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1 Introduction

Bank runs are unfortunately still with us. Runs occurred recently on major traditional banks such

as Northern Rock and IndyMac, and on non-traditional “shadow” banks. In Section 2, we document

several intriguing features of the largest ever bank failure, which resulted from the 2008 run on

Washington Mutual: (i) the bank survived a first run, followed by deposit inflows; (ii) rumors circu-

lated, but there was no public information of the first run happening; (iii) uncertainty about bank

liquidity played a key role in a second fatal run; (iv) both runs had an important time dimension;

(v) worried depositors (even those covered by FDIC insurance) acquired additional information,

then some withdrew immediately, while others decided to wait. The empirical pattern that runs

have an important time dimension and that uncertainty and learning play a key role, has been

documented as far back as the 1857 run on the Emigrant Industrial Savings Bank, and is especially

important for the uninsured shadow banking system (e.g., money market funds behavior amid the

European debt crisis discussed in Section 2). The dynamic effects of information acquisition and

the incentives to wait, on the existence and duration of bank runs, have not been studied by existing

bank run models. We aim to fill this gap.

We study dynamic rumor-based bank runs with endogenous information acquisition. Our model

incorporates uncertainty about bank liquidity into the asynchronous awareness framework of Abreu

and Brunnermeier (2003). A liquidity event occurs at some unobservable random time, at which

point a solvent bank becomes illiquid with a known probability or remains liquid. An illiquid bank

has only a limited amount of cash exposing it to a run, while a liquid bank has sufficient reserves to

avoid a run. In the 07/08 financial crisis, the liquidity event can be thought of as banks with opaque

exposure to mortgage-backed securities becoming weak and thus “illiquid” following adverse shocks

in the housing market. The liquidity event triggers the spread of a rumor saying the liquidity event

has occurred and the bank may be illiquid, exposing the bank to a run. Agents (depositors) can

withdraw or deposit funds back at any time for a small transaction cost, but in the unique bank

run equilibrium, upon hearing the rumor, agents wait, fully withdraw, and then redeposit if the

bank survives. The optimal withdrawal time trades-off the marginal benefit of waiting inside the

bank due to the yield on deposits, with the marginal cost of waiting due to risk of loss in a bank

failure.
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We first show that a straightforward application of Abreu and Brunnermeier (2003) to bank

runs without information acquisition is rather uninteresting: in equilibrium, either bank runs never

occur, or depositors run on the bank immediately upon hearing the rumor. Intuitively, if the

conjectured (off-equilibrium) bank survival time is so long that every agent decides to wait a bit

longer, then the illiquid bank would fail later. This longer survival time pushes agents to wait even

longer. This force is so strong that, in equilibrium, agents never withdraw and the bank survives

indefinitely, i.e. runs never occur. On the other hand, if every agent decides to withdraw a bit

earlier, then the equilibrium force of a shorter bank survival time pushes all agents to withdraw

immediately upon hearing the rumor. In this bank run equilibrium, the withdrawal speed and the

implied bank survival time are exogenously determined by the rumor spreading speed.1

We then allow uncertainty-motivated informed agents who hear the rumor to acquire additional

noisy signals. Our main result shows that private information acquisition about liquidity exposes

otherwise safe banks to destructive runs with endogenous waiting. There are three potential signal

realizations: good, fair, and bad, which are independent across agents conditional on the bank liquid-

ity state. Information acquisition with noisy signals creates belief heterogeneity among depositors,

which is key to our result. A good or bad signal reveals the liquidity state perfectly. Receiving

a fair signal can be interpreted as seeing mixed evidences, leaving the agent still uncertain about

bank liquidity as his prior. A higher quality signal is more likely to reveal the state perfectly. If the

bank is indeed illiquid, then in aggregate a higher quality implies more agents receive bad signals

thus knowing the bank is illiquid.

Fixing the signal quality, we show that in a setting where bank runs never exist otherwise, an

interesting bank run equilibrium with endogenous waiting emerges once we allow agents to acquire

information. Conditional on the bank being illiquid, agents with bad signals perceive a high bank

failure hazard rate and withdraw immediately. Agents with uninformative fair signals maintain

the same beliefs they had before acquiring the signals, but now also worry about withdrawals by

bad-signal agents—hence fair-signal agents withdraw earlier than they would otherwise. This effect

goes a long way in changing the qualitative nature of the bank run equilibrium. In equilibrium,

instead of waiting indefinitely, agents with fair signals wait some endogenous time, earning a yield on
1In deriving the endogenous bubble burst time, Abreu and Brunnermeier resolve this issue by assuming that the

bubble component increases over time. This would be a hard assumption to swallow in a bank run setting: it would
require that for a perfectly liquid bank the value of a dollar deposited declines over time.
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deposits, but withdraw once the failure hazard rate becomes substantial, leading to an endogenous

equilibrium (illiquid) bank survival time.

The mechanism is as follows. Without information acquisition, all agents effectively have fair

signals. If all agents were to wait longer, the equilibrium bank failure time would be delayed by

the same amount. This force pushes all agents to wait indefinitely and thus banks never fail.

With information acquisition, there is belief heterogeneity among depositors; specifically, there are

both fair-signal and bad-signal agents conditional on the bank being illiquid. When all fair-signal

agents wait a bit longer, the delay in bank failure is limited, because more bad-signal agents have

withdrawn. A “fear-of-bad-signal-agents” increases the equilibrium hazard rate perceived by fair-

signal agents, and results in a unique endogenous withdrawal time that equates the marginal cost

and benefit of waiting.

We then study the endogenous choice of signal quality with the bank run equilibrium. With

this additional ingredient, our model features both strategic complementarity and substitutability

in information acquisition among individual agents. Potential bank failure motivates agents to

acquire higher quality signals, which in turn, shorten the equilibrium survival time of the failing

bank. This positive spiral between bank runs and information acquisition makes bank runs more

likely. We show that in an economy that without information acquisition is free of bank runs, there

could be two equilibria once information acquisition is allowed: a no-run-no-acquisition equilibrium

where agents do not acquire additional signals and do not run, and a run-acquisition equilibrium

where agents acquire information aggressively and run on the illiquid bank. Socially inefficient

information acquisition about bank illiquidity thus exhibits strategic complementarity regarding

whether to acquire information.2

However, in our setting with smooth information acquisition costs, information acquisition

exhibits strategic substitutability regarding how much information to acquire due to a learning

effect. In our model there is a natural “public” signal conveyed by the fact that the bank has not

yet failed. If others study more about the bank and run on the illiquid one, then the illiquid bank

fails faster. As a result, this public signal becomes more informative. Because a more informative
2This positive feedback effect is similar to Hellwig and Veldkamp (2009) who show that in their particular static

setting, information acquisition exhibits complementarity if and only if ensuing actions (in our model, running on
the bank) are complementary. In other economic settings, information acquisition complementarity arises even
though ensuing actions are not complementary; one such example is the ex ante investment in high-frequency trading
technology analyzed in Biais, Foucault, and Moinas (2013).
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public signal lowers the value of private signals, individual agents hearing the rumor respond by

acquiring less information. This learning effect also explains a counter-intuitive result that the

wider the awareness window over which the rumor spreads, implying more potential withdrawers,

the longer the illiquid bank survives. The intuition is that conditional on the bank surviving thus

far, the bank is more likely to be liquid given that the rumor could have started spreading a long

time ago, which discourages incentives to acquire information.

We extend our model along two dimensions. First, we consider fundamentally insolvent banks.

When agents privately collect information about bank solvency, they inevitably learn about bank

liquidity. Effort spent acquiring one reduces the effort needed to acquire the other. We show that

public provision of solvency information curbs the private acquisition of bank liquidity information

and delays a bank’s failure, which, even for a short while, can help both regulators and industry

organize an orderly resolution that minimizes damage to the banking system.3 Thus our model

implies that carefully constructed stress tests can help prevent or mitigate bank runs by crowding

out information acquisition by individuals. Second, we show it is beneficial to avoid providing

too much information that differentiates competing solvent but potentially illiquid banks, as small

differences in liquidity can result in runs on slightly weaker banks. This justifies U.S. government

actions that forced all “Big 9” banks to take government capital on October 13, 2008.

Our model is related to a vast literature on the role of information in static bank runs, and

it is beyond the scope of our paper to have a thorough review on this topic.4 The distinguishing

feature is gradual withdrawal, which is an important aspect of modern bank runs (see Section 2).

The dynamic nature of bank runs has been explored by studying the sequential service constraint

in the Diamond and Dybvig setting. Green and Lin (2003) point out that no bank runs exist if

depositors know their clock times of arrival and thus infer their relative positions in the queue,

while Peck and Shell (2003) show that bank runs exist if the relative queue position information is
3See March 16, 2008, Financial Times article titled “Bear races to forge deal with JPMorgan.”
4See Gorton (1985), Bhattacharya and Gale (1987), Jacklin and Bhattacharya (1988), Chari and Jagannathan

(1988), and recently, Ennis and Keister (2009). Our model provides an information-based theory of bank panics as
opposed to a sunspot-based theory (Gorton and Winton, 2003, Ch. IV). On the topic of information acquisition and
bank runs, Nikitin and Smith (2008) study how information acquisition about bank solvency affects the bank run
equilibrium in a static Diamond and Dybvig setting. In contrast, we focus on information acquisition about bank
liquidity. Based on the Morris and Shin (2002) global games technique, Goldstein and Pauzner (2005) study the
optimal deposit contract by deriving a unique equilibrium when depositors in a Diamond and Dybvig type setting
are endowed with private noisy signals about bank fundamentals. We allow for endogenous information acquisition,
and show that excessive socially wasteful learning may lead to socially inefficient runs on solvent-but-illiquid banks.
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unavailable.5 In this regard, our paper is similar to Peck and Shell (2003) since each agent in our

model assigns the same distribution to her relative position in the queue. Relative to these models,

we emphasize the endogenous interaction between information acquisition and bank runs.

Gu (2011) studies depositors’ withdrawal strategy sequentially for a potentially insolvent bank in

a Diamond and Dybvig setting. Unlike our paper, (some) depositors in Gu (2011) observe previous

withdrawals. Because withdrawals indicate bank insolvency, Gu (2011) shows that herding (ignoring

private information which is endowed exogenously) after a long sequence of withdrawals may lead

to inefficient bank runs. Our paper with endogenous information quality emphasizes individual

depositors’ uncertainty and forming of rational expectation over other depositors’ withdrawal timing

and strategies. This aspect is important given the modern age of electronic banking, the high

frequency nature of repo in the context of shadow banking, or the large scale runs by money market

funds that faced the European sovereign debt crisis. Thus our mechanism is complementary to Gu

(2011) in understanding the dynamics of bank runs together with the role of information.

From a modeling perspective, our framework features more empirically appealing timing as-

sumptions in that individual depositors can withdraw or redeposit their funds at any time; this

represents a substantial improvement from the Diamond and Dybvig framework and the above-

mentioned important extensions. If high frequency micro-level data is available, our analytically

tractable model is particularly calibration-friendly thanks to its empirically-interpretable time di-

mension.6 An alternative approach to bank run modeling is He and Xiong (2012a,b) who develop

dynamic debt run models of a firm with a time-varying fundamental and a staggered debt structure.

Rumors are studied by Banerjee (1993) and van Bommel (2003). We build on the approach

of Abreu and Brunnermeier (2002, 2003) who consider the asynchronous timing of awareness to

study “rational” bubbles.7 We add to their model uncertainty about the capacity of the bubble

(bank), decouple the spreading rate from the length of the awareness window, and allow agents

to acquire additional noisy information upon awareness. This ex post heterogeneity generates the
5This literature focuses on optimal mechanism design; for related papers, see Wallace (1988, 1990), Andolfatto,

Nosal, and Wallace (2007), and Andolfatto and Nosal (2008).
6By contrast, Green and Lin (2003) and Peck and Shell (2003) study finite-agent economy, and depositors can

either withdraw at period 1, when called in line, or wait until period 2. Gu (2011) considers a relaxation that a finite
number of depositors can withdraw at any time within an interim stage before period 2. A significant departure
from the Diamond and Dybvig framework seems necessary for developing dynamic models that are both calibration-
friendly and tractable. A sacrifice our model makes is to assume away the preference (early or late) type of depositors,
an ingredient critical for Diamond and Dybvig, but inessential for our paper.

7Brunnermeier and Morgan (2010) generalize this idea to a class of “clock games” and test its main predictions.
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fear-of-bad-signal-agent effect, which naturally leads fair-signal agents to withdraw earlier, giving

rise to a bank run equilibrium in which the illiquid bank fails at an endogenous time.

The paper proceeds as follows. Section 2 summarizes empirical facts on bank run dynamics.

Section 3 builds a rumor-based bank run setting. Section 4 shows that information acquisition

with noisy signals leads to an interesting bank run equilibrium with an endogenous (aggregate)

withdrawal speed. Section 5 discusses empirical predictions of our model. Section 6 provides

extensions and discussion. We conclude in Section 7. Proofs are in the Appendix.

2 Empirical Bank Run Evidence

We begin by providing new evidence about the failure of Washington Mutual (WaMu), and syn-

thesizing the empirical literature on bank run dynamics. Many of the stylized facts about runs on

traditional regulated commercial banks also appear in shadow bank runs. In organizing these facts

about bank runs, we highlight three aspects that are key contributions of our model: (i) bank runs

are dynamic and gradual with rumors spreading among depositor-like agents; (ii) uncertainty and

learning about the bank’s liquidity drive agents’ withdrawal/redeposit behavior; and (iii) individual

agents are actively acquiring their own information before they run.

2.1 Traditional Banks

Figure 1 shows that the runs on WaMu were dynamic in nature. The bank suffered two separate

runs: it experienced gradual withdrawals of $9 billion during a first run lasting 20 days in July

2008, and withdrawals of $15 billion during a second run lasting 15 days in September 2008, leading

up to its takeover by the FDIC.

Information and uncertainty play an important role in both runs on WaMu. Following the

failure of IndyMac on July 11, 2008, WaMu experienced massive withdrawals but managed to

survive. Interestingly, consistent with our modeling of “rumor” as “information without discernible

origin” in Section 3.1.3, although plenty of rumors about it circulated online, this run was never

publicly reported before WaMu’s failure.8 After this first run, the bank regained much of its deposit
8Some examples from answers.yahoo.com dated July 26, 2008: (1) “Anybody else hear rumors about WaMu bank

potentially being taken over by the Federal Government? I heard that it is failing too. Who’s next? Is it time to
make that run yet?” (2) “I heard the same thing...I have a Wamu bank card....Yaaaaaaaaaaahooooooo! This means
I can tap it out and the Government will bail me out.” (3) “I am so glad I took my money out.” (4) “Actually I heard
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Figure 1: The Dynamic Nature of the Run on WaMu
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Daily deposit balances as reported by Washington Mutual Bank to the Office of Thrift Supervision (OTS).
Dashed line shows unadjusted balances which include consumer noninterest, consumer interest-bearing, and
small business deposits. Solid line shows balances adjusted for Friday and end-of-month fixed effects, i.e.
days with automatic payday deposits. The OTS appointed the FDIC as receiver of WaMu on the evening
of September 25, 2008 (the vertical line in the figure) which then sold it to JPMorgan Chase.

base, suggesting that the mere survival of WaMu conveys positive information to its depositors. In

September 2008 after Lehman Brothers failed, uncertainty regarding WaMu’s liquidity and hence

its eventual fate played a key role in a fatal second run. The bank’s ability to secure funds from

the Fed was questionable.9 Depositors sought out additional information about its liquidity, then

some depositors withdrew while others decided to wait.10 Such noisy information acquisition and

they had did better than expected in earnings. Only rumor I heard was that National City was going to be next.”
9WaMu depended on borrowings from the FHLBs of San Francisco and Seattle and the San Francisco Fed acting as

lenders of last resort. Given its composite CAMELS rating of 4, there was no assurance that funds would be available
in the amounts and in the timing needed to meet its obligations. In fact, the bank lost its access to the Term Auction
Facility program. See September 25, 2008 letter by Darrel W. Dochow, OTS Regional Director recommending FDIC
receivership.

