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1. Introduction

In standard representative-agent asset-pricing models, the expected return to an asset re-

flects the covariance between the asset’s payo§ and the agent’s stochastic discount factor.

An important challenge to these models is that the correlation and covariance between

stock returns and measurable fundamentals, especially consumption growth, is weak at both

short and long horizons. Cochrane and Hansen (1992), Campbell and Cochrane (1999), and

Cochrane (2001) call this phenomenon the correlation puzzle. More recently, Lettau and Lud-

vigson (2011) document this puzzle using di§erent methods. According to their estimates,

the shock that accounts for the vast majority of asset-price fluctuations is uncorrelated with

consumption at virtually all horizons.

The basic disconnect between measurable macroeconomic fundamentals and stock re-

turns underlies virtually all modern asset-pricing puzzles, including the equity-premium

puzzle, Hansen-Singleton (1982)-style rejection of asset-pricing models, violation of Hansen-

Jagannathan (1991) bounds, and Shiller (1981)-style observations about excess stock-price

volatility.

A central finding of modern empirical finance is that variation in asset returns is over-

whelmingly due to variation in discount factors (see Campbell and Ammer (1993) and

Cochrane (2011)). A key question is: how should we model this variation? In classic

asset-pricing models, all uncertainty is loaded onto the supply side of the economy. In Lucas

(1978) tree models, agents are exposed to random endowment shocks, while in production

economies they are exposed to random productivity shocks. Both classes of models abstract

from shocks to the demand for assets. Not surprisingly, it is very di¢cult for these models

to simultaneously resolve the equity premium puzzle and the correlation puzzle.

We propose a simple theory of asset pricing in which demand shocks, arising from sto-

chastic changes in agents’ rate of time preference, play a central role in the determination

of asset prices. These shocks amount to a parsimonious way of modeling the variation in

discount rates stressed by Campbell and Ammer (1993) and Cochrane (2011). Our model

implies that the law of motion for these shocks plays a first-order role in determining the

equilibrium behavior of variables like the price-dividend ratio, equity returns and bond re-

turns. So, our analysis is disciplined by the fact that the law of motion for time-preference

shocks must be consistent with the time-series properties of these variables.

In our model, the representative agent has recursive preferences of the type considered by
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Kreps and Porteus (1978), Weil (1989), and Epstein and Zin (1991). When the risk-aversion

coe¢cient is equal to the inverse of the elasticity of intertemporal substitution, recursive

preferences reduce to constant-relative risk aversion (CRRA) preferences. We show that, in

this case, time-preference shocks have negligible e§ects on key asset-pricing moments such

as the equity premium.

We consider two versions of our model. The benchmark model is designed to highlight the

role played by time-preference shocks per se. Here consumption and dividends are modeled

as random walks with conditionally homoscedastic shocks. While this model is very useful

for expositional purposes, it su§ers from some clear empirical shortcomings, e.g. the equity

premium is constant. For this reason we consider an extended version of the model in which

the shocks to the consumption and dividend process are conditionally heteroskedastic. We

find that adding these features improves the performance of the model.1

We estimate our model using a Generalized Method of Moments (GMM) strategy, im-

plemented with annual data for the period 1929 to 2011. We assume that agents make

decisions on a monthly basis. We then deduce the model’s implications for annual data, i.e.

we explicitly deal with the temporal aggregation problem.2

It turns out that, for a large set of parameter values, our model implies that the GMM esti-

mators su§er from substantial small-sample bias. This bias is particularly large for moments

characterizing the predictability of excess returns and the decomposition of the variance of

the price-dividend ratio proposed by Cochrane (1992). In light of this fact, we modify the

GMM procedure to focus on the plim of the model-implied small-sample moments rather

than the plim of the moments themselves. This modification makes an important di§erence

in assessing the model’s empirical performance.

We show that time-preference shocks help explain the equity premium as long as the risk-

aversion coe¢cient and the elasticity of intertemporal substitution are either both greater

than one or both smaller than one. This condition is satisfied in the estimated benchmark

and extended models.

Allowing for sampling uncertainty, our model accounts for the equity premium and the

volatility of stock and bond returns, even though the estimated degree of agents’ risk aversion

is very moderate (roughly 1.5). Critically, the extended model also accounts for mean,

1These results parallel the findings of Bansal and Yaron (2004) who show that allowing for conditional
heteroskedasticity improves the performance of long-run risk models.

2Bansal, Kiku, and Yaron (2013) pursue a similar strategy in estimating a long-run risk model. They
estimate the frequency with which agents make decisions and find that it is roughly equal to one month.
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variance and persistence of the price-dividend ratio and the risk-free rate. In addition, it

accounts for the correlation between stock returns and fundamentals such as consumption,

output, and dividend growth at short, medium and long horizons. Finally, the model also

accounts for the observed predictability of excess returns by lagged price-dividend ratios.

We define valuation risk as the part of the excess return to an asset that is due to the

volatility of the time-preference shock. According to our estimates, valuation risk is a much

more important determinant of asset returns than conventional risk. We show that valuation

risk is an increasing function of an asset’s maturity. So, a natural test of our model is whether

it can account for bond term premia and the return on stocks relative to long-term bonds.

We pursue this test using stock returns as well as real returns on bonds of di§erent maturity

and argue that the model’s implications are consistent with the data. We are keenly aware of

the limitations of the available data on real-bond returns, especially at long horizons. Still,

we interpret our results as being very supportive of the hypothesis that valuation risk is a

critical determinant of asset prices.

There is a literature that models shocks to the demand for assets as arising from time-

preference or taste shocks. For example, Garber and King (1983) and Campbell (1986)

consider these types of shocks in early work on asset pricing. Stockman and Tesar (1995),

Pavlova and Rigobon (2007), and Gabaix and Maggiori (2013) study the role of taste shocks

in explaining asset prices in an open economy model. In the macroeconomic literature,

Eggertsson and Woodford (2003) and Eggertsson (2004), model changes in savings behavior

as arising from time-preference shocks that make the zero lower bound on nominal interest

rates binding.3 Hall (2014) stresses the importance of variation in discount rates in explaining

the cyclical behavior of unemployment.

Time-preference shocks can also be thought of a simple way of capturing the notion that

fluctuations in market sentiment contribute to the volatility of asset prices, as emphasized

by authors such as in Barberis, Shleifer, and Vishny (1998) and Dumas, Kurshev and Up-

pal (2009). Finally, in independent work, contemporaneous with our own, Maurer (2012)

explores the impact of time-preference shocks in a calibrated continuous-time representative

agent model with Du¢e-Epstein (1992) preferences.4

3See also Huo and Rios-Rull (2013), Correia, Farhi, Nicolini, and Teles (2013), and Fernandez-Villaverde,
Guerron-Quintana, Kuester, Rubio-Ramírez (2013).

4Normandin and St-Amour (1998) study the impact of preference shocks in a model similar to ours.
Unfortunately, their analysis does not take into account the fact that covariances between asset returns,
consumption growth, and preferences shocks depend on the parameters governing preferences and technology.
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Our paper is organized as follows. In Section 2 we document the correlation puzzle using

U.S. data for the period 1929 to 2011 as well as the period 1871 to 2006. In Section 3

we present our benchmark and extended models. We discuss our estimation strategy in

Section 4. In Section 5 we present our empirical results. In Section 6 we study the empirical

implications of the model for bond term premia, as well as the return on stocks relative to

long-term bonds. Section 7 concludes.

2. The correlation puzzle

In this section we examine the correlation between stock returns and fundamentals as mea-

sured by the growth rate of consumption, output, dividends, and earnings.

2.1. Data sources

We consider two sample periods: 1929 to 2011 and 1871 to 2006. For the first sample, we

obtain nominal stock and bond returns from Kenneth French’s website. We use the measure

of real consumption expenditures and real Gross Domestic Product constructed by Barro and

Ursúa (2011), which we update to 2011 using National Income and Product Accounts data.

We compute per-capita variables using total population (POP).5 We obtain data on real

S&P500 earnings and dividends from Robert Shiller’s website. We use data from Ibbotson

and Associates on the nominal return to one-month Treasury bills, the nominal yield on

intermediate-term government bonds (with approximate maturity of five years), and the

nominal yield on long-term government bonds (with approximate maturity of twenty years).

We convert nominal returns and yields to real returns and yields using the rate of inflation

as measured by the consumer price index.

For the second sample, we use data on real stock and bond returns from Nakamura,

As a result, their empirical estimates imply that preference shocks reduce the equity premium. In addition,
they argue that they can explain the equity premium with separable preferences and preference shocks. This
claim contradicts the results in Campbell (1986) and the theorem in our Appendix B.

5This series is not subject to a very important source of measurement error that a§ects another commonly-
used population measure, civilian noninstitutional population (CNP16OV). Every ten years, the CNP16OV
series is adjusted using information from the decennial census. This adjustment produces large discontinuities
in the CNP16OV series. The average annual growth rates implied by the two series are reasonably similar:
1.2 for POP and 1.4 for CNP16OV for the period 1952-2012. But the growth rate of CNP16OV is three
times more volatile than the growth rate of POP. Part of this high volatility in the growth rate of CNP16OV
is induced by large positive and negative spikes that generally occur in January. For example, in January
2000, 2004, 2008, and 2012 the annualized percentage growth rates of CNP16OV are 14.8, −1.9, −2.8, and
8.4, respectively. The corresponding annualized percentage growth rates for POP are 1.1, 0.8, 0.9, and 0.7.
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Steinsson, Barro, and Ursúa (2013). We use the same data sources for consumption, expen-

ditures, dividends and earnings as in the first sample.

In our estimation, we proceed as in Mehra and Prescott (1985) and the associated litera-

ture. We measure the risk-free rate using realized real returns on nominal, one-year Treasury

Bills. However, in evaluating the model we also consider two alternative measures of ex-ante

bond yields computed using inflation forecasts obtained from D’Agostino and Surico (2012)

and Luo (2014).

2.2. Empirical results

Table 1, panel A presents results for the sample period 1929 to 2011. We report correlations

at the one-, five- and ten-year horizons. The five- and ten-year horizon correlations are

computed using five- and ten-year overlapping observations, respectively. We report Newey-

West (1987) heteroskedasticity-consistent standard errors computed with ten lags.

There are three key features of Table 1, panel A. First, consistent with Cochrane and

Hansen (1992) and Campbell and Cochrane (1999), the growth rates of consumption and

output are uncorrelated with stock returns at all the horizons that we consider. Second, the

correlation between stock returns and dividend growth is similar to that of consumption and

output growth at the one-year horizon. However, the correlation between stock returns and

dividend growth is substantially higher at the five and ten-year horizons than the analogue

correlations involving consumption and output growth. Third, the pattern of correlations

between stock returns and dividend growth is similar to the analogue correlations involving

earnings growth.

Table 1, panel B reports results for the longer sample period (1871-2006). The one-

year correlation between stock returns and the growth rates of consumption and output

are very similar to those obtained for the shorter sample. There is evidence in this sample

of a stronger correlation between stock returns and the growth rates of consumption and

output at a five-year horizon. But, at the ten-year horizon the correlations are, once again,

statistically insignificant. The results for dividends and earnings are very similar across the

two subsamples.

Table 2 assesses the robustness of our results for the correlation between stock returns

and consumption using three di§erent measures of consumption for the period 1929 to 2011,

obtained from the National Product and Income Accounts. With one exception, the corre-

lations in this table are statistically insignificant. The exception is the five-year correlation
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between stock returns and the growth rate of nondurables and services which is marginally

significant.

In summary, there is remarkably little evidence that the growth rates of consumption or

output are correlated with stock returns. There is also little evidence that dividends and

earnings are correlated with stock returns at short horizons.

We have focused on correlations because we find them easy to interpret. One might

be concerned that a di§erent picture emerges from the pattern of covariances between stock

returns and fundamentals. It does not. For example, using quarterly U.S. data for the period

1959 to 2000, Parker (2001) argues that one would require a risk aversion coe¢cient of 379

to account for the equity premium given his estimate of the covariance between consumption

growth and stock returns.

Observing that there is a larger covariance between current stock returns and the cumu-

lative growth rate of consumption over the next 12 quarters, Parker (2001) argues that, even

with this covariance measure, one would require a risk aversion coe¢cient of 38 to rationalize

the equity premium (see also Grossman, Melino and Shiller (1987)).6

Viewed overall, the results in this section serve as our motivation for introducing shocks

to the demand for assets. Classic representative-agent models load all uncertainty onto the

supply-side of the economy. As a result, they have di¢culty in simultaneously accounting

for the equity premium and the correlation puzzle.7 This di¢culty is shared by the habit-

formation model proposed by Campbell and Cochrane (1999) and the long-run risk models

proposed by Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012). Rare-disaster

models of the type proposed by Rietz (1988) and Barro (2006) also share this di¢culty

because all shocks, disaster or not, are to the supply side of the model. A model with a time-

varying disaster probability, of the type considered by Wachter (2012) and Gourio (2012),

might be able to rationalize the low correlation between consumption and stock returns

as a small-sample phenomenon. The reason is that changes in the probability of disasters

induces movements in stock returns without corresponding movements in actual consumption

growth. This force lowers the correlation between stock returns and consumption in a sample

6Consistent with Parker (2001) and Campbell (2003) we find, in our sample, a somewhat higher correlation
of consumption growth and one-year lagged stock returns. The correlation between output growth and one-
year lagged stock returns is still essentially zero.

