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1 Introduction

Empirical models of single-agent dynamic discrete choice (DDC) problems have a rich his-
tory in structural applied microeconometrics, starting with the pioneering work of Gotz and
McCall (1980), Miller (1984), Pakes (1986), Rust (1987), and Wolpin (1984). Because dy-
namic decision problems are naturally high-dimensional, the empirical DDC literature has
been accompanied from the outset by a parallel methodological literature aimed at reducing
the computational burden of both estimating and computing these models.

The computational challenges raised by the dimensionality of these problems are even
greater in the context of strategic games, where the simultaneous actions of competing
players introduces a further curse of dimensionality in computing expectations over rivals’
actions. In particular, in order to solve for optimal policies, one must calculate players’
expectations over all combinations of actions of their rivals. The cost of computing these
expectations grows exponentially in the number of players, making it difficult or impossible
to compute the equilibrium in many economic environments.1

An alternative way to model strategic decision-making that does not suffer from this
curse of dimensionality is to characterize players’ moves as stochastic sequential decisions.
This can be achieved by assuming a stochastically determined order of moves in discrete
time (Doraszelski and Judd, 2007) or by setting the game in continuous time, with inde-
pendent, competing stochastic processes controlling when players are able to act.2 With
either approach, because only a single player moves at any point in time, there is no need
to compute expectations over all of the possible combinations of decisions that the other
players might make simultaneously.

In this paper, we develop a particular characterization of a dynamic game in continuous
time that not only eliminates the curse of dimensionality associated with simultaneous move
games, but also links naturally with the existing DDC literature. The key feature of our
approach is that players face a standard discrete choice problem when stochastically given
the opportunity to make a decision. That is, when players have the chance to act, they
observe the realization of a random component of the payoff for each available action and
select the best available option.

By letting the time and source of each event be determined by the outcome of a collection
1These limitations have led some to suggest alternatives to the Markov perfect equilibrium concept in

which firms condition on long run averages (regarding rivals’ states) instead of current information (Wein-
traub, Benkard, and Van Roy, 2008).

2Doraszelski and Judd (2012) exploit the structure of continuous time to break the curse of dimensionality
associated with the calculation of expectations over rival actions. Players in their model make simultaneous,
continuous decisions that control the hazard rate of state changes (e.g., choose an investment hazard which
results stochastically in a discrete productivity gain). Because state changes occur only one agent at a
time, the dimension of expectations over rival actions grows linearly in the number of players, rather than
exponentially, resulting in computation times that are orders of magnitude faster than those of discrete time.
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of independent, competing Poisson processes, for which the rate parameters may vary, one
does not need to make further assumptions about the order of moves or the number of events
that occur in any given period, as one must do in a sequential-move discrete-time model
with fixed period lengths. The critical features of our model are that both the identity
of the next agent to move and the number of moves that occur in any fixed observation
interval are random, with no further restrictions on either the order of moves or the number
of moves that can occur in any fixed time period.

Our formulation of the dynamic game in continuous time naturally inherits many fea-
tures of the standard discrete choice framework and, as a result, many of the insights and
tools commonly used in discrete time settings are directly applicable. Importantly, it is
possible to extend the two-step CCP (conditional choice probability) methods that have
been developed for estimating dynamic games in discrete time to the continuous time set-
ting, resulting in a further reduction in the computational burden and making it possible
to estimate and compute especially rich, high-dimensional dynamic games.3

CCP estimation applied to our formulation of a dynamic game in continuous time has
several important advantages that carry over from the discrete time literature. Most di-
rectly, CCP estimation eliminates the need to compute the full solution of the model for
estimation. In most empirical studies, the equilibrium will only need to be computed a
handful of times to perform the counterfactual analyses conducted in the paper. In addi-
tion, it is straightforward to account for unobserved heterogeneity with our framework by
extending the methods of Arcidiacono and Miller (2011). We demonstrate both of these
advantages in our empirical application, applying the methods to a high dimensional prob-
lem while incorporating unobserved heterogeneity, an important feature of the institutional
setting.

But CCP estimation has advantages in continuous time beyond those studied in the
discrete time literature. Namely, it is easier to satisfy the finite dependence property of
Arcidiacono and Miller (2011) and Altuğ and Miller (1998), whereby only a handful of
conditional choice probabilities are needed to express the future utility term. This occurs
because the inversion theorem of Hotz and Miller (1993) yields a mapping between differ-
ences in value functions and conditional choice probabilities in the continuous time setting,
as opposed to differences in conditional value functions and conditional choice probabili-

3A recent series of papers (Aguirregabiria and Mira, 2007, Bajari, Benkard, and Levin, 2007, Pesendorfer
and Schmidt-Dengler, 2007, Pakes, Ostrovsky, and Berry, 2007) have shown how to extend two-step esti-
mation techniques, originally developed by Hotz and Miller (1993) and Hotz, Miller, Sanders, and Smith
(1994) in the context of single-agent dynamics, to more complex multi-agent settings. The computation of
these models remains formidable, despite a growing number of methods for solving for equilibria (Pakes and
McGuire, 1994, 2001, Doraszelski and Satterthwaite, 2010). Two-step estimation of dynamic discrete games
was originally proposed by Rust (1994). Rust recommended substituting non-parametric estimates of rivals’
reaction functions into each player’s dynamic optimization problem, turning a complex equilibrium solution
into a collection of simpler games against nature.
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ties in the discrete time setting. As we illustrate in Section 3, working with value functions
rather than conditional value functions also has the added benefit of limiting the need to es-
timate conditional choice probabilities for rare events, a prevalent feature in many empirical
settings.

We demonstrate the advantages of our formulation of the dynamic game in continuous
time with an empirical application that analyzes the entry and exit, expansion and contrac-
tion of grocery chain stores in urban markets throughout the United States from 1994–2006.
Specifically, we model the decisions of whether to operate grocery stores in a market and at
what scale (i.e., number of stores) for Walmart and up to seven competing chains as well as
the single-store entry decisions of several dozen potential fringe entrants. Each geographic
market is characterized by observed features—most importantly, the level and growth rate
of population—as well as unobserved heterogeneity that affects the relative profitability of
Walmart, chain, and fringe stores in that market.

This characterization of the problem results in a dynamic game that has a rich error
structure (due to the unobserved heterogeneity) and an enormous number of states.4 We
estimate the model using CCP methods and solve counterfactually for the equilibrium under
several scenarios designed to measure how Walmart’s entry into the retail grocery industry
(which took place in a number of markets over the study period) affects the profitability
and decision-making of rival chain and fringe firms.

The estimates imply that there is considerable heterogeneity in the relative profitability
of chain and fringe stores in markets throughout the country. Interestingly, the impact
of Walmart is also heterogeneous across markets, with the greatest impact typically felt
by the previously dominant players in the region. In chain-dominated metropolitan areas,
for example, the entry of Walmart typically leads to the exit of one or more chains firms
altogether and the contraction of stores by those firms that remain in the market.

Our estimates show that the mere threat of entry by Walmart has a substantial effect
on industry structure. For example, many of the markets we study are forecasted to have
more fringe firms when Walmart is allowed to enter, but hasn’t entered yet, than when
Walmart is prohibited from entering at all. This occurs because chain firms would expand
more rapidly if they were certain Walmart was not going to enter. This chain expansion
results in fringe firms contracting.5

4The number of distinct states is over 287 billion.
5While our paper is the first to estimate the effects of Walmart on both chain and on single stores, in

part due to complications associated with the large state space, others have examined the effect of Walmart
on supermarkets and in the market for discount stores. Ellickson and Grieco (2013) examine the impact
of Walmart on the supermarket industry using descriptive methods from the treatment effects literature,
while Beresteanu, Ellickson, and Misra (2007) develop a dynamic structural model of retail competition.
Walmart’s previous experience in the discount industry has been analyzed by Jia (2008), Holmes (2011),
and Ellickson, Houghton, and Timmins (2010).
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The paper is structured as follows. Section 2 introduces our model in a simple single-
agent context in order to build intuition. Section 3 develops an alternative CCP represen-
tation of the value function which will facilitate two-step estimation of the model. Section 4
extends the model to the multi-agent setting. Concrete and canonical examples are pro-
vided in both the single- and multi-agent cases. Section 5 develops our estimators, including
both full-solution and two-step approaches, and discusses issues associated with time ag-
gregation. Section 6 introduces and describes the results of our empirical analysis of the
market structure of grocery store chains in geographically separate U.S. markets. Section 7
concludes.

2 Single-Agent Dynamic Discrete Choice Models

In this section, we introduce a dynamic discrete choice model of single-agent decision-
making in continuous time. The single-agent problem provides a simple setting in which to
describe the main features of our continuous time framework. We show how these extend
directly to multi-agent settings in the following section. We begin this section by laying
out the notation and structure of the model in a general context. We then introduce an
example—the classic bus engine (capital) replacement model of Rust (1987)—to illustrate
how to apply our model in a familiar setting.

Consider a dynamic single-agent decision problem in which time is continuous, indexed
by t ∈ [0,∞). The state of the model at any time t can be summarized by an element
k of some finite state space X = {1, . . . ,K}. Two competing Poisson processes drive the
dynamics of the model. First, a finite-state Markov jump process on X with a K × K

intensity matrix Q0 governs moves by nature—exogenous state changes that aren’t a result
of actions by the agent. The elements ofQ0 are the rates at which particular state transitions
occur. Second, a Poisson arrival process with rate parameter λ governs when the agent can
move. When a move opportunity arrives, the agent chooses an action j from among J

alternatives in a discrete choice set A = {0, . . . , J − 1}, conditional on the current state k.
Before describing the agent’s problem, we review some properties of finite Markov jump

processes, which are the basic building blocks of our model and can be used to characterize
both exogenous and endogenous state changes on X in our model. A finite Markov jump
process on X is a stochastic process Xt indexed by t ∈ [0,∞). At any time t, the process
remains at Xt for a random time interval τ (the holding time) before transitioning to some
new state Xt+τ . A sample path of such a process is a piecewise-constant, right-continuous
function of time. Jumps occur according to a Poisson process and the holding times between
jumps are exponentially distributed.

A finite-state Markov jump processes can be characterized by an intensity matrix, which
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contains the rate parameters for each possible state transition:

Q =


q11 q12 . . . q1K

q21 q22 . . . q2K
...