10“All across the country, customers streamed into hundreds of WaMu branches, on edge, brimming with questions.
This run was nothing like July’s, which had been tame by comparison. Now people were frenzied, acting purely out
of fear. ‘We just didn’t have any control,’ said one branch manager. The tellers’ talking points no longer placated the
customers—even the tellers didn’t understand them. ‘They kept telling us to say that we have $44 billion, whatever
that meant,’ said one employee, likely referencing WaMu’s liquidity position. The customers demanded to talk to
whoever was in charge. At one Seattle location, they lined up and waited all day to speak to the branch manager.
‘Should I take my money out?’ they asked her when they reached her, over and over again. ‘Is WaMu going under?’
And they asked the inevitable question: ‘What would you do?’ The branch manager, who knew most of the people’s
names and their kids, would say, ‘I don’t know any more than you do. But if you’re uncomfortable, do what makes
you sleep at night.’ She wasn’t sleeping, either. ‘You went to work and you go hammered,’ the branch manager said
later. ‘By the end of the day, you were exhausted. And you didn’t know if you had a job, or what was going on.’
WaMu headquarters told the branches repeatedly that everything was fine, but the news reports and the blogs and
the stories posted on Facebook all said otherwise. ‘You told the customers something, and then they watched the
news, and then they would come back,’ the branch manager said. Many took their money out anyway.” (Grind,
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the decision to wait before running are the main focus of our paper.

Surprisingly, more than half of running WaMu depositors were in fact covered by FDIC insur-

ance. Withdrawals by insured depositors could make sense if they worry the FDIC might tem-

porarily freeze their accounts, or that it could not afford to cover WaMu’s insured deposits which

were several times the Deposit Insurance Fund at the time, or simply as one depositor explained,

they “just don’t want to deal with it.”

Iyer and Puri (2012) document the dynamic nature of an Indian bank run influenced by its

depositors’ social network. They also find that deposit insurance is only partially effective in

preventing runs. Unlike in WaMu’s first run in July 2008, deposit balances of most depositors who

ran on the Indian bank, did not return to pre-run levels.11

O Grada and White (2003) find that the 1857 bank run on the Emigrant Industrial Savings Bank

had an important time dimension: “In neither 1854 nor 1857 did depositors respond to a single

signal that led them to crowd into banks all at once. Instead, panics lasted a few weeks, building

and sometimes ebbing in intensity, and only a fraction of all accounts were closed.” They conclude

that the 1857 run was driven by informational shocks in the face of asymmetric information about

the true condition of bank portfolios. Kelly and O Grada (2000) provides further evidence on

information transmission during this run.

2.2 Shadow Banks

Maturity transformation is no longer exclusively done in traditional commercial banks. Shadow

banks, which include securitization vehicles and investment banks, provides short-term funding for

long-term projects in a broad sense and has developed into an unregulated substitute to traditional

commercial banks. With short-term funding contracts akin to demand deposits, these “shadow”

banks are subject to runs with similar features.12

In September 2008 the Securities and Exchange Commission conducted an audit of the collapse

2012, p. 277-278). See also July 24, 2008, Bloomberg article titled “WaMu Slumps as Gimme Credit Cites Liquidity
Concern.”

11In our main model with a single bank (which can be either liquid or illiquid), depositors return to the surviving
bank once they endogenously learn it is liquid. In Section 6.2 we introduce competing banks. There, withdrawing
depositors never return to their original bank, which offers a possible rationale for the findings of Iyer and Puri (2012).

12For instance, Gorton and Metrick (2011), Covitz, Liang, and Suarez (forthcoming), and Acharya, Schnabl, and
Suarez (2013) document “shadow” bank runs on repo and asset-backed commercial paper (ABCP). Schroth, Suarez,
and Taylor (2013) find that runs on ABCP are sensitive to leverage, asset values, and asset liquidity.

8



of Bear Stearns. Consistent with our modeling of dynamic nature of rumor, the executive sum-

mary starts with: “During the week of March 10, 2008, rumors spread about liquidity problems at

Bear Stearns. As the rumors spread, Bear Stearns was unable to obtain secured financing from

counterparties.”13

Given the sophisticated multi-layered structure of the modern financial system, “bank runs”

can be interpreted broadly as funding withdrawals by one class of short-term lenders (i.e., not just

household depositors) from other institutions. For instance, during the 2011 European sovereign

debt crisis, money market funds (like depositors) divested from European banks. Fears of liquidity,

or rollover risk, rather than solvency drove fund managers to cut their exposure to Spanish and

Italian banks.14 Consistent with our model, this run was dubbed the “slow-motion” bank run in

the popular press, referring to its gradual nature: money market funds reduced their exposure

to all Eurozone banks by 37% from $453 billion to $287 billion between May and August 2011

(Chernenko and Sunderam (2012)). More interestingly, individual information acquisition played a

crucial role, as fund managers each did their own research and came up with different conclusions,

prompting some to run and others to rollover their investment. 15 Eventually, U.S. money market

funds returned to the European money market.16 Their return to these positions is hard to generate

using existing models, but is a feature of ours, which we turn to next.

3 The Base Model without Information Acquisition

We first build a rumor-based bank run model by introducing uncertainty into the asynchronous

awareness setting of Abreu and Brunnermeier (2003), which is our base setting without information

acquisition. Most of the analysis here, such as learning and optimal withdrawal strategies, applies

to later situations with information acquisition. We show that, without information acquisition,

either bank runs do not occur at all, or depositors run on the bank immediately upon hearing the

rumor. Therefore, bank runs, if they occur, exhibit an exogenous withdrawal speed, which implies
13“SEC’s oversight of Bear Stearns and related entities: The consolidated supervised entity program,” report no.

446-A published on September 25, 2008. Interestingly, Chairman Christopher Cox described Bear Stearns as a well-
capitalized entity, which “was done in by a cash shortage, because lending dried up and prime-brokerage clients moved
their money elsewhere” (April 3, 2008, Bloomberg article titled “Cox Defends SEC’s Role in Regulating Bear Stearns
(Update1)”).

14See July 24, 2011, Financial Times article titled “Money market funds cut euro bank exposure.”
15See July 5, 2011, Reuters article titled “U.S. money funds diverge on European bank paper.”
16See July 29, 2013, Financial Times article titled “US money market funds return to EU banks.”
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the bank fails at some exogenous time. This result changes qualitatively once we allow agents to

acquire additional noisy private signals.

3.1 The Setting

3.1.1 Bank and Depositors

Time is continuous on t ∈ [0,∞). There is a unit mass of infinitely-lived risk-neutral agents

(depositors) with a zero discount rate. Bank deposits yield a constant rate of return r > 0 when the

bank is operating, while holding cash outside the bank earns nothing. Broadly, one can interpret the

bank as some investment vehicle in the shadow banking system or even the entire financial system,

and the positive relative wedge reflects either a higher investment growth rate or a convenience

yield for keeping funds in the institution. Our main analysis focuses on a single bank, but we

consider competing banks offering similar returns as an extension in Section 6.2.

To avoid exploding values for a dollar inside the potentially safe bank, we assume that the

bank’s growth stops at some “maturing” event modeled as a Poisson shock with intensity δ > r, and

afterwards the game ends (e.g., each agent gets his deposit back for consumption).17 Throughout,

this maturing event is independent of any other random variables that we consider.

3.1.2 Uncertainty about Bank Liquidity

There are two potential types of banks that are fundamentally solvent (i.e., bank survival is the

first-best allocation), with one type of bank being “illiquid,” and a second “liquid” bank impervious

to runs. Uncertainty about bank liquidity is crucial to our analysis, though its source could be

fundamental shocks.18

Bank liquidity is defined as the mass of depositors it takes to run down the bank. For simplicity,

we assume a binary structure for the state of bank liquidity κ̃. When the bank is illiquid, κ̃ takes a

lower value κL < 1, and it fails when a κL measure of depositors have fully withdrawn their funds.

One can literally interpret κ̃ as the bank’s cash reserves to meet withdrawals. We broadly interpret
17A similar but more natural interpretion is that individual agent suffers liquidity shocks with immediate consump-

tion need (therefore withdrawal). The analysis, which is available upon request, is similar but much more complicated
(due to the replacement of agents).

18We consider uncertainty with known probabilities (risk). Generalizing our model to Knightian uncertainty might
be interesting for future research.
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κ̃ as the liquidity of the bank, which could represent uncertainty about the willingness of a lender

of last resort (e.g. central bank) to lend to bank (see footnote 9 for an example). For the liquid

bank with a higher liquidity reserve, κ̃ = κH > κL. We focus on the case that there is no run on

the liquid bank; hence for now it is useful to think of κH > 1, i.e. the sufficiently liquid bank can

survive any severe run. However, in Section 6.3.1 we verify that our asynchronous awareness model

can have κH < 1 but still rule out runs on the liquid bank.

In our economy, it is common knowledge that conditional on the liquidity event (to be introduced

shortly), the probability of the illiquid state is p ∈ (0, 1) . When the illiquid bank fails, its assets

have a fire-sale price to recover γ ∈ (0, 1) dollar for each dollar of deposits. Afterwards, all agents

go to autarky consuming their remaining wealth.

We focus on uncertainty about liquidity for solvent banks for better comparison to the litera-

ture.19 Section 2.2 documents that during the 2007/08 financial crisis, concerns regarding liquidity

of financial institutions are often highlighted among investors and regulators. No doubt, both sol-

vency and liquidity are highly linked to bank fundamentals. In reality, banks are not just either

solvent or insolvent; within solvent banks, there are strong ones and weak ones that differ in their

fundamentals. Our modeling of liquid/illiquid banks can be equivalently interpreted as strong/weak

banks. Indeed, as detailed in the next subsection, one can interpret the illiquid bank as an institu-

tion whose capital base is hit by adverse shocks to its mortgage-backed securities, making it weak

but still solvent. Later in Section 6.1 we introduce fundamentally insolvent banks as an extension.

3.1.3 Liquidity Event, Spreading Rumors, and Informed Agents

At t = 0 the bank is liquid, i.e., κ̃ = κH . At some unobservable random time t̃0 > 0 referred to

as the liquidity event, the bank may become illiquid, and the uncertainty is as modeled in Section

3.1.2. Mapping to the 2007/08 crisis in which banks have opaque exposure to real estate, one may

think of this event as the gradual deterioration of mortgage-backed securities which hurts banks’

liquidity but keeps them solvent. Although the exact liquidity event time t0 is publicly unobservable,

it is common knowledge that t̃0 is exponentially distributed on [0,∞) with cumulative distribution

Φ (t0) ≡ 1− e−θt0 , where θ is a positive constant.

Knowledge of this liquidity event starts spreading in the population after t̃0, i.e., some agents
19For instance, Nikitin and Smith (2008) and Gu (2011) focus on bank solvency information.
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hear a “rumor” that “the liquidity event t̃0 has occurred and thus the bank might be illiquid.”

Since the exact liquidity event time t̃0 is unknown, this spreading information captures the essence

of an unverified rumor of uncertain origin that spreads gradually in the depositor population.

Importantly, hearing the rumor informs the agent that “the liquidity event t̃0 has occurred and

hence other agents in the population may have heard the rumor.”

We call those agents who hear the rumor “informed,” or simply “agents,” and the rest “unin-

formed.” Since at t = 0 the bank is liquid, throughout we assume that agents’ beliefs are such that

they stay inside the bank unless they hear the rumor. In Section 6.3.2 we show this is indeed the

case under certain conditions, by analyzing the problem of an uninformed agent.

Given a realization of t̃0 = t0, the rumor begins to spread over an interval [t0, t0 + η] with a

positive constant (exogenous) length η. Following Abreu and Brunnermeier (2003) we refer to η as

the “awareness window.” At any interval [t, t+ dt] where t ∈ (t0, t0 + η), uninformed agents become

informed by hearing this rumor with probability βdt, where β is an exogenous positive constant.

The rumor shock is i.i.d. across the population of uninformed agents. Then for t ∈ [t0, t0 + η], the

mass of uninformed and informed agents are e−β(t−t0) and 1− e−β(t−t0) respectively, and the mass

of newly informed agents within [t, t+ dt] is βe−β(t−t0)dt. To make the problem interesting, we

assume that at time t0 + η the fraction of informed agents, which is 1− e−βη, is sufficient to take

down the illiquid bank, i.e., 1− e−βη > κL.

This spreading technology is different from that of Abreu and Brunnermeier (2003) in that we

allow for separation between the spreading rate β and the awareness window η.20 As shown later,

the awareness window η has interesting effects opposite to common wisdom.

Call the informed agent who hears the rumor at ti ≥ t0 simply agent ti. Consistent with

electronic age banking, he neither observes withdrawals before him, nor the potential queue in

front of the bank. In the context of shadow banking, given the high frequency nature of repo

financing, we assume that individual creditors do not observe, but do form rational expectations

about, other creditors’ rollover decisions. We share with Abreu and Brunnermeier (2003) the

simplifying assumption that agents do not observe the market price of bank equity, which future

work can introduce by adding noise to prices.21

20Abreu and Brunnermeier assume a linear spreading technology with rate 1
η

so that the entire population is
informed at t0 + η. This way, the awareness window η is artificially tied to the spreading rate 1

η
.

21If investors trading in the stock market have the same information as depositors, then bank stock prices convey
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3.1.4 Transaction Costs and Agent’s Problem

To eliminate strategies with infinite transactions, we assume a constant, yet arbitrarily small,

transaction cost c per dollar when the agent receives cash from, or deposits cash back in the bank—

including the maturing event (so the agent receives 1− c per dollar of deposit) or bankruptcy (so

he receives γ (1− c)). This assumption is innocuous as our analysis carries through when c→ 0.

In sum, after hearing the rumor an agent can withdraw his deposits whenever he believes bank

failure is imminent, and redeposit this cash in the future if the bank’s survival sufficiently improves

his posterior belief, both subject to a transaction cost c. Due to the linearity of this problem, a

“bang-bang” strategy, i.e. keeping the entire wealth either in or out of the bank, is optimal.

