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1. Introduction

The 20th century provided two important observations on the determinants of

long-run growth. The first observation, which we discuss in Section 2, is that tax

rates are not generally correlated with long-run growth rates. So, are incentives

to invest irrelevant for long-run growth?

The second observation is that countries that drastically reduce private incen-

tives to innovate and invest severely hurt their growth performance. One salient

example is the performance of China between 1949, when communists took over

and abolished property rights, and the introduction of reforms by Deng Xiaop-

ing in 1979. Another prominent example is the performance of India under the

“permit raj” that lasted from 1947 until the reforms introduced by Rajiv Gandhi

and Narasimha Rao in 1984 and 1991, respectively. Interestingly, when these

countries gradually restored modest incentives to invest, growth rates increased

dramatically.1 Here, incentives to invest seem to matter for growth!

There are two standard models consistent with our first observation: the neo-

classical growth model and the Lucas (1988) model. Income taxes or other disin-

centives to investment do not a§ect the steady-state growth rate in both models.

In the neoclassical model, this rate is determined by the pace of exogenous techni-

cal progress.2 In the Lucas (1988) model, the engine of growth is the accumulation

1Ahluwalia (2002) discusses the gradualist approach to reform followed by India. McMillan,
Whalley and Zhu (1989) and McMillan and Naughton (1992) discuss the gradual reforms in-
troduced in China and their impact on productivity. In China and India reforms took place
in a environment of political and institutional stability. In contrast, countries from the ex-
Soviet block generally adopted a big-bang approach to reform that created substantial political
and institutional turmoil that was generally associated with poor economic performance. See
McMillan and Naughton (1992) for a comparison of the reforms in China and in the ex-soviet
block.

2In the neoclassical model taxes can a§ect growth through transition dynamics. However,
versions of the neoclassical model in which these dynamics are important tend to imply that the
real interest rate takes implausibly high values. See King and Rebelo (1993) for a discussion.
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of human capital. The costs (foregone wages) and benefits (higher future wages)

of this accumulation are a§ected by income taxes in the same proportion. As a

consequence, the growth rate is independent of the rate of income or investment

tax.3

These models have, in our view, two shortcomings. First, they imply that

long-run growth rates remain constant even when income tax rates approach 100

percent. We can dramatize this implication by noting that, ceteris paribus, these

models imply that North and South Korea should have the same long-run growth

rate. Second, these models are inconsistent with the observation that modest

improvements in the incentives to invest, in economies with high disincentives to

investment, can produce large growth e§ects.

In this paper we propose a simple model that reconciles our two observations.

In our model the e§ects of taxation on growth are highly non-linear. Taxation

has a very small impact on long-run growth rates when tax rates are low or

moderate. This property can create the impression that tax rates can be raised

without a§ecting long-term economic performance. But, as tax rates and other

disincentives to investment become large, their negative impact on growth rises

dramatically.

To explain the source of this non-linearity, it is useful to describe the structure

of our model. We combine the growth model proposed by Romer (1990) with the

Lucas (1978) model of occupational choice. As in Romer (1990), Grossman and

Elhanan (1991), and Aghion and Howitt (1992), growth comes from innovation.

As in Lucas (1978), the economy is populated by agents with di§erent ability

as entrepreneurs/innovators. These agents decide optimally whether to become

3Stokey and Rebelo (1993) and Mendoza, Milesi-Ferretti, and Asea (1997) discuss variants
of the Lucas (1988) model which, for certain parameter configurations, produce a small impact
of taxes on long-run growth. These variants include models in which labor supply is endogenous
and physical capital is an input to human capital accumulation.
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workers or innovators. Motivated by the plethora of evidence on the presence of

right skewness in the distribution of patents, scientific paper citations, income,

and profits, we assume that the distribution of entrepreneurial ability is skewed.

Because of this skewness, most of the innovation in our economy stems from a

small number of highly-productive innovators. These entrepreneurs, the Bill Gates

and Steve Jobs of our model economy, are unlikely to be deterred from innovating,

even when tax rates are moderately high.

Increases in taxes do a§ect innovators who are at the margin and can lead

to substantial exit from the innovation sector. But, since the marginal innovator

is much less productive than the average innovator, this exit has a small impact

on the growth performance of the economy. As a result, there is a range of tax

rates that are associated with similar long-run growth rates. Once taxes and

other disincentives to innovate are high, the entrepreneurs that drive most of the

innovation in the economy no longer invest and the growth engine stalls.

Our benchmark model abstracts from the possibility that entrepreneurs might

migrate to other economies. In Section 7 we introduce the possibility of “brain

drain.” Agents can migrate to other countries by paying a cost that is independent

of their ability. So, when taxes rise, high-ability agents migrate, producing a

large decline in the growth rate of the economy. The possibility of brain drain

exacerbates the non-linear response of growth to taxation.

Throughout our analysis we consider models in which agents know their en-

trepreneurial ability. As a robustness check, we consider, in Section 8, a model in

which agents have to become entrepreneurs to learn their entrepreneurial ability.

In this model high taxes might have a large impact on growth by deterring agents

from trying to become entrepreneurs, and learn their ability. We show that this

model also exhibits a non-linear response of growth to taxation. When taxes rates

are low, it is optimal for all potential entrepreneurs to try their luck and learn
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their ability. So, there is a range of tax rates that is associated with the same

rate of growth. The absence of a correlation between taxation and growth might

lead policy makers to believe that further tax hikes have no growth impact. How-

ever, once tax rates exceed a threshold level, they have a high impact on long-run

growth by reducing the number of agents who attempt to become entrepreneurs.

Our paper is organized as follows. In Section 2, we review briefly the evidence

on the relation between taxation and long-run growth. In Section 3, we study

the impact of taxation on growth in an endogenous growth model in which all

agents have the same entrepreneurial ability. In Section 4, we consider a model

in which entrepreneurial ability follows a Pareto distribution. We compare the

implications of the two models for the e§ects of corporate income taxes (Section

5) and progressive personal income taxes (Section 6). In Section 7, we extend

our model to incorporate the possibility of “brain drain,” i.e. the migration of

high skilled workers in response to high taxes or burdensome regulation. In Sec-

tion 8, we consider the case of stochastic entrepreneurial activity. We o§er some

conclusions in Section 9.

2. Empirical evidence on taxation and growth

Evidence on the correlation between taxation and growth comes from a variety

of sources. Easterly and Rebelo (1993a) study a cross section of 125 countries

for the period 1970 to 1988. They find that the association between various tax

rate measures and growth performance is surprisingly fragile. It is possible to

select specifications for which taxes are negatively correlated with growth. But

this correlation is not robust to the inclusion of other controls or to changes in

the sample composition.