... . . . ...
qK1 qK2 . . . qKK

 .

For l 6= k

qkl = lim
h→0

Pr (Xt+h = l | Xt = k)
h

is the hazard rate for transitions from state k to state l and

qkk = −
∑
l 6=k

qkl

is the overall rate at which the process leaves state k (and hence, qkk is negative). Transitions
out of state k follow an exponential distribution with rate parameter −qkk and, conditional
on leaving state k, the process transitions to l 6= k with probability qkl/

∑
l′ 6=k qkl′ . For

additional details about Markov jump processes see, for example, Karlin and Taylor (1975,
Section 4.8).

Returning to the agent’s problem, we assume that the agent is forward-looking and
discounts future payoffs at rate ρ. Exogenous state changes that the agent cannot control
occur according to a Markov jump process with intensity matrix Q0. While in state k, the
agent receives flow utility uk. At rate λ the agent makes a decision, choosing an action j ∈ A
and receiving an instantaneous payoff ψjk+εj , where ψjk is the mean payoff associated with
making choice j in state k and εj ∈ R is an instantaneous choice-specific payoff shock.6 Let
σjk denote the probability that the agent optimally chooses choice j in state k. The agent’s
choice may result in a deterministic state change.7 Let l(j, k) denote the state that results
upon making choice j in state k.

We can now derive the instantaneous Bellman equation, a recursive expression for the
value function Vk which gives the present discounted value of all future payoffs obtained from
starting in some state k and behaving optimally in future periods. For small time increments
h, under the Poisson assumption, the probability of an event with rate λ occurring is λh.
Given the discount rate ρ, the discount factor for such increments is 1/(1 + ρh). Thus, for

6Although the choice-specific shocks εj evolve over time, we omit the t subscript for notational simplicity.
For convenience, we also assume the distribution of εj is independent of the state, to avoid conditioning
on k throughout, but the joint distribution of the vector ε = (ε0, . . . , εJ−1)> can, in general, depend on k
without additional difficulties.

7For expositional simplicity, we focus on the case of deterministic state changes, rather than allowing for
a stochastic state transition following each action.
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small time increments h the present discounted value of being in state k is

Vk = 1
1 + ρh

ukh+
∑
l 6=k

qklhVl + λhE max
j

{
ψjk + εj + Vl(j,k)

}

+

1− λh−
∑
l 6=k

qklh

Vk + o(h)

 .
Rearranging and letting h→ 0, we obtain the following recursive expression for Vk:

Vk =
uk +

∑
l 6=k qklVl + λE maxj{ψjk + εj + Vl(j,k)}

ρ+ λ+
∑
l 6=k qkl

. (1)

The denominator contains the sum of the discount factor and the rates of all possible state
changes. The numerator is composed of the flow payoff for being in state k, the rate-weighted
values associated with exogenous state changes, and the expected current and future value
obtained when a move arrival occurs in state k. The expectation is with respect to the joint
distribution of ε = (ε0, . . . , εJ−1)>. Alternatively, and perhaps more intuitively, rearranging
once again shows that the instantaneous discounted increment to the value function Vk is

ρVk = uk +
∑
l 6=k

qkl(Vl − Vk) + λE max
j
{ψjk + εj + Vl(j,k) − Vk}. (2)

A policy rule is a function δ : X × RJ → A which assigns to each state k and vector ε
an action from A. The optimal policy rule satisfies the following inequality condition:

δ(k, ε) = j ⇐⇒ ψjk + εj + Vl(j,k) ≥ ψj′k + εj′ + Vl(j′,k) ∀j′ ∈ A.

That is, when given the opportunity to choose an action, δ assigns the action that maximizes
the agent’s expected future discounted payoff. Thus, under the optimal policy rule, the
conditional choice probabilities are

σjk = Pr[δ(k, ε) = j | k].

Note that the move arrival rate, λ, and the choice probabilities of the agent, σjk, also
imply a Markov jump process on X with intensity matrix Q1, where Q1 is a function of
both λ and σjk for all j and k. In particular, the hazard rate of action j in state k is
simply λσjk, the product of the move arrival rate and the choice probability. The choice
probability σjk is thus the proportion of moves in state k, which occur at rate λ, that
result in action j. Summing the individual intensity matrices yields the aggregate intensity
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matrix Q = Q0 +Q1 of the compound process, which fully characterizes the state transition
dynamics of the model. This simple and intuitive structure is especially important in
extending the model to include multiple agents, and in estimation with discrete time data.
We discuss both of these extensions in subsequent sections.

2.1 Example: A Single-Agent Renewal Model

Our first example is a simple single-agent renewal model, based on the bus engine replace-
ment problem analyzed by Rust (1987). The state variable represents the accumulated
mileage of a bus engine. Let qk1 and qk2 denote the rates at which one- and two-unit
mileage increments occur, respectively. With each move arrival, the agent faces a binary
choice: replace the engine (j = 1) or continue (j = 0). If the agent replaces the engine, the
mileage is reset to state k = 1 and the agent pays a replacement cost c. The agent faces
a cost minimization problem where the flow cost incurred in mileage state k is represented
by uk. The value function for mileage state k is

Vk = uk + qk1Vk+1 + qk2Vk+2 + λE max {Vk + ε0, V0 + c+ ε1}
ρ+ qk1 + qk2 + λ

, (3)

where, in our general notation from before, the instantaneous payoffs are

ψjk =

0, if j = 0,

−c, if j = 1.

We will return to this example in the following section, where we discuss a useful CCP
representation of the value function.

3 CCP Representation

The primary difference between our framework and traditional discrete time dynamic dis-
crete choice models is that, rather that having state changes and choices made simulta-
neously at pre-determined intervals, only one event occurs at any given instant (almost
surely), with random time intervals between moves. Given that the unobserved preferences
evolve stochastically as in the discrete time literature, we are able to show that some of the
insights of Hotz and Miller (1993), Altuğ and Miller (1998), and Arcidiacono and Miller
(2011) on expressing value functions in terms of conditional choice probabilities (CCPs)
also apply here. In fact, as we show below, it is actually much easier to express the value
functions in terms of CCPs in the continuous time setting than in discrete time.

We first derive two results that allow us to link value functions across states. The first is

8



essentially the continuous time analog of Proposition 1 of Hotz and Miller (1993). Namely,
using the conditional choice probabilities, we can derive relationships between the value
functions associated with any two states as long as both states are feasible from the initial
state, should the agent have the right to move.

Let σk = (σ0k, . . . , σJ−1,k)> denote the vector of CCPs in state k. We make the following
standard assumptions on the discount rate and the choice-specific shocks (Rust, 1994).

Assumption 1. ρ > 0.

Assumption 2. The choice-specific shocks ε are iid over time and across choices with a
known joint distribution which is absolutely continuous with respect to Lebesgue measure,
has finite first moments, and support equal to RJ .

Proposition 1. If Assumptions 1 and 2 hold, then there exists a function Γ1(j, j′, σk) such
that for all j, j′ ∈ A,

Vl(j,k) = Vl(j′,k) + ψj′k − ψjk + Γ1(j, j′, σk). (4)

Proof. See Appendix A. �

Thus, in our continuous time model the value function can be separated from the choice
in each state. This is similar to the result of Proposition 1 of Hotz and Miller (1993), which
applied to conditional value functions: the value of making a particular choice conditional
on behaving optimally in the future. Because only one event occurs at any given instant,
we are able to develop relationships between the value functions themselves.

The second result establishes a similar CCP representation for the final term in the
Bellman equation.

Proposition 2. If Assumptions 1 and 2 hold, then there exists a function Γ2(j′, σk) such
that for all j′ ∈ A,

E max
j

{
ψjk + εj + Vl(j,k)

}
= Vl(j′,k) + ψj′k + Γ2(j′, σk). (5)

Proof. See Appendix A. �

The intuition for Proposition 2 is that we can express the left hand side of (5) rela-
tive to Vl(j′,k) + ψj′k for an action j′ of our choosing, implying that the terms inside the
expectation will consist of differences in value functions and instantaneous payoffs. These
differences, as established by Proposition 1, can be expressed as functions of conditional
choice probabilities.
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For a concrete example of these two propositions, consider the case where the ε’s follow
the type I extreme value distribution. In this case, closed form expressions exist for both
Γ2 and Γ1:

Γ1(j, j′, σk) = ln(σjk)− ln(σj′k)

Γ2(j′, σk) = − ln(σj′k) + γ

where γ is Euler’s constant.
Importantly, Proposition 1 allows us to link value functions across many states. For

example, suppose that action 0 is a continuation action which does not change the state,
l(0, k) = k, and has no instantaneous payoff or cost, ψ0k = 0. If in state k the agent is able
to move to k′ by taking action j′, and is further able to move from k′ to k′′ by taking action
j′′, then it is possible to express Vk′′ as a function of Vk by substituting in the relevant
relationships:

Vk = Vk′ + ψj′,k + Γ1(0, j′, σk)

= Vk′′ + ψj′′,k′ + ψj′,k + Γ1(0, j′′, σk′) + Γ1(0, j′, σk).

By successively linking value functions to other value functions, in many cases it is straight-
forward to find a chain such that the remaining value functions on the right hand side of
(2) can be expressed in terms of Vk and conditional choice probabilities. Then, collecting
all terms involving Vk yields an expression for Vk in terms of the flow payoff of state k and
the conditional choice probabilities. Since the latter can often be flexibly estimated directly
from the data and the former is an economic primitive, it is no longer necessary to solve
a dynamic programming problem to obtain the value functions. This is formalized in the
following result.

Definition. A state k∗ is attainable from state k if there exists a sequence of actions from
k that result in state k∗.

Proposition 3. Suppose that 1 and 2 hold and that for a given state k, j = 0 is a contin-
uation action with l(0, k) = k and for all states l 6= k with qkl > 0 there exists a state k∗

that is attainable from both k and l. Then, there exists a function Γk(ψ,Q0, λ, σ) such that

ρVk = uk + Γk(ψ,Q0, λ, σ). (6)

Proof. See Appendix A. �

The function Γk for each state may depend on the model primitives ψ, Q0, and λ as
well as the CCPs, σ. By restating the problem in this way, when the conditional choice
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probabilities are available, no fixed point problem needs to be solved in order to obtain the
value functions. This can often lead to large computational gains. We now illustrate some
examples of how to apply these propositions.