7Gârleanu, Kogan, and Panageas (2012) provide an interesting analysis of an overlapping-generations
model in which they generate an equity premium even though the correlation between consumption growth
and equity returns is zero.
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where rare disasters are under represented. This explanation might account for the post-war

correlations. But we are more skeptical that it accounts for the results in Table 1, panel B,

which are based on the longer sample period, 1871 to 2006.

Below, we focus on demand shocks as the source of the low correlation between stock

returns and fundamentals, rather than the alternatives just mentioned. We model these

demand shocks in the simplest possible way by introducing shocks to the time preference of

the representative agent. Consistent with the references in the introduction, these shocks can

be thought of as capturing changes in agents’ attitudes towards savings or, more generally,

investor sentiment.

3. The model

In this section, we study the properties of a representative-agent endowment economy modi-

fied to allow for time-preference shocks. The representative agent has the constant-elasticity

version of Kreps-Porteus (1978) preferences used by Epstein and Zin (1991) and Weil (1989).

The life-time utility of the representative agent is a function of current utility and the cer-

tainty equivalent of future utility, U∗t+1:

Ut = max
Ct

h
λtC

1−1/ 
t + δ

"
U∗t+1

#1−1/ i1/(1−1/ )
, (3.1)

where Ct denotes consumption at time t and δ is a positive scalar. The certainty equivalent

of future utility is the sure value of t+ 1 lifetime utility, U∗t+1 such that:

"
U∗t+1

#1−γ
= Et

"
U1−γt+1

#
.

The parameters  and γ represent the elasticity of intertemporal substitution and the coef-

ficient of relative risk aversion, respectively. The ratio λt+1/λt determines how agents trade

o§ current versus future utility. We assume that this ratio is known at time t.8 We refer to

λt+1/λt as the time-preference shock. Propositions 6.9 and 6.18 in Skiadas (2009) provide a

set of axioms that supports recursive utility functions with preference shocks.9

8We obtain similar results with a version of the model in which the utility function takes the form:

Ut =
h
C
1−1/ 
t + λtδ

"
U∗t+1

#1−1/ i1/(1−1/ )
. The assumption that the agents knows λt+1 at time t is made

to simplify the algebra and is not necessary for any of the key results.
9Skiadas (2009) derives a parametric SDF that satisfies the axioms in proposition 6.9 and 6.18 (see his

equation 6.35). This SDF can be modified to obtain a generalized Epstein and Zin (1989) parametric utility
function with stochastic risk aversion, intertemporal substitution, and time-preference shocks. We thank
Soohun Kim and Ravi Jagannathan for pointing this result out to us.
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3.1. The benchmark model

To highlight the role of time-preference shocks, we begin with a very simple stochastic process

for consumption:

log(Ct+1/Ct) = µ+ σc"
c
t+1. (3.2)

Here, µ and σc are non-negative scalars and "ct+1 follows an i.i.d. standard-normal distribu-

tion.

As in Campbell and Cochrane (1999), we allow dividends, Dt, to di§er from consumption.

In particular, we assume that:

log(Dt+1/Dt) = µ+ πdc"
c
t+1 + σd"

d
t+1. (3.3)

Here, "dt+1 is an i.i.d. standard-normal random variable that is uncorrelated with "ct+1. To

simplify, we assume that the average growth rate of dividends and consumption is the same

(µ). The parameter σd ≥ 0 controls the volatility of dividends. The parameter πdc controls

the correlation between consumption and dividend shocks.10

The growth rate of the time-preference shock evolves according to:

log (λt+1/λt) = ρ log (λt/λt−1) + σλ"
λ
t . (3.4)

Here, "λt is an i.i.d. standard-normal random variable. In the spirit of the original Lucas

(1978) model, we assume, for now, that "λt is uncorrelated with "
c
t and "

d
t . We relax this

assumption in Subsection 3.4.

The CRRA case In Appendix A we solve this model analytically for the case in which

γ = 1/ . Here preferences reduce to the CRRA form:

Vt = Et

1X

i=0

δiλt+iC
1−γ
t+i , (3.5)

with Vt = U
1−γ
t .

The unconditional risk-free rate depends on the persistence and volatility of time-preference

shocks:

E (Rf,t+1) = exp

&
σ2λ/2

1− ρ2

'
δ−1 exp(γµ− γ2σ2c/2).

10The stochastic process described by equations (3.2) and (3.3) implies that log(Dt+1/Ct+1) follows a
random walk with no drift. This implication is consistent with our data.
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The unconditional equity premium implied by this model is proportional to the risk-free

rate:

E (Rc,t+1 −Rf,t+1) = E (Rf,t+1)
(
exp

"
γσ2c
#
− 1
)
. (3.6)

Both the average risk-free rate and the volatility of consumption are small in the data.

Moreover, the constant of proportionality in equation (3.6), exp (γσ2c) − 1, is independent

of σ2λ. So, time-preference shocks do not help to resolve the equity premium puzzle when

preferences are of the CRRA form.

3.2. Solving the benchmark model

We define the return to the stock market as the return to a claim on the dividend process.

The realized gross stock-market return is given by:

Rd,t+1 =
Pd,t+1 +Dt+1

Pd,t
, (3.7)

where Pd,t denotes the ex-dividend stock price.

It is useful to define the realized gross return to a claim on the endowment process:

Rc,t+1 =
Pc,t+1 + Ct+1

Pc,t
. (3.8)

Here, Pc,t denotes the price of an asset that pays a dividend equal to aggregate consump-

tion. We use the following notation to define the logarithm of returns on the dividend and

consumption claims, the logarithm of the price-dividend ratio, and the logarithm of the

price-consumption ratio:

rd,t+1 = log(Rd,t+1),

rc,t+1 = log(Rc,t+1),

zdt = log(Pd,t/Dt),

zct = log(Pc,t/Ct).

In Appendix B we show that the logarithm of the stochastic discount factor (SDF) implied

by the utility function defined in equation (3.1) is given by:

mt+1 = θ log (δ) + θ log (λt+1/λt)−
θ

 
∆ct+1 + (θ − 1) rc,t+1, (3.9)

where θ is defined as:

θ =
1− γ

1− 1/ 
. (3.10)
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When γ = 1/ , the case of CRRA preferences, the value of θ is equal to one and the

stochastic discount factor is independent of rc,t+1.

We solve the model using the approximation proposed by Campbell and Shiller (1988),

which involves linearizing the expressions for rc,t+1 and rd,t+1 and exploiting the properties

of the log-normal distribution.11

Using a log-linear Taylor expansion we obtain:

rd,t+1 = κd0 + κd1zdt+1 − zdt +∆dt+1, (3.11)

rc,t+1 = κc0 + κc1zct+1 − zct +∆ct+1, (3.12)

where ∆ct+1 ≡ log (Ct+1/Ct) and ∆dt+1 ≡ log (Dt+1/Dt). The constants κc0, κc1, κd0, and

κd1 are given by:

κd0 = log [1 + exp(zd)]− κd1zd,

κc0 = log [1 + exp(zc)]− κc1zc,

κd1 =
exp(zd)

1 + exp(zd)
, κc1 =

exp(zc)

1 + exp(zc)
,

where zd and zc are the unconditional mean values of zdt and zct.

The Euler equations associated with a claim to the stock market and a consumption

claim can be written as:

Et [exp (mt+1 + rd,t+1)] = 1, (3.13)

Et [exp (mt+1 + rc,t+1)] = 1. (3.14)

We solve the model using the method of undetermined coe¢cients. First, we replace

mt+1, rc,t+1 and rd,t+1 in equations (3.13) and (3.14), using expressions (3.11), (3.12) and

(3.9). Second, we guess and verify that the equilibrium solutions for zdt and zct take the

form:

zdt = Ad0 + Ad1 log (λt+1/λt) , (3.15)

zct = Ac0 + Ac1 log (λt+1/λt) . (3.16)

This solution has the property that price-dividend ratios are constant, absent movements

in λt. This property results from our assumption that the logarithm of consumption and

11See Hansen, Heaton, and Li (2008) for an alternative solution procedure.
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dividends follow random-walk processes. We compute Ad0, Ad1, Ac0, and Ac1 using the

method of undetermined coe¢cients.

The equilibrium solution has the property that Ad1, Ac1 > 0. We show in Appendix B

that the conditional expected return to equity is given by:

Et (rd,t+1) = − log (δ)− log (λt+1/λt) + µ/ (3.17)

+

*
(1− θ)

θ
(1− γ)2 − γ2

+
σ2c/2 + πdc (2γσc − πdc) /2− σ2d/2

+
,
(1− θ) (κc1Ac1) [2 (κd1Ad1)− (κc1Ac1)]− (κd1Ad1)

2-σ2λ/2.

Recall that κc1 and κd1 are non-linear functions of the parameters of the model.

Using the Euler equation for the risk-free rate, rf,t+1,

Et [exp (mt+1 + rf,t+1)] = 1,

we obtain:

rf,t+1 = − log (δ)− log (λt+1/λt) + µ/ − (1− θ) (κc1Ac1)
2 σ2λ/2 (3.18)

+

*
(1− θ)

θ
(1− γ)2 − γ2

+
σ2c/2.

Equations (3.17) and (3.18) imply that the risk-free rate and the conditional expectation

of the return to equity are decreasing functions of log (λt+1/λt). When log (λt+1/λt) rises,

agents value the future more relative to the present, so they want to save more. Since risk-

free bonds are in zero net supply and the number of stock shares is constant, aggregate

savings cannot increase. So, in equilibrium, returns on bonds and equity must fall to induce

agents to save less.

The approximate response of asset prices to shocks, emphasized by Borovička, Hansen,

Hendricks, and Scheinkman (2011) and Borovička and Hansen (2011), can be directly inferred

from equations (3.17) and (3.18). The response of the return to stocks and the risk-free rate

to a time-preference shock corresponds to that of an AR(1) with serial correlation ρ.

Using equations (3.17) and (3.18) we can write the conditional equity premium as:

Et (rd,t+1)− rf,t+1 = πdc (2γσc − πdc) /2− σ2d/2 (3.19)

+κd1Ad1 [2 (1− θ)Ac1κc1 − κd1Ad1]σ
2
λ/2.

We define the compensation for valuation risk as the part of the one-period expected

excess return to an asset that is due to the volatility of the time preference shock, σ2λ. We
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refer to the part of the one-period expected excess return that is due to the volatility of

consumption and dividends as the compensation for conventional risk.

The component of the equity premium that is due to valuation risk, vd, is given by the

last term in equation (3.19). Since the constants Ac1, Ad1, κc1, and κd1 are all positive, θ < 1

is a necessary condition for valuation risk to help explain the equity premium (recall that θ

is defined in equation (3.10)).

It is useful to consider the case in which the stock is a claim on consumption. In this

case, vd reduces to:

vd = (1− 2θ)
&

κc1
1− ρκc1

'2
σ2λ/2.

This expression is positive as long as θ < 1/2.12

The intuition for why valuation risk helps account for the equity premium is as follows.

Consider an investor who buys the stock at time t. At some later time, say t + τ , τ > 0,

the investor may get a preference shock, say a decrease in λt+τ+1, and want to increase

consumption. Since all consumers are identical, they all want to sell the stock at the same

time, so that the price of equity will fall. Bond prices also fall because consumers try to

reduce their holdings of the risk-free asset. Since stocks are infinitely-lived compared to the

one-period risk-free bond, they are more exposed to this source of risk. So, valuation risk,

vd, leads to a larger equity premium. In the case where γ = 1/ , we are in the CRRA case

and the net e§ect on the equity premium is very small (see equation 3.6)).