Our model allows for the possibility of depositors redepositing back to the bank, unlike exist-

ing literature based on the Diamond and Dybvig model (e.g., Green and Lin (2003), Gu (2011),

etc). Though it is not necessary for our qualitative results, the redepositing option is empirically

motivated and theoretically appealing. Redepositing behavior is apparent in Figure 1, which shows

that after the first run on WaMu, the bank regained much of its deposit base. From a theory

perspective, we find it more coherent to allow agents to deposit or withdraw at any time, with

some transaction costs. We take up this challenge and show that before the bank fails the class of

threshold strategies is optimal. Otherwise, the optimality of threshold strategies becomes trivial

given an assumption that prohibits redepositing.

3.2 Learning

3.2.1 Posterior Belief about t0

Agent ti ∈ [t0, t0 + η) updates his posterior distribution of t0 conditional on hearing the rumor at

ti. Given t0, the likelihood of an individual uninformed agent hearing the rumor over [ti, ti + dt]

but not earlier, is f (ti|t0) = βe−β(ti−t0)dt for ti ∈ [t0, t0 + η).

Recall that the prior density of the liquidity event timing t0 is φ (t0) = θe−θt0 . We follow Abreu

noisy signals of both the liquidity state of the bank and the time the rumor started spreading. These noisy signals
would change the learning formula for depositors. The analysis of the bank run equilibrium might be challenging, as
each agent’s withdrawal decision could depend on the price history that she observes since hearing the rumor, and
the entire price history enters the aggregate withdrawal condition. We conjecture this “learning effect” would only
change the quantitative predictions of our model, because our model can be viewed as the limiting case where stock
market prices are pure noise. Another important consequence of introducing noisy stock prices is that public signals
can be coordination devices; see Abreu and Brunnermeier (2003) for a discussion of synchronizing events.
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and Brunnermeier (2003) to focus on realizations of t0 ≥ η such that the economy is already in

a stationary phase; as shown shortly agent ti’s equilibrium strategy will be independent of the

absolute timing of being informed.22 With t0 ≥ η, the informed agent ti ≥ t0 ≥ η updates his

posterior belief about t0 as

φ (t0|ti) ≡
f (ti|t0)φ (t0)∫ ti

ti−η f (ti|s)φ (s) ds
= θ − β
e(θ−β)η − 1

e(θ−β)(ti−t0) ≡ λeλ(ti−t0)

eλη − 1 , (1)

where we define λ ≡ θ − β. Without loss of generality, we assume that λ > 0.23 Integrating (1)

over t0 we get the conditional cumulative distribution function for t0 with support t ∈ [ti − η, ti]:

Φ (t|ti) ≡ Pr
(
t̃0 ≤ t|ti

)
=
∫ t

ti−η
φ (s|ti) ds = eλη − eλ(ti−t)

eλη − 1 . (2)

3.2.2 Bank Failure Hazard Rate

Suppose that agents believe the illiquid bank fails at t0 + ζ where ζ is the survival time to be

determined in equilibrium (potentially infinite), and the event of bank failure is {t0 + ζ < t, κL}.

For agent ti at the absolute time t > ti, denote by τ ≡ t − ti the time elapsed since he

heard the rumor. For this agent, the bank fails in the next instant if and only if t0 occurs at

t0 = t− ζ = ti + τ − ζ, and the bank is illiquid. Since the bank being illiquid (with probability p)

is independent of t0, the bank failure hazard rate at t = ti + τ is

h (ti + τ |ti) = pφ (ti + τ − ζ|ti)
1− pΦ (ti + τ − ζ|ti)

.

Combining (1) and (2), we get h (ti + τ |ti) of the following proposition, which is independent of the

absolute time agent ti is informed. This stationarity allows us to denote h (ti + τ |ti) by h (τ).

Proposition 1. Suppose that the illiquid bank fails at t0+ζ. Then the failure hazard rate is positive
22The finite awareness window η over which the rumor spreads makes the cases of t0 < η and t0 ≥ η different. In

the event of t0 ≥ η, it always holds that ti ≥ η, and rational agents know that t0 ∈ [ti − η, ti]. In Appendix C we
consider the equilibrium behavior for t0 < η.

23The assumption of λ > 0 is for exposition purpose, and the analysis goes though if λ < 0. To see this, if λ < 0,
then the conditional density φ (t0|ti) can be written as (−λ)eλ(ti−t0)

1−eλη which is still positive.
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for τ ∈ [max (ζ − η, 0) , ζ], with

h (τ) ≡ h (ti + τ |ti) = pλeλ(ζ−τ)

(1− p) (eλη − 1) + p
(
eλ(ζ−τ) − 1

) . (3)

The hazard rate is zero, if i) either ζ > η and τ < ζ − η, in which case the time ti + τ is before

the earliest possible bank failure at ti − η + ζ, or ii) τ > ζ, as the bank is revealed to be liquid.

We require the prior of the bank being illiquid, i.e. p, to be sufficiently high that

p

1− p > eλη − 1. (4)

Under this condition, the hazard rate in (3) increases with τ , the time elapsed since hearing the

rumor. More time without failure lowers the posterior belief that the bank is illiquid and reduces

the hazard rate. But, since the illiquid bank fails a fixed amount of time after the rumor starts to

spread, every minute that passes since the agent heard the rumor brings him closer to potential

failure, which increases the hazard rate. The condition (4) guarantees the latter effect dominates.24

3.3 Optimal Withdrawal Strategies

We present the key proposition that characterizes individual agents’ optimal withdrawal policy,

taking the equilibrium survival time ζ as given.

3.3.1 Value Functions

Due to stationarity, denote by VI (τ) (VO (τ)) the optimal value of one dollar inside (outside) the

bank at time t = ti + τ . Because withdrawal or redepositing costs c, the optimality condition

implies VI (τ) ≥ (1− c)VO (τ) and VO (τ) ≥ (1− c)VI (τ) for all τ ≥ 0.

When τ ≥ ζ, an inside dollar grows at rate r until the maturing event (with intensity δ), with

a value of (recall that transaction costs also apply to the maturing payout)

VI (τ) =
∫ ∞

0
ers (1− c) δe−δsds = (1− c) δ

δ − r
for τ ≥ ζ.

24If (4) fails, the hazard rate decreases with τ , and agents, if they ever choose to withdraw, will withdraw upon
hearing the rumor τ = 0 and redeposit to the bank at some endogenous time. This case with endogenous entry could
be interesting for future research on recovery after crises.
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Given the transaction cost, the value of one dollar outside the bank at ζ is VO (ζ) = (1− c)VI (ζ) =
(1−c)2δ
δ−r . For sufficiently small c, VO (ζ) is above 1, i.e. the agent’s reservation value of one outside

dollar. For notational convenience, define the additional value given the redepositing option at ζ:

υ ≡ VO (ζ)− 1 = (1− c)2 δ

δ − r
− 1 ≥ 0. (5)

When τ < ζ, consider a dollar outside the bank. If staying outside is optimal, the following

Hamilton-Jacobi-Bellman (HJB) equation must hold:

0 = h (τ) (1− VO (τ))
Bank failure

+ δ (1− VO (τ))
Bank matures

+ V ′O (τ)
Time change

. (6)

The first term captures bank failure: the agent loses his value VO (τ) but gets 1 if the bank fails

with hazard rate h (τ). The second term captures the maturing event, and the third term is the

change due to time elapsing. Because the agent can also deposit immediately (with transaction

cost c), VO (τ) satisfies:

0 = max
{
h (τ) (1− VO (τ)) + δ (1− VO (τ)) + V ′O (τ) , (1− c)VI (τ)− VO (τ)

}
. (7)

Similarly, for a dollar inside the bank, its value VI (τ) satisfies:

0 = max
{
rVI (τ)
Interest

+ h (τ) (γ (1− c)− VI (τ))
Bank failure

+ δ ((1− c)− VI (τ))
Bank matures

+ V ′I (τ)
Time change

, (1− c)VO (τ)− VI (τ)
Withdrawal

}
(8)

3.3.2 Optimal Strategies

Let V̂O (τ) denote the solution to (6). With boundary condition V̂O (ζ) = VO (ζ) = 1 + υ given in

(5), the solution is

V̂O (τ) =
eλη (1− p)− 1 + eλ(ζ−τ)p+ e−δ(ζ−τ) (1− p)

(
eλη − 1

)
υ

(1− p) (eλη − 1) +
(
eλ(ζ−τ) − 1

)
p

. (9)

Economically, V̂O (τ) is the value of an outside dollar, following the naive strategy of staying outside

the bank from τ to ζ, and redepositing if the bank survives. In general V̂O (τ) ≤ VO (τ) because the
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naive strategy may be suboptimal, but we will show that analyzing this naive strategy is of great

help in analyzing the optimal strategy.

The following function captures the marginal impact of postponing withdrawal on the value of

the above naive strategy:

g (τ) ≡ h (τ) (1− γ)− rV̂O (τ) . (10)

Specifically, we compare two strategies: one is withdrawing at τ and staying outside until ζ, and

the other is staying inside the bank at τ , withdrawing a bit later at τ +dt and staying outside until

ζ. The marginal cost is the transaction-cost adjusted expected loss due to potential bank failure

h (τ) (1− γ) (1− c). The marginal benefit is r (1− c) V̂O (τ), because by waiting the deposited dol-

lar grows at a rate of r, and under the naive strategy each deposited dollar is taken out immediately

and worths (1− c) V̂O (τ) after transaction cost. Factoring out 1− c we obtain g (τ).

The function g (τ) only applies to the naive strategy; however, Proposition 2 shows that the

sign of g (τ) is the same as that of the first-order condition under the truly optimal strategy. What

is behind this result is the optimality of threshold strategies, i.e., agents do not redeposit before ζ.

This also implies VO (τ) = V̂O (τ) for τ after the optimal withdrawal time τw.

At the optimal withdrawal time τw, we have g (τw) = 0. Since VI (τw) = (1− c)VO (τw) =

(1− c) V̂O (τw), the optimality condition for τw can be rewritten as

h (τw) (1− γ) (1− c)
Staying Cost

= rVI (τw)
Staying Benefit

. (11)

Here, the left hand side is the transaction-cost adjusted marginal cost of staying (inside the bank)

due to potential bank failure, while the right hand side is the marginal benefit of staying due to

the yield on deposits.

We now show formally that a threshold strategy is optimal based on the function g (τ), under
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the following sufficient parameter condition:25

δr (1− p)
(
eλη − 1

)
υ

λ (r − λ (1− γ)) p ∈ [0, 1) . (12)

This requirement implies r − λ (1− γ) > 0. Of course, if ζ =∞ so there is no bank run, then it is

optimal to stay inside the bank always.

Proposition 2. Given a finite equilibrium bank survival time ζ < ∞, the optimal policy for the

agent is as follows:

1. If g (ζ) ≤ 0, then it is optimal to stay in the bank always.

2. If g (0) ≥ 0, then it is optimal to withdraw at 0 and redeposit right after ζ.

3. Otherwise, g (0) < 0 and g (ζ) > 0 must hold. There exists a unique waiting time τw ∈

(0, ζ) so that g (τw) = 0, and withdrawing at τw and redepositing at ζ is optimal.

3.4 Bank Run Equilibria

We define a bank run equilibrium and a no run equilibrium as follows:

Definition 1. A bank run equilibrium is a symmetric stationary Perfect Bayesian Nash equilibrium

in which informed agents’ strategies depend on the time since they heard the rumor, and the bank

survival time is finite. A no run equilibrium is when the bank survival time is infinite.

We focus on symmetric equilibria where ex ante identical agents take the same strategy. Sta-

tionarity here means that agent ti’s strategy depends on τ = t − ti, not t; it follows from the

hazard rate’s independence of the absolute time ti at which the agent becomes informed. A bank

run means the illiquid bank fails at a finite t0 + ζ < ∞, while a no run equilibrium means the

bank survives forever. Of course, a no run equilibrium always exists without further refinements

on the behavior of agents, since ignoring the rumor is an equilibrium for solvent-but-illiquid banks.

Throughout, our focus is on the existence and properties of bank run equilibria.
25We emphasize that the sufficient parameter condition 12, which facilitates our analysis with detailed functional

forms greatly, is far from the tight necessary condition. The optimality of threshold strategy is fairly general as long
as the hazard rate is monotone.
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3.4.1 Equilibrium conditions

The illiquid bank fails at t0 + ζ when aggregate cumulative withdrawals deplete its capacity κL.

Given the optimal waiting time τw, agents who contribute to the failure must hear the rumor at the

window [t0, t0 + ζ − τw]. Recall the mass of newly informed agents within [t, t+ dt] is βe−β(t−t0)dt.

At the failure time t0 + ζ total withdrawals equal to the illiquid bank’s capacity κL:

∫ t0+ζ−τw

t0
βe−β(ti−t0)dti = 1− e−β(ζ−τw) = κL. (AW)

This is the aggregate withdrawal condition, which only depends on ζ − τw.

On the other hand, the individual optimality condition in Proposition 2 determines how long

individual agents will wait (i.e. τw) given ζ. As the function g (τ) depends on ζ implicitly, the

endogenous waiting in a bank run equilibrium (Case 3 in Proposition 2) requires

g (τw; ζ) =
(λ (1− γ)− r) peλ(ζ−τw) − r

[
(1− p)

(
eλη − 1

) (
1 + υe−δ(ζ−τw)

)
− p

]
(1− p) (eλη − 1) +

(
eλ(ζ−τw) − 1

)
p

= 0. (IO)

We see that the individual optimality condition (IO) only depends on ζ − τw as well!

That both the aggregate withdrawal condition (AW) and the individual optimality condition

(IO) only depend on ζ − τw is a result of stationarity, not the specific functional forms we chose.

First, since in equilibrium withdrawing agents hear the rumor over [t0, t0 + ζ − τw] (who then

withdraw during [t0 + τw, t0 + ζ]), the aggregate withdrawal is a function of ζ − τw.

The individual optimality condition g (τw; ζ) consists of V̂O in (9) as the benefit and the hazard

rate h in (3) as the cost. Given stationarity, V̂O as the value of an outside dollar over the time

interval [τw, ζ] depends only on the difference ζ − τw. By Proposition 1 the hazard rate h (τw; ζ)

depends on ζ − τw alone. In this economy, the underlying uncertainty is about the liquidity event

t0. At the withdrawal time ti+ τw, the illiquid bank fails at the next instant if and only if t0 occurs

at ti + τw minus the survival time ζ, which is ti − (ζ − τw). Again stationarity implies that the

absolute value of ti should not matter, and thus the hazard rate depends on ζ − τw alone. The

following lemma shows this general result formally:

Lemma 1. Suppose that the liquidity event distribution φ (t0) is memoryless, and the information
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spreading speed takes the form of β (t− t0), i.e. the mass of newly informed agents within [t, t+ dt]

is β (t− t0) dt for t > t0. Then the hazard rate of bank failure depends only on ζ − τ .

3.4.2 Characterizing the bank run equilibrium

In general, the two equilibrium conditions in (AW) and (IO) are inconsistent with each other. This

implies that, except in knife-edge cases where primitive parameters are so that these two conditions

coincide, there does not exist any bank run equilibrium with endogenous waiting: either there is

no bank run, or a bank run occurs without waiting (τw = 0).

