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ABSTRACT

In this paper, we develop a methodology for estimating marginal emissions of electricity demand that
vary by location and time of day across the United States. The approach takes account of the generation
mix within interconnected electricity markets and shifting load profiles throughout the day. Using
data available for 2007 through 2009, with a focus on carbon dioxide (CO2), we find substantial variation
among locations and times of day. Marginal emission rates are more than three times as large in the
upper Midwest compared to the western United States, and within regions, rates for some hours of
the day are more than twice those for others. We apply our results to an evaluation of plug-in electric
vehicles (PEVs). The CO2 emissions per mile from driving PEVs are less than those from driving
a hybrid car in the western United States and Texas. In the upper Midwest, however, charging during
the recommended hours at night implies that PEVs generate more emissions per mile than the average
car currently on the road. Underlying many of our results is a fundamental tension between electricity
load management and environmental goals: the hours when electricity is the least expensive to produce
tend to be the hours with the greatest emissions. In addition to PEVs, we show how our estimates are
useful for evaluating the heterogeneous effects of other policies and initiatives, such as distributed
solar and real-time pricing.
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1.  Introduction 

Electricity generation is the primary source of carbon dioxide (CO2) emissions worldwide and 

accounts for more than 40 percent of domestic emissions in the United States (EPA, 2012). 

Climate policies designed to reduce these emissions from electricity generation include those 

that seek to change the sources of energy toward lower carbon intensities (e.g., coal to natural 

gas, fossil fuels to renewables) and those that attempt to reduce demand for electrical power 

(e.g., efficiency standards, building energy codes). In contrast, the recent focus on climate 

policies that promote plug-in electric vehicles (PEVs) aim to increase demand for electricity, but 

the claim is that electricity  used for charging PEVs will generate less CO2 emissions at power 

plants than at the tailpipes of conventional gasoline-powered vehicles. 

 Despite such claims, quantifying the change in emissions for any activity that affects 

electricity demand is more complicated than it might first appear. There is significant variation 

in the types of electric power plants across the United States, and the emission rates differ 

greatly among them. Coal-fired units emit considerable CO2 compared to natural gas units, and 

even these have significantly higher emission rates than units based on wind, solar, hydro, or 

nuclear energy. The change in emissions due to a change in electricity demand thus depends on 

which plant is providing the power—that is, the plant “on the margin.” Several factors 

complicate the task of identifying the marginal plant that corresponds to a change in electricity 

demand at a particular time and place. Not only is the composition of electricity generating 

units highly variable both across and within regions of the United States; the utilization of many 

units fluctuates with aggregate load on the electricity grid, which changes through the day 

(peak versus off-peak) and times of year (seasonal differences). Importantly, the electricity grid 

is also comprised of interconnected networks where electricity is traded over large distances, 

and there is no definitive way of locating where the electricity demanded at a particular time 

and place is actually generated. 

 Attempting to overcome these challenges, the present paper makes two primary 

contributions. First, we develop and implement a methodology for estimating marginal 

emissions of electricity demand across the United States. The method produces estimates that 

vary by location and time of day. The results, as we will discuss, are essential inputs for 
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understanding the environmental implications of many climate and energy policies. We focus 

on CO2 emissions throughout the paper but also provide an appendix with results for sulfur 

dioxide and nitrogen oxides.  Second, we demonstrate the usefulness of our estimates with a 

detailed application to PEVs. In particular, we evaluate the implications of PEVs on CO2 

emissions and find that greater caution is warranted when considering the supposed 

environmental benefits: given current technology and patterns of electricity generation, PEVs in 

some regions will generate more CO2 emissions per mile traveled than the average vehicle 

currently on the road.1  

 Our approach for estimating the marginal emissions of electricity demand exploits 

several government datasets on hourly emissions, consumption, and generation across the 

United States. For each hour between January 2007 and December 2009, we aggregate CO2 

emissions up to three broad regions based on grid interconnections that account for all possible 

sources of emissions associated with a change in electricity demand at a particular location. We 

then regress the hourly emissions of each interconnection on the hourly electricity 

consumption of its sub-regions based on the North American Electric Reliability Corporation 

(NERC) classifications, controlling for different combinations of fixed effects. 

 The results indicate how marginal changes in electricity consumption within a NERC 

region affect emissions at the interconnection level. The marginal effect, averaging across all 

regions and hours of the day, is 1.21 pounds of CO2 per kilowatt hour (lbs CO2/kWh) consumed. 

However, we find substantial variation among locations and times of day. For example, for the 

average hour of the day, the marginal effect in the upper Midwest is 2.30 lbs CO2/kWh, which is 

almost three times the magnitude of that for the Western United States. For some hours, this 

spatial difference is even larger. Similarly, we see variation in emissions rates by hour of the 

day. For the average American, the cleanest consumption occurs when electricity demand is at 

its peak (7:00 PM). In contrast, emissions rates are about 26 percent greater during low 

demand hours (3:00 AM). These estimates have important implications for understanding 

the environmental consequences of many electricity-shifting policies. If, for example, the 

                                                      
1
 A complete environmental accounting would require an analysis of all power plant and tailpipe emissions that 

occur in addition to CO2. This challenge is discussed in more detail later in the paper.  
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expansion of electricity generated from renewables displaces existing generation sources, the 

estimates of marginal emissions can be used to quantify the avoided pollution and how it 

differs by location and time of day. Similarly, to the extent that policies for energy efficiency, 

smart grids, and more stringent building codes reduce demand for electricity, estimates of the 

marginal emissions will help to understand the impacts and quantify the heterogeneous effects 

of uniform policies. The estimates are also relevant for understanding the impacts of activities 

and policies that increase electricity demand, as with PEVs, the application upon which we 

focus. 

 The charging of PEVs increases demand for electricity and its associated emissions while 

simultaneously reducing emissions from the tailpipes of substitute vehicles. Given current 

technologies, we show how the emissions of charging PEVS differ by region and time of day. 

The CO2 emissions per mile from driving PEVs are less than those from driving a hybrid car in 

the western United States and Texas. In the upper Midwest, however, charging during the 

recommended hours at night implies that PEVs generate more emissions per mile driven than 

even the average car currently on the road. Other regions have marginal emission rates that 

place PEVs somewhere between a hybrid and a comparable economy car. Underlying many of 

our results is a fundamental tension between electricity load management and environmental 

goals, as the hours when electricity is the least expensive to produce tend to be the hours with 

the greatest emissions. In addition to PEVs, we show how our estimates of marginal emissions 

are useful for evaluating the heterogeneous effects of other policies and initiatives related to 

residential solar and real-time pricing.   

 

2.  Background 

Studies of the environmental impacts of electricity consumption have increasingly recognized 

the importance of variability in the “footprint” of electricity generated at different points in 

space and time. Emissions from power plants on the margin are often exceedingly different 

from average emissions over the entire load-generating base. Moreover, the electricity grid’s 

interconnectedness means that those sources on the margin often lie beyond the boundaries of 

a particular state or political entity considering policy changes (Marriott and Matthews, 2005). 
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While no accepted methodology for addressing flows across the U.S. grid has emerged, it is 

clear that different approaches yield significantly different estimates of emissions associated 

with load shifting in a particular location (Weber et al., 2010). Reliable estimates of marginal 

emissions are nevertheless critical for evaluating a range of climate and energy policies, some 

of which we have mentioned and discuss in more detail in Section 6. At this point, however, we 

focus more specifically on our application to PEVs and the policies that seek to promote them. 

 

2.1.  Plug-in Electric Vehicles 

Pure PEVs are battery-driven automobiles that derive all of their energy (with the exception of 

that harnessed from deceleration during driving) from an external source of electricity. They 

have been promoted worldwide as a tool for reducing emissions and mitigating climate change. 

In Europe, the UK Climate Change Committee has recently made electric vehicles a centerpiece 

of its climate change policy (Adam, 2009). The electrification of the transportation sector has 

also been identified as an important tool in battling climate change in the United States 

(Lehmann, 2011). Indeed, California, which is often a pioneer of U.S. environmental policy, 

recently adopted the Advanced Clean Cars Program that will require manufacturers to offer 

PEVs for sale in the state as part of the effort to reach state-level goals in reducing greenhouse 

gas (GHG) emissions over the next twenty years. 

 Significant financial incentives for consumer adoption have also accompanied the 

enthusiasm for PEVs in the United States. At the federal level, there is a consumer tax credit of 

$2,500 per vehicle plus an additional $417 for each kWh of battery capacity in excess of five 

kWhs. The total credit allowed per vehicle is capped at $7,500, and all vehicles currently on the 

market qualify for the full credit.2 A wide and varying range of additional incentives are offered 

at the state level. These include rebates and tax credits for the purchase of vehicles and 

charging infrastructure, as well as access to carpool lanes and free public parking in some 

                                                      
2
 See IRS Notice 2009-89. The credit begins to phase out for a manufacturer’s vehicles when at least 200,000 

qualifying vehicles have been sold for use in the United States. The count is determined based on a cumulative 
basis for sales after December 31, 2009. 
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municipalities.3 While some states offer no incentives, at least four offer incentives of at least 

$5,000, which when combined with the federal program accounts for somewhere between 

one-quarter and one-third of the manufacturer’s suggested retail price of the two most popular 

models on the market, the Nissan Leaf and Chevrolet Volt.4 

 Conventional automobiles generate several key pollutants as a byproduct of gasoline 

combustion. In addition to CO2, these include nitrogen oxides, volatile organic compounds, 

carbon monoxide, and particulate matter. PEVs also generate pollution notwithstanding their 

misleading classification as “zero-emissions vehicles.” PEVs simply trade tailpipe emissions for 

emissions generated at the smokestack of electric power plants. For some pollutants, the 

switch may be beneficial because the technologies and economies of scale are such that the 

costs of pollution control are cheaper at power plants. Moreover, the fact that emissions for 

the criteria pollutants under the Clean Air Act are more tightly regulated in the power sector 

might further ensure some environmental benefits of purchasing a PEV instead of a comparable 

substitute vehicle. 

 The benefits of PEVs are less clear, however, when it comes to CO2 emissions, which are 

currently unregulated in the U.S. electricity sector. The net effect on CO2 emissions of switching 

to PEVs will depend, in part, on the carbon intensities of the power plants supplying the 

electricity for charging. It follows that any emission benefits will necessarily differ across 

charging locations because of the wide variability of emission intensities among power plants. 

Policies that promote charging during certain hours will also have differing effects because of 

the way that plants are utilized differently throughout the day during peak and off-peak times 

of electricity demand.5 Our methodology for estimating marginal emissions accounts for these 

features, and we will use the estimates to make explicit comparisons between PEV emissions at 

different locations relative to comparable substitute vehicles. We will also make comparisons 

                                                      
3
 A comprehensive listing of both state and federal incentives is available online through the Plug in America 

website at http://www.pluginamerica.org/incentives (accessed January 30, 2014). 
4
 The states with subsidies are California ($2500), Colorado ($6000), Florida ($5000), Georgia ($5000), Hawaii 

($5000), Illinois ($4000), Louisiana ($3000), Montana ($500), New Jersey ($4000), Oklahoma ($3000), Oregon 
($5000), Pennsylvania ($3500), South Carolina ($1500), Tennessee ($2500), Utah ($750), Washington ($2000), and 
West Virginia ($7500): http://www.pluginamerica.org/incentives (accessed January 30, 2014). 

5
 The same issues arise when evaluating how the expansion of renewables affects emissions (Borenstein, 2012). 
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among choices based on the electricity generation costs and the social cost of carbon. While 

our analysis is not a comprehensive benefit-cost analysis, which would entail other 

considerations, many of which are difficult to measure, we do discuss the broader policy 

context in Section 5. At this point, we briefly review the existing literature on estimating 

marginal emissions with applications to PEVs. 

 

2.2.  Literature Review 

Despite the widely recognized importance of distinguishing between marginal and average 

electricity generating units and electricity flows across regions, nearly all of the limited 

literature on the environmental impacts of PEVs, most of which has an engineering orientation, 

takes a rather narrow approach. Several studies analyze the benefits of PEVs assuming that a 

particular type of power plant is generating the electricity to charge the vehicles (EPRI, 2002; 

Kliesch and Langer, 2006; Stephan and Sullivan, 2008). As one might expect, these studies find 

that cleaner power plants yield greater environmental benefits. While the magnitudes of the 

differences are illustrative, the analyses are not especially informative for answering questions 

about changes in PEV penetration at particular locations or in the timing of charging during the 

day. Other studies take a less hypothetical approach, yet rely on average emissions rates across 

regions to assess environmental impacts (Samaras and Meisterling, 2008; Michalek et al., 2011; 

Anair and Mahmassani, 2012). While these studies conduct sensitivity analyses around the 

estimates, they eschew efforts to directly assess the emissions profiles associated with the 

marginal power sources that would be used to charge PEVs. 