It is interesting to highlight the di§erences between time-preference shocks and conven-

tional sources of uncertainty, which pertain to the supply-side of the economy. Suppose that

there is no risk associated with the physical payo§ of assets such as stocks. In this case,

standard asset pricing models would imply that the equity premium is zero. In our model,

there is a positive equity premium that results from the di§erential exposure of bonds and

stocks to valuation risk. Agents are uncertain about how much they will value future divi-

dend payments. Since λt+1 is known at time t, this valuation risk is irrelevant for one-period

bonds. But, it is not irrelevant for stocks, because they have infinite maturity. In general,

the longer the maturity of an asset, the higher is its exposure to time-preference shocks and

the large is the valuation risk.
12The condition θ < 1/2 is di§erent from the condition that guarantees preference for early resolution of

uncertainty: γ > 1/ , which is equivalent to θ < 1. As discussed in Epstein et al (2014), the latter condition
plays a crucial role in generating a high equity premium in long-run risk models. Because long-run risks are
resolved in the distant future, they are more heavily penalized than current risks. For this reason, long-run
risk models can generate a large equity premium even when shocks to current consumption are small.
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We conclude by considering the case in which there are supply-side shocks to the economy

but agents are risk neutral (γ = 0). In this case, the component of the equity premium

that is due to valuation risk is always positive as long as  < 1. The intuition is as follows:

stocks are long-lived assets whose payo§s can induce unwanted variation in the period utility

of the representative agent, λtC
1−1/ 
t . Even when agents are risk neutral, they must be

compensated for the risk of this unwanted variation.

3.3. Relation to the long-run risk model

In this subsection we briefly comment on the relation between our model and the long-run-

risk model pioneered by Bansal and Yaron (2004). Both models emphasize low-frequency

shocks that induce large, persistent changes in the agent’s stochastic discount factor. To see

this point, it is convenient to re-write the representative agent’s utility function, (3.1), as:

Ut =
h
C̃
1−1/ 
t + δ

"
U∗t+1

#1−1/ i1/(1−1/ )
, (3.20)

where C̃t = λ
1/(1−1/ )
t Ct. Taking logarithms of this expression we obtain:

log
.
C̃t

/
= 1/ (1− 1/ ) log(λt) + log (Ct) .

Bansal and Yaron (2004) introduce a highly persistent component in the process for log(Ct),

which is a source of long-run risk. In contrast, we introduce a highly persistent component

into log(C̃t) via our specification of the time-preference shocks. From equation (3.9), it

is clear that both specifications can induce large, persistent movements in mt+1. Despite

this similarity, the two models are not observationally equivalent. First, they have di§erent

implications for the correlation between observed consumption growth, log(Ct+1/Ct), and

asset returns. Second, the two models have very di§erent implications for the average return

to long-term bonds, and the term structure of interest rates. We return to these points when

we discuss our empirical results in Section 6.

3.4. The extended model

The benchmark model just described is useful to highlight the role of time-preference shocks

in a§ecting asset returns. But its simplicity leads to two important empirical shortcomings.13

First, since consumption is a martingale, the only state variable that is relevant for asset

13The shortcomings of our benchmark model are shared by other simple models like model I in Bansal
and Yaron (2004), which abstract from conditional heteroskedasticity in consumption and dividends.
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returns is λt+1/λt. This property means that all asset returns as well as the price-dividend

ratio are highly correlated with each other. Second, and related, the model displays constant

risk premia and cannot be used to address the evidence on predictability of excess returns.

In this subsection, we address the shortcomings of the benchmark model by allowing for a

richer model of consumption and dividend growth. We assume that the stochastic processes

for consumption and dividend growth are given by:

log(Ct+1/Ct) = µ+ αc
"
σ2t+1 − σ2

#
+ πcλ"

λ
t+1 + σt"

c
t+1, (3.21)

log(Dt+1/Dt) = µ+ αd
"
σ2t+1 − σ2

#
+ σdσt"

d
t+1 + πdλ"

λ
t+1 + πdcσt"

c
t+1, (3.22)

and

σ2t+1 = σ2 + v
"
σ2t − σ2

#
+ σwwt+1, (3.23)

where "ct+1, "
d
t+1, "

λ
t+1, and wt+1 are mutually uncorrelated standard-normal variables. Rel-

ative to the benchmark model, equations (3.21)-(3.23) incorporate two main new features.

First, as in Kandel and Stambaugh (1990) and Bansal and Yaron (2004), we allow for condi-

tional heteroskedasticity in consumption. This feature generates time-varying risk premia:

when volatility is high the stock is risky, its price is low and its expected return is high.

High volatility leads to higher precautionary savings motive so that the risk-free rate falls,

reinforcing the rise in the risk premium.

The second main new feature in equations (3.21)-(3.23) is that we allow for a correlation

between time-preference shocks and the growth rate of consumption and dividends. In a

production economy, time-preference shocks would generally induce changes in aggregate

consumption. For example, in a simple real-business-cycle model, a persistent increase in

λt+1/λt would lead agents to reduce current consumption and raise investment in order to

consume more in the future. Taken literally, an endowment economy specification does not

allow for such a correlation. Importantly, only the innovation to time-preference shocks

enters the law of motion for log(Ct+1/Ct) and log(Dt+1/Dt). So, equations (3.21)-(3.23) do

not introduce any element of long-run risk into consumption or dividend growth.

Since the price-dividend ratio and the risk-free rate are driven by a single state variable

in the benchmark model, they will have the same degree of persistence. A straightforward

way to address this shortcoming is to assume that the time-preference shock is the sum of a
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persistent shock and an i.i.d. shock:

log(λt+1/λt) = xt + σηηt+1, (3.24)

xt+1 = ρxt + σλ"
λ
t+1.

Here "λt+1 and ηt+1 are uncorrelated, i.i.d. standard normal shocks. We think of xt as

capturing low-frequency changes in the growth rate of the discount rate. In contrast, ηt+1
can be thought of high-frequency changes in investor sentiment that a§ect the demand for

assets (see, for example, Dumas et al. (2009)). If ση = 0 and x1 = log(λ1/λ0), we obtain

the specification of the time-preference shock used in the benchmark model. Other things

equal, the larger is ση, the lower is the persistence of the time-preference shock.

4. Estimation methodology

We estimate the parameters of our model using the Generalized Method of Moments (GMM).

Our estimator is the parameter vector Φ̂ that minimizes the distance between a vector of

empirical moments, ΨD, and the corresponding model moments, Ψ(Φ̂). Our estimator, Φ̂, is

given by:

Φ̂ = argmin
Φ

[Ψ(Φ)−ΨD]
0Ω−1D [Ψ(Φ)−ΨD] .

We found that, for a wide range of parameter values, the model implies that there is small-

sample bias in terms of various moments, especially the predictability of excess returns. We

therefore focus on the plim of the model-implied small-sample moments when constructing

Ψ(Φ), rather than the plim of the moments themselves. For a given parameter vector, Φ, we

create 500 synthetic time series, each of length equal to our sample size. For each sample,

we calculate the sample moments of interest. The vector Ψ(Φ) that enters the criterion

function is the average value of the sample moments across the synthetic time series.14 In

addition, we assume that agents make decisions at a monthly frequency and derive the

model’s implications for variables computed at an annual frequency. We estimate ΨD using

a standard two-step e¢cient GMM estimator with a Newey-West (1987) weighting matrix

that has ten lags. The latter matrix corresponds to our estimate of the variance-covariance

matrix of the empirical moments, ΩD.

When estimating the benchmark model, we include the following 19 moments in ΨD: the

mean and standard deviation of consumption growth, the mean and standard deviation of
14As the sample size grows, our estimator becomes equivalent to a standard GMM estimator so that the

usual asymptotic results for the distribution of the estimator apply.
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dividend growth, the correlation between the one-year growth rate of dividends and the one-

year growth rate of consumption, the mean and standard deviation of real stock returns, the

mean, standard deviation and autocorrelation of the price-dividend ratio, the mean, standard

deviation and autocorrelation of the real risk-free rate, the correlation between stock returns

and consumption growth at the one, five and ten-year horizon, the correlation between stock

returns and dividend growth at the one, five and ten-year horizon. We constrain the growth

rate of dividends and consumption to be the same. In practice, when we estimate the

benchmark model we found that the standard deviation of the point estimate of the risk free

across the 500 synthetic time series is very large. So here we report results corresponding

to the case where we constrain the mean risk-free rate to exactly match the value in the

data. When we estimate the extended model with conditional heteroskedasticity we add the

following moments to ΨD: the slope coe¢cients on predictive regressions of 1-year, 3-year

and 5-year excess stock returns on the price-dividend ratio.

For the benchmark model, the vector Φ includes nine parameters: γ, the coe¢cient of

relative risk aversion,  , the elasticity of intertemporal substitution, δ, the rate of time pref-

erence, σc, the volatility consumption growth shocks, πdc, the parameter that controls the

correlation between consumption and dividend growth shocks, σd, the volatility of dividend

growth shocks, ρ, the persistence of time-preference shocks, σλ, the volatility of the innova-

tion to time-preference shocks, and µ, the mean growth rate of dividends and consumption.

In the extended model, the vector Φ includes an additional seven parameters: αc and αd,

which control the e§ect of volatility on mean consumption and mean dividends, respectively,

πcλ and πdλ, which control the e§ect of time preference shock innovations on consumption

and dividends, respectively, ν, which governs the persistence of volatility, σw, the volatility

of innovations to volatility, and ση, the volatility of transitory shocks to time preference.

5. Empirical results

Table 3 reports our parameter estimates along with standard errors. Several features are

worth noting. First, the coe¢cient of risk aversion is quite low, 1.6 and 1.2, in the benchmark

and extended models, respectively. We estimate this coe¢cient with reasonable precision.

Second, for both models, the intertemporal elasticity of substitution is somewhat larger than

one. Third, for both models, the point estimates satisfy the necessary condition for valuation

risk to be positive, θ < 1. Fourth, the parameter ρ that governs the serial correlation of

16



the growth rate of λt is estimated to be close to one in both models, 0.991 and 0.997 in

the benchmark and extended model, respectively. Fifth, the parameter ν, which governs the

persistence of consumption volatility in the extended model, is also quite high (0.962). The

high degree of persistence in both the time-preference and the volatility shock are the root

cause of the small-sample biases in our estimators.

Table 4 compares the small-sample moments implied by the benchmark and extended

models with the estimated data moments. Recall that in estimating the model parameters

we impose the restriction that the unconditional average growth rate of consumption and

dividends are the same. To assess the robustness of our results to this restriction, we present

two versions of the estimated data moments, with and without the restriction. With one

exception, the constrained and unconstrained data moment estimates are similar, taking

sampling uncertainty into account. The exception is the average growth rate of consumption,

where the constrained and unconstrained estimates are statistically di§erent.

Implications for the equity premium Table 4 shows that both the benchmark and

extended model give rise to a large equity premium, 5.75 and 3.24, respectively. This result

holds even though the estimated degree of risk aversion is quite moderate in both models.

In contrast, long-run risk models require a high degree of risk aversion to match the equity

premium.

Recall that in order for valuation risk to contribute to the equity premium, θ must be

less than one. This condition is clearly satisfied by both our models: the estimated value of

θ is −2.00 and −0.74 in the benchmark and extended model, respectively (Table 3). In both

cases, θ is estimated quite accurately. The model with the larger absolute value of θ generates

a larger equity premium. Taking sampling uncertainty into account, the benchmark model

easily accounts for the equity premium, while the extended model does so marginally. We

can easily reject the null hypothesis of θ = 1, which corresponds to the case of constant

relative risk aversion.

The basic intuition for why our model generates a high equity premium despite a low

coe¢cient of relative risk aversion is as follows. From the perspective of the model, stocks

and bonds are di§erent in two ways. First, the model embodies the conventional source of

an equity premium, namely bonds have a certain payo§ that does not covary with the SDF

while the payo§ to stocks covaries negatively with the SDF (as long as πdc > 0). Since γ

is close to one, this traditional covariance e§ect is very small. Second, the model embodies
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a compensation for valuation risk that is particularly pronounced for stocks because they

they have longer maturities than bonds. Recall that, given our timing assumptions, when

an agent buys a bond at time t, the agent knows the value of λt+1, so the only source of risk

are movements in the marginal utility of consumption at time t+ 1. In contrast, the time-t

stock price depends on the value of λt+j, for all j > 1. So, agents are exposed to valuation

risk, a risk that is particularly important because time-preference shocks are very persistent.

In Table 5 we decompose the equity premium into the valuation risk premium and the

conventional risk premium. We calculate these premia using the estimated parameters of the

two models but varying the value of ρ, which controls the persistence of the time-preference

shock. Two key results emerge from this table.

The first result is that the conventional risk premium is always close to zero. For the

benchmark model, this finding is consistent with Kocherlakota’s (1996) discussion of why

the equity premium is not explained by endowment models in which the representative

agent has recursive preferences and consumption follows a martingale. Consider next our

results for the extended model. We know from Kandel and Stambaugh (1990) that a model

with conditional heteroskedasticity in consumption can give rise to large equity premia.

However, our estimation criterion does not choose values of the parameters of the conditional

heteroskedasticity process that generate a sizable conventional risk premia. The reason is

that such a parameterization would generate implausibly high correlations between stock

returns and fundamentals.

