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1 Introduction

Bank runs are unfortunately still with us. Runs occurred recently on major traditional banks such

as Northern Rock and IndyMac, and on non-traditional “shadow” banks.1 The largest ever bank

failure resulted from the 2008 run on Washington Mutual (WaMu). Figure 1 shows that the run on

WaMu was dynamic in nature: the bank experienced the gradual withdrawal of $16 billion in the

days leading up to its takeover by the FDIC. Uncertainty regarding WaMu’s liquidity and hence

its eventual fate remained heightened during the run.2 This empirical pattern that runs have an

important time dimension, and that uncertainty and learning play a key role, has been found as

far back as the 1857 run on the Emigrant Industrial Savings Bank.3

In this paper, we study dynamic bank runs when depositors can acquire information about bank

liquidity (reserve). We emphasize the novel role that bank liquidity reserve plays given gradual

withdrawals in a dynamic bank run model with learning. With gradual withdrawals, greater liquid

holdings prolong the bank’s survival. Depositors who are uncertain about bank liquidity and

potential failure time therefore run later, which can eliminate the run completely even for liquidity

reserves below potential maximum withdrawals. This effect does not exist in a typical static

Diamond and Dybvig setting where withdrawal occurs immediately.4

Our model incorporates uncertainty about the bank liquidity into the asynchronous awareness

framework of Abreu and Brunnermeier (2003). At some unobservable random time, a liquidity

event occurs for a fundamentally solvent bank, at which point it becomes illiquid (i.e., with limited

amount of cash reserves and susceptible to a run) or remains liquid (with sufficient reserves and not

subject to a run). The liquidity event triggers the spread of a rumor (i.e., the liquidity event has

occurred and the bank can be either liquid or illiquid) in the population that exposes the bank to a
1Calomiris and Mason (1997), Shin (2009), and Iyer and Puri (forthcoming) document traditional bank runs,

while Gorton and Metrick (2011) and Acharya, Schnabl, and Suarez (forthcoming) document “shadow” bank runs
on repo and asset-backed commercial paper conduits.

2On September 16, 2008, “’This week and next will be the moment of truth for WaMu,’ said Fred Cannon, an
analyst at Keefe Bruyette & Woods.” See report “WaMu faces price to keep deposits,” Financial Times, by Saskia
Scholtes in New York.

3O Grada and White (2003) find that the 1857 bank run on the Emigrant Industrial Savings Bank had an
important time dimension and was driven by informational shocks in the face of asymmetric information about the
true condition of bank portfolios. See Kelly and O Grada (2000) for evidence on information transmission during the
run.

4To our knowledge, Nikitin and Smith (2008) is the only paper that studies interaction between information
acquisition and bank runs. When the bank is always solvent but illiquid to different degrees, since withdrawal is
immediate, the acquired information regarding bank liquidity can only play the role of a sun-spot. See footnote 7 for
further discussion.
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Figure 1: The Dynamic Nature of the Run on WaMu

Daily net change in deposits as reported by Washington Mutual Bank to the Office of Thrift Supervision
(OTS). We take out Friday and end-of-month fixed effects, i.e. days with automatic payday deposits esti-
mated over the preceding 52 days. The OTS appointed the FDIC as receiver of WaMu on the evening of
September 25, 2008 (the vertical line in the figure) which then sold it to JPMorgan Chase.

run. Agents (depositors) learn about whether the bank is liquid from the passage of time without

failure, and about the time the liquidity event started. They earn a positive convenience yield on

money inside the bank, and can withdraw (redeposit) their funds from (into) the bank at any time,

subject to small transaction costs.

Uncertainty motivates informed agents who hear the rumor to acquire additional information

at an endogenously determined signal quality. The realized signal may be utterly uninformative,

or reveals the bank liquidity state perfectly. The higher the signal’s quality, the more likely is the

signal to reveal the bank’s liquidity status. If the bank is indeed illiquid, then in aggregate a higher

quality translates to a greater fraction of agents who know the bank is illiquid.

The presence of agents with heterogeneous information allows us to derive the unique bank

run equilibrium as an interior solution, given the signal quality about bank illiquidity. Conditional

on the bank being illiquid, agents with informative “low” signals perceive a high bank failure

hazard rate and withdraw immediately, while agents with uninformative “medium” signals wait

and withdraw later. When all medium signal agents wait a bit longer, they know more agents

with informative low signals have already withdrawn, and thus the bank failure hazard rate rises

as more agents run earlier. This “fear-of-low-signal-agents” generates a time-varying marginal

cost of waiting for agents with the medium signal, which allows us to find the unique endogenous
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withdrawal time that equates the marginal benefit of waiting.5 The endogenous waiting time of

medium signal agents, combined with the exogenous rumor spreading speed, result in an endogenous

withdrawal speed on the illiquid bank.

We decouple the speed by which information spreads from the length of the awareness window

over which information spreads, and examine their effects on the survival of an illiquid bank.6 In a

static model, intuitively an increase in the number of potential withdrawers (weakly) exacerbates

runs. By contrast, we find that when the awareness window widens so everybody knows potentially

more agents run on the bank, the illiquid bank survives longer. This counter-intuitive result arises

due to the novel uncertainty structure we introduce, as the agent who hears the rumor also observes

that the bank is still alive. If the awareness window is wide, the rumor could have started spreading

a long time before he heard it. Thus, conditional on the bank surviving thus far, the bank is more

likely to be liquid, leading to weaker running incentives.

Given the bank run equilibrium, the optimal signal quality for individual agents trades off the

acquisition cost with a greater probability of receiving an informative signal. Moreover, the chosen

quality of information affects the equilibrium survival time of the failing bank. This intricate

feedback effect between bank runs and information acquisition generally leads to at most two

equilibria: a good equilibrium where agents do not acquire information and do not run, and a bad

equilibrium where agents acquire information aggressively and run on the illiquid bank. This result

naturally leads us to examine how to eliminate the run equilibrium.

We find that in our dynamic setting the threshold parameters — say, the minimum liquidity

reserve requirement — that eliminate the bad bank run equilibrium are nontrivial. This is because,

with bank failure time uncertainty, depositors with medium signals may have a sufficiently large

payoff from staying in the bank and delaying their withdrawal. If we increase liquidity just enough

to make the last agent whose withdrawal exhausts the liquid reserve to wait long enough, the

bank run is averted. This practically relevant mechanism depends on both the dynamic nature of

the withdrawal timing and the endogenous learning about a possible bank failure. That we give

depositors the option to redeposit back to a surviving bank plays an important role. Interest-
5This mechanism of determining unique interior equilibrium is different from Abreu and Brunnermeier (2003).

See literature review at the end of introduction.
6By contrast, in Abreu and Brunnermeier (2003) the speed by which information spreads is one over the length

of the awareness window.
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ingly, the liquidity requirement is far less than the maximum potential withdrawals, which is the

minimum reserve requirement from a static Diamond and Dybvig perspective. Moreover, partial

deposit insurance suffices in our setting to prevent runs. Though beyond the scope of the current

paper, a calibration of our model to data can certainly result in quantitatively meaningful policy

recommendations.

We extend our baseline model along two dimensions. First, we consider fundamentally insolvent

banks. When agents privately collect information about bank solvency, they inevitably learn about

bank liquidity. Effort spent acquiring one reduces the effort needed to acquire the other. We show

that public provision of solvency information can help curb the private information acquisition effort

on bank liquidity. One such situation where information is key is at the disclosure of stress test

results (Bernanke, 2010). Carefully constructed stress tests can therefore help prevent bank runs by

crowding out information acquisition by individuals. Second, we find it can be beneficial to avoid

providing too much information that differentiates competing solvent but potentially illiquid banks,

as small differences in liquidity can result in runs on slightly weaker banks and their subsequent

failure. Thus injecting noise into the system is useful, similar to the practice of the U.S. government

who forced all of the “Big 9” banks to take government capital on October 13, 2008.

Related Literature

Our model is related to the vast literature on the role of information in static bank runs, and it is

beyond the scope of our paper to have a thorough review on this topic.7 In the Diamond and Dybvig

(1983) framework, the liquidity reserve can be interpreted as liquid short-term assets held by the

bank, which affects individual depositors’ payoff in both static and dynamic settings. However, we

emphasize the additional effect unique to the dynamic setting with learning. In the static bank run

setting, withdrawals occur immediately. By contrast, in the dynamic model considered here with
7To name a few, Gorton (1985), Bhattacharya and Gale (1987), Jacklin and Bhattacharya (1988), Chari and

Jagannathan (1988), and more recently, Ennis and Keister (2009). On the topic of information acquisition and
bank runs, Nikitin and Smith (2008) study how information acquisition about bank solvency affects the bank run
equilibrium in a static Diamond and Dybvig setting. In contrast, we are focusing on the role of information acquisition
about bank liquidity in determining bank runs. This difference obviously matters for the first-best outcome; in
addition, when Nikitin and Smith (2008) analyze banks that are always solvent (i.e., the information just tells which
bank is more profitable if there is no run), information only plays the role of a sun-spot. Based on the Morris and
Shin (2002) global games technique, Goldstein and Pauzner (2005) study the optimal deposit contract by deriving a
unique equilibrium when depositors in a Diamond and Dybvig type setting are endowed with private noisy signals
about bank fundamentals. We allow for endogenous information acquisition, and show that excessive socially wasteful
learning may lead to socially inefficient runs on solvent-but-illiquid banks.
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gradual withdrawals, a greater share of liquid holding also implies that it takes longer to run down

the bank. Hence, through the endogenous learning channel, an increase in liquidity reduces the

hazard rate of failure and cause agents to wait longer. This is the novel mechanism we emphasize

in the paper.

Our paper contributes to a recent theoretical literature studying dynamic bank runs. As early as

Wallace (1988, 1990) the dynamic nature of bank runs has been explored by studying the sequential

service constraint in the Diamond and Dybvig setting. The sequential service constraint is naturally

placed in period 1 when all depositors (both early and late types) are lined up to decide whether

to withdraw from the bank. In two important papers that focus on the optimal mechanism design

subject to sequential service constraint, Green and Lin (2003) point out that no bank runs exist

if depositors know their clock times of arrival and thus infer their relative positions in the queue,

while Peck and Shell (2003) show that bank runs exist if the relative queue position information is

unavailable.8 In this regard, our paper is similar to Peck and Shell (2003) since each agent in our

model assigns the same distribution to her relative position in the queue. Our paper is more closely

related to Gu (2011) who takes the demand deposit contract as given (like our paper) and studies

depositors’ withdrawal strategy sequentially when the bank can be potentially insolvent. Because

a long sequence of withdrawals indicates bank insolvency, Gu (2011) shows that herding (ignoring

private information which is endowed exogenously) after a long sequence of withdrawals may lead

to inefficient bank runs.

Relative to these models, we emphasize the endogenous interaction between information ac-

quisition and bank runs, and how the government can eliminate runs when individuals acquire

information about bank liquidity. Allowing for redepositing back to surviving banks is new to the

literature, and affects the threshold parameters that eliminate runs. From a modeling perspective,

our framework features more empirically appealing timing assumptions in that individual depositors

can withdraw or redeposit their funds at any time; this represents a substantial improvement from

the Diamond and Dybvig framework and the above-mentioned important extensions. In particular,

if micro-level data is available, our analytically tractable model is particularly calibration-friendly
8There is another crucial distinction. Peck and Shell (2003) allow the utility function at period 1 (thus for early

types) to be different from the utility function at period 2 (thus for late types). For other related papers, see
Andolfatto, Nosal, and Wallace (2007) and Andolfatto and Nosal (2008).
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thanks to its empirically-interpretable time dimension.9 An alternative approach to bank run mod-

eling is He and Xiong (2012a,b) who develop dynamic debt run models of a firm with a time-varying

fundamental and a staggered debt structure.

Rumors have been studied by Banerjee (1993) and van Bommel (2003). We build on the ap-

proach of Abreu and Brunnermeier (2002, 2003) who consider the asynchronous timing of awareness

to study “rational” bubbles. Brunnermeier and Morgan (2010) generalize this idea to a class of

“clock games” and test its main predictions in controlled experiments. We add to their model

uncertainty about the capacity of the bubble (bank), allow agents to acquire additional informa-

tion upon awareness, and decouple the spreading rate from the length of the awareness window.

Importantly, in Abreu and Brunnermeier (2003), the interior equilibrium is generated under an ad

hoc assumption that the attacking benefit (in their context, the bubble component) is exogenously

decreasing over time, and arbitragers attack only when the bubble component drops to a certain

level. In contrast, as shown in Section 4.2.2, the endogenous learning that we introduce gives rise

to heterogeneity among agents and thus a unique bank run equilibrium without shrinking bubbles.

The paper proceeds as follows. Section 2 describes the setting and solves the agent’s learning

problem. Section 3 characterizes the individual agent’s optimal withdrawal policy, and Section 4

analyzes the bank run equilibrium with information acquisition. Section 5 considers extensions,

and we conclude in Section 6. Proofs are in the Appendix.