 Several studies do attend to electricity generation on the margin. McCarthy and Yang 

(2010) and Blumsack et al. (2008) use engineering models to simulate merit-order dispatch (i.e., 

least cost allocation) of electricity. For example, consider a hypothetical marginal cost curve 

containing plants using various fuels (Figure 1). The model assumes least-cost dispatch where 

each low cost unit is run to full capacity. In this example, demand in the early morning hours is 

met, on the margin, by a combined cycle unit with low emissions rates. However, in the 

afternoon, these low cost baseload units are at capacity and thus a slightly dirtier natural gas 

peaking unit is required to operate in order to meet the additional demand. For California, 
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McCarthy and Yang (2010) conclude that PEVs reduce CO2 emissions relative to conventional 

gasoline vehicles and hybrids. Blumsack et al. (2008) conduct their analysis at the level of 

regional transmission organizations (excluding the Western United States), while also 

considering the life-cycle CO₂ emissions of battery manufacturing. They conclude that PEVs are 

no worse, and generally better, than conventional cars in terms of GHG emissions. 

 In contrast to these simulation models, a regression approach to estimating marginal 

emissions can account for details of the electricity industry that might otherwise be ignored, 

including market power, transmission and operating constraints, and imperfect information 

about market conditions. In one study, Siler-Evans et al. (2012) use a regression approach to 

estimate marginal emissions by region and time of day. They use the U.S. Environmental 

Protection Agency’s (EPA) Continuous Emission Monitoring System (CEMS) data (described in 

Section 3.1 below) and regress each NERC region’s hourly change in aggregate emissions on its 

hourly change in gross fossil-fuel generation. While this approach is an improvement on other 

methods, it is only valid under the following assumptions: (a) all consumption in a region is met 

by power plants in the same region; (b) only power plants in the CEMS data supply marginal 

electricity output; (c) aggregate fossil-fuel generation is exogenous; and (d) the method’s ad 

hoc corrections for line losses are constant over location and time. In contrast, the approach 

that we apply in this paper is based directly on the relationship between aggregate emissions 

and end-use consumption, and we allow the marginal producer to be located anywhere in the 

corresponding grid interconnection. 

 Finally, two other studies are worth mentioning in tandem because they comprise what 

is perhaps most closely related to our analysis here. In addition to considering specific 

electricity-generation technologies, Stephan and Sullivan (2008) apply the estimates of marginal 

emissions from Holland and Mansur (2008) to analyze PEVs. Holland and Mansur (2008) focus 

on the environmental effects of real-time pricing, and they regress daily emissions at the NERC 

level on the first and second moments of the within-day distribution of consumption in the 

same NERC region. While the validity of these estimates are subject to some of the same 

assumptions as those in Siler-Evans et al. (2012), Stephan and Sullivan’s (2008) use of them 
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suggests that PEVs have emission rates between 50 and 75 percent that of hybrid vehicles (not 

plugged in).  

 In what follows, we describe our method, which differs from the existing literature in 

several important ways. Unlike previous analyses, we estimate hour-of-day marginal emission 

rates. Moreover, the aggregation of emissions at the level of grid interconnections means that 

the estimates account for how demand shocks in some regions may affect marginal emissions 

in others. Finally, we discuss how the estimates for CO2 (along with sulfur dioxide and nitrogen 

oxides) can be used to evaluate a variety of policies, in addition to our primary focus on PEVs. 

 

3.  Data and Preliminaries 

This section describes the various data sets used in our analysis, presents basic summary 

statistics, and makes preliminary comparisons between the emission rates of electric power 

plants that might charge PEVs relative to comparable vehicles currently on the road. 

 

3.1.  Data on Emissions and Electricity   

Using data over the three year period of 2007 through 2009, the most recent period for which 

all data are available, we combine data sets from several federal agencies: the EPA, the Energy 

Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The 

EPA’s CEMS data is our primary source of emissions data for all fossil-fuel generating units with 

at least 25 megawatts (MW) of generating capacity.6 These data include information on CO2, 

sulfur dioxide, and nitrogen dioxide emissions and are available hourly for the most recent 

period of January 2007 through December 2009. Also included in the CEMs data, which we use 

here, is each unit’s hourly gross generation, i.e., the total amount of electrical power that a unit 

produces for internal use and for sale. We obtain hourly electricity consumption data for the 

same time period from FERC Form 714, which is reported at the level of 200 planning areas 

                                                      
6
 Technically, a generating unit is a subset of a power plant that typically consists of a boiler, generator, and 

smoke stack. EPA (2009) provides detailed information about the CEMS program and more specifics about which 
units are included in the data (see http://www.epa.gov/airmarkets/emissions/continuous-factsheet.html, accessed 
January 31, 2014). 

http://www.epa.gov/airmarkets/emissions/continuous-factsheet.html
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across the nation.7 We also use data from Form 714 on the Hourly System Lambda, which is an 

estimate of the marginal cost of electricity generation for a given hour in each planning area.8 

Two other sources of data are useful for some basic calculations of summary statistics. One is 

EIA Form 923 that includes net generation (only electricity for sale) at the power plant level by 

month for 2007 through 2009.9 The other is EPA’s Emissions & Generation Resource Integrated 

Database (eGRID), which contains data on the emissions rates of power plants based on net 

generation for 2007 and 2009.10 

 The unit of observation varies widely among these data sources. For instance, the EPA 

data are available at the level of generating units, while the FERC data are reported for planning 

areas that range in size from the city of St. Cloud, Minnesota to all of the Pennsylvania, Jersey, 

Maryland (PJM) Power Pool, the largest control area covering 13 states from New Jersey to 

Chicago. At various points of our analysis, and to different degrees, we aggregate and merge 

the data sets to make them comparable and account for important institutional features about 

electricity grid interconnections.11  

 Figure 2 provides a general overview of the U.S. electrical grid with an illustration of 

how the United States is partitioned into three interconnections (Western, ERCOT, and Eastern) 

and eight NERC regions (FRCC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC).12 Interconnections are 

                                                      
7
 These data are available online at http://www.ferc.gov/docs-filing/forms/form-714/overview.asp (accessed 

January 30, 2014). 

8
 In restructured competitive electricity markets, the lambdas are simply market prices. The system lambdas 

are not available for one of the interconnection/NERC regions (ERCOT), so for this one we use reported prices as 
the measure of marginal generation costs, available at http://www.ercot.com/mktinfo/prices/mcpea (accessed 
January 30, 2014). 

9
 These data are available online at http://www.eia.gov/electricity/data/eia923/ (accessed January 30, 2014). 

10
 Data is not available for 2008, and information about eGrid and the data sets are available online at 

http://www.epa.gov/cleanenergy/energy-resources/egrid/ (accessed January 30, 2014). 

11
 All of the emissions and consumption data are for the United States only. Canada (and Mexico to a much 

smaller degree) does trade power with the United States (see Figure 2). But most of the power coming from 
Canada is hydroelectric and sold over large direct current lines that are at capacity most hours. This suggests that 
changes in consumption in the United States would have a small effect on production decisions in Canada, and any 
changes in production would have negligible effects on short-run CO2 emissions, which is the focus of our analysis. 

12
 The acronyms correspond with the following full names: Electric Reliability Council of Texas (ERCOT), Florida 

Reliability Coordinating Council (FRCC), Midwest Reliability Organization (MRO), Northeast Power Coordinating 
Council (NPCC), ReliabilityFirst Corporation (RFC), SERC Reliability Corporation (SERC), Southwest Power Pool (SPP), 
Texas Regional Entity (TRE), and Western Electricity Coordinating Council (WECC). 
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important because they identify the entire regions over which electricity is traded, so changes 

in demand at any location—from, for example, a new PEV—could affect the generation of a 

marginal plant anywhere within the corresponding interconnection. Note that the Western and 

ERCOT interconnections each have only one NERC region, and we will follow convention and 

refer to the different designations interchangeably as WECC and ERCOT, respectively. In 

contract, the Eastern interconnection encompasses six NERC regions, and we will decompose 

parts of our analysis accordingly to obtain greater spatial resolution in our results. 

 Table 1 provides summary statistics at the level of interconnections and NERC regions, 

and looking across them gives a sense of the regional heterogeneity. The first three columns 

report average hourly CO2 emissions, electricity consumption, and net electricity generation. 

Looking first at the three interconnections, we see that the Eastern interconnection is more 

than four times the size of WECC, which is approximately twice the size of ERCOT. It is also the 

case that consumption tends to be lower than generation, and the difference can be explained 

by line losses due to the transport of electricity over power lines. The similarity of consumption 

and net generation for the Eastern interconnection is because it imports from Canada roughly 

three gigawatts on average.  

  Among the NERC regions of the Eastern interconnection, the differences between 

consumption and net generation indicate which regions are importers or exporters of electric 

power. The pattern is such that Florida (FRCC), the upper Midwest (MRO) and NPCC are 

importers, the Mid-Atlantic region (RFC) and the Southeast (SERC) are exporters, and the 

Oklahoma region (SPP) is close to neutral. In addition to this variation across regions, there 

exists variation within regions.13 

 Table 1 also reports several measures of the CO2 emissions rate for each region. The 

consumption-based emission rate is CO2 emissions (first column) divided by electricity 

consumption (second column). The ERCOT and Eastern interconnections have similar rates, just 

under 1.3 lbs CO2/kWh, while WECC is substantially lower at 0.85. Within the Eastern 

interconnection NERC regions, the rates range from a high of 1.64 in SPP to a low of 0.57 in 

NPCC. These rates are somewhat misleading, however, because they do not account for 

                                                      
13

 The EIA (2011) display net power flows across sub-NERC region (see 
http://www.eia.gov/todayinenergy/detail.cfm?id=4270, accessed January 29, 2014). 

http://www.eia.gov/todayinenergy/detail.cfm?id=4270
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electricity being traded across regions: a region that imports power will have an artificially low 

rate, while an exporter’s rate will be too high. The generation-based emissions rates are CO2 

emissions (first column) divided by electricity generation (third column).  These rates take trade 

into account, and for this reason, they are the ones typically used when evaluating electricity 

emissions. We now see that the generation-based emissions rate in MRO is quite close to that 

of SPP, as the rates in importing (exporting) regions have risen (fallen). As a simple point of 

comparison, we report in the last column of Table 1 eGRID’s emissions rates by region based on 

net generation. While the time period differs because 2008 is missing, the numbers are quite 

similar to our generation-based estimates. In both cases, the rates are informative, but they are 

not especially useful for understanding how changes in electricity demand will affect 

emissions—as they both represent average rather than marginal emission rates. 

 

3.2. Preliminary Comparisons Among Vehicles 

When plugging in a PEV, or engaging in other activities that increases demand for electricity, 

any power plant in the same interconnection could, in principle, provide the marginal power. 

Yet, as mentioned previously, the CO₂ emissions rates associated with power plants differ 

greatly, ranging from zero for hydropower and nuclear plants to substantial for many coal-fired 

plants. To determine how the heterogeneity of emissions affects the environmental 

implications of PEVs, we consider the emission rates of particular plants and make preliminary 

comparisons between the potential emissions from charging PEVs and driving substitute 

vehicles. 

 We begin with the EPA CEMS data on hourly CO2 emissions and gross generation for the 

fossil-fired units over the entire sample period 2007-2009. Because we are interested in the 

marginal emissions of consumption (rather than generation), we make two adjustments to 

gross generation to derive consumption-based emission rates. First, we convert gross to net 

generation based on the reported difference between the two for units in the EIA Form 923 

data of 2008, a year for which both numbers are available. We find that approximately 4.59 

percent of the gross generation is consumed on-site, and we make this constant adjustment to 

all units and hours to obtain an estimate of hourly net generation. Second, to focus on 
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consumption, we must also account for electricity that is lost through transmission and 

distribution, and we use Stephan and Sullivan’s (2008) estimate of 9.6 percent to make this 

conversion. Hence, the emissions rate of interest for our analysis is a unit’s hourly CO2 

emissions divided by its net transmitted generation, defined as (gross 

generation)/(1.04591.096). 

Figure 3 plots the cumulative distribution and probability density functions for the 

hourly net transmitted (i.e., consumption-based) emissions rates for all of the fossil-fired units 

in the CEMS data. The mean emissions rate is 2.10 lbs CO2/kWh with upper and lower quartiles 

of 1.42 and 2.40. The peaks of the probability density function illustrate the different emissions 

rates among the three primary technologies of fossil units, which, from low to high emissions 

rates, are combined-cycle gas turbines, single-cycle gas turbines, and coal-fired boilers.  

