher effects are statistically significantly different from zero for all of the non-

test score outcomes such that the standard deviation of teacher effects on the likelihood of being 

suspended is 0.014, the effect on log of absences is 0.037, that on GPA is 0.027, and that on 

enrolling in 10th grade is 0.024. Summarizing these effects, the standard deviation of the English 

teacher effects on the cognitive and non-cognitive factors are 0.023σ (p-value of 0.083) and 

0.054σ (p-value of 0.007), respectively. Similar to Algebra, the effects on non-cognitive ability 

are largely undetected by test scores. 

To put the non-test score estimates into perspective, having an Algebra or English teacher 
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at the 85th percentile of GPA quality versus one at the 15th percentile would be associated with 

0.09 and 0.054 higher GPA, respectively. For both subjects, a teacher at the 85 percentile of on-

time grade progression quality versus one at the 15th percentile would be associated with being 5 

percentage points (0.14σ) more likely to enroll in 10th grade on time. Given that not enrolling in 

10th grade is a strong predictor of dropout, this suggests significant teacher effects on dropout—

consistent with Koedel (2008). Having an English teacher at the 85th percentile of absences and 

suspensions quality versus one at the 15th percentile would be associated with being 2.8 

percentage points (0.12σ) less likely to be suspended, and having 7.4 percent fewer days absent. 

Teachers in both subjects have larger effects on non-cognitive skills than on cognitive skills. 

Overall, having an Algebra teacher at the 85th percentile of improving non-cognitive ability 

versus one at the 15th percentile would be associated with 0.14σ higher non-cognitive ability, 

while the same calculation for English teachers is 0.11σ. If non-cognitive ability is as important, 

or possibly more important, in determining long-run outcomes as cognitive ability, and test score 

effects are a better measure of a teacher’s effect on cognitive ability than her effects on non-

cognitive ability, then test-score-based measures of teacher quality may drastically understate the 

importance of teachers for long-run outcomes. I investigate this in section VII. 

Tests for Bias due to Selection 

 Several papers indicate that conditioning on a single lag of achievement removes most 

selection bias (Koedel & Betts, 2011; Kinsler, 2012; Kane & Staiger, 2008) and others indicate 

that the inclusion of two lags of achievement effectively removes bias due to dynamic student 

sorting to teachers (Rothstein, 2010). However, it is worth testing these assumptions in these 

data. I present a test for selection on observables and a test for selection on unobservables. 

 To test for selection on observables, I show that conditioning on lagged test scores 

eliminates selection to teacher quality with regards to other observable student characteristics. 

Following Chetty, Friedman, & Rockoff (2011), I predict each outcome (based on 7th grade 

math and reading scores, parental education, gender, and ethnicity) and regress predicted 

outcomes on school-track fixed effects, year fixed effects, the estimated effect of the student’s 

teacher (estimated out of sample)15, and 8th grade test scores. If students with better 

                                                            
15 To remove any endogeneity, for each observation year, I estimate teacher effects using all other years of data. For 
example for observations in 2005, the estimated teacher effects are based on teacher performance in 2006, 2007, 
2008, 2009, and 2010. For estimates in 2008, estimates are based on 2005, 2006, 2007, 2009, and 2010. I follow 
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characteristics select to classrooms based on teacher effectiveness, there would be a systematic 

relationship between estimated teacher quality and predicted outcomes. The results (top row of 

lower panel of Table 6) indicate that where there are multiple teachers for a given cohort of 

students in the same school-track, teachers with higher estimated effects do not receive students 

in the cohort with better or worse predicted outcomes on average— suggesting no selection.  

 To test for selection on unobservables within school-track-years, I follow Chetty, 

Friedman, & Rockoff (2011) and exploit the statistical fact that the effects of any selection 

among students within the same school-track and cohort will be eliminated by aggregating the 

treatment to the school-track-year level and relying only on cohort-level variation across years 

within school-tracks. That is, if the estimated teacher effects merely capture student selection to 

teachers, then the arrival of a teacher with a large positive estimated effect (who increases the 

average estimated teacher effect for a cohort) should have no effect on student outcomes for that 

cohort. Conversely, if the estimated effects are real, differences in average estimated teacher 

quality across cohorts (driven by changes in teaching personnel within schools over time) should 

be associated with similar differences across cohorts in average cohort level outcomes as the 

same difference in estimated teacher quality across individual students (due to there being 

multiple teachers in the same school-track at the same time) within the same cohort.  

To test this, I estimate equations [8] and [9] where ˆ
j  is the estimated (out of sample) 

effect of teacher j, ˆ
sgy is the mean estimated teacher effect in school-track g in year y, g  is a 

school-track effect, sy  is a school-year effect, and sgy is a school-track-year effect. 

