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1 Introduction

The fundamental insight of intertemporal asset pricing theory is that long-term investors
should care just as much about the returns they earn on their invested wealth as about the
level of that wealth. In a simple model with a constant rate of return, for example, the
sustainable level of consumption is the return on wealth multiplied by the level of wealth,
and both terms in this product are equally important. In a more realistic model with
time-varying investment opportunities, conservative long-term investors will seek to hold
“intertemporal hedges”, assets that perform well when investment opportunities deterio-
rate. Such assets should deliver lower average returns in equilibrium if they are priced from
conservative long-term investors’ first-order conditions.

Since the seminal work of Merton (1973) on the intertemporal capital asset pricing model
(ICAPM), a large empirical literature has explored the relevance of intertemporal considera-
tions for the pricing of financial assets in general, and the cross-sectional pricing of stocks in
particular. One strand of this literature uses the approximate accounting identity of Camp-
bell and Shiller (1988a) and the assumption that a representative investor has Epstein-Zin
utility (Epstein and Zin 1989) to obtain approximate closed-form solutions for the ICAPM’s
risk prices (Campbell 1993). These solutions can be implemented empirically if they are
combined with vector autoregressive (VAR) estimates of asset return dynamics (Campbell
1996). Campbell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho (2010), and
Campbell, Giglio, and Polk (2012) use this approach to argue that value stocks outperform
growth stocks on average because growth stocks do well when the expected return on the
aggregate stock market declines; in other words, growth stocks have low risk premia because
they are intertemporal hedges for long-term investors.

A weakness of the papers cited above is that they ignore time-variation in the volatility of
stock returns. In general, investment opportunities may deteriorate either because expected
stock returns decline or because the volatility of stock returns increases, and it is an empirical
question which of these two types of intertemporal risk have a greater effect on asset returns.
We address this weakness in this paper by extending the approximate closed-form ICAPM to
allow for stochastic volatility. The resulting model explains risk premia in the stock market
using three priced risk factors corresponding to three important attributes of aggregate
market returns: revisions in expected future cash flows, discount rates, and volatility. An
attractive feature of the model is that the prices of these three risk factors depend on only
one free parameter, the long-horizon investor’s coefficient of risk aversion.

Since the long-horizon investor in our model cares mostly about persistent changes in
the investment opportunity set, there must be predictable long-run variation in volatility
for volatility risk to matter. Empirically, we implement our methodology using a vector
autoregression (VAR) including stock returns, realized variance, and other financial indica-
tors that may be relevant for predicting returns and risk. Our VAR reveals low-frequency
movements in market volatility tied to the default spread, the yield spread of low-rated over



high-rated bonds. While this phenomenon has received little attention in the literature,
we argue that it is sensible: Investors in risky bonds perceive the long-run component of
volatility and incorporate this information when they set credit spreads, as risky bonds are
short the option to default over long maturities. Moreover, we show that GARCH-based
methods that filter only the information in past returns in order to disentangle the short-run
and long-run volatility components miss this important low-frequency component.

With our novel model of long-run volatility in hand, we find that growth stocks have low
average returns because they outperform not only when the expected stock return declines,
but also when stock market volatility increases. Thus growth stocks hedge two types of
deterioration in investment opportunities, not just one. In the period since 1963 that creates
the greatest empirical difficulties for the standard CAPM, we find that the three-beta model
explains over 62% of the cross-sectional variation in average returns of 25 portfolios sorted by
size and book-to-market ratios. The model is not rejected at the 5% level while the CAPM
is strongly rejected. The implied coefficient of relative risk aversion is an economically
reasonable 6.9, in contrast to the much larger estimate of 20.7, which we get when we
estimate a comparable version of the two-beta CAPM of Campbell and Vuolteenaho (2004)
using the same data.? This success is due in large part to the inclusion of volatility betas in
the specification. In particular, the spread in volatility betas in the cross section generates
an annualized spread in average returns of 5.2% compared to a comparable spread of 2.8%
and 2.2% for cash-flow and discount-rate betas.

We confirm that our findings are robust by expanding the set of test portfolios in three
important dimensions. First, we show that our three-beta model not only describes the cross
section of size- and book-to-market-sorted portfolios but also can explain the average returns
on risk-sorted portfolios. We examine risk-sorted portfolios in response to the argument
of Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) that asset-
pricing tests using only portfolios sorted by characteristics known to be related to average
returns, such as size and value, can be misleading when the resulting portfolios have a low-
dimensional factor structure. Specifically, we show that a sort on stocks’ pre-formation
sensitivity to volatility news generates an economically and statistically significant spread
in both post-formation volatility beta and average returns in a manner consistent with our
model. Interestingly, in the post-1963 period, sorts on past CAPM beta generate little spread
in post-formation cash-flow betas, but significant spread in post-formation volatility betas.
Since, in the three-beta model, covariation with aggregate volatility news has a negative
premium, the three-beta model also explains why stocks with high past CAPM betas have
offered relatively little extra return in the post-1963 sample.

Second, we show that our three-beta model can help explain average returns on option
and bond portfolios that are exposed to aggregate volatility risk. These portfolios include
the S&P 100 index straddle of Coval and Shumway (2001), which is explicitly designed
to be highly correlated with aggregate volatility risk, and the risky bond factor of Fama

The risk aversion estimate reported in Campbell and Vuolteenaho’s (2004) paper is 28.8.



and French (1993), which should be sensitive to changes in aggregate volatility since risky
corporate debt is short the option to default. Consistent with this intuition, we find that
compared to the volatility beta of a value-minus-growth bet, the risky bond factor’s volatility
beta is of the same order of magnitude while the straddle’s volatility beta is more than three
times larger in absolute magnitude. These volatility betas are of the right sign to explain
the abnormal CAPM returns of the option and bond portfolios. Approximately 30% of the
average straddle return can be attributed to its three ICAPM betas, based purely on model
estimates from the cross section of equity returns.

Third, we document that our three-beta model explains the average returns on a portfolio
which buys high interest-rate currencies and sell low interest-rate curencies, a strategy com-
monly known as the currency carry trade. Recent work by Lustig, Roussanov, and Verdelhan
(2011) shows that high (low) interest rate currencies tend to depreciate (appreciate) when
global equity volatility is high. We confirm that the carry trade does poorly when there is
bad news about future long-run US stock market volatility, and show that our asset pricing
model explains the cross section of interest-rate-sorted currencies with the same risk aversion
parameter as in the equity market.

The organization of our paper is as follows. Section 2 reviews related literature. Section
3 lays out the approximate closed-form ICAPM and shows how to extend it to incorporate
stochastic volatility. Section 4 presents data, econometrics, and VAR estimates of the dy-
namic process for stock returns and realized volatility. This section documents the empirical
success of our model in forecasting long-run volatility. Section 5 turns to cross-sectional asset
pricing and estimates a representative investor’s preference parameters to fit a cross-section
of test assets, taking the dynamics of stock returns as given. This section also presents a
set of robustness exercises in which we vary our basic VAR specification for the dynamics
of aggregate returns and risk, and explore the underlying components of volatility betas for
the market portfolio and for value stocks versus growth stocks. Section 6 concludes. An
online appendix to the paper (Campbell, Giglio, Polk, and Turley 2013) provides supporting
details.

2 Literature Review

Our work is complementary to recent research on the “long-run risk model” of asset prices
(Bansal and Yaron 2004) which can be traced back to insights in Kandel and Stambaugh
(1991). Both the approximate closed-form ICAPM and the long-run risk model start with
the first-order conditions of an infinitely lived Epstein-Zin representative investor. As orig-
inally stated by Epstein and Zin (1989), these first-order conditions involve both aggregate
consumption growth and the return on the market portfolio of aggregate wealth. Campbell
(1993) pointed out that the intertemporal budget constraint could be used to substitute
out consumption growth, turning the model into a Merton-style ICAPM. Restoy and Weil



(1998, 2011) used the same logic to substitute out the market portfolio return, turning the
model into a generalized consumption CAPM in the style of Breeden (1979).

Kandel and Stambaugh (1991) were the first researchers to study the implications for
asset returns of time-varying first and second moments of consumption growth in a model
with a representative Epstein-Zin investor. Specifically, Kandel and Stambaugh (1991) as-
sumed a four-state Markov chain for the expected growth rate and conditional volatility
of consumption, and provided closed-form solutions for important asset-pricing moments.
In the same spirit Bansal and Yaron (2004) added stochastic volatility to the Restoy-Weil
model, and subsequent theoretical and empirical research in the long-run risk framework has
increasingly emphasized the importance of stochastic volatility (Bansal, Kiku, and Yaron
2012, Beeler and Campbell 2012, Hansen 2012). In this paper we give the approximate
closed-form ICAPM the same capability to handle stochastic volatility that its cousin, the
long-run risk model, already possesses.

