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1. Introduction

In standard representative-agent asset-pricing models, the expected return to an asset reflects

the covariance between the asset’s payo§ and the agent’s stochastic discount factor. An

important challenge to these models is that the correlation and covariance between stock

returns and measurable fundamentals, especially consumption growth, is weak at both short

and long horizons. Cochrane and Hansen (1992) and Campbell and Cochrane (1999) call this

phenomenon the correlation puzzle. More recently, Lettau and Ludvigson (2011) document

this puzzle using di§erent methods. According to their estimates, the shock that accounts

for the vast majority of asset-price fluctuations is uncorrelated with consumption at virtually

all horizons.

The basic disconnect between measurable macroeconomic fundamentals and stock re-

turns underlies virtually all modern asset-pricing puzzles, including the equity-premium

puzzle, Hansen-Singleton (1982)-style rejection of asset-pricing models, violation of Hansen-

Jagannathan (1991) bounds, and Shiller (1981)-style observations about excess stock-price

volatility.

The key reason why classic asset-pricing models cannot account for the correlation puzzle

is that all uncertainty is loaded onto the supply side of the economy. In Lucas (1978) tree

models, agents are exposed to random endowment shocks, while in production economies

they are exposed to random productivity shocks. Both classes of models abstract from shocks

to the demand for assets.

We propose a simple theory of asset pricing in which demand shocks play a central role.

In our model demand shocks arise from stochastic changes in agents’ rate of time preference.

An important implication of our model is that these changes are measurable because they

map directly into the level of the risk free rate. So, while we are allowing for an additional

shock, our analysis is disciplined by observed movements in the risk-free rate.

In our model, the representative agent has recursive preferences of the type considered

by Kreps and Porteus (1978), Weil (1989), and Epstein and Zin (1991). Time-preference

shocks help account for the equity premium as long as the risk-aversion coe¢cient and

the elasticity of intertemporal substitution are either both greater than one or both are

smaller than one. When the risk-aversion coe¢cient is equal to the inverse of the elasticity

of intertemporal substitution, recursive preferences reduce to constant-relative risk aversion

(CRRA) preferences. We show that, in this case, time-preference shocks have negligible
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e§ects on key asset-pricing moments such as the equity premium.

We estimate our model using data over the sample period 1929 to 2011. The condition

for time-preference shocks to help explain the equity premium puzzle is always satisfied

in the di§erent versions of the model that we estimate. Taking sampling uncertainty into

account, our model accounts for the equity premium and the volatility of stock and bond

returns. Critically, the model also accounts for the correlation between stock returns and

fundamentals such as consumption, output, and dividend growth at short, medium and long

horizons.

We define valuation risk as the risk associated with changes in the way that future cash

flows are discounted due to time-preference shocks. According to our estimates, valuation

risk is a much more important source of variation in asset prices than conventional covariance

risk. The model has no di¢culty in accounting for the average rate of return to stocks and

bonds. But, absent preference shocks, our model implies that stocks and bonds should, on

average, have very similar rates of return.

Valuation risk is an increasing function of an asset’s maturity. So, a natural test of our

model is whether it can account for the bond term premia and the return on stocks relative

to long-term bonds. We pursue this test using stock returns as well as ex-post real returns

on bonds of di§erent maturity and argue that the model’s implications are consistent with

the data. We are keenly aware of the limitations of the available data on real bond returns,

especially at long horizons. Still, we interpret our results as being very supportive of the

hypothesis that valuation risk is a critical determinant of asset prices.

There is a literature that models shocks to the demand for assets as arising from time-

preference or taste shocks. For example, Garber and King (1983) and Campbell (1986) con-

sider these types of shocks in early work on asset pricing. Pavlova and Rigobon (2007) study

the role of taste shocks in explaining asset prices in an open economy model. In the macro-

economic literature, Eggertsson and Woodford (2003) and Eggertsson (2004) model changes

in savings behavior as arising from time-preference shocks that make the zero lower bound on

nominal interest rates binding. A common property of these papers is that agents have CRRA

preferences. Normandin and St-Amour (1998) study the impact of taste shocks in a partial-

equilibrium model where the representative agent has recursive preferences. In independent

work, contemporaneous with our own, Maurer (2012) explores the impact of time-preference

shocks in a calibrated continuous-time representative agent model with Du¢e-Epstein (1992)
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preferences.

The key contribution of our paper is empirical. We consider two main variants of our

model. In the first variant, time-preference shocks are uncorrelated with endowment shocks.

This version of the model is very useful for highlighting the basic role of demand shocks in as-

set pricing. However, in a production economy, these types of shocks would generally induce

changes in aggregate output and consumption. To assess the robustness of our results to this

possibility, we consider a variant of the model that allows endowment and time-preference

shocks to be correlated. As it turns out, the second version of the model outperforms the

first version. This improved performance is reflected in the model’s ability to account for

the observed correlation between stock returns and fundamentals.

Our paper is organized as follows. In Section 2 we document the correlation puzzle using

U.S. data for the period 1929-2011 as well as the period 1871-2006. In Section 3 we present

our benchmark model where time-preference shocks are uncorrelated with the growth rate

of consumption. We discuss our estimation strategy and present our benchmark empirical

results in Section 4. In Section 5 we present the variant of our model in which time-preference

shocks are correlated with consumption shocks and its empirical performance. In Section 6

we study the empirical implications of the model for bond term premia, as well as the return

on stocks relative to long-term bonds. Section 7 concludes.

2. The correlation puzzle

In this section we examine the correlation between stock returns and fundamentals as mea-

sured by the growth rate of consumption, output, dividends, and earnings.

2.1. Data sources

We consider two sample periods: 1929 to 2011 and 1871 to 2006. For the first sample,

we obtain nominal stock and bond returns from Kenneth French’s website. We convert

nominal returns to real returns using the rate of inflation as measured by the consumer

price index. We use the measure of consumption expenditures and real per capita Gross

Domestic Product constructed by Barro and Ursua (2011), which we update to 2011 using

National Income and Product Accounts data. We compute per-capita variables using total

population (POP).1 We obtain data on real S&P500 earnings and dividends from Robert

1This series is not subject to a very important source of measurement error that a§ects another commonly-
used population measure, civilian noninstitutional population (CNP16OV). Every ten years, the CNP16OV
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Shiller’s website. We use data from Ibbotson and Associates on the real return to one-month

Treasury bills, intermediate-term government bonds (with approximate maturity of 5 years),

and long-term government bonds (with approximate maturity of 20 years).

For the second sample, we use data on real stock and bond returns from Nakamura,

Steinsson, Barro, and Ursua (2010) for the period 1870-2006. We use the same data sources

for consumption, expenditures, dividends and earnings as in the first sample.

As in Mehra and Prescott (1985) and the associated literature, we measure the risk-

free rate using realized real returns on nominal, one-year Treasury Bills. This measure is

far from perfect because there is inflation risk, which can be substantial, particularly for

long-maturity bonds.

2.2. Empirical results

Table 1, panel A presents results for the sample period 1929-2011. We report correlations

at the one-, five- and ten-year horizons. The five- and ten-year horizon correlations are

computed using five- and ten-year overlapping observations, respectively. We report Newey-

West (1987) heteroskedasticity-consistent standard errors computed with ten lags.

There are three key features of Table 1, panel A. First, consistent with Cochrane and

Hansen (1992) and Campbell and Cochrane (1999), the growth rate of consumption and

output are uncorrelated with stock returns at all the horizons that we consider. Second, the

correlation between stock returns and dividend growth is similar to that of consumption and

output growth at the one-year horizon. However, the correlation between stock returns and

dividend growth is substantially higher at the five and ten-year horizons than the analogue

correlations involving consumption and output growth. Third, the pattern of correlations

between stock returns and dividend growth are similar to the analogue correlations involving

earnings growth.

Table 1, panel B reports results for the longer sample period (1871-2006). The one-

year correlation between stock returns and the growth rates of consumption and output

are very similar to those obtained for the shorter sample. There is evidence in this sample

series is adjusted using information from the decennial census. This adjustment produces large discontinuities
in the CNP16OV series. The average annual growth rates implied by the two series are reasonably similar:
1.2 for POP and 1.4 for CNP16OV for the period 1952-2012. But the growth rate of CNP16OV is three
times more volatile than the growth rate of POP. Part of this high volatility in the growth rate of CNP16OV
is induced by large positive and negative spikes that generally occur in January. For example, in January
2000, 2004, 2008, and 2012 the annualized percentage growth rates of CNP16OV are 14.8, 1.9, 2.8, and
8.4, respectively. The corresponding annualized percentage growth rates for POP are 1.1, 0.8, 0.9, and 0.7.
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of a stronger correlation between stock returns and the growth rates of consumption and

output at a five-year horizon. But, at the ten-year horizon the correlations are, once again,

statistically insignificant. The results for dividends and earnings is very similar across the

two subsamples.

Table 2 assesses the robustness of our results for the correlation between stock returns

and consumption using three di§erent measures of consumption for the period 1929-2011,

obtained from the National Product and Income Accounts. With one exception, the corre-

lations in this table are statistically insignificant. The exception is the one-year correlation

between stock returns and the growth rate of nondurables and services which is marginally

significant.

In summary, there is remarkably little evidence that the growth rates of consumption or

output are correlated with stock returns. There is also little evidence that dividends and

earnings are correlated with stock returns at short horizons.

We have focused on correlations because we find them easy to interpret. One might be

concerned that a di§erent pictures emerges from the pattern of covariances between stock

returns and fundamentals. It does not. For example, using quarterly U.S. data for the period

1959 to 2000, Parker (2001) argues that one would require a risk aversion coe¢cient of 379

to account for the equity premium given his estimate of the covariance between consumption

growth and stock returns. Parker (2001) observes that there is a larger covariance between

current stock returns and the cumulative growth rate of consumption over the next 12

quarters. However, even with this covariance measure he shows that one would require

a risk aversion coe¢cient of 38 to rationalize the equity premium.