1 1 sgy
ˆ   +     ijcy iy j iy ijcyY A X        

     
[8] 

  1 2  g sy
ˆ   +     ijcy iy sgy iy gi ijcyY A X I                [9] 

Equations [8] and [9] both estimate the effect of having teachers with higher estimated effects, 

but each use a distinct source of variation. In [8], teacher quality is defined at the student level 

and the model includes a track-school-year fixed effect, so that it only makes comparisons 

among students with different teachers in the same school-track and year (removing all variation 

due to personnel changes over time). In contrast, by defining teacher quality at the school-track-

cohort level in [9], one no longer compares students within the same school-track-year (where 

selection is likely), and only compares cohorts of students in the same school-track over time 

                                                                                                                                                                                                
Kane and Staiger (2008) and compute teacher’s fixed effects using an efficiently weighted average of all a teachers 
mean classroom level residuals (See Appendix Note 2 for details).   
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(where selection is unlikely because variation in this aggregate measure is due only to changes in 

the identities of teachers in the school-track over time). To control for school-level changes that 

could affect the cohort-level results, all models include school-by-year fixed effects. Relating the 

predictions to the equations directly, if there is no sorting ψ1 should be similar to ψ2, and if the 

effects are due to sorting ψ2 will be equal to 0. Note that because the teacher effects are estimated 

with noise, the coefficients ψ1 and ψ2 will be less than 1. The results are presented in the top 

panel of Table 6. Despite no relationship between estimated teacher quality and predicted 

outcomes, there are economically and statistically significant effects of estimated teacher quality 

on actual outcomes for both subjects. For both subjects, marginal effects obtained using 

variation within school-track-cohorts are similar to those obtained using variation across cohorts 

within school-tracks. For all outcomes, mean school-track-cohort-level teacher quality has a 

statistically significant effect on outcomes so that the null hypothesis that estimated teacher 

effects are driven by selection within school-track-cohorts can be rejected at the 5 percent level.   

 

VII Relationship between Teacher Effects across Outcomes  

 Having established that teachers have real causal effects on test scores, non-test score 

outcomes, and predicted cognitive and non-cognitive ability, this section documents the extent to 

which test score based value-added understates the importance of teachers on long-run outcomes. 

To gain a sense of whether teachers who improve test scores also improve other outcomes, I 

regress the estimated teacher effects for all the outcomes on the Algebra test score, English test 

score, cognitive ability and non-cognitive ability effects and report the R2 in Table 7. The 

reported R2 measures the fraction of teacher effects on each outcome that can be explained by (or 

is associated with) effects on test scores, cognitive ability, or non-cognitive ability. The top panel 

presents effects for Algebra teachers. For all outcomes, Algebra teachers with higher test score 

value-added are associated with better non-test score outcomes, but the relationships are weak. 

Algebra teacher effects on Algebra test scores explain 1.15 percent of the variance in estimated 

teacher effects on suspensions,  2.11 percent of the estimated effect on absences, 10.57 percent 

of the effect on GPA, and 5.03 percent of the effect on on-time 10th grade enrollment (top panel 

top row). This indicates that while teachers who raise test score may also be associated with 

better non-test-score outcomes, most of effects on non-test score outcomes are unrelated to 

effects on test scores. The results for cognitive ability are consistent with this. Algebra teacher 
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effects on cognitive ability explain 75 percent of the variation in Algebra test score value added, 

but only 3.74 percent of the variance in estimated teacher effects on suspensions, 6.3 percent of 

the estimated effect on absences, 28.3 percent of the effect on GPA, and 11.3 percent of the 

effect on on-time 10th grade enrollment (top panel second row). In contrast to effects on test 

scores and cognitive ability, effects on non-cognitive ability explain much of the estimated 

effects on the non-test score outcomes. Specifically, Algebra teacher effects on non-cognitive 

ability explain 18.4 percent of the estimated teacher effects on suspensions, 47.6 percent of the 

estimated effect on absences, 80 percent of the effect on GPA, and 40 percent of the effect on on-

time 10th grade enrollment (top panel third row). However, teacher effects on non-cognitive 

ability explain only 10 percent of the variance in estimated teacher effects on Algebra test scores.  

 Results for English teachers follow a similar pattern. English teacher effects on English 

test scores explain little of the estimated effects on non-test score outcomes. Specifically, teacher 

effects on English test scores explain only 1.16, 2.47, 5.16, and 5.8 percent of the variance in 

teacher effects on suspensions, absences, GPA, and on-time 10th grade enrollment, respectively 

(lower panel top row). Unlike with Algebra test score value added, English teacher effects on 

cognitive ability explain only 25 percent of the variation in English test score value-added. This 

would imply that some teachers who raise English test scores are not also improving GPA and on 

time grade enrollment (which both form part of the cognitive measure). This could be an artifact 

of the English test such that English test scores are noisy measures of cognitive ability. 

Consistent with this view, several studies find that scores on high school math tests are stronger 

predictors of adult success than scores on high school English tests (findings echoed in Table 2). 

English teacher effects on cognitive ability explain only 2.62, 4.2, 13.9, and 6.98 percent of the 

variance in teacher effects on suspensions, absences, GPA, and on-time 10th grade enrollment, 

respectively. However, English teacher effects on non-cognitive ability explain only 6.8 percent 

of the variance in estimated teacher effects on English test scores, but explain 18.24 percent of 

the variance in estimated teacher effects on suspensions, 46.58 percent of the estimated effect on 

absences, 79.68 percent of the effect on GPA, and 48.67 percent of the effect on on-time 10th 

grade enrollment (bottom panel third row). 

 In sum, for both subjects, teacher effects on cognitive scores measure an important set of 

skills and teacher effects on non-cognitive scores measure a different and equally important set 

of skills. For both subjects, a teacher’s effect on test scores is a better measure of her effect on 
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cognitive ability than her effect on non-cognitive ability. To show this visually, Figure 4 presents 

a scatterplot of the estimated effects on cognitive ability and non-cognitive ability against her 

effect on test scores. It is clear that (a) a teacher's effect on test scores captures much of the effect 

on cognitive ability (particularly for math), (b) a teacher's effect on test scores captures some of 

the effect on cognitive ability, and (c) teacher effects on test scores in both subjects leave much 

variability in effects on non-cognitive ability unexplained.  