2 The Model

We describe the economy and the individual agent’s problem, with the focus on the agent’s learning.
9By contrast, Green and Lin (2003) and Peck and Shell (2003) only study finite-agent economy, and depositors

can only either withdraw at period 1 (when he/she is called in the line) or wait until period 2. Gu (2011) considers a
relaxation so that a finite number of depositors can withdraw at any time within an interim stage before period 2. A
significant departure from the Diamond and Dybvig framework seems necessary for developing dynamic models that
are both calibration-friendly and tractable. A sacrifice our model makes is to assume away the preference (early or
late) type of depositors, an ingredient critical for Diamond and Dybvig, but inessential for our paper.
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2.1 The Setting

2.1.1 Technology

Time is continuous on t ∈ [0, ∞). A continuum of infinitely-lived risk-neutral agents (depositors)

with unit mass maximize their expected utility from consumption with a zero discount rate.

Bank deposits yield a constant rate of return r > 0 when the bank is operating, while holding

cash outside the bank earns zero return. Broadly, one can interpret the bank as some investment

vehicle in the shadow banking system or even the entire financial system, and the positive relative

wedge r > 0 reflects either a higher investment growth rate or a convenience yield for keeping funds

in the institution. To avoid exploding values, we assume that the bank’s growth stops at some

“maturing” event modeled as a Poisson shock with intensity δ > r, and afterwards the game ends

in the sense that each agent gets his deposit back for consumption. The maturing event assumption

plays no role in our analysis except making the value of a dollar inside the bank finite.10 Throughout,

this maturing event will be independent of any other random variables that we consider.

2.1.2 Uncertainty about Bank Liquidity

There are two potential types of banks that are fundamentally solvent (i.e., bank survival is the

first-best allocation), with one type of bank being “illiquid,” and a second “liquid” bank impervious

to runs. The uncertainty about bank liquidity is crucial to our analysis. Later we will introduce

fundamentally insolvent banks as an extension.

Throughout, bank liquidity is defined as the amount of depositors that it takes to run down

the bank. For simplicity, we assume a binary structure for the state of bank liquidity κ̃. When

the bank is illiquid, κ̃ takes a lower value κL < 1, and the bank is potentially subject to runs. In

other words, the illiquid bank fails when more than a κ measure of depositors have fully withdrawn

their funds. One can literally interpret κ̃ as the bank’s cash reserves to meet withdrawals, and we

broadly interpret κ̃ as the liquidity of the bank.

For the liquid bank with a higher liquidity reserve, κ̃ = κH > κL. Throughout we focus on the

case that there will be no run on the liquid bank; hence for now it is useful to think of κH > 1
10Alternatively, we could assume that each individual agent suffers liquidity shocks that require immediate con-

sumption (therefore withdrawal). The analysis, which is available upon request, is similar but much more complicated
(due to the replacement of agents).
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so that the sufficiently liquid bank can survive any severe run. However, later in Section 4.5.1 we

verify that our model can have κH < 1 but still rule out runs on the liquid bank.

In our economy, it is common knowledge that conditional on liquidity event (to be introduced

shortly), Pr {κ̃ = κL} = p0 ∈ (0, 1) . When the illiquid bank fails, all remaining depositors in the

failed bank recover a fraction γ ∈ (0, 1) of their deposits. Afterwards, all agents go to autarky

consuming their remaining wealth.

2.1.3 Liquidity Event, Spreading Rumors, and Informed Agents

At t = 0 the bank is liquid, i.e., κ̃ = κH . At some unobservable random time t̃0 > 0 which we

refer to as the liquidity event, the bank may become illiquid, and the uncertainty is as modeled

in Section 2.1.2. Mapping to the 2007/08 crisis, one may think of this event as the deterioration

mortgage-backed securities held by banks, which hurts banks’ liquidity but keeps them solvent.

Although the exact liquidity event time t0 is publicly unobservable, it is common knowledge that

t̃0 is exponentially distributed on [0, ∞) with cumulative distribution function Φ (t0) ≡ 1 − e−θt0 ,

where θ is a positive constant.

Knowledge of this liquidity event starts spreading in the population after t̃0, i.e., some agents

hear “the liquidity event t̃0 has occurred and thus the bank might be illiquid.” Since the exact

liquidity event time t̃0 is unknown, this spreading information captures the essence of an unverified

rumor of uncertain origin that spreads gradually in the depositor population. We therefore call

this information about bank liquidity a “rumor.” Importantly, besides knowing the bank may be

illiquid, hearing the rumor also informs the agent that the liquidity event t̃0 has occurred and hence

other agents in the population may have heard the rumor.

We call those agents who hear the rumor “informed,” and the rest “uninformed.” Since at t = 0

the bank is liquid, throughout we assume that agents’ beliefs are such that they expect to hold

money in the bank unless they hear the rumor that the bank might be illiquid. In Section 4.5.2 we

show this is indeed the case by analyzing the optimization problem of an uninformed agent.

Given a realization of t̃0 = t0, the rumor begins to spread over an interval [t0, t0 + η] with a

positive constant (exogenous) length η. Following Abreu and Brunnermeier (2003) we refer to η

as the “awareness window.” At any interval dt where t ∈ (t0, t0 + η), uninformed agents become

informed by hearing this rumor with probability βdt, where β is an exogenous positive constant.
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Although the rumor spreading speed is exogenous, we show later that the aggregate withdrawal

speed during a bank run is endogenous. This rumor shock is i.i.d. across the population of

uninformed agents. To make the problem interesting, at time t0 + η the fraction of informed agents

is sufficient to take down the bank, if they decide to withdraw their funds. For t ∈ [t0, t0 + η],

it is easy to show that the mass of uninformed and informed agents is e−β(t−t0) and 1 − e−β(t−t0)

respectively, and the mass of newly informed agents within [t, t + dt] is βe−β(t−t0)dt.

This rumor spreading technology is different from that of Abreu and Brunnermeier (2003) in

that we allow for separation between the spreading rate β and the awareness window η. Abreu

and Brunnermeier assume a linear spreading technology with rate 1
η so that the entire population

is informed at t0 + η. This way, the awareness window η is artificially tied to the spreading rate
1
η . As we show later, because of the endogenous learning, the awareness window η has interesting

effects opposite to common wisdom.

2.1.4 Information Acquisition

At time ti > t0 when agent i hears the rumor, he can acquire an additional signal about the bank’s

type for some convex cost. Specifically, the agent makes an endogenous choice of information

quality q ∈ [0, 1] with cost χ (q) = αq2/2, where α > 0 is a positive constant. For tractability, we

assume χ (q) is the per dollar information cost, so informed agents face the same problem when they

are informed at different times. Although the timing of information acquisition is by assumption

immediate upon hearing the rumor, in Section 4.5.3 we show that under certain conditions it is

indeed optimal to do so.

This additional signal takes three possible values y ∈ {yL, yM , yH} with conditional probabilities:

Pr {y = yH |κ̃ = κH} = q, Pr {y = yM |κ̃ = κH} = 1 − q, and Pr {y = yL|κ̃ = κH} = 0; (1)

Pr {y = yL|κ̃ = κL} = q, Pr {y = yM |κ̃ = κL} = 1 − q, and Pr {y = yH |κ̃ = κL} = 0.

Figure 2 summarizes this distribution. With probability q, the bank’s liquidity is perfectly revealed

by the signal yH (yL). With probability 1 − q, the agent does not learn anything by receiving

the medium signal yM .11 Conditional on the underlying bank liquidity status, The realizations of
11Upon receiving yM , the posterior probability of the bank being illiquid remains p0(1−q)

p0(1−q)+(1−p0)(1−q) = p0.
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Figure 2: Probability Distribution of the Additional Signal ỹ with Quality q

Liquid Bank
κ̃ = κH > κL,

not subject
to runs

Illiquid Bank
κ̃ = κL ∈ (0, 1)

yH

yM

yL

1 − p0

p0

q

1 − q

1 − q

q

these signals are i.i.d. across agents. Unconditionally, these signals are correlated across agents, as

signals tend to be low (high) in the illiquid (liquid) state.

2.1.5 Information Structure

Call the agent who is informed at ti ≥ t0 simply agent ti. Denote by F ti
t his information set at

t > ti, and 1BF
t ∈ {1, 0} the indicator of whether the bank failed or not by time t. Agent ti’s

information set is F ti
t =

{
t, ti, ỹti , 1BF

t

}
, i.e. the current time, the time he hears the rumor that

the bank has become (potentially) illiquid, the additional signal he acquired, and whether the bank

has failed or not. Recall that the liquidity event t̃0 = t0 is not public information. Furthermore,

consistent with electronic age banking, the agent neither observes withdrawals before him, or the

potential queue in front of the bank.

2.1.6 Transaction Costs and Agent’s Problem

Finally, to eliminate strategies with infinite transactions, we assume a constant (small) transaction

cost k per dollar of deposits when the agent (re)deposits his cash into the bank. In sum, for an

agent who hears the rumor at ti with deposits inside the bank, he will acquire an additional signal

ỹ. Based on this signal, the agent can withdraw his deposits whenever he believes bank failure is

imminent, and redeposit this cash in the future (and incur the proportional transaction cost k) if
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the bank’s survival sufficiently improves his posterior belief about bank liquidity.

Risk neutrality and the bank’s superior investment technology imply it is optimal for the agent

to consume only at the bank’s exogenous maturing event, or when the bank endogenously failed

due to runs. The linearity of this problem implies a “bang-bang” strategy, i.e. keeping the entire

wealth either in or out of the bank, is optimal.

2.2 Learning

2.2.1 Posterior Belief about t0

Agent ti updates his posterior distribution of t0 conditional on hearing the rumor at ti. Given t0, for

an individual uninformed agent the probability of getting informed over [ti, ti + dt] is determined

as follows. For ti ∈ [t0, t0 + η), the probability of becoming informed at [ti, ti + dt] but not before ti

is f (ti|t0) = βe−β(ti−t0)dt. And, since the rumor stops spreading after t0 + η, we have f (ti|t0) = 0

for ti ≥ t0 + η. Combining with the density of φ (t0) = θe−θt0 , the informed agent ti learns about

the liquidity event timing t0. Similar to Abreu and Brunnermeier (2003) we focus on realizations

of t0 ≥ η such that the economy is already in a stationary phase; as shown shortly agent ti’s

equilibrium strategy will be independent of the absolute timing of being informed.12

With t0 ≥ η, the informed agent ti ≥ t0 ≥ η updates his posterior belief about t0 as

φ (t0|ti) ≡ f (ti|t0) φ (t0)∫ ti
ti−η f (ti|s) φ (s) ds

=
βe−β(ti−t0)θe−θt0∫ ti

ti−η βe−β(ti−s)θe−θsds
=

θ − β

e(θ−β)η − 1
e(θ−β)(ti−t0).

Without loss of generality, define λ ≡ θ − β > 0 so the liquidity event intensity is greater than the

rumor spreading rate.13 Then

φ (t0|ti) =
λeλ(ti−t0)

eλη − 1
. (2)

12The finite awareness window η over which the rumor spreads makes the cases of t0 < η and t0 ≥ η different. In
the event of t0 ≥ η, it always holds that ti ≥ η, and rational agents know that t0 ∈ [ti − η, ti]. In Appendix B we
consider the equilibrium behavior for t0 < η.

13The assumption of λ > 0 is for exposition purpose, and the analysis goes though if λ < 0. To see this, if λ < 0,
then the conditional density φ (t0|ti) can be written as (−λ)eλ(ti−t0)

1−eλη which is still positive.
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Integrating (2) over t0 we get the conditional distribution function for the liquidity event’s timing:

Φ (t|ti) ≡ Pr
(
t̃0 ≤ t|ti

)
=

∫ t

ti−η
φ (s|ti) ds =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 t < ti − η

eλη−eλ(ti−t)
eλη−1 ti − η ≤ t ≤ ti

1 t > ti

(3)

2.2.2 Bank Failure Hazard Rate

Suppose that in a symmetric equilibrium, agents believe the illiquid bank fails at t0 + ζ where ζ

is the survival time to be determined in equilibrium (potentially infinite). Thus the event of bank

failure is {t0 + ζ < t, κL}, and if the bank fails at t then the inferred t0 is t0 = t − ζ. Denote by

p (t|ti) ≡ Pr
{

κ̃ = κL|F ti
t

}
the posterior probability at time t of the bank being illiquid. Trivially,

bank failure at t reveals that p (t|ti) = 1. Given yL or yH signals, p (t|ti) = 1 or 0. For an agent ti

with a yM signal, if the bank has not failed by t (i.e. t < t0 + ζ), then his posterior belief of the

bank being illiquid is (recall that κ̃ is independent of t0):

p (t|ti) = Pr {κL|t < t0 + ζ, ti} =
Pr {t < t0 + ζ|κL, ti} Pr {κL}

Pr {t < t0 + ζ|κL, ti} Pr (κL) + Pr {κH}
=

[1 − Φ (t − ζ|ti)] p0

[1 − Φ (t − ζ|ti)] p0 + 1 − p0
, (4)

We can derive p (t|ti) in closed form using (3). Moreover, as shown later, in equilibrium if ζ is finite

then ζ ≤ η must hold. In this case, when agent ti hears the rumor, his posterior probability of the

bank being illiquid is

p (ti|ti) =

(
eλζ − 1

)
p0

(1 − p0) (eλη − 1) + (eλζ − 1) p0
.