The second result that emerges from Table 5 is that the valuation risk premium and the

equity premium are increasing in ρ. The larger is ρ, the more exposed are agents to large

movements in stock prices induced by time-preference shocks.

Implications for the risk-free rate Recall that the benchmark model is restricted to

match the average risk-free rate exactly. From Table 4 we see that the ‘unconstrained’

extended model implies an average risk-free rate that comes close to matching the average

risk-free rate.

A problem with some explanations of the equity premium is that they imply counterfac-

tually high levels of volatility for the risk-free rate (see e.g. Boldrin, Christiano and Fisher

(2001)). Table 4 shows that the volatility of the risk-free rate and stock market returns

implied by our model are similar to the estimated volatilities in the data.

An empirical shortcoming of the benchmark model is its implication for the persistence
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of the risk-free rate. Recall that, according to equation (3.18), the risk-free rate has the same

persistence as the growth rate of the time-preference shock. Table 4 shows that the AR(1)

coe¢cient of the risk-free rate, as measured by the ex-post realized real returns to one-year

treasury bills, is only 0.61, with a standard error of 0.11, which is substantially smaller than

our estimate of ρ of 0.90 in the benchmark model. The extended model does a much better

job at accounting for the persistence of the risk-free rate (0.62). In this model there are

both transitory and persistent shocks to the risk-free rate. The former account for roughly

70 percent of the variation in λt.

Implications for the correlation puzzle Table 6 reports the model’s implications for

the correlation of stock returns with consumption and dividend growth. Recall that in

the benchmark model consumption and dividends follow a random walk. In addition, the

estimated process for the growth rate of the time-preference shock is close to a random walk.

So, the correlation between stock returns and consumption growth implied by the model is

essentially the same across di§erent horizons. A similar property holds for the correlation

between stock returns and dividend growth.

In the extended model, persistent changes in the variance of the growth rate of consump-

tion and dividends can induce persistent changes in the conditional mean of these variables.

As a result, this model produces correlations between stock returns and fundamentals that

vary across di§erent horizons.

The benchmark model does well at matching the correlation between stock returns and

consumption growth in the data, because this correlation is similar at all horizons. In

contrast, the empirical correlation between stock returns and dividend growth increases with

the time horizon. The estimation procedure chooses to match the long-horizon correlations

and does less well at matching the yearly correlation. This choice is dictated by the fact that

it is harder for the model to produce a low correlation between stock returns and dividend

growth than it is to produce a low correlation between stock returns and consumption growth.

This property reflects the fact that the dividend growth rate enters directly into the equation

for stock returns (see equation (3.11)).

The extended model does better at capturing the fact that the correlations between

equity returns and dividend growth rises with the horizon for two reasons. When volatility

is high, the returns to equity are high. Since αd < 0, the growth rate of dividends is low. As

a result, the one-year correlation between dividend growth and equity returns is negative.
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The variance of the shock to the dividend growth rate is mean reverting. So, the e§ect

of a negative value of αd becomes weaker as the horizon extends. The direct association

between equity returns and dividend growth (see equation (3.11)), which induces a positive

correlation, eventually dominates as the horizon gets longer.

An additional force that allows the extended model to generate a lower short-term cor-

relation between equity returns and dividend growth, is that the estimated value of πdλ is

negative. The estimation algorithm chooses parameters that allow the model to do rea-

sonably well in matching the one- and five-year correlation, at the cost of doing less well

at matching the ten-year correlation. Presumably, this choice reflects the greater precision

with which the one-year and five-year correlations are estimated relative to the ten-year

correlation.

Taking sampling uncertainty into account, the extended model matches the correlation

between stock returns and consumption growth at di§erent horizons. Interestingly, the

correlation between stock returns and consumption growth increases with the horizon. This

increase is less pronounced than the corresponding increase in the correlation between stock

returns and dividend growth. The reason is that the e§ect of volatility on the mean growth

of consumption is smaller (αd < αc < 0) and πcλ is small and positive.

To document the relative importance of the correlation puzzle and the equity premium

puzzle, we re-estimate the model with conditional heteroskedasticity subject to the constraint

that it matches the average equity premium and the average risk-free rate. We report our

results in Tables 3 through 7. Even though the estimates of γ and  are similar to those

reported before, the implied value of θ goes from −0.74 to −2.34, which is why the equity

premium implied by the model rises. This version of the model produces quite low corre-

lations between stock returns and consumption growth. However, the one-year correlation

between stock returns and dividend growth implied by the model is much higher than that

in the data (0.64 versus 0.08). The one-year correlation between stock returns and dividend

growth is estimated much more precisely than the equity premium. So, the estimation al-

gorithm chooses parameters for the extended model that imply a lower equity premium in

return for matching the one-year correlation between stock returns and dividend growth.

We conclude by highlighting an important di§erence between our model and long-run risk

models. For concreteness, we focus on the recent version of the long-run risk model proposed

by Bansal, Kiku, and Yaron (2012). Working with their parameter values, we find that the
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correlation between stock returns and consumption growth are equal to 0.66, 0.88, and 0.92

at the one-, five- and ten-year horizon, respectively. Their model also implies correlations

between stock returns and dividend growth equal to 0.66, 0.90, and 0.93 at the one-, five-

and ten-year horizon, respectively. Our estimates reported in Table 1 imply that both sets

of correlations are counterfactually high. The source of this empirical shortcoming is that

all the uncertainty in the long-run risk model stems from the endowment process.

Implications for the price-dividend ratio In Table 4 we see that both the benchmark

and the extended models match the average price-dividend ratio very well. The benchmark

model somewhat underpredicts the persistence and volatility of the price-dividend ratio. The

extended model does much better at matching those moments. The moments implied by

this model are within two standard errors of their sample counterparts.

Table 7 presents evidence reproducing the well-known finding that excess returns are

predictable based on lagged price-dividend ratios. We report the results of regressing excess-

equity returns over holding periods of 1, 3 and 5 years on the lagged price-dividend ratio.

The slope coe¢cients are −0.09, −0.26, and −0.39, respectively, while the R-squares are

0.04, 0.13, and 0.23, respectively.

The analogue results for the benchmark model are shown in the top panel of Table 7.

In this model, consumption is a martingale with conditionally homoscedastic innovations.

So, by construction, excess returns are unpredictable in population at a monthly frequency.

Since we aggregate the model to annual frequency, temporal aggregation produces a small

amount of predictability (see column titled “Model (plim)”).

Stambaugh (1999) and Boudoukh et al. (2008) argue that the predictability of excess

returns may be an artifact of small-sample bias and persistence in the price-dividend ratio.

Our results are consistent with this hypothesis. The column labeled “Model (median)”

reports the plim of the small moments implied by our model. Note that the slope coe¢cients

for the 1, 5, and 10 year horizons, are −0.05, −0.14 and −0.21, respectively. In each case,

the median Monte Carlo point estimates are contained within a two-standard deviation band

of the respective data estimates.

Table 7 also presents results for the extended model. Because of conditional heteroskedas-

ticity in consumption, periods of high volatility in consumption growth are periods of high

expected equity returns and low equity prices. So, in principle, the model is able to generate

predictability in population. At our estimated parameter values this predictability is quite
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small. But, once we allow for the e§ects of small-sample bias, the extended model does quite

well at accounting for the regression slope coe¢cients.

Cochrane (1992) proposes a decomposition of the variation of the price-dividend ratio

into three components: excess returns, dividend growth, and the risk-free rate.15 While this

decomposition is not additive, authors like Bansal and Yaron (2004) use it to compare the

importance of these three components in the model and data.

In our sample, the point estimate for the percentage of the variation in price—dividend

ratio due to excess return fluctuations is 102.2 percent, with a standard error of 30 percent.

Dividend growth accounts for −14.5 with a standard error of 13 percent. Finally, the risk-

free rate accounts for −20.4 percent with a standard error of 14.8 percent. These results are

similar to those in Cochrane (1992) and Bansal and Yaron (2004).

Based on the small-sample moments implied by the extended model, the fraction of the

variance of the price-dividend ratio accounted for by excess returns, dividend growth, and

the risk-free rate is 34.2, −2.8, and 54.6, respectively. So, this model clearly overstates

the importance of the risk-free rate and understates the importance of excess returns in

accounting for the variance of the price-dividend ratio.

The extended model does substantially better than the benchmark model. Based on the

small-sample moments implied by the extended model, the fraction of the variance of the

price-dividend ratio accounted for by excess returns, dividend growth, and the risk-free rate

is 41.2, −8.2, and 32.4. The fraction attributed to excess returns is just within two standard

errors from the corresponding point estimate. The fraction attributed to dividend growth is

well within two standard errors of the point estimate. Still, the model overstates the fraction

attributed to the risk-free rate.16

It is interesting to contrast these results to those in Bansal and Yaron (2004). Their

model also attributes a large fraction of the variance of the price-dividend ratio to excess

returns. At the same time, their model substantially overstates the role of dividend growth

in accounting for the variance of the price-dividend ratio.

15The fraction of the volatility of the price-dividend ratio attributed to variable x is given by
15X

j=1

Ωjcov(zdt, xt+j)/var(zdt), where Ω = 1/(1 + E(Rd,t+1)). See Cochrane (1992) for details.

16We find substantial evidence of small-sample bias in these statistics. For the benchmark model the
fraction of the variance of the price-dividend ratio accounted for, in population, by excess returns, dividend
growth, and the risk-free rate is −3.1, −0.4, and 81.0, respectively. The analogue numbers for the extended
model are 5.7, 0.3, and 54.2, respectively.
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6. Bond term premia

As we emphasize above, the equity premium in our estimated models results primarily from

the valuation risk premium. Since this valuation premium increases with the maturity of an

asset, a natural way to assess the plausibility of our model is to evaluate its implications for

the slope of the real yield curve.

Table 8 reports the mean and standard deviation of ex-post real yields on short-term

(one year) Treasury Bills, intermediate-term government bonds (with approximate maturity

of five years), and long-term government bonds (with approximate maturity of twenty years).

The ex-post yields on five (twenty) year bonds are computed as the di§erence between the

five (twenty) year nominal yield and the ex-post five (twenty) year inflation rate (yields are

expressed on an annualized basis). A number of features are worth noting. First, consistent

with Alvarez and Jermann (2005), the term structure of real yields is upward sloping. Second,

the real yield on long-term bonds is positive. This result is consistent with Campbell, Shiller

and Viceira (2009) who report that the real yield on long-term TIPS has always been positive

and is usually above two percent.

Our model implies that long-term bonds command a positive risk premium that increases

with the maturity of the bond (see Appendix C for details on the pricing of long-term bonds).

The latter property reflects the fact that longer maturity assets are more exposed to valuation

risk. Table 8 shows that, taking sampling uncertainty into account, the benchmark and

extended models are consistent with the observed mean yields, except that the former model

generates slightly larger yields for long-term bonds than in the data. The table also shows

that the estimated models account for the volatility of the yields on short-, intermediate-,

and long-term bonds. So, our model can account for key features of the intermediate and

long-term bond returns, even though these moments were not used to estimate the model.

There is clearly substantial sampling uncertainty associated with our estimates of real

yields to long-term bonds and the slope of the term structure. In part this property reflects

the fact that we are working with ex-post returns.

D’Agostino and Surico (2012) use flexible statistical models to construct inflation fore-

casts for the period 1999 to 2007. We use the inflation forecasts from their time-varying AR

models to compute ex-ante real yields at the one, five and twenty year horizons.17 Table 8

reports these yields. These ex-ante yields provide strong evidence that the intermediate and

17We thank D’Agostino and Surico for providing us with these forecasts.
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long-term bond yields are positive. Second, both of these bond yields are higher than the

one-year rate. Taking sampling uncertainty into account, the extended model accounts well

for the level and volatility of the di§erent yields. One exception is that the extended model

somewhat overstates the volatility of the short-term interest rate.

Luo (2014) constructs alternative models of expected inflation for one, five and ten-year

horizons. He argues that the random walk model does a better job at forecasting one-

year inflation than more sophisticated models like time-varying VAR methods of the sort

considered by Primiceri (2005). It also does better than Bayesian vector autoregressions

embodying Minnesota priors. However, he argues that the latter does best at forecasting

inflation at the five- and ten-year horizons. He uses his inflation forecasts to construct

estimate of ex-ante average real yields for the short-term, intermediate-term and long-term

bonds. These estimates are equal to: 0.46 (0.78), 1.93 (0.99), and 2.90 (0.84), respectively.

Numbers in parenthesis are the corresponding standard errors. These results indicate that

the real yield curve is upward sloping. Moreover, the ex-ante average real yields in the

intermediate and long-term bonds are positive and statistically di§erent from zero.