Because variability in outcomes associated with individual teachers that is unexplained 

by test scores is not just noise, but is systematically associated with their ability to improve 

typically unmeasured non-cognitive skills, classifying teachers based on their test score value-

added will likely lead to large shares of excellent teachers being deemed poor and vice versa. 

This also implies that there could be considerable gains associated with measuring teacher 

effects on both test score and non-test score outcomes over using test score measures alone. 

Another implication is that if teachers must expend less effort improving non-cognitive ability in 

order to improve cognitive ability, regimes that increase the external rewards for test scores 

(such as paying teachers for test score performance or test-based accountability) may undermine 

the creation of students’ non-cognitive skills (Holmstrom & Milgrom, 1991). In light of the large 

estimated benefits to higher non-cognitive skills (particularly for students at the lower end of the 

earnings distribution) in Table 2, this may be cause for concern. Finally, the results suggest that 

the effect of teachers on student long-run outcomes may be much larger than that suggested by 

comparing the adult outcomes of students with high versus low value-added teachers.   

How much do Test Score Measures Understate the Importance of Teachers? 

The results thus far have shown that (a) variation in non-cognitive outcomes may be more 

determinative of adult outcomes than variation in cognitive ability, (b) teachers have effects on 

non-cognitive ability that are larger than their effects on cognitive ability, and (c) teacher effects 

on test scores explain a modest fraction of their effects on non-cognitive skills. Taken together, 

this implies that test score based measures of teacher quality will understate the true importance 

of teachers for long-run outcomes and many of the most effective teachers will not be identified 

based on test score based measures. To see this point, consider this thought exercise. If cognitive 

ability and non-cognitive ability were uncorrelated, were equally important in determining 

wages, test scores were a perfect proxy for cognitive ability, and teachers had the exact same 

effects sizes on cognitive and non-cognitive ability, then teacher effects on student wages as 
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measured by cognitive ability would reflect roughly 50 percent of a teachers' overall effect. If 

now test score effects capture only 75 percent of the effect on cognitive ability (as is the case for 

Algebra) then test score effects will reflect roughly 50*0.75=37.5 percent of a teachers' overall 

effect. If teacher effects are larger on non-cognitive ability than for cognitive outcomes (as is the 

case for both subjects) test scores effects would explain even less of the overall effect. If the 

marginal effect of non-cognitive ability is larger than that for cognitive ability (as is the case for 

arrests, college going, and wages) then the fraction of the overall variability in teacher effects on 

the long-run outcomes captured by test score value-added will be smaller still. However, if 

teacher effects on cognitive ability and non-cognitive ability were positively (negatively) 

correlated, then the fraction of the overall variability in teacher effects on the long-run outcomes 

captured by test score value-added will be larger (smaller). This discussion highlights that the 

extent to which test score value-added explains variability in teachers’ overall effects depends on 

(a) the relationship between the importance of cognitive- and non-cognitive ability in 

determining adult outcomes, (b) the extent to which improvements in test scores measure 

improvements in cognitive and non-cognitive ability, (c) the relative magnitude of teacher effects 

on cognitive and non-cognitive ability, and (d) the relationship between effects on both 

dimensions of ability. This section presents estimates that take all these parameters into account. 

As discussed in Section II, one can express a teacher’s overall predicted effect on long-

run outcomes as a linear combination of her effect on predicted cognitive ability and her effect 

on predicted non-cognitive ability. Accordingly, we can predict a teacher’s effect on college-

going or wages based on her effect on predicted cognitive and non-cognitive ability as long as 

we know the marginal effect of cognitive and non-cognitive ability on wages. While there is no 

way to know for certain, the results in Table 2 present some guidance. Specifically, column 8 of 

Table 2 indicates that the marginal effect of increasing cognitive ability by 1sd is to increase 

college going by 6.32 percentage points, and the marginal effect of increasing non-cognitive 

ability by 1sd is to increase college-going by 10.6 percentage points. One could compute a 

teacher’s predicted effect on college-going based on both her contribution to cognitive skills and 

non-cognitive skills as ˆ ˆ ˆ(0.0632) (0.106)college cognitive non cognitive
j j j     . The R2 of a regression of 

ˆcollege
j on ˆscores

j  will provide a measure of how much of the predicted effect on college-going can 

be explained by a teacher’s effect on test scores. Similarly, using estimates from column 12, one 
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can compute a teacher’s predicted effect on log wages based on both her contribution to 

cognitive and non-cognitive skills as ˆ ˆ ˆ(0.0417) (0.0614)wages cognitive non cognitive
j j j     . The R2 of a 

regression of ˆwages
j on ˆscores

j  will provide a measure of how much of the predicted effect on log 

wages can be explained by a teacher’s effect on test scores.  