3.1 Example: Inventories

We begin by considering an inventory example. The amount of inventory a firm has is given
by k ∈ {0, . . . ,K}. With each move arrival, the firm may either increase its inventory by
one unit or do nothing. The instantaneous cost of increasing inventory is c and the flow
cost for holding k units is uk. At rate q, the firm makes a sale and inventory falls by m
units, m ∈ {1, ...,M} or, if current inventory is less than m, by the current inventory level.
The probability that demand is m is π(m). Given demand of m, revenues received are
pkm = pmin{k,m}. The value function for inventory level k is

Vk =
uk + q

∑M
m=1(Vl(k,m) + pkm)π(m) + λE max {Vk + ε0, Vk+1 + c+ ε1}

ρ+ q + λ
.

where l(k,m) = max{k −m, 0}. Applying Proposition 2, we can eliminate the value func-
tions in the third term of the numerator:

Vk =
uk + q

∑M
m=1(Vl(k,m) + pkm)π(m) + λΓ2(0, σk)

ρ+ q
.

Since k is attainable from l(k,m), we can apply Proposition 3. In particular, we can
repeatedly use Proposition 1 to express Vl(k,m) in terms of Vk:

Vk−l(k,m) = Vk−l(k,m)+1 + c+ Γ1(0, 1, σk−l(k,m))

= Vk + min{k,m}c+
k−1∑

k′=k−l(k,m)
Γ1(0, 1, σk′).

Hence, the function Γk from Proposition 3 is

Γk(ψ,Q0, λ, σ) =
M∑
m=1

min{k,m}c+
k−1∑

k′=k−l(k,m)
Γ1(0, 1, σk′)

π(m) + λΓ2(0, σk),

which yields the expression for Vk in (6). Hence, even though state K cannot be reached
by a single decision when m > 1, the two value functions can still be linked and expressed
as a function of conditional choice probabilities.
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3.2 Example: A Single-Agent Renewal Model

Recall the bus engine replacement example of Section 2.1, where the value function was
characterized by (3). Applying Proposition 2 eliminates the third term in the numerator:

Vk = uk + qk1Vk+1 + qk2Vk+2 + λΓ2(0, σk)
ρ+ qk1 + qk2

.

Although there is no direct link between the value function at k and the value functions
at k + 1 and k + 2, it is possible to link the two value functions through the replacement
decision. In particular, Vk and Vk+1 can be expressed as follows:

Vk = V0 + c+ Γ1(0, 1, σk),

Vk+1 = V0 + c+ Γ1(0, 1, σk+1).

This implies that we can express Vk+1 in terms of Vk:

Vk+1 = Vk + Γ1(0, 1, σk+1)− Γ1(0, 1, σk).

Using a similar expression for Vk+2, we obtain the function Γk from Proposition 3:

Γk(ψ,Q0, λ, σ) = qk1Γ1(0, 1, σk+1) + qk2Γ1(0, 1, σk+2)

− (qk1 + qk2)Γ1(0, 1, σk) + λΓ2(0, σk).

This example illustrates one of the benefits of continuous time over discrete time when
using conditional choice probabilities. Namely, as illustrated by Arcidiacono and Miller
(2011), forming renewal problems using CCPs required both expressing the future utility
term relative to a particular choice and differencing the conditional valuation functions used
in estimation. In this example, the future utility terms for both replacing and continuing
would be expressed relative to the value of replacing. Hence accurate estimates of the
conditional probability of replacing at very low mileages would be needed, but these are low
probability events whose estimates will likely depend heavily on the smoothing parameters
or functional forms used to mitigate the associated small sample problems. In the present
continuous time framework, differencing is not required in order to form the value function
in terms of conditional choice probabilities and we only need the replacement probabilities
at states k, k + 1, and k + 2.
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4 Dynamic Discrete Games

The potential advantages of modeling decisions using a continuous time framework are
particularly applicable to games, where the state space is often enormous. Working in
continuous time highlights aspects of strategic interaction that are muted by discrete time
(e.g., first-mover advantage) and mitigates unnatural implications that can arise from si-
multaneity (e.g., ex post regret). In fact, a number of recent papers in the empirical games
literature (e.g., Einav, 2010, Schmidt-Dengler, 2006) have adopted a sequential structure
for decision-making to accommodate the underlying economic theory associated with their
games.

Extending the single-agent model of Section 2 to the case of dynamic discrete games with
many players is simply a matter of modifying the intensity matrix governing the state to
incorporate players’ beliefs regarding the future actions of their rivals. We begin this section
by describing the structure of the model, followed by properties of equilibrium strategies
and beliefs. We then show how to apply the CCP representation results of Section 3 in the
context of dynamic games.

Suppose there are N players indexed by i = 1, . . . ,N . As before, the state space X is
finite with K elements. This is without loss of generality, since each of these elements may
be regarded as indices of elements in a higher-dimensional, but finite, space of firm-market-
specific state vectors. Player i’s choice set in state k is Aik. For simplicity, we consider
the case where each player has J actions in all states: Aik = {0, . . . , J − 1}. We index the
remaining model primitives by i, including the flow payoffs in state k, uik, instantaneous
payoffs, ψijk, and choice probabilities, σijk. Let l(i, j, k) denote the continuation state that
arises after player i makes choice j in state k. We assume that players share a common
discount rate ρ.

Although it is still sufficient to have only a single jump process on X , with some intensity
matrix Q0, to capture moves by nature, there are now N independent, competing Poisson
processes with rate λ generating move arrivals for each of the N players.8 The next event
in the model is determined by the earliest arrival of one of these N + 1 processes.

Let ςi denote player i’s beliefs regarding the actions of rival players, given by a collection
of (N − 1) × J ×K probabilities ςimjk for each rival player m 6= i, state k, and choice j.
Applying Bellman’s principal of optimality (Bellman, 1957), the value function for an active
player i in state k can be defined recursively as9

8For simplicity, we assume the move arrival rates are equal for each firm. Furthermore, although we do
not consider this extension, one can introduce correlation among move arrivals by specifying a multinomial
distribution over the possible combinations of simultaneously moving players, which would imply a rate
for each of these possible outcomes. However, this generalization comes at the expense of both additional
parameters and computational cost.

9If a player is not active in state k, then the probability of inaction (j = 0) for that player is set to one.
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Vik(ςi) =
uik +

∑
l 6=k qklVil(ςi) +

∑
m6=i λ

∑
j ςimjkVi,l(m,j,k)(ςi) + λE maxj

{
ψijk + εij + Vi,l(i,j,k)(ςi)

}
ρ+

∑
l 6=k qkl +Nλ .

(7)
Following Maskin and Tirole (2001), we focus on Markov perfect equilibria in pure

strategies, as is standard in the literature. A Markov strategy for player i is a mapping
which assigns an action from Aik to each state (k, εi) ∈ X × RJ . Focusing on Markov
strategies eliminates the need to condition on the full history of play.

Given beliefs for each player, {ςi}, and a collection of model primitives, a Markov strat-
egy for player i is a best response if10

δi(k, εi; ςi) = j ⇐⇒ ψijk + εij + Vi,l(i,j,k)(ςi) ≥ ψij′k + εij′ + Vi,l(i,j′,k)(ςi) ∀j′ ∈ Aik.

Then, given the distribution of choice-specific shocks, each Markov strategy δi implies re-
sponse probabilities for each choice in each state:

σijk = Pr [δi(k, εi) = j | k] . (8)

Definition. A collection of Markov strategies {δ1, . . . , δN } and beliefs {ς1, . . . , ςN } is a
Markov perfect equilibrium if for all i:

1. δi(k, εi) is a best response given beliefs ςi, for all k and almost every εi;

2. for all players m 6= i, the beliefs ςmi are consistent with the best response probabilities
implied by δi, for each j and k.

Following Milgrom and Weber (1985) and Aguirregabiria and Mira (2007), we can char-
acterize Markov perfect equilibria in probability space, rather than in terms of pure Markov
strategies, as a collection of equilibrium best response probabilities {σi} where each proba-
bility in σi is a best response given beliefs σ−i. Likewise, any such collection of probabilities
can be extended to a Markov perfect equilibrium.

In particular, equilibrium conditional choice probabilities are fixed points to the best
response probability mapping, which defines a continuous function from [0, 1]N×J×K onto
itself. Existence of an equilibrium then follows from Brouwer’s Theorem, as established by
the following proposition. The proof is reserved for the appendix.

Proposition 4. A Markov perfect equilibrium exists.

Proof. See Appendix A. �
10In the event of a tie, we assume the action with the smallest index is assigned. Because the distribution

of εi is continuous under Assumption 2, such ties occur with probability zero.
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4.1 CCP Representation

The propositions in Section 3 apply to games as well. Hence, it is possible to eliminate the
value functions in the fourth term of the numerator of (7) using Proposition 2:

Vik =
uik +

∑
l 6=k qklVil +

∑
m6=i λ

∑
j σmjkVi,l(m,j,k) + λΓ2

i (0, σik)
ρ+

∑
l 6=k qkl +Nλ . (9)

Eliminating the other value functions, however, is problematic as the player may only
have control over a portion of the state space. For example, when firms have different
numbers of stores, a given firm is only able to choose its own stores, not the stores of
its competitors. There are at least two cases where the remaining value functions can be
eliminated. The first is the case where there is a terminal choice, such as permanently
exiting a market. Since no further choices are made, the value function for the terminal
choice does not include other value functions. A concrete example is provided below. The
other case is where an action can be taken to reset the system for all players. For example,
consider a game that involves technology adoption. By achieving a particular technology
level, previous technologies may become obsolete, effectively renewing the states of the other
players.

4.2 Example: Multi-Store Entry and Exit

Note that in either the terminal or reset case, there only has to be an attainable scenario
where the agent can execute the terminal or reset action. For example, consider a game
amongst retailers where firms compete by opening and closing stores. Given a move arrival,
a firm can build a store, j = 1, do nothing, j = 0, or, if the agent has at least one store,
close a store, j = −1. Once a firm has no stores, it makes no further choices. Let c denote
the scrap value of closing a store.