 We now consider how this distribution of emission rates can be used to compare the 

CO2 emissions of electric cars against those of substitute vehicles currently in use. The two most 

popular PEVs on the market are the Chevrolet Volt and the Nissan Leaf, and these vehicles use 

approximately 36 kWh and 34 kWh per 100 miles, respectively.14 Taking the midpoint and 

normalizing per mile, we summarize the current PEV technology as requiring 0.35 kWh/mile. 

This number multiplied by any one of the emission rates illustrated in Figure 3 yields the 

emission rates of PEVs in terms of lbs CO2/mile if charging occurred with electricity from that 

particular unit in a given hour. For the purposes of comparison with other vehicles, however, 

we use the 0.35 kWh/mile as a conversion to report all vehicle emissions in terms of  lbs 

CO2/kwh, as this make makes comparisons straightforward using Figure 3. 

 The average fuel economy of the U.S. fleet of light-duty, gasoline-powered vehicles is 

21.7 miles per gallon (mpg) (Department of Transportation, 2009). Because combusting a gallon 

of gasoline releases 19.6 lbs CO2 (EPA, 2011), the average light-duty gasoline vehicle emits 0.90 

lbs CO2/mile. To make this number comparable with the emission rates of PEVs in Figure 3, we 

simply divide by 0.35 miles/kWh to obtain 2.58 lbs CO2/kWh. This number is shown as the right-

                                                      
14

 The U.S. Department of Energy reports fuel economy statistics for both conventional and electric cars, and 
these statistics are available online at www.fueleconomy.gov.  It is also worth noting that a range of driver 
behaviors -- such as heating and cooling usage, acceleration rates, and deceleration rates -- can lead to realized 
fuel economy that differs from those published by the EPA (Green et al., 2006).  The degree to which these factors 
impact the efficiency of PEVs relative to gasoline vehicles is not well understood at present. 

http://www.fueleconomy.gov/
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most vertical reference line in Figure 3, and it represents the average emissions rate of light-

duty gasoline vehicles in the 2009 U.S. fleet. One way to interpret the cumulative distribution 

function in Panel A is that a PEV will emit less CO2 than the average light-duty vehicle assuming 

the PEV’s charge comes from a fossil-fired unit that is below the 87th percentile in emissions.   In 

contrast, and more importantly, a PEV could emit more CO2 if its charge comes from a fossil-

fired unit above that percentile in emissions—roughly 13 percent of all electricity-generating 

units. While these numbers illustrate how PEVs might compare with other vehicles in terms of 

their emissions, the comparisons are potentially misleading for several reasons. First, they are 

not informative about the probability of which units might be on the margin. Second, they do 

not distinguish among hours of the day, over which there is substantial variation in emissions 

rates. Third, they imply that only one unit could be on the margin, when in fact several could be 

on the margin simultaneously or over the course of a PEV’s charge of several hours. Finally, the 

numbers assume that the substitute for a PEV is a random draw from the population of all light-

duty vehicles. While we address the first three of these concerns in our subsequent empirical 

analysis, we first make comparisons with vehicles that are more likely to be substitutes for 

PEVs.  

 We consider the alternatives of a comparable economy car and a hybrid. Using 

characteristics of the Nissan Leaf, a set of comparable gasoline vehicles is the Toyota Corolla, 

Honda Civic, Chevrolet Cruze, and Ford Fiesta, and this set has a 2012 fuel economy average of 

31 mpg.15 Converting these units, as described above, implies an emissions rate of 1.79 lbs 

CO2/kWh, corresponding to the middle reference line in Figure 3, and the interpretation is that 

approximately 41 percent of the fossil units that might charge PEVs over any hour have higher 

emission rates. Turning to the hybrids, we consider the leading seller of a Toyota Prius, which 

for 2012 has a combined fuel economy rating of 50 mpg, or for purposes of comparison an 

emissions rate of 1.13 lbs CO2/kWh. As shown by the left-most reference line in Figure 3, only 

12 percent of the fossil-fired units over all hours have emission rates lower than this, implying 

                                                      
15

 The six characteristics of the Leaf are head room (41.2 inches front/ 37.3 inches rear), hip room (51.5 in. front 
/ 50 in. rear), leg room (42.1 in. front / 31.1 in. rear), shoulder room (54.4 in. front / 52.5 in. rear), 5 seating 
capacity, and 14.5 cubic feet of cargo volume. The combined fuel economy is 30 mpg for the Corolla and Cruze, 32 
mpg for the Civic, and 33 mpg for the Fiesta. 
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much scope for PEVs to have higher emission rates than hybrid vehicles. In sum, these 

comparisons demonstrate the importance of identifying the marginal power plant for 

evaluating the environmental implications of PEVs, as well as the choice of substitute vehicles.16 

 
4.  Estimating Marginal Emissions 

We begin with models to estimate the marginal rate of CO2 emissions from electricity 

consumption within each of the three interconnections (WECC, ERCOT, Eastern).17 Considering 

each interconnection separately, tc  denotes an interconnection’s aggregate hourly CO2 

emissions in hour t . The contemporaneous quantity of electricity demanded in the 

interconnection is tq .18 Our general approach is to regress each interconnection’s hourly 

emissions on its hourly consumption. While in most markets that one might study, quantity 

demanded and thereby emissions would depend on price, we can treat tq  as exogenous in this 

case because wholesale electricity prices are not borne by consumers. Hence, the derived 

demand for wholesale electricity is perfectly inelastic, with few minor exceptions that pose no 

difficulty for our analysis.  

 The specific models that we estimate, one for each of the three interconnections, have 

the form 

  (1) t

h

mh

m

hmth

h

ht MONTHHOURqHOURc   
 

24

1

36

1

24

1

, 

where hHOUR  is an indicator variable for hour h of the day and mMONTH  is an indicator 

variable for month m of the sample. Therefore, the hmα  coefficient is a fixed-effect for each 

                                                      
16

 Here we have simply chosen likely alternatives to PEVs, but a more formal empirical approach could be used 
to identify the most likely substitutes. While we leave these estimates to future research, it is worth remarking 
that the value of such an exercise will increase with more data if and when electric vehicles become more 
common. 

17
 While we focus on CO2 emissions throughout the paper, the approach generalizes to sulfur dioxide, nitrogen 

oxides, and gross generation as well. We estimate these results and report them in appendix tables A1, A2, and A3. 

18
 Prior to aggregating emissions and demand for all econometric models, we convert all data into eastern 

standard time for the Eastern interconnection, central standard time for ERCOT, and western standard time for 
WECC.  
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hour of day by month of sample.19 We estimate equation (1) using ordinary least squares, and 

we report Newey-West standard errors based on a 24-hour lag to account for serial correlation. 

The coefficients of interest are 
241,..., , which provide estimates of the marginal emissions of 

consumption for each hour of the day within an interconnection. When estimating equation (1), 

along with others reported here, we include data for only weekdays. We exclude weekends for 

two reasons. First, patterns of electricity demand and therefore generation differ between 

weekends and days of the week, meaning that hourly coefficients may systematically differ. 

Second, our primary application to PEVs is more suited to days of the week, when commuting 

patterns are more regular.20  

 We also provide a decomposition analysis for the Eastern interconnection, as it consists 

of six distinct NERC regions that we denote with subscripts i . Specifically, we estimate more 

spatially explicit relationships between where consumption takes place and its associated 

marginal emissions. Accordingly, for the Eastern interconnection only, we estimate the 

following model: 

  (2) 
t
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, 

where jREG  is an indicator for region j of the Eastern interconnection. The only difference is 

that we include right-hand-side variables for electricity demand separately for each NERC 

region, while keeping the aggregate Eastern interconnection emissions on the left-hand-side. As 

a result, within the same model, we estimate marginal emissions for each hour of the day 

separately for each of the six NERC regions in the Eastern interconnection. A useful feature of 

the model is that marginal emissions are calculated for each NERC region while controlling for 

electricity consumption in other regions. The reason for keeping emissions aggregated at the 

                                                      
19

 We also estimated models with different sets of fixed effects to test robustness of our results. Specifically, 
we estimated models with fixed effects based on day of sample, day of sample by hour of day, day of sample by 
seasonal hour of day, and hour of day by week of sample. In general, the results display qualitatively similar 
patterns across hours of the day and regions. In cases where they differ, the results are statistically insignificant. 

20
 We did estimate parallel models that include data for all days of the week, and the results do not differ in 

meaningful ways. These other results are available upon request. 
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interconnection level is to account for the trading of electricity that occurs between NERC 

regions within the interconnection.21 

 Table 2 reports the results of all regression models for marginal CO2 emissions. The 

first three columns are the estimates of specification (1) for each interconnection. To facilitate 

interpretation and comparison, we also illustrate results of these three models in Figure 4, 

which plots the marginal emissions (with 95-percent confidence intervals) against the hour of 

day for the WECC, ERCOT, and Eastern interconnections. Figure 4 shows substantial variation in 

the marginal emissions rates over both location and time of day. Within interconnections, the 

unweighted average across hours of the day are 0.80 for WECC, 0.96 for ERCOT, and 1.29 for 

Eastern. The largest difference is that Eastern has a CO2 emissions rate more than 60 percent 

larger than WECC, reflecting a greater reliance on coal in the East. The variation in marginal 

emissions throughout the day tends to follow a familiar pattern in all interconnections: high 

during off-peak hours and low during on-peak hours. This pattern occurs because coal-fired 

units, which have higher emission rates, are most commonly used to meet base-level and off-

peak electricity demand; whereas, natural gas units, which have relatively low emissions rates, 

are often brought online to meet peak demand. This pattern of fuel shifting explains why 

emission rates tend to be higher at night (midday for WECC) and lower during periods of peak 

demand in the morning and evening.  

 Returning to Table 2, the next six columns report the coefficient estimates of 

specification (2) for each of the NERC regions within the Eastern interconnection. These 

estimates indicate even greater variability in marginal emissions by location. The highest rates 

occur in MRO (the upper Midwest), which at 2.3 lbs CO2/kWh is nearly three times the 

emissions rate of WECC. Among the Eastern NERC regions, the variation over time of day also 

tends to follow the general pattern of high (low) emissions rates during off-peak (on-peak) 

                                                      
21

 In terms of other disaggregated analyses, one could explore how hourly demand shocks in each planning 
area affect hourly emissions at each generating unit, but such an approach would suffer from omitted variable 
biases or multicollinearity. For example, if one were to regress a power plant’s emissions on the local planning area 
demand alone, this would ignore the fact that neighboring region’s consumption is correlated with the local 
demand. The bias could be in either direction, depending on the region’s net importing status. At the other 
extreme, a regression of U.S. aggregate emissions on consumption in each of the planning areas may be noisy 
given the high correlation among consumption variables. 
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hours. The last column of Table 2 reports an average of the coefficients across all NERC regions 

weighted by the hourly electricity consumption in each region. These numbers provide a sense 

for the variation in marginal emissions among hours of the day for the entire United States.  

The appendix examines the robustness of these results to different sets of fixed effects.22 

 In Section 5, with our application to electric cars, we will take advantage of all the hourly 

estimates of marginal emissions rates for each NERC region. We will also discuss how they are 

useful for other applications. At this point, however, we turn to some more general 

observations about the importance of considering the marginal emissions of electricity 

consumption rather than the average emissions of electricity generation. 

 Panel A of Figure 5 illustrates the unweighted daily average of marginal emissions for all 

eight NERC regions. We also report a weighted average of these estimates of 1.21 lbs CO2/kWh, 

where the weights are hourly consumption in each region. This “total” column is not an 

estimate and is for comparison purposes only. We also show 95-percent confidence intervals 

for our estimates. Here again we see that the marginal rates are low in WECC and high in MRO. 

For the purposes of comparison, Panel A also includes the generation-based average emissions 

rates from Table 1, along with confidence intervals. Because generation-based, average 

emissions rates are the most readily available, they are the ones most commonly used to 

evaluate the environmental impacts of changes in electricity demand. Yet they are conceptually 

incorrect because the real measure that matters is the marginal (rather than average) emission 

rate for consumption (rather than generation). The comparisons in Panel A of Figure 5 show the 

bias associated with using the average, generation-based emission rates. An important finding 

is that the bias is not always in the same direction. While, over the course of the entire day, 

marginal emissions are greater than average emissions (with statistical significance) in FRCC, 

                                                      
22

 A supplementary appendix in Graff Zivin et al. (2014) includes additional material. We find the results robust to 
including lagged consumption. Using sharp bounds, we do not find evidence that hydropower biases our 
estimates. Estimates using fossil-fired plants’ gross generation as the dependent variable suggest that other plants 
are marginal some of the time. We decompose the variance of the main variables and find that half of the variation 
in hourly prices remains once we control for the fixed effects in our main specification. Finally, we compare our 
results with average emissions rates for each hour of the day and find less temporal variation and a notable 
increase in emissions in ERCOT (which has little low-carbon inframarginal technology like nuclear power and run-
of-river hydropower). 
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MRO, and NPCC, the opposite result holds in SERC and SPP. The magnitude of the differences is 

also quite substantial in MRO, NPCC, and SPP. 