Define τr ≡ ζ − τw as the bank’s remaining survival time when agents start withdrawing. For

ease of exposition define G (τr) ≡ g (ζ − τr; ζ) in (10) so that

G (τr) =
(λ (1− γ)− r) peλτr − r

[
(1− p)

(
eλη − 1

) (
1 + υe−δτr

)
− p

]
(1− p) (eλη − 1) + (eλτr − 1) p , (13)

which captures the same individual optimality of withdrawal as in Proposition 2.

The aggregate withdrawal condition in (AW) determines the equilibrium remaining survival

time τur , where ‘u’ indicates upper bound as will shortly become clear

τur ≡ −
ln (1− κL)

β
. (14)

Once plugging this equilibrium τur into (13), Proposition 2 allows us to evaluate whether individual

agents want to wait longer or withdraw earlier, depending on the sign of G (τur ). Recall that a

lower G is associated with a low marginal cost of staying (say γ close to one). If G (τur ) < 0, agents

always want to wait, thus bank runs never occur. On the other hand, withdrawing earlier is optimal

under G (τur ) > 0, implying immediate withdrawals τw = 0 in equilibrium, with an exogenous (or at

most trivially endogenous) survival time ζ = τur = − ln(1−κL)
β . Since the waiting time is cornered at

zero, the equilibrium survival time mechanically depends only on the capacity of illiquid bank κL

and the rumor spreading speed β. Finally, in a knife-edge case with G (τur ) = 0, agents are totally

indifferent, thus equilibria are indeterminate. We have the following proposition.

Proposition 3. The bank run equilibrium without information acquisition is as follows:

1. If G (τur ) > 0, the unique bank run equilibrium is that every informed agent withdraws immedi-
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ately upon hearing the rumor, so that τw = 0, and ζ = τur = − ln(1−κL)
β .

2. If G (τur ) < 0, a bank run equilibrium does not exist.

3. If the primitive parameters are such that G (τur ) = 0, then in this knife-edge case, any τw ≥ 0

and ζ = τw + τur constitute a bank run equilibrium.

Consider the second case in Proposition 3. Hypothetically, imagine that each agent believes

others are running immediately with τw = 0 hence ζ = τur . Because G (τur ) < 0, each agent

postpones withdrawal, say to τw = ∆ > 0.26 But the aggregate withdrawal condition (AW) says

that the survival time adjusts one-to-one to ζ = τur +∆. Then, given the new bank survival time, the

individual optimality condition (IO) implies that the new waiting time responds one-to-one again

with τw = ∆ + ∆ = 2∆. Applying this thought experiment repeatedly implies that both waiting

time and bank survival time are postponed indefinitely. Clearly, this logic reverses if G (τur ) > 0,

pushing agents to withdraw as early as possible—hence in equilibrium they withdraw upon hearing

the rumor.

The third knife-edge case is uninteresting, not only because of its indeterminacy of bank run

equilibria but also because it holds only on a parameter space with zero measure. For the latter

reason, the knife-edge case is not “generic,” and we only focus on generic equilibria throughout the

rest of the paper.

4 The Model with Information Acquisition

In the base model above, the aggregate withdrawal condition (AW) implies that the survival time

ζ responds one-to-one to changes in the waiting time τw, and vice versa according to the individual

optimality condition (IO). This somewhat interlocked stationarity is behind the tension between

conditions (AW) and (IO) that precluded bank runs with waiting except in a knife-edge case.

In deriving the endogenous bubble burst time, Abreu and Brunnermeier (2003) resolves this

issue by assuming that the bubble component of prices increases over time. As a result, the net

benefit of attacking increases, so that in the individual optimality condition the waiting time τw

responds less than one-to-one to the survival time ζ. In a bank run setting, this would be a hard

assumption to swallow, which would require that the value of a dollar in a perfectly safe bank
26Implicitly, it says that G (τ∗r −∆) = 0 which is the condition for the optimal withdrawal time.
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Figure 2: Probability Distribution of the Additional Signal ỹ with Quality q

Liquid Bank κ̃ = κH > κL
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Illiquid Bank κ̃ = κL ∈ (0, 1)
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declines exogenously over time.

In this paper we take a novel route. We introduce noisy information acquisition, and thus

ex-post heterogeneity among agents with different perceptions about the likelihood of bank failure.

Different from Abreu and Brunnermeier (2003), this naturally changes the aggregate withdrawal

condition so that the survival time ζ responds less than one-to-one to the waiting time τw. As we

show, this translates to a realistic “fear-of-bad-signal-agents” effect for those agents with median

signal realizations, and a unique bank run equilibrium with endogenous waiting emerges.

We find that individual information acquisition regarding bank liquidity makes solvent banks

that are free from runs prone to runs, and shortens the survival time of failing banks. The point is

that, although bank runs never exist if information acquisition is not possible, inefficient bank runs

with endogenous waiting reemerge once we allow for the possibility of acquiring additional signals,

because individual information acquisition imposes negative externalities on each other.

4.1 Information Acquisition and Signal Structure

At time ti > t0 when agent i hears the rumor, he can acquire an additional signal about the bank’s

type at some cost. For example, agents could spend time sifting through call reports, calling their

branch manager, etc. To emphasize that it is the noisiness of the signal, rather than its precision,

that plays the crucial role, we first assume a binary information acquisition structure: either no

acquisition, or acquiring an additional signal with a fixed precision q > 0. We endogenize q in

Section 4.4 by assuming a quadratic acquisition cost.

Agents pay χ > 0 per dollar of deposits for the additional signal. Suppose χ is realtively small

that when facing a bank run equilibrium it is optimal to acquire the signal. For tractability, the
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signal takes three possible values ỹ ∈ {yL, yM , yH} with conditional probabilities as in Figure 2.

With probability q > 0, the bank’s type is perfectly revealed by the signal yH (yL); while with

probability 1 − q, the agent receives an uninformative “medium” signal yM (e.g., seeing mixed

evidences).

Conditional on the bank’s state, the realizations of these signals are i.i.d. across agents. Uncon-

ditionally, the signals are correlated across agents, as signals tend to be low (high) in the illiquid

(liquid) state. Hence there are more agents with unfavorable signals given the bank being illiquid,

a feature captured by the simple signal structure in Figure 2.27 We emphasize that this signal

structure is consistent with the fact documented in Section 2.2, that during the Euro zone crisis,

money market fund managers each did their own research and came up with different conclusions.

The analysis of optimal withdrawal strategies in Section 3.3 applies once we condition on the

signal realization. For yH (yL) agents, we can simply replace the prior p with 0 (1) in Proposition

2. Agents with yH know the bank is not subject to runs and thus stay inside the bank always. For

agents with yL, it is optimal to withdraw immediately if

g (0; p = 1) = (λ (1− γ)− r) eλζ + r

eλζ − 1 > 0, (15)

We will show later in Lemma 2 that in bank run equilibrium ζ < η. Recall λ (1− γ) < r given

condition (12), the condition (15) is implied by the following imposed parameter condition:

(λ (1− γ)− r) eλη + r > 0,

which requires the loss 1−γ to be significant.28 Finally, Proposition 2 directly applies to yM agents,

and our later analysis focuses on their endogenous waiting time τw, from which we omit the index

M from now on without risk of confusion.
27More formally, we need the signal to be informative on average, i.e., Cov [ỹ, κ̃] > 0. Our results are robust to the

introduction of richer signal structures with potentially multiple levels of medium signals.
28In fact, (15) has to hold in any bank run equilibrium. As mentioned in Lemma 2 later, generically (i.e. except

for some zero measure sets of parameters), for bank run equilibrium to exist yL agents must withdraw immediately
upon hearing the rumor; otherwise bank runs do not exist.
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4.2 Bank Run Equilibrium with Acquired Information

We now solve for the bank run equilibrium given that agents are acquiring signals upon hearing the

rumor. We focus on the case where both yM and yL agents are driving the bank failure. Conditional

on the bank being illiquid, there could be at most q
(
1− e−βη

)
measure of yL agents. To ensure

that yL agents alone are not enough to take down the illiquid bank, the signal precision q satisfies:

q <
κL

1− e−βη . (16)

4.2.1 Equilibrium Conditions

As in Section 3.4.1, the individual optimality and aggregate withdrawal conditions pin down the

bank run equilibrium. We know that yL agents withdraw immediately under (15). For yM agents,

the individual optimality condition G (τr) = 0 is unchanged.

The ex post heterogeneity due to acquired noisy signals gives rise to an interesting twist in the

aggregate withdrawal condition. In contrast to the base model with homogeneous informed agents,

now there are two groups of agents running on the illiquid bank. The first group is yL agents who

withdraw immediately, and at t0 + ζ the total withdrawals by them are q
∫ t0+ζ
t0

βe−β(ti−t0)dti =

q
(
1− e−βζ

)
.29 Agents with yM signals wait for τw, and at t0 + ζ their total withdrawals are

(1− q)
∫ t0+ζ−τw
t0

βe−β(ti−t0)dti = (1− q)
(
1− e−β(ζ−τw)

)
. Let τr denote the yM agents’ remaining

survival time, and the illiquid bank fails if

q
(
1− e−βζ

)
+ (1− q)

(
1− e−βτr

)
= κL. (AW’)

Both the survival time ζ and the yM agent’s remaining survival time τr enter the new aggregate

withdrawal condition (AW’), in contrast to (AW) where only τr enters.

For better understanding, Figure 3 depicts the cumulative withdrawal patterns for both banks.

For illiquid banks in the left panel, yL agents begin to withdraw right after t0 as the rumor starts

spreading. At t0 + τw, yM agents join the force of withdrawals, until eventually cumulative with-

drawals reach κL at t0 + ζ. For liquid banks in the right panel, no agent withdraws immediately
29We implicitly assume that at the survival time ζ there are still newly informed yL agents withdrawing, which

requires that ζ < η, as we prove in Lemma 2.
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Figure 3: Cumulative Withdrawals

Cumulative withdrawal patterns for an illiquid bank with capacity κL and a liquid bank. At τ = 0 the rumor
starts to spread. In equilibrium yM agents set the waiting interval τw, and the illiquid bank fails while the
liquid bank starts experiencing redeposits at ζ.

after t0, but yM agents start withdrawing at t0 + τw. At t0 + ζ those early informed yM agents real-

ize that the bank is liquid and start redepositing, which makes net aggregate withdrawals decrease

over time.

Because (AW’) involves both τr and ζ, we can solve for the bank run equilibrium as follows.

First, the individual optimality condition for yM agents determines the equilibrium remaining

survival time τr:

0 = G (τr) =
(λ (1− γ)− r) eλτrp− r (1− p)

(
eλη − 1

)
υe−δτr + r

(
1− eλη (1− p)

)
(1− p) (eλη − 1) + (eλτr − 1) p . (17)

Then, the aggregate withdrawal condition (AW’) determines the equilibrium survival time ζ:

ζ = − 1
β

ln

1−
κL − (1− q)

(
1− e−βτr

)
q

 . (18)

4.2.2 Characterizing the Bank Run Equilibrium with Acquired Signals

There are natural bounds for the remaining survival time τr in equilibrium. When τw = 0 so that

yM agents withdraw immediately upon hearing the rumor, τr = ζ − τw assumes its upper bound

value τur = − ln(1−κL)
β , which is independent of signal quality q and identical to (14) of the base

model without information acquisition. Intuitively, in this extreme case, all agents withdraw from
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the illiquid bank immediately, regardless of their signals, leading to the same bank survival time

ζ = τur found without information acquisition.

On the other hand, the following lemma establishes that in any bank run equilibrium ζ ≤ η

holds generically. Recall that the rumor spreading window is [t0, t0 + η]. Lemma 2 implies that the

illiquid bank fails before the rumor stops spreading. The intuition is similar to the two-equation-

one-unknown situation encountered in the base model in Section 3.4.1.30

Lemma 2. Generically, in any bank run equilibrium we have ζ ≤ η, and yL agents must withdraw

immediately upon hearing the rumor.

Combining (18) and Lemma 2 gives a lower bound for τr, which depends on signal quality q:

τ lr (q) ≡ 1
β

ln
( 1− q

1− κL − qe−βη
)
.

Parameter condition (16) implies τ lr (q) > 0, so that yM withdrawals contribute to the bank’s failure.

Proposition 4. Given that agents acquire the additional signals with precision q, the bank run

equilibrium is characterized as follows:

1. If G (τur ) ≥ 0, the unique bank run equilibrium is τr = ζ = τur and τw = 0, i.e. yM agents

withdraw immediately upon hearing the rumor, coinciding with Case 1 in Proposition 3.

2. If G
(
τ lr (q)

)
≤ 0, a bank run equilibrium does not exist.

3. Otherwise, we have G (τur ) < 0 and G
(
τ lr (q)

)
> 0. In the unique bank run equilibrium

τr ∈
(
τ lr, τ

u
r

)
with G (τr) = 0, we have ζ = 1

β ln
[

q

1−κL−(1−q)e−βτ∗r

]
and τw = ζ − τr > 0,

i.e. yM agents wait to withdraw.

When q = 0, i.e., additional signals have no information value, then τ lr (q = 0) = τur , and

Proposition 4 collapses to Proposition 3 of the base model.

Suppose that we have G (τur ) < 0 and G
(
τ lr

)
> 0 (Case 3). Following the thought experiment

discussed after Proposition 3, imagine that each yM agent believes that other yM agents withdraw
30If yL agents have all withdrawn when the bank fails (ζ > η), then the aggregate withdrawal condition is (just

replacing ζ by η in (AW’)):
κL = q

(
1− e−βη

)
+ (1− q)

(
1− e−βτr

)
.

Again, as in Section 3.4.1, this aggregate withdrawal condition only depends on yM ’s remaining survival time τr.
Then, τr that solves the above equation will violate yM agents’ individual optimality condition (17) generically. As
a result, the discussion in Section 3.4.1 implies either yM agents want to wait so that bank runs do not exist, or yM
agents withdraw earlier which pushes ζ all the way to fall below η.
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immediately (τw = 0) so that the remaining survival time τr takes its upper bound τur (graphically,

setting τw = 0 in the left panel of Figure 3). G (τur ) < 0 implies that the marginal cost of

waiting is outweighed by the marginal benefit, and each yM agent postpones his withdrawal, say

to τw = ∆ > 0.

Once yM agents decide to wait longer by ∆ > 0, importantly they know there are more yL agents

withdrawing before them—this is the key difference from the base model without signal acquisition

where all agents wait longer by ∆. Bank failure now requires less withdrawing yM agents, and

hence a shorter τr < τur in (AW’). A shorter remaining survival time τr implies bank failure is more

imminent, giving rise to a higher failure hazard rate in (3) and a greater marginal cost of waiting.

This captures the realistic “fear-of-bad-signal-agents” effect in the bank run environment: agents

unsure about bank liquidity (i.e. yM agents who receive mixed evidences) worry that there are

agents receiving much worse signals and thus running before them, which increases their incentives

to run as well.31 Finally, if yM agents wait sufficiently long that the remaining survival time attains

its lower bound τr = τ lr, then G
(
τ lr

)
> 0 implies that they want to withdraw a bit earlier. Then,

by the intermediate value theorem, a bank run equilibrium exists for some intermediate τr with

G (τr) = 0, even though a bank run equilibrium does not exist if no acquisition of liquidity signals

is allowed.