The problem with simply using the estimated relationships from the NELS-88 data is that 

the relationships are based on correlations and the variables are measured with error, so one 

cannot be certain that these represent causal relationships. As such, I construct teacher’s 

predicted effects on college-going and wages under different assumptions about the relative 

importance of non-cognitive ability. That is, when the relative non-cognitive weight for college 

going is r then, ˆ ˆ ˆ(0.0632) ( )college cognitive non cognitive
j j jr        and when the relative non-cognitive 

weight for log wages is r then logˆ ˆ ˆ(0.0417) ( )wages cognitive non cognitive
j j jr       . The relative weight 

for college-going from the empirical estimates is 0.106/0.0632=1.67 and that for log wages is 

0.0614/0.0417=1.47. This is consistent with existing studies finding that non-cognitive abilities 

may be at least as important as cognitive skills in predicting adult outcomes(e.g. Bowles, Gintis, 

& Osborne, 2001; Jencks, 1979; Heckman, Stixrud, & Urzua, 2006).  

To show how much of the variability in a teacher’s predicted effect on college going and 

wages is explained or detected by her effect on test scores, Figure 5 plots the R2 of a regression 

of ˆcollege
j or ˆwages

j on ˆscores
j  for different weights r. Because both the R2 and the relative weight 

are invariant to the unit of measurement, the pattern in Figure 5 will hold for any long-run 

outcome. For Algebra teachers, when the relative weight is 0, the estimated teacher effect on test 

scores predicts 75 percent all of the predicted teacher effect on wages. This is because teacher 

effects on Algebra tests explain only 75 percent of the variability in teacher effects on cognitive 

ability. As one increases the contribution of non-cognitive ability (which test scores only weakly 

explain) to  0.5 (such that non-cognitive skills are half as important as cognitive skills in 

determining the outcome), Algebra test score effects explain about 55 percent of the full effect. If 

the weight on non-cognitive ability is 1 (i.e. non-cognitive skills are as important as cognitive 

skills), Algebra test score effects explain about 40 percent of the full effect. For the empirical 

weight for wages of 1.47, Algebra test score effects explain only 33 percent of the full effect, and 

at the empirical weight for college-going of 1.67, Algebra test score effects explain only 29 
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percent of the teacher’s full effect. This drop stems from the fact that as the weight on non-

cognitive ability increases there is more variability in the predicted effect that is weakly 

correlated with test score effects so that the variability explained by test score effects approaches 

0.1 (the fraction of variability in non-cognitive ability predicted by Algebra test scores).  

The results are even more dramatic for English teachers. Because teacher effects on 

English tests explain only 25 percent of the variability in teacher effects on cognitive ability, 

even when the relative non-cognitive weight is zero, the estimated teacher effect on test scores 

predicts only 25 percent all of the predicted teacher effect on college-going or wages. If the 

weight on non-cognitive ability is 1, the fraction of the overall effect predicted by English test 

score effects falls slightly to 20 percent. For the empirical weight for wages of 1.47, English test 

score effects explain only 17 percent of the full effect, and at the empirical weight for college-

going of 1.67, English test score effects explain only about 17 percent of the teacher’s full effect. 

To be clear, this implies that English teachers are important, and may be much more so than 

their effects on test scores might suggest. 

These results suggest that under reasonable relative weights for the importance of non-

cognitive ability, a teacher’s effect on college-going and earnings as measured based on her 

effect on test scores alone may only reflect between 20 and 40 percent of her overall effect. In 

the context of recent findings that having a teacher at the 85th percentile of the test score value-

added distribution versus a median teacher is associated with students being 0.5 percentage 

points more likely to attend college and earning $186 more per year (Chetty et. al. 2011), 

calculations suggest that having a teacher at the 85th percentile of the quality distribution for 

college-going and wages versus a median teacher may be associated with being as much as 2.5 

percentage points more likely to attend college and earning as much as $930 more per year. 

While the plausible range of values is wide, the calculations illustrate that estimated teacher 

effects based on test scores may drastically understate the overall importance of teachers. This is 

consistent with Fredriksson, Ockert, & Oosterbeek (forthcoming) who find that the imputed 

wage effect of class-size based on test scores are substantially smaller than the direct estimates. 

This under-estimation of the importance of teachers may be particularly large for outcomes such 

as being arrested that are largely functions of non-cognitive rather than cognitive skills.  
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VIII Conclusions 

This paper presents a two-factor model such that all student outcomes are a function of 

student cognitive and non-cognitive ability. The model shows that one can use a variety of short-

run outcomes to construct a measure of student cognitive and non-cognitive ability and use this 

to estimate a teacher’s predicted effect on long-run outcomes. Using longitudinal survey data, 

evidence indicates that non-cognitive ability (an index of non-test score socio-behavioral 

outcomes in 8th grade) is associated with sizable improvements in adult outcomes, and that non-

cognitive ability is at least as important a determinant of adult outcomes as cognitive ability.  

Using administrative data with students linked to individual teachers, 9th grade English 

and Algebra teachers have economically meaningful effects on test scores, absences, 

suspensions, on time 10th grade enrollment, and grades. The results indicate that teachers have 

larger effects on non-cognitive ability than they do on cognitive ability. A variety of additional 

tests suggest that these effects can be interpreted causally. Teacher effects on test scores and 

teacher effects on non-cognitive ability are weakly correlated such that many teachers in the top 

of test score value-added distribution will also be among the bottom of teachers at improving 

non-cognitive skills. This means that a large share of teachers thought to be highly effective 

based on test score performance will be no better than the average teacher at improving college-

going or wages. Under reasonable assumptions about the importance of non-cognitive skills for 

long-run outcomes, calculations indicate that test score based measures may understate the 

importance of teachers on college-going and wages by between 50 and 80 percent. In fact, results 

indicate that test score based measures may understate the importance of teachers to an even 

greater extent for outcomes that depend heavily on non-cognitive skills such as being arrested.  