Piazzesi and Schneider (2007) and Beeler and Campbell (2012) argue that the bond term

premium and the yield on long-term bonds are useful for discriminating between compet-

ing asset pricing models. For example, they stress that long-run risk models, of the type

pioneered by Bansal and Yaron (2004), imply negative long-term bond yields and a nega-

tive bond term premium. The intuition is as follows: in a long-run risk model agents are

concerned that consumption growth may be dramatically lower in some future state of the

world. Since bonds promise a certain payout in all states of the world, they o§er insurance

against this possibility. The longer the maturity of the bond, the more insurance it o§ers

and the higher is its price. So, the term premium is downward sloping. Indeed, the return

on long-term bonds may be negative. Beeler and Campbell (2012) show that the return on

a 20-year real bond in the Bansal, Kiku and Yaron (2012) model is −0.88.

Standard rare-disaster models also imply a downward sloping term structure for real

bonds and a negative real yield on long-term bonds. See, for example the benchmark model

in Nakamura et al. (2013). According to these authors, these implications can be reversed

by introducing the possibility of default on bonds and to assume that probability of partial

default is increasing in the maturity of the bond.18 So, we cannot rule out the possibility

18Nakamura et al (2013) consider a version of their model in which the probability of partial default on
a perpetuity is 84 percent, while the probability of partial default on short-term bonds is 40 percent. This
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that other asset-pricing models can account for bond term premia and the rate of return on

long-term bonds. Still, it seems clear that valuation risk is a natural explanation of these

features of the data.

According to Table 8, the benchmark and extended models imply that the di§erence

between stock returns and long-term bond yields is roughly 1 percent. This value is sub-

stantially lower than our point estimate (4.16 percent). But the standard error associated

with the point estimate is quite large (2.39). Working with his estimate of the real yield on

20-year bonds, Luo (2014) reports that the di§erence between stock returns and long-term

bond yields is roughly 2.5 percent with a standard error of 2.09. So, taking sampling un-

certainty into account, both the benchmark and extended models are consistent with the

data.

In our model, the positive premium that equity commands over long-term bonds reflects

the di§erence between an asset of infinite and twenty-year maturity. Consistent with this

perspective, Binsbergen, Hueskes, Koijen, and Vrugt (2011) estimate that 90 (80) percent

of the value of the S&P 500 index corresponds to dividends that accrue after the first five

(ten) years.

It is important to emphasize that the equity premium in our model is not solely driven

by the term premium. One way to see this property is to consider the results of regressing

the equity premium on two alternative measures of excess bond yields. The first measure is

the di§erence between yields on bonds of 20-year and 1-year maturities. The second measure

is the di§erence between yields on bonds of 5-year and 1-year maturities. Table 9 reports

our results. Not surprisingly, the benchmark model does poorly since the expected equity

premium and the term premia are constant. The extended model does better in the sense

that the model slopes are within two standard errors of the slope point estimates. Also, both

models are consistent with the fact that the R2 in these regressions are quite low.

We conclude with an interesting observation made by Binsbergen, Brandt, and Koijen

(2012). Using data over the period 1996 to 2009, these authors decompose the S&P500 index

into portfolios of short-term and long-term dividend strips. The first portfolio entitles the

holder to the realized dividends of the index for a period of up to three years. The second

portfolio is a claim on the remaining dividends. Binsbergen et al (2012) find that the short-

term dividend portfolio has a higher risk premium than the long-term dividend portfolio, i.e.

model generates a positive term premium and a positive real return on long-term bonds.
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there is a negative stock term premium. They argue that this observation is inconsistent with

habit-formation, long-run risk models and standard of rare-disaster models. Our model, too,

has di¢culty in accounting for the Binsbergen et al (2012) negative stock term premium.19

Of course, our sample is very di§erent from theirs and their negative stock term premium

result is heavily influenced by the recent financial crisis (see Binsbergen et al (2011)). Also,

Boguth, Carlson, Fisher, and Simutin (2012) argue that the Binsbergen et al (2012) results

may be significantly biased because of the impact of small pricing frictions.

Shortcomings of the model Perhaps the most important shortcoming of our model is

its implication for the correlation between the price-dividend ratio and the risk-free rate.

Using ex-post measures of the risk-free rate we estimate this correlation to be 0.14 with a

standard error of 0.14. Using the ex-ante measure of the risk-free rate reported in Table 8,

this correlation is 0.18 with a standard error of 0.18. The extended model predicts that this

correlation should be sharply negative (−0.77). The intuition for this result is clear. When

there is a shock to the rate of time preference, agents want to save more, both in the form

of bonds and stocks. So, the price-dividend ratio must rise to clear the equity market and

the risk-free rate must fall to clear the bond market.

To remedy this shortcoming, the model requires a shock that induces positive comovement

between the price-dividend ratio and the risk-free rate. Interestingly, that is exactly what the

long-run risk shock stressed by Bansal, Kiku and Yaron (2012) does. A shock that induces

a persistent change in the growth rate of dividends causes stock prices to go up since equity

now represents a claim to a higher flow of dividends. Dividends do not change much in the

short run, so the price-dividend ratio goes up. At the same time, the shock causes agents

to want to shift away from bond holdings and into equity. So, the risk-free rate must rise

to clear the bond market. Other things equal, the long-run risk shock induces a positive

correlation between the price-dividend ratio and the risk-free rate. In ongoing work, Luo

(2014) is estimating a model that allows for both long-run and valuation risks to assess

their relative importance and the extent to which they can jointly explain the properties of

equities and the term structure of interest rates.

19Recently, Nakamura et al (2013) show that a time-vaying rare disaster model in which the component
of consumption growth due to a rare disaster follows an AR(1) process is consistent with the Binsbergen et
al (2012) results. Belo et al. (2013) show that the Binsbergen et al. (2012) result can be reconciled in a
variety of models if the dividend process is replaced with processes that generate stationary leverage ratios.
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7. Conclusion

In this paper we argue that allowing for demand shocks substantially improves the per-

formance of representative-agent, asset-pricing models. Specifically, it allows the model to

account for the equity premium, bond term premia, and the correlation puzzle with low

degrees of estimated risk aversion. According to our estimates, valuation risk is by far the

most important determinant of the equity premium and the bond term premia.

The recent literature has incorporated many interesting features into standard asset-

pricing models to improve their performance. Prominent examples, include habit formation,

long-run risk, time-varying endowment volatility, and model ambiguity. We abstract from

these features to isolate the empirical role of valuation risk. But they are, in principle,

complementary to valuation risk and could be incorporated into our analysis. We leave this

task for future research.
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[14] Borovička, Jaroslav, Lars Peter Hansen, Mark Hendricks, and José A. Scheinkman.

“Risk-Price Dynamics,” Journal of Financial Econometrics 9 (1): 3-65, 2011.

[15] Boguth, Oliver, Murray Carlson, Adlai Fisher, and Mikhal Simutin. “Leverage and the

Limits of Arbitrage Pricing: Implications for Dividend Strips and the Term Structure

of Equity Risk Premia,” manuscript, Arizona State University, 2012.

[16] Boudoukh, Jacob, Matthew Richardson, and Robert F. Whitelaw. “The Myth of Long-

Horizon Predictability,” Review of Financial Studies 24 (4): 1577-605, 2008.

[17] Campbell, John Y. “Bond and Stock Returns in a Simple Exchange Model,” The Quar-

terly Journal of Economics 101 (4): 785-803, 1986.

[18] Campbell, John Y. “Consumption-Based Asset Pricing,” in Handbook of the Economics

of Finance, Eds. G.M. Constantinides, M. Harris and R. Stulz, 801-85, 2003.

[19] Campbell, John Y., and John Ammer. “What Moves the Stock and Bond Markets? A

Variance Decomposition for Long-Term Asset Returns,” The Journal of Finance 48 (1):

3-37, 1993.

[20] Campbell, John Y., and John H. Cochrane. “By Force of Habit: A Consumption-based

Explanation of Aggregate Stock Market Behavior,” Journal of Political Economy, 107

(2): 205-51, 1999.

[21] Campbell, John Y., and Robert J. Shiller. “The Dividend-price Ratio and Expectations

of Future Dividends and Discount Factors,” Review of Financial Studies 1 (3): 195-228,

1988.

[22] Campbell, John, Robert Shiller, and Luis Viceira. “Understanding Inflation-Indexed

Bond Markets,” Brookings Papers on Economic Activity, 79-120, 2009.

[23] Cochrane, John H. “Explaining the Variance of Price Dividend Ratios,” Review of Fi-

nancial Studies 5: 243-80, 1992.

[24] Cochrane, John H. Asset Pricing, Princeton University Press, 2001.

[25] Cochrane, John H. “Presidential Address: Discount Rates,” The Journal of Finance,

66 (4): 1047-108, 2011.

29



[26] Cochrane, John H., and Lars Peter Hansen. “Asset Pricing Explorations for Macro-

economics,” NBER Macroeconomics Annual 1992, Volume 7, pp. 115-82. MIT Press,

1992.

[27] Correia, Isabel, Emmanuel Farhi, Juan Pablo Nicolini, and Pedro Teles. “Unconven-

tional Fiscal Policy at the Zero Bound,” American Economic Review, 103 (4): 1172-211,

2013.

[28] D’Agostino, Antonello and Paolo Surico “A Century of Inflation Forecasts,” The Review

of Economics and Statistics, 94 (4): 1097-1106, 2012.

[29] Dumas, Bernard, Alexander Kurshev, and Raman Uppal. “Equilibrium Portfolio Strate-

gies in the Presence of Sentiment Risk and Excess Volatility,” The Journal of Finance,

64 (2): 579-629, 2009.

[30] Du¢e, Darrell, and Larry G. Epstein. “Stochastic Di§erential Utility,” Econometrica,

60: 353-94, 1992.

[31] Eggertsson, Gauti. “Monetary and Fiscal Coordination in a Liquidity Trap,” Chapter

3 of Optimal Monetary and Fiscal Policy in the Liquidity Trap, Ph.D. dissertation,

Princeton University, 2004.

[32] Eggertsson, Gauti B., and Michael Woodford. “Zero Bound on Interest Rates and Op-

timal Monetary Policy,” Brookings Papers on Economic Activity, 1: 139-233, 2003.

[33] Epstein, Larry G., and Stanley E. Zin. “Substitution, Risk Aversion, and the Temporal

Behavior of Consumption and Asset Returns: A Theoretical Framework,” Econometrica,

57 (4): 937-69, 1989.

[34] Epstein, Larry G., and Stanley E. Zin. “Substitution, Risk Aversion, and the Tempo-

ral Behavior of Consumption and Asset Returns: An Empirical Analysis,” Journal of

Political Economy, 99: 263-86, 1991.

[35] Fernandez-Villaverde, Jesus, Pablo Guerron-Quintana, Keith Kuester, and Juan Rubio-

Ramírez. “Fiscal Volatility Shocks and Economic Activity,” manuscript, University of

Pennsylvania, 2013.

30



[36] Gabaix, Xavier, and Matteo Maggiori. “International Liquidity and Exchange Rate

Dynamics,” manuscript, New York University, 2013.

[37] Garber, Peter M., and Robert G. King. “Deep Structural Excavation? A Critique of

Euler Equation Methods,” working paper No. 31, National Bureau of Economic Re-

search, 1983.

[38] Gârleanu, Nicolae, Leonid Kogan, and Stavros Panageas. “Displacement Risk and Asset

Returns,” Journal of Financial Economics, 105 (3): 491-510, 2012.

[39] Gourio, François. “Disaster Risk and Business Cycles,” American Economic Review,

102 (6): 2734-66, 2012.

[40] Grossman, Sanford J., Angelo Melino, and Robert J. Shiller. “Estimating the Continu-

ous Time Consumption Based Asset Pricing Model”, Journal of Business and Economic

Statistics, 5: 315-28, 1987.

[41] Hall, Robert E. “High Discounts and High Unemployment,” working paper No. 19871,

National Bureau of Economic Research, 2014.

[42] Hansen, Lars Peter, John C. Heaton, and Nan Li. “Consumption Strikes Back? Mea-

suring Long-Run Risk,” Journal of Political Economy, 116 (2): 260-302, 2008.

[43] Hansen, Lars Peter, and Ravi Jagannathan. “Implications of Security Market Data for

Models of Dynamic Economies,” Journal of Political Economy, 99 (2): 225-62, 1991.

[44] Hansen, Lars Peter, and Kenneth J. Singleton. “Generalized Instrumental Variables

Estimation of Nonlinear Rational Expectations Models,” Econometrica, 50, 1269-86,

1982.

[45] Huo, Zhen, and José-Víctor Ríos-Rull. “Paradox of Thrift Recessions,” working paper

No. 19443, National Bureau of Economic Research, 2013.