Viewed overall, the results in this section serve as our motivation for introducing shocks

to the demand for assets. Classic asset-pricing models load all uncertainty onto the supply-

side of the economy. As a result, they have di¢culty in simultaneously accounting for the

equity premium and the correlation puzzle. This di¢culty is shared by the habit-formation

model proposed by Campbell and Cochrane (1999) and the long-run risk models proposed

by Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012).2 Rare-disaster models

of the type proposed by Rietz (1988) and Barro (2006) also share this di¢culty because all

shocks, disaster or not, are to the supply side of the model. A model with a time-varying

2The most recent version of the long-run risk model, proposed by Bansal, Kiku, and Yaron (2012), implies
correlations between stock returns and consumption growth equal to 0.66, 0.88, and 0.92 at the one-, five- and
ten-year horizon, respectively. The model implies correlations between stock returns and dividend growth
equal to 0.66, 0.90, and 0.93 at the one-, five- and ten-year horizon, respectively.
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disaster probability, of the type consider by Wachter (2012), might be able to rationalize the

low correlation between consumption and stock returns as a small sample phenomenon. The

reason is that changes in the probability of disasters induces movements in stock returns

without corresponding movements in actual consumption growth. This force lowers the

correlation between stock returns and consumption in a sample where rare disasters are

under represented. This explanation might account for the post-war correlations. But we

are more skeptical that it accounts for the results in Table 1, panel B, which are based on

the longer sample period, 1871 to 2006.

Below, we focus on demand shocks as the source of the low correlation between stock

returns and fundamentals, rather than the alternatives just mentioned. We model these

demand shocks in the simplest possible way by introducing shocks to the time preference of

the representative agent. These shocks can be thought of as capturing changes in agents’

attitudes towards savings, such as those emphasized by Eggertsson and Woodford (2003).

These shocks can also reflect changes in institutional factors, such as the tax treatment

of retirement plans. Finally, these shocks could also capture the e§ects of changes in the

demographics of stock market participants (see Geanakoplos, Magill, and Quinzii (2004)).

In Appendix A we provide a simple example of an overlapping-generations model in which

uncertainty about the growth rate of the population gives rise to shocks in the demand for

assets.

3. The benchmark model

In this section, we study the properties of a simple representative-agent endowment economy

modified to allow for time-preference shocks. The representative agent has the constant-

elasticity version of Kreps-Porteus (1978) preferences used by Epstein and Zin (1991) and

Weil (1989). The life-time utility of the representative agent is a function of current utility

and the certainty equivalent of future utility, Ut+1:

Ut = max
Ct

h
tC

11/ 
t + 


Ut+1

11/ i1/(11/ )
, (3.1)

where Ct denotes consumption at time t and  is a positive scalar. The certainty equivalent

of future utility is the sure value of t+ 1 lifetime utility, Ut+1 such that:


Ut+1

1
= Et


U1t+1


.
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The parameters  and  represent the elasticity of intertemporal substitution and the coef-

ficient of relative risk aversion, respectively. The ratio t+1/t determines how agents trade

o§ current versus future utility. We assume that this ratio is known at time t.3 We refer to

t+1/t as the time-preference shock.

3.1. Stochastic processes

To highlight the role of time-preference shocks, we adopt a very simple stochastic process

for consumption:

log(Ct+1) = log(Ct) + µ+ c"
c
t+1. (3.2)

Here, µ and c are non-negative scalars and "ct+1 follows an i.i.d. standard-normal distribu-

tion.

As in Campbell and Cochrane (1999), we allow dividends, Dt, to di§er from consumption.

In particular, we assume that:

log(Dt+1) = log(Dt) + µ+ dc"
c
t+1 + d"

d
t+1. (3.3)

Here, "dt+1 is an i.i.d. standard-normal random variable that is uncorrelated with "ct+1. To

simplify, we assume that the average growth rate of dividends and consumption is the same

(µ). The parameter d  0 controls the volatility of dividends. The parameter dc controls

the correlation between consumption and dividend shocks.4

The growth rate of the time-preference shock evolves according to:

log (t+1/t) =  log (t/t1) + "

t+1. (3.4)

Here, "t+1 is an i.i.d. standard-normal random variable. In the spirit of the original Lucas

(1978) model, we assume, for now, that "t+1 is uncorrelated with "
c
t+1 and "

d
t+1. We relax

this assumption in Section 5. We assume that t+1/t is highly persistent but stationary

( very close to one). The idea is to capture, in a parsimonious way, persistent changes in

agents’ attitudes towards savings.

3We obtain similar results with a version of the model in which the utility function takes the form:

Ut =
h
C
11/ 
t + t


Ut+1

11/ i1/(11/ )
.

4The stochastic process described by equations (3.2) and (3.3) implies that log(Dt+1/Ct+1) follows a
random walk with no drift. This implication is consistent with our data.
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The CRRA case In Appendix B we solve the model analytically for the case in which

 = 1/ . Here preferences reduce to the CRRA form:

Vt = Et

1X

i=0

it+iC
1
t+i , (3.5)

with Vt = U
1
t .

The unconditional risk-free rate is a§ected by the persistence of volatility of time-preference

shocks:

E (Rf,t+1) = exp


2/2

1 2


1 exp(µ 22c/2).

The unconditional equity premium implied by this model is proportional to the risk-free

rate:

E (Rc,t+1 Rf,t+1) = E (Rf,t+1)

exp


2c

 1

. (3.6)

Both the average risk-free rate and the volatility of consumption are small in the data.

Moreover, the constant of proportionality in equation (3.6), exp (2c)  1, is independent

of 2. So, time-preference shocks do not help to resolve the equity premium puzzle when

preferences are of the CRRA form.

3.2. Solving the model

We define the return to the stock market as the return to a claim on the dividend process.

The realized gross stock-market return is given by:

Rd,t+1 =
Pd,t+1 +Dt+1

Pt
, (3.7)

where Pd,t denotes the ex-dividend stock price.

It is useful to define the realized gross return to a claim on the endowment process:

Rc,t+1 =
Pc,t+1 + Ct+1

Pc,t
, (3.8)

where Pc,t denotes the price of an asset that pays a dividend equal to aggregate consumption.

We use the following notation to define logarithm of returns on the dividend and consumption

claims, the logarithm of the price-dividend ratio, and the logarithm of the price-consumption
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ratio:

rd,t+1 = log(Rd,t+1),

rc,t+1 = log(Rc,t+1),

zdt = log(Pt/Dt),

zct = log(Pc,t/Ct).

In Appendix C we show that the logarithm of the stochastic discount factor (SDF) implied

by the utility function defined in equation (3.1) is given by:

mt+1 =  log () +  log (t+1/t)


 
ct+1 + (  1) rc,t+1, (3.9)

where  is given by:

 =
1 

1 1/ 
. (3.10)

When  = 1/ , the case of CRRA preferences, the value of  is equal to one and the

stochastic discount factor is independent of rc,t+1.

We solve the model using the approximation proposed by Campbell and Shiller (1988),

which involves linearizing the expressions for rc,t+1 and rd,t+1 and exploiting the properties

of the log-normal distribution.5

Using a log-linear Taylor expansion we obtain:

rd,t+1 = d0 + d1zdt+1  zdt +dt+1, (3.11)

rc,t+1 = c0 + c1zct+1  zct +ct+1, (3.12)

where ct+1  log (Ct+1/Ct) and dt+1  log (Dt+1/Dt). The constants c0, c1, d0, and

d1 are given by:

d0 = log [1 + exp(zd)] d1zd,

c0 = log [1 + exp(zc)] c1zc,

d1 =
exp(zd)

1 + exp(zd)
, c1 =

exp(zc)

1 + exp(zc)
,

where zd and zc are the unconditional mean values of zdt and zct.

5See Hansen, Heaton, and Li (2008) for an alternative solution procedure.
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The Euler equations associated with a claim to the stock market and a consumption

claim can be written as:

Et [exp (mt+1 + rd,t+1)] = 1, (3.13)

Et [exp (mt+1 + rc,t+1)] = 1. (3.14)

We solve the model using the method of undetermined coe¢cients. First, we replace

mt+1, rc,t+1 and rd,t+1 in equations (3.13) and (3.14), using expressions (3.11), (3.12) and

(3.9). Second, we guess and verify that the equilibrium solutions for zdt and zct take the

form:

zdt = Ad0 + Ad1 log (t+1/t) , (3.15)

zct = Ac0 + Ac1 log (t+1/t) . (3.16)

This solution has the property that price-dividend ratios are constant, absent movements

in t. This property results from our assumption that the logarithm of consumption and

dividends follow random-walk processes. We compute Ad0, Ad1, Ac0, and Ac1 using the

method of indeterminate coe¢cients.

We show in Appendix C that the conditional expected return to equity is given by:

Et (rd,t+1) =  log () log (t+1/t) + µ/ (3.17)

+


(1 )


(1 )2  2


2c/2 + dc (2c  dc) /2 2d/2

+

(1 ) (c1Ac1) [2 (d1Ad1) (c1Ac1)] (d1Ad1)

22/2.

Recall that c1 and d1 are non-linear functions of the parameters of the model.

We define the compensation for valuation risk as the part of the one-period expected

return to an asset that is due to the volatility of the time preference shock, 2. We refer to

the part of the expected return that is due to the volatility of consumption and dividends

as the compensation for conventional risk.

For stocks, the compensation for valuation risk, vd, is given by the last term in equation

(3.17):

vd =

2 (1 ) (c1Ac1) (d1Ad1) (d1Ad1)

2  (1 ) (c1Ac1)
22/2.