This study highlights that a failure to account for the effect of educational interventions 

on non-cognitive skills can lead to biased estimates of the effect of such interventions on 

important long-run outcomes. The two-sample factor analytic framework put forth in this paper 

can be used in other settings to estimate the effects of educational interventions on both cognitive 

and non-cognitive ability. Finally, the results illustrate the large potential gains that may be 

associated with making policy decisions about educational interventions based on estimated 

effects on both cognitive and non-cognitive outcomes rather than just test scores alone.  
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Tables 

Table 1:  Correlations among Short-run Outcomes in the NELS-88 and NCERDC Data 
NELS-88 Data

 
Raw correlations between outcomes Percentage of Variance 

Explained by Factors
Ln of # 
Days 

Absent 

Suspended
Grade Point 

Average 

In 9th 
grade on 

time 

Math Score in 
8th Grade 

Reading Score 
in 8th Grade 

Cognitive 
Factor 

Non-cognitive 
Factor 

Ln of # Days Absent 1 0.0045 0.2751
Suspended 0.148 1 0.0207 0.4531
Grade Point Average -0.171 -0.243 1 0.1799 0.4678
In 9th grade on time -0.051 -0.127 0.127 1 0.0003 0.2026
Math Score in 8th Grade -0.075 -0.128 0.383 0.023 1 0.9087 0.0176
Reading Score in 8th Grade -0.049 -0.126 0.342 0.024 0.803 1 0.8897 0.0045

NCERDC Data

 
Raw correlations between outcomes Percentage of Variance 

Explained by Factors 

Ln of # 
Days 

Absent

Suspended
Grade Point 

Average 

In 10th 
grade on 

time

Algebra Score 
in 9th Grade 

English Score 
in 9th Grade 

Cognitive 
Factor 

Non-cognitive 
Factor 

Ln of # Days Absent 1 0.0348 0.3976
Suspended 0.252 1 0.0370 0.1558
Grade Point Average -0.232 -0.192 1 0.5466 0.8013
In 10th grade on time -0.167 -0.16 0.482 1 0.1337 0.3146
Algebra Score in 9th Grade -0.098 -0.13 0.592 0.321 1 0.8358 0.2830
English Score in 9th Grade -0.082 -0.13 0.539 0.323 0.616 1 0.7576 0.2311

Note: The cognitive and non-cognitive factors were uncovered using factor analysis and are linear combinations of all the short-run outcomes. The 
results were then standardized. Note that the factors in the NCERDC use the weights derived from the NELS-88 data. However, the factors using 
weights derived from the NCERDC have correlations greater than 0.95 with those derived using weights from the NELS-88. 
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Table 2: Relationship between 8th Grade Outcomes and Adult Outcomes in the NELS-88 Survey. 

  1 2 3 4  5 6 7 8  9 10 11 12 
Arrested, or Close Friend Arrested Attend College Log of Income in 1999 

Ln of # Days Absent 0.0145*** -0.0182*** -0.00965 
[0.00528] [0.00496] [0.00956] 

Grade Point Average -0.0451*** 0.117*** 0.0924***
[0.00617] [0.00592] [0.0111] 

Repeat 8th Grade 0.0014 -0.177*** 0.042 
[0.0393] [0.0407] [0.0640] 

Suspended 0.131*** -0.162*** -0.0648***
[0.0138] [0.0135] [0.0221] 

Math Score in 8th Grade 0.0109 0.00194 0.0325*** 0.0621** 0.0508*** 0.0472**
[0.00709] [0.00424] [0.00605] [0.00410] [0.0128] [0.00781]

Reading Score in 8th 0.00347 -0.00156 0.00299 0.0582** -0.0315** 0.0299**
[0.00695] [0.00420] [0.00602] [0.00412] [0.0124] [0.00763]

Cognitive Factor -0.000146 0.0632** 0.0417**
[0.00411] [0.00408] [0.00755] 

Non-cognitive Factor -0.0559*** -0.0561*** -0.0560*** 0.110*** 0.107*** 0.106*** 0.0643** 0.0610** 0.0614**
[0.00440] [0.00443] [0.00443] [0.00425] [0.00426] [0.00426] [0.00736] [0.00737] [0.00737] 

Demographics YES YES YES YES YES YES YES YES YES YES 
Observations 10,792 10,792 10,792    10,792 10,792 10,792    9,956 9,956 9,956 9,956 
Robust standard errors in brackets. + significant at 10%; * significant at 5%; ** significant at 1%. 