4.3 Bank Run Equilibrium with Endogenous Information Acquisition

We have derived the bank run equilibrium, given that every agent acquires the signal upon hearing

the rumor. We now study the agent’s incentive to acquire the signal, given the bank run equilibrium.

Recall Lemma 2 states that ζ ≤ η holds generically in any bank run equilibrium. As we will discuss

in detail in Section 4.5, this implies that hearing the rumor and observing the bank is still alive

at ti is informative, and agent ti’s posterior probability of the bank being illiquid, denoted by pti ,

drops from p to

pti =

(
eλζ − 1

)
p

(1− p) (eλη − 1) + (eλζ − 1) p.

Agents with yH stay inside the bank always with a payoff of (1−c)δ
δ−r , while agents with yL

31This effect of “fear-of-bad-signal-agents” shares a similar spirit with global games (Morris and Shin (2002),
Goldstein and Pauzner (2005)), where private signals are not only informative about the bank fundamental but also
informative about other agents’ strategies. The key difference is that we do not rely on this effect to derive the unique
equilibrium: in our model, there is a unique “cornered” equilibrium even without information acquisition.
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withdraw immediately with a payoff of 1− c facing a bank run. For the yM signal, we can calculate

the agent’s value using Proposition 2. Given the cost χ, agent ti acquires the additional signal if

and only if

q

[
pti (1− c) + (1− pti)

(1− c) δ
δ − r

− VI (0|yM )
]
≥ χ. (19)

Suppose that the information cost χ is sufficiently small and signal quality q is sufficiently large so

that (19) holds in a bank run equilibrium. Proposition (5) summarizes our main result.

Proposition 5. Suppose that G (τur ) < 0 so that bank runs never occur without information acqui-

sition. Then,

1. If G
(
τ lr (q)

)
< 0, a bank run equilibrium does not exist and no information is acquired.

2. If G
(
τ lr (q)

)
≥ 0, there are two equilibria: one where agents do not acquire information and the

bank does not fail, and the bank run equilibrium with information acquisition of Proposition 4.

Recall that G (τur ) < 0 implies that bank runs do not exist if agents cannot acquire further infor-

mation. As a result, no-run-no-acquisition must be an equilibrium under that condition: if nobody

acquires additional information, then bank runs never occur; on the other hand, nobody wants to

acquire information either if nobody runs. This is the unique equilibrium under G
(
τ lr (q)

)
< 0,

shown by the first statement in Proposition 5.

However, information acquisition opens the possibility of bank runs, as run-acquisition might

also be an equilibrium if the marginal cost of staying is sufficiently low that G
(
τ lr (q)

)
≥ 0 holds.

The multiplicity of equilibria reflects the strategic complementarity of information acquisition com-

bined with bank runs: either nobody acquires information without worries about bank runs, which

rules out bank runs given nobody knows exactly whether the bank is illiquid; or everybody acquires

information and runs on the bank according to their private signal, which justifies the acquisition

of information in the first place.

Proposition 5 supposes G (τur ) < 0. Suppose instead G (τur ) ≥ 0, i.e., bank runs occur even

if agents cannot acquire liquidity information and they are already withdrawing upon hearing

the rumor. The next corollary shows that in equilibrium agents acquire information, then run

immediately on the illiquid bank that generates equal (yM ) or worse (yL) signals only. Hence

in our model, in this case information acquisition has no effect on the existence of the bank run

equilibrium, nor on the survival time of the illiquid bank:
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Corollary 1. Suppose that G (τur ) ≥ 0, so that bank runs occur even without information ac-

quisition. Then with information acquisition, in the unique bank run equilibrium agents acquire

information, withdraw immediately given yM and yL signals, and the illiquid bank fails at ζ = τur .

In general, collecting information about the bank’s liquidity status is individually beneficial

but socially wasteful, in the situation where without the additional information runs do not occur.

However, if without the additional information bank runs did occur, information acquisition could

mitigate runs on stronger banks.32 Moreover, collecting information about bank solvency could be

socially beneficial, a topic we revisit in Section 6.1.

Belief heterogeneity is key to generating the interesting bank run equilibrium with endoge-

nous waiting, which feeds back to agents’ ex ante information choice. Endogenous information

acquisition offers perhaps the most natural way to introduce belief heterogeneity into the model.

Exogenously endowed noisy signals, i.e. χ = 0, would suffice to generate the bank run equilibrium

with endogenous waiting. However, if χ = 0, then there is another uninteresting equilibrium where

agents ignore their signals (so there is no bank run), in addition to the equilibria characterized in

Proposition 5. A strictly positive signal cost eliminates such an uninteresting equilibrium, because

agents do not acquire signals that they plan to ignore.

4.4 Smooth Information Acquisition Cost

The qualitative result in Proposition 5 remains when we endogenize the signal precision q in a

setting with quadratic acquisition cost χ (q) = α
2 q

2, where α > 0 is constant and q ∈
[
0, κL

1−e−βη
)
.

Agent ti solves:

max
q∈
[
0, κL

1−e−βη

) qpti (1− c) + q (1− pti)
(1− c) δ
δ − r

+ (1− q)VI (0|yM )− χ (q) .

32But whether information acquisition can prevent failures of stronger banks depends on the setting. As Corollary
1 shows, in our model because the liquid bank is sufficiently strong, it survives independently of possible information
acquisition.
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The first order condition for optimal q satisfies:33

(1− c)
[
pti + (1− pti)

δ

δ − r

]
︸ ︷︷ ︸

E[VI(0)|informative signals]

− VI (0|yM )︸ ︷︷ ︸
E[VI(0)|uninformative signal]

> αq, with equality if q < κL
1− e−βη (20)

Combining Proposition 4 with condition (20), we can solve for the signal precision q, the waiting

time τw, and the survival time ζ simultaneously. In general, multiplicity may occur even among the

class of bank run equilibria with positive information acquisition. The next lemma states that under

a sufficient conditions provided in the Appendix A.8, there exists at most one such equilibrium.

Lemma 3. Under condition (26) provided in the Appendix A.8, the bank-run equilibrium with

positive precision, if one exists, is unique.

Let q∗|ζ=η be the optimal signal precision given ζ = η in (20); whether there is a bank run

equilibrium depends on whether G
(
τ lr (q∗|ζ=η)

)
> 0. The next proposition is a generalization of

Proposition 5 to the quadratic information acquisition cost setting.

Proposition 6. Suppose that condition (26) in Lemma 3 holds.

1. If G (τur ) < 0 so that bank runs never occur without information acquisition. Then,

a. If G
(
τ lr (q∗|ζ=η)

)
< 0, a bank run equilibrium does not exist and no information is

acquired.

b. If G
(
τ lr (q∗|ζ=η)

)
≥ 0, there are two equilibria: one where agents do not acquire informa-

tion and the bank does not fail, and the bank run equilibrium with information acquisition

of Proposition 4.

2. If G (τur ) ≥ 0 so that bank runs occur without information acquisition. Then with informa-

tion acquisition, in the unique bank run equilibrium agents acquire information, withdraw

immediately given yM and yL signals, and the illiquid bank fails at ζ = τur .
33The fact that we are focusing on bank run equilibria and that the agent with yL finds immediate withdrawal

optimal imply that in (20) the optimal q cannot bind at zero, as (1− c)
[
p (ti|ti) + (1− p (ti|ti)) δ

δ−r

]
−VI (0|yM ) > 0

always. In words, information has positive value as it improves the agent’s decision, but the marginal cost of
information acquisition at q = 0 is zero given a quadratic cost. On the other hand, the no run equilibrium must have
q = 0 and is analyzed in Section 4.3.
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Figure 4: Rumor Spreading Rate β and Awareness Window η
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Panels (a) and (c) show the equilibrium survival time of the illiquid bank ζ (solid line) and the waiting
time τw of medium signal agents (dashed line), while Panels (b) and (d) show the equilibrium quality of the
additional signal q, as a function of the rumor spreading rate β and the length of the awareness window η.
Parameters are r = 0.09, β = 1, θ = 1.03, η = 2, p = 0.8, δ = 0.12, c = 10−6, κL = 0.65, α = 0.7, γ = 0.75.

4.5 Strategic Complementarity vs. Substitution in Information Acquisition

Our model features both strategic complementarity and substitutability in information acquisition

among individual agents. For better understating, we first take the model in Section 4.4 and study

the comparative statics of the rumor spreading rate β and the awareness window η. Recall that

relative to Abreu and Brunnermeier (2003), our model decouples the rumor spreading rate from

the awareness window.

The comparison between these two comparative static results are intriguing. The top panels

of Figure 4 shows that, intuitively, the greater the rumor spreading rate β, the faster the illiquid

bank fails (Panel 4a), and the greater precision the acquired signals (Panel 4b). A surprising result

emerges when we turn to the awareness window η in the bottom panels. When η increases so that

everybody knows that potentially there will be more informed agents attacking the bank, each

individual agent acquires less information (Panel 4d) and the illiquid bank survives longer (Panel
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4c).

Dynamic learning when faced with uncertainty plays a key role here. The posterior probability

that the bank is illiquid upon hearing the rumor and observing that the bank is still alive, recalling

that Φ (t|ti) is given by (2), is:

pti = Pr {bank survives at ti|κL, ti}Pr {κL}
Pr {bank survives at ti|κL, ti}Pr {κL}+ Pr {κH}

= [1− Φ (ti − ζ|ti)] p
[1− Φ (ti − ζ|ti)] p+ 1− p (21)

The posterior probability that the illiquid bank survives at ti is decreasing in η:

Pr {illiquid bank survives at ti|κL, ti} = 1− Φ (ti − ζ|ti) = 1− eλη − eλ(ti−ti+ζ)

eλη − 1 = eλζ − 1
eλη − 1 .

Intuitively, from the point of view of agent ti, a greater η implies that t0 ∈ [ti − η, ti] could occur

earlier, and other depositors may have run on the bank for a longer time. As a result, conditional

on the bank being alive at ti, the bank is more likely to be liquid.

We have seen that in our bank run setting, information acquisition exhibits strategic comple-

mentarity regarding whether to acquire information. This is evident from the existence of multiple

equilibria in Proposition 5 with binary information choices: the information acquisition of other

agents makes a bank run possible, which prompts this agent to acquire his information as well. In

this way, acquisition of liquidity information can subject solvent but illiquid banks to runs. This

positive feedback effect shares the same spirit to Hellwig and Veldkamp (2009) who show that, in

a static model, information acquisition exhibits complementarity if actions (in our model, running

on bank) are complementary.

In the setting with smooth information acquisition cost, (21) implies that individual information

acquisition exhibits strategic substitutability regarding how much information to acquire. This is

because there is a natural public signal conveyed by the fact that the bank has not yet failed. If

others study more about the bank and run on the illiquid one, then the illiquid bank fails sooner.

As a result, this public signal becomes more informative—(21) suggests that the mere survival of

the bank, upon hearing the rumor, leads the agent to perceive the bank to be stronger. Because

a more informative public signal lowers the value of private signals, individual agents hearing the

rumor respond to the public signal of “bank survival till ti” by acquiring less information.34
34This is similar to the effect of price information in a noisy Rational Expectation Equilibrium (REE) asset pricing
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The result that η mitigates bank runs goes against the casual intuition that runs are more

severe with more prone-to-run agents, which stems from the premise that bank failure requires a

sufficient mass of running depositors. By contrast, we show that in a dynamic learning setting,

when cumulative informed agents are enough to run down the bank, artificially shortening the

awareness window gives rise to a novel information effect with the exact opposite direction.35

5 Empirical Predictions

Beyond the empirical bank run evidence presented in Section 2, our model offers additional insights

for future empirical research, especially for high-frequency deposits and withdrawals data.

First, our model makes several qualitative testable predictions about the nature of bank runs.

Specifically, bank runs would empirically manifest as follows. There are two broad types of deposi-

tors, with one type better informed than the other. These better informed agents start withdrawing

first, then joined by less informed agents. Importantly, a unique prediction of our model is that

for banks that survive a run, we should observe some agents withdrawing at the same time other

agents are redepositing back into the bank. This cannot occur in a model where a homogeneous

depositor population responds to a common signal as in He and Xiong (2012a).

Second, our comparative statics generate testable predictions about how bank run dynamics

would respond to variation in key model parameters, such as those shown in Figure 4. Since

rumors are often not made public, it could be challenging to empirically measure the endogenous

withdrawal time and bank survival time. However, the remaining survival time τr, which is the

difference between the endogenous withdrawal time and bank survival time ζ − τw, is free of this

issue. Given high-frequency depositor transaction data, τr can be measured as the time between

when withdrawals begin and when the bank fails, or until redeposits begin for a surviving bank. In

models (e.g. Grossman and Stiglitz, 1980). We thank an anonymous referee for pointing out the similarity between
“bank failure” in our model and “price” in a noisy REE model as public signals.

35One real world example of this point involves the subprime mortgage crisis. On May 17, 2007 Fed Chairman
Bernanke indicated in a speech about the subprime mortgage market that looser lending standards were pervasive
especially in loans originated in 2006 (Bernanke, 2007). The speech took place at a time when low teaser rates
on many adjustable-rate mortgages were set to expire, suggesting that the rise in defaults was just the tip of an
iceberg. Subsequently, asset-backed commercial paper (ABCP) outstanding dropped from $1.3 trillion in July 2007
to $833 billion in December 2007 (Acharya, Schnabl, and Suarez, 2013). One interpretation within our model of this
speech is that it signaled a relatively short awareness window, and there was not much to learn from the survival
of ABCP conduits up to that point in time. Suppose that instead that looser lending standards were pervasive in
loans originated since 2003. Having observed that the ABCP market kept growing despite this fact, investors would
perceive a high probability of the system being liquid and conclude that a run might not occur.
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Figure 5: Rumor Spreading Rate β and Recovery Value γ
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Panels (a) and (b) show the equilibrium remaining survival time τr as a function of the rumor spreading
rate β and the length of the recovery value γ. Parameters are r = 0.09, β = 1, θ = 1.03, η = 2, p = 0.8,
δ = 0.12, c = 10−6, κL = 0.65, α = 0.7, γ = 0.75.

our model, the higher the rumor spreading speed β, the faster the (illiquid) bank fails, the smaller

the remaining survival time. The effect of bankruptcy recovery γ on the remaining survival time

τr is also negative: a lower recovery γ prompts depositors to withdraw earlier, leading to a longer

remaining survival time τr = ζ − τw. Figure 5 shows these two comparative static results.

Third, our model has testable implications regarding the probability of bank runs. Proposition

6 characterizes different parameter regions in which a bank run can constitute an equilibrium. By

assigning a probability measure on the parameter space,36 one can relate model parameters to the

likelihood of bank runs, which has a straightforward empirical counterpart. Consider, for example,

the rumor spreading speed. One can show that all else equal, a larger β makes the condition

G (τur ) ≥ 0 easier to satisfy; thus Proposition 6 implies that bank runs are more likely. In the

working paper version of this article, which is listed as NBER Working Paper 18513, we also show

that the lower the information acquisition cost α, the more likely is the bank run equilibrium. These

are testable predictions given proxies for the spreading speed or the cost of information. Approaches

for their measurement using social media and press coverage have been recently developed in the

asset pricing literature (e.g. Manela, 2014).