 In Panel B of Figure 5, we summarize Siler-Evans et al.’s (2012) results as a further point 

of comparison. Recall that their approach differs from ours; for each NERC region, they regress 

the hourly change in aggregate emissions on the hourly change in gross generation measured 

by the CEMS data. Hence, their estimates focus on how local changes in generation affect local 

emissions, and thereby do not account for how electricity is traded with the Eastern 

interconnection. In general, we find greater differences between marginal and average 

emission rates, and the levels themselves differ by meaningful amounts in some cases.  

 There are also several reasons why the emission rate estimates based on CEMS gross 

generation may be biased for consumption-based applications. First, gross generation by a 

power plant includes power used by the plant that is not sold, so the emissions rate of pounds 

of pollutant per MWh produced will understate the rate based on what is sold. Second, 

generation does not account for transmission line losses that are approximately nine percent of 

total generation. This implies that the gross-generation-based rate will further understate the 

consumption-based rate. Third, small fossil-fired power plants are not included in CEMS, 

implying that the true effect will be larger still. Note that this potential bias is present in our 

results as well. Fourth, non-fossil generation could be on the margin and is not captured by 

either analysis.23 

 

5.  Electric Vehicles 

We now use our estimates of the marginal emissions rates for a more careful analysis of the 

CO2 emissions associated with electric cars. Automobile manufacturers and electric utilities 

suggest charging PEVs between midnight and 5 AM.24 Calculating the average marginal 

emissions over this time period for all NERC regions using the coefficient estimates in Table 2 

                                                      
23

 Some technologies—nuclear, solar, run-of-river hydro, and wind—are unlikely to be on the margin as they 
have low marginal costs. Yet, hydroelectric reservoirs (the largest renewable) are used to follow load (i.e., are 
marginal), but they have a constraint on cumulative production during a dry season. In the West, for example, 
precipitation is stored over the winter, spring, and early summer to be used when prices are highest in the late 
summer. 

24
 For example, see http://sdge.com/clean-energy/electric-vehicles/ev-rates (accessed January 30, 2014). 



 
 

18 

yields rates of 0.82 for WECC, 1.10 for ERCOT, 1.21 for SPP, 1.24 for FRCC, 1.25 for NPCC, 1.38 

for SERC, 1.47 for RFC, and 2.64 for MRO. The overall mean based on the Total column is 1.35 

lbs CO2/kWh. For purposes of comparison, recall that the emissions rates of the potential 

substitute vehicles are 1.13 for the hybrid, 1.79 for the economy car, and 2.58 for the light-duty 

fleet average. These numbers imply that a PEV charging in MRO between midnight and 5 AM 

will generate more CO2 emissions than driving a comparable distance with a car representing 

the light-duty fleet average. Moreover, for all regions with the exceptions of WECC and 

ERCOT—that is, the entire Eastern interconnection—charging a PEV at the recommended time 

will generate greater emissions than driving a comparable hybrid car.     

 Figure 6 enables a broader set of comparisons with the total CO2 emissions of charging a 

PEV at different times of the day in each region. The figure is based on the assumption that the 

PEV charges for four hours and draws 13 kWh to drive 35 miles, as these are the specifications 

for the Chevrolet Volt. The figure illustrates, for example, that charging a PEV in the WECC 

between midnight and 4 AM would emit an average of just over 10 lbs of CO2. While we 

consider non-overlapping 4-hour intervals throughout the day for illustrative purposes, other 

intervals and durations are straightforward to derive using the results in Table 2. Figure 6 

illustrates the heterogeneity of emissions that PEVs will have both among regions and within a 

region over times of the day. WECC and MRO are on opposite ends of the range with the low 

and high emissions, respectively. While emissions tend to be higher with charging at night in 

most regions, this pattern does not always hold, as in NPCC where there are many oil-fired units 

used to meet peak demand. Importantly, the figure shows that the recommended charging in 

the hours after midnight, which are those when electricity demand is the lowest, tend to be the 

hours with the greatest emissions in most NERC regions. Also shown in Figure 6 are the 

reference lines for the emissions associated with driving the substitute vehicles 35 miles. WECC 

is the only region where PEVS have lower emissions than a hybrid for charging over all hours of 

the day. The national average numbers imply that hybrids emit less CO2 than a PEV for charging 

over all hours expect for 5 – 8 PM (Figure 6), which is a time of peak demand.  

 Beyond accounting for the CO2 emissions of PEVs are economic considerations about 

the costs of electricity generation and emissions. Knowing these costs is essential for setting 
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optimal policy about where to deploy PEVs and when to charge them. As part of a more 

comprehensive analysis, we consider two components of the social costs of charging PEVs. First 

is the marginal external cost of the CO2 emissions itself. We value these costs using the 

marginal damage estimates of $21 per metric ton of CO2 as recommended by the Interagency 

Working Group on the Social Cost of Carbon (2010) for regulatory impact analysis (see also 

Greenstone et al., 2013). Second are the marginal generation costs of producing the electricity. 

We estimate these costs with the Hourly System Lambdas (or prices in the case of ERCOT) 

described in Section 3.1. These marginal generation costs are reported for each hour of the day 

and NERC region in Appendix Table A3. Note that we are not including residential retail prices 

for electricity in these partial social cost calculations, as they represent transfers rather than 

economy-wide opportunity costs. We nevertheless make some simple comparisons below 

based on residential prices for electricity, as they do matter for individuals deciding whether to 

purchase a PEV. Moreover, we refer to these as partial social cost calculations because not 

included are the costs of other pollutants, which would matter in ways that we also discuss in 

Section 5. 

 Figure 7 shows the social costs of daily electricity generation and CO2 emissions of 

different charging times and NERC regions. The bottom part of each bar represents the costs of 

generation (13 kWh multiplied by the average marginal costs over that period). The top part of 

each bar is the social cost of carbon (SCC) ($21 per metric ton converted to lbs and multiplied 

by the emissions for the corresponding times and regions in Figure 6). Several things are worth 

noting. First, the generation costs of charging a PEV are substantially larger than the social costs 

of carbon (at least at $21 per metric ton) for all time periods and regions with the exception of 

MRO, where generation costs are relatively low in addition to emissions being relatively high. 

Second, within regions, the time profile of generation costs for charging a PEV  tends to be the 

opposite of that for emissions: it is substantially more costly to generate electricity for charging 

during the day and peak times when demand is high and emissions are low. Third, the time 

periods that minimize generation costs are generally those that minimize the sum of generation 

and CO2 damage costs, emphasizing again the relatively small magnitudes of the costs of CO2 

emissions. 
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 The preceding analysis underscores the fundamental tradeoff of PEVs as a cost-effective 

approach to reducing GHG emissions. The regions and times of day when electricity generation 

is relatively less expensive—and therefore more favorable for charging PEVs—are also the 

regions and times of day with the greatest CO2 emissions. What is more, even accounting for 

the environmental damage, the estimate of the SCC is not enough to change the fact that 

minimizing costs tends to mean maximizing CO2 emissions. This does, however, raise the 

question of how high the SCC would need to be in order to align the objectives of minimizing 

both costs and emissions. To make this comparison, we consider results for the national 

average. While minimizing costs implies a recommended charging time of midnight to 4 AM 

(Figure 7), minimizing emissions implies a recommended charging time of 4 to 8 PM. Only if the 

SCC were at least $250 per metric ton would the recommended charging time be 4 to 8 PM for 

both objectives. This number is indeed quite high. 

 It is important to emphasize that while these calculations focus on CO2 emissions, they 

do not account for other externalities (positive and negative) of driving an electric car. These 

would include the reduction of local pollutants generated on roadways, which themselves 

exhibit substantial regional heterogeneity (Muller and Mendelsohn, 2009). While power plants 

also contribute pollutants like sulfur dioxide and nitrogen oxides, these pollutants are regulated 

under a cap-and-trade system, meaning that any change in emissions at one location would be 

offset by a change in emissions elsewhere. The environmental effects would thus depend on 

the spatial distribution of the marginal costs and benefits of abatement (Burtraw and Mansur, 

1999). A further factor to consider is that driving behavior may change if the marginal cost of 

driving falls (i.e., the rebound effect). The per gallon equivalent cost of driving an electric car is 

estimated at approximately $2/gallon.25 It follows that, as with the Corporate Average Fuel 

Economy Standards, the rebound effect may occur and cause increased congestion, local 

emissions, and accidents (Portney et al., 2003).26 While a comprehensive benefit-cost analysis 

                                                      
25

 EIA (2011) reports an average residential electricity rate of $0.12/kWh. For the average electric car, this is 
$0.042 per mile. For a gasoline car to pay this rate, gasoline prices would need to be $0.86/gallon for an average 
car, $1.38 for a commuter car, or $2.10 for a Prius. 

26
 A careful life-cycle analysis that tends to the embodied carbon in both PEVs and their substitutes is also 

needed to ensure comprehensiveness. 
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of electric cars would need to take account of these different effects, they are beyond the 

scope of our analysis here, which is to demonstrate how our estimates of marginal emissions 

provide a novel and important input to the process.  

 

6.  Other Applications  

The basic framework that we developed in Section 4 allows empirical estimation of the 

marginal emission rates of electricity consumption at different times of day and geographic 

locations across the United States. We have shown how these estimates are critical for 

understanding the environmental and economic implications of PEVs. We now consider how 

the same estimates can be used to examine the impacts of other policies and technologies that 

shift electricity demand: distributed solar and real-time pricing. In each case, we apply the 

empirical estimates of marginal emissions to provide illustrative calculations. While the 

approach is “back-of-the-envelope” and therefore abstracts from many important features and 

nuances of each case, our primary purpose is not to offer comprehensive analyses of each 

policy or technology. Instead, our aim is to show how one might apply our methodology more 

generally to a range of research questions. 

 

6.1.  Distributed Solar  

Much like PEVs, renewable sources of energy are promoted as an important tool for addressing 

climate change and other environmental problems associated with the combustion of fossil 

fuels. Among the different alternatives, solar photovoltaic systems convert solar energy into 

electricity with virtually no emissions, ignoring those associated with the production and 

installation of the hardware. Distributed solar installations are those of smaller scale located at 

or near the site of primary consumption, such as arrays placed on residential or commercial 

rooftops. Of particular interest here are the “behind-the-meter” installations because they 

serve on-site electricity consumption rather than production that is fed directly onto the grid. 

The aggregate capacity of these installations has grown significantly in recent years, increasing 

1,400 percent between 2000 and 2010 (Barbose et al., 2011).       
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 The environmental and economic implications of reducing electricity demand—from 

PEVs as well as solar installations—depends on where and when the shifts occur. In the case of 

photovoltaics, the timing of these reductions will follow the trajectory of the sun, ramping up in 

the morning, peaking by mid-afternoon, and tapering off in the evening. Thus, the benefits of 

distributed solar deployment will depend importantly on the marginal emissions and costs of 

electricity generation in the relevant electricity market during daylight hours, and our 

methodological approach is well suited for quantifying these effects. 

 Consider a simple, illustrative example of a residential solar system that produces 1 kWh 

of electricity each hour from 7 AM to 7 PM. Using the hourly coefficients from Table 2, we can 

readily estimate the reduction in CO2 emissions that would occur because of displaced 

electricity demand in various parts of the country. By simply summing coefficients over the 

relevant hours, we find, for example, that the solar installation would avert 9.8 lbs of CO2/day 

for a household in the WECC, while the comparable number is 14.7 lbs of CO2/day for the 

Eastern interconnection. Scaling emissions to the annual level, this yields 3,359 and 5,347 lbs 

for the two regions, respectively.27 While in both regions the solar generated electricity occurs 

during hours when marginal emissions are relatively low, the differences indicate that the 

environmental benefits of distributed solar (assuming comparable generation) are significantly 

higher in the East, where the marginal emissions are greater from electricity on the grid. 