One might ask whether there is any reason to work with an ICAPM rather than a
consumption-based model given that these models are derived from the same set of assump-
tions. The ICAPM developed in this paper has several advantages. First, it describes risks
as they appear to an investor who takes asset prices as given and chooses consumption to
satisfy his budget constraint. This is the way risks appear to individual agents in the econ-
omy, and it seems important for economists to understand risks in the same way that market
participants do rather than relying exclusively on a macroeconomic perspective. Second,
the ICAPM generates empirical predictions that depend on the coefficient of relative risk
aversion but not the elasticity of intertemporal substitution. This means that we do not
need to assume a wedge between risk aversion and the reciprocal of the elasticity of intertem-
poral substitution, and therefore do not face the critique of Epstein, Farhi, and Strzalecki
(2013) that a large wedge implies an unrealistic willingness to pay for early resolution of
uncertainty.?

Third, the ICAPM allows an empirical analysis based on financial proxies for the ag-
gregate market portfolio rather than on accurate measurement of aggregate consumption.
While there are certainly challenges to the accurate measurement of financial wealth, finan-
cial time series are generally available on a more timely basis and over longer sample periods
than consumption series. Fourth, the ICAPM in this paper is flexible enough to allow
multiple state variables that can be estimated in a VAR system; it does not require low-
dimensional calibration of the sort used in the long-run risk literature. Finally, we use an
affine stochastic volatility process that governs the volatility of all state variables, including
itself. We show that this assumption fits financial data reasonably well, and it guarantees
that stochastic volatility would always remain positive in a continuous-time version of the
model, a property that does not always hold in current implementations of the long-run risk

3We use the standard terminology to describe the two parameters of the Epstein-Zin utility function, v as
risk aversion and v as the elasticity of intertemporal substitution, although Garcia, Renault, and Semenov
(2006) and Hansen, Heaton, Lee, and Roussanov (2007) point out that this interpretation may not be correct
when ~ differs from the reciprocal of .



model.*

The closest precursors to our work are unpublished papers by Chen (2003) and Sohn
(2010). Both papers explore the effects of stochastic volatility on asset prices in an ICAPM
setting but make strong assumptions about the covariance structure of various news terms
when deriving their pricing equations. Chen (2003) assumes constant covariances between
shocks to the market return (and powers of those shocks) and news about future expected
market return variance. Sohn (2010) makes two strong assumptions about asset returns and
consumption growth, specifically that all assets have zero covariance with news about future
consumption growth volatility and that the conditional contemporaneous correlation between
the market return and consumption growth is constant through time. Duffee (2005) presents
evidence against the latter assumption. It is in any case unattractive to make assumptions
about consumption growth in an ICAPM that does not require accurate measurement of
consumption.

Chen estimates a VAR with a GARCH model to allow for time variation in the volatility
of return shocks, restricting market volatility to depend only on its past realizations and not
those of the other state variables. His empirical analysis has little success in explaining the
cross-section of stock returns. Sohn uses a similar but more sophisticated GARCH model
for market volatility and tests how well short-run and long-run risk components from the
GARCH estimation can explain the returns of various stock portfolios, comparing the results
to factors previously shown to be empirically successful. In contrast, our paper incorporates
the volatility process directly in the ICAPM, allowing heteroskedasticity to affect and to
be predicted by all state variables, and showing how the price of volatility risk is pinned
down by the time-series structure of the model along with the investor’s coefficient of risk
aversion.

Bansal, Kiku, Shaliastovich and Yaron (2013), a paper contemporaneous with ours, ex-
plores the effects of stochastic volatility in the long-run risk model. Like us, they find sto-
chastic volatility to be an important feature in the time series of equity returns. Their work
puts greater emphasis on the implied consumption dynamics while we focus on the cross-
sectional pricing implications of exposure to volatility news. More fundamentally, there are
differences in the underlying models. In particular, in their benchmark model they assume
that the stochastic process driving volatility is homoskedastic. In our theoretical analysis
we discuss some conditions that are required for their model solution to be valid, and argue
that these conditions are not satisfied empirically. The different modeling assumptions and
some differences in empirical implementation account for our contrasting empirical results;
we show that volatility risk is very important in explaining the cross-section of stock returns
while they find it has little impact on cross-sectional differences in risk premia. Indeed,
Bansal, Kiku, Shaliastovich and Yaron (2013) find that a value-minus-growth bet has a pos-

‘Eraker (2008), Eraker and Shaliastovich (2008), and Heaton (2012) are exceptions whose models do
guarantee positive volatility.  Affine stochastic volatility models date back at least to Heston (1993) in
continuous time, and have been developed and discussed by Ghysels, Harvey, and Renault (1996), Meddahi
and Renault (2004), and Darolles, Gourieroux, and Jasiak (2006) among others.



itive volatility news beta while we find that value-minus-growth bets always have negative
volatility news betas. Our negative volatility news beta estimate is more consistent with
both theory (real option stories such as McQuade 2012) and stylized facts (for example, how
value-minus-growth bets performed during the Great Depression, the Tech Boom, and the
Great Recession).

Stochastic volatility has, of course, been explored in other branches of the finance litera-
ture. For example, Chacko and Viceira (2005) and Liu (2007) show how stochastic volatility
affects the optimal portfolio choice of long-term investors. Chacko and Viceira assume an
AR(1) process for volatility and argue that movements in volatility are not persistent enough
to generate large intertemporal hedging demands. Our more flexible multivariate process
does allow us to detect persistent long-run variation in volatility. Campbell and Hentschel
(1992), Calvet and Fisher (2007), and Eraker and Wang (2011) argue that volatility shocks
will lower aggregate stock prices by increasing expected returns, if they do not affect cash
flows. The strength of this volatility feedback effect depends on the persistence of the
volatility process. Coval and Shumway (2001), Ang, Hodrick, Xing, and Zhang (2006), and
Adrian and Rosenberg (2008) present evidence that shocks to market volatility are priced
risk factors in the cross-section of stock returns, but they do not develop any theory to
explain the risk prices for these factors.

There is also an enormous literature in financial econometrics on modeling and forecasting
time-varying volatility. Since Engle’s (1982) seminal paper on ARCH, much of the literature
has focused on variants of the univariate GARCH model (Bollerslev 1986), in which return
volatility is modeled as a function of past shocks to returns and of its own lags (see Poon
and Granger (2003) and Andersen et al. (2006) for recent surveys). More recently, realized
volatility from high-frequency data has been used to estimate stochastic volatility processes
(Barndorff-Nielsen and Shephard 2002, Andersen et al. 2003). The use of realized volatility
has improved the modeling and forecasting of volatility, including its long-run component;
however, this literature has primarily focused on the information content of high-frequency
intra-daily return data. This allows very precise measurement of volatility, but at the same
time, given data availability constraints, limits the potential to use long time series to learn
about long-run movements in volatility. In our paper, we measure realized volatility only
with daily data, but augment this information with other financial time series that reveal
information investors have about underlying volatility components.

A much smaller literature has, like us, looked directly at the information in other variables
concerning future volatility. In early work, Schwert (1989) links movements in stock market
volatility to various indicators of economic activity, particularly the price-earnings ratio
and the default spread, but finds relatively weak connections. Engle, Ghysels and Sohn
(2009) study the effect of inflation and industrial production growth on volatility, finding
a significant link between the two, especially at long horizons. Campbell and Taksler
(2003) look at the cross-sectional link between corporate bond yields and equity volatility,
emphasizing that bond yields respond to idiosyncratic firm-level volatility as well as aggregate
volatility. Two recent papers, Paye (2012) and Christiansen et al. (2012), look at larger sets



of potential predictors of volatility, that include the default spread and/or valuation ratios,
to study which ones have predictive power for quarterly realized variance. The former, in
a standard regression framework, finds that a few variables, that include the commercial
paper to Treasury spread and the default spread, contain useful information for predicting
volatility. The latter uses Bayesian Model Averaging to determine which variables are most
important for predicting quarterly volatility, and documents the importance of the default
spread and valuation ratios in forecasting short-run volatility.

3 An Intertemporal Model with Stochastic Volatility

3.1 Asset pricing with time varying risk

Preferences

We begin by assuming a representative agent with Epstein-Zin preferences. We write
the value function as

- e
vi=[0-9am vo®m D] (1)

where C; is consumption and the preference parameters are the discount factor 9, risk aversion
v, and the elasticity of intertemporal substitution . For convenience, we define =

(1=7)/(1 = 1/4).

The corresponding stochastic discount factor (SDF) can be written as

0
Ct )l/d) (Wt . Ct)la
My, = (6 ez 2
. ( (Ct-i-l Wt-i—l ( )

where W; is the market value of the consumption stream owned by the agent, including
current consumption C;.> The log return on wealth is r; 1y = In (W, 1/ (W; — C})), the log
value of wealth tomorrow divided by reinvested wealth today. The log SDF is therefore

6
M1 = flnd — EACt+1 -+ (9 — 1) Tt41- (3)

A convenient identity
The gross return to wealth can be written
4% C C 4%
1+ Ry = 1 < t ) ( t+1) ( t+1>7 (4)
Wy — Gy W, — Gy (@ Cit1

5This notational convention is not consistent in the literature. Some authors exclude current consumption
from the definition of current wealth.




expressing it as the product of the current consumption payout, the growth in consumption,
and the future price of a unit of consumption.