Finally, if our model withstands the above tests, one could use our structural framework to

estimate key model parameters. For example, using the moment condition (17) of remaining

survival time τr, one could estimate the expected deposit recovery rate γ given bankruptcy as

perceived by depositors, a highly interesting quantity.
36In those parameter regions where multiple equilibria are possible, one need some exogenous sunspots with certain

likelihood to predict the equilibrium outcome.
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6 Extensions and Discussions

We study two extensions of our model with quadratic information acquisition cost. In Section 6.1

we introduce fundamentally insolvent banks, so that it is also socially efficient for individual agents

to acquire information and run on insolvent banks. Section 6.2 considers a two-bank economy where

competition amplifies the individual agent’s socially wasteful information production. Finally we

provide discussion on several theoretical issues.

6.1 Insolvent Banks and Stress Tests

6.1.1 Solvency information versus liquidity information

Suppose that the bank might become insolvent at the time t0, which randomly fails (rather than

matures) with intensity ξ > r and recovers nothing. Of course the bank can also be solvent, and if

so it can be either liquid or illiquid as we modeled before.

When agent ti hears the rumor, the possibility of insolvency motivates him to spend a fixed

amount of effort e > 0 to obtain a signal 1s ∈ {0, 1}; for simplicity, this signal 1s perfectly reveals

whether the bank is solvent or not. We focus on situations where the agent acquires this solvency

signal 1s (which is optimal if the default intensity ξ is sufficiently high). Hence after hearing the

rumor, all agents will figure out the bank’s insolvency and run on the insolvent bank immediately.

The information regarding bank solvency is both socially and individually valuable. In contrast,

the information regarding bank liquidity is individually valuable but socially destructive when

agents realize that runs on the illiquid bank become a concern. We aim to capture the fact that

bank solvency information and liquidity information are naturally linked when individual agents

are acquiring them.

We assume that a by-product of the agent’s private learning about bank solvency, i.e., collecting

the solvency signal 1s, is that he also learns something about the liquidity of the bank. To model

this, we assume that given the effort e of acquiring 1s, if the bank turns out to be solvent, then the

baseline quality q of the bank’s liquidity signal y—which is the signal we modeled in Section 4.1—is

just e. As a result, the agent’s additional liquidity information precision choice is q ≥ e with cost
α
2 (q − e)2. The interpretation is that the process of collecting insolvency information inevitably

teaches the agent something about bank liquidity. The more effort that the agent spends in figuring
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out whether the bank is insolvent, the more he knows about the bank’s liquidity. Our modeling

that the effort of collecting insolvency information (i.e., e) becomes the baseline quality of liquidity

information captures this idea in the simplest way.

6.1.2 Policy Implication: Stress Tests

The above setting has important implications for stress tests in revealing the fundamentally prob-

lematic banks. By providing insolvency information alone, the government can use stress tests to

reduce e to eliminate runs on solvent-but-illiquid banks. According to our model, if a great effort is

required to learn about whether the bank is insolvent (say institutions like Lehman), i.e., a higher

e, then each agent will be automatically endowed with significant information about the liquidity

of solvent banks (say institutions like Citibank with weak liquidity condition). As a result, runs on

solvent banks may start, which pushes each agent to acquire even more liquidity information.

Stress tests provide transparency on potentially insolvent banks (Bernanke, 2009), and therefore

reduce e. Government, by providing higher quality information about banks’ insolvency, can crowd

out private acquisition of insolvency information. Because public information can be better targeted

at insolvency alone, while the process of private acquisition of solvency information inevitably

reveals liquidity information, public provision of solvency information helps all agents know that

other agents do not have superior information regarding banks liquidity situation. Therefore, our

model suggests that the public provision of insolvency information indirectly reduces the socially

wasteful information acquisition regarding liquidity, and therefore make runs on illiquid banks less

likely. Figure 6 plots the equilibrium signal precision when we vary e which measures the extent of

public provision of solvency information.

This view is consistent with the Federal Reserve Board’s recent break from the traditional

supervisory view of opaqueness in favor of more public disclosure to restore the confidence of

investors. However, our rationale is different than the one described by Bernanke (2010) who

argues that transparency allows for scrutiny by outside analysts, which enhances the credibility

of the tests. Instead, we argue that by providing more information, the government crowds out

the information collection effort by individuals about the solvency of the banks, and the perfect

revelation of insolvent bank clarifies the channel that we are emphasizing.37 Since liquidity and
37Releasing better solvency information helps illiquid banks, but in our model it is not through a higher average
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Figure 6: The effect of public provision of solvency information
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solvency are tightly linked, this government policy has the useful by-product of reducing information

collection about bank liquidity and therefore reducing the incidence of runs on illiquid banks.

6.2 Multiple Solvent Banks

We now investigate the model with competing solvent banks. Instead of holding cash, a bank

run in this setting involves the transfer of deposited funds from one illiquid bank to another more

liquid one. Information is privately more valuable in this setup since the outside option is a nearly

identical bank rather then holding cash. Here, the two banks’ difference might be minuscule,

and transfers between the two institutions only involve social losses (transaction fees and bank

failure). Apparently, if only one of the multiple competing banks could be potentially illiquid, then

redepositing back to the surviving bank becomes off-equilibrium, as it is optimal to stay inside the

liquid competing bank. This might be the underlying reason for the finding of Iyer and Puri (2012)

that only 10% of running depositors’ bank balances return to pre-crisis levels.

Suppose there are two banks, ex-ante identical except half the population deposits in bank A

and half deposits in bank B. Both banks promise the same rate of return r. However, transferring

funds between banks requires a transaction cost c. A liquidity event occurs at a random time t0,

and a rumor starts that exactly one of the banks is illiquid (with κL) while the other is liquid (with

κH). The prior probability that each bank is illiquid is p = 0.5 since they are ex-ante identical. The

bank quality once the stress test isolates those insolvent ones. When the planner varies e, agents can always perfectly
spot insolvent banks, therefore the channel of insolvency information is shut down. Rather, the channel is through
the strategic interaction of individual agents, as now everybody knows that everybody will wait to see the stress test
instead of scrambling to search the insolvent banks. As a result, everybody will have less precise information on
which solvent bank is less liquid and susceptible to a run.
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learning process in the two bank set-up is simpler, because the passage of time without a failure

teaches agents nothing about the relative viability of their bank.

Agents can acquire a costly signal ỹ ∈ {yL, yM , yH} about their bank with probability distri-

bution as before. Agents who receive the yH signal know their bank is liquid and therefore never

withdraw; agents who receive the yM signal gain no useful information and staying in their original

bank is optimal; and agents with yL signals run on their bank immediately.38 Proposition 7 in the

Appendix A.10 characterizes the equilibrium in this setting with two banks.

In this setting, information acquisition to figure out the relative liquidity position of two solvent

banks is socially undesirable, as it shortens the survival time of the illiquid bank by inducing more

agents to realize that one bank strictly dominates the other. Thus it is socially beneficial to blur the

differences between competing solvent banks. Consider the Capital Purchase Program commonly

known as the bailout of the nine largest U.S. financial institutions on October 13, 2008. When

presenting the program to the CEOs of the 9 banks, Secretary of Treasury Henry M. Paulson was

concerned the strongest banks (e.g. JPMorgan) would not participate. To make sure they do,

government officials suggested that if a bank refused the funds, its regulator would later force it to

raise capital anyway and under worse terms.39 The government was in fact injecting noise about

the liquidity of competing solvent banks into the economy. By pooling banks together the incentive

to transfer funds between them was kept low enough so that none of the nine banks suffered a run.

6.3 Other Theoretic Issues

In this section we tie some theoretic loose ends and provide further discussions.

6.3.1 Minimum threshold liquidity capacity κ to eliminate runs

The dynamic rumor-based run equilibrium derived in our setting has a qualitatively different nature

relative to the one in the static setting (e.g., Diamond and Dybvig (1983), Goldstein and Pauzner
38From the perspective of yL agents, the value of a dollar in their bank falls and the value of a dollar in the

competing bank increases to a riskless δ
δ−r ; as long as the transaction cost c is small enough so that VI (0|yM ) <

(1− c)V−I (0|yH) = (1− c) δ
δ−r , immediate withdraw is optimal. Here, information is (privately) more valuable in

this setup since the outside option is a nearly identical bank rather then holding cash.
39“I was concerned about Jamie Dimon, because JPMorgan appeared to be in the best shape of the group, and I

wanted to be sure he would accept the capital.” “Look, we’re making you an offer,” I said, jumping in. “If you don’t
take it and sometime later your regulator tells you that you are undercapitalized and you have to raise private-sector
capital but you are unable to do so, you may not like the terms if you have to come back to me.” - Paulson (2010)
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(2005)). Unlike the typical static setting where runs occur if bank reserves are below all potential

withdrawals, our rich dynamic setting gives a non-trivial minimum reserve threshold that eliminates

the run equilibrium. In other words, even for the illiquid bank, the minimum reserve requirement

to fence off bank runs, κL, is below 1 which is the level that is sufficient to cover all potential

withdrawals. As fully analyzed in the working paper version NBER Working Paper 18513 and

explained briefly in Appendix B.1, this result is rooted in the uncertainty over the timing of liquidity

event and other depositors’ withdrawal timings in our asynchronous awareness setting.

Following the same logic, there exists a minimum reserve threshold for κH , so that rumor-based

bank runs never occur for the liquid bank as long as κH is above this threshold. This result justifies

the assumption that staying in the bank is optimal given a yH signal (and hence the bank is liquid),

which we have taken as given in Section 4.1. For detailed argument, see Appendix B.1.

6.3.2 What about uninformed agents?

Uninformed agents play no role in our analysis of rumor-based bank runs. So far, we have assumed

that uninformed agents remain fully deposited before they hear the rumor. We now provide a

justification for the optimality of this strategy. Uninformed learning is more complicated because,

in addition to the failure hazard rate, they keep updating the rumor arrival rate, i.e. the probability

of hearing the rumor in the next instant given no bank failure and no rumor. Nevertheless, because

it does not matter much whether an agent hears the rumor inside or outside the bank (up to small

transaction costs), the rumor arrival rate plays a minor role in the withdrawal decision.

The failure hazard rate from the perspective of uninformed agents, on the other hand, is im-

portant even when transaction costs vanish. Importantly, the failure hazard rate converges to zero

as t → ∞; a formal analysis is available upon request. Intuitively, as time passes and uninformed

agents observe no failure and no rumor, they will attach a higher and higher probability to the

event that t̃0 already happened (and they missed the rumor), but the bank is liquid so no failure

occurs. Similar to the analysis for informed agents in (11), an uninformed agent will stay inside

the bank from time t going forward if the following holds:

hU (s) (1− γ) (1− c) ≤ rUI (s) for s ≥ t, (22)
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where hU (s) and UI (s) are the failure hazard rate and the value of an inside dollar perceived

by uninformed agents. Since when t → ∞ the failure hazard rate decreases to zero, while the

right hand side UI (s) > pγ (1− c) + (1− p) (1−c)δ
δ−r ,40 condition (22) must hold for any t such that

0 ≤ tf ≤ t <∞, for some finite tf . In fact, for the parameters chosen to illustrate our results, the

maximum hazard rate is sufficiently low that tf = 0, i.e. it is always optimal for uninformed agents

to remain fully deposited.

7 Conclusion

We study above new dimensions of bank runs, previously unexplored, by focusing on information

acquisition in rumor-based runs. Our model incorporates uncertainty and information acquisi-

tion about bank liquidity into the asynchronous awareness framework of Abreu and Brunnermeier

(2003). Information acquisition about liquidity exposes otherwise safe banks to destructive runs

with endogenous waiting through a “fear-of-bad-signal-agents” effect: agents unsure about bank

liquidity worry that agents who receive worse signals withdraw before them, which increases their

own incentives to run. Even in the situation where runs never occur without information acqui-

sition, this effect of information acquisition results in a unique and interior bank run equilibrium

with an endogenous bank survival time.

We use our model to analyze the role that government information policy can play in bank run

prevention, when solvency is uncertain, and in a multiple bank setting. Empirically, our model

sheds new light on both traditional bank runs and debt runs more broadly. Our model makes

new predictions linking the likelihood of a run to the spreading rate of the rumor, the cost of

acquiring information, and the recovery value in case of bankruptcy. It also generates the unique

prediction that for banks that survive a run, we should observe agents withdraw at the same time

earlier informed agents redeposit. Our model is flexible and rich enough for structural estimation

or calibration of its parameters given detailed withdrawals data, which can result in meaningful

policy implications. In the Appendix, we discuss the possibility of depositors choosing the optimal

time to acquire signals (Section B.2), and the possibility of endogenizing the rumor spreading speed
40The lower bound for the value UI (s) is achieved under the simple strategy of never withdrawing from the bank,

and assuming that the illiquid bank fails immediately. This is a lower bound because i) the illiquid bank survives
for a while; and ii) at any later time, the posterior probability of an illiquid bank conditional on no failure is weakly
lower than their prior p (similar to the effect in (21); the formal proof is available upon request).
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(Section B.3).

More broadly, the dynamic bank run model we provide above can shed new light on other

economic settings such as arbitrageur behavior, currency attacks, and R&D investment games.
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For Online Publication

A Omitted Proofs

A.1 Proof of Proposition 1

Since the bank failure occurs at t0 + ζ (κ) where ζ (κL) = ζ and ζ (κH) = ∞, then from the
perspective of agent ti, the cumulative distribution of the failure time t0 + ζ (κ), witch is denoted
by Π (t|ti), is given by:

Π (t|ti) =
∫
t0+ζ(κ)<t

dΦ (t0|ti) = Φ (t− ζ (κ) |ti) .

For t = ti + τ , Π (ti + τ |ti) = Φ (ti + τ − ζ (κ) |ti). The hazard rate is therefore

h (ti + τ |ti) = dΠ (ti + τ |ti)
1−Π (ti + τ |ti)

= pφ (ti + τ − ζ|ti)
1− pΦ (ti + τ − ζ|ti)

,

since in the κH state an infinite survival time makes both the density and distribution of t0 zero.
Plugging in the expression of φ (ti + τ − ζ|ti) in (1) and Φ (ti + τ − ζ|ti) in (2) we get the expression
for h. Finally, when ζ > η we have h (τ) = 0 for τ < ζ − η because φ (t|ti) takes non-zero value
only for t ∈ [ti − η, ti].

A.2 Proof of Proposition 2

It is without loss of generality to focus on the strictly positive part of h (·). We first establish
the following lemma.

Lemma 4. The function

g (τ) =
(λ (1− γ)− r) eλ(ζ−τ)p− r (1− p)

(
eλη − 1

)
υe−δ(ζ−τ) + r

(
1− eλη (1− p)

)
(1− p) (eλη − 1) +

(
eλ(ζ−τ) − 1

)
p

,

crosses zero from below at most once in the interval [0, ζ].

Proof: Since it is the change of the numerator that dominates around g (τ) = 0, it suffices to
show that the numerator of g (τ) (ignoring the constant)

[λ (1− γ)− r] eλ(ζ−τ)p− r (1− p)
(
eλη − 1

)
υe−δ(ζ−τ) (23)

is increasing over the interval [0, ζ]. To show this, note that λ (1− γ) − r < 0 from (12) implies
that (23) is concave in τ . Let τ be the unique maximizer. At the maximum

ζ − τ = 1
λ+ δ

ln
δr (1− p)

(
eλη − 1

)
υ

λ (r − λ (1− γ)) p < 0
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due to (12). Thus, the function in (23) attains its maximum to the right of ζ and is therefore
increasing over [0, ζ].