Suppose that firm i has ki stores and the economy-wide state is k = (k1, . . . , kN ). Let
l∗(i, k, k′i) denote the state that is equal to the initial state k, but where firm i has k′i stores
instead of ki. Applying Proposition 1 and normalizing the value of zero stores to zero, we
can express Vik as:

Vik =
ki∑
k′i=1

Γ1
(
0,−1, σi,l∗(i,k,k′i)

)
+ kic. (10)

Since (10) holds for all k, we can use the value of fully exiting to link value functions
for any pair of states. Namely, linking the value functions on the right hand side of (9) to
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Vik and solving for Vik yields:

ρVik = uik + λiΓ2
i (0, σik)

+
∑
m6=i

σm,−1,k

 ki∑
k′i=1

[
Γ1
i

(
0,−1, σi,l∗(i,l(m,−1,k),k′i)

)
− Γ1

i

(
0,−1, σi,l∗(i,k,k′i)

)]
+
∑
m6=i

σm,1,k

 ki∑
k′i=1

[
Γ1
i

(
0,−1, σi,l∗(i,l(m,1,k),k′i)

)
− Γ1

i

(
0,−1, σi,l∗(i,k,k′i)

)] .
Once again, no fixed point calculation is required to express the full value function, a

simplification that is especially powerful in the context of high-dimensional discrete games.

5 Estimation

We now turn to estimation. Methods that solve for the value function directly and use it to
obtain the implied choice probabilities for estimation are referred to as full-solution methods.
The nested fixed point (NFXP) algorithm of Rust (1987), which uses value function iteration
inside of an optimization routine that maximizes the likelihood, is the classic example of
a full-solution method. Su and Judd (2012) provide an alternative MPEC (mathematical
program with equilibrium constraints) approach which solves the constrained optimization
problem directly, bypassing the repeated solution of the dynamic programming problem.

CCP-based estimation methods, on the other hand, are two-step methods pioneered
by Hotz and Miller (1993) and Hotz et al. (1994) and later extended by Aguirregabiria
and Mira (2002, 2007), Bajari et al. (2007), Pesendorfer and Schmidt-Dengler (2007), Pakes
et al. (2007), and Arcidiacono and Miller (2011). The CCPs are estimated in a first step and
used to approximate the value function in a closed-form inversion or simulation step. The
approximate value function is then used in the likelihood function or the GMM criterion
function to estimate the structural parameters.

Full-solution methods have the advantage that the full structure of the model is imposed
in estimation. However, these methods can become quite computationally expensive for
complex models with many players or a large state space. Many candidate parameter
vectors must be evaluated during estimation and, if the value function is costly to compute,
even if solving the model once might be feasible, doing so many times may not be. In
the presence of multiple equilibria, they also require researchers to make an assumption on
the equilibrium selection mechanism and solve for all the equilibria (cf. Bajari, Hong, and
Ryan, 2007).11 In addition to allowing the value function to be computed very quickly,

11Since we have not established that there is a unique equilibrium, when discussing the full-solution
estimator, we implicitly assume that the equilibrium selection mechanism assigns probability one to the
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CCP methods provide an attractive solution to the issue of multiplicity. When the data
are generated by a single equilibrium, the resulting likelihood conditions on the equilibrium
that is played in the data, bypassing the need to consider other equilibria.

Our model has the advantage of being estimable via either approach. As in Doraszelski
and Judd (2012), the use of continuous time breaks one primary curse of dimensionality in
that only a single player moves at any particular instant. An attractive and novel feature of
our framework is that it is also easily estimable using standard CCP methods. This greatly
reduces the computational costs of estimation relative to full-solution methods. Having
estimated a large problem with CCP methods, it is then straightforward to use the model
for post-estimation exercises, since the computational burden of computing the equilibrium
a few times for these purposes is not as great as nesting several such solutions into an
estimation routine. In this way, our framework preserves a tight link between the estimated
model and that used for post-estimation analysis, something which has proven infeasible
for many empirical applications that have been modeled in discrete time.

In the rest of this section we describe the estimation algorithms. We begin with full-
solution and two-step methods when continuous time data is observed. Since data is often
reported only at discrete intervals, we next show how our methods can be applied to discrete
time data. We then extend the methods to incorporate permanent unobserved heterogeneity.
Finally, we discuss identification.

5.1 Full-Solution Estimation

We maintain the convention that choice j = 0 for each agent is a continuation choice
which does not change the state. Then, in state k, the probability of the next state change
occurring during an interval of length τ is

1− exp

−τ
∑
l 6=k

qkl +
∑
i

λ
∑
j 6=0

σijk

 . (11)

This is the cdf of the exponential distribution with rate parameter equal to the sum of the
exogenous state transition rates and the hazards of the non-continuation actions for each
player, where the equilibrium choice probabilities σijk are, implicitly, functions of the rates
q and λ and the parameters θ.

Differentiating with respect to τ yields the density for the time of the next state change,

equilibrium obtained by a numerical fixed point routine. The computational advantages of continuous time,
however, make it easier to explore more complex equilibrium selection mechanisms with non-degenerate
weightings.
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which is the exponential pdf with the same rate parameter as before:∑
l 6=k

qkl +
∑
i

λ
∑
j 6=0

σijk

 exp

−τ
∑
l 6=k

qkl +
∑
i

λ
∑
j 6=0

σijk

 . (12)

Conditional on a state change occurring in state k, the probability that the change is due
to agent i taking action j is

λσijk∑
l 6=k qkl +

∑
i λ
∑
j 6=0 σijk

. (13)

Now, define the function

g(τ, k | q, λ, θ) = exp

−τ
∑
l 6=k

qkl +
∑
i

λ
∑
j 6=0

σijk

 , (14)

which is the second term from (11). Then, the joint likelihood of the next stage change
occurring after an interval of length τ and being the result of player i taking action j is the
product of (12) and (13),

λσijkg(τ, k | q, λ, θ),

with the corresponding likelihood of nature moving the state from k to l being

qklg(τ, k | q, λ, θ).

Now consider a sequence of N state changes occurring over a period of length T . Let
kn denote the state prior to the n-th state change, with kN+1 denoting the final state. Let
tn denote the time of the n-th event and let τn denote the holding time between events,
defined as τn = tn− tn−1 for n ≤ N . For the interval between the last event and the end of
the sampling period, we define τN+1 = T − tN . Let In(l) be the indicator for whether the
n-th move was a move by nature to state l and, in a slight abuse of notation, let In(i, j) be
the indicator for whether the n-th move was a move by player i and the choice was j. The
maximum likelihood estimates of q, λ, and θ are then the solution to:

{
q̂, λ̂, θ̂

}
= arg max

(q,λ,θ)


N∑
n=1

ln g(τn, kn | q, λ, θ) +
∑
l 6=kn

In(l) ln qkl

+
∑
i

∑
j 6=0

In(i, j) ln (λσijk(q, λ, θ))

+ ln g(τN+1, kN+1 | q, λ, θ)

 .
Note that embedded in the estimation problem is the solution to a fixed point problem which
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is needed in order to obtain the value functions. We have made the dependence of the choice
probabilities on the parameters and rates explicit. The last term in the expression is the
natural logarithm of one minus the exponential cdf, to account for the fact that another
state change was not observed by the end of the sampling period.

5.2 Two-Step Estimation

As discussed in Section 3, it is possible to express differences in continuous time value func-
tions as functions of the conditional choice probabilities. These expressions can sometimes
be used in such a way that solving the nested fixed point problem is unnecessary. In this
section, we show how two-step methods apply in estimation, linking reduced form hazards
to conditional choice probabilities.

5.2.1 Step 1: Estimating the Reduced-Form Hazards

Let hijk = λσijk denote the hazard for an active player i choosing action j in state k. In
Step 1, one estimates the hazards hijk nonparametrically. For example, these hazards can
be estimated by maximum likelihood by writing the exponential cdf in (11) as a function
of hijk instead of λσijk. Similarly, we can rewrite the function in (14) as

g̃(τ, k | q, h) = exp

−τ
∑
l 6=k

qkl +
∑
i

∑
j 6=0

hijk

 .
Then, the maximum likelihood estimates of the hazards q and h are

{
q̃, h̃

}
= arg max

(q,h)


N∑
n=1

ln g̃(τn, kn | q, h) +
∑
l 6=kn

In(l) ln qkl +
∑
i

∑
j 6=0

In(i, j) ln hijk


+ ln g̃(τN+1, kN+1 | q, h)} .

5.2.2 Step 2: Estimating the Structural Payoff Parameters

In Step 2, we use the estimated reduced-form hazards to estimate the structural payoff
parameters θ. Given the estimated hazards and a value of λ, we can estimate the conditional
choice probabilities for j 6= 0 as h̃ijk/λ and 1 −

∑
j 6=0 h̃ijk/λ for j = 0. Therefore, when

the finite dependence condition holds, we can express the structural conditional choice
probabilities as functions of λ, θ, and the estimated hazards and rates so that no fixed-
point problem needs to be solved. Let σ̌ijk(q̃, h̃, λ, θ) denote this mapping. Similarly, let
ǧ(t, k | q̃, h̃, λ, θ) denote the mapping in (14) with σ̌ijk(q̃, h̃, λ, θ) used in place of σijk.

19



Since we already have estimates of the rates qkl, we focus on estimating λ and θ. The
joint likelihood of the next state change occurring after an interval of length τ and being
the result of player i taking action j is

λσ̌ijk(q̃, h̃, λ, θ)ǧ(τ, k | q̃, h̃, λ, θ).

The second stage estimates are then

{
λ̌, θ̌

}
= arg max

(λ,θ)


N∑
n=1

ln ǧ(τn, kn | q̃, h̃, λ, θ) +
∑
i

∑
j 6=0

In(i, j) ln
(
λσ̌ijk(q̃, h̃, λ, θ)

)
+ ln ǧ(τN+1, kN+1, | q̃, h̃, λ, θ)

}
.

5.3 Discrete Time Data

Often the exact sequence of events and event times is not observed, rather, the state is only
observed at discrete points in time. Here, we consider estimation with discretely-sampled
data, focusing in particular on full-solution estimation, but one can easily carry out two-step
estimation in an analogous manner.