We find it convenient to work in logs. We define the log value of reinvested wealth per
unit of consumption as z; = In (W; — C}) /C}), and the future value of a consumption claim
as hyyp = In (Wy1/Cyy1), so that the log return is:

Tir1 = —2 + Acpyr + higr. (5)

Heuristically, the return on wealth is negatively related to the current value of reinvested
wealth and positively related to consumption growth and the future value of wealth. The
last term in equation (5) will capture the effects of intertemporal hedging on asset prices,
hence the choice of the notation h;y; for this term.

The ICAPM

We assume that asset returns are jointly conditionally lognormal, but we allow changing
conditional volatility so we are careful to write second moments with time subscripts to
indicate that they can vary over time. Under this standard assumption, the expected return
on any asset must satisfy

1
0 =InE;exp{mu1 + 7541} = By [mugr + ripa] + §Vart [Mir1 + Tite1] s (6)

and the risk premium on any asset is given by
Eth’,tH — Tt §Val"t7"t+1 = —Cov, [mt+1> Ti,t+1] . (7)

The convenient identity (5) can be used to write the log SDF (3) without reference to
consumption growth:

0 0
My = 0Ind — Ezt + Eht+1 — VT4 (8)

Since the first two terms in (5) are known at time ¢, only the latter two terms appear in the
conditional covariance in (7). We obtain an ICAPM pricing equation that relates the risk
premium on any asset to the asset’s covariance with the wealth return and with shocks to
future consumption claim values:

1
Eﬂ“i,t+1 — Tt ival‘ﬁtﬂ = 7COVt [Ti,t+1u Tt+1] - ECOW [Ti,t—l-la ht+1] (9)

Return and risk shocks in the ICAPM

To better understand the intertemporal hedging component A, 1, we proceed in two steps.
First, we approximate the relationship of h; ;1 and z;,; by taking a loglinear approximation
about Zz:

hiy1 R K+ pzega (10)
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where the loglinearization parameter p = exp(z)/(1 + exp(z)) = 1 — C/W.

Second, we apply the general pricing equation (6) to the wealth portfolio itself (setting
Tit+1 = T'i+1), and use the convenient identity (5) to substitute out consumption growth from
this expression. Rearranging, we can write the variable z; as

1
2 =YInod + (Y — DEmyy + Ehyg + %5\@1} [Mit1 + s - (11)

Third, we combine these expressions to obtain the innovation in A;q:

hiz1 — Eihipn = P(Zt+1 - Et2t+1)

1
= (Ega—E)p| (¥ = 1)repe + hega + %_Vart-kl [Myy2 +1e42] ) (12)
0 2

Solving forward to an infinite horizon,

hivr —Ehipr = (¥ —1)(E — Ey) ZPjTt+1+j
=1
19 o
+§§(Et+1 - Ey) Z p’Var, ;M4 + Tegigy]
=1
L
= (Y —1)Npprut1 + igNRISK,tJrl- (13)

The second equality follows Campbell and Vuolteenaho (2004) and uses the notation Npg
(“news about discount rates”) for revisions in expected future returns. In a similar spirit
we write revisions in expectations of future risk (the variance of the future log return plus
the log stochastic discount factor) as Ngrsk-.

Finally, we substitute back into the intertemporal model (9):

1
Ewrippr —rpe + ivartri,tJrl
1
= ~Cov, [Ti,t+17 7“t+1] + (’7 - 1) Cov, [Ti,t+17 NDR,t-‘,—l] - §COVt [Ti,t+1; NRISK,t—H]

1
= yCov¢ [ri 41, Nopit] + Covi [ri 41, —Nprit1] — §C0Vt 75041, Nrrske+1] - (14)

The first equality expresses the risk premium as risk aversion 7 times covariance with the
current market return, plus (7 — 1) times covariance with news about future market returns,
minus one half covariance with risk. This is an extension of the ICAPM as written by
Campbell (1993), with no reference to consumption or the elasticity of intertemporal substi-
tution 1. When the investor’s risk aversion is greater than 1, assets which hedge aggregate

6Campbell (1993) briefly considers the heteroskedastic case, noting that when v = 1, Var [my1 + r41]
is a constant. This implies that Nrrsx does not vary over time so the stochastic volatility term disappears.
Campbell claims that the stochastic volatility term also disappears when ¥ = 1, but this is incorrect. When
limits are taken correctly, Nrrsx does not depend on 1 (except indirectly through the loglinearization
parameter, p).



discount rates (Covy [1 441, Npri+1] < 0) or aggregate risk (Covy [1 441, Nrrsk ++1] > 0) have
lower expected returns, all else equal.

The second equality rewrites the model, following Campbell and Vuolteenaho (2004), by
breaking the market return into cash-flow news and discount-rate news. Cash-flow news
Nc¢r is defined by Nop = ri1—Eri 1+ Npgr. The price of risk for cash-flow news is v times
greater than the price of risk for discount-rate news, hence Campbell and Vuolteenaho call
betas with cash-flow news “bad betas” and those with discount-rate news “good betas” since
they have lower risk prices in equilibrium. The third term in (14) shows the risk premium
associated with exposure to news about future risks and did not appear in Campbell and
Vuolteenaho’s model, which assumed homoskedasticity. Not surprisingly, the coefficient is
negative, indicating that an asset providing positive returns when risk expectations increase
will offer a lower return on average.

While the elasticity of intertemporal substitution ) does not affect risk premia in our
model, this parameter does influence the implied behavior of the investor’s consumption.
We explore this further in the online appendix to the paper.

3.2 From risk to volatility

The risk shocks defined in the previous subsection are shocks to the conditional volatility of
returns plus the stochastic discount factor, and therefore are not directly observable. We
now make additional assumptions on the data generating process for stock returns that allow
us to estimate the news terms. These assumptions imply that the conditional volatility of
returns plus the stochastic discount factor is proportional to the conditional volatility of
returns themselves.

Suppose the economy is described by a first-order VAR
Xtr1 = X —+ F (Xt — )_() + O'tut+1, (15)

where x,11 is an n X 1 vector of state variables that has ¢, as its first element, o7, as its
second element, and n—2 other variables that help to predict the first and second moments of
aggregate returns. X and I' are an n X 1 vector and an n x n matrix of constant parameters,
and u,,; is a vector of shocks to the state variables normalized so that its first element
has unit variance. We assume that u;,; has a constant variance-covariance matrix 3, with
element >, = 1.

The key assumption here is that a scalar random variable, 0%, equal to the conditional
variance of market returns, also governs time-variation in the variance of all shocks to this
system. Both market returns and state variables, including volatility itself, have innovations
whose variances move in proportion to one another. This assumption makes the stochastic
volatility process affine, as in Heston (1993) and related work discussed above in our literature
review.
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Given this structure, news about discount rates can be written as

Nopyyn = (B — Ey) ijTt—i-H-j
=1

= € Z P opuy
j=1
= & pl' (I - pI) ' oyuyy (16)

Furthermore, our log-linear model will make the log SDF, m;;, a linear function of the
state variables. Since all shocks to the SDF are then proportional to o;, Var, [m; 1 + ry41] o
o?. As a result, the conditional variance, Var; [(msy1 + 7¢41) /0] = wy, will be a constant

that does not depend on the state variables. Without knowing the parameters of the utility

function, we can write Var; [myq + rpq] = waf so that the news about risk, Ngssk, is

proportional to news about market return variance, Ny .

[ee)
Nriski1 = (B — Ey) Z Pjval"tﬂ [Te4145 + Mt

Jj=1

= (B — EY) Zﬁ (wory;)

o0
, L
= wpe, E p]FJJtut+1
J=0

= wpe, (I— pl")_1 oy = WNy 4. (17)

Substituting (17) into (14), we obtain an empirically-testable intertemporal CAPM with
stochastic volatility:

1
Eeripir —rpe + §Val"t7“i,t+1

1
= yCov¢ [rit+1, Nepis1] + Cove [risv1, —Npris1] — §WC0Vt [Tit+1, Nviesa],  (18)

where covariances with news about three key attributes of the market portfolio (cash flows,
discount rates, and volatility) describe the cross section of average returns.

The parameter w is a nonlinear function of the coefficient of relative risk aversion +, as
well as the VAR parameters and the loglinearization coefficient p, but it does not depend on
the elasticity of intertemporal substitution ¢ except indirectly through the influence of ¢ on
p. In the online appendix, we show that w solves:

1
wo; = (1 —7)*Var, [Nep,,,] +w(l —7)Cov; [Ner,,, Nviyy, ] + wQZVart [Nv.. ] (19)
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We can see two main channels through which v affects w. First, a higher risk aversion—
given the underlying volatilities of all shocks—implies a more volatile stochastic discount
factor m, and therefore a higher RISK. This effect is proportional to (1 — )2, so it in-
creases rapidly with . Second, there is a feedback effect on RISK through future risk: w
appears on the right-hand side of the equation as well. Given that in our estimation we find
Cov, [Nc Fon, Ny, +1J < 0, this second effect makes w increase even faster with .