Piketty, Saez, and Stantcheva (2011) find no correlation between growth rates

and the large changes in marginal income tax rates that have been implemented
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in OECD countries since 1975. Similarly, Mendoza, Razin, and Tesar (1994) find

no correlation between tax rates and growth rates in their study of panel data for

18 OECD countries.

Stokey and Rebelo (1993) argue that it is hard to detect a negative growth

impact of the very large rise in income tax rates implemented in the U.S. after

World War II. Before the Sixteenth Amendment was approved in 1913, the U.S.

Constitution severely restricted the ability of the federal government to levy taxes

on income. Even after approval of the amendment, income tax revenue was lower

than 2 percent of output. This fraction increased dramatically in the early 1940s

to 15 percent. Yet, Stokey and Rebelo (1993) cannot reject the hypothesis that

the average annual U.S. per capita growth rate is the same before and after World

War II. These results were anticipated by Harberger (1964), who observed that

U.S. growth rates have been invariant to large changes in the tax structure. We

cannot, of course, rule out the possibility that, by coincidence, other forces o§set

exactly the e§ects of the large tax increase implemented in the post-war period,

leaving the growth rate unchanged.

Jones (1995) makes the more general point that changes in policy variables

tend to be permanent, but growth rates tend to be stationary. Once again, it

is possible that, by coincidence, all the movements in variables that can a§ect

growth rates have been o§setting. But a more plausible interpretation of Jones’s

results is that permanent changes in policy have no impact on long-run growth

rates.

Easterly, Kremer, Pritchett and Summers (1993) show that the persistence

across decades is low for growth rates but high for policy variables. This finding

suggests caution in attributing high growth rates to good policies, such as low tax

rates.

Romer and Romer (2010) use the narrative record on the motivation of tax
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policy changes in the post-war period to identify changes that are exogenous, in

the sense that they are not a response to the growth performance of the economy.

Their paper focuses on the short-run e§ect of taxes on output. They find that a

tax increase of one percent of GDP implies a three percent fall in output. The

authors assume in their empirical work that permanent changes in taxes a§ect

output only temporarily and have no impact on the long-run growth rate of the

economy.4

Romer and Romer (2011) use a similar method to study the e§ect of taxes on

output in the U.S. during the inter-war period. They find that, despite the large

changes in marginal tax rates during this period, these changes had no short-run

impact on the performance of the U.S. economy.

It is always possible that better methods for measuring tax rates and taking

endogeneity into account will reveal the strong connection between taxes and long-

run growth that has, until now, eluded researchers. We interpret the weight of the

evidence gathered so far as suggesting that there is no strong association between

taxes rates and long-run growth outcomes. This body of evidence is consistent

with the possibility that taxes might have important level e§ects or create large

deadweight losses. High tax rates might, for example, induce agents to work less,

as emphasized by Prescott (2004), or to reallocate e§ort from market activities

towards home production, as emphasized by Sandmo (1990). But the evidence

is inconsistent with the implication, shared by many endogenous growth mod-

els, that changes in income and investment taxes have large, permanent growth

e§ects.5

4See Mertens and Ravn (2012) for additional evidence on the short-run e§ect of taxation
based on Romer and Romer (2012) shocks, as well as a discussion of the related literature.

5See Jones and Manuelli (1990), Barro (1990), Rebelo (1991), and Stokey and Rebelo (1995)
for examples of models that share this implication.
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3. Homogeneous-ability model

Our starting point is a model where growth is driven by innovation. This inno-

vation expands the variety of goods available as intermediate inputs, as in Romer

(1990). Agents decide whether to be workers or entrepreneurs, as in Lucas (1978).

In this section we focus our analysis on the e§ect of the corporate income

tax. We discuss the e§ects of a progressive personal income tax in Section 6.

Throughout, we omit time subscripts whenever this omission results in no loss of

clarity.

Final-good producers The final-good producers operate a constant-returns-

to-scale production function that combines labor (L) with a continuum of measure

n of intermediate goods (xi):

Y = L
Z n

0

x1i di.

The objective of the final-good producer is to maximize after-tax profits, which

are given by:

f =


L
Z n

0

x1i di
Z n

0

pixidi wL

(1 ),

where pi is the price of intermediate good i, w is the wage rate, and  is the

corporate income tax rate. Both pi and w are denominated in units of the final

good. The first-order conditions for this problem are:

pi = (1 )Lxi , (3.1)

w = L1nx1. (3.2)

The value of ft is equal to zero in equilibrium. For convenience, we normalize the

number of final-goods producers to one.
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Intermediate good producers/innovators Each agent in the economy chooses

whether to work in the final-goods sectors or become an innovator. Agents who

choose the former, receive the wage rate w. Agents who choose the latter, invent

n new goods and obtain a permanent patent on these inventions.6 The number

of varieties in the economy, n, evolves according to:

ṅ

n
=  (H  L) , (3.3)

where H is the size of the population.

Each unit of the intermediate good, xi, requires an input of  units of the final

good. The after-tax profit flow generated by each new good, i, is given by:

i = (pi  ) xi(1 ). (3.4)

Equations (3.1) and (3.4) imply that the optimal price and quantity produced by

the innovator are:

p =


1 
,

x = L


(1 )2



1/
. (3.5)

Since all producers make the same price and quantity decision, we eliminate the

subscript i. The maximal after-tax profit per patent is given by:

 = (1 )(2)/(1)/L(1 ). (3.6)

Equations (3.2) and (3.5) imply that the equilibrium wage rate is equal to:

w = n


(1 )2



(1)/
. (3.7)

6As is common in this class of models, there is an externality in the sense that, the larger
the value of n, the easier it is to invent new goods. This externality is essential to be feasible
for the economy to grow at a constant rate.
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This equation implies that the wage rate grows at the same rate as n.7 For future

reference, we note that the ratio of tax revenue to GDP is:

ne
wL+ ne

=


1 + (1 )1
. (3.8)

where e denotes the pre-tax profits, e = /(1 ).

The agent’s problem Agents have identical preferences. The utility of agent

i, Ui, is given by:

Ui =

Z 1

0

et
(Cit)

1  1
1 

dt,

where Cit denotes the consumption of agent i. We assume, without loss of general-

ity, that agents own an equal share of the final-goods firm. The budget constraint

of agent i is:

ḃit = rtb
i
t + wtl

i
t +m

i
tt + 

f
t /H  C

i
t + Tt, (3.9)

where lit = 1 if agent i chooses to be a worker in period t and zero, otherwise.

The variable bit denotes the agent’s bond holdings. The variable rt and Tt denote

the real interest rate and the flow of lump-sum transfers from the government,

respectively.

The variable mi
t denotes the number of patents owned by agent i at time t.

The law of motion for mi
t is given by:

ṁi
t = nt(1 l

i
t).

This equation implies that agents who choose to be workers have a constant num-

ber of patents in their portfolio. Agents who become innovators see an instanta-

neous increase in the number of patents they hold.