Monetizing these benefits, using the social cost of carbon estimate of $21 per metric ton 

(discussed previously), we value the emission reductions at $34 and $51 per year in the WECC 

and Eastern interconnections, respectively. These benefits are, however, lower than the 

additional benefits of avoided generation costs, which can be derived in similar fashion using 

the hourly marginal generation costs in Table A3. Interestingly, the cost savings in the Eastern 

                                                      
27

 Recall that our estimates of marginal emissions are based on data for weekdays only. It is, however, 
straightforward to replicate our analysis using all days of the week or by estimating separate coefficients for 
weekdays and weekends and taking a weighted average. This might be a more reasonable approach for 
understanding the implications of distributed solar and other possible applications. While the full set of these 
results is available upon request, it is worth mentioning that pooling all days of the week has little affect on the 
results. For example, with estimates based on all seven day per week, comparable numbers for the emission 
reductions are 3,173 and 5,252 for the WECC and Eastern interconnections, respectively.  
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interconnection are also larger than those in the WECC, with magnitudes of $251 versus $227 

per household per year.28  

 Thus, this simple example shows how our methodology can be used to estimate regional 

differences in the benefits of distributed solar installations. While our comparisons suggest that 

the benefits may be significantly larger in the East compared to the West, more detailed 

analyses would also need to account for regional differences in generation based on the 

amount of sunshine.29   

 

 

6.2.  Real-Time Pricing  

Real-time electricity pricing has long been a focus of economists and electric utilities as an 

effective market-based tool for smoothing generation by shifting demand from peak to off-

peak hours.30 Our previous analysis shows, however, that reducing generation costs with a shift 

from peak to off-peak times of the day leads to increased CO2 emissions in many parts of the 

country.31 Indeed, incorporating our estimates of marginal emissions and generation costs into 

the design of price schedules would facilitate the use of real-time pricing to balance reductions 

in generation costs with environmental externalities, and thus promote overall social welfare.   

 While a complete analysis of real-time pricing is beyond the scope of our paper, we 

illustrate the core tradeoffs with another simple comparison between the WECC and Eastern 

interconnections. Consider a simple scenario in which real-time pricing moves 1 kWh of a 

household’s electricity demand from 6 PM to 4 AM. That is, the pricing is such that demand 

moves from one of the peak hours with the highest generation costs to one of the off-peak 

                                                      
28

 These estimates of the cost savings are also based on weekdays only, but using estimates based on all seven 
days of the week make little to no difference ($251 and $227 for Eastern and WECC, respectively).  

29
 Though we do not discuss it explicitly, the steps outlined here can apply to wind power that is used for 

behind the meter consumption as well. Recent analyses consider wind power, but with very different 
methodologies and for generation that connects directly to the grid.  See Callaway and Fowlie (2009), et al. (2013), 
Cullen (2013), and Novan (2011). 

30
 See, for example, Borenstein (2005), Borenstein and Holland (2005), and Wolak (2010). 

31
 This point has been made in other studies with more specialized contexts. See, for example, Kotchen et al. 

(2006) for a study of how the differences between peak and off-peak emissions affect the environmental benefits 
of converting hydroelectric dams from peaking to run-of-river flows. 
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hours with the lowest generation costs. Using our estimates in Table A3, we find that the cost 

savings per household on an annual basis would be $5.68 for the WECC and $9.97 in the East. 

But along with these changes in generation costs are changes in CO2 emissions. For the WECC, 

emissions remain virtually unchanged, increasing 3.65 lbs/year, with an estimated social cost of 

3.5 cents; whereas, for the East, emissions increase more substantially by 105.85 lbs/year, with 

an estimated social cost of approximately 1 dollar.  

 The design of optimal real-time pricing from a social welfare perspective should thus 

account for such different effects across all hours of the day and within each region. Only in this 

way can price signals be sent that balance the real-time social costs and benefits. This is 

important because, as we have shown, increases in demand in the off-peak hours at night 

generally increase emissions outside of the West, where dirtier electricity sources tend to be on 

the margin at those times of day. Despite the differences across the illustrative policies and 

technologies that we have considered, each serves to highlight some of the fundamental 

tensions between the objectives of load management on the electrical grid, minimizing 

generation costs, and minimizing environmental externalities. 

 

7.  Conclusion 

Electricity generation is responsible for more CO2 emissions and other air pollutants than any 

other sector in the U.S. economy. Accordingly, a primary focus of existing and proposed 

environmental policy is to change patterns of electricity supply and demand in ways that 

reduce emissions. There is, however, substantial geographic and temporal variation in the 

emission rates of power plants. This heterogeneity combined with the electricity grid’s 

interconnected networks for trading and distributing electricity pose difficult challenges for 

quantifying the environmental and economic implications of electricity-shifting policies. The 

difficulty arises because there is no definitive way to identify which power plants are generating 

electricity on the margin to meet demand at a particular location and time.  

 Our primary contribution in this paper is the development of a methodology to estimate 

marginal emissions of electricity demand that vary by location and time of day across the 

United States. The basic approach is to regress hourly emissions at the grid interconnection 
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level on hourly electricity consumption for subsets of the corresponding NERC sub-regions. This 

level of aggregation takes into account the generation mix within interconnected electricity 

markets and the shifting load profiles throughout the day. Applying the methodology to 

emissions and consumption data for 2007 through 2009 (the most recent available), we find 

substantial variation among locations and times of day. For example, marginal CO2 emission 

rates are more than three times as large in the upper Midwest compared to the western United 

States. Moreover, within regions, marginal emission rates for some hours of the day are more 

than twice those for other hours. While we focus our analysis on CO2, which is a uniformly 

mixing GHG, we report the results for sulfur dioxide and nitrous oxides as well. 

 Estimates of the spatially and temporally heterogeneous marginal emission rates are 

critical for evaluating a range of energy and environmental policies and initiatives. We apply our 

results to an evaluation of PEVs in particular. The charging of PEVs increases demand for 

electricity and its consequent emissions, while simultaneously reducing emissions from the 

tailpipes of substitute vehicles that otherwise would have been driven. Our results show how 

the emissions of charging PEVS differs by region and hours of the day. In some regions (the 

west and Texas), the CO2 emissions from driving PEVs are less than those from driving a hybrid. 

However, in other regions (the upper Midwest), charging during the recommended hours of 

midnight to 4 AM implies that PEVs generate more emissions than even the average car 

currently on the road. Underlying this result is a fundamental tension between load 

management of electricity and achieving environmental goals. The hours when electricity is the 

least expensive to produce tend to be the hours with the greatest emissions. In addition to 

PEVs, we show how our estimates of marginal emissions are useful for evaluating other polices 

and initiatives related to distributed solar and real-time pricing.  It would be relatively 

straightforward to extend this analysis to other energy shifting policies, such as those targeting 

energy efficiency or the deployment of large-scale energy storage.  The latter may be 

particularly important, as storage will likely facilitate additional ‘dirty’ generation during off-

peak hours to be dispatched during peak ones. 

 Finally, while our estimates and applications provide new insight, there are caveats and 

limitations that should be recognized. The general methodology holds the fuel mix for 
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electricity generation constant and as such should be used for short- to medium-run analyses. 

While it is straightforward to replicate our approach as new data becomes available, a long run 

analysis should also attend to the endogenous changes in fuel mix as well as upgrades and 

replacements of existing electricity generating units.  Each year, about one to two percent of 

capacity retires and is replaced. Some of this replacement may be induced by policy changes 

intended to alter current energy consumption patterns.  For example, natural gas prices have 

fallen substantially over the past few years due to the recession and the increased production 

of natural gas from hydrofracturing and horizontal drilling techniques. This has resulted in more 

production from natural gas power plants. In spring 2012, natural gas and coal plants each 

produced about one-third of U.S. electricity (compared to their historic averages of 20% and 

50%, respectively). In general, the relative prices of coal and natural gas affect the dispatch of 

power plants and thus marginal emissions rates (see Cullen and Mansur, 2013). 

 In terms of our application to PEVs and other electricity-shifting policies, the analyses 

are admittedly incomplete for full policy evaluations. We focus on CO2 emissions, their social 

costs, and comparisons with electricity generation costs. But other pollutants, along with 

important features and nuances in each case, should be taken into account to make these 

analyses more comprehensive. Doing so will require careful attention to the heterogeneity of 

marginal damages and locations of other pollutants across space and time, as well as a clear 

understanding of the institutional structures and constraints under which those pollutants are 

regulated (e.g., under a cap-and-trade regime). These concerns comprise a future research 

agenda. 
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Figure 1: Hypothetical marginal cost curve for electricity supply.  

(Source: http://www.eia.gov/todayinenergy/detail.cfm?id=7590, accessed January 30, 
2014) 
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Figure 2: Grid interconnections and NERC regions, acronyms defined in Section 3.1  

(Source: NERC website at www.nerc.com, accessed January 30, 2014) 
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Panel A 

 
 

Panel B 

 
 

Figure 3: Cumulative distribution function (Panel A) and kernel probability density function 
(Panel B) of fossil-fired power, net transmitted generation (i.e., consumption-based) CO2 

emission rates, in comparison with light-duty average, economy, and hybrid vehicle alternatives 
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Figure 4: Marginal CO2 emissions (lbs/kWh) and 95-percent confidence intervals, by 
interconnection and hour of day 
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Panel A: Marginal estimates for NERC regions based on unweighted average of hourly coefficients in Table 2 (and 
95-percent confidence intervals), marginal estimate for the total derived using weighted average by hourly 

regional electricity consumption, average generation-based estimates taken from Table 1    

 
 

Panel B: Generation-based estimates from Siler-Evans et al. (2012) and total category derived from authors’ 
calculation using weighed average by regional electricity consumption  

        
Figure 5: Comparison of marginal and average CO2 emission rates by NERC regions 
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Figure 6: Daily CO2 emissions of different charging times and NERC regions for a PEV to drive 35 

miles, with comparisons to possible substitute cars 
 
 
 

 
Figure 7: Social costs of daily electricity generation and CO2 emissions of different charging 

times and NERC regions for a PEV to drive 35 miles 
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  Table 1: Summary statistics by interconnection and NERC regions 

 

  Electricity  Net Electricity Emissions Rate (lbs/kWh) 

Region 
CO2 Emissions 

(million lbs/hour) 
Consumption  
(million kWhs) 

Generation  
(million kWhs) 

Consumption-
Based  

Generation- 
Based  

eGRID 
(2007, 2009)  

WECC 70.5 82.7 84.7 0.852 0.832 0.974 

 (10.4) (13.2) (6.6) (0.071) (0.103)  

ERCOT 45.0 35.3 38.3 1.278 1.176 1.217 

 (8.6) (8.2) (5.3) (0.065) (0.164)  

Eastern 427.4 339.4 339.5 1.261 1.257 1.329 

 (71.7) (58.0) (30.3) (0.063) (0.163)  

FRCC 26.4 25.9 24.0 1.016 1.097 1.199 

 (7.0) (6.7) (3.3) (0.043) (0.231)  

MRO 40.0 33.8 24.5 1.204 1.632 1.671 

 (5.5) (6.8) (1.9) (0.168) (0.187)  

NPCC 19.2 33.6 30.4 0.568 0.627 0.724 

 (5.3) (6.2) (2.7) (0.062) (0.147)  

RFC 138.0 109.9 112.3 1.256 1.227 1.400 

 (24.0) (18.8) (10.3) (0.079) (0.170)  

SERC 163.9 111.8 123.3 1.472 1.327 1.308 

 (28.9) (23.7) (12.2) (0.059) (0.180)  

SPP 39.8 24.4 24.8 1.640 1.606 1.675 

 (6.8) (5.1) (3.2) (0.123) (0.190)  

Total 542.9 457.4 462.5 1.190 1.172 1.255 

 (86.1) (76.4) (40.4) (0.063) (0.142)  

Notes: Reported numbers are means and standard deviations (in parentheses), with the exception of the last 
column. Rows above the first dotted line are interconnections, and those below are the separate NERC regions 
for the Eastern interconnection. CO2 emissions are hourly from EPA’s CEMS data; electricity consumption is 
hourly from FERC Form 714; and net electricity generation is average hourly generation based on monthly 
reports from EIA Form 923. The consumption- and generation-based emissions rates are simply the ratio of the 
first column over the other respective column. The eGrid emissions rate is based on simply aggregating the 
data set’s emissions and net generation over both 2007 and 2009.  
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Table 2: Regression results of marginal CO2 emissions (lbs/kWh), by interconnection, NERC 
regions, and time of day 

 Interconnection  Eastern NERC region Total 

Hour WECC ERCOT Eastern  FRCC MRO NPCC RFC SERC SPP U.S. 