Let Pkl(∆) denote the probability that the system has transitioned to state l after a
period of length ∆ given that it was initially in state k, given the aggregate intensity matrix
Q. The corresponding matrix of these probabilities, P (∆) = (Pkl(∆)), is the transition
matrix, which satisfies

P (t) = e∆Q =
∞∑
j=0

(∆Q)j

j! . (15)

This quantity is the matrix exponential, the matrix analog of the scalar exponential, which
can be computed using one of many known algorithms (cf. Moler and Loan, 1978, Sidje,
1998).12

The transition probabilities summarize the relevant information about a pair of observa-
tions (tn−1, kn−1) and (tn, kn). That is, Pkn−1,kn(tn− tn−1) is the probability of the process
moving from kn−1 to kn after an interval of length tn − tn−1. This includes cases where
kn = kn−1, since the transition probabilities account for the case of no jumps at all, as well
as all sequences involving any number of jumps to intermediate states before returning to
the initial state.

The transition matrix depends on model primitives such as conditional choice probabil-
ities that are themselves functions of q, λ, and θ, which we write as P (∆; q, λ, θ). The log

12The matrix exponential operator is available, for example, in Matlab, via the expm function.
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likelihood function for a sample {(tn, kn)}Nn=1 is thus

lnLN (q, λ, θ) =
N∑
n=1

lnPkn−1,kn(tn − tn−1; q, λ, θ).

Since the Q matrix can be large, this may seem to introduce a computational curse of
dimensionality rivaling that of discrete time models. However, the Q matrix is often very
sparse, which substantially reduces the computational burden. Sparse matrix algorithms
can be used to compute P (∆), which typically require only being able to compute the action
of Q on some generic vector v. Since the structure of Q is known, this usually involves very
few multiplications relative to the size of the intensity matrix, which isK×K. Furthermore,
only at most N rows of P (∆) need be calculated to estimate the model, corresponding to
the number of observations. Algorithms are available which exploit the sparsity of Q and
directly compute the action of P (∆) on some vector v, further reducing the computational
cost. Since v can be the n-th standard basis vector, one can compute only the necessary
rows of P (∆).

We now provide some intuition for why discrete-time data will not substantially compli-
cate the problem, which also suggests a natural way to form a simulation-based estimator
of P (∆). Recall that we are considering stationary models: the hazards do not depend on
t. This implies that we can decompose the Markov jump process into two components: a
state-independent Poisson process dictating when moves occur, and an embedded Markov
chain which dictates where the state moves to.

In our setting, the embedded Markov chain associated with moves by agents is a ma-
trix containing the relevant conditional choice probabilities. We can also rewrite the state
transition rates for nature in a similar manner. Namely, let q denote the maximum sum of
these rates across all states:

q = max
j

∑
k

qjk.

If we consider q to be the move arrival rate for nature, then at each move opportunity, the
probability of transitioning from state k to l due to a move by nature is

q′kl =

qkl/q if k 6= l,

1−
∑
k 6=l qkl/q if k = l.

Given the conditional choice probabilities, σ, and the transition probabilities for na-
ture, q′, we can construct an embedded Markov chain Z which characterizes the transition
probabilities across all states for each arrival of the alternative Poisson process with rate
q+Nλ. The transition matrix associated with moving from any state k to any future state
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k′ in exactly r steps is simply Zr. Let an denote a vector of length K, which has a one
in position kn, corresponding to the state at observation n, and zeros elsewhere (i.e., the
kn-th standard basis vector). The maximum likelihood estimates given a dataset of discrete
observations at intervals of unit length satisfy

{
q̂, λ̂, θ̂

}
= arg max

(q,λ,θ)

N∑
n=1

ln
[ ∞∑
r=0

(q +Nλ)r exp(−(q +Nλ))
r! a>nZ(q, θ)ran+1

]
. (16)

The first term in the innermost summation above is the probability of exactly r state
changes occurring during a unit interval, under the Poisson distribution. The second term
is the probability of the observed state transition, given that there were exactly r moves.

The expression above also suggests a simulation-based estimator. Namely, use the ex-
pression inside the sum for the first R <∞ terms. Given an initial guess of λ and q, draw
from the event distribution conditional on having more than R events. One could then
use importance sampling to weight the number of events to avoid redrawing the simulated
paths when changing the parameters.

5.4 Unobserved Heterogeneity

Our methods can also be extended to accommodate permanent unobserved heterogeneity
using finite mixture distributions. In particular, suppose that N observations are sampled
over the interval [0, T ] for each of M markets, where each market is one of Z types. Let
πz(km1) denote the population probability that market m is of type z conditional on the ini-
tial observation.13 We can then integrate with respect to the distribution of the unobserved
state, so that the maximum likelihood problem becomes

{
q̂, λ̂, θ̂, π̂

}
= arg max

(q,λ,θ,π)

M∑
m=1

ln
[
Z∑
z=1

πz(km1)
N∏
n=1

lnPkm,n−1,kmn(τmn; q, λ, θ, z)
]
, (17)

where P (∆; q, λ, θ, z) is the transition matrix for type z and τmn = tmn − tm,n−1 is the
interval between observations n− 1 and n for market m.

Although (17) is written for the full-solution case, the methods outlined in Arcidiacono
and Miller (2011) apply. They show that the EM algorithm can be used to recover the
conditional choice probabilities as part of the maximization problem or in a first stage. The
same methods can be applied here, only now it is the reduced form hazards conditional on
both the observed and unobserved states that are being recovered.

13By letting πz(km1) depend on km1, we allow for an initial conditions problem.
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5.5 Identification

With continuous-time data, identification and estimation of the intensity matrix for finite-
state Markov jump processes is straightforward and well-established (Billingsley, 1961).
However, when a continuous-time process is only sampled at discrete points in time, the
parameters of the underlying continuous-time model may not be identified. In continuous-
time models, this is known as the aliasing problem, which has been studied by many authors
in the context of continuous-time multivariate regression models (Sims, 1971, Phillips, 1973,
Hansen and Sargent, 1983, Geweke, 1978).14

In the context of finite-state Markov jump processes, the question is whether there a
unique matrix Q that leads to the observed transition matrix P (∆) when the process is
sampled at intervals of length ∆. Singer and Spilerman (1976) and Geweke, Marshall, and
Zarkin (1986) discuss the aliasing problem in this context and Singer and Spilerman (1976)
provide several sufficient conditions, any of which guarantee that Q is unique, for example,
if the eigenvalues of P (∆) are distinct, real, and positive, if mink{Pkk(∆)} > 1/2, or if
detP (∆) > e−π.

Such conditions are useful, but for structural models, many restrictions on Q arise
naturally from the underlying model. For multivariate regression models, Phillips (1973)
discusses the role of prior information on the intensity matrix and how it can lead to
identification. The structural model underlying the Q matrix in our framework provides
exactly the sort of prior restrictions needed to mitigate the aliasing problem. The model
restricts Q to a lower-dimensional subspace, since it is sparse and must satisfy both within-
row and across-row restrictions. Therefore, even if there are multiple matrix solutions to
the equation P (∆) = exp(∆Q), it is unlikely that two of them simultaneously satisfy the
restrictions of the structural model. For example, consider the restrictions on the Q matrix

14A related issue is the embeddability problem: could the observed discrete-time transition matrix P (∆),
associated with a time interval of length ∆, have been generated by the proposed data generating process
(some continuous-time Markov structure with intensity matrix Q or some discrete-time chain over fixed time
periods of length δ). This is a model specification issue, also arising in both discrete time and continuous
time: was the data actually generated by a continuous time Markov jump process? We assume throughout
that the model is well-specified and therefore, such an intensity matrix Q exists. Singer and Spilerman (1976)
provide several necessary conditions for embeddability involving testable conditions on the determinant and
eigenvalues of P (∆). This problem was first proposed by Elfving (1937). Kingman (1962) derived the set of
embeddable processes with K = 2 and Johansen (1974) gave an explicit description of the set for K = 3.
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implied by the simple renewal model of Section 2.1:

Q =



−q1 − q2 q1 q2 0 0
λσ12 −q1 − q2 − λσ12 q1 q2 0
λσ13 0 −q1 − q2 − λσ13 q1 q2

λσ14 0 0 −q1 − q2 − λσ14 q1 + q2

λσ15 0 0 0 −λσ15


.

The number of parameters to be estimated in this matrix is substantially less than if the
intensities were allowed to vary across all the non-diagonal elements. Furthermore, the
CCPs depend on the rates and payoff parameters, which introduces shape restrictions on
σ1k across states k.

Importantly, the question of identification applies equally to discrete-time models, where
there is an analogous problem. Suppose there is a fixed move interval of length δ in the
model which may be different from the fixed interval ∆ at which observations are sampled.
In practice, researchers typically assume (implicitly) that δ = ∆, where ∆ = 1 is normalized
to be some specific unit of time (e.g., one quarter).15 This assumption is convenient, but
masks the identification problem, which requires that there exist a unique matrix root P0

of the discrete-time aggregation equation P
∆/δ
0 = P (∆). In general, however, there may

be multiple such matrices (Singer and Spilerman, 1976, p. 49). As in our setting, however,
valid solutions P0 must satisfy the restrictions implied by the model. These issues become
trivial under the usual assumption that δ = ∆.

6 Empirical Application

Our empirical application considers the impact of Walmart’s entry into the supermarket
industry. Walmart gained national prominence in the discount retail segment, building a
large network of discount stores radiating out from their corporate headquarters in Ben-
tonville, Arkansas. In the late 1980s, they began opening supercenters, which combined
their original dry goods format with a full-line supermarket. In 1994, the first year for
which we have data, Walmart owned 97 outlets. However, by 2006, the last year of our
data, they had opened 2225 outlets, many of which were conversions of existing discount
stores to the new superstore format.

Quantifying the impact of Walmart’s entry into groceries requires understanding a bit
about the overall structure of the supermarket industry. The grocery industry has long

15The continuous-time model is more flexible than the discrete-time model in the sense that one can
estimate the rate of move arrivals, rather than fixing it at unity. The continuous-time model which most
closely mirrors the usual discrete-time assumptions, which are imposed implicitly, is found by setting λ ≡ 1.
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been comprised of two distinct segments: large regional chains and a competitive “fringe”
of local stores (the majority of which are sole proprietorships). Most markets have between
three and four chain players (with roughly similar market shares) and a long tail of fringe
stores (whose number increases monotonically with the size of the market). While Walmart
is clearly a disruptive presence, it is unclear which of these segments is most vulnerable to
its entry, and how exactly it reshapes the competitive landscape.