Lemma 4 implies that if g (ζ) ≤ 0 (g (0) ≥ 0) then g (τ) < 0 (g (τ) ≥ 0) always for τ ∈ [0, ζ].
We next consider the optimal strategy for the three cases of the proposition:

Case 1. If g (ζ) ≤ 0 so that g (τw) ≤ 0 always, then it is optimal to stay in the bank always.
To prove our claim, it suffices to show that VI (τ) > (1− c)VO (τ) for τ ∈ [0, ζ]. Suppose not, then
there must exist a largest τw so that VI (τw) = (1− c)VO (τw) and V ′I (τw) > (1− c)V ′O (τw) because
VI (ζ) > (1− c)VO (ζ). From HJB equations, (7) implies h (τw) (1− VO (τw)) + δ (1− VO (τw)) +
V ′O (τw) = 0 (because (1− c)VI (τw) < VO (τw)), and (8) implies rVI (τw)+h (τw) (γ (1− c)− VI (τw))+
δ (1− c− VI (τw)) + V ′I (τw) = 0 (this holds for all τ > τw and the continuity gives this equality).
Multiplying the first equation by 1− c and using the second equation, we have

h (τw) (1− c) (1− γ)− r (1− c)VO (τw) = V ′I (τw)− (1− c)V ′O (τw) > 0.

However, since VI (τw) = VO (τw) ≥ V̂O (τw) (the second inequality is because V̂O (τw) may be
derived under suboptimal policy), we have

h (τw) (1− γ)− rVO (τw) ≤ h (τw) (1− γ)− rV̂O (τw) = g (τw) ≤ 0,

a contradiction.
Case 2. If g (0) ≥ 0, then it is optimal to withdraw at 0 and redeposit right after ζ. If g (0) ≥ 0,

then g (τ) ≥ 0 always for τ ∈ [0, ζ], and g (ζ) > 0. Using g (ζ) > 0, we first show that since c is
arbitrarily small, there exists some τ̂ close to ζ so that VO (τ̂) = VI (τ̂). To show this, we show that
(1− c)V ′O (ζ)− V ′I (ζ) is strictly below zero when c is arbitrarily small. To see this, from the HJB
equations we know that

(1− c)V ′O (ζ)− V ′I (ζ) = h (ζ) ((1− c)VO (ζ)− VI (ζ) + (1− c) (γ − 1)) + δ (VI (ζ)− (1− c)VO (ζ)) + rVI (ζ)
= − (1− c) g (ζ) + (h (ζ) + δ − r) ((1− c)VO (ζ)− VI (ζ))

The first term is strictly negative while the second and third terms converge to zero as c → 0.
Therefore, when c is arbitrary small, VI (ζ) − (1− c)VO (ζ) = c (2− c) (1−c)δ

δ−r is close to zero, and
thus there exists some ε so that VI (ζ − ε) < (1− c)VO (ζ − ε). Due to continuity there exists some
τ̂ close to ζ so that VI (τ̂) = (1− c)VO (τ̂). Note that VO (τ̂) = V̂O (τ̂).
Now to prove that "it is optimal to withdraw at 0 and redeposit right after ζ," we only need to
show that VI (τ) = (1− c)VO (τ) holds for all τ ∈ [0, τ̂ ] (intuitively, at any point of time a dollar
inside the bank has the value of taking outside). Suppose that this does not hold; since VI (τ) ≥
(1− c)VO (τ) in general, there must exits some point τw ∈ [0, τ̂ ] so that VI (τw) = (1− c)VO (τw)
and V ′I (τw) < (1− c)V ′O (τw). Choosing the largest value τw, so that VO (τw) = V̂O (τw) holds (i.e.,
the optimal continuation strategy is wait outside the bank until ζ). Similar to the argument before,
we have

h (τw) (1− c) (1− γ)−r (1− c) V̂O (τw) = h (τw) (1− c) (1− γ)−r (1− c)VO (τw) = V ′I (τw)−(1− c)V ′O (τw) < 0,

but this contradicts with g (τ) ≥ 0 always.
Case 3. It follows from the Lemma 4 that g (ζ) > 0 and g (0) < 0 imply that there exists

a unique τw ∈ (0, ζ) so that g (τw) = 0, g (τ) > 0 for τ ∈ (τw, ζ) and g (τ) < 0 for τ ∈ (0, τw).
Following the same argument in the second part by replacing 0 with τw, we know that it is optimal
to withdraw at τw and redeposit at ζ+, and VI (τw) = (1− c)VO (τw) = (1− c) V̂O (τw). Then to
prove our claim we only need to show that VI (τ) > (1− c)VO (τ) for τ ∈ (0, τw).
Let H (τ) ≡ VI (τ) − (1− c)VO (τ) with H (τw) = 0, then we need to show that H (τ) > 0 for
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τ ∈ (0, τw). Recall H (τ) = VI (τ) − (1− c)VO (τ) > 0 in general. We first rule out H (τ) = 0
uniformly on any interval (τw −∆, τw) where ∆ > 0; if it is true then it must be that VI (τ) =
(1− c)VO (τ) = (1− c) V̂O (τ) on that interval so that (as (1− c)VI < VO):

0 = rVI (τ) + h (τ) (γ (1− c)− VI (τ)) + δ (1− c− VI (τ)) + V ′I (τ)
= r (1− c) V̂O (τ) + h (τ) (1− c)

(
γ − V̂O (τ)

)
+ δ (1− c)

(
1− V̂O (τ)

)
+ (1− c) V̂ ′O (τ)

= (1− c)
[
rV̂O (τ)− h (τ) (1− γ)

]
= − (1− c) g (τ) > 0

where the first equality is (8) and third equality is using the ODE for V̂O (τ) with 0 = h (τ)
(
1− V̂O (τ)

)
+

δ
(
1− V̂O (τ)

)
+ V̂ ′O (τ) . This contradiction implies that we must have VI (τ) > (1− c)VO (τ) for

some τ close to τw. Now suppose that there exists another point τ1
w < τw so that VI

(
τ1
w

)
=

(1− c)VO
(
τ1
w

)
. Take τ1

w that is the closet to τw so that V ′I
(
τ1
w

)
≥ (1− c)V ′O

(
τ1
w

)
. At τ1

w, VI
(
τ1
w

)
must satisfy the HJB in (8) (because τ1

w is in the inaction region around the neighborhood, i.e.,
(1− c)VI (τ) < VO (τ) for τ close to τw). Then

0 = rVI
(
τ1
w

)
+ h

(
τ1
w

) (
γ (1− c)− VI

(
τ1
w

))
+ δ

(
1− c− VI

(
τ1
w

))
+ V ′I

(
τ1
w

)
≥ r (1− c)VO

(
τ1
w

)
+ h

(
τ1
w

)
(1− c)

(
γ − VO

(
τ1
w

))
+ δ (1− c)

(
1− VO

(
τ1
w

))
+ (1− c)V ′O

(
τ1
w

)
= (1− c)

[
rVO

(
τ1
w

)
− h

(
τ1
w

)
(1− γ)

]
≥ − (1− c) g

(
τ1
w

)
> 0

where we have used the HJB for VO
(
τ1
w

)
(since (1− c)VO

(
τ1
w

)
= VO

(
τ1
w

)
) and the fact that

VO
(
τ1
w

)
≥ V̂O

(
τ1
w

)
in general. Again we get a contradiction with (8).

A.3 Proof of Lemma 1

The distribution of t0, φ (t0) is memoryless implying φ follows an exponential distribution. Given
that information spreading β (ti − t0) depending on ti− t0 only, the following derivation shows that
the conditional distribution of t0, φ (t0|ti), takes the form of φ (ti − t0), i.e. it only depends on time
elapsed ti − t0:

φ (t0|ti) ≡
β (ti − t0)φ (t0)∫ ti

ti−η β (ti − s)φ (s) ds
φ is exponential= β (ti − t0)∫ ti

ti−η β (ti − s)φ (s− t0) ds
let y=s−ti+η= β (ti − t0)∫ η

0 β (η − y)φ (y − η + ti − t0) dy ≡ φ (ti − t0) .

Suppose the functionΣ is an indefinite integral of φ so that Σ′ = φ. This implies that the conditional
cumulative distribution of t0 also depends on ti − t0 only:

Φ (t|ti) ≡ Pr
(
t̃0 ≤ t|ti

)
=
∫ t

ti−η
φ (ti − s) ds

let y=s−ti+η=
∫ t−ti+η

0
σ (η − y) dy = Σ (η)− Σ (ti − t) .

This allows us to write Φ (t|ti) as Φ (t− ti). Hence, the conditional hazard rate depends on ζ − τ
only:

h (ti + τ |ti; ζ) = φ (ti + τ − ζ|ti) p
1− pΦ (ti + τ − ζ|ti)

= φ (ζ − τ) p
1− pΦ (ζ − τ) .
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A.4 Proof of Proposition 3

In any bank run equilibrium, the equilibrium remaining survival time is τ∗r = − ln(1−κL)
β . Then

depending on the sign of G
(
− ln(1−κL)

β

)
, the agent in equilibrium is either willing to wait a bit longer

or withdraw a bit earlier. “Waiting” contradicts to the bank run equilibrium, while “withdrawing
a bit earlier” implies that in equilibrium the waiting time binds at zero, i.e. every one withdraw
their deposits upon hearing the rumor. The knife-edge case is obvious.

A.5 Proof of Lemma 2

Suppose that ζ > η, so that at ζ the cumulative withdrawal from yL agents is q
(
1− e−βη

)
. Then

using the aggregate condition (AW’), we can back out the equilibrium τr for yM agents as

τr = − 1
β

ln

1−
κL − q

(
1− e−βη

)
1− q

 .
However, unless parameters are such that the above τr happens to satisfy G (τr) = 0 which is the
yM agents’ optimal waiting decision, generically this cannot occur.

Now we rule out the case that yL agents wait a positive time τLw > 0. Suppose that yL agents
wait to withdraw upon hearing the rumor; it is easy to show that yM agents must wait as well.
Denote τLr > 0 and τMr > 0 as the remaining survival times optimally chosen by yL and yM
agents, respectively; then the two individual optimal conditions in the spirit of (17) determine τLr
and τMr . However, generically they will be inconsistent with the aggregate withdrawal condition
κL = q

(
1− e−βτLr

)
+ (1− q)

(
1− e−βτMr

)
; or at ζ there are no yL agents withdrawing then the

aggregate withdrawal condition is κL = (1− q)
(
1− e−βτMr

)
+ q

(
1− e−βη

)
.

A.6 Proof of Proposition 4

First note that the G function is the mirror image of individual FOC condition function, i.e.,
G (τr) = g (ζ − τr) , and it shares the same (but opposite) property of g (·) shown in Lemma 4:

Corollary 2. G (τr) crosses zero from above at most once on τr ∈ [0, ζ].

This result implies that the following holds for the three cases of the proposition:
Case 1. If G

(
τ lr

)
≤ 0, then G (τr) ≤ 0 for all τr ≥ τ lr. Thus if all other agents strategy is to

redeposit after any τr ≥ τ lr, it is optimal for the individual agent to deviate and wait a bit longer.
Therefore, ζ∗ →∞ and no run equilibrium exists.

Case 2. If G (τur ) ≥ 0, then G (τr) ≥ 0 for all τr ≤ τur . Thus, if all other agents’ strategy is to
withdraw at some interior τr ≤ τur , it is optimal for the individual agent to deviate and withdraw
earlier. Therefore, agents withdraw immediately in the only symmetric equilibrium.

Case 3. Finally, if G (τur ) < 0 and G
(
τ lr

)
> 0 then by continuity of G and Corollary 2, there

exists a unique bank run equilibrium τ∗r ∈
(
τ lr, τ

u
r

)
so that G (τ∗r ) = 0. Plugging into (AW’) we get
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the equilibrium survival time ζ∗ and waiting time τ∗w. A second implication of Corollary 2 is that
G′ (τ∗r ) < 0. Therefore the equilibrium is stable.

A.7 Proof of Proposition 5

It is easy to show that τ lr (q) = 1
β ln

[
1−q

1−κL−qe−βη
]
< 1

β ln
[

1
1−κL

]
, and we aim to show that

G
(

1
β ln

[
1

1−κL

])
< 0 cannot rule out the case of G

(
τ lr (q)

)
being negative or positive. Corol-

lary 2 tells us that G (·) to cross zero at most once from above; if anything, this implies that G (·)
is decreasing, which means that G

(
τ lr (q)

)
> G

(
1
β ln

[
1

1−κL

])
; this implies that G

(
τ lr (q)

)
might

take both signs. The rest of result is a direct application of Proposition 4.

A.8 Proof of Lemma 3

First, when the bank run equilibrium occurs with corner solution ζ = τur = 1
β ln 1

1−κL , then the
marginal benefit of information MB = p (ti|ti) (1− c) + (1− p (ti|ti)) (1−c)δ

δ−r −VI (0|yM ) is indepen-
dent of q, and the equilibrium q∗ equates MC = αq∗ = MB. Therefore the equilibrium is unique
and stable (MB is constant while MC increases with q). Also if q∗ takes the upper bound corner
value, the associated run equilibrium is unique as well. So the rest of proof focus on the case where
both the information quality of equilibrium survival time take interior solutions.

From now on we focus on interior bank run equilibrium. Importantly, this implies that τr
is determined in (17) which only depends on primitives. Therefore we treat τr as a primitive
parameter.

Given τw simple integration yields

VI (0|yM ) =

(1− c)

 δ(eλη(1−p)−1)
δ−r

(
1− e−(δ−r)τw

)
+ δ+λγ

λ+δ−re
λζp

(
1− e−(λ+δ−r)τw

)
+e−(δ−r)τw

(
eλη − 1−

(
eλη − eλ(ζ−τw)

)
p
)
VO (τw|yM )


eλη − 1− (eλη − eλζ) p .

The FOC (20) when the agent sets q∗ is (
eλζ − 1

)
p+ (1− p)

(
eλη − 1

)
δ
δ−r −

δ(eλη(1−p)−1)
δ−r

(
1− e−(δ−r)τw

)
− δ+λγ
λ+δ−r e

λζp− e−(δ−r)τweλτr
[

(λ+δ)(λ(1−γ)−r)
r(λ+δ−r)

]
p− α

1−cq
[
(1− p)

(
eλη − 1

)
+
(
eλζ − 1

)
p
]


(1− p) (eλη − 1) + (eλζ − 1) p = 0 (24)

where ζ and τw = ζ − τr depend on q through (18). Note that h (τw) (1− γ) = rVO (τw) implies

(
eλη − 1−

(
eλη − eλ(ζ−τw)

)
p
)
VO (τw) = λ (1− γ) eλ(ζ−τw)p

r

where we used the expression for h in (3). Then note that

λ (1− γ)
r

− δ + λγ

λ+ δ − r
= (λ+ δ) (λ (1− γ)− r)

r (λ+ δ − r)
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which gives expression 24. We have

ζ ′ (q) = τ ′w (q) = e−βζ − e−βτr
qβe−βζ

= 1− eβτw
qβ

< 0.