[46] Kandel, Shmuel, and Robert F. Stambaugh. “Expectations and Volatility of Consump-

tion and Asset Returns,” Review of Financial Studies 3 (2): 207-32, 1990.

[47] Kocherlakota, Narayana R. “The Equity Premium: It’s Still a Puzzle,” Journal of

Economic Literature, 34, 42-71, 1996.

31



[48] Kreps, David M., and Evan L. Porteus. “Temporal Resolution of Uncertainty and Dy-

namic Choice Theory,” Econometrica, 46, 185-200, 1978.

[49] Lettau, Martin, and Sydney C. Ludvigson. “Shocks and Crashes,” manuscript, New

York University, 2011.

[50] Lucas Jr, Robert E. “Asset Prices in an Exchange Economy,” Econometrica, 46, 1429-45,

1978.

[51] Luo, Victor. “Using Bond Yields to Discriminate Between Long-run and Valuation Risk

Models,” manuscript, Northwestern University, 2014.

[52] Maurer, Thomas A. “Is Consumption Growth Merely a Sideshow in Asset Pricing?,”

manuscript, London School of Economics, 2012.

[53] Mehra, Rajnish, and Edward C. Prescott. “The Equity Premium: A Puzzle,” Journal

of Monetary Economics, 15 (2): 145-61, 1985.

[54] Nakamura, Emi, Jón Steinsson, Robert Barro, and José Ursúa. “Crises and Recover-

ies in an Empirical Model of Consumption Disasters,” American Economic Journal:

Macroeconomics, 5 (3), 35-74, 2013.

[55] Newey, Whitney K., and Kenneth D. West. “A Simple, Positive Semi-definite, Het-

eroskedasticity and Autocorrelation Consistent Covariance Matrix,” Econometrica, 55

(3): 703-8, 1987.

[56] Normandin, Michel, and Pascal St-Amour. “Substitution, Risk Aversion, Taste Shocks

and Equity Premia,” Journal of Applied Econometrics, 13 (3): 265-81, 1998.

[57] Parker, Jonathan A. “The Consumption Risk of the Stock Market,” Brookings Papers

on Economic Activity, 2: 279-348, 2001.

[58] Pavlova, Anna, and Roberto Rigobon. “Asset Prices and Exchange Rates,” Review of

Financial Studies, 20 (4): 1139-81, 2007.

[59] Piazzesi, Monika, and Martin Schneider. “Equilibrium Yield Curves,” NBER Macroeco-

nomics Annual 2006, 21: 389-472, 2007.

32



[60] Primiceri, Giorgio. “Time Varying Structural Vector Autoregressions and Monetary

Policy,” The Review of Economic Studies, 72: 821-852, 2005.

[61] Rietz, Thomas A. “The Equity Risk Premium a Solution,” Journal of Monetary Eco-

nomics, 22 (1): 117-31, 1988.

[62] Shiller, Robert. “Do Stock Prices Move Too Much to be Justified by Subsequent Divi-

dends,” American Economic Review, 71: 421-36, 1981.

[63] Skiadas, Costis. “Asset Pricing Theory,” Princeton University Press, 2009.

[64] Stambaugh, Robert F. “Predictive Regressions,” Journal of Financial Economics, 54,

375-421, 1999.

[65] Stockman, Alan C., and Linda L. Tesar. “Tastes and Technology in a Two-Country

Model of the Business Cycle: Explaining International Comovements,” The American

Economic Review, 85 (1): 168-185, 1995.

[66] Wachter, Jessica A. “Can Time-varying Risk of Rare Disasters Explain Aggregate Stock

Market Volatility?, Journal of Finance, forthcoming.

[67] Weil, Philippe. “The Equity Premium Puzzle and the Risk-free Rate Puzzle,” Journal

of Monetary Economics, 24 (3): 401-421, 1989.

33



8. Appendix

8.1. Appendix A

In this appendix, we solve the model in Section 3 analytically for the case of CRRA utility.

Let Ca,t denote the consumption of the representative agent at time t. The representative

agent solves the following problem:

Ut = maxEt

1X

i=0

δiλt+i
C1−γa,t+i

1− γ
,

subject to the flow budget constraints

Wa,i+1 = Rc,i+1 (Wa,i − Ca,i) ,

for all i ≥ t. The variable Rc,i+1 denotes the gross return to a claim that pays the aggregate

consumption as in equation (3.8), financial wealth is Wa,i = (Pc,i + Ci)Sa,i, and Sa,i is the

number of shares on the claim to aggregate consumption held by the representative agent.

The first-order condition for Sa,t+i+1 is:

δiλt+iC
−γ
a,t+i = Et

"
δi+1λt+i+1C

−γ
a,t+i+1Rc,i+1

#
.

In equilibrium, Ca,t = Ct, Sa,t = 1. The equilibrium value of the intertemporal marginal

rate of substitution is:

Mt+1 = δ
λt+1
λt

&
Ct+1
Ct

'−γ
. (8.1)

The Euler equation for stock returns is the familiar,

Et [Mt+1Rc,t+1] = 1.

We now solve for Pc,t. It is useful to write Rc,t+1 as

Rc,t+1 =
(Pc,t+1/Ct+1 + 1)

Pc,t/Ct

&
Ct+1
Ct

'
.

In equilibrium:

Et

*
Mt+1

&
Pc,t+1
Ct+1

+ 1

'&
Ct+1
Ct

'+
=
Pc,t
Ct
. (8.2)

Replacing the value of Mt+1 in equation (8.2):

Et

"
δ
λt+1
λt

&
Ct+1
Ct

'−γ &
Pc,t+1
Ct+1

+ 1

'&
Ct+1
Ct

'#
=
Pc,t
Ct
.
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Using the fact that λt+1/λt is known as of time t we obtain:

δ
λt+1
λt
Et

*
exp

"
µ+ σc"

c
t+1

#1−γ
&
Pct+1
Ct+1

+ 1

'+
=
Pct
Ct
.

We guess and verify that Pct+1/Ct+1 is independent of "ct+1. This guess is based on the

fact that the model’s price-consumption ratio is constant absent time-preference shocks.

Therefore,

δ
λt+1
λt

exp
(
(1− γ)µ+ (1− γ)2 σ2c/2

)
Et

&
Pc,t+1
Ct+1

+ 1

'
=
Pc,t
Ct
. (8.3)

We now guess that there are constants k0, k1,..., such that

Pc,t
Ct

= k0 + k1 (λt+1/λt) + k2 (λt+1/λt)
1+ρ + k3 (λt+1/λt)

1+ρ+ρ2 + ... (8.4)

Using this guess,

Et

&
Pc,t+1
Ct+1

+ 1

'

= Et

.
k0 + k1

"
(λt+1/λt)

ρ exp
"
σλ"

λ
t+1

##
+ k2

"
(λt+1/λt)

ρ exp
"
σλ"

λ
t+1

##1+ρ
+ ...+ 1

/

= k0 + k1 (λt+1/λt)
ρ exp

"
σ2λ/2

#
+ k2 (λt+1/λt)

ρ(1+ρ) exp
"
(1 + ρ)2 σ2λ/2

#
+ ...+ 1. (8.5)

Substituting equations (8.4) and (8.5) into equation (8.3) and equating coe¢cients leads to

the following solution for the constants ki:

k0 = 0,

k1 = δ exp
(
(1− γ)µ+ (1− γ)2 σ2c/2

)
,

and for n ≥ 2

kn = k
n
1 exp

nh
1 + (1 + ρ)2 +

"
1 + ρ+ ρ2

#2
+ ...+

"
1 + ...+ ρn−2

#2i
σ2λ/2

o
.

We assume that the series {kn} converges, so that the equilibrium price-consumption ratio

is given by equation (8.4). Hence, the realized return on the consumption claim is

Rc,t+1 =
Ct+1
Ct

k1 (λt+2/λt+1) + k2 (λt+2/λt+1)
1+ρ + ...+ 1

k1 (λt+1/λt) + k2 (λt+1/λt)
1+ρ + ...

. (8.6)

The equation that prices the one-period risk-free asset is:

Et [Mt+1Rf,t+1] = 1.
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Taking logarithms of both sides of this equation and noting that Rf,t+1 is known at time t,

we obtain:

rf,t+1 = − logEt (Mt+1) .

Using equation (8.1),

Et (Mt+1) = δ
λt+1
λt
Et
(
exp

"
−γ
"
µ+ σc"

c
t+1

##)

= δ
λt+1
λt

exp
"
−γµ+ γ2σ2c/2

#
.

Therefore,

rf,t+1 = − log (δ)− log (λt+1/λt) + γµ− γ2σ2c/2.

Using equation (3.4), we obtain

E
(
(λt+1/λt)

−1) = exp
&
σ2λ/2

1− ρ2

'
.

We can then write the unconditional risk-free rate as:

E (Rf,t+1) = exp

&
σ2λ/2

1− ρ2

'
δ−1 exp(γµ− γ2σ2c/2).

Thus, the equity premium is given by:

E [(Rc,t+1)−Rf,t+1] = exp
&
σ2λ/2

1− ρ2

'
δ−1 exp(γµ− γ2σ2c/2)

(
exp

"
γσ2c
#
− 1
)
,

which can be written as:

E [(Rc,t+1)−Rf,t+1] = E (Rf,t+1)
(
exp

"
γσ2c
#
− 1
)
.

8.2. Appendix B

This appendix provides a detailed derivation of the equilibrium of the model economy where

the representative agent has Epstein-Zin preferences and faces time-preference shocks. The

agent solves the following problem:

U (Wt) = max
Ct

h
λtC

1−1/ 
t + δ

"
U∗t+1

#1−1/ i1/(1−1/ )
, (8.7)

where U∗t+1 =
(
Et
"
U (Wt+1)

1−γ#)1/(1−γ). The optimization is subject to the following budget
constraint:

Wt+1 = Rc,t+1 (Wt − Ct) .

36



The agent takes as given the stochastic processes for the return on the consumption claim

Rc,t+1 and the preference shock λt+1. For simplicity, we omit the dependence of life-time

utility on the processes for λt+1 and Rc,t+1.

The first-order condition with respect to consumption is,

λtC
−1/ 
t = δ

"
U∗t+1

#−1/ (
Et
"
U (Wt+1)

1−γ#)1/(1−γ)−1Et
"
U (Wt+1)

−γ U 0 (Wt+1)Rc,t+1
#
,

and the envelope condition is:

U 0 (Wt) = U (Wt)
1/ δ

"
U∗t+1

#−1/ (
Et
"
U (Wt+1)

1−γ#)1/(1−γ)−1Et
"
U (Wt+1)

−γ U 0 (Wt+1)Rc,t+1
#
.

Combining the first-order condition and the envelope condition we obtain:

U 0 (Wt) = U (Wt)
1/ λtC

−1/ 
t . (8.8)

This equation can be used to replace the value of U 0 (Wt+1) in the first order condition:

λtC
−1/ 
t = δ

"
U∗t+1

#−1/ (
Et
"
U (Wt+1)

1−γ#)1/(1−γ)−1Et
.
U (Wt+1)

1/ −γ λt+1C
−1/ 
t+1 Rc,t+1

/
.

Using the expression for U∗t+1, this last equation can be written after some algebra as,

1 = Et (Mt+1Rc,t+1) . (8.9)

Here, Mt+1 is the stochastic discount factor, or intertemporal marginal rate of substitution,

which is given by:

Mt+1 = δ
λt+1
λt

U (Wt+1)
1/ −γ

"
U∗t+1

#1/ −γ
C
−1/ 
t+1

C
−1/ 
t

.

We guess and verify the policy function for consumption and the form of the utility

function. As in Weil (1989) and Epstein and Zin (1991), we guess that:

U (Wt) = atWt,

Ct = btWt.

Replacing these guesses in equation (8.8) and simplifying yields:

a
1−1/ 
t = λtb

−1/ 
t . (8.10)

Using the same guesses in the Hamilton-Jacobi-Bellman equation (8.7) and simplifying, we

obtain:

at =

2

64λtb1−1/ t + δ

0

@
"
Et

 &
at+1

Wt+1

Wt

'1−γ!#1/(1−γ)
1

A
1−1/ 

3

75

1/(1−1/ )

.
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Finally, using the budget constraint to replace Wt+1/Wt we obtain:

at =

*
λtb

1−1/ 
t + δ

.(
Et
"
(at+1 (1− bt)Rc,t+1)

1−γ#)1/(1−γ)/1−1/ 
+1/(1−1/ )

. (8.11)

Equations (8.10) and (8.11) give a solution to at and bt.