7When we optimize the use of intermediate goods in the production of final goods, we obtain
a reduced-form production function that is linear in labor. This result, together with the fact
that p is constant, implies that the wage rate does not depend on L. This property greatly
simplifies our analysis.
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The non-Ponzi game condition,

lim
t!1

Z t

0

e
R s
0 rjdjbisds = 0,

completes the description of the problem.

The first-order condition for the consumer problem implies that:

Ċit
Cit
=
rt  


. (3.10)

Since all agents face the same real interest rate, they choose the same growth rate

of consumption. We denote this growth rate by g.

We assume that, at time zero, each of the H agents in the economy has an

identical share of the existing patents and zero bond holdings:

mi
0 = n0/H,

bi0 = 0,

for all i. As we discuss below, this assumption ensures that the path of consump-

tion is the same for all agents.

Solving the agent’s problem We solve the agent’s problem in two steps. The

first step is to maximize the agent’s wealth. The second step is to choose the

optimal consumption path given the maximal level of wealth.

Integrating equation (3.9), we obtain:
Z 1

0

e
R s
0 rjdj


wsl

i
s +m

i
ss + 

f
s/H


ds =

Z 1

0

e
R s
0 rjdj


Cis

ds, (3.11)

where the left-hand side is the wealth of agent i and the right-hand side is the

present value of this agent’s consumption.

The wealth maximization problem can be written as:

max

Z 1

0

e
R s
0 rjdj


wsl

i
s +m

i
ss + 

f
s/H


ds ,
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subject to:

ṁi
t = nt(1 l

i
t).

The Hamiltonian for this problem is:

H =

wtl

i
t +m

i
tt + 

f
t /H


+ V it nt(1 l

i
t),

where V it denotes the Lagrange multiplier associated with the law of motion for

mi
t. The first-order condition with respect to m

i
t is:

V̇ it = rtV
i
t  t.

Solving this di§erential equation, we obtain:

Vt =

Z 1

0

te

R s
0 rjdjdt, (3.12)

where we omit the subscript i because the value of Vt is identical across agents.

Equation (3.12) implies that the value of a patent for a new good is the discounted

value of the profit flow.

The first-order condition with respect to lit is:

nVt < wt,
nVt = wt,
nVt > wt,

lit = 1,
lit 2 {0, 1},
lit = 0

(3.13)

The maximal value of wealth is identical across agents. Since the growth rate of

consumption is also identical, all agents have the same consumption path.

Government The government rebates taxes back to the agents in a lump-

sum manner. Since profits are expressed net of taxes, the budget constraint of the

government is:


ntt + 

f
t

1 
= Tt.
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Equilibrium conditions Bonds are in zero net supply, so equilibrium in

the credit market requires: Z H

0

aitdi = 0.

Recall that the path for consumption is the same for all agents. Since workers

and entrepreneurs have di§erent income paths, there can be borrowing and lending

across agents in equilibrium.

Equilibrium in the goods market implies:
Z H

0

Citdi+ ntxt = Yt. (3.14)

Equilibrium in the labor market implies that agents are either workers (lit = 1) or

entrepreneurs (lit = 0):
Z H

0

litdi+

Z H

0

(1 lit)di = H.

3.1. The fraction of entrepreneurs in the economy

Using the first-order condition from the household problem, we obtain the follow-

ing condition for the value of L:

nVt < wt,
nVt = wt,

L = H,
L < H.

(3.15)

When nVt < wt, the rewards to innovating are lower than the opportunity

cost, so there is no innovation. In this case, all agents work in the production

sector, L = H and the number of goods in the economy remains constant.

When nVt = wt, there is an interior solution for the number of agents who

decide to innovate (H  L). The value of L is always strictly positive, otherwise

there is no production of final goods and the value of innovating is zero.

To derive the value of L when the solution is interior, we first note that this

economy has no transition dynamics, so the real interest rate and the rate of
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growth are constant over time (see proof in Appendix). Using this result, we can

write equation (3.15) as:

n


r
= w. (3.16)

Replacing  and w using equations (3.6) and (3.7), we obtain:

L =
r

(1 )(1 )
. (3.17)

Since the real interest rate and the growth rate of the economy are constant,

equation (3.10) implies that,

r = g + . (3.18)

Using this result, we can rewrite equation (3.17) as:

L =
g + 

(1 )(1 )
. (3.19)

In a symmetric equilibrium, output is given by:

Y = Lnx1. (3.20)

Equation (3.19) implies that L is constant. Equation (3.5) implies that x is also

constant. These two properties, together with equation (3.20), imply that output

grows at the same rate as the number of varieties. Equation (3.14) implies that

consumption also grows at the same rate as n.

Deriving the growth rate of n Equation (3.3) and the fact that consump-

tion, output and the number of varieties grow at the same rate imply:

g =  (H  L) . (3.21)

Combining this result with equation (3.19), we obtain the following expression for

the growth rate of the economy:

g =
H(1 )(1 ) 
(1 )(1 ) + 

. (3.22)
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Equation (3.22) implies that the measure of agents who work in the final produc-

tion sector is given by:

L =
H + 

 [(1 )(1 ) + ]
.

The impact of taxes Equation (3.22) implies that, when the solution for

L is interior, the marginal impact of taxes on growth is negative and given by:

dg

d
= 

(1 ) (+ H)
[(1 )(1 ) + ]2

< 0. (3.23)

There is a corner solution for L (L = H) whenever:

  1


H(1 )
. (3.24)

The growth rate of the economy is zero for values of  that satisfy equation (3.24).

We return to this result in Section 5 when we compare these predictions for the

e§ects of taxation on growth with those of a model where entrepreneurs have an

heterogeneous ability.

4. Heterogenous-ability model

A large literature shows that firm size and executive compensation are skewed

to the right and follow, approximately, a Pareto distribution.8 This skewness is

also present in variables related to innovation and entrepreneurship. Moskowitz

and Vissing-Jørgensen (2002) document the presence of skewness in the returns

to entrepreneurial activity. Scherer (1998) and Grabowski (2002) show that a

small number of firms account for a disproportionate fraction of the profits from

8Simon and Bonini (1958), Ijiri and Simon (1964, 1971, 1974), Axtel (2001), Luttmer (2007)
and Gabaix and Landier (2008) provide evidence on the distribution of firm size. Roberts (1956),
Baker, Jensen, and Murphy (1988), Barro and Barro (1990), and Rosen (1992) provide evidence
on the distribution of executive compensation.
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innovation. Harho§, Scherer, and Vopel (1997), Bertran (2003), Hall, Ja§e, and

Trajtenberg (2005), and Silverberg and Verspagen (2007) show that the distri-

bution of patent values and patent citations is highly skewed. Hall, Ja§e, and

Trajtenberg (2005) show that almost half of all patents receive zero or one cita-

tion and less than 0.1 percent of total patents receive more than 100 cites.9

There is also evidence of skewness in the productivity of scientists. Lotka

(1926) and Cox and Chung (1991) show that the distribution of scientific publica-

tions per author is skewed. Redner (1998) finds similar results for the distribution

of citations to scientific papers. Azoulay, Zivin and Wang (2010) show that the

premature death of an academic “superstar” has a sizable, permanent negative

impact on the productivity of the superstar’s co-authors.