This equation can also be written directly in terms of the VAR parameters. We define
xcr and Xy as the error-to-news vectors that map VAR innovations to volatility-scaled news
terms:

1
O'_NCF’t_H = XcorUip1 = (e’l + e’lpI‘(I — pF)_l) L) P} (20)
t
1
O__NV,t-H = XyUpp = (elzp(l - PF)_I) Uttq- (21)
t
Then w solves
1
0= wQZxVEX’V —w(l—(1—7)xcrXx))+ (1 — ”y)z XoFXXop (22)

This quadratic equation for w has two solutions, but the online appendix shows that one
of the solutions can be disregarded. This false solution is easily identified by its implication
that w becomes infinite as volatility shocks become small. The correct solution is

1— (1= 9)xerExy — /(1= (1 = 1)xcrExy)? — (1 — 1) (xv X)) (XerExer)

= 23
“ Xy EX, (23)
3.3 Conditions for the existence of a solution
Equation (22) has a real solution only if
(1= (1 =7)xerExy)” — (1 —7)*(xv B} ) (xcrExcp) > 0. (24)

Otherwise, if risk aversion, volatility shocks and cash flow shocks are large enough, as mea-
sured by the product (1 — 7)%(xyXx},)(XcrExpr), equation (22) may deliver a complex

"Bansal, Kiku, Shaliastovich and Yaron (2013) derive a similar expression, equation (16) in their paper.
They claim that the equivalent expression for w in their model reduces to (1—+)? in the case of homoskedastic
volatility (their equation 17). We discuss the conditions required for their claim to be valid in the next
subsection. In a robustness test, they also derive a corresponding equation for the case of time-varying
volatility (their equation C.4), but proceed with a linearization procedure that, as we discuss below, allows
the parameters of the model to lie in a region of the parameter space where the true model does not have a
solution.
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rather than a real value for w. Given our VAR estimates of the variance and covariance
terms, we find a real solution for w as v ranges from zero to 6.9. Figure 1 plots w as a
function of v based on these estimates.

The online appendix shows that the condition for the existence of a real solution can be
written in a simpler form as

(pn — (A = 7)ocro, <1, (25)

where p,, is the correlation between the news terms N¢p and Ny, oy is the standard deviation
of the scaled news Nopyy1/04, and o, is the standard deviation of the scaled news Ny ;11/0;.

To further develop the intuition behind these equations, in the online appendix we study
a simple example in which the link between the existence to a solution for equation (22)
and the existence of a value function for the representative agent can be shown analytically.
We do this in the special case of ¢ = 1, since we can then solve directly for the value
function without any need for a loglinear approximation of the return on the wealth portfolio
(Tallarini 2000, Hansen, Heaton, and Li 2008). In the example we find that the condition
for the existence of the value function coincides precisely with the condition for the existence
of a real solution to the quadratic equation for w, equation (24). This result indicates that
the possible non-existence of a solution to the quadratic equation for w is a deep feature
of the model, not an artefact of our loglinear approximation—which is not needed in the
special case where 1 = 1. We also show that the problem arises because the value function
becomes ever more sensitive to volatility as the volatility of the value function increases,
and this sensitivity feeds back into the volatility of the value function, further increasing it.
When this positive feedback becomes too powerful, then the value function ceases to exist.

This constraint on the parameters of the model is ignored in Bansal, Kiku, Shaliastovich,
and Yaron (BKSY 2013), when they consider the case of time-varying volatility of volatility
as a robustness test in Sections II.LE and III.D. There, rather than imposing that w and ~
satisfy equation (22), they proceed to linearize equation (22) so that a solution for omega
exists for all values of gamma. Therefore, they allow combinations of (y,w) for which equation
(22) doesn’t admit a real solution — in which case, as we show in the appendix, the true model
doesn’t have a solution.®

The online appendix also considers the benchmark specification of BKSY in which the
volatility process is homoskedastic. In this case the term Var;(my, 1+ r441) is not in general
proportional to o2, but depends on both ¢? and o;. Therefore, Ngrsx (news about future
values of Vary(my 1 + r441)) is not in general proportional to Ny, so that Ny is not in
general the right news term to use in cross-sectional pricing. The appendix shows that
proportionality of Nrrsx and Ny in the homoskedastic case can only be obtained with
additional special assumptions not stated by BKSY: that Nor and Ny are uncorrelated,
and that the Ny shock only depends on innovations of state variables which are themselves

8In a previous version of our paper, we used also used this linearization to solve equation (22). For the
reasons explained above, we now instead require the non-linearized quadratic equation (22) to have a real
solution.

13



homoskedastic. As both of these assumptions are strongly rejected by the data, we do not
further consider the model with homoskedastic o7.

In summary, this section has shown that in our model, the existence of a real solution
for w is tightly linked with the existence of the value function. As a consequence, in our
empirical analysis we take seriously the constraint implied by the quadratic equation (22),
and require that our parameter estimates satisfy this constraint. Given the high average
returns to risky assets in historical data, this means in practice that our estimate of risk
aversion is often equal to the estimated upper bound of 6.9.

4 Predicting Aggregate Stock Returns and Volatility

4.1 State variables

Our full VAR specification of the vector x;,; includes six state variables, five of which are
the same as in Campbell, Giglio and Polk (2011). To those five variables, we add an estimate
of conditional volatility. The data are all quarterly, from 1926:2 to 2011:4.

The first variable in the VAR is the log real return on the market, r,;, the difference
between the log return on the Center for Research in Securities Prices (CRSP) value-weighted
stock index and the log return on the Consumer Price Index.

The second variable is expected market variance (EV AR). This variable is meant to
capture the volatility of market returns, o;, conditional on information available at time
t, so that innovations to this variable can be mapped to the Ny term described above.
To construct EV AR;, we proceed as follows. We first construct a series of within-quarter
realized variance of daily returns for each time ¢, RVAR,. We then run a regression of
RV AR, on lagged realized variance (RV AR;) as well as the other five state variables at
time ¢. This regression then generates a series of predicted values for RV AR at each time
t 4+ 1, that depend on information available at time t: RV AR;.;. Finally, we define our
expected variance at time ¢ to be exactly this predicted value at ¢ + 1:

EVAR, = RVAR,,1.

Note that though we describe our methodology in a two-step fashion where we first estimate
EV AR and then use EV AR in a VAR, this is only for interpretability. Indeed, this approach
to modeling £’V AR can be considered a simple renormalization of equivalent results we would
find from a VAR that included RV AR directly.’

9Since we weight observations based on RV AR in the first stage and then reweight observations using
EV AR in the second stage, our two-stage approach in practice is not exactly the same as a one-stage
approach. However, Panel B of Table 12 shows that results from a RV AR-weighted single-step estimation
are qualitatively very similar to those produced by our two-stage approach.
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The third variable is the price-earnings ratio (PE) from Shiller (2000), constructed as
the price of the S&P 500 index divided by a ten-year trailing moving average of aggregate
earnings of companies in the S&P 500 index. Following Graham and Dodd (1934), Campbell
and Shiller (1988b, 1998) advocate averaging earnings over several years to avoid temporary
spikes in the price-earnings ratio caused by cyclical declines in earnings. We avoid any
interpolation of earnings as well as lag the moving average by one quarter in order to ensure
that all components of the time-t price-earnings ratio are contemporaneously observable by
time ¢t. The ratio is log transformed.

Fourth, the term yield spread (7Y") is obtained from Global Financial Data. We compute
the T'Y series as the difference between the log yield on the 10-Year US Constant Maturity
Bond (IGUSA10D) and the log yield on the 3-Month US Treasury Bill (ITUSA3D).

Fifth, the small-stock value spread (V'.5) is constructed from data on the six “elementary”
equity portfolios also obtained from Professor French’s website. These elementary portfolios,
which are constructed at the end of each June, are the intersections of two portfolios formed
on size (market equity, ME) and three portfolios formed on the ratio of book equity to market
equity (BE/ME). The size breakpoint for year ¢ is the median NYSE market equity at the
end of June of year t. BE/ME for June of year t is the book equity for the last fiscal year
end in ¢t — 1 divided by ME for December of t — 1. The BE/ME breakpoints are the 30th
and 70th NYSE percentiles.

At the end of June of year ¢, we construct the small-stock value spread as the difference
between the In(BE/MFE) of the small high-book-to-market portfolio and the In(BE/ME)
of the small low-book-to-market portfolio, where BE and ME are measured at the end of
December of year ¢t — 1. For months from July to May, the small-stock value spread is
constructed by adding the cumulative log return (from the previous June) on the small low-
book-to-market portfolio to, and subtracting the cumulative log return on the small high-
book-to-market portfolio from, the end-of-June small-stock value spread. The construction
of this series follows Campbell and Vuolteenaho (2004) closely.

The sixth variable in our VAR is the default spread (DEF’), defined as the difference
between the log yield on Moody’s BAA and AAA bonds. The series is obtained from the
Federal Reserve Bank of St. Louis. Campbell, Giglio and Polk (2011) add the default spread
to the Campbell and Vuolteenaho (2004) VAR specification in part because that variable is
known to track time-series variation in expected real returns on the market portfolio (Fama
and French, 1989), but mostly because shocks to the default spread should to some degree
reflect news about aggregate default probabilities. Of course, news about aggregate default
probabilities should in turn reflect news about the market’s future cash flows and volatility.
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4.2 Short-run volatility estimation

In order for the regression model that generates EV AR, to be consistent with a reasonable
data-generating process for market variance, we deviate from standard OLS in two ways.
First, we constrain the regression coefficients to produce fitted values (i.e. expected market
return variance) that are positive. Second, given that we explicitly consider heteroskedas-
ticity of the innovations to our variables, we estimate this regression using Weighted Least
Squares (WLS), where the weight of each observation pair (RV AR;;1, X;) is initially based
on the time-t value of (RV AR)™'. However, to ensure that the ratio of weights across obser-
vations is not extreme, we shrink these initial weights towards equal weights. In particular,
we set our shrinkage factor large enough so that the ratio of the largest observation weight
to the smallest observation weight is always less than or equal to five. Though admittedly
somewhat ad hoc, this bound is consistent with reasonable priors of the degree of variation
over time in ezpected market return variance. More importantly, we show later (in Table 12
Panel B) that our results are robust to variation in this bound. Both the constraint on the
regression’s fitted values and the constraint on WLS observation weights bind in the sample
we study.