To gain intuition about the determinants of vd, it is useful to consider the simple case in

which the stock market is a claim on consumption. In this case vd is given by:

vd =  (c1Ac1)
2 2/2.
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The compensation for valuation risk is positive as long as  is negative. In terms of the

underlying structural parameters, this condition holds as long as  > 1 and  > 1 or  < 1

and  < 1. Put di§erently, if agents have a coe¢cient of risk aversion higher than one, the

condition requires that agents have a relatively high elasticity of intertemporal substitution.

Alternatively, if agents have a coe¢cient of risk aversion lower than one, they must have a

relatively low elasticity of intertemporal substitution. The value of  is negative in all our

estimated models, so the value of vd is positive.

Using the Euler equation for the risk-free rate, rf,t+1,

Et [exp (mt+1 + rf,t+1)] = 1,

we obtain:

rf,t+1 =  log () log (t+1/t) + µ/  (1 ) (c1Ac1)
2 2/2 (3.18)

+


(1 )


(1 )2  2


2c/2.

Equations (3.17) and (3.18) imply that the risk-free rate and the conditional expectation

of the return to equity are decreasing functions of log (t+1/t). When log (t+1/t) rises,

agents value the future more relative to the present, so they want to save more. Since risk-

free bonds are in zero net supply and the number of stock shares is constant, aggregate

savings cannot increase. So, in equilibrium, returns on bonds and equity must fall to induce

agents to save less.

An important property of our model is that the risk-free rate is given by a constant

minus log (t+1/t). This property allows us to measure movements in log (t+1/t) using

the risk-free rate. This fact imposes data-based discipline on the role that we can attribute

to time-preference shocks in explaining asset-price moments.

The approximate response of asset prices to shocks, emphasized by Borovička, Hansen,

Hendricks, and Scheinkman (2011) and Borovička and Hansen (2011), can be directly inferred

from equations (3.17) and (3.18). The response of the return to stocks and the risk-free rate

to a time-preference shock corresponds to that of an AR(1) with serial correlation .

Using equations (3.17) and (3.18) we can write the conditional equity premium as:

Et (rd,t+1) rf,t+1 = dc (2c  dc) /2 2d/2 (3.19)

+d1Ad1 [2 (1 )Ac1c1  d1Ad1]
2
/2.
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Since the constants Ac1, Ad1, c1, and d1 are all positive,  < 1 is a necessary condition for

time-preference shocks to help explain the equity premium.

The component of the equity premium that is due to valuation risk is given by the last

term in equation (3.19). It is useful to consider the case in which the stock is a claim on

consumption. In this case, that term reduces to:

(1 2)


c1
1 c1

2
2/2.

This expression is positive as long as one of the following conditions holds:

 < 0.5(1 + 1/ ) and  < 1,
 > 0.5(1 + 1/ ) and  > 1.

(3.20)

As it turns out, this condition is always satisfied in the estimated versions of our model.

It is interesting to highlight the di§erences between time-preference shocks and conven-

tional sources of uncertainty, which pertain to the supply-side of the economy. Suppose that

there is no risk associated with the physical payo§ of assets such as stocks. In this case,

standard asset pricing models would imply that the equity premium is zero. In our model,

there is a positive equity premium that results from the di§erent exposure of bonds and

stocks to valuation risk. Agents are uncertain about how much they will value future divi-

dend payments. Since t+1 is known at time t, this valuation risk is irrelevant for one-period

bonds. But, it is not irrelevant for stocks, because they have infinite maturity. In general,

the longer the maturity of an asset, the higher is its exposure to time-preference shocks and

the large is the valuation risk.

Finally, we conclude by considering the case in which there are supply-side shocks to

the economy but agents are risk neutral ( = 0). In this case, the component of the equity

premium that is due to valuation risk is positive as long as  is less than one. The intuition

is as follows: stocks are long-lived assets whose payo§s can induce unwanted variation in the

period utility of the representative agent, tC
11/ 
t . Even when agents are risk neutral, they

must be compensated for the risk of this unwanted variation.

4. Estimating the benchmark model

We estimate the parameters of our model using the Generalized Method of Moments (GMM).

Our estimator is the parameter vector ̂ that minimizes the distance between a vector of

empirical moments, D, and the corresponding model population moments, (̂).

12



We proceed as follows. We estimate D, which includes the following 16 moments: the

mean and standard deviation of consumption growth, the mean and standard deviation of

dividend growth, the correlation between the one-year growth rate of dividends and the one-

year growth rate of consumption, the mean and standard deviation of real stock returns,

the mean, standard deviation of the real risk-free rate, the correlation between stock returns

and the risk-free rate, the correlation between stock returns and consumption growth at the

one, five and ten-year horizon, the correlation between stock returns and dividend growth

at the one, five and ten-year horizon. The parameter vector  includes nine parameters: 

(the coe¢cient of relative risk aversion),  (the elasticity of intertemporal substitution), 

(the rate of time preference), c (the volatility of innovation to consumption growth), dc

(the parameter that controls the correlation between consumption and dividend shocks),

d (the volatility of dividend shocks),  (the persistence of time-preference shocks), and 

(the volatility of the innovation to time-preference shocks), and µ (the mean growth rate of

dividends and consumption). We constrain the growth rate of dividends and consumption

to be the same. We estimate D using a standard two-step e¢cient GMM estimator with

a Newey-West (1987) weighting matrix that has ten lags. The latter matrix corresponds to

our estimate of the variance-covariance matrix of the empirical moments, D.

We assume that agents make decisions at a monthly frequency and derive the model’s

implications for population moments computed at an annual frequency, (). See Appendix

D for details.

We compute our estimator ̂ as:

̂ = argmin


[()D]
01D [()D] .

Table 3 reports our parameter estimates along with GMM standard errors. Several

features are worth noting. First, both the estimates of the coe¢cient of risk aversion and

the intertemporal elasticity of substitution are close to one. The point estimates satisfy the

condition  < 1 which is necessary for time-preference shocks to help explain the equity

premium. The estimates also satisfy the more stringent condition (3.20), required for a

positive equity premium in the absence of consumption and dividend shocks. Second, the

growth rate of t is estimated to be highly persistent, with a first-order serial correlation

close to one (0.9936). Third, the volatility of the innovation to the growth rate of dividends

is much higher than that of the innovation to the growth rate of consumption. Finally, the

estimate of  is close to one.
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Table 4 compares the moments implied by the benchmark model with the estimated data

moments. Recall that in estimating the model parameters we impose the restriction that

the unconditional average growth rate of consumption and dividends coincide. To assess the

robustness of our results to this restriction, we present two versions of the estimated data

moments, one that imposes this restriction and one that does not. With one exception, the

constrained and unconstrained moment estimates are similar, taking sampling uncertainty

into account. The exception is the average growth rate of consumption, where the constrained

and unconstrained estimates are statistically di§erent.

Table 4 shows that the model generates a high average equity premium (5.47) and a low

average risk-free rate (0.80). Neither of these model moments is statistically di§erent from

our estimates of the corresponding data moments. Even though the coe¢cient of relative

risk aversion is close to one, the model is consistent with the observed equity premium. This

result might seem surprising because our estimates of  and 1/ are close to each other.

However, the implied value of , the key determinant of the equity premium, is 2.56.

The basic intuition for why our model generates a high equity premium despite a low

coe¢cient of relative risk aversion is as follows. From the perspective of the model, stocks

and bonds are di§erent in two ways. First, the model embodies the conventional source of

an equity premium, namely bonds have a certain payo§ that does not covary with the SDF

while the payo§ to stocks covaries negatively with the SDF (as long as dc > 0). Since  is

close to one, this traditional covariance e§ect is very small. Second, the model embodies a

compensation for valuation risk that is particularly pronounced for stocks given their long-

lived nature relative to bonds. Recall that, given our timing assumptions, when an agent

buys a bond at t, the agent knows the value of t+1, so the only source of risk are movements

in the marginal utility of consumption at time t + 1. In contrast, the time-t stock price

depends on the value of t+j, for all j > 1. So, agents are exposed to valuation risk, a risk

that is particularly important because time-preference shocks are very persistent.

In Table 5 we decompose the equity premium into the valuation risk premium and the

conventional risk premium. We calculate these premia at the benchmark parameter estimates

using various values of . Two key results emerge from this table. First, the conventional

risk premium is always roughly zero. This result is consistent with Kocherlakota’s (1996)

discussion of why the equity premium is not explained by endowment models in which

the representative agent has recursive preferences and consumption follows a martingale.
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Second, consistent with the intuition discussed above, the valuation risk premium and the

equity premium are increasing in . The larger is , the more exposed agents are to large

movements in stock prices induced by time-preference shocks.

Implications for the correlation puzzle Table 6 reports the model’s implications for the

correlation of stock returns with consumption and dividend growth. Recall that consumption

and dividends follow a random walk. In addition, the estimated process for the growth rate

of the time-preference shock is close to a random walk. So, the correlation between stock

returns and consumption growth implied by the model is essentially the same across di§erent

horizons. A similar property holds for the correlation between stock returns and dividend

growth.

The model does well at matching the correlation between stock returns and consumption

growth in the data, because this correlation is similar at all horizons. In contrast, the

empirical correlation between stock returns and dividend growth increases with the time

horizon. The estimation procedure chooses to match the long-horizon correlations and does

less well at matching the yearly correlation. This choice is dictated by the fact that it is

harder for the model to produce a low correlation between stock returns and dividend growth

than it is to produce a low correlation between stock returns and consumption growth. This

property reflects the fact that the dividend growth rate enters directly into the equation for

stock returns (see equation (3.11)).

Implications for the risk-free rate A problem with some explanations of the equity

premium is that they imply counterfactually high levels of volatility for the risk-free rate

(see e.g. Boldrin, Christiano and Fisher (2001)). Table 4 shows that the volatility of the

risk-free rate and stock market returns implied by our model are similar to the estimated

volatilities in the data. Notice also that, taking sampling uncertainty into account, the model

accounts for the correlation between the risk-free rate and stock returns.