The derivative at the point where (24) takes zero value yields:

λζ′eλζp0 − δ
(
eλη (1− p0)− 1

)
e−(δ−r)τw τ ′w −

δ + λγ

λ+ δ − r
p0λe

λζζ′ + (δ − r) e−(δ−r)τweλτrp0

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
τ ′w

−
α

1− c
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)
−

α

1− c
qeλζλζ′p0

= λζ′eλζp0

[
λ (1− γ)− r
λ+ δ − r

−
α

1− c
q

]
+ e−(δ−r)(ζ−τr)τ ′w

[
eλτrp0 (δ − r)

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ
(
eλη (1− p0)− 1

)]
−

α

1− c
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)

= ζ′ (q) e−(δ−r)ζ
[
e(δ−r)τr

[
eλτrp0 (δ − r)

( (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r)

)
− δ
(
eλη (1− p0)− 1

)]
+ λe(λ+δ−r)ζp0

[
λ (1− γ)− r
λ+ δ − r

−
α

1− c
q

]]
−

α

1− c
(
(1− p0)

(
eλη − 1

)
+
(
eλζ − 1

)
p0
)

The second line is clearly negative. If we can ensure that

e(λ+δ−r)τrp0 (δ − r)
(λ+ δ) (λ (1− γ)− r)

r (λ+ δ − r)
+e(δ−r)τr δ

(
1− eλη (1− p0)

)
+λe(λ+δ−r)ζp0

[
λ (1− γ)− r
λ+ δ − r

−
α

1− c
q

]
> 0, (25)

then since ζ ′ (q) < 0, the first line is negative, and as a result the derivative of (24) is always
negative. Therefore, when (24) equals zero, it must go down. Combined with differentiability
of (24), this result rules out multiple solutions, because if there exist, then there must have one
solution with the local slope being nonnegative. Therefore, (24) crosses zero at most once from
above, which implies that the bank run equilibrium, if exists, is unique and stable.

To finish the argument, we show that the sufficient condition for condition (25) is (note that
eλη (1− p0) < 1)

e(λ+δ−r)τur p0 (δ − r) (λ+ δ) (λ (1− γ)− r)
r (λ+ δ − r) + e(δ−r)τdr δ

(
1− eλη (1− p0)

)
(26)

+λe(λ+δ−r)ηp0

[
λ (1− γ)− r
λ+ δ − r

− α

1− c
κL

1− e−βη
]
> 0.

We only need to verify that (25) dominates (26) term by term. The first term is because λ (1− γ)−
r < 0 (recall (12)) and τr ≤ τur ; the second term is because τr ≥ τdr , and the third term is because
λ (1− γ)− r < 0, ζ < η, and q∗ < κL

1−e−βη .

A.9 Proof of Proposition 6

Follows immediately from Lemma 2 and Lemma 3.

A.10 Equilibrium with Multiple Solvent Banks

At the time of hearing the rumor, the value of a dollar in the bank for agents with yL and yH

signals are respectively VI (0|yL) = (1−c)2δ
δ−r and VI (0|yH) = (1−c)δ

δ−r . In order to calculate the value

49



for agents with the yM signal, note that with probability 1/2 the original bank is the illiquid one,
but the agent can deposit his funds (after the liquidation cost 1 − γ) to the liquid one in case of
failure while deposited. As a result, the value with yM signal is

VI (0|yM ) =
1
2

1− c
1−Π (0|κL)

∫ ζ

0

[
δe−(δ−r)s (1−Π (s|κL)) + e−(δ−r)sπ (s|κL) γ (1− c)

δ

δ − r

]
ds+

1
2

(1− c) δ
δ − r

=
1− c

2

{ 1
1− e−λζ

[
−e−λζ

δ

δ − r
(
1− e−(δ−r)ζ

)
+

δ

δ − r + λ

(
1 +

λγ (1− c)
δ − r

)(
1− e−(δ−r+λ)ζ

)]
+

δ

δ − r

}
.

Proposition 7. Under the two banks setup, the bank run equilibrium {ζ∗, q∗} is determined by the
following two equations:

ζ∗ = − 1
β

ln
(

1− κL
q∗

)
, and 1

2 (1− c) δ

δ − r
+ 1

2
δ

δ − r
− VI (0|yM ; ζ∗, q∗) = α

1− cq
∗.

A bank run equilibrium requires that withdrawals by the yL agents alone can destroy a bank,
i.e. κL < q

(
1− e−βη

)
.41 The threshold q so that no run would occur is q ≡ κL

1−e−βη . If the planner
raises α so that the marginal benefit of acquiring information is below its marginal cost, i.e.,

1
2 (1− c) δ

δ − r
+ 1

2
δ

δ − r
− VI (0|yM ) ≤ α

1− cq,

then the illiquid bank is always sufficiently liquid to sustain a run.

B Additional Results and Extensions 6.3

B.1 Minimum Liquidity Capacity Threshold that Eliminate Runs

The threshold liquidity capacity κL that eliminates bank runs on the illiquid bank can be found
numerically as the κL so that G

(
τ lr (q) ;κL

)
= 0 in Proposition 5 with binary information choices,

or G
(
τ lr (q∗|ζ∗=η)

)
= 0 in Proposition 6 with convex acquisition costs. In the baseline parameters

in Figure 4, the threshold liquidity capacity κL is 0.6537.
In general, due to the asynchronous nature of our rumor-based setting, even without information

acquisition, immediate withdrawal after hearing the rumor might not be an equilibrium. Similar to
the insight of Abreu and Brunnermeier (2003), this is because the depositor knows that the bank
survives for a while, a feature absent in any static bank run setting. Thus, eliminating dynamic
rumor-based runs requires less liquidity reserve than the one suggested by the static perspective.

Here is an outline on how to determine the threshold threshold κH so that there never exist runs
on the liquid bank. Our information structure in Figure 2 implies that the agent with yH knows the
bank is liquid for sure. More importantly, the agent knows that he is among the q fraction of yH
agents, and there are 1− q fraction of informed agents with medium signals yM . We are interested
in the equilibrium behavior of yH agents who endogenously wait a while to withdraw, by holding
the belief that 1 − q fraction of yM agents withdraw immediately upon hearing the rumor. Thus,
yH agents face a tradeoff similar to (11). This harshest belief regarding yM agents allows us to

41In this two-bank setting we no longer impose the restriction of q ≤ κL
1−e−βη as in condition (16), because now

only yL agents are withdrawing to potentially take down the illiquid bank.
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determine the upper bound of the κH threshold that rules out runs by yH agents. Interestingly, this
is in the same nature as the equilibrium for the illiquid bank studied in the main model, where yL
agents withdraw immediately while yM agents wait for a while; and hence the same algorithm that
pins down threshold κL applies.42 Under our baseline parameters given in Figure 4, the threshold
κH required to eliminate runs on the liquid bank is 0.8241.

B.2 Optimal Time to Acquire the Additional Signal(s)

We have so far assumed agents acquire the additional signal y immediately upon hearing the
rumor. Although early information allows for a superior action, there is an option value derived
from waiting to acquire the signal later: the agent learns from the passage of time that the bank is
more likely to be liquid, and the bank might fail (thus making the additional signal unnecessary).

The following Proposition provides a sufficient condition for the optimality of acquiring infor-
mation immediately. Intuitively, it suffices that the information acquisition cost is low enough
relative to the net benefit of delaying this expense.

Proposition 8. The optimal time to acquire the additional signal ỹ is immediately upon hearing
the rumor if

[δ + h (ζ)] α

2 (1− c)
κL

1− e−βη −
r − cδ
δ − r

δ (1− p) < 0, (27)

[δ − r + h (ζ)] α

2 (1− c)
κL

1− e−βη − ((1− γ)h (0)− rp) < 0, (28)

and
(1− p) (1− c) δ

δ − r
≥ α. (29)

Proof. Let τy ≡ ty− ti denote the time an agent waits between hearing the rumor and acquiring
the additional signal y. We first show that under condition (27), if 0 ≤ τy ≤ τw then the optimal
τ∗y = 0. We then show that under condition (28), if τw ≤ τy ≤ ζ then τ∗y = τw. Finally, we show
that τy = τw is dominated by τy = τw − ε, which implies setting τ∗y = 0 is everywhere optimal.

First, suppose 0 ≤ τy ≤ τw. Informed agents maximize the value of a deposited dollar at ti:

max
q,τy

v (0; q, τy) = (1− c)
[∫ τy

0
δe−(δ−r)s (1−Π (s)) ds+

∫ τy

0
γe−(δ−r)sπ (s) ds

]
+ e−(δ−r)τy (1−Π (τy)) v (τy; q, τy) .

The marginal benefit of earlier information acquisition time τy dominates the marginal cost if

[δ − r + h (τy)]
χ (q)
1− c < q ((1− γ)h (τy)− rp (τy)) for all τy ∈ [0, τw] .

Condition (27) guarantees this is the case.
42More specifically, when the liquid bank reserve κH increases, the waiting benefit of yH agents increases and they

wish to wait longer. Once the resulting survival time ζ exceeds the awareness window η, the similar logic as in Lemma
2 and Proposition 4 implies that yH agents will not run in equilibrium. Here, the implicit assumption is that 1 − q
measure of yM agents are not enough to take down the bank.
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Second, suppose τw < τy ≤ ζ. The agent now maximizes:

max
q,τy

v (τw; q, τy) =
∫ τy

τw
δe−δs (1−Π (s)) ds+

∫ τy

τw
e−δsπ (s) ds+ e−δτy (1−Π (τy)) v (τy; q, τy) .

For this case, the marginal benefit of earlier information acquisition time τy dominates if

[δ + h (τy)]
χ (q)
1− c < q

r − cδ
δ − r

δ [1− p (τy)] for all τy ∈ [τw, ζ] ,

which is guaranteed by condition (28).
The earlier region dominates if v (τ−w ; q) ≥ (1− c) v

(
τ+
w ; q

)
, i.e. if acquiring the signal just before

withdrawing dominates acquiring it just after. Using the fact that VI (τw|yM ) = (1− c)VO (τw|yM ),
the earlier region dominates if and only if q (1− p (τw)) (1−c)δ

δ−r c ≥ χ (q) c, which is guaranteed under
condition (29). The intuition is that since the money is inside the bank just before τw, an agent
who withdraws, acquires information, and then redeposits would waste the transaction cost, but
gain on the proportional cost of information by delaying it until after he pays transaction cost to
withdraw.

We could also allow agents to acquire signals more than once. But if we impose, as one should, a
small fixed cost of acquiring information, we get in equilibrium a finite number of such acquisitions.
After these, the population is fully described by the same three types (yL, yM , yH) as in the main
text. Thus, the bank run equilibrium structure remains qualitatively the same.

B.3 Endogenous Rumor Spreading Speed

One can extend our model by linking the spreading speed to the fraction already informed, which
leads the equilibrium fraction of informed agents to be an S-shaped function in the spreading time.
Such a modification only makes the conditional distribution for t̃0 in (2) more complicated, but
would not affect our main results.

A more ambitious/interesting extension would be to follow the spirit of Banerjee (1993) by
allowing the spreading speed to depend on the fraction of depositors who have run on the bank, say
βR (t|t0, κ̃) dt where R (t|t0, κ̃) = (1− q)

(
1− e−β(t−τw)

)
+ q

(
1− e−βt

)
× 1{κL} is the cumulative

withdrawal shown in Figure 3. As a result, the rumor spreading speed depends on not only the
underlying bank liquidity κ̃, but also the endogenous equilibrium waiting time τw of yM agents.
Both can be viewed as amplification forces. First, since yL agents immediately withdraw only
when the bank is illiquid, relative to the case of κ̃ = κH the rumor spreads faster, giving rise
of a more severe run on the illiquid bank. Second, if yM agents wait a bit longer to withdraw,
the rumor spreading speed is slower, and thus the illiquid bank will survive longer, feeding back
to later withdrawal of yM agents. Although mathematically challenging, the critical feature for
our analysis, that the hazard rates depend only on time elapsed since hearing the rumor, would
be preserved. As a result, with the aid of numerical methods one can analyze such settings with
endogenous rumors, and we leave this possibility for future research.
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C Non-stationary Equilibria

We consider the non-stationary part of the model here. If t0 < η, then some early informed
agents with ti < η knows that t0 ∈ [0, ti], and this truncation implies strategy may be ti-dependent.
However, as shown in Abreu and Brunnermeier (2003), those early agents will be bunching together
to eliminate the non-stationarity. We modify their results to our setting.

Focus on the bank being illiquid. To be precise, follow Abreu and Brunnermeier (2003) in our
model the agents who hears the rumor before ζ − τw = τr will behave as if the agent who hears the
rumor exactly at τr. The strategy of the agent who hears rumor at τr is that, independent of signal
(yL or yM ) he will withdraw at τr + τw = ζ. Moreover, for agents who hear rumor at ti ∈ [τr, ζ],
they take the following strategy. If they receive yL signal then he will withdraw at ζ, while if they
get yM signal then they withdraw at ti + τw. This additional modification is because relative to
Abreu and Brunnermeier (2003) agents may have different signals in our model.

For illustration, suppose that t0 = 0 so the bank should fail at ζ. Recall that there are q measure
of yL signals and 1−q measure of yM signals. Since the information keeps spreading at ζ (recall that
η < ζ) and all agents hears the rumor before ζ will withdraw at ζ, there are q

(
1− e−βζ

)
measure

of yL agents withdrawing. On the other hand, yM agents who hear the rumor in the interval [0, τr]
are withdrawing at ζ, with a total mass of (1− q)

(
1− e−βτr

)
. Therefore, we have

(1− q)
(
1− e−βτr

)
+ q

(
1− e−βζ

)
= κL,

which is exactly (AW’). A similar argument can be applied to the case of t0 > 0 so that the bank
failure time is t0 + ζ: this is because endogenously there are less agents bunching at the physical
time ζ, so the bank failure time is postponed to t0 + ζ > ζ.

There is one issue that our richer (than Abreu and Brunnermeier (2003)) setting leads to poten-
tial non-stationarity. Although withdraw behavior can be stationary, the endogenous learning about
bank liquidity is non-stationary when η < ζ. In fact, initially when t0 = 0, agents have no other in-
formation so p (ti|ti) = p must holds. In stationary state, p (ti|ti) = p̂0 ≡

(eλζ−1)p
(1−p)(eλη−1)+(eλζ−1)p < p.

This difference potentially alters the optimal withdraw strategies for agents with different timings.
To resolve this issue, we simply assume that for ti < η, the prior is time-varying

p (ti) =

(
eλti − 1

)
p

[(1− p) (eλη − 1) + p (eλti − 1)] ,

and one can show that with this specification, the resulting posterior upon hearing the rumor,
p (ti|ti), is always p̂0. One can presumably achieve this by a more structural way; for instance,
introduce other shocks so that, conditional on survival and hearing the rumor, the posterior of the
bank being illiquid is always p̂0. Also, we have to fix the signal quality structure q to be the same
as in the stationary phase. We deem these technical issue non-essential for the economic questions
that we are after in this paper.
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