For agent ti and absolute time t > ti, denote by τ ≡ t− ti the time elapsed since the agent hears

the rumor. The cumulative distribution of bank failure times at ti + τ , conditional on hearing the

rumor at ti and the bank has not failed by ti, can be derived as

Π (ti + τ |ti) ≡ p (ti|ti) Pr {ti < t0 + ζ ≤ ti + τ |ti, κL} = p (ti|ti)
Φ (ti + τ − ζ|ti) − Φ (ti − ζ|ti)

1 − Φ (ti − ζ|ti)
.
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The bank failure hazard rate from the perspective of the informed agent ti is

h (ti + τ |ti) ≡ dΠ (ti + τ |ti) /dτ

1 − Π (ti + τ |ti)
. (5)

We present the closed form expression for h (ti + τ |ti) in the following proposition. Note that bank

survival after τ > ζ reveals the bank is liquid, because the illiquid bank survives up to t0+ζ ≤ ti+ζ.

Proposition 1. Suppose that the illiquid bank fails at t0+ζ where ζ ≤ η which holds in equilibrium.

Then the bank failure hazard rate is

h (τ) ≡ h (ti + τ |ti) =
λeλ(ζ−τ)p0

(1 − p0) (eλη − 1) +
(
eλ(ζ−τ) − 1

)
p0

for τ ∈ [0, ζ] . (6)

For τ > ζ, h (τ) = 0 as the bank is revealed to be liquid.14

We have three noteworthy observations. First, the hazard rate in (6) is independent of the

absolute timing of agent ti becoming informed, therefore we can denote h (ti + τ |ti) by h (τ). This

property guarantees the stationarity of our model.

Second, the hazard rate only depends on the remaining survival time from potential bank failure,

i.e., ζ − τ . Because agents in our economy are uncertain about the exact timing of the liquidity

event t0, the bank failure hazard rate will depend on how far the economy is away from the failure

time t0 + ζ. For each agent ti, the maximum distance is given by t0 + ζ − t ≤ ti + ζ − t = ζ − τ .

The equilibrium remaining survival time is important for our later analysis.

Third, the above analysis is carried out for yM agents who remain uncertain about the bank’s

type. For yL (yH) agents, we can simply replace p0 with 1 (0) in equation (6).

With this learning process in mind, we define a bank run equilibrium and a no run equilibrium

as follows:

Definition 1. A bank run equilibrium is a stationary Perfect Bayesian Nash equilibrium in which

informed agents’ strategies depend on the time since they heard the rumor, and the bank survival

time is finite. A no run equilibrium is when the bank survival time is infinite.
14If λ = 0 the spreading speed and arrival rate of the liquidity event exactly offset. This limiting case results in a

rather tractable limλ→0 h (τ) = p0
(1−p0)η+(ζ−τ)p0

.
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Stationarity here follows from the hazard rate’s independence of the absolute timing of agent

ti becoming informed. The agent’s strategy depends on τ = t − ti, not t. A bank run means the

illiquid bank fails at a finite t0 +ζ < ∞, while a no run equilibrium means the bank survives forever.

2.3 Parameter Restrictions

We impose the following parametrization conditions throughout the paper. First,

p0

1 − p0
> eλη − 1; (7)

this implies the bank hazard rate given in Proposition 1 is increasing with τ , i.e. the time elapsed

since hearing the rumor. Equivalently, this implies that the bank failure hazard rate is decreasing

in the remaining survival time ζ − τ . More time without failure lowers the probability the bank is

illiquid and reduces the hazard rate. But, since the illiquid bank fails a fixed amount of time after

the rumor starts to spread, every minute that passes since we heard the rumor brings us closer

to potential failure, which increases the hazard rate. Condition (7) guarantees the latter effect

dominates. 15

Second, since the upper bound of the measure of informed agent is 1 − e−βη, for the model

to be interesting we require that the illiquid bank can potentially fail if all informed agents run

immediately, i.e.,

1 − e−βη > κL. (8)

Third, we focus on the case where both yM agents and yL agents are driving the bank failure.

Conditional on the bank being illiquid, there could be at most q
(
1 − e−βη

)
measure of yL agents.

To ensure that yL agents alone are not enough to take down the bank, we further impose that the

signal quality has to satisfy (instead of q ∈ [0, 1]):

q ∈
[
0,

κL

1 − e−βη

)
. (9)

15If (7) fails, the hazard rate decreases with τ , and agents, if they ever choose to withdraw, will withdraw upon
hearing the rumor τ = 0 and redeposit to the bank at some endogenous time. This case with the endogenous entry
could be interesting for future research on recovery after crises.
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Fourth, we require that the maturity shock intensity δ is moderate:

δ (1 − p0)
(
eλη − 1

)
r(r−kδ)

δ−r

λ (r − λ (1 − γ)) p0
∈ (0, 1) . (10)

This requirement implies r − λ (1 − γ) > 0. The only purpose of this condition is to guarantee the

optimality of thresholds strategy.

Finally, we assume that the bank failure loss 1 − γ is significant:

(λ (1 − γ) − r) eλη + r > 0; (11)

as we show in Section 3.3, this implies agents with a yL signal withdraw immediately, if the bank

run equilibrium exists.

3 Optimal Withdrawal Strategies

In this section, we present the key proposition that characterizes the individual agent’s optimal

withdrawal policy, taking both the equilibrium bank survival time ζ and information quality q as

given. The analysis involves only informed agents for reasons we explain in Section 4.5.2 which

studies uninformed agents.

3.1 Value Functions

Denote by VI (τ ; ti) (VO (τ ; ti)) the agent’s value of one dollar inside (outside) the bank at time

t = ti + τ by following the optimal continuation strategy. Due to stationarity, VI (τ ; ti) = VI (τ)

and VO (τ ; ti) = VO (τ). Because withdrawal involves no transaction cost while redepositing costs

k, the optimality condition implies that VI (τ) ≥ VO (τ) and VO (τ) ≥ (1 − k) VI (τ) for all τ ≥ 0.

When τ ≥ ζ, the surviving bank is safe for sure (recall Proposition 1). One dollar inside the

bank will grow at rate r until the maturing event (occurs with Poisson intensity δ), which has a

value of

VI (τ) =
∫ ∞

0
ersδe−δsds =

δ

δ − r
for τ ≥ ζ.

The value of one dollar outside the bank is VO (τ) = (1 − k) VI (τ) = (1−k)δ
δ−r for τ ≥ ζ which is
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above 1 for sufficiently small k.

When τ < ζ, consider a dollar outside the bank. At any point in time, if the status-quo position

(i.e. keeping the dollar outside the bank) is optimal, then the following ordinary differential equation

(ODE), the Hamilton-Jacobi-Bellman (HJB) equation, must hold:

0 = h (τ) (1 − VO (τ))
Bank failure

+ δ (1 − VO (τ))
Bank matures

+ V ′
O (τ)

Time change
. (12)

Here, the first term is the impact of bank failure: with hazard rate h (τ) the bank fails, and the

agent loses his value VO (τ) but recovers 1, the full value for his one dollar. The second term

captures the bank asset maturing event, and the third term is the change due to time elapsing.

Combined with the option of redepositing immediately (with transaction cost k), the HJB equation

for one-dollar outside the bank is

0 = max
{

h (τ) (1 − VO (τ)) + δ (1 − VO (τ)) + V ′
O (τ) , (1 − k) VI (τ) − VO (τ)

}
.

Similarly, for a dollar inside the bank, its value VI (τ) must satisfy the following HJB equation:

0 = max

{
rVI (τ)

Interest growth
+ h (τ) (γ − VI (τ))

Bank failure
+ δ (1 − VI (τ))

Bank matures
+ V ′

I (τ)
Time change

, VO (τ) − VI (τ)
Withdrawal

}
(13)

3.2 Optimal Strategies

Define V̂O (τ) the solution to ODE (12) with boundary condition V̂O (ζ) = VO (ζ) = δ
δ−r :

V̂O (τ) =
eλη (1 − p0) − 1 + eλ(ζ−τ)p0 + e−δ(ζ−τ) (1 − p0)

(
eλη − 1

)
r−kδ
δ−r

(1 − p0) (eλη − 1) +
(
eλ(ζ−τ) − 1

)
p0

. (14)

In general VO (τ) ≥ V̂O (τ): V̂O (τ) is the value at time τ by simply staying outside the bank until

ζ (and redepositing immediately after ζ into the surviving bank), but this simple continuation

strategy may not be optimal. Nonetheless, the following function captures the first-order impact

of the withdrawal decision:

g (τ) ≡ h (τ) (1 − γ) − rV̂O (τ) . (15)
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Here, g (τ) is difference between the instantaneous loss due to potential bank failure (i.e. h (τ) (1 − γ)),

and rV̂O (τ) which is the instantaneous return of taking one dollar out now, keeping outside the bank

until ζ, and redepositing back given survival. The underlying assumption here is that a threshold

strategy is optimal (i.e. redepositing is never optimal before ζ) which is verified in Proposition 2.

At the optimal withdrawal time τw, we have the first-order condition g (τw) = 0, i.e.,

h (τw) (1 − γ) = rV̂O (τw) = r

⎡⎢⎣1 + (1 − p (ti + τw|ti)) e−δ(ζ−τw) r − kδ

δ − r
Redepositing option value

⎤⎥⎦ , (16)

where we have used (14) and (4) in rewriting this intuitive expression. As mentioned above, the

left hand side captures the marginal cost of staying, which is the hazard rate multiplying the bank

failure loss. The right hand side captures the marginal benefit of staying, which is the growth rate

r multiplying the agent’s continuation value of one dollar by withdrawing and redepositing after

ζ. For the total continuation value in the right hand side bracket of (16), the first term 1 is the

principal amount which is present in Abreu and Brunnermeier (2003). The second term consists of

the option value of future redepositing. Here, 1 − p (ti + τw|ti) is the probability of the bank being

liquid (and surviving eventually) conditional on bank survival at τw, e−δ(ζ−τw) is the discounting,

and finally
r − kδ

δ − r
= VO (ζ) − 1 =

(1 − k) δ

δ − r
− 1 > 0

is the additional payoff from redepositing. When p0 = 1 so there is no uncertainty about bank

liquidity, this option value term vanishes.

We now show formally that a threshold strategy is optimal based on the function g (τ).

Proposition 2. Given the equilibrium bank survival time ζ < ∞, the optimal policy for the agent

with yM is as follows:

1. If g (ζ) ≤ 0, then it is optimal to stay in the bank always.

2. If g (0) ≥ 0, then it is optimal to withdraw at 0 and redeposit right after ζ.

3. Otherwise, we must have g (0) < 0 and g (ζ) > 0, and there exists a unique waiting time

τw ∈ (0, ζ) so that g (τw) = 0, and withdrawing at τw and redepositing right after ζ is

optimal.

The redepositing option increases the waiting benefit rV̂O (τ) in (15), towards the condition
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g (ζ) ≤ 0 in which agents with medium signal never run on the bank. Clearly, this option plays a

role in eliminating the bank run.

3.3 Values Conditional on Signals

We have studied the optimal strategy for the agent with yM signal. Agents with a high signal yH

(and thus knows the bank is not subject to run) keep their deposits in the bank always. For agents

who receive low signals, if

g (0; p0 = 1) =
(λ (1 − γ) − r) eλζ + r

eλζ − 1
> 0, (17)

then it is optimal to withdraw immediately. Because ζ < η and λ (1 − γ) < r, (17) is implied

by parameter condition (11). In fact, (17) turns out to be an equilibrium result (rather than a

parameter restriction) in any bank run equilibrium. As shown in Section 4.2, (17) always holds with

the equilibrium bank survival ζ, if a bank run equilibrium exists so that ζ < ∞. More precisely,

in our model if yL agents want to wait some positive amount of time, then generically bank run

equilibria do not exist. Throughout, we say that a statement holds “generically” when it fails only

for some zero measure parameter set.

Proposition 3. Suppose g (0) < 0 and g (ζ) > 0 so that agents with yM signals wait τw given in

(16). Then upon hearing the rumor, the values conditional on signals are

VI (0|yL) = 1, VI (0|yH) =
δ

δ − r
,

VI (0|yM ) =
δ(eλη(1−p0)−1)

δ−r

(
1 − e−(δ−r)τw

)
+ δ+λγ

λ+δ−r eλζp0 + e−(δ−r)τweλ(ζ−τw)p0
(

(λ+δ)(λ(1−γ)−r)
r(λ+δ−r)

)
eλη − 1 − eληp0 + eλζp0

,

where τw satisfies the first-order condition in (16).

4 Bank Run Equilibrium

In this section we solve for the unique bank run equilibrium and study its existence taking infor-

mation acquisition effort q as given. We then endogenize this learning decision and show that a

multiplicity of equilibria arises. We then study the minimum liquidity reserve to eliminate the run,
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Figure 3: Cumulative Withdrawals
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Cumulative withdrawal patterns for an illiquid bank with capacity κL and a liquid bank with capacity
κH > 1. At τ = 0 the rumor starts to spread. Agents with a yM signal wait in equilibrium τw = 0.85
before withdrawing. The illiquid bank fails while the liquid bank starts experiencing redeposits at ζ = 1.8.
Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, p0 = 0.8, δ = 0.12, k = 10−6, κL = 0.65, α = 0.7,
γ = 0.75.

and surprising comparative statics with respect to η. Finally we consider uninformed agents and

the optimal time to acquire the additional signal.