6.1 Model

To accommodate the institutional features of the supermarket industry and allow for het-
erogeneous competitive effects across formats, there are three types of firms in our model:
chain firms (who can operate many stores), Walmart (who can also operate many stores),
and fringe firms (who can operate at most one store each). With each move arrival, chain
stores can open one new store (j = 1), do nothing (j = 0), or, conditional on having at
least one open store, close a store (j = −1). A move arrival for an incumbent fringe firm
provides an opportunity for the firm to exit. Similarly, move arrivals provide opportunities
for potential entrants to enter. In the context of retail competition, a random move ar-
rival process might reflect the stochastic timing of local development projects (e.g., housing
tracts and business parks), delays in the zoning and permitting processes, and the random
arrival of retailers in other lines of business that have higher valuations for the properties
currently occupied by incumbent grocers. All firms have the same move arrival rate, λ, and
q1 and q−1 are the rates of moving up and down in population, respectively. The function
l(i, j, k) then gives the state conditional on firm i taking action j in state l.

6.1.1 Value Functions

We now provide the general formulation of the value functions and then describe the relevant
state variables. For a particular market, the value function for firm i in state k is then given
by:

Vik =
uik +

∑
j∈{−1,1} qjVi,l(0,j,k) +

∑
m6=i λ

∑
j∈{−1,1} σmjkVi,l(m,j,k) + λE maxj

{
Vi,l(i,j,k) + ψijk + εijk

}
ρ+

∑
j∈{−1,1} qj +

∑
m6=i λ

∑
j∈{−1,1} σmjk + λ

,

(18)
where nature is indexed by i = 0 and ψijk reflects the costs of opening or closing a store.

Following standard convention in the empirical entry literature, we assume that if a
chain or fringe firm closes all of its stores, then the firm cannot enter again later. Hence,
if a chain firm exits, it would be replaced by a new potential chain entrant. For chain
and fringe firms, this allows us to replace the value functions on the right-hand side of
(18) using Propositions 1 and 2. As a result (and exploiting Proposition 3), the value
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function on the left-hand side of (18) can be expressed as a function of the flow payoffs, the
move arrival parameters, and the probabilities of making particular decisions. Note that
this representation eliminates the need to make any assumptions regarding the maximum
number of chain firms, Walmart stores, or fringe firms in the market, since no fixed point
problem is solved.

6.1.2 Flow Profits for Chain Firms

We specify per-store revenue for chain firms, ucik, as a linear function of population, pop,
the number of own stores, si, and the number of competing stores of each type (chain,
Walmart, and fringe), s̃i. Revenues also depend on an unobserved (to the econometrician)
characteristic of the market, z, which reflects the tastes of those is market for particular
types of products. Flow profits for a chain firm in state k are

ucik = si (βc0 + βc1pop− βc2si − βc3 · s̃i + βc4z)− ecik,

where ecik is the flow cost of operating a set of stores:

ecik = φc1si + φc2s
2
i + φc3s

3
i .

A cubic cost function allows there to be regions of increasing and then decreasing returns
to scale, so that for each state the optimal value of si is finite. Expanding and collecting
terms yields

ucik = (βc0 − φc1 − βc3 · s̃i + βc4z)si + βc1sipop− (βc2 + φc2)s2
i − φc3s3

i .

6.1.3 Flow Profits for Fringe Firms

Revenues for fringe stores have a similar linear form to that of chain stores, though with
different coefficients and a different flow cost function, efik. Namely, an operating fringe
store has profits given by:16

ufik = βf0 + βf1 pop− β
f
3 · s̃i + βf4 z − e

f
ik,

Fringe competitors often depend on the same suppliers. Hence, there may be some economies
of scale present at first. However, at some point competitive influences will drive up costs,
suggesting a quadratic cost function in the total number of fringe stores, s:

efik = φf1 + φf2s
2.

16Note that there is no β2si term as fringe stores can only operate at most one store.

26



6.2 Data

The data for the supermarket industry come from yearly snapshots of the Trade Dimensions
Retail Database, capturing the set of players that are active in September of each year,
starting in 1994 and ending in 2006. Trade Dimensions continuously collects information
on every supermarket (and many other retailers) operating in the United States for use in
their Marketing Guidebook and Market Scope publications and as a standalone, syndicated
dataset. The definition of a supermarket used by Trade Dimensions is the government and
industry standard: a store selling a full line of food products that grosses at least $2 million
in revenue per year. Store level data on location, revenue and employment is linked to the
firm level through a firm identity code, which can also be used to identify the location of
the nearest distribution facility.

A firm is deemed to be a chain firm in a market if it has at least 20 stores open nationally
and its maximum market share (in terms of number of stores) exceeds 20% in at least one
year. In our model, there are seven chain players in each MSA who may or may not be
active in the market. If a chain has no stores in a particular period and chooses not to
build a store, that chain is replaced by a new potential chain entrant. In our model, each
MSA has ten potential fringe firm entrants, so the number of fringe firms is the number of
incumbent fringe firms plus ten.

One issue with the data is that supermarket chains may move one of their stores to
another location. Hence, exits and entries can be positively correlated. Since location
within an MSA is beyond the scope of the model, we look at net entry and exit within the
period. Hence, we assume that if we see both an entry and exit by the same chain, this pair
of moves is equivalent to not moving at all.

Demand for supermarkets is a function of population. The data on market population
are interpolated from the decennial censuses of the United States and population is dis-
cretized into six categories.17 Each MSA is assigned to one of three population growth
categories based on the change in the population of the MSA over the full sample period.

Table 1 gives descriptive statistics for the sample. On average, there are about two and
a half chain firms per market, with 3.7 stores per chain firm on average. Markets contain
an average of 13 fringe stores. The number of Walmarts is much smaller, averaging one
store per market in the sample. On average, there are 0.277, 0.177, and 0.825 stores built
per market within a year by chain firms, Walmart, and fringe firms, respectively. The
corresponding figures for store closings are 0.224, 0.002, and 0.908, revealing that Walmart
virtually never exits in our sample.

Table 2 looks at entry and exit decisions for chain firms and fringe firms one year
17The discretization was such that differences in log population between adjacent categories was equal.
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before, the year of, and the year after initial entry of Walmart. Here, we see that chain
and fringe firms both respond negatively to Walmart. The number of new chain stores
falls from 0.311 in the period before Walmart enters to 0.189 in the period after—a 40%
drop. Similarly, the number of stores closing increases by over 6.5% from a base level of
0.122. The qualitative patterns for fringe firms are the same, though the effects are muted,
suggesting that Walmart’s presence is more detrimental to chain firms than fringe firms.

This table highlights an advantage of using a continuous time model. Note that the
numbers of entering and exiting chain stores in the year of Walmart’s initial entry are
bracketed by the corresponding values the year before and the year after Walmart’s entry.
In markets where chain and fringe stores saw little change in their building patterns, this
indicates that Walmart entered later in the period. But when Walmart enters early in
the period, exit by chain and fringe stores is more likely to occur within the period. A
continuous time model can explain both the increase in exit rates during the entry period
as well as the even further increase in exit rates in the period after.

6.3 Estimation

We estimate the model in two steps, first estimating the reduced form hazards that capture
the rate of change in the number of stores of each format and population over time, and
then estimating the structural parameters of the profit functions, taking the reduced form
hazards as given. Throughout, we normalize λ, the arrival rate of moves for firms, to one,
implying an average of one move per year.

6.3.1 Step 1: Estimating Reduced-Form Hazards

We estimate the probabilities of opening a store, closing a store (if the firm has at least
one store), and doing nothing using a linear-in-parameters multinomial logit sieve, with
the parameters varying by firm type (chain, Walmart, and fringe).18 In particular, let
p̃ij(k, z, α) denote the reduced form probability of firm i making choice j in state (k, z),
which has the form

p̃ij(k, z, α) = exp(hj(k, z, α))∑
j′∈Aik

exp(hj′(k, z, α)) ,

where hj(k, z, α) is a flexible function of the state variables with finite dimensional parameter
vector α. The likelihood of a particular event, choice j by firm i in state k, in a market

18The variables included in the multinomial logit models are the number of fringe stores and its square,
the number of chain stores and its square, the number of Walmarts and its square, and the total number of
firms squared, and interactions of each of these variables with population. In addition, we control for city
growth type, the unobserved state, and the unobserved state interacted with an indicator for building a new
store.
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with unobserved state z, with an interval of length τ since the previous event, is

λp̃ij(k, z, α) exp

−
 ∑
j′∈{−1,1}

qj′ +
∑
m

λ
∑

j′∈Amk

p̃mj′(k, z, α)

 τ
 .

Since we have annual data, we simulate possible sequences of events that can happen
over the course of each year. As discussed earlier, the structure of our data is such that
we observe all events that took place in each year, but do not observe the exact times at
which these events occur. Suppose that we observe W events in period n. For periods with
W > 0, we draw R simulated paths, randomly assigning each observed event to a simulated
time. Once we have the likelihood of each simulated sequence of events, we average over
these simulated sequences, integrating over move times.

Focusing on a particular observation period n, let kn−1 and kn denote the states at the
beginning and end of the period. Let k(r)

w denote the state immediately preceding event
w in simulation r, with w = 1, . . . ,W + 1. The observed state at the beginning of the
period is then k

(r)
1 , so k(r)

1 = kn−1 for each r. Similarly, the terminal state for each path
is the observed state at the end of the period, so k

(r)
W+1 = kn for each r. Let I(r)

w (i, j)
be the indicator for whether event w of the r-th simulation was action j taken by firm i.
Conditional on knowing the unobserved state z, the simulated likelihood of observation n
in market m is

L̃mn(q, λ, α; z) = 1
R

R∑
r=1


W∏
w=1

 ∑
j∈{−1,1}

I(r)
w (0, j)qj +

∑
i

λ
∑
j 6=0

I(r)
w (i, j)p̃ij(k(r)

w , z, α)


× exp

−
 ∑
j∈{−1,1}

qj +
∑
i

λ
∑
j 6=0

p̃ij(k(r)
w , z, α)

 τ (r)
w


× exp

−
 ∑
j∈{−1,1}

qj +
∑
i

λ
∑
j 6=0

p̃ij(k(r)
W+1, z, α)

 (1− t(r)W )

 ,
where W is the number of events that occurred in the n-th interval and t(r)W is the time of
the last simulated move.