An empirical shortcoming of the benchmark model is its implication for the persistence

of the risk-free rate. Recall that, according to equation (3.18), the risk-free rate has the same

persistence as the growth rate of the time-preference shock. Table 4 shows that the AR(1)

coe¢cient of the risk free rate, as measured by the ex-post realized real returns to one-year

treasury bills, is only 0.61, with a standard error of 0.11, which is substantially smaller that

our estimate of  (0.95). We address this issue in the next section.
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5. Extensions of the benchmark model

In this section we present two extensions of the benchmark model. In the first extension

we present a simple perturbation of the benchmark model that renders it consistent with

the observed persistence of the risk free rate. We refer to this extension as the augmented

model. Second, we modify this extension to allow for correlation between time preference

shocks and the growth rate of consumption and dividends. We refer to this version as the

quasi-production model.

An important advantage of our benchmark model is its simplicity and its ability to

account for both the equity premium and the correlation puzzle. However, this model su§ers

from an important shortcoming: it overstates the persistence of the risk-free rate. It is

straightforward to resolve this issue by assuming that the time-preference shock is the sum

of a persistent shock and an i.i.d. shock:

log(t+1/t) = xt+1 + t+1, (5.1)

xt+1 = xt + "

t+1,

where "t+1 and t+1 are uncorrelated, i.i.d. standard normal shocks. If  = 0 and x1 =

log(1/0) we obtain the specification of the time-preference shock used in the benchmark

model. Other things equal, the larger is , the lower the persistence of the time-preference

shock.

We define the augmented model as a version of the benchmark model in which we replace

equation (3.4) with (5.1). We estimate the augmented model by adding  to the vector 

and the AR(1) coe¢cient of the risk-free rate,  , to our specification of D. Tables 3, 4,

and 6 report our results. With the exception of , the estimated structural parameters are

very similar across the two models. With one important exception, the models’ implications

for the data moments are also very similar, taking sampling uncertainty into account. The

exception pertains to the serial correlation of the risk-free rate, which falls from 0.95 in the

benchmark model to 0.62 in the augmented model. The latter value is very close to our

estimate of the analogue object in the data (0.61). According to our point estimates, the

i.i.d. component of the time-preference shock accounts for 83 percent of the variance of the

shock.

We now turn to a more interesting shortcoming of the benchmark and augmented models:

they do not allow the growth rate of consumption and/or dividends to be correlated with
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the time-preference shocks. In a production economy, time-preference shocks would gener-

ally induce changes in aggregate consumption. For example, in a simple real-business-cycle

model, a persistent increase in t+1/t would lead agents to reduce current consumption and

invest more in order to consume more in the future. Taken literally, an endowment economy

specification does not allow for such a correlation. We can, however, modify the augmented

model to mimic a production economy along this dimension by allowing the growth rate of

dividends, consumption and the time-preference shock to be correlated. We refer to this

extension as the quasi-production model.

We assume that the stochastic process for consumption and dividend growth is given by:

log(Ct+1) = log(Ct) + µ+ c"
c
t+1 + c"


t+2, (5.2)

"ct+1 s N(0, 1),

log(Dt+1) = log(Dt) + µ+ dc"
c
t+1 + d"

d
t+1 + d"


t+2,

"dt+1 s N(0, 1),

where "ct+1, "
d
t+1, "


t+1, and t+1 are mutually uncorrelated. As long as the two new parame-

ters, c and d are di§erent from zero, log(t+1/t) is correlated with log(Ct+1/Ct) and

log(Dt+1/Dt). Only the innovation to time-preference shocks enters the law of motion for

log(Ct+1/Ct) and log(Dt+1/Dt). So, we are not introducing any element of long-run risk

into consumption or dividend growth. As in the benchmark and augmented models, both

consumption and dividends are martingales.

In estimating the model we add c, d, and  to the vector  and the AR(1) coe¢cient

of the risk-free rate,  , to our specification of D. Tables 3 reports our point estimates. As

in the benchmark model,  and  are still close to one, although they are estimated with

more imprecision. The point estimates continue to satisfy the condition  < 1, required for

time-preference shocks to generate an equity premium. The absolute value of  is smaller

than in the benchmark model, which is consistent with equity premium also being smaller.

Second, even though  continues to be close to one, the growth of t is less persistent than

in the benchmark model because of the i.i.d. shock in equation (5.1). The value of c is

insignificantly di§erent from zero. In contrast, the value of d is negative and statistically

significant. Below we argue that this value allows the model to match the yearly correlation

between stock returns and dividend growth.
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Tables 4 and 6 reports the implications of the quasi-production model for various data

moments. A number of features are worth noting. First, this version of the model generates

a lower equity premium than the benchmark model (3.73 percent versus 5.47 percent). How-

ever, the equity premium is still quite large and within two standard deviations of our point

estimate. Second, the average risk-free rate implied by the model is negative (0.92), but

it is still within two standard deviations of our point estimate. Third, the volatility of stock

returns and the risk-free rate implied by the model are close to the point estimates. Fourth,

taking sampling uncertainty into account, the model accounts for the correlation between

the risk-free rate and stock returns. Fifth, the persistence of the risk-free rate implied by

the model is similar to that in the data (0.55 in the model versus 0.61 in the data).

Recall that the benchmark model produces correlations between stock returns and con-

sumption growth that are similar to those in the data. The quasi-production model continues

to succeed on this dimension by setting the c to a value that is close to zero. The coe¢cient

d allows the model to fit the low level of the one-year correlation between stock returns

and dividend growth. The cost is that the model does less well than the benchmark model

at matching the five and ten-year correlation. The reason the estimation procedure chooses

to match the one-year correlation is that this correlation is estimated with more precision

than the ten-year correlation.

To document the relative importance of the correlation puzzle and the equity premium

puzzle, we re-estimate the model subject to the constraint that it matches the average equity

premium and the average risk-free rate. We report our results in Tables 3, 4 and 6. Even

though the estimates of  and  are similar to those reported before, the implied value of

 goes from 0.79 to 6.65, which is why the equity premium implied by the model rises.

This version of the model continues to produce low correlations between stock returns and

consumption growth. However, the one-year correlation between stock returns and dividend

growth implied by the model is much higher than that in the data (0.56 versus 0.08). The

one-year correlation between stock returns and dividend growth is estimated much more

precisely than the equity premium. So, the estimation algorithm chooses parameters for

the quasi-production model that imply a lower equity premium in return for matching the

one-year correlation between stock returns and dividend growth.
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6. Bond term premia

As we emphasize above, the equity premium in our estimated models results primarily from

the valuation risk premium. Since this valuation premium increases with the maturity of an

asset, a natural way to assess the plausibility of our model is to evaluate its implications for

the slope of the real yield curve.

Table 7 reports the mean and standard deviation of ex-post real returns to short-term

(one-month) Treasury Bills, intermediate-term government bonds (with approximate matu-

rity of five years), and long-term government bonds (with approximate maturity of twenty

years). A number of features are worth noting. First, consistent with Alvarez and Jermann

(2005), the term structure of real returns is upward sloping. Second, the real yield on long-

term bonds is positive. This result is consistent with Campbell, Shiller and Viceira (2009)

who report that the real yield on long-term TIPS has always been positive and is usually

above two percent.

Our model implies that long-term bonds command a positive risk premium that increases

with the maturity of the bond. The latter property reflects the fact that longer maturity

assets are more exposed to valuation risk. Table 7 shows that, taking sampling uncertainty

into account, both the augmented and the quasi-production model are consistent with the

observed one-year holding returns for short-, intermediate- and long-term bonds. The table

also shows that the estimated models account for the volatility of the returns on short-,

intermediate-, and long-term bonds. So, our model can account for key features of the inter-

mediate and long-term bond returns, even though these models were not used to estimate

the model.

According to Table 7, the augmented and quasi-production models imply that the dif-

ference between stock and long-term bond returns is roughly 3 percent. This value is well

within two standard errors of our point estimate. From the perspective of our model, the

positive premium that equity commands over long-term bonds reflects the di§erence between

an asset of infinite and twenty-year maturity. Consistent with this perspective, Binsbergen,

Hueskes, Koijen, and Vrugt (2011) estimate that 90 (80) percent of the value of the S&P

500 index corresponds to dividends that accrue after the first 5 (10) years.

Piazzesi and Schneider (2007) and Beeler and Campbell (2012) argue that the bond term

premium and the yield on long-term bonds are useful for discriminating between compet-

ing asset pricing models. For example, they stress that long-run risk models, of the type
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pioneered by Bansal and Yaron (2004), imply negative long-term bond yields and a nega-

tive bond term premium. The intuition is as follows: in a long-run risk model agents are

concerned that consumption growth may be dramatically lower in some future state of the

world. Since bonds promise a certain payout in all states of the world, they o§er insurance

against this possibility. The longer the maturity of the bond, the more insurance it o§ers

and the higher is its price. So, the term premium is downward sloping. Indeed, the return

on long-term bonds may be negative. Beeler and Campbell (2012) show that the return on

a 20-year real bond in the Bansal, Kiku and Yaron (2012) model is 0.88.

Standard rare-disaster models also imply a downward sloping term structure for real

bonds and a negative real yield on long-term bonds. See, for example the benchmark model

in Nakamura, Steinsson, Barro, and Ursúa (2010). According to these authors, these impli-

cations can be reversed by introducing the possibility of default on bonds and to assume that

probability of partial default is increasing in the maturity of the bond.6 So, we cannot rule

out the possibility that other asset-pricing models can account for bond term premia and

the rate of return on long-term bonds. Still, it seems clear that valuation risk is a natural

explanation of these features of the data.