4.1 Cumulative Withdrawals Given q

In our model, the illiquid bank fails at t0 + ζ when aggregate cumulative withdrawals by informed

agents deplete the illiquid bank’s capacity κL. Two groups of informed agents withdraw from the

illiquid bank. The first group is yL agents with q measure in aggregate per unit of time. Therefore,

as the mass of newly informed agents is βe−β(ti−t0)dti, at t0 + ζ total withdrawals by yL agents are

q

∫ t0+ζ

t0
βe−β(ti−t0)dti = q

(
1 − e−βζ

)
. (18)

Agents with yM signals wait for τw, and at t0 + ζ their total withdrawals are

(1 − q)
∫ t0+ζ−τw

t0
βe−β(ti−t0)dti = (1 − q)

(
1 − e−β(ζ−τw)

)
. (19)

Figure 3 depicts the cumulative withdrawal patterns for both banks. For illiquid banks, yL

agents begin to withdraw right after the liquidity event t0 as the rumor starts spreading. At t0 +τw

agents with yM signals join the force of withdrawals, until eventually cumulative withdrawals reach
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κL at t0+ζ. The endogenous signal acquisition leads to an endogenous aggregate withdrawal speed.

For liquid banks, things are different. No agent withdraws immediately after t0, but yM agents

start withdrawing at t0 + τw. At t0 + ζ those early informed yM agents realize the bank is liquid

and start redepositing, which makes net aggregate withdrawals decrease over time. In this range,

interestingly, at the same time late informed agents are withdrawing, early informed agents who

learned that the bank is liquid begin redepositing. The intriguing empirical pattern of simultaneous

withdrawing-depositing is unique to our model with rumor-based bank runs, and we wait for future

empirical work to test this implication.

4.2 Bank Run Equilibrium Given q

4.2.1 Two-step Procedure

Define τr ≡ ζ − τw as the bank’s remaining survival time when yM agents decide to stay out of the

bank. The bank run equilibrium given q is determined in a straight-forward two-step procedure.

We first look at the individual optimality condition for agent yM . Define G (τr) ≡ g (ζ − τr), i.e.,

replace ζ − τ by τr in (15); then (16) implies that the equilibrium redepositing time τ∗
r must satisfy

G (τ∗
r ) =

(λ (1 − γ) − r) eλτ∗
r p0 − (1 − p0)

(
eλη − 1

)
r(r−kδ)

δ−r e−δτ∗
r + r

(
1 − eλη (1 − p0)

)
(1 − p0) (eλη − 1) + (eλτ∗

r − 1) p0
= 0. (20)

One important observation emerges. In (20), the equilibrium remaining survival time τ∗
r is

uniquely determined, independent of the other endogenous variables q or ζ. This is because in the

agent’s first-order condition in (15) regarding optimal withdrawal, both the hazard rate h (τw) in

(6) and the continuation value V̂O (τw) in (14) only depend on τr = ζ − τw.

Once we pin down τ∗
r from the individual optimality condition (20), the equilibrium survival

time ζ∗ follows from the aggregate withdrawal condition. Combing the withdrawal of yL agents

(18) and that of yM agents (19), the illiquid bank fails when

κL = q
(
1 − e−βζ

)
+ (1 − q)

(
1 − e−βτr

)
, (21)
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which gives the equilibrium survival time ζ∗ as

ζ∗ = − 1
β

log

⎡⎣1 −
κL − (1 − q)

(
1 − e−βτ∗

r

)
q

⎤⎦ . (22)

Before we move on, we show that ζ∗ ≤ η, i.e. the illiquid bank fails before the rumor stops

spreading. In fact, when we wrote down the aggregate failure condition (18), we implicitly assumed

at the failure time t0 + ζ∗ there are still newly informed yL agents withdrawing, which exactly

requires that the illiquid bank fails before the rumor stops spreading, i.e., ζ∗ ≤ η. We have the

following lemma.

Lemma 1. Generically, for the bank run equilibrium to exist, we must have ζ∗ ≤ η, and yL agents

must withdraw immediately upon hearing the rumor.

We provide intuition for why ζ∗ ≤ η holds generically. The yM agent’s individual optimality

condition in (20) pins down the equilibrium remaining survival time τ∗
r based on model primitives.

However, from (21), τ∗
r = ζ∗ − τw also determines the cumulative withdrawals of yM agents from

the illiquid bank. Hence an extra degree of freedom is needed to ensure the consistency of both

equilibrium conditions. Interestingly, the degree of freedom comes from the presence of yL agents

who withdraw immediately after hearing the rumor and are still withdrawing when the bank fails,

as we in detail in the next subsection.16 A similar argument implies that generically for the bank

run equilibrium to exist, yL agents must withdraw immediately upon hearing the rumor.

4.2.2 Equilibrium Mechanism

Based on the aggregate bank failure condition, we can determine natural bounds for equilibrium

remaining survival time τ∗
r . When yM agents withdraw immediately after hearing the rumor τw = 0,

the remaining survival time ζ −τw will assume its upper bound value (the second inequality is from

(8)):

τu
r =

1
β

ln
1

1 − κL
< η.

16In (21), because the required yM withdrawal is the gap between the capacity κL and the cumulative yL withdrawal
q
(
1 − e−βζ

)
, we can find a ζ such that yM agents’ individual incentives coincide with the required aggregate yM

withdrawal.
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On the other hand, ζ ≤ η in Lemma 1 gives the lower bound of τ∗
r :

τ l
r =

1
β

ln
( 1 − q

1 − κL − qe−βη

)
.

Parameter condition (9) implies τ l
r > 0, so that yM withdrawals contribute to the bank’s failure.

We have the following key proposition.

Proposition 4. Given information acquisition effort q, the equilibrium is characterized as follows:

1. If G
(
τ l

r

)
≤ 0, then there does not exist a bank run equilibrium.

2. If G (τu
r ) ≥ 0, then the unique bank run equilibrium is τ∗

r = ζ∗ = τu
r and τ∗

w = 0, i.e. yM

agents do not wait.

3. Otherwise, we must have G (τu
r ) < 0 and G

(
τ l

r

)
> 0, and there exists a unique bank run

equilibrium τ∗
r ∈

(
τ l

r, τu
r

)
so that G (τ∗

r ) = 0, and

ζ∗ = ζ (τ∗
r ) =

1
β

ln
[

q

1 − κL − (1 − q) e−βτ∗
r

]
,

and τ∗
w = ζ (τ∗

r ) − τ∗
r > 0 so that yM agents wait to withdraw. The equilibrium is stable.

The economic mechanism that pins down the equilibrium is as follows. Focus on yM agents and

recall that G (τr) in (20) gives the sign of marginal cost minus the marginal benefit of waiting a

bit longer. For illustration, start with the hypothetical equilibrium where all yM agents withdraw

immediately (i.e., τw = 0); then the remaining survival time τr = ζ − τw takes its upper bound

τu
r (one can see it graphically by setting τw = 0 in the left panel of Figure 3). The condition

G (τu
r ) < 0 implies that this conjectured equilibrium with immediate withdrawal is not incentive

compatible individually: Because the marginal benefit of waiting exceeds the marginal cost, each

yM agent would like to postpone his withdrawal.

Once yM agents decide to wait τw > 0, there are more yL agents withdrawing before yM

agents. Then bank failure requires less cumulative mass of withdrawing yM agents and hence a

lower remaining survival time τr = ζ − τw (check (21), and graphically the left panel of Figure

3). From (6), the more imminent failure gives rise to a higher failure hazard rate, pushing up

the marginal cost of waiting. In the extreme, consider the equilibrium candidate where yM agents

wait sufficiently long, and the remaining survival time attains the lower bound τr = τ l
r. Then the
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condition G
(
τ l

r

)
> 0 implies this conjectured equilibrium is not incentive compatible either, as

each individual yM agent now wants to withdraw a bit earlier.

Combining these two results, we can find some intermediate withdrawal time τ∗
w with G (τ∗

r = ζ∗ − τ∗
w) =

0 to satisfy the individual optimality condition, which corresponds to the case 3 in Proposition 4.

4.3 Endogenous Information Acquisition

Given the bank run equilibrium characterized in Proposition 4, we first characterize the individual

agent’s optimal information acquisition condition. Because information quality q also affects the

bank run equilibrium, this intricate feedback effect between bank runs and information acquisition

may lead to multiple equilibria.

4.3.1 The First-Order Condition of Information Acquisition

Recall that by setting q, we have Pr {y = yL|ti} = qp (ti|ti) , Pr {y = yM |ti} = 1−q, and Pr {y = yH |ti} =

q (1 − p (ti|ti)), while the information cost is χ (q) = α
2 q2. When agent ti hears the rumor, he will

take the equilibrium survival time ζ∗ as given and spend effort to maximize:

v (q) = Pr {y = yL|ti} VI (0|yL) + Pr {y = yM |ti} VI (0|yM ) + Pr {y = yH |ti} VI (0|yH) − χ (q)

= qp (ti|ti) + q (1 − p (ti|ti))
δ

δ − r
+ (1 − q) VI (0|yM ) − χ (q) ,

where we have used the result in Proposition 3. We are implicitly considering the bank run equi-

librium here, so that yL agents find immediate withdrawal optimal.

Taking the first order condition for v (q) with respect to q, the optimal q∗ satisfies (recall

parameter restriction (9))17

p (ti|ti) + (1 − p (ti|ti))
δ

δ − r︸ ︷︷ ︸
E[VI(0)|informative signal]

− VI (0|yM )︸ ︷︷ ︸
E[VI(0)|uninformative signal]

− αq∗ � 0, with equality if q∗ <
κL

1 − e−βη

(23)

This expression is intuitive. Raising q increases (lowers) the probability of (un)informative signals,
17The fact that we are focusing on bank run equilibria and that the agent with yL finds immediate withdrawal to

be optimal imply that in (23) q∗ cannot bind at zero, as the Blackwell information theorem implies that p (ti|ti) +
(1 − p (ti|ti)) δ

δ−r
− VI (0|yM ) > 0 always, i.e., information has positive value as it improves the agent’s decision. On

the other hand, the no run equilibrium must have q∗ = 0 and is analyzed in Section 4.3.2.
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but costs more. Combining with the dependence of ζ∗ on q∗ in Proposition 4 and the individual

agent’s optimal information acquisition condition (23), we can solve for the endogenous information

acquisition q∗ and survival time ζ∗ simultaneously.

4.3.2 Run and No-Run Equilibria

We show that with endogenous information acquisition, in general multiple equilibria emerge. First,

we check whether q∗ = 0 is an equilibrium. Since the marginal cost of acquiring information is zero,

in order for q∗ = 0 to hold in equilibrium, it must be that there is no bank run.18 Of course, no

bank run is also sufficient for not acquiring additional information q∗ = 0. According to Proposition

4, the condition for existence of a no run equilibrium in this case is

G
(
τ l

r (q)
)

|q=0 ≤ 0. (24)

When (24) fails, i.e., a bank run occurs even fixing q = 0 exogenously, then bank runs with positive

information acquisition must exist. The next lemma summarizes this result.

Lemma 2. Condition (24) is a necessary and sufficient condition for the existence of an equilibrium

where no bank run occurs (and therefore q∗ = 0). If (24) fails, there exist bank run equilibria with

positive information acquisition q∗ > 0.

The above lemma only provides sufficient conditions for the existence of bank run equilibria.

Specifically, bank run equilibria (with q∗ > 0) could exist even when (24) holds. Intuitively,

although no-run-no-acquisition is an equilibrium, run-acquisition might also be an equilibrium.

Once other agents raise the equilibrium q∗ above zero, a bank run is possible, and this makes

individual information acquisition self-enforcing.

In general, even among the class of bank run equilibria with positive endogenous information

acquisition, multiplicity may occur. The next lemma shows that under certain sufficient conditions

provided in the Appendix A.7, we will have at most one such equilibrium. Essentially, this condition,

by guaranteeing that at the equilibrium q∗ > 0 the marginal benefit of information acquisition has

to go below the marginal cost for q slightly above q∗, implies that the resulting equilibrium (if exist)
18Otherwise, with bank run, immediate withdrawal with yL signals implies a positive value for the signal. See

related argument in footnote 17.
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must be unique.

Lemma 3. Under condition (30) provided in the Appendix A.7, the bank-run equilibrium with

positive endogenous information acquisition, if one exists, is unique.

The next proposition follows from the two above lemmas.

Proposition 5. Suppose that condition (30) in Lemma 3 holds.

1. If the condition (24) holds, we have at most one bank run equilibrium with information

acquisition so that q∗ > 0 and ζ∗ ≤ η, and there is always a no-run equilibrium with q∗ = 0.

2. If the condition (24) fails, then we have a unique bank run equilibrium equilibrium with

q∗ > 0 and and ζ∗ ≤ η.

From now on, to facilitate analysis, we focus on case 1 of Proposition 5, i.e., we have at most

two equilibria: one equilibrium where agents do not acquire information and also do not run, and

a second equilibrium characterized by Proposition 4 where agents acquire information aggressively

and run on the illiquid bank. In particular, we will be interested in parameters that eliminate the

bank run equilibrium.

4.4 Model Implications

The following analysis focuses on the run equilibrium with endogenous information acquisition. We

first study the minimum reserve that eliminates rumor-based bank runs; then we show that sequen-

tial learning in our model generates intriguing comparative statics with respect to the awareness

window.