1 AM 0.83 1.08 1.45  1.33 1.91 0.73 1.73 1.28 1.35 1.31 

 (0.07) (0.04) (0.02)  (0.18) (0.58) (0.31) (0.18) (0.09) (0.47)  

2 AM 0.84 1.11 1.47  1.22 2.83 1.32 1.40 1.44 0.92 1.36 

 (0.08) (0.04) (0.02)  (0.16) (0.24) (0.25) (0.11) (0.06) (0.27)  

3 AM 0.84 1.13 1.47  1.19 2.82 1.41 1.37 1.45 1.11 1.37 

 (0.08) (0.04) (0.02)  (0.15) (0.24) (0.26) (0.11) (0.06) (0.28)  

4 AM 0.80 1.12 1.47  1.21 2.81 1.46 1.38 1.43 1.24 1.36 

 (0.08) (0.04) (0.02)  (0.15) (0.25) (0.27) (0.11) (0.06) (0.29)  

5 AM 0.77 1.07 1.44  1.26 2.81 1.35 1.47 1.30 1.44 1.35 

 (0.08) (0.04) (0.02)  (0.15) (0.28) (0.35) (0.13) (0.07) (0.33)  

6 AM 0.71 1.00 1.37  1.44 2.67 1.18 1.58 1.05 1.75 1.30 

 (0.07) (0.03) (0.03)  (0.16) (0.31) (0.45) (0.16) (0.08) (0.36)  

7 AM 0.66 0.95 1.26  1.48 2.80 1.36 1.41 0.87 1.74 1.22 

 (0.06) (0.03) (0.03)  (0.17) (0.39) (0.45) (0.18) (0.09) (0.39)  

8 AM 0.68 0.94 1.21  1.52 2.35 1.24 1.46 0.76 1.74 1.17 

 (0.06) (0.03) (0.03)  (0.16) (0.37) (0.35) (0.16) (0.09) (0.40)  

9 AM 0.77 0.94 1.23  1.75 2.15 1.21 1.46 0.79 1.41 1.18 

 (0.07) (0.03) (0.03)  (0.18) (0.31) (0.28) (0.12) (0.09) (0.37)  

10 AM 0.85 0.92 1.26  1.81 2.37 1.42 1.25 0.99 1.16 1.21 

 (0.07) (0.03) (0.02)  (0.21) (0.29) (0.23) (0.10) (0.07) (0.34)  

11 AM 0.88 0.92 1.28  1.65 2.49 1.50 1.08 1.20 0.97 1.22 

 (0.05) (0.02) (0.02)  (0.22) (0.24) (0.20) (0.08) (0.06) (0.29)  

12 PM 0.88 0.91 1.27  1.33 2.43 1.52 0.99 1.32 0.91 1.20 

 (0.04) (0.02) (0.02)  (0.20) (0.21) (0.16) (0.07) (0.06) (0.27)  

1 PM 0.86 0.92 1.25  1.12 2.38 1.45 0.99 1.32 0.86 1.18 

 (0.04) (0.02) (0.02)  (0.18) (0.18) (0.16) (0.06) (0.06) (0.25)  

2 PM 0.83 0.92 1.22  0.97 2.28 1.41 1.01 1.27 0.87 1.15 

 (0.03) (0.02) (0.02)  (0.17) (0.17) (0.17) (0.06) (0.07) (0.23)  

3 PM 0.82 0.92 1.20  0.89 2.17 1.45 1.01 1.21 0.95 1.12 

 (0.03) (0.02) (0.02)  (0.16) (0.17) (0.18) (0.07) (0.07) (0.21)  

4 PM 0.80 0.92 1.19  0.89 2.18 1.40 1.03 1.18 0.92 1.11 

 (0.03) (0.02) (0.02)  (0.15) (0.17) (0.18) (0.07) (0.07) (0.20)  

5 PM 0.79 0.91 1.18  0.93 1.99 1.33 1.09 1.16 0.89 1.10 

 (0.03) (0.02) (0.02)  (0.15) (0.16) (0.17) (0.07) (0.07) (0.19)  

6 PM 0.79 0.90 1.18  1.04 1.78 1.31 1.14 1.11 0.96 1.09 

 (0.03) (0.02) (0.02)  (0.14) (0.14) (0.17) (0.06) (0.06) (0.18)  

7 PM 0.80 0.90 1.18  1.15 1.69 1.16 1.22 1.07 0.92 1.09 

 (0.03) (0.02) (0.02)  (0.14) (0.15) (0.17) (0.06) (0.05) (0.19)  

8 PM 0.81 0.89 1.18  1.23 1.64 1.11 1.27 1.04 0.90 1.09 

 (0.04) (0.02) (0.02)  (0.15) (0.18) (0.21) (0.07) (0.05) (0.22)  

9 PM 0.80 0.89 1.19  1.28 1.81 1.28 1.21 1.07 0.87 1.11 

 (0.05) (0.02) (0.02)  (0.15) (0.17) (0.20) (0.07) (0.05) (0.21)  

10 PM 0.81 0.91 1.23  1.35 2.03 1.05 1.35 1.05 0.77 1.14 

 (0.05) (0.03) (0.02)  (0.15) (0.18) (0.20) (0.07) (0.05) (0.24)  

11 PM 0.82 0.95 1.30  1.46 2.27 1.06 1.43 1.12 0.72 1.21 

 (0.07) (0.03) (0.02)  (0.16) (0.19) (0.23) (0.08) (0.06) (0.26)  

12 AM 0.84 1.02 1.39  1.34 2.59 1.06 1.51 1.23 0.75 1.28 

 (0.08) (0.03) (0.02)  (0.17) (0.21) (0.25) (0.09) (0.06) (0.26)  

R2 
0.95 0.97 0.99  0.99 -- -- -- -- --  

Notes: The dependent variable in all models is hourly CO2 emissions. The three interconnection models are estimates of specification (1). 
The Eastern NREC region columns are coefficient estimates from the same model, specification (2). All models include hour-of-day by 
month-of-sample fixed effects. The sample has 18,792 hourly observations which is the number of hours in 261 weekdays per year over 
the three-year period we analyze. Newey-West standard errors with a 24-hour lag are reported in parentheses, and all coefficients are 
statistically significant at the 99-percent level. The total U.S. column is an average of the coefficients across all sub-regions weighted by 
the region’s hourly electricity demand. 
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Appendix 

  This appendix examines several extensions to the main results. Appendix tables A1 and 
A2 examine sulfur dioxide (lbs/MWh) and nitrogen oxides (lbs/MWh), respectively. Table A3 
reports the hourly average marginal private costs of electricity generation ($/MWh) for each 
NERC region and hour of day. 
 
 Figure A1 summarizes several tests for the robustness of our main findings to the choice 
of month-of-sample by hour-of-day fixed effects. We report results from a week-of-sample by 
hour-of-day fixed effects model, a season-of-sample by hour-of-day fixed effects model, and 
day-of-sample fixed effects and seasonal hour-of-day fixed effects model. The first two models 
are identified off of across-day within hour variation (like the main results) and have similar 
estimates of marginal emissions. The third model uses within day variation suggesting that 
dynamics do matter if a model uses this variation. Finally, we include results from a regression 
without fixed effects. Table A6 reports the amount of variation that each set of fixed effects 
absorbs. For each interconnection, we see that about 13-16 percent of the carbon dioxide 
emissions’ variation remains after controlling for our main set of fixed effects (namely, month-
of-sample by hour-of-day). We also show how these fixed effects fit variables more directly 
related to the market equilibrium: aggregate consumption (load) and market price for a single 
market within each interconnection. 
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Appendix Figures and Tables 
 

 
Figure A1: Robustness of Fixed Effects 
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Table 1A: Regression results of marginal sulfur dioxide emissions (lbs/MWh), by 
        interconnection, NERC regions, and time of day 

 Interconnection  Eastern NERC region 

Hour WECC ERCOT Eastern  FRCC MRO NPCC RFC SERC SPP 

1 AM 0.53 1.46 6.11  4.62 3.73 0.69 10.22 4.78 1.18 

 (0.08) (0.19) (0.17)  (1.30) (2.42) (1.61) (0.83) (0.62) (1.99) 

2 AM 0.58 1.71 6.19  4.47 5.11 2.75 9.40 5.22 0.68 

 (0.09) (0.20) (0.18)  (1.18) (1.66) (1.47) (0.71) (0.55) (1.62) 

3 AM 0.63 1.83 6.17  4.38 4.25 3.08 9.34 5.12 2.32 

 (0.09) (0.21) (0.19)  (1.24) (1.89) (1.53) (0.74) (0.51) (1.73) 

4 AM 0.52 1.77 6.11  4.73 3.73 3.76 9.24 4.91 3.22 

 (0.08) (0.20) (0.19)  (1.20) (2.12) (1.66) (0.78) (0.49) (1.82) 

5 AM 0.47 1.44 5.96  5.30 4.33 4.79 8.74 4.57 4.29 

 (0.08) (0.18) (0.18)  (1.17) (2.17) (1.77) (0.77) (0.42) (1.89) 

6 AM 0.36 1.11 5.45  6.24 3.93 6.12 8.09 3.49 5.65 

 (0.07) (0.15) (0.17)  (1.18) (2.24) (1.98) (0.76) (0.43) (2.01) 

7 AM 0.34 0.84 4.73  6.71 4.35 5.59 7.77 1.92 5.89 

 (0.06) (0.12) (0.18)  (1.19) (2.55) (2.48) (1.02) (0.49) (2.06) 

8 AM 0.26 0.68 4.36  6.23 5.30 6.09 7.41 1.16 5.55 

 (0.07) (0.13) (0.17)  (1.04) (2.33) (2.45) (0.98) (0.46) (2.14) 

9 AM 0.22 0.55 4.35  6.79 7.59 5.52 6.64 1.64 1.89 

 (0.07) (0.13) (0.17)  (1.21) (2.02) (2.06) (0.75) (0.48) (2.01) 

10 AM 0.27 0.46 4.43  6.99 10.73 5.75 4.97 2.83 -0.60 

 (0.08) (0.13) (0.16)  (1.32) (1.99) (1.88) (0.74) (0.54) (1.88) 

11 AM 0.23 0.40 4.31  6.27 12.38 5.20 3.56 3.95 -1.97 

 (0.06) (0.12) (0.17)  (1.33) (1.89) (1.90) (0.82) (0.57) (1.78) 

12 PM 0.23 0.35 4.04  4.79 11.99 4.58 2.76 4.49 -2.07 

 (0.07) (0.11) (0.20)  (1.24) (1.80) (1.76) (0.82) (0.62) (1.83) 

1 PM 0.20 0.33 3.81  3.96 10.85 4.47 2.57 4.29 -1.10 

 (0.06) (0.10) (0.21)  (1.17) (1.71) (1.68) (0.77) (0.70) (1.96) 

2 PM 0.15 0.32 3.64  3.45 9.65 4.42 2.71 3.80 0.11 

 (0.06) (0.09) (0.22)  (1.10) (1.70) (1.52) (0.73) (0.73) (1.86) 

3 PM 0.14 0.34 3.56  3.17 9.03 4.72 2.71 3.48 1.30 

 (0.05) (0.10) (0.23)  (1.08) (1.68) (1.37) (0.67) (0.70) (1.71) 

4 PM 0.14 0.31 3.52  3.10 8.78 4.40 2.76 3.45 1.28 

 (0.05) (0.10) (0.23)  (1.03) (1.61) (1.31) (0.67) (0.67) (1.50) 

5 PM 0.16 0.29 3.52  3.35 7.81 3.95 3.08 3.41 1.08 

 (0.05) (0.09) (0.23)  (1.00) (1.60) (1.29) (0.68) (0.66) (1.39) 

6 PM 0.19 0.26 3.56  4.04 6.84 3.96 3.55 3.10 1.25 

 (0.05) (0.09) (0.20)  (0.99) (1.47) (1.23) (0.65) (0.60) (1.30) 

7 PM 0.17 0.26 3.62  4.88 6.97 4.08 3.92 2.80 0.65 

 (0.05) (0.10) (0.17)  (0.99) (1.33) (1.21) (0.58) (0.51) (1.26) 

8 PM 0.17 0.24 3.69  5.34 6.83 2.76 4.58 2.74 0.00 

 (0.06) (0.11) (0.16)  (1.06) (1.37) (1.26) (0.61) (0.51) (1.30) 

9 PM 0.20 0.29 3.85  5.69 7.28 2.21 5.11 2.74 -0.82 

 (0.06) (0.12) (0.16)  (1.18) (1.53) (1.36) (0.72) (0.56) (1.35) 

10 PM 0.29 0.39 4.22  5.67 7.53 0.88 6.39 2.88 -1.28 

 (0.08) (0.13) (0.16)  (1.20) (1.48) (1.38) (0.70) (0.54) (1.49) 

11 PM 0.37 0.61 4.93  5.51 8.00 1.65 7.36 3.74 -1.95 

 (0.09) (0.15) (0.15)  (1.27) (1.52) (1.48) (0.76) (0.56) (1.51) 