The results of the first stage regression generating the state variable EV AR; are reported
in Table 1 Panel A. Perhaps not surprisingly, past realized variance strongly predicts future
realized variance. More importantly, the regression documents that an increase in either
PFE or DEF predicts higher future realized volatility. Both of these results are strongly
statistically significant and are a novel finding of the paper. In particular, the fact that we
find that very persistent variables like PE and D E F' forecast next period’s volatility indicates
a potential important role in volatility news for lower frequency or long-run movements in
stochastic volatility.

We argue that the links we find are sensible. Investors in risky bonds incorporate their
expectation of future volatility when they set credit spreads, as risky bonds are short the
option to default. Therefore we expect higher DEF to be associated with higher RV AR.
The result that higher PFE predicts higher RV AR might seem surprising at first, but one
has to remember that the coefficient indicates the effect of a change in PE holding constant
the other variables, in particular the default spread. Since the default spread should also
generally depend on the equity premium and since most of the variation in PE is due to
variation in the equity premium, for a given value of the default spread, a relatively high
value of PE implies a relatively higher level of future volatility. Thus PFE cleans up the
information in DEF' concerning future volatility.

The R? of this regression is nearly 37%. The relatively low R? masks the fact that the fit
is indeed quite good, as we can see from Figure 2, in which RV AR and EV AR are plotted
together. The R? is heavily influenced by occasional spikes in realized variance, which the
simple linear model we use is not able to capture. Indeed, our WLS approach downweights
the importance of those spikes in the estimation procedure.
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The online appendix to the paper reports descriptive statistics for these variables for the
full sample, an early sample ending in 1963:3, and a modern sample beginning in 1963:4.
Consistent with Campbell, Giglio and Polk (2012), we document high correlation between
DEF and both PE and V'S. The table also documents the persistence of both RV AR and
EV AR (autocorrelations of 0.524 and 0.740 respectively) and the high correlation between
these variance measures and the default spread.

Perhaps the most notable difference between the two subsamples is that the correlation
between PE and several of our other state variables changes dramatically. In the early
sample, PFE is quite negatively correlated with both RV AR and V'.S. In the modern sample,
PF is essentially uncorrelated with RV AR and quite positively correlated with V'S. As a
consequence, since FV AR is just a linear combination of our state variables, the correlation
between PE and EV AR changes sign across the two samples. In the early sample, this
correlation is very negative, with a value of -0.511. This strong negative correlation reflects
the high volatility that occurred during the Great Depression when prices were relatively
low. In the modern sample, the correlation is positive at 0.140. The positive correlation
simply reflects the economic fact that episodes with high volatility and high stock prices,
such as the technology boom of the late 1990s, were more prevalent in this subperiod than
episodes with high volatility and low stock prices, such as the recession of the early 1980s.

4.3 Estimation of the VAR and the news terms

Following Campbell (1993), we estimate a first-order VAR as in equation (15), where x;4
is a 6 x 1 vector of state variables ordered as follows:

Xip1 = [Tmp1 EVARy PEyy TYi o1 DEF 4y V. Sii]

so that the real market return rps 4, is the first element and EV AR is the second element. x
is a 6 x 1 vector of the means of the variables, and I" is a 6 x 6 matrix of constant parameters.
Finally, o,u;,1 is a 6x 1 vector of innovations, with the conditional variance-covariance matrix
of us;1 a constant X, so that the parameter o2 scales the entire variance-covariance matrix
of the vector of innovations.

The first-stage regression forecasting realized market return variance described in the
previous section generates the variable EVAR. The theory in Section 3 assumes that o2,
proxied for by EV AR, scales the variance-covariance matrix of state variable shocks. Thus,
as in the first stage, we estimate the second-stage VAR using WLS, where the weight of each
observation pair (x;y1, X;) is initially based on (EV AR;)~!. We continue to constrain both
the weights across observations and the fitted values of the regression forecasting EV AR.

Table 1 Panel B presents the results of the VAR estimation for the full sample (1926:2
to 2011:4). We report bootstrap standard errors for the parameter estimates of the VAR
that take into account the uncertainty generated by forecasting variance in the first stage.
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Consistent with previous research, we find that PE negatively predicts future returns, though
the t-statistic indicates only marginal significance. The value spread has a negative but not
statistically significant effect on future returns. In our specification, a higher conditional
variance, EV AR, is associated with higher future returns, though the effect is not statistically
significant. Of course, the relatively high degree of correlation among PE, DEF, VS, and
EV AR complicates the interpretation of the individual effect of those variables. As for the
other novel aspects of the transition matrix, both high PE and high DEF' predict higher
future conditional variance of returns. High past market returns forecast lower EV AR,
higher PE, and lower DEF .10

Panel C of Table 1 reports the sample correlation and autocorrelation matrices of both
the unscaled residuals o,u;,; and the scaled residuals u;,;. The correlation matrices report
standard deviations on the diagonals. There are a couple of aspects of these results to
note. For one thing, a comparison of the standard deviations of the unscaled and scaled
residuals provides a rough indication of the effectiveness of our empirical solution to the
heteroskedasticity of the VAR. In general, the standard deviations of the scaled residuals are
several times larger than their unscaled counterparts. More specifically, our approach implies
that the scaled return residuals should have unit standard deviation. Our implementation
results in a sample standard deviation of 1.14, that is relatively close to the model’s predicted
value of 1.

Additionally, a comparison of the unscaled and scaled autocorrelation matrices reveals
that much of the sample autocorrelation in the unscaled residuals is eliminated by our WLS
approach. For example, the unscaled residuals in the regression forecasting the log real
return have an autocorrelation of -0.074. The corresponding autocorrelation of the scaled
return residuals is essentially zero, 0.002. Though the scaled residuals in the EV AR, PE
and DEF' regression still display some negative autocorrelation, the unscaled residuals are
much more negatively autocorrelated.

Table 2 reports the coefficients of a regression of the squared unscaled residuals o;u; 1 of
each VAR equation on a constant and EV AR. These results are broadly consistent with our
assumption that FV AR captures the conditional volatility of the market return and other
state variables. The coefficient on EV AR in the regression forecasting the squared market
return residuals is 1.9, rather than the theoretically expected value of one, but this coefficient
is somewhat sensitive to the weighting scheme used in the regression. The fact that EV AR
significantly predicts with a positive sign all the squared errors of the VAR supports our
underlying assumption that one parameter (¢?) drives the volatility of all innovations.

190ne worry is that many of the elements of the transition matrix are estimated imprecisely. Though these
estimates may be zero, their non-zero but statistically insignificant in-sample point estimates, in conjunction
with the highly-nonlinear function that generates discount-rate and volatility news, may result in misleading
estimates of risk prices. However, Table 12 Panel B shows that results are qualitatively similar if we instead
employ a partial VAR where, via a standard iterative process, only variables with ¢-statistics greater than
1.0 are included in each VAR regression.
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The top panel of Table 3 presents the variance-covariance matrix and the standard devi-
ation/correlation matrix of the news terms, estimated as described above. Consistent with
previous research, we find that discount-rate news is twice as volatile as cash-flow news.

The interesting new results in this table concern the variance news term Ny. First,
news about future variance has significant volatility, with nearly a third of the variability of
discount-rate news. Second, variance news is negatively correlated (—0.22) with cash-flow
news: as one might expect from the literature on the “leverage effect” (Black 1976, Christie
1982), news about low cash flows is associated with news about higher future volatility.
This finding makes it unappealing to assume that variance news and cash-flow news are
uncorrelated, as would be required for the validity of the model solution in Bansal, Kiku,
Shaliastovich, and Yaron (2013). Third, Ny correlates negatively (—0.09) with discount-rate
news, indicating that news of high volatility tends to coincide with news of low future real
returns.'! The net effect of these correlations, documented in the lower left panel of Table
3, is a slightly negative correlation of —0.02 between our measure of volatility news and
contemporaneous market returns (for related research see French, Schwert, and Stambaugh
1987).

The lower right panel of Table 3 reports the decomposition of the vector of innovations
o?u;41 into the three terms Negii1, Npris1, and Nygy1. As shocks to EVAR are just a
linear combination of shocks to the underlying state variables, which includes RV AR, we
“unpack” EV AR to express the news terms as a function of r,,, PE, TY, VS, DEF, and
RV AR. The panel shows that innovations to RV AR are mapped more than one-to-one to
news about future volatility. However, several of the other state variables also drive news
about volatility. Specifically, we find that innovations in PE, DEF', and V' S are associated
with news of higher future volatility.