4.4.1 Minimum Reserve and Deposit Insurance that Eliminate Bank Runs

In Proposition 5 we have shown that similar to the static Diamond and Dybvig setting, generally

in our model there are two equilibria: one equilibrium without learning and no bank runs, and the

other with active learning and bank runs. However, the dynamic run equilibrium derived in our

setting has a qualitatively different nature relative to the one in the static setting. This section

explores this difference by focusing on the policy implications of how to eliminate the bank run

equilibrium.
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Figure 4: Minimal Capacity Required to Eliminate Runs
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The solid line is the minimal illiquid bank capacity κL that eliminates the bank run equilibrium as a function
of the recovery rate in case of failure γ. The dashed line is the potential mass of informed agents as in (8).
Bank runs can occur only in the dark region. The dotted line shows the threshold that applies if agents
ignore the redepositing option and therefore run sooner. Parameter values are r = 0.09, β = 1, θ = 1.03,
η = 2, p0 = 0.8, δ = 0.12, k = 10−6, α = 0.7.

Unlike the typical static setting where runs occur if bank reserves are below all potential with-

drawals, our rich dynamic setting with endogenous learning gives a non-trivial reserve threshold

that eliminates the run equilibrium. In other words, due to uncertainty about the bank illiquidity

and other depositors’ withdrawal timings, the minimum reserve requirement to fence off the bank

run equilibrium in our model might be far below the level that is sufficient to cover all potential

withdrawals. The same applies to deposit insurance: in our model, to eliminate runs, we only

require a sufficiently high, but not full, deposit insurance.

In Figure 4, we plot the minimum reserve level κL and minimum recovery rate γ so that the

bank run equilibrium does not exist. We plot the threshold κL as a function of γ. Intuitively,

when depositors expect to recover more of their deposit in case of failure (larger γ) the bank is less

susceptible to runs. We can interpret γ as the level of deposit insurance. The figure reveals that in

our dynamic setting, bank runs can be prevented even with partial deposit insurance (γ < 1).

The figure further shows that the minimal liquidity level to eliminate the run is much lower

than the potential mass of informed agents. From the view of static Diamond and Dybvig runs,

the potential mass of informed agents is the relevant liquidity reserve required to eliminate runs.

However, due to the asynchronous nature of our rumor-based setting, even without information

acquisition, immediate withdrawal after hearing the rumor might not be an equilibrium since the
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bank survives for a while. Thus, eliminating dynamic rumor-based runs requires much less liquidity

reserve than the one suggested by the static perspective.

Importantly, Figure 4 reveals that the redepositing option in (16) substantially reduces the

minimal liquid holdings that eliminate runs. The dotted line gives the threshold that applies

if agents ignore the redepositing option and therefore run sooner.19 Intuitively, the option to

redeposit funds and grow them in a bank revealed to be liquid leads to an additional incentive to

stay deposited for interest gains, and thus a lower minimal liquid reserve to eliminate runs.

Clearly, for the model to generate quantitatively meaningful policy recommendations on banks’

capital reserve requirement, one needs reasonable parameters to begin with. As a first step toward

this goal, our stylized model falls short on this dimension. However, though beyond the scope of

the current paper, given the right data, a calibration (or estimation) of our model can certainly

achieve this more ambitious goal.

To the best of our knowledge, no existing studies generate a result similar to the minimum

liquidity reserve in Figure 4 based on static bank run models. While it may be possible to do

so using the global games technique (e.g. Goldstein and Pauzner, 2005), the mechanism will

be drastically different. To illustrate this point, note that the minimum liquidity reserve can be

interpreted as liquid short-term assets held by the bank in the Diamond and Dybvig framework.

Clearly, the portfolio share of liquid assets affects each individual depositor’s payoff through some

specific transformation technology between the liquid short-term asset and illiquid long-term asset.

This effect shows up in both static and dynamic settings. However, there is one extra effect unique

to the dynamic setting with learning. In the static bank run setting, withdrawals occur immediately.

In contrast, in the dynamic model considered here with gradual withdrawal, a greater share of liquid

holding also implies that it takes longer to run down the bank. Hence, through the endogenous

learning channel, an increase in liquidity can reduce the hazard rate of failure and cause agents to

wait longer. If we increase liquidity just enough to make the last agent whose withdrawal exhausts

the liquid reserve to wait long enough, the bank run is averted. This practically relevant mechanism

depends on both the dynamic nature of the withdrawal timing and the endogenous learning about

a possible bank failure.20

19The hypothetical threshold is obtained by simply setting transaction costs k = r
δ
, which only applies when

redepositing, uttering the redepositing option worthless (see (16)).
20In our analysis we do not consider the situation where uninformed agents run on the bank. Although Section
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Figure 5: Rumor Spreading Rate β and Awareness Window η

0.995 1.000 1.005
Β

1.75

1.80

1.85

Ζ � � Β�

1.995 2.000 2.005
Η

1.70

1.75

1.80

1.85

1.90

1.95

2.00
Ζ � � Η �

Solid lines show the equilibrium survival time of the illiquid bank ζ∗ as a function of the rumor spreading
rate β and the length of the awareness window η. Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2,
p0 = 0.8, δ = 0.12, k = 10−6, κL = 0.65, α = 0.7, γ = 0.75.

4.4.2 Rumor Spreading Rate β and Awareness Window η

When the rumor spreading rate β increases, all else equal, the illiquid bank will fail faster. This

effect is illustrated in Figure 5. In response, each individual agent acquires more information, and

the illiquid bank fails even faster. The feedback effects as discussed before are also present here,

and this result is intuitive.

Relative to Abreu and Brunnermeier (2003), our model decouples the rumor spreading rate from

the awareness window. When we turn to the effect of the awareness window η on the equilibrium

survival time ζ∗ and information precision q∗, a surprising result emerges. When η increases so

that everybody knows that potentially there will be more informed agents attacking the bank, each

individual agent acquires information less aggressively and the illiquid bank survives longer.

This surprising result not only comes from our decoupling of these two effects, but also relies

on the novel uncertainty structure that we introduce in this framework. One can see the intuition

4.5.2 verifies that it is optimal for uninformed agents not to run given our rumor-based bank run equilibrium, the
assumption κ̃ < 1 implies that, as in Diamond and Dybvig, everybody runs on the bank (and thus the bank fails
immediately) is also an equilibrium. Our paper focuses on the rumor-based bank run equilibrium because it is more
appealing from a practical perspective; after all, nobody talks about runs when the banking system is healthy. To
formally model this feature, one needs something similar to the upper dominance region in global games. For instance,
we can imagine that the bank is super-liquid so that κ is above 1 before the liquidity event (e.g., even if all depositors
withdraw, the bank asset is sufficiently liquid so that equity holders receive positive value in the surviving bank), and
hence not running at t = 0 is the strictly dominant strategy. Then one actually can rule out one class of pure-strategy
run equilibria where everybody coordinates to run on the bank at some exogenous time tRun > 0 (suppose it exists;
then since each depositor would like to preempt by running a bit earlier at tRun − ε, it can only be that tRun = 0; but
at that time everybody knows the bank being super-liquid). We leave further analysis on other classes of equilibria
for future research.
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by investigating the posterior probability that the bank is illiquid upon hearing the rumor and

observing that the bank is still alive:

p (ti|ti) =
Pr {illiquid bank survives at ti|κL, ti} Pr {κL}

Pr {illiquid bank survives at ti|κL, ti} Pr (κL) + Pr {κH} =
eλζ−1
eλη−1p0

eλζ−1
eλη−1p0 + 1 − p0

(25)

When η is large, t0 ∈ [ti − η, ti] could occur a long time ago, and the probability

Pr {illiquid bank survives at ti|κL, ti} =
eλζ − 1
eλη − 1

is lower. Consequently, conditional on the bank being alive at ti, the bank is more likely to be

liquid. Without uncertainty (p0 = 0 or 1), p (ti|ti) does not depend on the awareness window η.

This result differs from the casual intuition that runs are more severe with more prone-to-run

agents, with the premise that bank failure requires a sufficient mass of running depositors. However,

our result shows that when cumulative informed agents are enough to run down the bank, artificially

shortening the awareness window will gives rise to a novel information effect with the exact opposite

direction in a dynamic setting.21

A Short Awareness Window Example: Subprime Mortgage Crisis On May 17, 2007

Fed Chairman Bernanke indicated in a speech about the subprime mortgage market that looser

lending standards were pervasive especially in loans originated in 2006 (Bernanke, 2007). The

speech took place at a time when low teaser rates on many adjustable-rate mortgages were set to

expire, suggesting that the rise in defaults was just the tip of an iceberg. Subsequently, asset-backed

commercial paper (ABCP) conduits experienced the modern-day equivalent of a bank run as ABCP

outstanding dropped from $1.3 trillion in July 2007 to $833 billion in December 2007 (Acharya,

Schnabl, and Suarez, forthcoming).

One interpretation within our model of this speech is that it signaled that the awareness window

was relatively short, in which case there was not much to learn from the survival of ABCP conduits
21Hellwig and Veldkamp (2009) show that information acquisition exhibits complementarity if and only if the actions

are complementary. In our model, although running on the bank is complementary, sequential information acquisitions
do not necessarily exhibit complementarity. In fact, (25) implies substitutability in information acquisition among
depositors. When other depositors acquire more information, the equilibrium survival time ζ∗ is shorter. Then, upon
hearing the rumor, the mere survival of the bank conveys more information about the bank’s liquidity, and hence
informed agents perceive the bank to be stronger. Substitutability naturally arises because this effect discourages
each individual depositor’s motivation for information acquisition.
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up to that point in time. Suppose that instead, the analysis revealed that looser lending standards

were pervasive in loans originated since 2003. In that case, information about the resulting weakness

must have been spreading for a long time. Having observed that the ABCP market kept growing

despite this fact, investors would conclude that the probability of the system being liquid enough

is high and a run might not occur.

4.5 Other Theoretic Issues

In this subsection we tie some theoretic loose ends. Readers may wish to skip to the policy discussion

in Section 5 and revisit this part later.

4.5.1 Minimum Threshold of κH to Eliminate Runs on the Liquid Bank

Thus far we have assumed that κH , though below 1, is sufficiently high that rumor-based bank

runs do not occur for the liquid bank with κ̃ = κH (and hence staying in the bank is optimal given

a yH signal by revealing the bank being liquid). Motivated by Section 4.4.1 where a sufficiently

high κL < 1 eliminates runs on illiquid banks, we provide a brief analysis for how to determine an

upper bound of the threshold liquidity reserve κH that eliminates runs on a liquid bank.

Our information structure in Figure 2 implies that the agent with yH knows the bank is liquid

for sure. More importantly, the agent knows that he is among the q fraction of yH agents, and there

are 1 − q fraction of informed agents with medium signals yM . We are interested in the equilibrium

behavior of yH agents who endogenously wait a while to withdraw, by holding the belief that

1 − q fraction of yM agents withdraw immediately upon hearing the rumor. Thus, yH agents face

a tradeoff similar to (16). This harshest belief regarding yM agents allows us to determine the

upper bound of the κH threshold that rules out runs by yH agents. Interestingly, this is in the

same nature as the equilibrium for the illiquid bank studied in the main model, where yL agents

withdraw immediately while yM agents wait for a while; and hence the same algorithm applies.22

Under our baseline parameters given in Figure 3, the upper bound on the κH threshold required

to eliminate runs on liquid bank is 0.82.
22More specifically, when the liquid bank reserve κH increases, the waiting benefit of yH agents increases and they

wish to wait longer. Once the resulting failure time ζ exceeds the awareness window η, the similar logic as in Lemma
1 and Proposition 4 implies that yH agents will not run in equilibrium. Here, the implicit assumption is that 1 − q
measure of yM agents are not enough to take down the bank.
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4.5.2 What about Uninformed Agents?

Uninformed agents play no role in our analysis of rumor-based bank runs. So far, we have assumed

that (fully rational) uninformed agents remain fully deposited before they hear the rumor. We now

provide justification for the optimality of this strategy.23

Uninformed learning is more complicated because, in addition to the failure hazard rate, they

must keep updating the rumor arrival rate, i.e. the probability of hearing the rumor in the next

instant given that no failure and no rumor have arrived. The rumor arrival rate initially increases,

and converges to a positive constant as the absolute time t grows large.24 The rumor arrival rate

plays a minor role in the withdrawal decision; the reason is that it does not matter much whether

an agent hears the rumor inside or outside the bank, up to small transaction costs.

The failure hazard rate from the perspective of uninformed agents, on the other hand, is po-

tentially important even when transaction costs vanish. Unlike the rumor arrival rate, the failure

hazard rate converges to zero as t → ∞. The usual time homogeneity property of exponentials

requires one to condition on the event not happening before time t. This is not the case for our

uninformed agents. As time passes and they observe no failure and no rumor, uninformed agents

attach a higher and higher probability to the event that t̃0 already happened (and they missed the

rumor), but the bank is liquid so no failure occurs.

Similar to the analysis for informed agents in (15), an uninformed agent will keep their deposits

inside the bank from time t going forward if the following holds:

hU (s) (1 − γ) ≤ rUI (s) for s ≥ t, (26)

where hU (s) and UI (s) are the conditional failure hazard rate and the value of a dollar inside the

bank from the uninformed agent’s perspective. Since in the limit the failure hazard rate decreases

to zero, while the right hand side UI (s) > p0γ + (1 − p0) δ
δ−r ,25 condition (26) must hold for any

23For brevity, we provide only intuition for this behavior, though a formal analysis is available upon request.
24The convergence to a positive constant when t → ∞ is because becoming informed requires the liquidity event

to have hit, and agents are conditioning on no failure (t̃0 > t − ζ). Thus, the conditional distribution for t̃0 remains
fixed, which results in a positive rumor arrival rate even when t grows large.