We conclude with an interesting challenge posed to a large class of asset pricing models

by Binsbergen, Brandt, and Koijen (2012). Using data over the period 1996 to 2009, these

authors decompose the S&P500 index into portfolios of short-term and long-term dividend

strips. The first portfolio entitles the holder to the realized dividends of the index for a period

of up to three years. The second portfolio is a claim on the remaining dividends. Binsbergen

et al (2012) find that the short-term dividend portfolio has a higher risk premium than the

long-term dividend portfolio, i.e. there is a negative stock term premium. They argue that

this observation is inconsistent with habit-formation, long-run risk models and standard of

rare-disaster models.7 Our model, too, has di¢culty in accounting for the Binsbergen et

al (2012) negative stock term premium. Of course, our sample is very di§erent from theirs

and their negative stock term premium result is heavily influenced by the recent financial

crisis.8 An open, important question is whether the Binsbergen et al (2012) results hold over

6Nakamura et al (2010) consider a version of their model in which the probability of partial default on
a perpetuity is 84 percent, while the probability of partial default on short-term bonds is 40 percent. This
model generates a positive term premium and a positive return on long-term bonds.

7Recently, Nakamura et al (2012) show that a time-vaying rare disaster model in which the component
of consumption growth due to a rare disaster follows an AR(1) process, is consistent with the Binsbergen et
al (2012) results.

8See Figure 6 of Binsbergen et al (2011).
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a longer sample period.

7. Conclusion

In this paper we argue that allowing for demand shocks in an otherwise standard asset

pricing model substantially improves the performance of the model. Specifically, it allows

the model to account for the equity premium, bond term premia, and the correlation puzzle.

According to our estimates, valuation risk is by far the most important determinant of the

equity premium and the bond term premia.

We introduced these demand shocks by allowing for shocks to a representative agent’s

rate of time preference. These shocks can be measured as movements in the risk-free rate.

Estimated versions of our model are consistent with the key empirical properties of the

risk-free rate.

The recent literature has incorporated many interesting features into standard asset-

pricing models to improve their performance. Prominent examples, include habit formation,

long-run risk, time-varying endowment volatility, and model ambiguity. We abstract from

these features to isolate the empirical role of valuation risk. But they are, in principle,

complementary to valuation risk and could be incorporated into our analysis. We leave this

task for future research.
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8. Appendix

8.1. Appendix A

This appendix provides a simple overlapping-generations model in which uncertainty about

the growth rate of the population gives rise to shocks in the demand for assets. In period

t there are xt young agents and xt1 old agents. Young agents have an endowment (labor

income) of w and can buy St stock shares. These shares yield Pt+1 + Dt+1 at time t + 1,

where Pt+1 is the price at which the generation that is young at time t+ 1 is willing to buy

the stock. We normalize the total number of stock shares to one. The economy’s time t

output is: xtw +Dt. We will show that xt and Dt represent two sources of aggregate risk.

Consider the optimization problem faced by a young agent at time t. Assume for simplic-

ity that agents have logarithmic preferences. Each young agent solves the following problem:

max
cyt ,c

o
t+1,St


log (cyt ) + Et


log

cot+1


,

subject to the resource constraint as young

cyt = w  PtSt,

and the resource constraint as old

cot+1 = St (Pt+1 +Dt+1) .

The first-order condition for St is:

Pt (w  PtSt)
1 = Et


(St (Pt+1 +Dt+1))

1 (Pt+1 +Dt+1)

,

or
PtSt

w  PtSt
= . (8.1)

In period t, the equilibrium in the stock market requires that the young buy all the shares

from the old:

xtSt = 1.

Substituting the equilibrium condition in equation (8.1), we obtain the solution for the stock

price:

Pt =


1 + 
xtw.
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We can compute the risk-free rate using the condition:

(cyt )
1 = Rf,t+1Et


cot+1

1
.

Substituting in the equilibrium values of cyt and c
o
t+1 obtain:

Rf,t+1 = Et

2

4
 
xt+1
xt

+
Dt+1


1+
xtw

!13

5
1

.

The equity premium is given by:

Et


Pt+1 +Dt+1

Pt


Rf,t+1 = Et

 
xt+1
xt

+
Dt+1


1+
xtw

!
 Et

2

4
 
xt+1
xt

+
Dt+1


1+
xtw

!13

5
1

.

The risk premium thus depends on the volatility of xt+1/xt, the volatility of dividends and

the covariance between xt+1/xt and Dt+1.

8.2. Appendix B

In this appendix, we solve the model in Section 3 analytically for the case of CRRA utility.

Let Ca,t denote the consumption of the representative agent at time t. The representative

agent solves the following problem:

Ut = maxEt

1X

i=0

it+i
C1a,t+i

1 
,

subject to the flow budget constraints

Wa,i+1 = Rc,i+1 (Wa,i  Ca,i) ,

for all i  t. The variable Rc,i+1 denotes the gross return to a claim that pays the aggregate

consumption as in equation (3.8), financial wealth is Wa,i = (Pc,i + Ci)Sa,i, and Sa,i is the

number of shares on the claim to aggregate consumption held by the representative agent.

The first-order condition for Sa,t+i+1 is:

it+iC

a,t+i = Et


i+1t+i+1C


a,t+i+1Rc,i+1


.

In equilibrium, Ca,t = Ct, Sa,t = 1. The equilibrium value of the intertemporal marginal

rate of substitution is:

Mt+1 = 
t+1
t


Ct+1
Ct


. (8.2)
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The Euler equation for stock returns is the familiar,

Et [Mt+1Rc,t+1] = 1.

We now solve for Pc,t. It is useful to write Rc,t+1 as

Rc,t+1 =
(Pc,t+1/Ct+1 + 1)

Pc,t/Ct


Ct+1
Ct


.

In equilibrium:

Et


Mt+1


Pc,t+1
Ct+1

+ 1


Ct+1
Ct


=
Pc,t
Ct
. (8.3)

Replacing the value of Mt+1 in equation (8.3):

Et

"

t+1
t


Ct+1
Ct

 
Pc,t+1
Ct+1

+ 1


Ct+1
Ct

#
=
Pc,t
Ct
.

Using the fact that t+1/t is known as of time t we obtain:


t+1
t
Et


exp


µ+ c"

c
t+1

1

Pct+1
Ct+1

+ 1


=
Pct
Ct
.

We guess and verify that Pct+1/Ct+1 is independent of "ct+1. This guess is based on the

fact that the model’s price-consumption ratio is constant absent time-preference shocks.

Therefore,


t+1
t

exp

(1 )µ+ (1 )2 2c/2


Et


Pc,t+1
Ct+1

+ 1


=
Pc,t
Ct
. (8.4)

We now guess that there are constants k0, k1,..., such that

Pc,t
Ct

= k0 + k1 (t+1/t) + k2 (t+1/t)
1+ + k3 (t+1/t)

1++2 + ... (8.5)

Using this guess,

Et


Pc,t+1
Ct+1

+ 1



= Et


k0 + k1


(t+1/t)

 exp

"


t+2


+ k2


(t+1/t)

 exp

"


t+2

1+
+ ...+ 1



= k0 + k1 (t+1/t)
 exp


2/2


+ k2 (t+1/t)

(1+) exp

(1 + )2 2/2


+ ...+ 1. (8.6)

Substituting equations (8.5) and (8.6) into equation (8.4) and equating coe¢cients leads to

the following solution for the constants ki:

k0 = 0,

k1 =  exp

(1 )µ+ (1 )2 2c/2


,
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and for n  2

kn = k
n
1 exp

nh
1 + (1 + )2 +


1 + + 2

2
+ ...+


1 + ...+ n2

2i
2/2

o
.

We assume that the series {kn} converges, so that the equilibrium price-consumption ratio

is given by equation (8.5). Hence, the realized return on the consumption claim is

Rc,t+1 =
Ct+1
Ct

k1 (t+2/t+1) + k2 (t+2/t+1)
1+ + ...+ 1

k1 (t+1/t) + k2 (t+1/t)
1+ + ...

. (8.7)

The equation that prices the one-period risk-free asset is:

Et [Mt+1Rf,t+1] = 1.

Taking logarithms on both sides of this equation and noting that Rf,t+1 is known at time t,

we obtain:

rf,t+1 =  logEt (Mt+1) .

Using equation (8.2),

Et (Mt+1) = 
t+1
t
Et

exp




µ+ c"

c
t+1



= 
t+1
t

exp

µ+ 22c/2


.

Therefore,

rf,t+1 =  log () log (t+1/t) + µ 22c/2.

Using equation (3.4), we obtain

E

(t+1/t)

1 = exp

2/2

1 2


.

We can then write the unconditional risk-free rate as:

E (Rf,t+1) = exp


2/2

1 2


1 exp(µ 22c/2).

Thus, the equity premium is given by:

E [(Rc,t+1)Rf,t+1] = exp

2/2

1 2


1 exp(µ 22c/2)


exp


2c

 1

,

which can be written as:

E [(Rc,t+1)Rf,t+1] = E (Rf,t+1)

exp


2c

 1

.
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8.3. Appendix C

This appendix provides a detailed derivation of the equilibrium of the model economy where

the representative agent has Epstein-Zin preferences and faces time-preference shocks. The

agent solves the following problem:

U (Wt) = max
Ct

h
tC

11/ 
t + 


Ut+1

11/ i1/(11/ )
, (8.8)

where Ut+1 =

Et

U (Wt+1)

11/(1). The optimization is subject to the following budget
constraint:

Wt+1 = Rc,t+1 (Wt  Ct) .

The agent takes as given the stochastic processes for the return on the consumption claim

Rc,t+1 and the preference shock t+1. For simplicity, we omit the dependence of life-time

utility on the processes for t+1 and Rc,t+1.

The first-order condition with respect to consumption is,

tC
1/ 
t = 


Ut+1

1/ 
Et

U (Wt+1)

11/(1)1Et

U (Wt+1)

 U 0 (Wt+1)Rc,t+1

,

and the envelope condition is

U 0 (Wt) = U (Wt)
1/ 


Ut+1

1/ 
Et

U (Wt+1)

11/(1)1Et

U (Wt+1)

 U 0 (Wt+1)Rc,t+1

.