Figure 3 plots the smoothed series for Nop, —Npr and Ny using an exponentially-
weighted moving average with a quarterly decay parameter of 0.08. This decay parameter
implies a half-life of six years. The pattern of Nor and —Npr we find is consistent with
previous research. As a consequence, we focus on the smoothed series for market variance
news. There is considerable time variation in Ny, and in particular we find episodes of news
of high future volatility during the Great Depression and just before the beginning of World
War II, followed by a period of little news until the late 1960s. From then on, periods of
positive volatility news alternate with periods of negative volatility news in cycles of 3 to 5
years. Spikes in news about future volatility are found in the early 1970s (following the oil
shocks), in the late 1970s and again following the 1987 crash of the stock market. The late
1990s are characterized by strongly negative news about future returns, and at the same time
higher expected future volatility. The recession of the late 2000s is instead characterized by
strongly negative cash-flow news, together with a spike in volatility of the highest magnitude
in our sample. The recovery from the financial crisis has brought positive cash-flow news

1 Though the point estimate is negative, the large standard errors imply that we cannot reject the “volatil-
ity feedback effect” (Campbell and Hentschel 1992, Calvet and Fisher 2007).

19



together with news about lower future volatility.

4.4 Predicting long-run volatility

The predictability of volatility, and especially of its long-run component, is central to this
paper. In the previous sections, we have shown that volatility is strongly predictable, and
it is predictable in particular by variables beyond lagged realizations of volatility itself: PE
and DEF contain essential information about future volatility. We have also proposed a
VAR-based methodology to construct long-horizon forecasts of volatility that incorporate all
the information in lagged volatility as well as in the additional predictors like PE and DEF'.

We now ask how well our proposed long-run volatility forecasts capture the long-horizon
component of volatility. In Table 4 we regress realized discounted long-run variance up to
period h,

4 % Z]jzlpj‘lRVARHj

h i—1 ’
Ej:1p]

LHRV ARy, =
on different forecasting models of long-run variance.!> We focus on the 10-year horizon
(h = 40) as longer horizons come at the cost of fewer independent observations; however,
Table 3 in the online appendix confirms that our results are robust to horizons ranging from
one to 15 years.

In particular, we estimate two standard GARCH-type models, specifically designed to
capture the long-run component of volatility. The first one is the two-component EGARCH
model proposed by Adrian and Rosenberg (2008). This model assumes the existence of
two separate components of volatility, one of which is more persistent than the other, and
therefore will tend to capture the long-run dynamics of the volatility process. The other
model we estimate is the FIGARCH model of Baillie, Bollerslev, and Mikkelsen (1996), in
which the process for volatility is modeled as a fractionally-integrated process, and whose
slow, hyperbolic rate of decay of lagged, squared innovations potentially captures long-run
movements in volatility better. We first estimate both GARCH models using the full sample
of daily returns and then generate the appropriate forecast of LHRV ARy,.'* To these two
models, we add the set of variables from our VAR, and compare the forecasting ability of
these different models.

Table 4 reports the results of forecasting regressions of long run volatility LH RV ARy
using different specifications. The first regression presents results using the state variables
in our VAR, each included separately. The second regression predicts LH RV AR,y with the

12Note that we measure LHRV AR in annual units. In particular, we rescale by the sum of the weights
p’ to maintain the scale of the coefficients in the predictive regressions across different horizons.

13We start our forecasting exercise in January 1930 so that we have a long enough history of past returns
to feed the FIGARCH model. Other long-run GARCH models could be estimated in a similar manner, for
example the FIEGARCH model of Bollerslev and Mikkelsen (1996).
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horizon-specific forecast implied by our VAR (VARy). The third and fourth regressions
forecast LH RV ARy4y with the corresponding forecast from the EGARCH model (EGy) and
the FIGARCH model (FIGyg) respectively. The fifth and sixth regressions join the VAR
variables with the two GARCH-based forecasts, one at a time. The seventh and eighth
regressions conduct a horse race between VAR, and F 1G4y and between VAR and DEF.
Regressions nine through 13 focus on the forecasting ability of our two key state variables,
DEF and PFE; we discuss these specifications in more detail below.

First note that both the EGARCH and FIGARCH forecasts by themselves capture a
significant portion of the variation in long-run realized volatility: both have significant co-
efficients, and both have nontrivial R%s. Our VAR variables provide as good or better
explanatory power, and RV AR, PE and DEF are strongly statistically significant. Online
Appendix Table 3 documents that these conclusions are true at all horizons (with the excep-
tion of RVAR at h = 20, i.e. 5 years). Finally, the coefficient on the VAR-implied forecast,
V ARy, is 0.989. This estimate is not only significantly different from 0 but also not signifi-
cantly different from 1. This finding indicates that our VAR is able to produce forecasts of
volatility that not only go in the right direction, but are also of the right magnitude, even
at the 10-year horizon.

Very interesting results appear once we join our variables to the two GARCH models.
Even after controlling for the GARCH-based forecasts (which render RV AR insignificant),
PFE and DEF come in significantly in predicting long-horizon volatility. Moreover, the addi-
tion of the VAR state variables strongly increases the R?. We further show that when using
the VAR-implied forecast together with the FIGARCH forecast, the coefficient on VAR
is still very close to one and always statistically significant while the FIGARCH coefficient
moves closer to zero (though the coefficient on F'1G4y remains statistically significant at the
10-year horizon).

We develop an additional test of our VAR-based model of stochastic volatility from the
idea that the variables that form the VAR — in particular the strongest of them, DEF —
should predict volatility at long horizons only through the VAR, not in addition to it. In other
words, the VAR forecasts should ideally represent the best way to combine the information
contained in the state variables concerning long-run volatility. If true, after controlling for the
VAR-implied forecast, DEF or other variables that enter the VAR should not significantly
predict future long-run volatility. We test this hypothesis by running a regression using both
the VAR-implied forecast and DEF as right-hand side variables. We find that the coefficient
on VAR is still not significantly different from 1, while the coefficient on DFEF' is small
and statistically indistinguishable from 0. The online appendix shows that this finding is
true at all horizons we consider.

Finally, Table 4 examines more carefully the link between DEF and LHRV AR4. Re-
gressions 9 through 13 in the table forecast LH RV ARy with PE, DEF, PEO (PE orthog-
onalized to DEF), and DEFO (DEF orthogonalized to PE). These regressions show that
by itself, PE has no information about low-frequency variation in volatility. In contrast,
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DEF forecasts nearly 22% of the variation in LH RV ARy. And once DEF is orthogonal-
ized to PE, the R? increases to 51%. Adding PEO has little effect on the R2. We argue
that this is clear evidence of the strong predictive power of the orthogonalized component of
the default spread.

Recall our simple interpretation of these results. DFEF' contains information about future
volatility as risky bonds are short the option to default. However, DEF also contains
information about future aggregate risk premia. We know from previous work that most
of the variation in PFE is about aggregate risk premia. Therefore, including PE in the
volatility forecasting regression cleans up variation in DEF' due to aggregate risk premia
and thus sharpens the link between DEF and future volatility. Since PE and DEF' are
negatively correlated (default spreads are relatively low when the market trades rich), both
PE and DEF receive positive coefficients in the multiple regression.

In Figure 4, we provide a visual representation of the volatility-forecasting power of
our key VAR state variables and our interpretation of the results. The top panel plots
LHRV ARy together with lagged DEF and PE. The graph confirms the strong negative
correlation between PE and DEF (correlation of -0.6) and highlights how both variables
track long-run movements in long run volatility. To isolate the contribution of the default
spread in predicting long run volatility, the bottom panel plots LH RV AR,y together with
DEFO. In general, the improvement in fit moving from the top panel to the bottom panel
is clear.

More specifically, the contrasting behavior of DEF and DEFO in the two panels during
episodes such as the tech boom help illustrate the workings of our story. Taken in isola-
tion, the relatively stable default spread throughout most of the late 1990s would predict
little change in expectations of future market volatility. However, once the declining equity
premium over that period is taken into account (as shown by the rapid increase in PFE),
one recognizes that a PFE-adjusted default spread in the late 1990s actually forecasted much
higher volatility ahead.

Taken together, the results in Table 1 Panel A and Table 4 make a strong case that
credit spreads and valuation ratios contain information about future volatility not captured
by simple univariate models, even those like the FIGARCH model or the two-component
EGARCH model that are designed to fit long-run movements in volatility, and that our
VAR method for calculating long-horizon forecasts preserves this information.
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5 Measuring and Pricing Cash-flow, Discount-Rate, and
Volatility Betas

5.1 Test assets

In addition to the six VAR state variables, our analysis also requires returns on a cross
section of test assets. We construct three sets of portfolios to use as test assets. Our primary
cross section consists of the excess returns on the 25 ME- and BE/ME-sorted portfolios,
studied in Fama and French (1993), extended in Davis, Fama, and French (2000), and made
available by Professor Kenneth French on his web site.!*

Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) point out that
it can be misleading to test asset pricing models using only portfolios sorted by characteristics
known to be related to average returns, such as size and value. In particular, characteristics-
sorted portfolios are likely to show some spread in betas identified as risk by almost any asset
pricing model, at least in sample. When the model is estimated, a high premium per unit
of beta will fit the large variation in average returns. Thus, at least when premia are not
constrained by theory, an asset pricing model may spuriously explain the average returns to
characteristics-sorted portfolios.