25The value UI (s) is determined under the optimal continuation strategy that always stay inside the bank, and
follows optimal strategy as an informed agent once hearing the rumor. The lower bound p0γ +(1 − p0) δ

δ−r
is achieved

under the simple strategy of never withdrawing from the bank (and the illiquid bank fails immediately). This is a
lower bound because at any later time, the posterior bank illiquidity probability where agents condition on no failure
is weakly lower than their prior p0 (the formal proof is available upon request).
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t such that 0 ≤ tf ≤ t < ∞, for some finite tf . In fact, for the parameters chosen to illustrate

our results, the maximum hazard rate is low enough so that tf = 0, i.e. it is always optimal for

uninformed agents to remain fully deposited.

4.5.3 Optimal Time to Acquire the Additional Signal(s)

We have so far assumed agents acquire the additional signal ỹ immediately upon hearing the rumor.

Although early information allows for a superior action, there is an option value derived from waiting

to acquire the signal later: the agent learns from the passage of time that the bank is more likely

to be liquid, and there is a probability the bank would fail (thus making the additional signal

unnecessary). Proposition 6 in Appendix A.9 provides a sufficient condition for the optimality of

acquiring information immediately. Intuitively, it suffices that the information acquisition cost (α)

is low enough relative to the net benefit of delaying this expense. Under this condition, endogenous

timing of information acquisition results in the same equilibrium behavior as we assumed before.

We could also allow agents to acquire signals more than once. But if we impose, as one should,

a small fixed cost of acquiring information, we get in equilibrium a finite number of such purchases.

After these, the population is fully described by the same three types (yL, yM , yH) as in the main

text. Thus, the bank run equilibrium structure remains qualitatively the same.

5 Extensions and Policy Analysis

We study two extensions of our base model. In Section 5.1 we introduce fundamentally insolvent

banks, so that it is also socially efficient for individual agents to acquire information and run

on insolvent banks. Section 5.2 then considers a two-bank economy where competition amplifies

the individual agent’s socially wasteful information production. For both extensions we discuss

government policy during the recent crisis.

5.1 Insolvent Banks and Stress Tests

Thus far we have focused on runs on fundamentally solvent but potentially illiquid banks, where

information is socially “bad.” Of course, in practice information may be “good” because of the

presence of fundamentally insolvent banks so that runs on them are socially efficient. To address
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this issue, we introduce insolvency into our model. We then argue that through stress tests the

planner may mitigate running on fundamentally solvent banks by helping individual agents spot

insolvent banks more easily.

5.1.1 Solvency signal versus liquidity signal

Suppose that at the liquidity event time t0, the bank might become insolvent, which randomly fails

(rather than matures) with intensity ξ > r. In this event deposits recover 0 for each dollar, and

therefore ξ > r implies that the bank is indeed insolvent. Of course the bank can also be solvent,

and if so it can be either liquid or illiquid as we modeled before.

Naturally, there will be two layers of information. The first layer of information is regarding

the bank’s solvency which is both socially and individually valuable. The second is information

regarding the bank’s liquidity condition, which is individually valuable but socially destructive

when agents realize that runs on the illiquid bank become a concern. We will stress that although

these two layers of information are different, they are inevitably related when individual agents are

acquiring them. As shown shortly, this way we connect individuals’ liquidity information choice to

the active information collection about bank solvency.

Now when agent ti hears the rumor, the possibility of insolvency motivates him to spend a

fixed amount of effort e > 0 to obtain a signal 1z ∈ {0, 1}; for simplicity, this signal 1z perfectly

reveals whether the bank is solvent or not.26 We focus on situations where, in equilibrium, the

agent always finds it optimal to acquire this solvency signal (which is guaranteed by a sufficiently

high default intensity ξ). Therefore, conditional on the bank being insolvent, all agents who hear

the rumor know that the bank is insolvent and therefore run on the bank immediately, and the

acquisition of solvency information is socially optimal.

A by-product of the agent’s private learning about bank solvency is that he also learns something

about the liquidity of the bank. We assume that given the effort e of figuring out whether the bank is

insolvent, if the bank turns out to be solvent, then the baseline quality of the bank’s liquidity signal

y—which is the signal we modeled in Section 2.1.4—is just e. As a result, the agent’s additional

liquidity information precision choice is q ≥ e with acquisition cost α
2 (q − e)2. The interpretation is

that the process of collecting insolvency information inevitably teaches the agent something about
26This assumption is innocuous and clarifies the economic channel. See detailed discussion in footnote 27.
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bank liquidity. The more the agent collects insolvency information, the more he knows about the

bank’s liquidity. Our modeling that the effort of collecting insolvency information (i.e., e) becomes

the baseline quality of liquidity information captures this idea in the simplest way.

5.1.2 Policy Implication: Stress Tests

The above setting has important implications for stress tests in revealing the fundamentally prob-

lematic banks. By providing insolvency information alone, the government can use stress tests to

reduce e to eliminate runs on solvent-but-illiquid banks. According to our model, if a great effort

is required to learn about insolvent banks (say Lehman), i.e., a higher e, then each agent will

be automatically endowed with significant information about the liquidity of solvent banks (say

Citibank). As a result, runs on solvent banks may start, which pushes each agent to acquire even

more liquidity information.

Stress tests provide transparency on potentially insolvent banks (Bernanke, 2009), and therefore

reduce e. Government, by providing higher quality information about banks’ insolvency, can crowd

out private acquisition of insolvency information. Because public information can be better targeted

at insolvency alone, while the process of private acquisition of solvency information inevitably

reveals liquidity information, public provision of solvency information helps all agents know that

other agents do not have superior information regarding banks liquidity situation. Therefore, our

model suggests that the public provision of insolvency information indirectly reduces the socially

wasteful information acquisition regarding liquidity, and therefore make runs on illiquid banks less

likely.

The perfect revelation of insolvent bank clarifies the channel that we are emphasizing. Releasing

better solvency information helps illiquid banks, but it is not through a higher average bank quality

once the stress test isolates those insolvent ones.27 Rather, the channel is through the strategic

interaction of individual agents as now everybody knows that everybody will wait to see the stress

test and therefore not scramble to search the insolvent banks. As a result everybody will have less
27When the planner varies e, agents can always perfectly spot insolvent banks, therefore the channel of insolvency

information is shut down. In fact, our model can handle the case that insolvent banks are imperfectly revealed. As
shown in Lemma 1, in our model generically a bank run equilibrium exists only when yL agents withdraw immediately,
and the equilibrium analysis is identical if we instead assume that agents cannot perfectly tell insolvent banks from
illiquid ones (so they will withdraw immediately once receiving yL signal or 1z = 1). However, under this alternative
assumption, it is quite obvious that better solvency information helps illiquid banks since it allows individual agents
to tell them apart from insolvent ones.
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Figure 6: Minimal Capacity and Information Collection Effort Required to Eliminate Runs
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We plot the minimal illiquid bank capacity κL that eliminates the bank run equilibrium as a function of the
solvency information collection effort e. Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, p0 = 0.8,
δ = 0.12, k = 10−6, α = 0.7, γ = 0.75.

precise information on which solvent bank is less liquid and susceptible to a run.

This view is consistent with the Federal Reserve Board’s recent break from the traditional

supervisory view of opaqueness in favor of more public disclosure to restore the confidence of

investors. However, our rationale is different than the one described by Bernanke (2010) who

argues that transparency allows for scrutiny by outside analysts, which enhances the credibility

of the tests. Instead, we argue that by providing more information, the government crowds out

the information collection effort by individuals about the solvency of the banks. Since liquidity

and solvency are tightly related, this government policy has the useful by-product of reducing

information collection about bank liquidity and therefore reducing the incidence of runs on illiquid

banks.

Figure 6 plots the minimal illiquid bank capacity κL that eliminates the bank run equilibrium

as a function of the information collection effort e. We see from Figure 6 that as the government

provides more information about the solvency of the bank (lower e), less liquid banks (lower κL)

can avoid runs.

5.2 Multiple Solvent Banks and Policy Implications

We now investigate the model with competing solvent banks. Instead of holding cash, a bank run

in this setting involves the transfer of deposited funds from one illiquid bank to other more liquid

36



one.28 Here, the two banks’ difference might be minuscule, and in fact transfers between the two

institutions only involve social losses (transaction fees and bank failure). The planner could inject

noise (about liquidity) into the system, so that individual agents with less informative signals are

more likely to stay in their original bank without knowing which one is the (more) liquid one.

Suppose that there are two banks, ex-ante identical except that half the population deposits

in bank A and half deposits in bank B. Both banks promise the same rate of return r. However,

transferring funds between banks requires a transaction cost k. A liquidity event occurs at a random

time t0, and a rumor starts that exactly one of the banks is illiquid (with κL) while the other is

liquid (with κH). The prior probability that each bank is illiquid is p0 = 0.5 since they are ex-ante

identical. The learning process in the two bank set-up is simpler, because the passage of time

without a failure teaches agents nothing about the relative viability of their bank.

As in the setup above, agents are allowed to acquire a costly signal ỹ ∈ {yL, yM , yH} about

the status of their bank with probability distribution as in (1). Agents who receive the yH signal

know that their bank is the liquid one and therefore never withdraw; agents who receive the yM

signal gain no useful information and staying in their original bank is optimal; and agents with yL

signals run on their bank immediately. 29 Proposition 7 in the Appendix A.10 characterizes the

equilibrium in this setting with two banks.

In this extension, higher information quality q about the liquidity of two solvent banks is socially

undesirable, as it shortens the survival time of the illiquid bank by inducing more agents to realize

one bank strictly dominates the other. Injecting noise can alleviate the problem, and the simplest

interpretation of injecting noise is to raise the information acquisition cost α. Figure 7 plots the

minimal illiquid bank capacity κL that eliminates the bank run equilibrium as a function of the

information cost α for the two bank setup (see Appendix A.10 for details). The injection of noise

into the economy (higher α) blurs the differences between competing solvent banks. The noise

reduces the equilibrium information quality q, and as a result, a run is easier to eliminate and
28Some anecdotal evidence that differences in depositor perception about bank liquidity motivates them to withdraw

from illiquid banks is provided by Sidel, Enrich, and Fitzpatrick (2008): “Melody Williams, 50 years old, said in the
past 30 days she has moved about $25,000 out of Washington Mutual, spreading it to other financial institutions she
thought were stronger, including Wells Fargo & Co. Ms. Williams, the controller for an architecture firm, said she
thought that Washington Mutual had gotten ’too big for their britches’ with too many deals over the years.”

29From the perspective of yL agents, the value of a dollar in their bank falls and the value of a dollar in the
competing bank increases to a riskless δ

δ−r
; as long as the transaction cost k is small enough so that VI (0|yM ) <

(1 − k) V−I (0|yH) = (1 − k) δ
δ−r

, immediate withdraw is optimal. Here, information is (privately) more valuable in
this setup since the outside option is a nearly identical bank rather then holding cash.
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Figure 7: Minimal Capacity and Information Cost Required to Eliminate Runs
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We plot the minimal illiquid bank capacity κL that eliminates the bank run equilibrium as a function of the
information cost α for the two bank setup. Parameter values are r = 0.09, β = 1, θ = 1.03, η = 2, δ = 0.12,
k = 10−6, γ = 0.75.

requires less reserves by the illiquid bank.

Consider the recent financial crisis in 2008. A fear that some banks were insolvent prompted

the Capital Purchase Program commonly known as the bailout of the nine largest U.S. financial

institutions on October 13, 2008. When presenting the program to the CEOs of the 9 banks,

Secretary of Treasury Henry M. Paulson was concerned that the strongest banks (e.g. JPMorgan)

would not participate.30 To make sure they do, government officials suggested that if a bank refused

the funds, its regulator would later force it to raise capital anyway and under worse terms.31 The

government was in fact injecting noise about the liquidity of competing solvent banks into the

economy. By pooling banks together the incentive to transfer funds between them was kept low

enough so that none of the nine banks suffered a run.

6 Conclusion

We study above new dimensions of bank runs, previously unexplored, by focusing on information

acquisition about bank liquidity in rumor-based runs. These dimensions include the spreading rate

of information and the awareness window over which it spreads. We show that individuals acquire
30“I was concerned about Jamie Dimon, because JPMorgan appeared to be in the best shape of the group, and I

wanted to be sure he would accept the capital.” - Paulson (2010)
31“Look, we’re making you an offer,” I said, jumping in. “If you don’t take it and sometime later your regulator

tells you that you are undercapitalized and you have to raise private-sector capital but you are unable to do so, you
may not like the terms if you have to come back to me.” - Paulson (2010)
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information excessively about the liquidity of banks subject to runs, study the minimum liquidity

reserve to eliminate bank runs which is far below that of traditional static bank run models, and

analyze the role government information policy can play in bank run prevention.

Empirically, our model can shed new light on both traditional bank runs and debt runs more

broadly. Our model makes new predictions linking the likelihood of a run to the cost of acquiring

information, the spreading rate of the rumor and its awareness window. It also predicts that for

banks that survive a run, we should observe agents withdraw at the same time earlier informed

agents redeposit. Our model is rich enough for structural estimation or calibration of its parameters

given detailed withdrawals data, which can result in meaningful policy implications.