12 AM 0.43 0.92 5.65  4.74 7.31 2.03 8.50 4.64 -1.56 

 (0.10) (0.16) (0.15)  (1.29) (1.69) (1.48) (0.73) (0.54) (1.55) 

R2 
0.81 0.67 0.98  0.98 -- -- -- -- -- 

Notes: The dependent variable in all models is hourly sulfur dioxide emissions. The three interconnection models are estimates of 
specification (1). The Eastern NREC region columns are coefficient estimates from the same model, specification (2). All models 
include 18,792 hourly observations and hour-of-day by month-of-sample fixed effects. Newey-West standard errors with a 24-
hour lag are reported in parentheses. 
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Table A2: Regression results of marginal nitrogen oxides emissions (lbs/MWh), by 
        interconnection, NERC regions, and time of day 

 Interconnection  Eastern NERC region 

Hour WECC ERCOT Eastern  FRCC MRO NPCC RFC SERC SPP 

1 AM 0.71 0.56 1.87  0.48 2.29 -1.27 2.80 1.95 0.04 

 (0.08) (0.03) (0.10)  (0.43) (0.55) (0.66) (0.43) (0.29) (0.61) 

2 AM 0.78 0.58 1.93  0.29 2.12 -0.79 2.76 2.08 0.33 

 (0.10) (0.03) (0.11)  (0.41) (0.75) (0.70) (0.42) (0.26) (0.70) 

3 AM 0.79 0.59 1.95  0.24 1.90 -0.68 2.72 2.12 0.77 

 (0.11) (0.03) (0.11)  (0.42) (0.82) (0.71) (0.39) (0.25) (0.74) 

4 AM 0.73 0.60 1.97  0.32 1.86 -0.51 2.67 2.11 1.29 

 (0.10) (0.03) (0.11)  (0.41) (0.88) (0.69) (0.35) (0.23) (0.81) 

5 AM 0.64 0.57 1.95  0.43 2.13 0.10 2.40 2.08 1.90 

 (0.10) (0.04) (0.11)  (0.41) (0.97) (0.78) (0.30) (0.21) (0.86) 

6 AM 0.55 0.55 1.83  0.98 2.15 0.85 2.07 1.79 3.06 

 (0.09) (0.04) (0.09)  (0.39) (0.95) (0.70) (0.25) (0.17) (0.82) 

7 AM 0.44 0.63 1.65  1.40 1.99 1.11 1.80 1.48 3.48 

 (0.08) (0.03) (0.07)  (0.44) (0.97) (0.64) (0.27) (0.16) (0.82) 

8 AM 0.39 0.63 1.59  1.66 2.10 1.50 1.49 1.42 3.51 

 (0.07) (0.03) (0.06)  (0.45) (0.85) (0.56) (0.26) (0.15) (0.80) 

9 AM 0.40 0.55 1.57  1.67 2.56 2.09 1.09 1.55 2.92 

 (0.07) (0.03) (0.06)  (0.46) (0.73) (0.56) (0.25) (0.16) (0.79) 

10 AM 0.41 0.52 1.53  1.44 3.17 2.40 0.67 1.82 2.14 

 (0.07) (0.03) (0.07)  (0.43) (0.68) (0.53) (0.25) (0.17) (0.77) 

11 AM 0.41 0.55 1.46  1.21 3.68 2.42 0.44 1.93 1.35 

 (0.06) (0.03) (0.07)  (0.45) (0.67) (0.52) (0.26) (0.17) (0.67) 

12 PM 0.43 0.60 1.38  0.89 3.64 2.26 0.45 1.86 1.02 

 (0.05) (0.04) (0.07)  (0.44) (0.62) (0.45) (0.23) (0.19) (0.60) 

1 PM 0.43 0.72 1.32  0.91 3.19 2.13 0.56 1.66 1.30 

 (0.04) (0.05) (0.07)  (0.43) (0.58) (0.42) (0.20) (0.21) (0.58) 

2 PM 0.43 0.85 1.28  0.98 2.87 2.16 0.71 1.38 1.50 

 (0.04) (0.06) (0.07)  (0.42) (0.57) (0.37) (0.20) (0.22) (0.56) 

3 PM 0.43 0.92 1.26  1.09 2.68 2.24 0.79 1.19 1.75 

 (0.04) (0.07) (0.07)  (0.42) (0.55) (0.34) (0.20) (0.24) (0.54) 

4 PM 0.41 0.94 1.24  1.06 2.70 2.21 0.82 1.12 1.49 

 (0.04) (0.07) (0.07)  (0.41) (0.55) (0.33) (0.20) (0.25) (0.53) 

5 PM 0.40 0.91 1.24  1.11 2.23 1.96 1.01 1.07 1.46 

 (0.04) (0.06) (0.07)  (0.39) (0.51) (0.32) (0.21) (0.26) (0.50) 

6 PM 0.40 0.81 1.25  1.29 2.01 1.91 1.12 1.03 1.37 

 (0.04) (0.05) (0.07)  (0.37) (0.49) (0.35) (0.22) (0.26) (0.46) 

7 PM 0.40 0.72 1.28  1.50 1.95 1.82 1.28 1.02 1.10 

 (0.04) (0.04) (0.06)  (0.37) (0.47) (0.38) (0.27) (0.26) (0.47) 

8 PM 0.39 0.66 1.32  1.53 2.28 1.90 1.20 1.17 0.67 

 (0.05) (0.04) (0.06)  (0.39) (0.49) (0.38) (0.24) (0.24) (0.48) 

9 PM 0.40 0.60 1.34  1.33 2.49 1.42 1.25 1.30 0.44 

 (0.06) (0.04) (0.06)  (0.42) (0.57) (0.38) (0.29) (0.26) (0.49) 

10 PM 0.47 0.53 1.40  1.06 2.05 -0.01 1.94 1.23 0.56 

 (0.07) (0.03) (0.06)  (0.43) (0.59) (0.52) (0.40) (0.27) (0.53) 

11 PM 0.55 0.51 1.54  0.80 2.11 -0.37 2.27 1.45 0.07 

 (0.08) (0.03) (0.07)  (0.44) (0.61) (0.62) (0.48) (0.29) (0.55) 

12 AM 0.64 0.51 1.73  0.33 2.29 -0.52 2.48 1.81 -0.15 

 (0.09) (0.03) (0.08)  (0.46) (0.67) (0.66) (0.51) (0.31) (0.61) 

R2 
0.90 0.90 0.99  0.99 -- -- -- -- -- 

Notes: The dependent variable in all models is hourly nitrogen oxides emissions. The three interconnection models are estimates 
of specification (1). The Eastern NREC region columns are coefficient estimates from the same model, specification (2). All models 
include 18,792 hourly observations and hour-of-day by month-of-sample fixed effects. Newey-West standard errors with a 24-
hour lag are reported in parentheses. 
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Table A3: Marginal generation costs of electricity ($/MWh), by NERC region and hour of day 
 

 Interconnection  Eastern NERC region  Total 

Hour WECC ERCOT Eastern  FRCC MRO NPCC RFC SERC SPP  U.S. 

1 AM 39.88 41.08 37.15  42.18 19.01 47.31 35.54 40.27 37.28  37.92 
2 AM 38.81 32.22 35.39  40.00 17.11 43.97 33.20 40.07 33.84  35.76 
3 AM 38.25 28.30 33.56  37.82 16.22 41.73 31.37 38.19 31.90  34.01 
4 AM 38.60 27.08 33.38  36.97 15.95 40.22 32.65 37.42 30.49  33.85 
5 AM 39.88 29.22 35.33  39.55 17.24 42.01 37.42 37.17 30.00  35.70 
6 AM 42.19 37.01 41.54  44.62 21.42 46.84 48.86 40.10 31.44  41.31 
7 AM 44.97 40.94 48.90  48.07 27.66 60.31 58.49 44.94 35.44  47.55 
8 AM 46.58 50.00 51.94  54.19 33.87 63.45 57.48 49.83 42.11  50.81 
9 AM 48.33 42.63 52.32  56.55 36.80 63.39 55.98 50.71 44.20  50.85 

10 AM 49.90 49.31 55.19  61.93 38.25 65.49 61.25 51.37 46.12  53.77 
11 AM 51.28 50.86 56.94  65.44 40.63 68.13 62.88 52.13 48.57  55.44 
12 PM 52.55 50.37 57.49  69.18 41.77 67.17 62.44 52.97 50.19  56.04 
1 PM 52.54 52.00 58.31  72.47 42.07 66.10 63.39 53.75 51.03  56.76 
2 PM 53.24 63.57 58.92  74.41 41.43 67.03 63.83 54.60 51.08  58.26 
3 PM 53.57 74.12 58.23  74.81 39.84 64.19 62.53 54.96 51.35  58.66 
4 PM 53.62 77.32 58.37  75.15 38.67 64.08 63.07 55.00 51.96  59.03 
5 PM 53.99 85.85 58.59  73.49 37.76 68.64 62.66 55.39 51.71  59.92 
6 PM 54.18 77.64 60.71  71.95 38.61 73.04 66.62 56.78 51.62  60.84 
7 PM 53.27 68.99 61.36  71.72 41.23 70.51 67.50 57.88 52.64  60.48 
8 PM 51.74 54.55 61.15  72.55 42.25 69.55 67.37 57.24 52.65  58.93 
9 PM 49.55 51.15 58.18  68.73 41.12 68.03 61.04 56.33 52.11  56.10 

10 PM 47.27 43.44 51.36  62.46 35.86 59.47 48.06 54.18 51.14  50.05 
11 PM 45.24 56.27 45.62  53.72 28.31 51.99 41.69 50.10 48.98  46.34 
12 AM 42.50 41.90 41.71  46.32 23.19 49.03 37.99 47.29 43.72  41.86 

Notes: The system lambda data are from FERC Form 714, with the exception of those for ERCOT, which are market clearing prices (which are 
available: http://www.ercot.com/mktinfo/prices/mcpea accessed January 30, 2014). The eastern and total columns are an average across all 
of the corresponding  sub-regions weighted by the hourly electricity demand. 
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Supplementary Appendix to Working Paper 18462 

  This supplementary appendix examines several extensions to our main results. Table S1 
reports hourly marginal gross generation (GWh) from fossil-fired power plants measured by 
CEMS. If these units were always marginal, then the coefficient should be approximately 1.1 to 
1.2, reflecting the fact that gross generation includes electricity used by each power plant 
(about five to ten percent of total production usually) as well as line losses. As the table shows, 
many other units are marginal some of the time. These other units could be small fossil units, 
hydropower, or potentially nuclear. 
 

Table S2 examines whether there are dynamic effects that would influence the main 
results. Namely, we examine whether excluding the lagged load measures has biased our 
estimates of the simultaneous marginal emissions. This is done by including the change in load 
from last hour to the current hour and using a Chow test to examine whether the coefficients 
on hourly load are statistically different from those in the main model. The variable, Delta Q, is 
significant at the 5% level in the eastern interconnection but not in the other interconnections. 
The Chow tests are insignificant at the 10% level. 
 
 Table S3 reports the variance decomposition.  We find that, even with fixed effects, 
there is substantial variation remaining to identify the variables of interest. The table reports 
the percent of the variation explained by several sets of fixed effects (namely the R-squared 
from a regression) for three variables: load, price, and carbon emissions. The variable that firms 
most care about, price, shows about half of the variation remains after accounting for our 
preferred set of fixed effects (month of sample for each hour of the day).  
 

Figure S1 illustrates graphically and in more detail the pattern of how electricity tends to 
flow around the United States. Although the graph is based on 2010 data and finer NERC sub-
regions, a similar energy import-export pattern is evident. The important point of the figure for 
the purposes of our analysis is to recognize how electric power flows substantially within the 
grid interconnections, as this is critical for estimating the marginal emissions of changes in 
electricity demand at a particular location. 
  