To alleviate this concern, we follow the advice of Daniel and Titman (1997, 2012) and
Lewellen, Nagel, and Shanken (2010) and construct a second set of six portfolios double-
sorted on past risk loadings to market and variance risk. First, we run a loading-estimation
regression for each stock in the CRSP database where r;; is the log stock return on stock ¢
for month t.

3 3 3
> rive =bo+ by > Tariej +bavar Y AVAR; + gy
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We calculate AV AR as a weighted sum of changes in the VAR state variables. The
weight on each change is the corresponding value in the linear combination of VAR shocks
that defines news about market variance. We choose to work with changes rather than shocks
as this allows us to generate pre-formation loading estimates at a frequency that is different
from our VAR. Namely, though we estimate our VAR using calendar-quarter-end data, our
approach allows a stock’s loading estimates to be updated at each interim month.

The regression is reestimated from a rolling 36-month window of overlapping observations
for each stock at the end of each month. Since these regressions are estimated from stock-level
instead of portfolio-level data, we use quarterly data to minimize the impact of infrequent
trading. With loading estimates in hand, each month we perform a two-dimensional sequen-
tial sort on market beta and AV AR beta. First, we form three groups by sorting stocks

Mhttp://mba.tuck.dartmouth.edu/pages/faculty /ken.french/
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on /b\TM. Then, we further sort stocks in each group to three portfolios on /b\AV Ar and record
returns on these nine value-weight portfolios. The final set of risk-sorted portfolios are the
two sets of three b,,, portfolios within the extreme bay ar groups. To ensure that the aver-
age returns on these portfolio strategies are not influenced by various market-microstructure
issues plaguing the smallest stocks, we exclude the five percent of stocks with the lowest M FE

from each cross-section and lag the estimated risk loadings by a month in our sorts.

In the empirical analysis, we consider two main subsamples: early (1931:3-1963:3) and
modern (1963:4-2011:4) due to the findings in Campbell and Vuolteenaho (2004) of dramatic
differences in the risks of these portfolios between the early and modern period. The first
subsample is shorter than that in Campbell and Vuolteenaho (2004) as we require each of
the 25 portfolios to have at least one stock as of the time of formation in June.

We generate a parsimonious cross section of option, bond, and equity returns for the
1986:1-2011:4 time period based on the findings in Fama and French (1993) and Coval and
Shumway (2001). In particular, we use the S&P 100 index straddle returns studied by Coval
and Shumway.!®> We also include proxies for the two components of the risky bond factor of
Fama and French (1993) which we measure using the return on the Barclays Capital High
Yield Bond Index (HY RET) and the return on Barclays Capital Investment Grade Bond
Index (IGRET). When pricing the straddle and risky bond return series, we include the
returns on the market (RMRF'), size (SM B), and value (HM L) equity factors of Fama
and French (1993) as they argue these factors do a good job describing the cross section of
average equity returns.

Finally, we also study the cross section of currency portfolios, where currencies have been
dynamically allocated to portfolios based on their interest rates as in Lustig, Roussanov, and
Verdelhan (2011).!¢ The currency portfolios cover the period 1984:1- 2010:1.

5.2 Beta measurement

We now examine the validity of an unconditional version of the first-order condition in
equation (18). We modify equation (18) in three ways. First, we use simple expected
returns on the left-hand side to make our results easier to compare with previous empirical
studies. Second, we condition down equation (18) to avoid having to estimate all required
conditional moments. Finally, we cosmetically multiply and divide all three covariances by
the sample variance of the unexpected log real return on the market portfolio. By doing so,
we can express our pricing equation in terms of betas, facilitating comparison to previous

15Qpecifically, the series we study includes only those straddle positions where the difference between the
options’ strike price and the underlying price is between 0 and 5. We thank Josh Coval and Tyler Shumway
for providing their updated data series to us.

16Specifically, we study the interest-rate-sorted portfolios that Lustig, Roussanov, and Verdelhan (2011)
form using only developed countries. We thank Nick Roussanov for sharing these data.
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research. These modifications result in the following asset-pricing equation

1
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We price the average excess returns on our test assets using the unconditional first-order
condition in equation (26) and the quadratic relationship between the parameters w and ~y
given by equation (23). As a first step, we estimate cash-flow, discount-rate, and variance
betas using the fitted values of the market’s cash flow, discount-rate, and variance news
estimated in the previous section. Specifically, we estimate simple WLS regressions of each
portfolio’s log returns on each news term, weighting each time-t 4+ 1 observation pair by the
weights used to estimate the VAR in Table 1 Panel B. We then scale the regression loadings
by the ratio of the sample variance of the news term in question to the sample variance of the
unexpected log real return on the market portfolio to generate estimates for our three-beta
model.

Characteristic-sorted test assets

Table 5 Panel A shows the estimated betas for the 25 size- and book-to-market portfolios
over the 1931-1963 period. The portfolios are organized in a square matrix with growth
stocks at the left, value stocks at the right, small stocks at the top, and large stocks at the
bottom. At the right edge of the matrix we report the differences between the extreme growth
and extreme value portfolios in each size group; along the bottom of the matrix we report the
differences between the extreme small and extreme large portfolios in each BE/ME category.
The top matrix displays post-formation cash-flow betas, the middle matrix displays post-
formation discount-rate betas, while the bottom matrix displays post-formation variance
betas. In square brackets after each beta estimate we report a standard error, calculated
conditional on the realizations of the news series from the aggregate VAR model.

In the pre-1963 sample period, value stocks have both higher cash-flow and higher
discount-rate betas than growth stocks. An equal-weighted average of the extreme value
stocks across size quintiles has a cash-flow beta 0.12 higher than an equal-weighted average
of the extreme growth stocks. The difference in estimated discount-rate betas, 0.20, is in
the same direction. Similar to value stocks, small stocks have higher cash-flow betas and
discount-rate betas than large stocks in this sample (by 0.14 and 0.34, respectively, for an
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equal-weighted average of the smallest stocks across value quintiles relative to an equal-
weighted average of the largest stocks). These differences are extremely similar to those in
Campbell and Vuolteenaho (2004), despite the exclusion of the 1929-1931 subperiod, the
replacement of the excess log market return with the log real return, and the use of a richer,
heteroskedastic VAR.

The new finding in Table 5 Panel A is that value stocks and small stocks are also riskier
in terms of volatility betas. An equal-weighted average of the extreme value stocks across
size quintiles has a volatility beta 0.05 lower than an equal-weighted average of the extreme
growth stocks. Similarly, an equal-weighted average of the smallest stocks across value
quintiles has a volatility beta that is 0.04 lower than an equal-weighted average of the largest
stocks. In summary, value and small stocks were unambiguously riskier than growth and
large stocks over the 1931-1963 period.

Table 6 Panel A reports the corresponding estimates for the post-1963 period. As doc-
umented in this subsample by Campbell and Vuolteenaho (2004), value stocks still have
slightly higher cash-flow betas than growth stocks, but much lower discount-rate betas. Our
new finding here is that value stocks continue to have much lower volatility betas, and the
spread in volatility betas is even greater than in the early period. The volatility beta for the
equal-weighted average of the extreme value stocks across size quintiles is 0.13 lower than
the volatility beta of an equal-weighted average of the extreme growth stocks, a difference
that is more than 42% higher than the corresponding difference in the early period.!”

These results imply that in the post-1963 period where the CAPM has difficulty ex-
plaining the low returns on growth stocks relative to value stocks, growth stocks are relative
hedges for two key aspects of the investment opportunity set. Consistent with Campbell and
Vuolteenaho (2004), growth stocks hedge news about future real stock returns. The novel
finding of this paper is that growth stocks also hedge news about the variance of the market
return.

The changing volatility beta of the market portfolio

One interesting aspect of these findings is the fact that the average 3, of the 25 size-
and book-to-market portfolios changes sign from the early to the modern subperiod. Over
the 1931-1963 period, the average [y, is -0.06 while over the 1964-2011 period this average
becomes 0.09. Of course, given the strong positive link between PE and volatility news
documented in the lower right panel of Table 3, one should not be surprised that the market’s
By can be positive. Moreover, given the change in sign over time in PE’s correlation with

17Qur findings are in sharp contrast to BKSY who find that See their Table VII where they estimate
that the 8y, of a portfolio that is long the top quintile of value stocks and short the corresponding bottom
quintile is 2.8, roughly 60% of the absolute value of the market’s 8y ; see their Table X where those numbers
are 1.0 and 81% respectively; and see their Table XI where the numbers are 1.1 and 62% respectively.
Their implication that value-minus-growth bets are volatility hedges is hard to justify given both theory
(real option stories such as McQuade 2012) and stylized facts (e.g. how value-minus-growth bets performed
during the Great Depression, the Tech Boom, and the Great Recession).
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some of the key state variables driving EV AR documented in the online appendix, one
should not be surprised that 3y, changes sign as well. Nevertheless, we study this change in
sign more carefully.