Finally, the dynamic bank run model we provide above can shed new light on other economic

settings such as arbitrageur behavior, currency attacks, and R&D investment games.
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A Appendix A

A.1 Proof of Proposition 1

We have two cases to consider for the hazard rate. First, suppose ζ > η. Then an agent
informed at ti learns nothing from the fact that the bank has not failed by ti. His distribution of
failure dates ti + τ is

Π (ti + τ |ti) =

⎧⎪⎪⎨⎪⎪⎩
0 τ < ζ − η

p0
eλη−eλ(ζ−τ)

eλη−1 ζ − η ≤ τ < ζ

p0 ζ ≤ τ.

with non-zero density π (ti + τ |ti) = p0
λeλ(ζ−τ)

eλη−1 for ζ − η < τ < ζ. On the other hand, if ζ ≤ η, then
agent ti’s distribution of failure dates ti + τ is

Π (ti + τ |ti) =

⎧⎪⎪⎨⎪⎪⎩
0 τ < 0
p (ti|ti) 1−e−λτ

1−e−λζ 0 ≤ τ < ζ

p (ti|ti) ζ ≤ τ.

non-zero density π (ti + τ |ti) = p (ti|ti) λe−λτ

1−e−λζ for 0 < τ < ζ. Plugging either of the pairs into the
definition of the hazard rate (5) yields after some algebraic manipulation the same expression (6)
for any τ ≥ max {0, ζ − η} and zero elsewhere.

A.2 Proof of Proposition 2

We first establish the following lemma.

Lemma 4. The function g (τ) crosses zero from below at most once in the interval [0, ζ].

Proof: Since it is the change in the numerator that dominates around g (τ) = 0, it suffices to
show that the numerator of g (τ) (ignoring the constant)

(λ (1 − γ) − r) eλ(ζ−τ)p0 − (1 − p0)
(
eλη − 1

) r (r − kδ)
δ − r

e−δ(ζ−τ) (27)

is increasing over the interval [0, ζ]. Furthermore, since λ (1 − γ) − r < λ (1 − γ) − r (1 − k) < 0
from (10), it follows that (27) is concave in τ . Let τ be the unique maximizer. At the maximum

ζ − τ =
1

λ + δ
ln

δ (1 − p0)
(
eλη − 1

)
r(r−kδ)

δ−r

λ (r − λ (1 − γ)) p0
< 0

due to (10). Thus, the function in (27) attains its maximum to the right of ζ and is therefore
increasing over [0, ζ].

42



Lemma 4 implies that if g (ζ) ≤ 0 (g (0) ≥ 0) then g (τ) < 0 (g (τ) ≥ 0) always for τ ∈ [0, ζ].
We next consider the optimal strategy for the three cases of the proposition:

Case 1. If g (ζ) ≤ 0, then it is optimal to stay in the bank always. To prove our claim, it suffices
to show that VI (τ) > VO (τ) for τ ∈ [0, ζ]. Suppose not, then there must exist some τw so that
VI (τw) = VO (τw) and V ′

I (τw) > V ′
O (τw) because VI (ζ) > VO (ζ). From HJB equations, we have

h (τw) (1 − γ) − rVI (τw) = V ′
I (τw) − V ′

O (τw) > 0

However, since VI (τw) ≥ VO (τw) ≥ V̂O (τw) by definition (the first inequality is because there is
no transaction cost to take one dollar out, and the second inequality is because V̂O (τw) may be
derived under suboptimal policy), we have

h (τw) (1 − γ) − rVI (τw) < h (τw) (1 − γ) − rV̂O (τw) = g (τw) ≤ 0,

a contradiction.
Case 2. If g (0) ≥ 0, then it is optimal to withdraw at 0 and redeposit right after ζ. Well, if

g (0) ≥ 0, then g (τ) ≥ 0 always for τ ∈ [0, ζ], and g (ζ) > 0. Using g (ζ) > 0, we first show that
since k is arbitrarily small, there exists some τ̂ close to ζ so that VO (τ̂) = VI (τ̂). To show this, we
show that V ′

O (ζ) − V ′
I (ζ) is strictly below zero when k is arbitrarily small. To see this, from the

HJB equations we know that

V ′
O (ζ) − V ′

I (ζ) = h (ζ) (VO (ζ) − VI (ζ) + γ − 1) + δ (VI (ζ) − VO (ζ)) + rVI (ζ)
= −g (ζ) + (h (ζ) + δ − r) (VO (ζ) − VI (ζ))

The first is strictly negative while the second term converges to zero as k → 0. Therefore, when
k is arbitrary small there exists some ε so that VI (ζ − ε) < VO (ζ − ε). Due to continuity and the
fact that VI (ζ) = VO(ζ)

1−k > VO (ζ), there exists some τ̂ close to ζ so that VI (τ̂) = VO (τ̂). Note that
VO (τ̂) = V̂O (τ̂).
Now to prove that "it is optimal to withdraw at 0 and redeposit right after ζ," we only need to
show that VI (τ) = VO (τ) holds for all τ ∈ [0, τ̂ ] (intuitively, at any point of time a dollar inside the
bank has the value of taking outside, it is always optimal to keep the money outside). Suppose that
this does not hold; since VI (τ) ≥ VO (τ) in general, there must exits some point τw ∈ [0, τ̂ ] so that
VI (τw) = VO (τw) and V ′

I (τw) < V ′
O (τw). Choosing the largest value τw, so that VO (τw) = V̂O (τw)

holds (i.e., the optimal continuation strategy is wait outside the bank until ζ). Similar to the
argument before, we have

h (τw) (1 − γ) − rVO (τw) = V ′
I (τw) − V ′

O (τw) < 0,

but this contradicts the fact that h (τw) (1 − γ) − rVO (τw) = h (τw) (1 − γ) − rV̂O (τw) ≥ 0 since
g (τ) ≥ 0 always.

Case 3. It follows from the Lemma 4 that g (ζ) > 0 and g (0) < 0 imply that there exists
a unique τw ∈ (0, ζ) so that g (τw) = 0, g (τ) > 0 for τ ∈ (τw, ζ) and g (τ) < 0 for τ ∈ (0, τw).
Following the same argument in the second part by replacing 0 with τw, we know that it is optimal
to withdraw at τw and redeposit at ζ+, and VI (τw) = VO (τw) = V̂O (τw). Then to prove our claim
we only need to show that VI (τ) > VO (τ) for τ ∈ (0, τw).
Let H (τ) ≡ VI (τ) − VO (τ) with H (τw) = 0, we need to show that H (τ) > 0 for τ ∈ (0, τw), as
H (τ) = VI (τ) − VO (τ) � 0 in general. First, we show that it is impossible to have H (τ) = 0
uniformly on any interval (τw − Δ, τw) where Δ > 0; if it is true then it must be that VI (τ) =
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VO (τ) = V̂O (τ) on that interval so that

0 = rVI (τ) + h (τ) (γ − VI (τ)) + δ (1 − VI (τ)) + V ′
I (τ)

= rV̂O (τ) + h (τ)
(
γ − V̂O (τ)

)
+ δ

(
1 − V̂O (τ)

)
+ V̂ ′

O (τ)

= rV̂O (τ) − h (τ) (1 − γ) = −g (τ) > 0

where the first equality is (13) and third equality is using the ODE for V̂O (τ) with 0 = h (τ)
(
1 − V̂O (τ)

)
+

δ
(
1 − V̂O (τ)

)
+ V̂ ′

O (τ) . This contradiction implies that we must have VI (τ) > VO (τ) for some τ

close to τw. Now suppose that there exists another point τ1
w < τw so that VI

(
τ1

w

)
= VO

(
τ1

w

)
. Take

τ1
w that is closet to τw so that V ′

I

(
τ1

w

) ≥ V ′
O

(
τ1

w

)
. At τ1

w, VO

(
τ1

w

)
must satisfy the HJB in (18)

(because τ1
w is in the inaction region around the neighborhood, i.e., (1 − k) VI (τ) < VO (τ) for τ

close to τw). Then

0 = rVI

(
τ1

w

)
+ h

(
τ1

w

) (
γ − VI

(
τ1

w

))
+ δ

(
1 − VI

(
τ1

w

))
+ V ′

I

(
τ1

w

)
≥ rVO

(
τ1

w

)
+ h

(
τ1

w

) (
γ − VO

(
τ1

w

))
+ δ

(
1 − VO

(
τ1

w

))
+ V ′

O

(
τ1

w

)
= rVO

(
τ1

w

)
− h

(
τ1

w

)
(1 − γ) ≥ −g

(
τ1

w

)
> 0

where we have used the HJB for VO

(
τ1

w

)
, and the fact that VO

(
τ1

w

) ≥ V̂O

(
τ1

w

)
in general. Again

we get a contradiction with (13).

A.3 Proof of Proposition 3

Given τw simple integration yields

VI (0|yM ) =

⎡⎣ δ(eλη(1−p0)−1)
δ−r

(
1 − e−(δ−r)τw

)
+ δ+λγ

λ+δ−r eλζp0
(
1 − e−(λ+δ−r)τw

)
+e−(δ−r)τw

(
eλη − 1 −

(
eλη − eλ(ζ−τw)

)
p0

)
VO (τw)

⎤⎦
eλη − 1 − eληp0 + eλζp0

Note that h (τw) (1 − γ) = rVO (τw) implies that

(
eλη − 1 −

(
eλη − eλ(ζ−τw)

)
p0

)
VO (τw) =

λ (1 − γ) eλ(ζ−τw)p0

r

where we used the definition of h in (5). Then note that

λ (1 − γ)
r

− δ + λγ

λ + δ − r
=

(λ + δ) (λ (1 − γ) − r)
r (λ + δ − r)

which gives our expression.

A.4 Proof of Lemma 1

Suppose that ζ > η, so that at ζ the cumulative withdrawal from yL agents is q
(
1 − e−βη

)
.
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Then using the aggregate condition (21), we can back out the equilibrium τr for yM agents as

τr = − 1
β

ln

⎛⎝1 −
κL − q

(
1 − e−βη

)
1 − q

⎞⎠ .

However, unless parameters are such that the above τr happens to satisfy G (τr) = 0 which is the
yM agents’ optimal waiting decision, generically this cannot occur.

Now we rule out the case that yL agents wait a positive time τL
w > 0. Clearly, yM agents will

set τM
w > τL

w > 0. Importantly, their respective redepositing times (τM
r and τL

r ) have to satisfy the
individual optimality conditions in the nature of (20), which determine τM

r and τL
r fully. However,

generically these τM
r and τL

r will not satisfy the aggregate withdrawal condition: either both agents
are withdrawing at ζ so that the aggregate withdrawal condition is κL = (1 − q)

(
1 − e−βτM

r

)
+

q
(
1 − e−βτL

r

)
; or at ζ there are no yL agents withdrawing then the aggregate withdrawal condition

is κL = (1 − q)
(
1 − e−βτM

r

)
+ q

(
1 − e−βη

)
.

A.5 Proof of Proposition 4

First note that the G function is the mirror image of individual FOC condition function, i.e.,
G (τr) = g (ζ − τr) , and it shares the same (but opposite) property of g (·) shown in Lemma 4:

Corollary 1. G (τr) crosses zero from above at most once on τr ∈ [0, ζ].

This result implies that the following holds for the three cases of the proposition:
Case 1. If G

(
τ l

r

)
≤ 0, then G (τr) ≤ 0 for all τr ≥ τ l

r. Thus if all other agents strategy is to
redeposit after any τr ≥ τ l

r, it is optimal for the individual agent to deviate and wait a bit longer.
Therefore, ζ∗ → ∞ and no run equilibrium exists.

Case 2. If G (τu
r ) ≥ 0, then G (τr) ≥ 0 for all τr ≤ τu

r . Thus, if all other agents’ strategy is to
withdraw at some interior τr ≤ τu

r , it is optimal for the individual agent to deviate and withdraw
earlier. Therefore, agents withdraw immediately in the only symmetric equilibrium.

Case 3. Finally, if G (τu
r ) < 0 and G

(
τ l

r

)
> 0 then by continuity of G and Corollary 1, there

exists a unique bank run equilibrium τ∗
r ∈

(
τ l

r, τu
r

)
so that G (τ∗

r ) = 0. Plugging into (21) we get
the equilibrium survival time ζ∗ and waiting time τ∗

w. A second implication of Corollary 1 is that
G′ (τ∗

r ) < 0. Therefore the equilibrium is stable.

A.6 Proof of Lemma 2

The proof of the first statement is given in the text. To show the second statement, we need to
show that the agent’s FOC in information acquisition

A (q) ≡ p (ti|ti) + (1 − p (ti|ti))
δ

δ − r
− VI (0|yM ) − αq � 0 with equality if q <

κL

1 − e−βη
,

combined with bank-run equilibrium condition, has a solution. Note that both p (ti|ti) and VI (0|yM )
(given in (25) and Proposition 3) depend on ζ that is determined in Proposition 4 about bank run
equilibrium given q. Now because (24) fails, the bank run equilibrium exists even with exogenously
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given q = 0. From (17) it is optimal to withdraw given yL. The agent’s strategy depends on his
signal, and therefore information has a positive value, i.e. A (0) = p (ti|ti) + (1 − p (ti|ti)) δ

δ−r −
VI (0|yM ) > 0. Now suppose that q takes its upper bound κL

1−e−βη ; if A
(
q = κL

1−e−βη

)
> 0 then

the upper bound information quality and associated bank run equilibrium is just the equilibrium
that we are after. If instead A

(
q = κL

1−e−βη

)
< 0, then an interior equilibrium exists because of the

continuity of A (q).