Combining equations (8.10) and (8.11) we obtain:

λtb
−1/ 
t (1− bt) = δ

.(
Et
"
(at+1 (1− bt)Rc,t+1)

1−γ#)1/(1−γ)/1−1/ ,

which we can replace in the expression for the stochastic discount factor together with (8.10)

to obtain:

Mt+1 =

&
δ
λt+1
λt

'(1−γ)/(1−1/ )&
bt+1
bt
(1− bt)

'−((1/ −γ)/ )/(1−1/ )&
Ct+1
Ct

'−1/ 
(Rc,t+1)

1/ −γ .

Now note that θ = (1− γ) / (1− 1/ ), and that

Ct+1
Ct

Rc,t+1
=
bt+1Rc,t+1 (Wt − Ct) / (btWt)

Rc,t+1
=
bt+1 (1− bt)

bt
,

to finally get,

Mt+1 =

&
δ
λt+1
λt

'θ &
Ct+1
Ct

'− θ
 

(Rc,t+1)
θ−1 .

Taking logarithms of both sides and equating the consumption of the representative agent

to aggregate consumption yields equation (3.9).

The rest of the equilibrium derivation involves solving for rc,t+1, rd,t+1, and rf,t+1. Un-

til this point, we did not need to specify the process for the time-preference, consumption

growth, and dividend growth shocks. We solve the rest of the model assuming the general

processes of Subsection 3.4 given in equations (3.21) through (3.24). Recovering the equi-

librium values for the benchmark model is easily done by setting πcλ = πdλ = ση = 0 and

ν = σw = αc = αd = 0.

To price the consumption claim, we must solve the pricing condition:

Et [exp (mt+1 + rc,t+1)] = 1.

We guess that the logarithm of the price consumption ratio, zct ≡ log (Pc,t/Ct), is

zct = Ac0 + Ac1xt + Ac2ηt+1 + Ac3σ
2
t ,

and approximate

rc,t+1 = κc0 + κc1zct+1 − zct +∆ct+1. (8.12)
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Replacing the approximation and the guessed solution for zct on the pricing condition gives

Et [exp (θ log (δ) + θ log (λt+1/λt) + (1− γ)∆ct+1 + θκc0 + θκc1zct+1 − θzct)] = 1.

Computing this expectation requires some algebra and yields the equation

0 = θ log (δ) + (1− γ)µ− (1− γ)αcσ
2 + θκc0 − θAc0 + θκc1Ac0 + ((1− γ)αc + θκc1Ac3) (1− ν)σ2

+((1− γ) πcλ + θκc1Ac1σλ)
2 /2 + (θκc1Ac2)

2 /2 + (((1− γ)αc + θκc1Ac3)σw)
2 /2

+θ (κc1Ac1ρ+ 1− Ac1) xt + θ (ση − Ac2) ηt+1

+
"
(1− γ)2 /2 + ((1− γ)αc + θκc1Ac3) v − θAc3

#
σ2t .

In equilibrium, this equation must hold in all possible states resulting in the restrictions:

Ac1 =
1

1− κc1ρ
,

Ac2 = ση,

Ac3 =
(1− γ) /2 + αcv

1− κc1v
(1− 1/ ) ,

and

Ac0 =
log (δ) + (1− 1/ )µ− (1− 1/ )αcσ2 + κc0 + ((1− 1/ )αc + κc1Ac3) (1− ν)σ2

1− κc1

+
θ ((1− 1/ ) πcλ + κc1Ac1σλ)

2 /2 + θ (κc1Ac2)
2 /2 + θ (((1− 1/ )αc + κc1Ac3)σw)

2 /2

1− κc1
.

To solve for the risk-free rate, we again use the stochastic discount factor to price the

risk-free asset. In logarithms, the Euler equation is:

rf,t+1 = − log (Et (exp (mt+1)))

= − log
&
Et

&
exp

&
θ log (δ) + θ log (λt+1/λt)−

θ

 
∆ct+1 + (θ − 1) rc,t+1

'''
.

Using equation (8.12), we get:

rf,t+1 = − log (Et (exp (θ log (δ) + θ log (λt+1/λt)− γ∆ct+1 + (θ − 1) (κc0 + κc1zct+1 − zct)))) .

Substituting in the consumption process and the solution for the price-consumption ratio,

and after much algebra, we obtain,

rf,t+1 = −θ log (δ) + γµ− γαcσ
2 − ((θ − 1)κc1Ac2)

2 /2− ((θ − 1)κc1Ac1σλ − γπcλ)
2 /2

− (θ − 1)κc0 − (θ − 1)κc1Ac0 − ((θ − 1)κc1Ac3 − γαc) (1− ν)σ2 + (θ − 1)Ac0

− (((θ − 1)κc1Ac3 − γαc)σw)
2 /2− log (λt+1/λt)

−
"
γ2/2 + ((θ − 1)κc1Ac3 − γαc) v − (θ − 1)Ac3

#
σ2t .
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Setting πcλ = πdλ = ση = 0 and ν = σw = αc = αd = 0, we get the benchmark-model value

of the risk-free rate (3.18).

Finally, we price a claim to dividends. Again, we assume the price-dividend ratio is given

by

zdt = Ad0 + Ad1xt + Ad2ηt+1 + Ad3σ
2
t ,

and approximate the log-linearized return to the claim to the dividend:

rd,t+1 = κd0 + κd1zdt+1 − zdt +∆dt+1. (8.13)

The pricing condition is

Et [exp (mt+1 + rd,t+1)] = 1.

Using the expressions for mt+1, rc,t+1 and rd,t+1,

1 = Et

*
exp θ log (δ) + θ log (λt+1/λt)−

θ

 
∆ct+1 + (θ − 1) (κc0 + κc1zct+1 − zct +∆ct+1)

+κd0 + κd1zdt+1 − zdt +∆dt+1] .

Replacing the consumption and dividend growth processes and of the price-consumption and

price-dividend ratios, we obtain:

Ad1 =
1

1− κd1ρ
,

Ad2 = ση,

Ad3 =
− (1/ − γ) (1− γ) + 2 (αd − 1/ αc) v + (πdc − γ)2 + σ2d

2 (1− κd1v)
,

and

θ log (δ) + (1− γ)µ+ (θ − 1)κc0 + (θ − 1)κc1Ac0 + κd0 − (αd − γαc)σ
2 − (θ − 1)Ac0

+ [(θ − 1)κc1Ac3 + κd1Ad3 + (αd − γαc)] (1− ν)σ2 + ((θ − 1)κc1Ac2 + κd1Ad2)
2 /2

+πdλ − γπcλ + [(θ − 1)κc1Ac1 + κd1Ad1σλ]
2 /2 + [(θ − 1)κc1Ac3 + κd1Ad3 + (αd − γαc)]

2 σ2w/2

= Ad0 (1− κd1) .

Having solved for these constants, we can compute the expected return on the dividend

claim, Et (rd,t+1). Setting the relevant parameters to zero, we obtain the benchmark-model

value of Et (rd,t+1) given in equation (3.17). We now derive the expression for the conditional

risk premium in the benchmark model:

Et (rd,t+1)− rf,t+1 = Et (κd0 + κd1zdt+1 − zdt +∆dt+1)− rf,t+1.
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Replacing the values of zdt and ∆dt+1 and computing expectations,

Et (rd,t+1)− rf,t+1 = κd0 + (κd1 − 1)Ad0 − xt + µ− rf,t+1.

Replacing the values of Ad0 and rf,t+1 and simplifying, we obtain expression (3.19).

8.3. Appendix C

In this appendix we solve for the prices of zero-coupon bonds of di§erent maturities. Let

P
(n)
t be the time-t price of a bond that pays one unit of consumption at t + n, with n ≥ 1.

The Euler equation for the one-period risk-free bond price P (1)t = 1/Rf,t+1 is

P
(1)
t = Et (Mt+1) .

The price for a risk-free bond maturing in n > 1 periods can be written recursively as:

P
(n)
t = Et

.
Mt+1P

(n−1)
t+1

/
.

In Appendix B we derive the value of the risk-free rate:

rf,t+1 = − ln
h
P
(1)
t

i
.

It is useful to write the risk-free rate as:

rf,t+1 = − log
&
λt+1
λt

'
− p1 − q1σ2t ,

where

p1 = θ log (δ)− γµ+ γαcσ
2 + (θ − 1)κc0 + (θ − 1) (κc1 − 1)Ac0

+ [(θ − 1)κc1Ac3 − γαc] (1− ν)σ2

+ [(θ − 1)κc1]
2 σ2η/2 + [(θ − 1)κc1Ac1σλ − γπcλ]

2 /2

+ [−γαc + (θ − 1)κc1Ac3]
2 σ2w/2.

and

q1 = γ2/2 + [(θ − 1)κc1Ac3 − γαc] v − (θ − 1)Ac3.

Let p(n)t = ln
h
P
(n)
t

i
. Therefore,

p
(1)
t = −rf,t+1

= p1 + xt + σηηt+1 + q
1σ2t .
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We now compute the price of a risk-free bond that pays one unit of consumption in two

periods:

p
(2)
t = lnEt

h
exp

.
mt+1 + p

(1)
t+1

/i
.

Using the expression formt+1 and the solution for rc,t+1 and zct we obtain, after much algebra,

p
(2)
t = p2 + (1 + ρ) xt + σηηt+1 + (1 + ν) q1σ2t ,

with

p2 = θ log (δ)− γµ+ γαcσ
2 + (θ − 1)κc0 + (θ − 1) (κc1 − 1)Ac0

+((θ − 1)κc1Ac3 − γαc + q1) (1− ν)σ2

+((θ − 1)κc1 + 1)
2 σ2η/2 + (((θ − 1)κc1Ac1 + 1) σλ − γπcλ)

2 /2

+ (−γαc + (θ − 1)κc1Ac3 + q1)
2 σ2w/2 + p

1.

Following the same procedure, we obtain the general formula for n ≥ 2 :

p
(n)
t = pn +

"
1 + ρ+ ...+ ρn−1

#
xt + σηηt+1 +

"
1 + v + ...+ νn−1

#
q1σ

2
t ,

where

pn = θ log (δ)− γµ+ γαcσ
2 + (θ − 1)κc0 + (θ − 1) (κc1 − 1)Ac0

+
"
(θ − 1)κc1Ac3 − γαc +

"
1 + ν + ...+ νn−2

#
q1
#
(1− ν)σ2

+((θ − 1)κc1 + 1)
2 σ2η/2 +

,(
(θ − 1)κc1Ac1 +

"
1 + ρ+ ...+ ρn−2

#)
σλ − γπcλ

-2
/2

+
(
−γαc + (θ − 1)κc1Ac3 +

"
1 + ν + ...+ νn−2

#
q1
)2
σ2w/2 + p

n−1.

Finally, we define the yield on an n-period zero-coupon bond as y(n)t = − 1
n
p
(n)
t .
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Table 1 

     Correlation Between Stock Returns and Per Capita 
Growth Rates of Fundamentals 

     
          
Panel A, 1929-2011       

          
Horizon Consumption Output Dividends Earnings 

          
1 year -0.05 0.05 0.05 0.10 

  (0.12) (0.10) (0.11) (0.10) 
5 years 0.001 0.00 0.30 0.20 

  (0.14) (0.12) (0.13) (0.13) 
10 years -0.11 -0.09 0.59 0.30 

  (0.20) (0.14) (0.14) (0.11) 
          
Panel B, 1871-2006       

          
Horizon Consumption Output Dividends Earnings 

          
1 year 0.09 0.14 -0.04 0.13 

  (0.09) (0.10) (0.10) (0.10) 
5 years 0.40 0.25 0.38 0.44 

  (0.18) (0.14) (0.15) (0.18) 
10 years 0.25 0.00 0.64 0.41 

  (0.18) (0.11) (0.17) (0.13) 

     
     !