Notes: All models include controls for household income while in 8th grade, whether English is the students primary language at home, whether the student lives with 
their mother, whether the student lives with their father, the mothers highest level of education, the fathers highest level of education, family size, student race and student 
gender. Regressions of log income are median regression (unconditional quantiles) rather than OLS to account for any bias due to very low levels of earnings. Also, note 
that all the independent variables were collected in 1988 when respondent were in 8th grade while the outcomes were collected in 1999 when respondents were 
approximately 25 years old. Models that include both 8th grade math and reading scores suffer from co-linearity. 
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Table 3: Summary Statistics of Student Data 

Variable Mean SD SD within school-tracks   SD within 
schools 

Math z-score 8th grade 0.091 (0.944) (0.600) (0.878)
Reading z-score 8th grade 0.073 (0.941) (0.678) (0.891)
Male 0.510 (0.50) (0.482) (0.498)
Black 0.288 (0.453) (0.375) (0.399)
Hispanic 0.075 (0.263) (0.245) (0.256)
White 0.579 (0.494) (0.404) (0.432)
Asian 0.020 (0.141) (0.133) (0.138)
Parental education: Some High-school 0.075 (0.263) (0.25) (0.259)
Parental education: High-school Grad 0.400 (0.49) (0.454) (0.474)
Parental education: Trade School Grad 0.018 (0.132) (0.129) (0.132)
Parental education: Community College Grad 0.133 (0.339) (0.327) (0.335)
Parental education: Four-year College Grad 0.205 (0.404) (0.376) (0.394)
Parental education: Graduate School Grad 0.064 (0.245) (0.225) (0.237)
Number of Honors classes 0.880 (1.323) (0.575) (1.163)
Algebra I z-Score (9th grade) 0.063 (0.976) (0.775) (0.889)
English I z-Score (9th grade) 0.033 (0.957) (0.670) (0.906)
Ln Absences 0.586 (1.149) (0.927) (0.984)
Suspended 0.056 (0.23) (0.214) (0.225)
GPA 2.763 (0.87) (0.604) (0.801)
In 10th grade 0.856 (0.351) (0.305) (0.339)
Observations 348547 
Notes: These summary statistics are based on student who took the English I exam. Incoming math scores 
and reading scores are standardized to be mean zero unit variance. About 10 percent of students do not have 
parental education data so that the missing category is “missing parental education”. 
 
 
 
Table 4: Illustration of the Variation at a Hypothetical School 

    Track A Track B 
Alg I (regular) Alg I (regular) 
Eng I (regular) Eng I (regular) 

Natural Sciences Biology  
US History World History 

    Geometry 
Year     

Math Teacher 1 2000 X X 
Math Teacher 2 2000 X 

Math Teacher 1 2005 X X 
Math Teacher 2* 2005 - - 
Math Teacher 3 2005   X 
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Table 5: Estimated Covariance across Classrooms for the Same Teacher under Different Models 
    Algebra Teachers English Teachers

    SD Prob Cov≤0
95% CI 

Upper bound

95% CI 
Lower 
bound 

 SD 
Prob 

Cov≤0 

95% CI 
Upper 
bound 

95% CI 
Lower 
bound 
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C
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Algebra Score 9th Grade 0.12 0.000 0.128 0.112 0.068 0.000  0.079 0.054
English Score 9th Grade 0.029 0.056 0.043 0.000 0.049 0.000  0.059 0.037 
Suspended 0.023 0.001 0.029 0.015 0.032 0.000  0.036 0.028 
Log of # Absences 0.138 0.000 0.154 0.119 0.132 0.000  0.143 0.12 
GPA 0.095 0.000 0.103 0.086 0.081 0.000  0.089 0.072 
On time enrollment in 10th grade 0.058 0.000 0.064 0.052 0.047 0.000  0.053 0.041 
Cognitive Factor 0.085 0.000 0.093 0.075 0.052 0.000  0.065 0.038 
Non-cognitive factor 0.146 0.000 0.157 0.134  0.106 0.000  0.116 0.094 
                   

T
ra

ck
-b

y-
S

ch
oo

l a
nd

 
Y

ea
r 

E
ff

ec
ts

 

Algebra Score 9th Grade 0.1 0.000 0.107 0.093 0.039 0.005 0.051 0.019
English Score 9th Grade 0.013 0.842 0.034 0.000 0.043 0.000  0.05 0.035 
Suspended 0.009 0.645 0.022 0.000 0.021 0.000  0.025 0.017 
Log of # Absences 0.093 0.000 0.109 0.073 0.095 0.000  0.108 0.08 
GPA 0.065 0.000 0.075 0.053 0.049 0.000  0.059 0.037 
On time enrollment in 10th grade 0.035 0.000 0.042 0.027 0.031 0.000  0.037 0.025 
Cognitive Factor 0.071 0.000 0.794 0.0594 0.0327 0.024 0.0455 0.009 
Non-cognitive factor  0.103 0.000 0.1161 0.088  0.085 0.000 0.0944 0.074 

T
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y-
S
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l a
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 Algebra Score 9th Grade 0.066 0.000 0.074 0.056 0.000 0.968 0.008 0.000

English Score 9th Grade 0.000 0.917 0.009 0.000 0.03 0.003 0.04 0.014 
Suspended 0.000 0.887 0.008 0.000 0.014 0.003 0.019 0.007 
Log of # Absences 0.000 0.798 0.03 0.000 0.037 0.024 0.054 0.009 
GPA 0.045 0.000 0.057 0.028 0.027 0.007 0.039 0.008 
On time enrollment in 10th grade 0.025 0.002 0.033 0.012 0.024 0.000 0.031 0.015 
Cognitive Factor 0.046 0.000 0.055 0.0359 0.023 0.083 0.0347 0.000 
Non-cognitive factor 0.069 0.000 0.056 0.0811 0.054 0.007 0.068 0.033 
Non-cognitive factor (orthogonal) 0.064 0.0055 0.083 0.0391  0.051 0.001 0.062 0.038 