Combining the first-order condition and the envelope condition we obtain:

U 0 (Wt) = U (Wt)
1/ tC

1/ 
t . (8.9)

This equation can be used to replace the value of U 0 (Wt+1) in the first order condition:

tC
1/ 
t = 


Ut+1

1/ 
Et

U (Wt+1)

11/(1)1Et

U (Wt+1)

1/  t+1C
1/ 
t+1 Rc,t+1


.

Using the expression for Ut+1 this last equation can be written compactly after some algebra

as,

1 = Et (Mt+1Rc,t+1) . (8.10)

Here, Mt+1 is the stochastic discount factor, or intertemporal marginal rate of substitution,

which is given by:

Mt+1 = 
t+1
t

U (Wt+1)
1/ 


Ut+1

1/ 
C
1/ 
t+1

C
1/ 
t

.
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We guess and verify the policy function for consumption and the form of the utility

function. As in Weil (1989) and Epstein and Zin (1991), we guess that:

U (Wt) = atWt,

Ct = btWt.

Replacing these guesses in equation (8.9) and simplifying yields:

a
11/ 
t = tb

1/ 
t . (8.11)

Substitute the guess also in the Hamilton-Jacobi-Bellman equation (8.8) and simplifying we

obtain:

at =

2

64tb11/ t + 

0

@
"
Et

 
at+1

Wt+1

Wt

1!#1/(1)
1

A
11/ 

3

75

1/(11/ )

.

Finally, use the budget constraint to replace Wt+1/Wt and get

at =


tb

11/ 
t + 


Et

(at+1 (1 bt)Rc,t+1)

11/(1)11/ 
1/(11/ )

. (8.12)

Equations (8.11) and (8.12) give a solution to at and bt.

Combining equations (8.11) and (8.12) gives:

tb
1/ 
t (1 bt) = 


Et

(at+1 (1 bt)Rc,t+1)

11/(1)11/ ,

which we can replace in the expression for the stochastic discount factor together with (8.11)

to obtain:

Mt+1 =



t+1
t

(1)/(11/ )
bt+1
bt
(1 bt)

((1/ )/ )/(11/ )
Ct+1
Ct

1/ 
(Rc,t+1)

1/  .

Now note that  = (1 ) / (1 1/ ), and that

Ct+1
Ct

Rc,t+1
=
bt+1Rc,t+1 (Wt  Ct) / (btWt)

Rc,t+1
=
bt+1 (1 bt)

bt
,

to finally get,

Mt+1 =



t+1
t

 
Ct+1
Ct

 
 

(Rc,t+1)
1 .

Taking logarithms on both sides and equating the consumption of the representative agent

to aggregate consumption yields equation (3.9).
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The rest of the equilibrium derivation solves for rc,t+1 and rd,t+1 as well as for the risk

free rate rf,t+1. Up to now, we did not need to specify the process for the time-preference

shock, the process for consumption growth or the process for dividend growth. We solve

the rest of the model assuming the general processes of Section 5 given in equations (5.1)

through (??). Recovering the equilibrium values for the benchmark model is easily done by

setting c = d =  = 0.

To price the consumption claim, we must solve the pricing condition:

Et [exp (mt+1 + rc,t+1)] = 1.

Guess that the log of the price consumption ratio, zct  log (Pc,t/Ct), is

zct = Ac0 + Ac1xt+1 + Ac2t+1,

and approximate

rc,t+1 = c0 + c1zct+1  zct +ct+1. (8.13)

Replacing the approximation and the guessed solution for zct on the pricing condition gives

Et [exp ( log () +  log (t+1/t) + (1 )ct+1 + c0 + c1zct+1  zct)] = 1.

Calculation of the expectation requires some algebra and yields the equation

0 =  log () + c0 + c1Ac0  Ac0 + (1 )µ+ (1 )2 2c/2 + ((1 ) c + c1Ac1)
2 /2

+ (c1Ac2)
2 /2 +  (c1Ac1 Ac1 + 1) xt+1 +  (  Ac2) t+1.

In equilibrium, this equation must hold in all possible states resulting in the restrictions:

Ac1 =
1

1 c1
,

Ac2 = ,

and

Ac0 =
 log () + c0 + (1 )µ+ (1 )2 2c/2 + ((1 ) c + c1Ac1)

2 /2 + (c1Ac2)
2 /2

 (1 c1)
.

To solve for the risk free rate, we again use the stochastic discount factor to price the

risk free asset. In logs, the Euler equation is

rf,t+1 =  log (Et (exp (mt+1)))

=  log

Et


exp


 log () +  log (t+1/t)



 
ct+1 + (  1) rc,t+1


.
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Using equation (8.13), we get:

rf,t+1 =  log (Et (exp ( log () +  log (t+1/t) ct+1 + (  1) (c0 + c1zct+1  zct)))) .

Substituting in the consumption process and the solution for the price consumption ratio,

and after much algebra, we obtain,

rf,t+1 =  log () log (t+1/t) +
µ

 

1 


((1 ) c + c1Ac1)

2 /2

+


  1


(1 )2  2

2c/2 ((  1)c1Ac1  c)

2 /2 (1 ) (c1Ac2)
2 /2.

Setting c =  = 0 we get the benchmark-model value of the risk free rate (3.18).

Finally, we price a claim to dividends. Again, we assume the price dividend ratio is given

by

zdt = Ad0 + Ad1xt+1 + Ad2t+1,

and approximate the log linearized return to the claim to the dividend:

rd,t+1 = d0 + d1zdt+1  zdt +dt+1. (8.14)

The pricing condition is

Et [exp (mt+1 + rd,t+1)] = 1.

Substituting in for mt+1, rc,t+1 and rd,t+1,

1 = Et


exp


 log () +  log (t+1/t)



 
ct+1 + (  1) (c0 + c1zct+1  zct +ct+1)

+d0 + d1zdt+1  zdt +dt+1)) .

Further substitution of the consumption growth and dividend processes and of the price con-

sumption and price dividend ratios, and after significant algebra, we get that in equilibrium

Ad1 =
1

1 d1
,

Ad2 = ,

and

Ad0 (1 d1)

=  log () + (1 )µ+ (((  1)c1Ac1 + d1Ad1)  c + d)
2 /2 + (dc  c)

2 /2

+d0 + (  1) (c0 + c1Ac0  Ac0) + (d1Ad2 + (  1)c1Ac2)
2 /2 + 2d/2.
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Having solved for these constants, we can compute the expected return on the dividend

claim Et (rd,t+1). When c = d =  = 0 we obtain the benchmark-model value of

Et (rd,t+1) given in equation (3.17).

We are now solve for the conditional risk premium:

Et (rd,t+1) rf,t+1 = Et (d0 + d1zdt+1  zdt +dt+1) rf,t+1.

Substituting the values of zdt and dt+1,

Et (rd,t+1) rf,t+1 = Et

d0 + d1


Ad0 + Ad1xt+2 + Ad2t+2


 Ad0  Ad1xt+1  Ad2t+1



+Et

µ+ d"

d
t+1 + d"


t+2 + dc"

c
t+1


 rf,t+1.

Computing expectations:

Et (rd,t+1) rf,t+1 = d0 + d1 (Ad0 + Ad1xt+1) Ad0  Ad1xt+1  Ad2t+1 + µ rf,t+1.

Substituting the values of Ad0 and rf,t+1 and simplifying, we obtain:

Et (rd,t+1) rf,t+1 = dc (2c  dc) /2 2d/2 + d1 (2 (1 )c1  d1)
2
/2

+ (d1Ad1 + d) (2 ((1 )c1Ac1 + c) (d1Ad1 + d)) /2.

8.4. Appendix D

This appendix provides details on the model’s implications for population moments computed

at an annual frequency.

Yearly average of consumption growth:

E

 
11X

j=0

ctj

!
= 12µ.

Yearly standard deviation of consumption growth:
vuutV

 
11X

j=0

ctj

!
=
q
12(2c + 2c).

Yearly mean growth rate of dividends:

E

 
11X

j=0

dtj

!
= 12µ.
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Yearly standard deviation of the mean growth rate of dividends:
vuutV

 
11X

j=0

dtj

!
=
q
12(2dc + 2d + 2d).

Yearly risk-free rate:

rf  E

 
11X

j=0

rf,t+1j

!
= 12

(
 log () + µ

 


2  1


(1 )2


2c/2 + (  1) (c1Ac2)

2 /2

+ 1

((1 ) c + c1Ac1)

2 /2 ((  1)c1Ac1  c)
2 /2

)
.

The n-period risk-free rate:

nX

j=0

rf,t+1j =constant
nX

j=0


tj + xtj



=constant t  "

t  "


t1  2"t2 + · · ·

 t1  "

t1  "


t2  2"t3 + · · ·

+ · · ·

 tn  "

tn  "


tn1  2"


tn2 + · · ·

The variance of the n-period risk-free rate is given by:

V

 
nX

j=0

rf,t+1j

!
= (n+ 1)2 +

n1X

m=0

 


mX

j=0

j

!2
+



Pn

j=0 
j
2

1 2
.
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The covariance between the year t and the year t 1 interest rate is given by:

E

(
[
11X

j=0

(rf,t+1j  rf )][
11X

j=0

(rf,t+112j  rf )]

)

=E[(

11X

j=0

[xtj + tj])(
11X

j=0

[xt12j + t12j])

=E(

11X

j=0

xtj)(

11X

j=0

xt12j)

=E
h
"


t + "


t1 + 2"


t2 + · · ·+ 22"


t22 + 23xt23

+ "

t1 + "


t2 + 2"


t3 + · · ·+ 21"


t22 + 22xt23

+ "

t2 + "


t3 + 2"


t4 + · · ·+ 20"


t22 + 21xt23

+ · · ·+

+ "

t11 + "


t12 + 2"


t13 + · · ·+ 11"


t22 + 12xt23

i


h
"


t12 + "


t13 + 2"


t14 + · · ·+ 10"


t22 + 11xt23

+ "

t13 + "


t14 + 2"


t15 + · · ·+ 9"


t22 + 10xt23

+ "

t14 + "


t15 + 2"


t16 + · · ·+ 8"


t22 + 9xt23

+ · · ·+

"

t22 + xt23

+ xt23

i
.