! !
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Table 2 
        

Correlation Between Stock Returns and Per Capita 
Growth Rates of Fundamentals 

        
        
NIPA measures of consumption, 1929-2011 
        

Horizon Durables Non-durables Non-durables and 
services 

        
1 year -0.04 0.05 0.27 
  (0.13) (0.14) (0.14) 
5 years 0.07 -0.08 0.18 
  (0.11) (0.09) (0.08) 
10 years 0.21 -0.2 0.06 
  (0.15) (0.13) (0.14) 
        
        

!
! !
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Table 3 
Parameter Estimates and Standard Errors 

  Benchmark 
Model 

Extended 
Model 

Extended Model  
(match equity 

premium) 

γ 1.636 1.205 1.957 
  (0.033) (0.029) (0.032) 
      
ψ 1.466 1.382 1.694 
  (0.043) (0.004) (0.053) 
      
δ 0.9978 0.9979 0.9981 
  (0.0024) (0.0325) (0.0083) 
      
σc 0.0069 0.0065 0.0067 
  (0.0002) (0.0003) (9.701e-05) 
    

  
µ 1.52E-03 7.94E-04 2.51E-03 
  (0.00006) (5.152e-05) (6.375e-05) 
      
πcλ 0.00 0.0002 -0.0024 
    (0.0002) (0.0002) 
      
σd 0.0159 2.2757 1.3978 
  (0.0005) (0.1290) (0.20) 
      
πdc 0.0019 0.1157 0.3908 
  (0.0005) (0.0227) (0.1639) 
      
πdλ 0.00 -1.07E-02 5.25E-03 
    (0.0007) (0.0003) 
      
ση  0.00 5.93E-03 1.40E-02 
    (0.0003) (0.0004) 
      
ρ 0.99145 0.997 0.99891 
  (0.0004) (0.0001) (0.0002) 
     
σλ 5.42E-04 2.80E-04 1.82E-04 
  (1.527e-05) (1.006e-05) (6.690e-06) 
     Implied value of θ -2.00 -0.74 -2.34 
  (0.23) (0.10) (0.13) 
    
ν 0.00 0.962 0.979 

  
(0.005) (0.032) 

σω  0.00 
 

8.03E-06 
 

3.97E-06 
  (1.412e-06) (8.383e-06) 

αc  0.00 -11.538 -25.834 
  (1.064) (24.449) 

αd  0.00 -125.02 -25.37 
  (1.301) (17.078) 
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Table 4 
Moments Matched in Estimation 

Selected moments Data 
(Constrained) 

Data 
(Unconstrained) 

Benchmark 
Model 

Extended 
Model 

Extended 
Model  
(match 
equity 

premium) 
            
 
Average growth rate of 
consumption 

 
1.44 
(0.32) 

 
2.24 
(0.23) 

1.837 0.953 3.017 

Average growth rate of dividends 
 

1.44 
(0.32) 

 
-0.12 
(0.75) 

 
1.837 

 
0.953 

 
3.017 

 
 
Standard deviation of the growth 
rate of consumption 

 
2.08 
(0.38) 

 
2.15 
(0.31) 

2.387 
 

2.336 
 

2.491 
 

 
Standard deviation of the growth 
rate of dividends 

 
6.82 
(1.35) 

 
7.02 
(1.31) 

5.486 
 

7.327 
 

3.834 
 

 
Contemporaneous correlation 
between consumption growth and 
dividend growth 

0.17 
(0.12) 

0.16 
(0.09) 

0.120 
 
 

0.083 
 
 

0.087 
 
 

Average return to equities 
 

7.55 
(1.74) 

 
6.20 
(1.87)  

6.106 
 

3.625 
 

7.549 
 

       Standard deviation of return to 
equities 

17.22 
(1.31) 

17.49 
(1.39) 

15.964 
 

18.059 
 

15.794 
 

    
   

Average risk-free rate 
 

0.36 
(0.81) 

 
0.06 
(0.83) 

0.358 
 

0.387 
 

0.358 
 

      
   Standard deviation of the risk-free 

rate 
3.19 
(0.80) 

3.47 
(0.80) 

3.993 
 

3.482 
 

5.426 
 

       First-order serial correlation of the 
risk-free rate 

0.61 
(0.11) 

0.60 
(0.08) 

0.899 
 

0.615 
 

0.142 
 

    
   Equity premium 

 
7.19 
(1.77) 

6.13 
(1.84) 

5.748 
 

3.238 
 

7.190 
 

    
   Average price-dividend ratio 

 
3.41 
(0.15) 

3.38 
(0.15) 

3.157 
 

3.568 
 

3.183 
 

    
   Standard deviation of price-

dividend ratio  
0.47 
(0.08) 

0.45 
(0.08) 

0.284 
 

0.488 
 

0.383 
 

      First-order serial correlation of 
price dividend ratio 
 

0.95 
(0.03) 

 

0.93 
(0.04) 

 

0.84 
 
 

0.92 
 
 

0.92 
 
 

!
!
!
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Table 5 
Equity and Valuation Risk Premiums 

 

Benchmark Model   Extended Model   Extended Model 
(match equity premium) 

ρ 
Equity 

premium 

Conventio- 
nal Risk 

Premium 

Valuation 
Risk 

Premium 
  ρ 

Equity 
premium 

Conventio- 
nal Risk 

Premium 

Valuation 
Risk 

Premium 
  ρ 

Equity 
premium 

Conventio- 
nal Risk 

Premium 

Valuation 
Risk 

Premium 

                            
0.000 -0.0014 -0.0014 0.0000   0.000 0 0 0.0000   0.000 0.0061 0.0062 0.0000 
0.100 -0.0014 -0.0014 0.0000   0.100 0 0 0.0000   0.100 0.0061 0.0062 0.0000 
0.300 -0.0014 -0.0014 0.0000   0.300 0.0005 0.0005 0.0000   0.300 0.0061 0.0062 0.0000 
0.500 -0.0014 -0.0014 0.0000   0.500 -0.0003 -0.0003 0.0000   0.500 0.0061 0.0062 -0.0001 
0.700 -0.0013 -0.0014 0.0001   0.700 0.0001 0.0001 0.0000   0.700 0.0062 0.0063 -0.0001 
0.900 -0.0007 -0.0016 0.0009   0.900 0.0002 0.0001 0.0002   0.900 0.0063 0.0064 -0.0001 
0.950 0.0017 -0.0016 0.0033   0.950 0.0007 0.0001 0.0006   0.950 0.0069 0.0067 0.0002 
0.960 0.0033 -0.0017 0.0051   0.960 0.0006 -0.0003 0.0009   0.960 0.0072 0.0068 0.0005 
0.970 0.0067 -0.0019 0.0087   0.970 0.0013 -0.0001 0.0015   0.970 0.008 0.0068 0.0012 
0.980 0.0159 -0.002 0.0179   0.980 0.0018 -0.0012 0.003   0.980 0.0095 0.0062 0.0033 
0.990 0.0475 -0.0024 0.0499   0.990 0.0056 -0.0043 0.0099   0.990 0.0162 0.0021 0.0141 
0.991 0.0539 -0.0025 0.0564   0.991 0.0062 -0.0055 0.0117   0.991 0.0179 0.0009 0.0171 
0.992 0.0619 -0.0018 0.0638   0.992 0.0076 -0.0064 0.014   0.992 0.0203 -0.0006 0.0209 
0.993 0.0711 -0.0012 0.0723   0.993 0.0095 -0.0075 0.017   0.993 0.0232 -0.0029 0.026 
0.994 0.0812 -0.0008 0.082   0.994 0.0124 -0.0085 0.0209   0.994 0.0269 -0.0059 0.0328 
0.995 0.0932 0.0002 0.093   0.995 0.0150 -0.0113 0.0262   0.995 0.0317 -0.0102 0.042 
0.996 0.1067 0.0014 0.1053   0.996 0.0198 -0.0136 0.0335   0.996 0.0386 -0.0156 0.0542 
0.997 0.1212 0.0023 0.119   0.997 0.0275 -0.0158 0.0434   0.997 0.0471 -0.0233 0.0704 
0.998 0.1392 0.0052 0.134   0.998 0.0435 -0.0133 0.0567   0.998 0.059 -0.0323 0.0913 
0.999 0.1606 0.0104 0.1503   0.999 0.0647 -0.0097 0.0744   0.999 0.0732 -0.0441 0.1173 
          

         ! !



! 48!

Table 6 
Correlation Between Stock Returns and Per Capita Growth of Consumption and Dividends 

Moments Data 
(Constrained) 

Data 
(Unconstrained) 

Benchmark 
Model 

Extended 
Model 

Extended 
Model 

(match equity 
premium) 

            
            
1-year correlation between 
equity returns and 
consumption growth 
 

-0.03 
(0.12) 

 
 

-0.05 
(0.12) 

 
 

0.047 
 
 
 

0.062 
 
 
 

-0.265 
 
 
 

5-year correlation between 
equity returns and 
consumption growth 

0.07 
(0.17) 

 

0.00 
(0.14) 

 

0.053 
 
 

0.105 
 
 

-0.183 
 
 

          
10-year correlation between 
equity returns and 
consumption growth 

-0.02 
(0.30) 

 

-0.11 
(0.20) 

 

0.061 
 
 

0.127 
 
 

-0.159 
 
 

          
1-year correlation between 
equity returns and dividend 
growth 

0.08 
(0.12) 

 

0.05 
(0.11) 

 

0.345 
 
 

-0.149 
 
 

0.639 
 
 

          
5-year correlation between 
equity returns and dividend 
growth 

0.27 
(0.14) 

 

0.3 
(0.13) 

 

0.325 
 
 

0.024 
 
 

0.562 
 
 

          
10-year correlation between 
equity returns and dividend 
growth 
 

0.51 
(0.22) 

 
 

0.59 
(0.14) 

 
 

0.386 
 
 
 

0.100 
 
 
 

0.588 
 
 
 

!
! !
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 Table 7 
 

Predictability of Excess Returns by Price-dividend Ratio at Various Horizons 

Benchmark Model 

  Data 
Model 

(median) 
Model 
(plim) 

 

 
Data 

Model 
(median) 

Model 
(plim) 

 
Slope Coefficient 

  
 R-square  (% of values larger than R-

square in data) 
1 year -0.09 -0.05 0.005    0.04 0.01 0.0001 
  (0.03) 

  
   

 
(0.12) 

     
  

         
3 years -0.26 -0.14 0.021    0.13 0.03 0.0006 
  (0.07) 

  
   

 
(0.09) 

                  
5 years -0.39 -0.21 0.025    0.23 0.04 0.0006 
  (0.11)        

 
(0.06) 

 Extended Model 
 

  Data 
Model 

(median) 
Model 
(plim) 

 

 
Data 

Model 
(median) 

Model 
(plim) 

                 

  
Slope Coefficient 

   
 R-square (% of values larger than R-

square in data) 
1 year -0.09 -0.05 -0.01    0.04 0.02 0.001 
  (0.03) 

 
     

 
(0.23) 

     
 

           
3 years -0.26 -0.14 -0.02    0.13 0.05 0.002 
  (0.07) 

 
     

 
(0.19) 

                  
5 years -0.39 -0.22 -0.03    0.23 0.08 0.004 
  (0.11)        

 
(0.16) 

 Extended Model (match equity premium) 

  Data 
Model 

(median) 
Model 
(plim) 

 

 
Data 

Model 
(median) 

Model 
(plim) 

  
Slope Coefficient 

   

  
R-square (% of values larger than R-

square in data) 
1 year -0.09 -0.07 -0.01    0.04 0.03 0.002 
  (0.03) 

 
     

 
(0.33) 

     
 

           
3 years -0.26 -0.19 -0.02    0.13 0.07 0.004 
  (0.07) 

 
     

 
(0.30) 

                  
5 years -0.39 -0.31 -0.04    0.23 0.12 0.007 
  (0.11)        

 
(0.25) 

 !
! !
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Table 8 
Term Structure of Bond Yields 

           

Moments 
Data  

(ex-post real 
yields) 

 
Data  

(ex-ante 
real yields) 

Benchmark 
Model 

Extended 
Model 

Extended 
Model 
(match 
equity 

premium) 
           
Average yield          
Long-term bond 1.32 2.96 5.14 2.82 4.13 
  (1.10) (0.56)   

  Intermediate-term bond 1.39 2.42 2.29 1.39 2.30 
  (0.91) (0.62)   

  Short-term bond 0.06 1.25 0.36 0.387 0.36 
  (0.83) (0.58)   

  Return to equity minus long-term bond yield 4.16 2.91 1.07 0.78 3.82 
  (2.39) (2.07)   

  Standard deviation      
  Long-term bond 3.02 1.68 1.73 2.11 1.85 

  (0.65) (0.31)   
  Intermediate-term bond 3.29 1.93 3.19 2.64 2.05 

  (0.53) (0.33)   
  Short-term bond 3.47 2.18 3.97 3.48 5.44 

  (0.80) (0.30)   
  Return to equity minus long-term bond yield 20.2 19.45 15.61 18.08 15.33 

  (2.47) (2.17)       
           

!
!
! !
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!
Table 9 

Regressions of Excess Stock Returns on Long Term Bond Yields in Excess of Short Rate 
          

 
Data 

  

Extended 
Model 

 
1929-2011 

Benchmark 
Model 

Extended 
Model 

(match equity 
premium) 

 

 
Long Term Gov. Bond 

(20 years) 
 

  R-square 
 

0.02 
 

0.13 
 

0.02 
 

0.1 
 

     Slope 0.60 3.44 1.16 1.08 

 
(0.96) 

   
          

 
      

 

Intermediate Term Gov. Bond 
(5 years) 

 
   R-square 

 
0.002 

 
0.07 

 
0.02 

 
0.1 

 

     Slope -0.30 3.33 1.07 1.08 

 
(1.10) 

             
!

 

!
!