One important question is: what is the source of skewness in economic per-

formance? Huggett, Ventura and Yaron (2011) and Keane and Wolpin (1997)

find that di§erences in individual ability are a key driver of heterogeneity in eco-

nomic outcomes. Graham, Li and Qui (2012) find that ability is a key driver of

executive compensation. This body of evidence suggests that there is substantial

heterogeneity in ability or productivity. In this sections we incorporate this type

of heterogeneity in the model of Section 3.10

We assume that ability, a, follows a continuous distribution with cumulative

distribution function, (a). To simplify, we suppose that all agents are equally

productive as workers but di§er in their entrepreneurial ability. An agent with

ability a can produce na new goods per period.

As in section 3, this economy has no transitional dynamics, so the real interest

9These authors also show that citations are a good proxy for the value of a patent. The
citation-weighted stocks of patents have a higher correlation with the market value of the patents
than the unweighted stocks of patents.
10Recent papers that consider entrepreneurial ability as a major source of heterogeneity include

Buera, Kaboski, and Shin (2012), and Midrigan and Xu (2010). Kortum (2007) and Jones (2007)
consider models in which new ideas are productivity levels that follow a Pareto distribution.

15



rate is constant (see Appendix). The flow profit per patent, , that accrues to the

innovator and the value of an additional patent are the same as in the previous

section. Following the same steps used in Section 3, we obtain:

na


r
= w, (4.1)

where a is the ability of the marginal innovator who is indi§erent between being

an innovator and a worker.

The fraction of the population that works in the final-production sector is

then:

L = H(a). (4.2)

Using equations (3.6), (3.7), (4.1), and (4.2), we obtain:

a(1 )H(a)(1 ) = r.

Substituting r from equation (3.10), we obtain:

a(1 )H(a)(1 ) = g + . (4.3)

To solve for a we first note that, as in Section 3, the growth rate of the economy

is equal to the growth rate of the number of varieties,

g = H

Z amax

a
a(da). (4.4)

To interpret this expression, recall that all agents with ability greater than a

become entrepreneurs. There is a mass of agents with ability a which is equal to

(da). Each of these agents produces na varieties.

Using equation (4.4) to replace g in equation (4.3), we obtain the following

implicit equation for a:

(1 )a(a)(1 ) =



Z amax

a
a(da) + /(H)


. (4.5)
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We assume that a follows a truncated Pareto distribution with shape parameter

equal to one, lower bound amin, and upper bound amax. We choose this distribution

for three reasons. First, it allows us to obtain some additional analytical results.

Second, this distribution is a good description of the empirical distribution of

variables such as firm size (Luttmer (2010)). Third, as we discuss below, it allows

us to choose amax so that our numerical example is consistent with the distribution

of employment across firms in the U.S.11.

Under these assumptions, we can rewrite equation (4.5), which determines the

threshold value, a, as:

a(1 ) +


(1 )
amin log(a

/amax) = (1 )amin +
 (1 amin/amax)
(1 )H

. (4.6)

The growth rate of the economy, implied by equation (4.4), is given by:

g =
H

1 (amin/amax)
{(amin) log(amax/a)} . (4.7)

Using equation (4.6) we can write amin log(amax/a) as:

1




(a  amin) (1 )(1 )

 (1 amin/amax)
H


= amin log(amax/a

).

Using this expression and equation (4.7) we obtain:

g =
1




H (a  amin) (1 ) (1 )

1 (amin/amax)
 


. (4.8)

Di§erentiating equation (4.8) with respect to  we obtain:

dg

d
=
1



(1 ) H
1 (amin/amax)


da

d
(1 ) (a  amin)


.

11We studied numerically the case in which the shape parameter of the Pareto distribution is
bigger than one. There is no discontinuity in the e§ects of taxes on growth as the parameter
approaches one.

17



The e§ect of a change in  on the ability of the marginal innovator, da/d , is

given by:
da

d
=

a  amin
(1 ) + amin/[(1 )a]

.

The e§ect of a marginal increase in  on the growth rate of the economy is negative

and given by:

dg

d
= 

H(1 ) (a  amin)
1 (amin/amax)


amin

(1 ) (1 )a + amin


< 0. (4.9)

5. Homogeneous versus heterogenous ability

In what follows we compare the e§ects of changes in  in economies with ho-

mogenous and heterogenous entrepreneurial ability. It is useful to consider two

economies that are growing at the same rate, g, have the same structural para-

meters  and , and the same corporate tax rate,  .

We begin by deriving the e§ects of  on g in the economy of homogenous

entrepreneurial ability. It is useful to rewrite equation (3.22) as:

[g  H] (1 )(1 ) =  (+ g) . (5.1)

Totally di§erentiating this equation we obtain:

dg

d
=

[g  H] (1 )
{(1 )(1 ) + }

.

Using equation (5.1) we obtain:

dg

d
=
 (+ g)
(1 )

1

{(1 )(1 ) + }
.

Consider the economy with heterogenous entrepreneurial ability. We can

rewrite equation (4.8) as:

g + 

(1 )
=


H (a  amin) (1 )
1 (amin/amax)


.
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Using equation (4.9):

dg

d
=
 (+ g)
(1 )


1

(1 ) (1 ) (a/amin) + 


.

Since, in the absence of changes in  , the two economies grow at the same rate

and share the same parameters, the di§erence in the slope comes from the term

in square brackets, which is given by

Heterogenous model :
1

(1 )(1 )a/amin + 1

Homogenous model :
1

(1 )(1 ) + 1

Note that a/amin > 1 as long as amax > amin. So, the slope in the heterogenous

agents model is smaller in absolute value implying that the e§ect of an increase

in  on g is always smaller in the economy with heterogeneous ability.

5.1. Numerical example

We use a numerical example to compare the e§ects of changes in the corporate

income tax rate in economies with homogeneous and heterogenous agents. The

following parameterization is shared by both economies. We set the labor share

in the production of final goods to 60 percent ( = 0.60). We assume that  = 1

(log preferences). We choose  = 0.01, so that the annual real interest rate in an

economy with no growth is one percent. Without loss of generality, we normalize

 and  to one. Finally, in both the homogeneous and heterogenous case, we

choose the value of H so that, when  = 0.35, the growth rate of the economy

is 2 percent per year. This value of  corresponds to the U.S. Federal corporate

income tax rate.