 Figure S2 tests for omitted variable bias. Specifically, we consider whether unobserved, 
non-fossil generation that can be dispatched (in particular, hydropower dams) is correlated 
with load. Firms allocate water across those hours with the highest prices (or marginal revenue 
when firms have market power). While dams can be marginal in a given hour, there are 
constraints on the total amount of water that can be dispatched in a season. This correlation 
will attenuate the marginal emission estimates. To test for this omitted variable bias, we 
develop sharp bounds on these estimates akin to those of Lee (2009). For each hour of the day, 
we exclude the 10 percent of the sample with the highest (lowest) levels of load to set the 
upper (lower) bound. This 10 percent level approximates the share of electricity coming from 
hydropower. During our sample time period, this share was 22.7%, 0.2%, and 2.7% in the 
WECC, ERCOT, and the East, respectively. 
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 Figure S3 compares the main marginal effects with average rates. We decompose the 
consumption-based emissions rates shown in Table 1 into hourly averages. Notably, the 
marginal rates display greater temporal variation within a day than do the average rates. As 
previously shown in Table 1 and Figure 5, the daily mean of the average rates are similar to the 
daily mean of the marginal rates in the East and WECC (-2% and 6% different respectively). 
However, in ERCOT, the averages are about 33% greater than the marginal rates. This reflects 
the fact that Texas has limited low-carbon baseload generation, like hydropower and nuclear 
power, compared with the rest of the U.S. 
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Figure S1: Annual 2010 net power flows for across NERC sub-regions  

(Source: EIA figure based on FERC Form 714 data, 
http://www.eia.gov/todayinenergy/detail.cfm?id=4270 accessed January 30, 2014) 
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Figure S2: Sharp Bounds Tests 
 

 
Figure S3: Comparison of Average and Marginal Emissions  
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Table S1: Regression results of gross generation (GWh), by interconnection, NERC regions, 
        and time of day 

 Interconnection  Eastern NERC region 

Hour WECC ERCOT Eastern  FRCC MRO NPCC RFC SERC SPP 

1 AM 0.66 0.81 0.86  0.84 0.81 0.44 1.03 0.79 0.95 

 (0.04) (0.02) (0.01)  (0.09) (0.34) (0.17) (0.11) (0.05) (0.26) 

2 AM 0.66 0.81 0.86  0.78 1.34 0.74 0.84 0.87 0.63 

 (0.05) (0.02) (0.01)  (0.08) (0.14) (0.11) (0.06) (0.04) (0.14) 

3 AM 0.65 0.81 0.86  0.78 1.36 0.79 0.81 0.88 0.69 

 (0.05) (0.02) (0.01)  (0.07) (0.14) (0.12) (0.06) (0.04) (0.15) 

4 AM 0.64 0.81 0.86  0.81 1.34 0.79 0.82 0.87 0.76 

 (0.05) (0.02) (0.01)  (0.07) (0.14) (0.13) (0.06) (0.04) (0.15) 

5 AM 0.64 0.80 0.86  0.85 1.28 0.65 0.92 0.80 0.88 

 (0.05) (0.02) (0.01)  (0.07) (0.15) (0.18) (0.07) (0.04) (0.17) 

6 AM 0.63 0.78 0.85  0.97 1.19 0.46 1.06 0.67 1.04 

 (0.04) (0.02) (0.01)  (0.07) (0.17) (0.26) (0.09) (0.04) (0.17) 

7 AM 0.60 0.79 0.82  1.00 1.35 0.70 0.93 0.64 1.06 

 (0.04) (0.02) (0.01)  (0.07) (0.19) (0.24) (0.10) (0.05) (0.18) 

8 AM 0.62 0.78 0.81  1.05 1.21 0.80 0.89 0.63 1.17 

 (0.04) (0.02) (0.01)  (0.08) (0.18) (0.15) (0.08) (0.04) (0.19) 

9 AM 0.68 0.78 0.83  1.15 1.10 0.69 0.97 0.62 1.10 

 (0.04) (0.02) (0.01)  (0.09) (0.16) (0.14) (0.06) (0.04) (0.18) 

10 AM 0.74 0.78 0.86  1.19 1.18 0.70 0.95 0.70 0.98 

 (0.04) (0.02) (0.01)  (0.10) (0.14) (0.11) (0.05) (0.04) (0.16) 

11 AM 0.76 0.78 0.88  1.11 1.23 0.79 0.88 0.82 0.86 

 (0.03) (0.02) (0.01)  (0.09) (0.12) (0.09) (0.04) (0.03) (0.13) 

12 PM 0.76 0.78 0.88  0.97 1.22 0.83 0.82 0.90 0.79 

 (0.03) (0.01) (0.01)  (0.08) (0.10) (0.07) (0.03) (0.03) (0.11) 

1 PM 0.74 0.79 0.87  0.86 1.19 0.81 0.82 0.90 0.74 

 (0.02) (0.01) (0.01)  (0.08) (0.09) (0.07) (0.03) (0.03) (0.10) 

2 PM 0.71 0.80 0.86  0.82 1.16 0.82 0.83 0.87 0.68 

 (0.02) (0.01) (0.01)  (0.08) (0.08) (0.06) (0.03) (0.03) (0.10) 

3 PM 0.70 0.80 0.84  0.79 1.11 0.87 0.82 0.84 0.66 

 (0.02) (0.01) (0.01)  (0.08) (0.09) (0.06) (0.03) (0.03) (0.10) 

4 PM 0.68 0.80 0.84  0.80 1.08 0.86 0.84 0.81 0.66 

 (0.02) (0.01) (0.01)  (0.08) (0.09) (0.07) (0.04) (0.03) (0.10) 

5 PM 0.68 0.80 0.83  0.81 1.00 0.85 0.86 0.80 0.62 

 (0.02) (0.01) (0.01)  (0.08) (0.09) (0.07) (0.04) (0.03) (0.10) 

6 PM 0.68 0.80 0.83  0.85 0.87 0.84 0.89 0.77 0.68 

 (0.02) (0.01) (0.01)  (0.08) (0.08) (0.07) (0.03) (0.03) (0.09) 

7 PM 0.68 0.79 0.83  0.90 0.76 0.73 0.96 0.76 0.68 

 (0.02) (0.01) (0.01)  (0.08) (0.08) (0.08) (0.03) (0.03) (0.09) 

8 PM 0.70 0.79 0.83  0.95 0.74 0.75 0.96 0.76 0.68 

 (0.02) (0.01) (0.01)  (0.07) (0.09) (0.11) (0.04) (0.03) (0.11) 

9 PM 0.69 0.78 0.84  0.96 0.89 0.90 0.88 0.79 0.67 

 (0.03) (0.01) (0.01)  (0.07) (0.08) (0.09) (0.03) (0.03) (0.10) 

10 PM 0.68 0.79 0.84  0.94 0.97 0.77 0.93 0.76 0.69 

 (0.03) (0.01) (0.01)  (0.08) (0.08) (0.09) (0.03) (0.03) (0.11) 

11 PM 0.67 0.78 0.85  0.96 1.10 0.70 0.94 0.77 0.66 

 (0.04) (0.02) (0.01)  (0.08) (0.10) (0.10) (0.04) (0.03) (0.12) 

12 AM 0.69 0.79 0.86  0.87 1.24 0.62 0.94 0.80 0.67 

 (0.05) (0.02) (0.01)  (0.09) (0.12) (0.10) (0.04) (0.04) (0.13) 

R2 
0.90 0.90 0.99  0.99 -- -- -- -- -- 

Notes: The dependent variable in all models is hourly nitrogen oxides emissions. The three interconnection models are estimates 
of specification (1). The Eastern NREC region columns are coefficient estimates from the same model, specification (2). All models 
include 18,792 hourly observations and hour-of-day by month-of-sample fixed effects. Newey-West standard errors with a 24-
hour lag are reported in parentheses. 
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Table S2: Test of a dynamic model by interconnection and hour of day 
 

 WECC Interconnection  ERCOT Interconnection  East Interconnection 

Hour Main Lagged  Main Lagged  Main Lagged 

1 AM 0.83 (0.07) 0.82 (0.07)  1.08 (0.04) 1.08 (0.04)  1.45 (0.02) 1.43 (0.02) 

2 AM 0.84 (0.08) 0.85 (0.08)  1.11 (0.04) 1.11 (0.04)  1.47 (0.02) 1.47 (0.02) 

3 AM 0.84 (0.08) 0.84 (0.08)  1.13 (0.04) 1.13 (0.04)  1.47 (0.02) 1.47 (0.02) 

4 AM 0.80 (0.08) 0.80 (0.08)  1.12 (0.04) 1.12 (0.04)  1.47 (0.02) 1.46 (0.02) 

5 AM 0.77 (0.08) 0.77 (0.08)  1.07 (0.04) 1.07 (0.04)  1.44 (0.02) 1.44 (0.02) 

6 AM 0.71 (0.07) 0.71 (0.07)  1.00 (0.03) 1.00 (0.03)  1.37 (0.03) 1.36 (0.03) 

7 AM 0.66 (0.06) 0.66 (0.06)  0.95 (0.03) 0.95 (0.03)  1.26 (0.03) 1.25 (0.03) 

8 AM 0.68 (0.06) 0.68 (0.06)  0.94 (0.03) 0.94 (0.03)  1.21 (0.03) 1.21 (0.03) 

9 AM 0.77 (0.07) 0.77 (0.07)  0.94 (0.03) 0.94 (0.03)  1.23 (0.03) 1.23 (0.03) 

10 AM 0.85 (0.07) 0.84 (0.07)  0.92 (0.03) 0.92 (0.03)  1.26 (0.02) 1.27 (0.02) 

11 AM 0.88 (0.05) 0.88 (0.05)  0.92 (0.02) 0.92 (0.02)  1.28 (0.02) 1.28 (0.02) 

12 PM 0.88 (0.04) 0.88 (0.04)  0.91 (0.02) 0.91 (0.02)  1.27 (0.02) 1.26 (0.02) 

1 PM 0.86 (0.04) 0.86 (0.04)  0.92 (0.02) 0.91 (0.02)  1.25 (0.02) 1.24 (0.02) 

2 PM 0.83 (0.03) 0.83 (0.03)  0.92 (0.02) 0.92 (0.02)  1.22 (0.02) 1.21 (0.02) 

3 PM 0.82 (0.03) 0.82 (0.03)  0.92 (0.02) 0.92 (0.02)  1.20 (0.02) 1.19 (0.02) 

4 PM 0.80 (0.03) 0.80 (0.03)  0.92 (0.02) 0.92 (0.02)  1.19 (0.02) 1.19 (0.02) 

5 PM 0.79 (0.03) 0.79 (0.03)  0.91 (0.02) 0.91 (0.02)  1.18 (0.02) 1.18 (0.02) 

6 PM 0.79 (0.03) 0.79 (0.03)  0.90 (0.02) 0.90 (0.02)  1.18 (0.02) 1.18 (0.02) 

7 PM 0.80 (0.03) 0.80 (0.03)  0.90 (0.02) 0.90 (0.02)  1.18 (0.02) 1.18 (0.02) 

8 PM 0.81 (0.04) 0.81 (0.04)  0.89 (0.02) 0.89 (0.02)  1.18 (0.02) 1.18 (0.02) 

9 PM 0.80 (0.05) 0.80 (0.05)  0.89 (0.02) 0.89 (0.02)  1.19 (0.02) 1.20 (0.02) 

10 PM 0.81 (0.05) 0.81 (0.05)  0.91 (0.03) 0.91 (0.03)  1.23 (0.02) 1.23 (0.02) 

11 PM 0.82 (0.07) 0.82 (0.07)  0.95 (0.03) 0.95 (0.03)  1.30 (0.02) 1.31 (0.02) 

12 AM 0.84 (0.08) 0.84 (0.01)  1.02 (0.03) 1.02 (0.03)  1.39 (0.02) 1.40 (0.02) 

Delta Q   0.01 (0.06)    0.02 (0.03)    0.05 (0.02) 

Chow Test (p-value) 0.04 (1.00)    29.98 (0.19)    1.07 (1.00) 
Notes: Delta Q is the change in load from last hour to this hour. We use a Chow test to determine whether the hourly load 
coefficients are significantly different between the main and lagged results. 
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Table S3: Variance Decomposition using Fixed Effects  
 
Panel A: East (price is for PJM) 
Fixed Effects Load Price Carbon 

YEAR*MONTH*HOD 0.86 0.44 0.84 
YEAR*WEEK*HOD 0.93 0.59 0.93 
YEAR*SEASON*HOD 0.70 0.37 0.65 
YEAR*DAY, SEASON*HOD 0.95 0.59 0.96 
 
Panel B: ERCOT  
Fixed Effects Load Price Carbon 

YEAR*MONTH*HOD 0.86 0.44 0.84 
YEAR*WEEK*HOD 0.93 0.59 0.93 
YEAR*SEASON*HOD 0.70 0.37 0.65 
YEAR*DAY, SEASON*HOD 0.95 0.59 0.96 
 
Panel C: WECC (price is for LADWP)  
Fixed Effects Load Price Carbon 

YEAR*MONTH*HOD 0.92 0.65 0.87 
YEAR*WEEK*HOD 0.97 0.74 0.95 
YEAR*SEASON*HOD 0.83 0.58 0.77 
YEAR*DAY, SEASON*HOD 0.96 0.68 0.97 
 
Notes: This table reports the R2 of regressions of load, price or carbon dioxide emissions on 
various sets of fixed effects, where HOD is an hour-of-day indicator and 
YEAR/SEASON/MONTH/WEEK/DAY each indicate their respective time period. This table shows 
the fraction of the variation explained by each regression.   

 