Grouping terms we obtain:

2

10X

m=0

E("t12m)
2m+1

mX

n=0

n
11X

j=0

j + E(x2t23)
12

11X

n=0

n
11X

j=0

j,

which simplifies to

2

10X

m=0

m+1
mX

n=0

n
11X

j=0

j +
2

1 2
12

11X

n=0

n
11X

j=0

j.

The AR(1) statistic is given by:

2
P10

m=0 
m+1

Pm
n=0 

n
P11

j=0 
j +

2
12

12
P11

n=0 
n
P11

j=0 
j

122 +
P11

m=0



Pm

j=0 
j
2
+
(

P11
j=0 

j)
2

12

.
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The one-year average equity return is:

rd  E

 
11X

j=0

rd,tj

!
= 12 {d0 + (d1  1)Ad0 + µ} .

The n-period standard deviation of equity returns is given by the expression below. Notice

that

rd,t =constant+ d1zd,t  zd,t1 + d"
d
t + d"


t+1 + dc"

c
t

=constant+ d1t+1  t + Ad1d1xt+1  Ad1xt + d"
d
t + d"


t+1 + dc"

c
t

=constant+ d1t+1  t

+ Ad1d1

 
1X

m=0

m"

t+1m

!
 Ad1

 
1X

m=0

m"

tm

!
+ d"

d
t + d"


t+1 + dc"

c
t

=constant+ d1t+1  t

+ (Ad1d1 + d)"

t+1 + Ad1(d1 1)

 
1X

m=0

m"

tm

!
+ d"

d
t + dc"

c
t .

Note that (d,1 1)Ad,1 = 1, so

rd,t =constant+ d1t+1  t + (Ad1d1 + d)"

t+1  

 
1X

m=0

m"tm

!
+ d"

d
t + dc"

c
t

Then

nX

j=0

rd,tj =constant+
nX

j=0

(
d1t+1j  tj + (Ad1d1 + d)"


t+1j  

 
1X

m=0

m"tmj

!

+ d"
d
tj + dc"

c
tj

)

So

V

 
nX

j=0

rd,tj

!
=[2d1 + n(d1  1)

2 + 1]2

+ (Ad1d1 + d)
2 +

n1X

j=0

 
Ad1d1 + d 

jX

m=0

j

!2

+
2

1 2

 
nX

j=0

j

!2
+ (n+ 1)(2d + 2dc)
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The one-year covariance between consumption and dividend growth is given by:

E

"
11X

j=0

(ctj  µ)

#"
11X

j=0

(dtj  µ)

#

= E

"
11X

j=0


c"


t+2j + c"

c
t+1j


# "

11X

j=0


d"

d
t+1j + d"


t+2j + dc"

c
t+1j


#

= 12(cd + dcc).

The n-year covariance between consumption growth and equity returns is given by:

E

"
12N1X

j=0

(ctj  µ)/N

#"
12N1X

j=0

(rd,tj  µr)/N

#

= E

"
12N1X

j=0

(c"

t+2j + c"

c
t+1j)/N

#


"
12N1X

j=0

(d1 (zd,t+1j  zd) (zd,tj  zd) + d"
d
t+1j + d"


t+2j + dc"

c
t+1j)/N

#

=
12

N
dcc + E

"
12N1X

j=0

c"

t+2j/N

#


"
12N1X

j=0

(d1 (zd,t+1j  zd) (zd,tj  zd) + d"
d
t+1j + d"


t+2j)/N

#
.

Now consider the second term:

1

N2
E

"
12N1X

j=0

c"

t+2j

#


"
d,1Ad,1xt+2  Ad,1xt12N+2 +

12N2X

j=0

(d1  1)Ad,1xt+1j +
12N1X

j=0

d"

t+2j

#
.

Expanding xj, this second term becomes

E
P12N1

j=0 c"

t+2j



N2

 
d,1Ad,1

1X

j=0

j"

t+2j +

12N2X

j=0

(d1  1)Ad,1
1X

m=0

m"

t+1jm +

12N1X

j=0

d"

t+2j

!

=
1

N2

"
d,1Ad,1c

12N1X

j=0

j + 12Ncd + c(d,1  1)Ad,1
12N2X

m=0

mX

j=0

j

#
.

So the covariance is given by:

12

N
dcc +

c
N2

"
d,1Ad,1

12N1X

j=0

j + 12Nd + (d,1  1)Ad,1
12N2X

m=0

mX

j=0

j

#
.
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The n-year covariance between dividend growth and equity returns:

E

"
12N1X

j=0

(dtj  µ)/N

#"
12N1X

j=0

(rd,tj  µr)/N

#

= E

"
12N1X

j=0

(d"
d
t+1j + d"


t+2j + dc"

c
t+1j)/N

#



"
12N1X

j=0

(d1 (zd,t+1j  zd) (zd,tj  zd) + d"
d
t+1j + d"


t+2j + dc"

c
t+1j)/N

#
.

We can exploit the similarities with the analogue expression for consumption growth. The

first term on the left hand side is new. However, it reduces to 12N2d. The third term yields

12N2dc. The middle term is the same as in the previous analysis with d replacing c.

Thus, the covariance is:

12

N
2d +

12

N
2dc +

d
N2

"
d,1Ad,1

12N1X

j=0

j + 12Nd + (d,1  1)Ad,1
12N2X

m=0

mX

j=0

j

#
.

We now compute the covariance between the risk-free rate and the equity return. In

terms of timing, note that rf,t+1 and rd,t+1 are both returns from t to t+1. We compute the

covariance over 12N months and annualize:

1

N2
E

"
12N1X

j=0

(rf,t+1j  rf )
12N1X

j=0

(rd,t+1j  rd)

#

=
1

N2
E

"
12N1X

j=0


t+1j  xt+1j

 12N1X

j=0

(d1 (zd,t+1j  zd) (zd,tj  zd) + (dt+1j  µ))

#
.

Using

zd,t = Ad,0 + Ad,1xt+1 + t+1,

the covariance can be written as,

1

N2
E

"
12N1X

j=0


t+1j  xt+1j




12N1X

j=0

"
d1

Ad,1xt+2j + t+2j




Ad,1xt+1j + t+1j



+ d"
d
t+1j + d"


t+2j + dc"

c
t+1j

##
.
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Simplifying this expression gives,

1

N2
E

"
12N1X

j=0


t+1j  xt+1j




12N1X

j=0


d1

Ad,1xt+2j + t+2j




Ad,1xt+1j + t+1j


+ d"


t+2j


#
,

or,


1

N2
E

"
12N1X

j=0

t+1j

12N1X

j=0


d1t+2j  t+1j


#


1

N2
E

"
12N1X

j=0

xt+1j

12N1X

j=0


d1Ad,1xt+2j  Ad,1xt+1j + d"


t+2j


#
.

Consider the first term:


2
N2
E

"
d1

12N1X

j=0

t+1j

12N1X

j=0

t+2j 
12N1X

j=0

t+1j

12N1X

j=0

t+1j

#

= 
2
N2
E

"
d1

12N2X

j=0

t+1j

12N1X

j=1

t+2j  12N

#

= 
2
N2

[d1 (12N  1) 12N ] .

Consider the second term:


1

N2
E

2

4d1Ad,1
12N1X

j=0

xt+1j

12N1X

j=0

xt+2j  Ad,1

 
12N1X

j=0

xt+1j

!2
+ d

12N1X

j=0

xt+1j

12N1X

j=0

"t+2j

3

5 .

Note that,

xt+1j =
1X

m=0

m"

t+1jm,

so that,
12N1X

j=0

xt+1j = 

1X

m=0

12N1X

j=0

m"t+1jm

= 

"t+1 + "t + ...+ "t+1(12N1)



+x

"t + "t1 + ...+ "t(12N1)



+...

= 

"t+1 + (1 + ) "t + ...+


1 + ...+ 12N1


"t+1(12N1)



+

1 + ...+ 12N1

 1X

n=0

n"t(12N1)n.
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We may then compute,

E

2

4
 
12N1X

j=0

xt+1j

!23

5 = 2E

"
12N1X

j=0

 
1X

m=0

m"t+1jm

!
12N1X

j=0

 
1X

n=0

n"t+1jn

!#

= 2

h
1 + (1 + )2 + ...+


1 + ...+ 12N1

2i
+ 2

2

1 + ...+ 12N1

2 1X

n=0

2n.