Notes: The estimated covariances are computed by taking the classroom level residuals from equation 7 and computing the 
covariance of mean residuals across classrooms for the same teacher. Specifically, I pair each classroom with a randomly chosen 
other classroom for the same teacher and estimate the covariance. I replicate this 50 times and report the median estimated 
covariance as my sample covariance. To construct the standard deviation of this estimated covariance, I pair each classroom with a 
randomly chosen other classroom for a different teacher and estimate the covariance. The standard deviation of 50 replications of 
these “placebo” covariances is my bootstrap estimate of the standard deviation of the estimated covariance. These two estimates 
can then be used to form confidence intervals for the covariance which can be used to compute estimates and confidence intervals 
for the standard deviation of the teacher effects (by taking the square root of the sample covariance and the estimated upper and 
lower bounds). When the estimated covariance is negative, I report a value of zero for the standard deviation. Note that none of the 
negative covariances is statistically significant at the five percent level.  
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Table 6: Effect of Out of Sample Estimated Teacher Effects and School-Track-Year-Level mean Teacher Effects on Outcomes and 
Predicted Outcomes 

1 2 3 4 5 6 7 8
Algebra Teachers English Teachers

Algebra Cognitive
Non-

cognitive 

Non-
cognitive 

(orth)a 
English Cognitive

Non-
cognitive 

Non-
cognitive 

(orth)a 

Estimated Effect (variation within cohorts) 0.274** 0.148** 0.0684** 0.0693* 0.174** 0.0983** 0.0569** 0.0466*
[0.0349] [0.0257] [0.0238] [0.0292] [0.0240] [0.0269] [0.0217] [0.0221]

Mean Estimated Effect (variation across cohorts) 0.260** 0.225** 0.140* 0.0975* 0.243** 0.0739* 0.173** 0.176**
  [0.0611] [0.0656] [0.0552] [0.0536] [0.0440] [0.0373] [0.0379] [0.0426]

Predicted 
Algebra 

Predicted 
Cognitive

Predicted 
Non-

cognitive 

Predicted 
Non-

cognitive 
(orth) 

Predicted 
English 

Predicted 
Cognitive

Predicted 
Non-

cognitive 

Predicted 
Non-

cognitive 
(orth) 

Estimated Effect (all exogenous variation) b 0.00473 0.00382 -0.00376 -0.00604+ 0.00956 0.00672 0.00133 0.00369
  [0.00600] [0.00780] [0.00355] [0.00361] [0.00685] [0.00824] [0.00621] [0.00299]
Mean Estimated Effect (variation across cohorts) 0.0491 0.0564 0.0145 -0.00128 -0.0271 -0.0284 -0.03 -0.00113
  [0.0582] [0.0779] [0.0267] [0.0126] [0.0522] [0.0651] [0.0202] [0.00983]
    
Observations 137,600 136,127 139,129 137,573 137,600 136,127 139,129 137,573
Standard errors in brackets. ** p<0.01, * p<0.05, + p<0.1 
All models include school-year effects and all models include school-track fixed effects. The independent variable in the within cohort models is the estimated effect 
of a student’s teacher (from all other years of data) for that outcome. The independent variable in the across cohort models is the mean estimated effect (from all 
other years of data) of all students in the same school-track and the same cohort as the students for that outcome. 
a. The outcome “Non-cognitive (orth)” is the non-cognitive factor that has been purged of any correlation with test scores. 
b. Note that these models are conditional on 8th grade math and reading scores. Accordingly the predicted outcome reflects the effects of gender, ethnicity, 7th grade 
test scores, and parental education.  
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Table 7: Proportion of the Variability in Estimated Effects Explained by Estimated Effects 
on Test Scores and Effects on the Non-cognitive Factor 

  

Algebra 
Score 

English 
Score  

Suspended
Log of # 
Absences 

GPA 
On time 

enrollment in 
10th grade 

Cognitive 
Factor 

Non-
cognitive 

factor 

Algebra FX 1 - 0.0115 0.0211 0.1057 0.0503 0.75 0.1
Cognitive FX 0.75 - 0.0374 0.063 0.2833 0.113 1 0.269
Non-cog FX 0.1 - 0.1839 0.4766 0.8007 0.407 0.269 1

        

Algebra 
Score 

English 
Score  

Suspended
Log of # 
Absences 

GPA 
On time 

enrollment in 
10th grade 

Cognitive 
Factor 

Non-
cognitive 

factor 

English FX - 1 0.0116 0.0247 0.0516 0.0585 0.2523 0.0683
Cognitive FX - 0.0262 0.042 0.1392 0.0698 1 0.1458
Non-cog FX - 0.0186 0.1824 0.4658 0.7968 0.4867 0.1458 1
This table presents the estimated R-squared from separate regressions of a teacher’s effect on each outcome on 
her effect on test scores and her effect on the non-cognitive factor. Estimates greater than 10 percent are in bold. 
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Figures 

Figure 1: Path Diagram of the Two-Factor Model 

 
Note: An arrow from a to b indicates that variable b is a linear function of variable a. Square boxes denote observed 
variables; while ovals denote unobserved or latent variables. 