The distribution of ability in the economy with heterogeneity is governed by

the two parameters of the Pareto distribution: amin and amax. Without loss of

generality we set amin = 1. To choose amax we build on Luttmer’s (2010) finding
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that the largest 1,000 U.S. firms in terms of employment account for roughly 25

percent of total employment. Since there are roughly 6 million employer firms

in the U.S., these firms represent a mere 0.017 percent of U.S. firms.12 In what

follows we show how we can map this statistic into our model, using the fact that

firm size is proportional to the ability of the entrepreneur. This property enables

us to calibrate amax to match the Luttmer’s firm size statistic.

We proceed as follows. Suppose that firms are vertically integrated, so that

research firms hire workers to produce the final output goods. This assumption

generates a non-trivial distribution of employment. We also assume that the

ownership of the initial stock of patents is distributed among entrepreneurs in

proportion to their ability:

s(a) =
a

H
R amax
a

a(da)
, (5.2)

where s(a) is the initial share of patents attributed to an entrepreneur of ability a.

We assume that entrepreneurs take the initial distribution of patents as given, so

this distribution does not a§ect the choice of being a worker or an entrepreneur.

The number of patents held by each entrepreneur grows at rate g and the share of

patents held by this agent remains constant over time.13 Recall that all innovators

produce the same quantity of intermediate goods, x, per patent and that the

amount of labor employed in producing a given good is proportional to x. Under

these conditions, firm size is proportional to the ability of the entrepreneur.

We choose amax so that the top 0.017 percent entrepreneurs account for 25

percent of employment. We use an iterative process to find this value of amax. For

12Luttmer’s (2010) figure 3 shows that this statistic is stable over time.
13To see this property, suppose that the agent enters period t with s(a) shares. The

instantaneous growth rate in the number of patents held by this agent, mt, is given by:
ṁt/mt = nta/mt. Using equation (5.2), together with the fact that mt = s(a)nt, we ob-
tain ṁt/mt = H

R amax
a

a(da) = g. Since mt grows at the same as nt, the share of patents
remains constant over time.
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a given amax we compute a and find ā, which denotes the the lower bound of the

interval that contains the top 0.017 entrepreneurs.
R amax
ā

(da)R amax
a

(da)
= 0.017. (5.3)

Using the Pareto distribution, this equation can be written as:

ā =
amin

0.017 [(amin/a) (amin/amax)] + (amin/amax)

Since employment is proportional to ability, the requirement that the top 0.017

percent of entrepreneurs account for 25 percent of employment can be written as:
R amax
ā

a(da)R amax
a

a(da)
= 0.25. (5.5)

Using the Pareto distribution, we can write this equation as:

log(amax/ā)

log(amax/a)
= 0.25.

We iterate on amax until both equations (5.3) and (5.5) hold; this convergence

occurs for a value of amax = 5000.

The first panel of Figure 1 shows the e§ect of changes in  on the growth rate

of the two economies. In the homogenous ability model the growth rate of the

economy is roughly linear in  .14 The growth rate ranges from 3.15 percent, when

 = 0, to zero when  = 0.816. Doubling the corporate income tax rate from 35 to

70 percent, reduces the growth rate from 2 percent to 0.56 percent. Higher taxes

reduce the incentives to innovation, reducing the number of entrepreneurs. Since

all agents in the economy are equally good at being entrepreneurs, this reduction

has a large impact on the rate of innovation and growth. As we discuss in Section

2, it is di¢cult to empirically find this large impact of taxation on growth.

14It is possible to generate a non-linear response of the growth rate to  in the homogeneous
ability model. But it requires using values of  and  that are close to zero.
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The heterogeneous ability model exhibits a non-linear response of growth to

taxation. The growth rates ranges from 2.15 percent, when  = 0, to zero when

 = 1. Doubling the tax rate from 35 to 70 percent reduces the growth rate from

2 percent to 1.73 percent. This reduction is much smaller than that implied by

the model with homogeneous agents. This result might suggest to policy makers

that taxes have no impact on the tax rate. But tax e§ects are highly non-linear:

increasing taxes from 70 to 85 percent reduces the growth rate by as much as

doubling the tax rate from 35 to 70 percent.

The second panel of Figure 1 depicts the fraction of entrepreneurs in the pop-

ulation for di§erent values of  . In the homogeneous ability model, this fraction

ranges from 23.3 percent, when  = 0 to zero when  = 0.816. The strong, neg-

ative e§ect of taxes on the number of entrepreneurs is at the core of the model’s

large impact of taxation on growth. In contrast, in the heterogeneous ability

model the fraction of agents who choose to be entrepreneurs ranges from 4.8 per-

cent, when  = 0, to zero when  = 1. As  rises the number of entrepreneurs

declines roughly linearly. But the impact on growth is highly nonlinear, because

the ability of the entrepreneurs that exit rises with  .

Finally, the third panel of Figure 1 displays tax revenues as a percentage of

total output. This variable is given by equation (3.8) for both the homogeneous

ability and the heterogeneous ability model. Suppose that the government wants

to obtain a ratio of taxes to GDP of 25 percent. In both economies this objective

would require a tax rate of 87.5 percent. This tax rate would reduce growth to

zero in the homogeneous ability economy. In contrast, the heterogenous ability

economy still grows at 1.43 percent.

To summarize, in this section we considered numerical versions of the homoge-

neous and heterogeneous ability models. In the model with heterogenous ability

the e§ects of corporate income taxes on growth are highly non-linear. These ef-
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fects are small when tax rates are low or moderate and are high once tax rates

are high.

This non-linearity would be even stronger if we introduced the production

complementarities emphasized by Kremer (1993) and Gabaix and Landier (2008).

In models with production complementarities, it is optimal to implement assor-

tative matching. In Kremer’s (1993) model it is optimal to form groups of agents

with similar abilities. In Gabaix and Landier (2008) it is optimal to match the

best managers with the most productive firms. In both cases, the skewness of the

distribution of productivity of profits is a magnified version of the skewness in the

distribution of ability.

6. Progressive personal income taxes

In this section we compare the e§ects of progressive personal income taxes in

our homogeneous and heterogeneous-agent models. Our motivation is three fold.

First, income tax systems are generally progressive, both in developed and de-

veloping countries (see Easterly and Rebelo (1993b)). Second, changes in income

taxes often take the form of changes in the degree of progressivity (see Piketty,

Saez, and Stantcheva (2011)). Third, a progressive income tax can introduce

important distortions in the choice to be an entrepreneur, since entrepreneurs

generally forego income in the present in return for higher future income.

To simplify, we assume that agents choose at time zero whether to be workers

or entrepreneurs. Moreover, we assume that the initial number of patents in the

economy is distributed equally across all agents:

m0 = n0/H.