Also,

E

"
12N1X

j=0

xt+1j

12N1X

j=0

xt+2j

#

= 2E

"
12N1X

j=0

 
1X

m=0

m"t+1jm

!
12N1X

j=0

 
1X

n=0

n"t+2jn

!#

= E

"


h
"t+1 + (1 + ) "t + ...+


1 + ...+ 12N1


"t+1(12N1)

i

+

1 + ...+ 12N1

P1
n=0 

n"t(12N1)n

#



"


h
"t+2 + (1 + ) "t+1 + ...+


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Panel A, 1929-2011

Horizon Consumption Output Dividends Earnings

1 year -0.05 0.05 0.05 0.10
(0.12) (0.10) (0.11) (0.10)

5 years 0.01 0.00 0.30 0.20
(0.19) (0.12) (0.13) (0.13)

10 years -0.01 -0.09 0.59 0.30
(0.49) (0.14) (0.14) (0.11)

Panel B, 1871-2006

Horizon Consumption Output Dividends Earnings

1 year 0.09 0.14 -0.04 0.13
(0.09) (0.10) (0.10) (0.10)

5 years 0.40 0.25 0.38 0.44
(0.18) (0.14) (0.15) (0.18)

10 years 0.25 0.00 0.64 0.41
(0.18) (0.11) (0.17) (0.13)

Table 1

Correlation between stock returns and per capita
growth rates of fundamentals
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NIPA measures of consumption, 1929-2011

Horizon Durables Non-durables Non-durables 
and services

1 year -0.04 0.05 0.27
(0.13) (0.14) (0.12)

5 years 0.07 -0.08 0.18
(0.11) (0.09) (0.10)

10 years 0.21 -0.2 0.06
(0.15) (0.13) (0.13)

Table 2

Correlation between stock returns and per capita
growth rates of fundamentals
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Benchmark 
model

Augmented 
model

Quasi-
production

Quasi-
production 

match equity 
premium

γ 1.0684 1.0398 0.9302 1.0951
(5.555) (0.95939) (7.6689)

ψ 1.0275 1.0311 0.91839 1.0145
(2.2738) (0.84281) (8.4925)

δ 0.99802 0.99925 0.99951 0.99813
(0.00069517) (0.013551) (0.00587697)

σc 0.0066807 0.0075147 0.0081094 0.0066978
(0.00020834) (0.00026327) (0.00025137)

µ 0.0014517 0.0015846 0.0010629 0.0017229
(6.0378e-05) (5.6632e-05) (6.703e-05)

πcλ 0.00 0.00  3.2471e-05  -5.1591e-05 
(0.00014922)

σd 0.015811 0.017987 0.022763 0.019945
(0.00048413) (0.00071243) (0.00082418)

πdc  3.0489e-06  5.2506e-06  2.2163e-05  5.7025e-06 
(0.00054383) (0.00064363) (0.00077632)

πdλ 0.00 0.00 -0.0089244  3.4262e-06 
(0.0012766)

ση 0.00 0.0078202 0.0090905 0.0058789
(0.00062626) (0.00052927)

ρ 0.9936 0.9936 0.99875 0.99892
(0.0026001) (0.0026932) (0.0017456)

σλ 0.00040109 0.00040109 0.00014709 0.0001648
(8.0343e-05) (0.00012958) (0.00010173)

Implied value of θ -2.56 -1.32 -0.79 -6.65

Table 3
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Selected moments Data 
(Constrained)

Data 
(Unconstrained)

Benchmark 
model

Augmented 
model

Quasi-
production

Quasi-
production 

match equity 
premium

Average growth rate of 
consumption 1.44 2.24 1.74 1.90 1.28 2.07

(0.32) (0.23)
Average growth rate of 
dividends 1.44 -0.12 1.74 1.90 1.28 2.07

(0.32) (0.75)
Standard deviation of the 
growth rate of consumption 2.08 2.15 2.31 2.60 2.81 2.32

(0.38) (0.31)
Standard deviation of the 
growth rate of dividends 6.82 7.02 5.48 6.23 8.47 6.91

(1.35) (1.31)

Contemporaneous correlation 
between consumption and 
dividend growth

0.17 0.16 0.00 0.00 0.00 0.00

(0.12) (0.09)

Average return to equities 7.55 6.20 6.27 4.30 2.81 7.55

(1.74) (1.87)
Standard deviation of return to 
equities 17.22 17.49 14.10 16.85 18.24 12.40

(1.31) (1.39)

Average risk-free rate 0.36 0.06 0.80 -0.27 -0.92 0.36

(0.81) (0.83)
Standard deviation of the risk-
free rate 3.20 3.47 4.21 4.47 4.72 4.72

(0.80) (0.80)
First-order serial correlation of 
the risk-free rate 0.61 0.60 0.95 0.62 0.55 0.81

(0.11) (0.08)
Correlation between equity 
returns and risk-free rate 0.20 0.26 0.13 0.10 0.10 0.26

(0.10) (0.09)

Equity premium 7.19 6.13 5.47 4.57 3.73 7.19

(1.77) (1.84)

Table 4
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ρ Equity premium Conventional 
Risk Premium

Valuation 
Risk 

Premium

0.000 -0.0015 -0.0015 0.0000
0.100 -0.0015 -0.0015 0.0000
0.200 -0.0015 -0.0015 0.0000
0.300 -0.0015 -0.0015 0.0000
0.400 -0.0015 -0.0015 0.0000
0.500 -0.0015 -0.0015 0.0000
0.600 -0.0015 -0.0015 0.0000
0.700 -0.0014 -0.0015 0.0001
0.800 -0.0014 -0.0015 0.0001
0.900 -0.0009 -0.0015 0.0006
0.950 0.0007 -0.0015 0.0022
0.960 0.0018 -0.0015 0.0033
0.970 0.0042 -0.0015 0.0057
0.980 0.0104 -0.0015 0.0119
0.990 0.0330 -0.0015 0.0345
0.991 0.0378 -0.0015 0.0393
0.992 0.0435 -0.0015 0.0450
0.993 0.0502 -0.0014 0.0516
0.994 0.0580 -0.0015 0.0595
0.995 0.0670 -0.0015 0.0685
0.996 0.0775 -0.0015 0.0790
0.997 0.0893 -0.0015 0.0908
0.998 0.1027 -0.0015 0.1042
0.999 0.1174 -0.0015 0.1189

Table 5: Equity and Valuation Risk Premium

Benchmark Model
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ρ
Equity 

premium

Conventional 
Risk 

Premium

Valuation 
Risk 

Premium

0.000 -0.0006 -0.0006 0.0000
0.100 -0.0006 -0.0006 0.0000
0.200 -0.0006 -0.0006 0.0000
0.300 -0.0006 -0.0006 0.0000
0.400 -0.0006 -0.0006 0.0000
0.500 -0.0006 -0.0006 0.0000
0.600 -0.0006 -0.0006 0.0000
0.700 -0.0006 -0.0006 0.0000
0.800 -0.0006 -0.0006 0.0000
0.900 -0.0005 -0.0006 0.0001
0.950 -0.0003 -0.0006 0.0003
0.960 -0.0002 -0.0006 0.0004
0.970 0.0002 -0.0006 0.0008
0.980 0.0011 -0.0006 0.0017
0.990 0.0055 -0.0006 0.0061
0.991 0.0068 -0.0006 0.0074
0.992 0.0084 -0.0006 0.0090
0.993 0.0106 -0.0006 0.0112
0.994 0.0137 -0.0006 0.0143
0.995 0.0179 -0.0006 0.0185
0.996 0.0240 -0.0006 0.0246
0.997 0.0324 -0.0006 0.0330
0.998 0.0439 -0.0007 0.0446
0.999 0.0590 -0.0006 0.0596

Table 5 (continuation): Equity and Valuation Risk Premium

Augmented Model
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ρ
Equity 

premium

Conventional 
Risk 

Premium

Valuation 
Risk 

Premium

0.000 -0.0023 -0.0023 0.0000
0.100 -0.0023 -0.0023 0.0000
0.200 -0.0023 -0.0023 0.0000
0.300 -0.0023 -0.0023 0.0000
0.400 -0.0023 -0.0023 0.0000
0.500 -0.0023 -0.0023 0.0000
0.600 -0.0023 -0.0023 0.0000
0.700 -0.0024 -0.0024 0.0000
0.800 -0.0024 -0.0024 0.0000
0.900 -0.0024 -0.0024 0.0000
0.950 -0.0024 -0.0025 0.0001
0.960 -0.0024 -0.0026 0.0002
0.970 -0.0024 -0.0028 0.0004
0.980 -0.0021 -0.0029 0.0008
0.990 -0.0004 -0.0034 0.003
0.991 0.0001 -0.0035 0.0036
0.992 0.0009 -0.0036 0.0045
0.993 0.0020 -0.0037 0.0057
0.994 0.0035 -0.004 0.0075
0.995 0.0060 -0.0042 0.0102
0.996 0.0098 -0.0045 0.0143
0.997 0.0161 -0.0049 0.021
0.998 0.0263 -0.0053 0.0316
0.999 0.0418 -0.006 0.0478

Table 5 (continuation): Equity and Valuation Risk Premium

Quasi-production model
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Moments Data 
(Constrained)

Data 
(Unconstrained)

Benchmark 
model

Augmented 
model

Quasi-
production

Quasi-
production 

match equity 
premium

1-year correlation between 
equity returns and 
consumption growth

-0.03 -0.05 0.00 0.00 0.00 -0.01

5-year correlation between 
equity returns and 
consumption growth

0.07 0.00 0.00 0.00 0.00 0.00

(0.17) (0.14)
10-year correlation between 
equity returns and 
consumption growth

-0.02 -0.11 0.00 0.00 0.00 0.00

(0.30) (0.20)
1-year correlation between 
equity returns and dividend 
growth

0.08 0.05 0.39 0.37 0.07 0.56

(0.12) (0.11)
5-year correlation between 
equity returns and dividend 
growth

0.27 0.3 0.39 0.36 0.09 0.48

(0.30) (0.20)
10-year correlation between 
equity returns and dividend 
growth

0.51 0.59 0.39 0.35 0.11 0.43

(0.22) (0.14)

Table 6
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Moments Data 
(Unconstrained)

Benchmark 
model

Augmented 
model

Quasi-
production 

model

Average return
Long-term bond 1.66 5.21 1.98 0.74

(0.85)
Intermediate-term bond 1.06 3.67 1.06 0.05

(0.90)
Short-term bond 0.36 0.8 -0.27 -0.92

(0.81)
Return to equity minus long-term bond yield 4.54 1.23 3.16 3.00

(1.84)
Standard deviation
Long-term bond 3.54 2.22 2.96 2.72

(0.76)
Intermediate-term bond 1.06 3.04 3.29 2.93

(0.82)
Short-term bond 3.20 4.21 4.47 4.72

(0.80)
Return to equity minus long-term bond yield 16.7 13.8 16.9 18.9

(1.48)

Table 7