Since z is unobserved, we estimate the reduced form hazards using mixture distributions.
Higher value of the unobserved state may make it easier or harder to operate as a chain,
fringe, or Walmart store respectively. We discretize the standard normal distribution into
five points and then estimate the population probabilities of being at each of these points.
Note that there is an initial conditions problem here, so we allow the prior probability of
being in a particular unobserved state to depend on the first period state variables, similar
to Keane and Wolpin (1997) and Arcidiacono, Sieg, and Sloan (2007). In particular, we
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specify the prior probabilities as following an ordered logit that depends on the number of
chain stores, the number of Walmarts, and the number of fringe stores, all interacted with
population, and the city growth type.

Let πz(k1) be the probability of the unobserved state being z given that the observed
state was k1 for the first observation. With M markets and N periods each, integrating
with respect to the distribution of the unobserved market states yields

{
q̃, λ̃, α̃, π̃

}
= arg max

(q,λ,α,π)

M∑
m=1

ln
(∑

z

πz(km1)
N∏
n=1

L̃mn(q, λ, α; z)
)
.

The first stage estimates then give both the reduced form hazards, which are subsequently
used in the second stage to form the value functions, as well as the conditional probability
of each location being in each of the unobserved states, as in Arcidiacono and Miller (2011).

6.3.2 Step 2: Estimating the Structural Parameters

In Step 2, we take the probabilities of being in each unobserved state and the reduced-form
hazards from Step 1 as given. We then separately estimate the structural parameters for
chain and fringe stores. Let Pm(z) denote the probability of MSA m being in unobserved
state z given the data. Using Bayes’ rule, we have

Pm(z) = πz(km1)
∏N
n=1 L̃mn(q̃, λ̃, α̃; z)∑

z′ πz′(km1)
∏N
n=1 L̃mn(q̃, λ̃, α̃; z′)

.

These probabilities are then used as weights in the likelihood function for Step 2.
Next, using Proposition 3, we can express the value function in (18) as a function of

the structural parameters, θ, and the reduced form hazards from the first stage, p̃ij(k, z, α̃).
Thus, let σ̃ij(k, z, θ) denote the implied probability that firm i takes action j in state (k, z),
for a given value of the second stage parameters.

Define Ľmn(θ; q̃, λ̃, α̃; z) as

Ľmn(θ; q̃, λ̃, α̃, z) = 1
R

R∑
r=1


W∏
w=1

 ∑
j∈{−1,1}

I(r)
w (0, j)qj +

∑
i

λ
∑
j 6=0

I(r)
w (i, j)σ̃ij(k(r)

w , z, θ)


× exp

−
 ∑
j∈{−1,1}

qj +
∑
i

λ
∑
j 6=0

σ̃ij(k(r)
w , z, θ)

 τ (r)
w


× exp

−
 ∑
j∈{−1,1}

qj +
∑
i

λ
∑
j 6=0

σ̃ij(k(r)
W+1, z, θ)

 (1− t(r)W )

 ,
where we use the same simulation draws as in Step 1, but replace each p̃ij with σ̃ij , which
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is a function of θ. Then, the second stage estimates are

{
θ̌
}

= arg max
θ

M∑
m=1

∑
z

Pm(z)
N∑
n=1

ln Ľmn(θ; q̃, λ̃, α̃, z).

6.4 Results

The structural parameter estimates for chain stores are presented in Table 3. While the
competitive effects of other chain stores and fringe stores are significant, they are dominated
by the effects of Walmart. In terms of flow profit, one Walmart is equivalent to between
six and seven fringe or chain stores. With the negative effects of number of stores squared,
operating more stores becomes increasingly costly, effectively bounding the size of chain
firms. Markets with higher values of the unobserved state face lower building costs for
chain firms and lower diminishing returns for increasing chain size, but the costs of entering
the market are higher. Other coefficients are as expected—population increases profits and
the costs of building stores is substantial, with even higher costs incurred for entering a
market.

Results for fringe firms are presented in Table 4. Due perhaps to the importance of
distribution networks (which rely on achieving a minimal local scale), having more fringe
competitors raises profits at first, with competitive effects dominating as the number of
fringe competitors increases. Both chain competitors and Walmarts lower profits but the
effects of Walmart on fringe profits are substantially smaller than the effects on chain store
profits. Population again has a positive effect on profits and there are significant store
building costs. Similar to chain stores, higher values of the unobserved state lower store
building costs and lessen the competitive impact from fringe competitors. However, this
latter effect is smaller for fringe stores.

6.5 Counterfactuals

We consider two counterfactual experiments in which Walmart is prohibited from entering
the markets in which it was not present at the beginning of our sample. We compare the
resulting dynamics in these markets, both in the short run and long run, under our estimated
structural parameters and under two counterfactual simulation designs. These experiments
are designed to separate the ex-post direct competitive effects of Walmart’s entry on chain
and fringe firms from the ex-ante effect of firms’ expectations regarding Walmart’s entry
decisions. In the first experiment, Walmart is prohibited from entering but rival chain and
fringe firms are not aware of this, and thus expect Walmart to behave as usual (which most
likely means entering soon). In the second experiment, Walmart is again prohibited from
entering, but this is common knowledge to rival chain and fringe firms, who then rationally
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behave as if Walmart does not exist.
In the first case, we do not solve for counterfactual conditional choice probabilities

for fringe and chain firms, but rather, assume that firms will behave according to their
estimated policies, fully expecting Walmart to enter, while we artificially prohibit Walmart
from acting. This out-of-equilibrium design shows that even without an actual Walmart
store in any of these markets, the mere expected threat of entry by Walmart reduces entry
by other firms. Interestingly, the effect of this threat is quite different across markets, both
in terms of the level of the unobserved heterogeneity state and by market structure.

Our second simulation involves a counterfactual equilibrium in the usual sense, where
we use the estimated structural parameters to obtain a new equilibrium between chain and
fringe firms and simulate the evolution of these markets in a world where Walmart does
not enter the retail grocery market at all.19 Firms in this experiment start from the same
initial conditions observed at the beginning of our sample, but with the knowledge that
Walmart will not enter, and thus operate without either the direct competitive effect or the
threat of entry in expectation. Importantly, in neither case do we need Walmart’s structural
parameters to carry out the simulations—only their conditional choice probabilities.

For the second experiment, we already have estimates of uik and qj . With λ = 1, we
solve for the value functions with Walmart eliminated, V̈ik, using a suitably adapted version
of equation (18). In the counterfactual equilibrium, we have

V̈ik =
uik +

∑
j∈{−1,1} qj V̈i,l(0,j,k) +

∑
m6=i λ

∑
j∈{−1,1} σ̈mjkV̈i,l(m,j,k) + λE maxj

{
V̈i,l(i,j,k) + ψijk + εijk

}
ρ+

∑
j∈{−1,1} qj +

∑
m6=i λ

∑
j∈{−1,1} σ̈i′jk + λ

,

(19)
where the sum over rival firms no longer includes Walmart and where the values σ̈ijk are
the counterfactual equilibrium conditional choice probabilities.

We simulate counterfactual outcomes over a wide range of markets in which Walmart
has no presence at the beginning of our dataset. We first simulate the market evolution
using the estimated conditional choice probabilities, given that Walmart enters as usual,
and that firms have rational expectations about its entry behavior. We simulate 10,000
paths for each market in this way and report the average number of stores for each type, as
well as the number of chain firms in the initial period and 5, 10, and 20 years in the future.

As seen in the simulations in Table 5, and the parameter estimates in Tables 3 and 4,
19Since we are simulating individual markets, none of which are large in all dimensions simultaneously, we

are able to bound the state spaces for our simulations so that the value functions can be stored in memory.
As such, we set appropriate bounds on the number of stores per chain and fringe firms for each simulation,
while ensuring that the bounds are neither binding, nor near to binding, in our simulations. For example,
although there would be over 287 billion states in the full model (in order to accommodate all markets we
observe), the number of states in our simulations range from 20 million (Merced, CA, which only has a few
small chains) to 183 million (Boulder, CO, which has several large chains).
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the unobserved state appears to relate strongly to the direction of the competitive effect
on fringe firms. In markets where the unobserved state is negative, such as Bend and
Merced, Walmart tends to compete more strongly with fringe firms, to the benefit of chain
firms, which are able to expand more quickly as a result. The opposite happens in markets
with positive values of the unobserved state, such as Boulder and Erie. In these markets,
Walmart actually tends to benefit fringe firms by competing more directly with chain firms
instead. When the unobserved state is zero, the competitive effect is more balanced, as we
see in Santa Cruz and Trenton.

Aside from these overall patterns, the different dynamics that occur in more concentrated
markets versus more competitive markets are also of interest. Consider Bend, which is
initially populated by twelve fringe stores but only six chain stores, operated by three
different firms. In the counterfactual simulations, the number of fringe firms nearly doubles
after 20 years, but in both the actual and expectations-only simulations, two fringe firms
actually exit on average over the same period. It appears that the mere threat of Walmart’s
entry is enough to hinder fringe expansion in this market.

On the other hand, Boulder is initially served primarily by several moderately large chain
firms, which collectively have twice as many stores as fringe firms. In this case Walmart’s
entry primarily limits expansion by chain firms, but also results in exit of about four fringe
firms on average after 20 years. In the counterfactual simulations where Walmart does not
enter at all, fringe firms actually appear to be edged out to a larger extent, due to more
dominant chains, while under both the actual policies and the policies where Walmart is
expected to enter, the more limited expansion by chain firms allows more fringe firms to
remain in the market.

Thus, there appears to be much heterogeneity in the effect of Walmart’s entry on the
fringe. Both the initial market structure and other market-specific factors are important
determinants of the nature of Walmart’s competitive effect. The most interesting finding,
however, is that the mere threat of Walmart has such a substantial effect on industry
dynamics.