This assumption implies that workers and entrepreneurs have di§erent income

paths, even though the present value of their incomes is the same. Absent di§er-
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ences in income paths, progressive taxation would have no e§ects.

The gross income of the worker has two components. The first component is

the wage rate, which grows at rate g. The second component is constant, and

corresponds to the profit from the initial stock of patents, m0. The total gross

income of the worker grows at a rate that is lower than g. The present value of

the after tax income of a worker is: w0/(r  g) +m0/r.

We consider a simple income tax system where agents pay a rate !1 for income

levels lower or equal than the total income received by a worker at time t (wt+m0)

and a marginal tax rate !1 + !2 for income exceeding that amount. The total

income tax paid by an agent with income yt is given by:

(yt;wt) =


!1yt,

!1yt + !2 [yt  (wt +m0)] ,
for yt  wt +m0,
for yt > wt +m0 .

To isolate the e§ects of personal income taxes we assume that corporate income

taxes are zero ( = 0).

The gross income of the entrepreneur is given by mt. At time zero, the

income of the entrepreneur is lower than that of the worker, since the worker

receives wt +m0, while the entrepreneur receives only m0.

Homogeneous agent model Recall that the law of motion for mt is given by:

ṁt = nt = n0e
gt.

Integrating this equation we obtain:

mt = m0 +
n0
g


egt  1


. (6.1)

The entrepreneur’s income, mt, grows at rate:

ṁt

mt

=
g

1 + egt [g/ (H) 1]
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Let’s assume that H is large enough that g/ (H) < 1. In this case, the income

of the entrepreneurs grows faster than g.

We denote by t the moment at which the income of the worker and the

entrepreneur are equalized:

w0e
gt +m0 = mt. (6.2)

Until t both agents pay the same marginal income tax rate. Using equation (6.1)

to replace mt in equation (6.2) and solving for t, we obtain:

t =
1

g
ln




  gw0/n0


. (6.3)

Since there is free-entry entry into the entrepreneurial activity, agents must be

indi§erent at time zero between being workers and entrepreneurs:

(1 !1)

w0
r  g

+
m0

r


= (1 !1)

Z 1

0


mte

rt dt (6.4)

!2
Z 1

t
(mt  wt  m0) e

rtdt.

The left-hand side of this expression is the present value of a worker’s after-tax

income. The right-hand side is the present value of an entrepreneurs’s after-tax

income.

Using equation (6.1) to replace mt in equation (6.4) we obtain:

(1 !1)
w0/n0
r  g

= (1 !1)


g


1

r  g

1

r


(6.5)

!2




g

e(gr)t


r  g
 



g

ert


r

w0/n0
r  g

e(gr)t



Recall that wt/nt is a constant (see equation (3.7)) and that  is a function of

L (see equation (3.6)).

We can characterize the equilibrium of this economy by solving a system of six

equations to six unknowns. The equations are: (3.7), (3.6), (6.3), (6.5), (3.21),
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and (3.18). Equation (3.21) expresses g as a function of L, while equation (3.18)

expresses r as a function of g. The unknowns are g, r, L, t, w0/n0, and .

Introducing heterogeneity The key di§erence between the homogeneous-agent

model and the heterogeneous agent-model is that in the latter the law of motion

for the number of patents held by an entrepreneur depends on his or her abil-

ity. The number of patents held by an entrepreneur with ability a, ma
t , evolve

according to:

ṁa
t = ant = an0e

gt.

Integrating this equation we obtain:

mt = m0 + a
n0
g


egt  1


. (6.6)

In order to determine the ability of the marginal entrepreneur (a) we need to

compute the time t at which the incomes of the marginal entrepreneur and the

worker are equalized:

w0e
gt +m0 = m

a

t .

Replacing ma

t using equation (6.6) and solving for t
 we obtain:

t =
1

g
ln


a

a  gw0/n0


. (6.7)

The marginal entrepreneur is indi§erent at time zero between being a worker or

an entrepreneur:

(1 !1)

w0
r  g

+
m0

r


= (1 !1)

Z 1

0


ma

t e
rt dt

!2
Z 1

t


ma

t  wt  m0


ertdt.

Replacing ma

t using equation (6.6) we obtain:
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(1 !1)
w0/n0
r  g

= (1 !1) a


g


1

r  g

1

r


(6.8)

!2

a



g

e(gr)t


r  g
 a



g

ert


r

w0/n0
r  g

e(gr)t



We can characterize the equilibrium by solving a system of seven equations

and seven unknowns. The equations are: (3.7), (3.6), (4.2), (6.7), (6.8), (4.4), and

(3.18). The unknowns are g, r, L, t, a, w0/n0, and .

A numerical example We use a simple numerical example to illustrate the

e§ects of changes in the degree of progressivity in heterogenous-ability economies.

We use the same parameters as in the previous section, except for the corporate

income tax rate, which we set to zero. We choose !1 = 0.15 and !2 = 0.20. These

parameter values imply that entrepreneurs represent 5 percent of the population.

Our choice of !1 is consistent with the estimates reported in Piketty and Saez

(2007). These authors find that the average federal income tax paid by the 95

percent of the population with the lowest income was approximately 15 percent

in 2004. Our choice of !2 was motivated by the fact that the highest marginal

income tax rate in the U.S. in 2012 is 35 percent, which corresponds to !1 + !2.

Figure 2 depicts the response of the growth rate to !2 in the homogenous and

heterogenous-ability models. This response shares the two features of the e§ects

of corporate income taxes that we emphasize in section 5. First, the impact of

!2 on growth is more nonlinear in the heterogenous-ability model than in the

homogeneous-ability model. Second, the heterogenous-ability model features a

range of !2 for which growth is relatively constant. Increases in !2 beyond that

range have a very large impact on the growth rate of the economy.
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7. Brain drain

A potentially important e§ect of high taxes rates or burdensome regulation is

the migration of high-skill individuals, a phenomenon often referred to as “brain

drain.”15 We explore this phenomenon in this section.

Consider a small open economy that can borrow and lend at a constant real

interest rate, r. The rest of the world has a stock of patents n̂t that grows at a

constant rate, ĝ. To simplify, we assume that there is no trade between the small

open economy and the rest of the world.

An agent in the small open economy can migrate to the rest of the world and

work or innovate there. For simplicity, we assume that this outside option can

be summarized as follows. An agent with entrepreneurial ability a who migrates,

receives a flow income in the rest of the world equal to x̂ta, where x̂t grows at

rate ĝ. To migrate, the agent pays a cost of x̂t per period. Since this cost is

proportional to x̂t, it grows at rate ĝ.