 

Figure 2: The Marginal Effect of Cognitive and Non-cognitive Skills at Different Points of 
the Distribution of Wages 

 
Note: This figure presents estimates from models that control for demographics. The effects are even more 
pronounced when they are not included. 
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Figure 3: The Marginal Effect of Teacher Experience under Different Models 

 
 
These figures present the estimated coefficients on indicator variables denoting each year of experience on English 
and Math test scores. The figures show the estimated point estimates for each year of experience and a lowess fit of 
the point estimates for models with school fixed effects, and track-by-school fixed effects.  
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Figure 4: Relationship between Teacher Effects on Test Scores and Non-cognitive Factor 
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Figure 5: The Proportion of the Teacher Effect on Predicted Adult Outcomes Explained by 
Test Score Value Added for Different Relative Weights on Non-cognitive Ability. 
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Appendix  
 

 

Table A1: Most common academic courses 

Academic course rank Course Name % of 9th graders taking % of all courses taken
1 English I* 90 0.11 
2 World History 84 0.11 
3 Earth Science 63 0.09 
4 Algebra I* 51 0.06 
5 Geometry 20 0.03 
6 Art I 16 0.03 
7 Biology I 15 0.02 
8 Intro to Algebra 14 0.02 
9 Basic Earth Science 13 0.01 
10 Spanish I 13 0.02 

 
 

 

Table A2: Distribution of Number of Teachers in Each School-Track Year Cell 
Percent

Number of Teachers in Track-Year-School Cell English Algebra
1 63.37 51.07
2 18.89 26.53
3 9.12 11
4 5.6 6.38
5 3.03 3.25
6 0 1.77

Note:  This is after removing singleton tracks. 
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Appendix Note 1:  Matching Teachers to Students 

 

The teacher ID in the testing file corresponds to the teacher who administered the exam, 
who is not always the teacher that taught the class (although in many cases it will be). To obtain 
high quality student-teacher links, I link classrooms in the End of Course (EOC) testing data with 
classrooms in the Student Activity Report (SAR) files (in which teacher links are correct). The 
NCERDC data contains The End of Course (EOC) files with test score level observations for a 
certain subject in a certain year. Each observation contains various student characteristics, 
including, ethnicity, gender, and grade level. It also contains the class period, course type, 
subject code, test date, school code, and a teacher ID code. Following Mansfield (2012) I group 
students into classrooms based in the unique combination of class period, course type, subject 
code, test date, school code, and the teacher ID code. I then compute classroom level totals for 
the student characteristics (class size, grade level totals, and race-by-gender cell totals). The 
Student Activity Report (SAR) files contain classroom level observations for each year. Each 
observation contains a teacher ID code (the actual teacher), school code, subject code, academic 
level, and section number. It also contains the class size, the number of students in each grade 
level in the classroom, and the number of students in each race-gender cell.  

To match students to the teacher who taught them, unique classrooms of students in the 
EOC data are matched to the appropriate classroom in the SAR data. To ensure the highest 
quality matches, I use the following algorithm: 
 

(1) Students in schools with only one Algebra I or English I teacher are automatically linked 
to the teacher ID from the SAR files. These are perfectly matched. Matched classes are 
set aside. 

(2) Classes that match exactly on all classroom characteristics and the teacher ID are deemed 
matches. These are deemed perfectly matched. Matched classes are set aside.  

(3) Compute a score for each potential match (the sum of the squared difference between 
each observed classroom characteristics for classrooms in the same school in the same 
year in the same subject, and infinity otherwise) in the SAR file and the EOC data. Find 
the best match in the SAR file for each EOC classroom. If the best match also matches in 
the teacher ID, a match is made. These are deemed imperfectly matched. Matched classes 
are set aside.  

(4) Find the best match (based on the score) in the SAR file for each EOC classroom. If the 
SAR classroom is also the best match in the EOC classroom for the SAR class, a match is 
made. These are deemed imperfectly matched. Matched classes are set aside.  

(5) Repeat step 4 until no more high quality matches can be made.  
 
 
This procedure leads to a matching of approximately 60 percent of classrooms. All results are 
similar when using cases when the matching is exact so that error due to the fuzzy matching 
algorithm does not generate any of the empirical findings.  
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Appendix Note 2:   Estimating Efficient Teacher Fixed Effects 

 
I follow the procedure outlined in Kane and Staiger (2008) to compute efficient teacher 

fixed effects. This approach accounts for the fact that (1) teachers with larger classes will tend to 
have more precise estimates and (2) there are classroom level disturbances so that teachers with 
multiple classrooms will have more precise estimates. As before, I compute mean residuals from 
[7] for each classroom *

 j ˆc j c ce      . Since the classroom error is randomly distributed, I use 

the covariance between the mean residuals of classrooms for the same teacher * * 2
' ˆcov( , )

jcj c je e 
as an estimate of the variance of true teacher quality. I use the variance of the classroom 
demeaned residuals as an estimate of 2ˆ . Because the variance of the residuals is equal to the 

sum of the variances of the true teacher effects, the classroom effects, and the student errors, I 
compute the variance of the classroom errors 2

c by subtracting 2
 and 2ˆ

j
 from the total variance 

of the residuals. For each teacher I compute [A1], a weighted average of their mean classroom 
residuals, where classrooms with more students are more heavily weighted in proportion to their 
reliability.  
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     [A1] 

Where jtN  is the number of students in classroom c, and jT is the total number of classrooms for 

teacher j. This is a more efficient estimate of the teacher fixed effect that the simple teacher 
average. 
 