7 Conclusion

While recently developed two-step estimation methods have made it possible to estimate
large-scale dynamic games, performing simulations for counterfactual work or generating
data remains severely constrained by the curse of dimensionality that arises from simultane-
ous moves. We recast the standard discrete-time, simultaneous-move game as a sequential-
move game in continuous time. This breaks the curse of dimensionality, greatly expanding
the breadth and applicability of these structural methods and making even full-solution
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estimation feasible for very large games.
Furthermore, by building on an underlying discrete-choice random utility model, our

model preserves many of the desirable features of discrete-time models. In particular, we
show that the insights from two-step estimation methods can be applied directly in our
framework, resulting in another order of magnitude reduction in computational costs during
estimation. We also show how to extend the model to accommodate incomplete sampling
schemes, including time-aggregated data. Both are likely to be relevant for real-world
datasets.

Our empirical application shows that our model is both feasible to estimate and can be
used to run counterfactuals on problems with extremely large state spaces. Our empirical
results are of interest in their own right, establishing substantial heterogeneity across mar-
kets in the behavior of supermarkets as well as establishing the importance of accounting
for dynamics. Our counterfactuals reveal that the mere threat of Walmart entry has a sub-
stantial effect on industry dynamics, with the dominant firm type (either chains or fringe)
holding back on expansion when Walmart may enter. This allows the weaker firm type to
prosper more than it would if Walmart was banned.

A Proofs

A.1 Proof of Proposition 1

Let vjk = ψjk + Vl(j,k) denote the choice-specific value function, net of the choice-specific
shock, for choice j in state k. Given the additively separable structure of instantaneous
payoffs, we can express the conditional choice probabilities in terms of the social surplus
function of McFadden (1981):

S (v0k, . . . , vJ−1,k | k) ≡ E max
j∈A
{vjk + εj}.

This function depends implicitly on the joint distribution of ε. Under Assumption 2, by
the Williams-Daly-Zachary theorem (Rust, 1994, Theorem 3.1), the function S exists, S is
additive in the sense that for any α ∈ R,

S(v0k + α, . . . , vJ−1,k + α | k) = S(v0k, . . . , vJ−1,k | k) + α,

and the vector of CCPs equals the gradient of S: σk = ∇S(v0k, . . . , vJ−1,k | k). Let
ṽk = (v0k − vj′,k, . . . , vJ−1,k − vj′,k) denote the J − 1 vector of differenced choice-specific
value functions, relative to choice j′, with the j′-th component omitted.

It follows from Proposition 1 of Hotz and Miller (1993) (also see Lemma 3.1 of Rust
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(1994)) that there is a one-to-one function H which maps the differenced choice-specific
value functions ṽk in RJ−1 to choice probabilities σk in ∆J , the J-dimensional unit simplex
in RJ . The result follows by noting that the j-th component of the inverse mapping yields
ṽjk = ψjk − ψj′k + Vl(j,k) − Vl(j′,k) as a function of j, j′, and σk.

A.2 Proof of Proposition 2

Recall from the proof of Proposition 1 that, by the Williams-Daly-Zachary theorem (Rust,
1994, Theorem 3.1) and Proposition 1 of Hotz and Miller (1993), we have ṽk = H−1(σk).
Then, by the aforementioned additivity property of S,

E max
j
{vjk + εj} = E max

j

{
vjk − vj′k + εj − εj′

}
+ vj′k + E εj′

= S(v0k − vj′k, . . . , vJ−1,k − vj′k | k) + vj′k + E εj′

= Vl(j′,k) + ψj′k + Γ2(j′, σk),

where Γ2(j′, σk) = S(H−1(σk) | k) + E εj′ .

A.3 Proof of Proposition 3

For simplicity, suppose that j = 0 is a continuation action such that l(0, k) = k.20 Let
(j1
k , . . . , j

Dk
k ) denote a generic sequence of Dk decisions by which state k∗ is attainable from

state k. Similarly, let ldk denote the intermediate state in which the d-th decision is made,
where l1k = k and ldk = l(jd−1

k , ld−1
k ). Then, by recursively applying Proposition 1 for the

continuation choice j = 0, we can write

Vk = Vk∗ +
Dk∑
d=1

(
ψjd

k
,ld

k
− ψ0,ld

k

)
+

Dk∑
d=1

Γ1(0, jdk , σld
k
). (20)

Applying a similar procedure for each l 6= k for which qkl > 0 implies that we can write
the differences Vl − Vk on the right-hand side of (2) in terms of a difference of terms of the
form in (20), where the Vk∗ term cancels leaving only sums of instantaneous payoffs ψjk
and functions of the CCPs σk. Finally, using Proposition 2 and additivity, we can express
the remaining term λE maxj{ψjk + εj + Vl(j,k) − Vk} as λΓ2(0, σk) + λψ0k.

A.4 Proof of Proposition 4

Given a collection of equilibrium best response probabilities {σi}Ni=1, we can obtain a matrix
expression for the value function Vi(σi) by rewriting (7). Let Σm(σm) denote the K ×K

20Otherwise, we have to begin from some suitable state k′ and choice j′ such that l(j′, k′) = k so that Vk

is on the left-hand side of (4).
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state transition matrix induced by the choice probabilities σm and the continuation state
function l(m, ·, ·). Let Q̃0 denote the matrix formed by replacing the diagonal elements of
Q0 with zeros. Finally, let Ei(σi) be the K×1 matrix containing the ex-ante expected value
of the immediate payoff (both the instantaneous payoff and the choice-specific shock) for
player i. That is, the k-th element of Ei(σi) is

∑
j σijk [ψijk + eijk(σi)] where eijk(σi) is the

expected value of εijk given that choice j is optimal:

1
σiijk

∫
εijk · 1

{
εij′k − εijk ≤ ψijk − ψij′k + Vi,l(i,j,k)(σi)− Vi,l(i,j′,k)(σi) ∀j′

}
f(εik) dεik.

Given Proposition 1, the difference Vi,l(i,j,k)(σi)−Vi,l(i,j′,k)(σi) can be expressed as a function
of payoffs and choice probabilities σi.

Then, in matrix form,

Vi(σi)
[
(ρ+Nλ) I − (Q0 − Q̃0)

]
= ui + Q̃0Vi(σi) +

∑
m6=i

λΣm(σm)Vi(σi) + λ [Σi(σi)Vi(σi) + Ei(σi)] .

Collecting terms involving Vi(σi) yields

Vi(σi)
[
(ρ+Nλ) I −

N∑
m=1

λΣm(σm)−Q0

]
= ui + λEi(σi).

The matrix on the left hand side is strictly diagonally dominant since the diagonal of Q
equals the off-diagonal row sums, the elements of each matrix Σm(σm) are in [0, 1] for all
m, and ρ > 0 by Assumption 1. Therefore, by the Levy-Desplanques theorem, this matrix
is nonsingular (Horn and Johnson, 1985, Theorem 6.1.10). Hence,

Vi(σi) =
[
(ρ+Nλ) I −

N∑
m=1

λΣm(σm)−Q0

]−1

[ui + λEi(σi)] .

This representation is similar to the linear expression for the ex-ante value function in the
discrete time model of Pesendorfer and Schmidt-Dengler (2007).

Now, define the mapping Υ : [0, 1]N×J×K → [0, 1]N×J×K by stacking the best response
probabilities. This mapping defines a fixed point problem for the equilibrium choice prob-
abilities σijk as follows:

Υijk(σ) =
∫

1
{
εij′ − εij ≤ ψijk − ψij′k + Vi,l(i,j,k)(σi)− Vi,l(i,j′,k)(σi) ∀j′ ∈ Ai

}
f(εi) dεi.

The mapping Υ is a continuous function from a compact space onto itself. By Brouwer’s
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theorem, it has a fixed point. The fixed point probabilities imply Markov strategies that
constitute a Markov perfect equilibrium.
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Table 1: Summary Statistics

Mean S.D. Max.
Number of Chains Presenta 2.559 0.024 7
Average No. of Stores per Chainb 3.727 0.040 32
Number of Walmarts Presenta 1.004 0.142 12
Number of Fringe Firms Presenta 12.997 0.823 47
Number of New Chain Storesc 0.277 0.012 5
Number of Exiting Chain Stores 0.224 0.011 7
Number of New Fringe Stores 0.825 0.021 10
Number of Exiting Fringe Stores 0.908 0.023 11
Number of New Walmarts 0.177 0.008 3
Number of Exiting Walmarts 0.002 0.001 1
Population Increase 0.042 0.004 1
Population Decrease 0.004 0.001 1

a Sample size is 2910, b Sample size is 7446 and removes all market-period combinations where the chain
operates no stores, c Sample size in this and all remaining rows is 2686.

Table 2: Response to Initial Walmart Entry

Year Year Year
Before During After

Number of New Chain Stores 0.311 0.211 0.189
(0.064) (0.054) (0.041)

Number of Exiting Chain Stores 0.122 0.156 0.189
(0.038) (0.044) (0.050)

Number of New Fringe Stores 0.867 0.711 0.767
(0.117) (0.105) (0.102)

Number of Exiting Fringe Stores 0.789 0.844 0.833
(0.114) (0.118) (0.132)

Standard errors in parentheses. Based on 90 markets where Walmart is first observed to enter.
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Table 3: Chain Store Parameters

Coefficient S.E.
Constant 4.7687 0.1424
Number of chain stores -0.0611 0.0056
Number of Walmarts -0.4248 0.0237
Number of Fringe stores -0.0665 0.0054
Population 0.2281 0.0377
Number of Own Stores -0.0439 0.0215
Number of Own Stores Squared / 100 -0.3132 0.1057
Store building cost -5.3886 0.0886
Chain entry cost -17.9249 0.1267
Exit value 15.8385 0.1285
Unobserved State -1.0256 0.2308
Store building cost × unobserved state 3.5965 0.2225
Exit value × unobserved state 4.0021 0.3259
Number of own stores × unobserved state 0.3114 0.0383
Chain entry cost × unobserved state -4.5012 0.2698

Table 4: Fringe Store Parameters

Coefficient S.E.
Constant -12.8481 0.0803
Number of Chain stores -0.0236 0.0033
Number of Walmarts -0.0324 0.0123
Number of Fringe Stores 0.1736 0.008
Number of Fringe Stores Squared /100 -0.3233 0.0186
Population 0.2176 0.0211
Entry Cost -5.0703 0.0329
Entry Cost × unobserved state 1.2347 0.0829
Unobserved State -2.4846 0.1125
Unobserved State × number of fringe stores 0.0437 0.0059
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