The problem of an entrepreneur in the home country is to maximize:

max
lit

Z 1

t

er(st)

x̂tal

i
t  xtl

i
t +m

i
ss + 

f
s/H


ds,

subject to:

ṁi
t = nta(1 l

i
t),

where lit is an indicator function that takes the value one when the agent mi-

grates and zero otherwise. The stock of domestic patents owned by an agent who

migrates remains constant over time. The Hamiltonian for the entrepreneur’s

problem is:

H =x̂tal
i
t  xtl

i
t +m

i
tt + 

f
t /H + V

i
t nta(1 l

i
t).

15See Commander, Kangasniemi, and Winters (2004) and Beine, Docquier, and Rapoport
(2008) for a summary of the literature on the brain drain phenomenon. Kleven, Landais, and
Saez (2010) provide evidence on the impact of migration incentives for European soccer players
following the 1995 liberalization of the soccer labor market.
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The first-order condition for lit is:

x̂ta x̂t =


r
ant.

This condition implies that the cuto§ for ability above which an entrepreneur

migrates is:

ât =


1  (nt/x̂t) /r
. (7.1)

The cuto§ level of ability above which it is optimal to be an entrepreneur, a, is

given by:

na


r
= w.

Replacing  and w using equations (3.6) and (3.7), and using equation (??) we

obtain:

a = amin +
r [1 (amin/amax)]
(1 )H(1 )

. (7.2)

The growth rate is given by:

g = H
amin log (amax/a

)

1 (amin/amax)
. (7.3)

We assume that a < . This condition ensures that ât > a for all t (see

equation (7.1)). In this case, the ability of the marginal migrant is higher than

that of the marginal entrepreneur, so only entrepreneurs migrate.

Suppose that the rate of corporate tax in the domestic economy,  , is such

that this economy grows at the same rate as the rest of the world and that the

cost of moving, , is high enough that â > amax, so no one migrates. In what

follows we analyze the e§ects of a tax rate increase.

We denote by   the threshold value for the corporate tax rate below which

there is no migration. Replacing the value of  in equation (7.1), we obtain the

following equation for  :



1 (1 )(2)/(1)/(1  t )L (nt/x̂t) /r
= a.
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The e§ect of an increase in taxes to a level  0 <  t In this experiment

we analyze the e§ect of a permanent increase in the tax rate to a new level  0 <  t .

Since  0 <  t there is no immediate flow of migration. However, the growth rate

of the economy falls below ĝ in response to the tax increase, according to the

mechanism discussed in Section 4. This fall implies that over time, nt/x̂t declines

and thus, eventually ât falls below amax. At this point, migration begins (see equa-

tion (7.1)), as foreign opportunities improve faster than domestic opportunities

(gt < ĝ). This divergence between domestic and foreign growth rates lead to a

smooth flow of migration that generates a slow decline in growth. The growth

rate is given by:

gt =

(
H

R amax
a

a(da) = H amin log(amax/a
)

1amin/amax

H
R ât
a
a(da) = H amin log(ât/a

)
1amin/amax

ât  amax
ât < amax

(7.4)

Equation (7.1) implies that the migration threshold, ât, keeps falling, converging

to . This behavior of ât implies that, asymptotically, the growth rate converges

to a new lower value given by:

gt = H
amin log(/a

)

1 amin/amax

So, the elasticity of the growth rate with respect to taxation is low in the short

run and high in the long run. This pattern is illustrated in the top panel of Figure

3.

The e§ect of an increase in taxes to a level  0 >  t Suppose now that

the tax rate is increased to a value greater than  t . In this case, there is an

immediate flow of migration at time t with all agents with abilities greater than

ât leaving the economy. This brain drain leads to a discrete decline in the rate of

growth of the economy (see the lower branch in equation (7.4)). The new value of

gt is lower than that implied by equation (7.3) for two reasons. First, ât < amax,
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which reflects the fact that agents with skill above ât migrate, reducing the flow of

innovation. Second, as discussed in Section 4, higher tax rates induce more agents

to become workers, so there a rise in a which reduces the flow of innovation. The

initial fall in the growth rate generates an immediate second wave of migration.

This second wave is similar to the one that eventually occurs when  <  t . This

pattern is illustrated in the bottom panel of Figure 3.

In sum, this model generates non-linear e§ects of taxation on growth that are

similar to those of the previous models. Raising the tax rate to a value below  t
results in no immediate migration and in a relatively small decline in the rate of

growth, similar to the one discussed in Section 4. The growth rate remains stable

for a while but, eventually, migration starts, causing further reductions in the

rate of growth. Raising the tax rate to a value above   results in an immediate

flow of migration and a discrete decline in the growth rate, followed by additional

reductions in growth.

8. Stochastic ability

So far we have assumed that agents know their entrepreneurial ability. In this

section we consider the case where entrepreneurs do not know their true ability

before they try to become entrepreneurs, as in Jovanovic (1982). High tax rates

might deter agents from discovering their entrepreneurial ability. To isolate the

e§ect of this informational friction, we assume that all successful entrepreneurs

have the same ability. In the model that we analyze, the impact of taxes on growth

is non-linear as in the previous sections.

We consider a very simple scenario in which only a fraction µ of the population,

H, can be an entrepreneurs, but they do not know their entrepreneurial ability. A

candidate entrepreneur has high ability with probability . High-ability entrepre-

neurs discover n new varieties. Low-ability entrepreneurs produce no new goods
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and end up operating a backyard technology that has productivity w,  < 1. At

the beginning of time, agents have to commit to being workers or entrepreneurs.

In equilibrium, the measure of workers in the economy, L, has to such that:
8
<

:

U(;L) + (1 )U(w) < U(w)
U(;L) + (1 )U(w) = U(w),
U(;L) + (1 )U(w) > U(w),

L = H
L  (1 µ)H
L = (1 µ)H

where U(;L) is the utility of a successful entrepreneur when the number of work-

ers in the economy is equal to L.

When the expected utility of an entrepreneur is equal to that of a worker, the

solution for the number of entrepreneurs is interior and the number of entrepre-

neurs is lower or equal to µH. There are also two corner solutions. The first

corresponds to the case in which the expected utility of becoming an entrepreneur

is higher than the utility of a being a worker. In this case, all potential µH entre-

preneurs decide to become entrepreneurs. The second corresponds to the case in

which the expected utility of becoming an entrepreneur is lower than the utility

of a being a worker. In this case no one tries to become an entrepreneur.

The successful entrepreneur’s utility To be consistent with balanced

growth, we assume that the initial number of patents, nt, is equally distributed

among successful entrepreneurs. As a result, the consumption at time zero, or at

any time t, of a successful entrepreneur is:

Ct = nt/ [(H  L)] + nt/ [H(1 )] .