A.7 Proof of Lemma 3

First, when the bank run equilibrium occurs with corner solution ζ = τu
r = 1

β ln 1
1−κL

, then the
marginal benefit of information MB = p (ti|ti) + (1 − p (ti|ti)) δ

δ−r − VI (0|yM ) is independent of q,
and the equilibrium q∗ equates MC = αq∗ = MB. Therefore the equilibrium is unique and stable
(MB is constant while MC increases with q). Also if q∗ takes the upper bound corner value, the
associated run equilibrium is unique as well. So the rest of proof focus on the case where both the
information quality of equilibrium survival time take interior solutions.

From now on we focus on interior bank run equilibrium. Importantly, this implies that τr

is determined in (20) which only depends on primitives. Therefore we treat τr as a primitive
parameter. The FOC (23) when the agent sets q∗ is⎡⎣ (

eλζ − 1
)

p0 + (1 − p0)
(
eλη − 1

)
δ

δ−r − δ(eλη(1−p0)−1)
δ−r

(
1 − e−(δ−r)τw

)
− δ+λγ

λ+δ−r eλζp0 − e−(δ−r)τw eλτr p0

(
(λ+δ)(λ(1−γ)−r)

r(λ+δ−r)

)
− αq

(
(1 − p0)

(
eλη − 1

)
+

(
eλζ − 1

)
p0

)
⎤⎦

(1 − p0) (eλη − 1) + (eλζ − 1) p0
= 0 (28)

where ζ and τw = ζ − τr depend on q through (22). We have

ζ ′ (q) = τ ′
w (q) =

e−βζ − e−βτr

qβe−βζ
=

1 − eβτw

qβ
< 0.

The derivative at the point where (28) takes zero value yields:

λζ′eλζp0 − δ
(

eλη (1 − p0) − 1
)

e−(δ−r)τw τ ′
w − δ + λγ

λ + δ − r
p0λeλζζ′ + (δ − r) e−(δ−r)τw eλτr p0

( (λ + δ) (λ (1 − γ) − r)
r (λ + δ − r)

)
τ ′

w

− α
(

(1 − p0)
(

eλη − 1
)

+
(

eλζ − 1
)

p0
)

− αqeλζλζ′p0

= λζ′eλζp0

[
λ (1 − γ) − r

λ + δ − r
− αq

]
+ e−(δ−r)(ζ−τr)τ ′

w

[
eλτr p0 (δ − r)

( (λ + δ) (λ (1 − γ) − r)
r (λ + δ − r)

)
− δ

(
eλη (1 − p0) − 1

)]
− α

(
(1 − p0)

(
eλη − 1

)
+
(

eλζ − 1
)

p0
)

= ζ′ (q) e−(δ−r)ζ
[

e(δ−r)τr

[
eλτr p0 (δ − r)

( (λ + δ) (λ (1 − γ) − r)
r (λ + δ − r)

)
− δ

(
eλη (1 − p0) − 1

)]
+ λe(λ+δ−r)ζp0

[
λ (1 − γ) − r

λ + δ − r
− αq

]]
− α

(
(1 − p0)

(
eλη − 1

)
+
(

eλζ − 1
)

p0
)

The second line is clearly negative. If we can ensure that

e(λ+δ−r)τr p0 (δ − r)
(λ + δ) (λ (1 − γ) − r)

r (λ + δ − r)
+ e(δ−r)τr δ

(
1 − eλη (1 − p0)

)
+ λe(λ+δ−r)ζp0

[
λ (1 − γ) − r

λ + δ − r
− αq

]
> 0, (29)

then since ζ ′ (q) < 0, the first line is negative, and as a result the derivative of (28) is always
negative. Therefore, when (28) equals zero, it must go down. Combined with differentiability
of (28), this result rules out multiple solutions, because if there exist, then there must have one
solution with the local slope being nonnegative. Therefore, (28) crosses zero at most once from
above, which implies that the bank run equilibrium, if exists, is unique and stable.
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To finish the argument, we show that the sufficient condition for condition (29) is (note that

eλη (1 − p0) < 1)

e(λ+δ−r)τu
r p0 (δ − r)

(λ + δ) (λ (1 − γ) − r)
r (λ + δ − r)

+ e(δ−r)τd
r δ

(
1 − eλη (1 − p0)

)
(30)

+λe(λ+δ−r)ηp0

[
λ (1 − γ) − r

λ + δ − r
− α

κL

1 − e−βη

]
> 0.

We only need to verify that (29) dominates (30) term by term. The first term is because λ (1 − γ)−
r < 0 (recall (10)) and τr ≤ τu

r ; the second term is because τr ≥ τd
r , and the third term is because

λ (1 − γ) − r < 0, ζ < η, and q∗ < κL

1−e−βη .

A.8 Proof of Proposition 5

Directly follows from Lemma 2 and Lemma 3.

A.9 Optimal Time to Acquire the Additional Signal(s)

Proposition 6. The optimal time to acquire the additional signal ỹ is immediately upon hearing

the rumor if

[δ + h (ζ)]
α

2
κL

1 − e−βη
− r − kδ

δ − r
δ [1 − p (0)] < 0, (31)

and

[δ − r + h (ζ)]
α

2
κL

1 − e−βη
− ((1 − γ) h (0) − rp (0)) < 0. (32)

Proof. Let τy ≡ ty − ti denote the time an agent waits between hearing the rumor and acquiring
the additional signal y. We first show that under condition (31), if 0 ≤ τy ≤ τw then the optimal
τ∗

y = 0. We then show that under condition (32), if τw ≤ τy ≤ ζ then τ∗
y = τw. Finally, we show

that τy = τw is dominated by τy = τw − ε, which implies setting τ∗
y = 0 is everywhere optimal.

First, suppose 0 ≤ τy ≤ τw. Informed agents maximize the value of a deposited dollar at ti:

max
q,τy

v (0; q, τy) =
∫ τy

0
δe−(δ−r)s (1 − Π (s)) ds +

∫ τy

0
γe−(δ−r)sπ (s) ds

+ e−(δ−r)τy (1 − Π (τy)) v (τy; q, τy) .

The marginal benefit of earlier information acquisition time τy dominates the marginal cost if

[δ − r + h (τy)] χ (q) < q ((1 − γ) h (τy) − rp (τy)) for all τy ∈ [0, τw] .
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Condition (31) guarantees this is the case.
Second, suppose τw < τy ≤ ζ. The agent now maximizes:

max
q,τy

v (τw; q, τy) =
∫ τy

τw

δe−δs (1 − Π (s)) ds +
∫ τy

τw

e−δsπ (s) ds

+ e−δτy (1 − Π (τy)) v (τy; q, τy) .

For this case, the marginal benefit of earlier information acquisition time τy dominates if

[δ + h (τy)] χ (q) < q
r − kδ

δ − r
δ [1 − p (τy)] for all τy ∈ [τw, ζ] ,

which is guaranteed by condition (32).
The earlier region dominates if v (τ−

w ; q) ≥ v
(
τ+

w ; q
)
, i.e. if acquiring the signal just before

withdrawing dominates acquiring it just after. Using the fact that VI (τw|yM ) = VO (τw|yM ),
the earlier region dominates if and only if k

[
q (1 − p (τw)) δ

δ−r

]
≥ 0 which is holds under our

assumptions. The intuition is that since the money is inside the bank just before τw, an agent who
withdraws, acquires information, and then redeposits would waste the transaction cost.

A.10 Equilibrium with Multiple Solvent Banks

At the time of hearing the rumor, the value of a dollar in the bank for agents with yL and yH

signals are respectively VI (0|yL) = (1−k)δ
δ−r and VI (0|yH) = δ

δ−r . In order to calculate the value for
agents with the yM signal, note that with probability 1/2 the original bank is the illiquid one, but
the agent can deposit his funds (after the liquidation cost 1 − γ) to the liquid one. As a result, the
value with yM signal is

VI (0|yM ) =
1
2

1
1 − Π (0|κL)

∫ ζ

0

[
δe−(δ−r)s (1 − Π (s|κL)) + e−(δ−r)sπ (s|κL) γ (1 − k)

δ

δ − r

]
ds +

1
2

δ

δ − r

=
1
2

∫ ζ

0

[
δe−(δ−r)s

(
1 − 1 − e−λs

1 − e−λζ

)
+ e−(δ−r)s λe−λs

1 − e−λζ
γ (1 − k)

δ

δ − r

]
ds +

1
2

δ

δ − r

=
1
2

1
1 − e−λζ

∫ ζ

0

[
−e−λζδe−(δ−r)s + δe−(δ−r+λ)s + λγ (1 − k)

δ

δ − r
e−(δ−r+λ)s

]
ds +

1
2

δ

δ − r

=
1
2

1
1 − e−λζ

[
−e−λζ δ

δ − r

(
1 − e−(δ−r)ζ

)
+

δ

δ − r + λ

(
1 − e−(δ−r+λ)ζ

)
+

λγ (1 − k)
δ − r + λ

δ

δ − r

(
1 − e−(δ−r+λ)ζ

)]
+

1
2

δ

δ − r

=
1
2

1
1 − e−λζ

[
−e−λζ δ

δ − r

(
1 − e−(δ−r)ζ

)
+

δ

δ − r + λ

(
1 +

λγ (1 − k)
δ − r

)(
1 − e−(δ−r+λ)ζ

)]
+

1
2

δ

δ − r
.

Proposition 7. Under the two banks setup, the bank run equilibrium {ζ∗, q∗} is determined by the
following two equations:

ζ∗ = − 1
β

ln
(

1 − κL

q∗

)
, and 1

2
(1 − k)

δ

δ − r
+

1
2

δ

δ − r
− VI (0|yM ; ζ∗, q∗) = αq∗.

A bank run equilibrium requires that withdrawals by the yL agents alone can destroy a bank,

i.e. κL < q
(
1 − e−βη

)
.32 The threshold q so that no run would occur is q ≡ κL

1−e−βη . If the planner

32In this two-bank setting we no longer impose the restriction of q ≤ κL

1−e−βη as in condition (9), because now only
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raises α so that the marginal benefit of acquiring information is below its marginal cost, i.e.,

1
2

(1 − k)
δ

δ − r
+

1
2

δ

δ − r
− VI (0|yM ) ≤ αq,

then the illiquid bank is always sufficiently liquid to sustain a run.

B Appendix B

We consider the non-stationary part of the model here. If t0 < η, then some early informed
agents with ti < η knows that t0 ∈ [0, ti], and this truncation implies strategy may be ti-dependent.
However, as shown in Abreu and Brunnermeier (2003), those early agents will be bunching together
to eliminate the non-stationarity. We modify their results to our setting.

Focus on the bank being illiquid. To be precise, follow Abreu and Brunnermeier (2003) in our
model the agents who hears the rumor before ζ − τw = τr will behave as if the agent who hears the
rumor exactly at τr. The strategy of the agent who hears rumor at τr is that, independent of signal
(yL or yM ) he will withdraw at τr + τw = ζ. Moreover, for agents who hear rumor at ti ∈ [τr, ζ],
they take the following strategy. If they receive yL signal then he will withdraw at ζ, while if they
get yM signal then they withdraw at ti + τw. This additional modification is because relative to
Abreu and Brunnermeier (2003) agents may have different signals in our model.

For illustration, suppose that t0 = 0 so the bank should fail at ζ. Recall that there are q measure
of yL signals and 1−q measure of yM signals. Since the information keeps spreading at ζ (recall that
η < ζ) and all agents hears the rumor before ζ will withdraw at ζ, there are q

(
1 − e−βζ

)
measure

of yL agents withdrawing. On the other hand, yM agents who hear the rumor in the interval [0, τr]
are withdrawing at ζ, with a total mass of (1 − q)

(
1 − e−βτr

)
. Therefore, we have

(1 − q)
(
1 − e−βτr

)
+ q

(
1 − e−βζ

)
= κL,

which is exactly (21). A similar argument can be applied to the case of t0 > 0 so that the bank
failure time is t0 + ζ: this is because endogenously there are less agents bunching at the physical
time ζ, so the bank failure time is postponed to t0 + ζ > ζ.

There is one issue that our richer (than Abreu and Brunnermeier (2003)) setting leads to poten-
tial non-stationarity. Although withdraw behavior can be stationary, the endogenous learning about
bank liquidity is non-stationary when η < ζ. In fact, initially when t0 = 0, agents have no other in-
formation so p (ti|ti) = p0 must holds. In stationary state, p (ti|ti) = p̂0 ≡ (eλζ−1)p0

(1−p0)(eλη−1)+(eλζ−1)p0
<

p0. This difference potentially alters the optimal withdraw strategies for agents with different
timings. To resolve this issue, we simply assume that for ti < η, the prior is time-varying

p0 (ti) =

(
eλti − 1

)
p0

[(1 − p0) (eλη − 1) + p0 (eλti − 1)]
,

and one can show that with this specification, the resulting posterior upon hearing the rumor,

yL agents are withdrawing to potentially take down the illiquid bank.
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p (ti|ti), is always p̂0. One can presumably achieve this by a more structural way; for instance,
introduce other shocks so that, conditional on survival and hearing the rumor, the posterior of the
bank being illiquid is always p̂0. Also, we have to fix the signal quality structure the q in (1) is
the same as in the stationary phase. We deem these technical issue non-essential for the economic
questions that we are after in this paper.
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