Their utility is:

U e =
(n0)

1 {1/ [(H  L)] + / [H(1 )]}1

(1 ) (1 )2g
The number of varieties in the economy continues to evolve according to

ṅ = n(H  L)
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The worker’s utility A worker’s consumption is given by:

Ct = wt + nt/ [H(1 )] ;

implying

Uw =
(n0)

1 {w0/n0 + / [H(1 )]}
1

(1 ) (1 )2g

The failed entrepreneur’s utility The consumption of failed entrepre-

neurs is given by:

Ct = wt + nt/ [H(1 )] ;

implying that

U f =
(n0)

1 {w0/n0 + / [H(1 )]}
1

(1 ) (1 )2g

Equilibrium When the solution for L is interior, the value of L is given by:

 (n0)
1 {1/ [(H  L)] + / [H(1 )]}1

+(1 ) (n0)
1 {w0/n0 + / [H(1 )]}

1

= (n0)
1 {w0/n0 + / [H(1 )]}

1 .

Rearranging terms,

L = H
1



8
>><

>>:

8
><

>:

h
w0
n0

+ 
H(1)

i1
 (1 )

h
w0
n0

+ 
H(1)

i1



9
>=

>;

1/(1)




H(1 )

9
>>=

>>;

1

.

Figure 4 shows results for a numerical example.16 Taxes have no impact on

growth for values of  between zero and 0.75. For tax rates in this range, the

16The parameters used in this example are:  = 0.6,  = 2,  = 0.01, H = 1,  = 2,
 = 0.35,  = 1,  = 0.91,  = 0.1, µ = 0.1.
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expected utility of being an entrepreneur is higher than the expected utility of be-

ing a worker. As a result, all potential entrepreneurs choose to be entrepreneurs.

When tax rates are higher than 0.75, there is a larger e§ect of taxes on growth

because the solution for L is interior. As tax rates increase, the number of entre-

preneurs declines. This decline leads to a reduction in the number of successful

entrepreneurs and in the growth rate of the economy.

9. Conclusion

In this paper we discuss several models in which the e§ects of taxation on growth

are highly non-linear. Taxes have a small impact on long-run growth when taxes

rates and other disincentives to investment are low or moderate. But, as tax

rates rise, the marginal e§ect of taxation also increases. In our benchmark model

this non-linearity is generated by heterogeneity in entrepreneurial ability. In a

low-tax economy the ability of the marginal entrepreneur is much lower than that

of the average entrepreneur. Increases in taxes results in the exit of low-ability

entrepreneurs and in a small decline in the rate of growth of the economy. In

a high-tax economy the ability of the marginal entrepreneur is similar to that

of the average entrepreneur. Increases in taxes result in the exit of high-ability

entrepreneurs and in a large decline in the rate of growth of the economy.

We show that these non-linear e§ects of taxation on growth emerge naturally

in two extensions of our model. In the first extension agents can migrate by paying

a flow cost. Since this cost is assumed to be independent of ability, it creates an

incentive for high-ability workers to migrate. There is a range of tax rates for

which there is no immediate migration, so the e§ects of taxation on growth are

small. But, as tax rates exceed a certain threshold, high-ability agents migrate,

reducing the rate of innovation and producing a large decline in growth rates.

The second extension is a model in which potential entrepreneurs do not know
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their ability. This ability is learned only when agents become entrepreneurs. In

this economy there is a range of tax rates for which all potential entrepreneurs try

to become entrepreneurs. Changes in tax rates in this range have no impact on

growth rates. But, once taxes exceed a certain threshold, the number of potential

entrepreneurs decline reducing the growth rate of the economy.
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11. Appendix

11.1. Homogeneous agent model

In this appendix we show that the model in Section 3 has no transitional dynamics.

The same property applies to the model in Section 4.

 = (1 )(2)/(1)/L(1 ). (11.1)

Equations (3.2) and (3.5) imply that the equilibrium wage rate is given by:

w = n


(1 )2



(1)/
. (11.2)

Recall that the value of a patent for a new good is :

Vt =

Z 1

t

e
R s
t rsdssds.

When there is an interior solution for the number of entrepreneurs, we have:

ntVt = wt.

Di§erentiating with respect to time:

ṅVt + ntV̇t = ẇt,

V̇t =
d

dt

Z 1

t

e
R s
t rsdssds.

Define:

f(t, s) = e
R s
t rsdss.

Using Leibnitz’s rule:

d

dt

Z 1

t

f(t, s)ds = f(t, t) +
Z 1

t

f1(t, s)ds,
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d

dt

Z 1

t

f(t, s)ds = s +
Z 1

t

f1(t, s)ds,

d

dt



Z s

t

rsds


= rt,

f1(t, s) = s
d

dt
e

R s
t rsds = srte


R s
t rsds,

V̇t =
d

dt

Z 1

t

f(t, s)ds = t + rt
Z 1

t


se


R s
t rsds


ds,

V̇ =
d

dt

Z 1

t

f(t, s)ds = t + rtVt.

Taking time derivatives of the free-entry condition, we have:

ṅtVt + nt (rVt  t) = ẇt.

Using the free-entry condition:

ntVt = wt. (11.3)

Equation (11.2) implies that wt/nt is constant. Equation (11.3) implies that

the value of the firm, Vt is also constant.

Equation (11.3) implies:

ṅt
nt
+
rtVt  t
Vt

=
ẇt
wt
.

Recall from equation (11.2) that ẇt/wt = ṅt/nt, so we have:

Vt =
t
rt
. (11.4)

Replacing t and rt in equation (11.4) for Vt,
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(1 )(2)/(1)/Lt(1 )
(H  Lt) + 

= V .

Rearranging,

(1 )(2)/(1)/Lt(1 ) = V [(H  Lt) + ] .

Di§erentiating with respect to time, using the fact that V̇t = 0, we have

(1 )(2)/(1)/L̇t(1 ) = L̇tV .

This equation implies that L̇t = 0, so Lt is constant. This property implies

that t is constant (equation (11.1)). Equation (11.4) implies that rt is constant.

In sum, the model has no transition dynamics.

11.2. Heterogenous agent model

The equation for the identity of the marginal innovator is given by (3.15)

natVt = wt.

where

Vt =

Z 1

t

e
R s
t rsdssds.

The wage rate is given by

w = n


(1 )2



(1)/
,

implying that:

at Vt = 


(1 )2



(1)/
.

Di§erentiating with respect to time,

ȧt
at
+
V̇t
Vt
= 0.

43



The term V̇ equals:

V̇t = rtVt  t,

implying,

ȧt
at
+
rtVt  t
Vt

= 0,

ȧt
at
+ rt 

t
Vt

= 0.

Conjecture that ȧ = 0, so at = a
. The free entry condition,

Vt =
wt
na

implies that Vt is constant, given that wt/nt is constant. We can now proceed

as in the homogenous agent model and show that the real interest rate and the

growth rate is constant and that all equations are satisfied, so that a constant

value of at is a solution.
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