Figure 5 shows scatter plots with the early period as blue triangles and the modern period
data as red asterisks. The top two plots in this figure emphasize that variance news betas
are not the same as RV AR betas. The top left portion of the figure plots the market return
against RV AR. This plot shows that the market does do poorly when realized variance is
high, and that this is the case in both subsamples. In fact, this relation is slightly more
negative in the modern period. However, our theory tells us that long-horizon investors care
about low frequency movements in volatility. The top right portion of the figure plots the
market return against volatility news, Ny. Consistent with the estimates in Tables 5 and 6
in the paper, the relation between the market return and Ny is negative in the early period
and positive in the modern period.'® This plot shows that the estimates are robust and not
driven by outliers.

The bottom two plots in this figure illustrate what drives this relation in our VAR. The
bottom left of the figure plots PE against DEFO, our simple proxy for news about long-
horizon variance. It is easy to see that the market’s PFE is high when DEFO is low in the
early period, but this relation reverses in the latter period. The bottom right of the figure
plots market returns against the contemporaneous change in DEF'O. The relation is clearly
negative in the early period and clearly positive in the modern period.

In summary, Figure 5 highlights the important distinction between single-period realized
variance RV AR and long-run volatility news, and confirms that the sign change in the
market’s volatility beta from the early to the modern period can be seen in simple plots
of the market return against the change in our key state variable, the PFE-adjusted default
spread. Table 12 examines the robustness of this finding to different VAR specifications and
estimation methods.

Risk-sorted test assets

Table 5 Panel B shows the estimated betas for the six risk-sorted portfolios over the
1931-1963 period. The portfolios are organized in a rectangular matrix with low CAPM
beta stocks at the left, high CAPM beta stocks at the right, low volatility beta stocks at
the top, and high volatility beta stocks at the bottom. At the right edge of the matrix we
report the differences between the high CAPM beta and the low CAPM beta portfolios in
each volatility beta group; along the bottom of the matrix we report the differences between
the high volatility beta and the low volatility beta portfolios in each CAPM beta category.
As in Panel A, the top matrix displays post-formation cash-flow betas, the middle matrix

18GStraddle returns are negatively correlated with the return on the market portfolio in the 1986:1-2011:4
sample. This negative correlation is not inconsistent with the positive correlation we find between the market
return and Ny in the modern sample as the straddle portfolio consists of one-month maturity options and
thus should respond to short-term volatility expectations.
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displays post-formation discount-rate betas, while the bottom matrix displays post-formation
volatility betas.

In the pre-1963 sample period, high CAPM beta stocks have both higher cash-flow and
higher discount-rate betas than low CAPM beta stocks. An equal-weighted average of the
high CAPM beta stocks across the two volatility beta categories has a cash-flow beta 0.19
higher than an equal-weighted average of the low CAPM beta stocks. The difference in
estimated discount-rate betas is 0.44 and in the same direction. Similar to high CAPM beta
stocks, low volatility beta stocks have higher cash-flow betas and discount-rate betas than
high volatility beta stocks in this subsample (by 0.06 and 0.11, respectively, for an equal-
weighted average of the low volatility beta stocks across the three CAPM beta categories
relative to a corresponding equal-weighted average of the high volatility beta stocks).

High CAPM beta stocks and low volatility beta stocks are also riskier in terms of volatility
betas. An equal-weighted average of the high CAPM beta stocks across volatility beta
categories has a post-formation volatility beta 0.04 lower than an equal-weighted average of
the low CAPM beta stocks. Similarly, an equal-weighted average of the low volatility beta
stocks across CAPM beta categories has a post-formation volatility beta that is 0.02 lower
than an equal-weighted average of the high volatility beta stocks. In summary, high CAPM
beta and low volatility beta stocks were unambiguously riskier than low CAPM beta and
high volatility beta stocks over the 1931-1963 period.

Table 6 Panel B shows the estimated betas for the six risk-sorted portfolios over the
post-1963 period. In the modern period, high CAPM beta stocks again have higher cash-
flow and higher discount-rate betas than low CAPM beta stocks. An equal-weighted average
of the high CAPM beta stocks across the two volatility beta categories has a cash-flow beta
0.08 higher than an equal-weighted average of the low CAPM beta stocks. The difference in
estimated discount-rate betas is 0.55 and in the same direction. However, high CAPM beta
stocks are no longer riskier in terms of volatility betas. Now, an equal-weighted average of
the high CAPM beta stocks across the two volatility beta categories has a post-formation
variance beta 0.07 higher than a corresponding equal-weighted average of the low CAPM
beta stocks. Since, in the three-beta model, covariation with aggregate volatility has a
negative premium, the three-beta model can potentially explain why stocks with high past
CAPM betas have offered relatively little extra return, at least in the modern period.

In the post-1963 period, sorts on volatility beta continue to generate economically and
statistically significant spread in post-formation volatility beta. An equal-weighted average
of low volatility beta stocks across the three CAPM beta categories has a post-formation
volatility beta that is 0.06 lower than the post-formation volatility beta of a corresponding
equal-weighted average of high volatility beta stocks. Sorts on volatility beta also generate
spread in discount-rate beta, but essentially no spread in cash-flow betas in the post-1963
period.

Non-equity test assets
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Table 6 Panel C reports the three ICAPM betas of the S&P 100 index straddle position
analyzed in Coval and Shumway (2001) along with the corresponding ICAPM betas of the
three equity factors and the default bond factor of Fama and French (1993) over the period
1986:1 - 2011:4. Consistent with the nature of a straddle bet, we find that the straddle has
a very large volatility beta of 0.38. It also has a large negative discount-rate beta of -1.71
and a large (relatively speaking) negative cash-flow beta of -0.39. As one would expect, the
betas of the Fama-French equity factors are consistent with the findings for the size- and
book-to-market-sorted portfolios in Table 6 Panel B. Finally, the riskier component of Fama
and French’s (1993) risky bond factor, HY RET has a cash-flow beta of 0.06, a discount-rate
beta of 0.26, and a volatility beta of -0.05. These betas are economically and statistically
significant, unlike those of the safer component, IGRET. The difference in volatility beta
between HY RET and IGRET is consistent with the fact that risky corporate debt is short
the option to default.

Table 6 Panel D reports the three ICAPM betas of the five interest-rate-sorted currency
portfolios from Lustig, Roussanov, and Verdelhan (2011). High interest rate countries have
higher cash-flow and discount-rate betas and lower volatility betas than their low interest

rate counterparts. Thus, high interest rate countries are unambiguously riskier than growth
and large stocks over the 1984:1-2010:1 period.

5.3 Beta pricing

We next turn to pricing the cross section with these three ICAPM betas. We evaluate
the performance of five asset-pricing models: 1) the traditional CAPM that restricts cash-
flow and discount-rate betas to have the same price of risk and sets the price of variance risk
equal to zero; 2) the two-beta intertemporal asset pricing model of Campbell and Vuolteenaho
(2004) that restricts the price of discount-rate risk to equal the variance of the market return,
3) our three-beta intertemporal asset pricing model that restricts the price of discount-rate
risk to equal the variance of the market return and constrains the price of cash-flow and
variance risk to be related by equation (23), with p = 0.95 per year; 4) a partially-constrained
three-beta model that restricts the price of discount-rate risk to equal the variance of the
market return but freely estimates the other two risk prices (effectively decoupling v and w),
and 5) an unrestricted three-beta model that allows free risk prices for cash-flow, discount-
rate, and volatility betas. Each model is estimated in two different forms: one with a
restricted zero-beta rate equal to the Treasury-bill rate as in the Sharpe-Lintner version of
the CAPM, and one with an unrestricted zero-beta rate following Black (1972).

Characteristic-sorted test assets

Table 7 reports results for the early sample period 1931-1963, using 25 size- and book-
to-market-sorted portfolios as test assets. The table has ten columns, two specifications for
each of our five asset pricing models. The first 16 rows of Table 7 are divided into four sets
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of four rows. The first set of four rows corresponds to the zero-beta rate (in excess of the
Treasury-bill rate), the second set to the premium on cash-flow beta, the third set to the
premium on discount-rate beta, and the fourth set to the premium on volatility beta. Within
each set, the first row reports the point estimate in fractions per quarter, and the second
row annualizes this estimate, multiplying by 400 to aid in interpretation. These parameters
are estimated from a cross-sectional regression

E: = 9o + 91Bicry + 928 DRy, + 9385y, T €is (27)

where a bar denotes time-series mean and ﬁ: =R —R, 7 denotes the sample average simple
excess return on asset ¢. The third and fourth rows present two alternative standard errors
of the monthly estimate, described below.

Below the premia estimates, we report the R? statistic for a cross-sectional regression of
average returns on our test assets onto the fitted values from the model. We also report a
composite pricing error, computed as a quadratic form of the pricing errors. The weighting
matrix in the quadratic form is a diagonal matrix with the inverse of the sample test asset
return volatilities on the main diagonal.

Standard errors are produced with a bootstrap from 10,000 simulated realizations. Our
bootstrap experiment samples test-asset returns and first-stage VAR errors, and uses the
first-stage and second-stage WLS VAR estimates in Table 1 to generate the state-variable
data.!® We partition the VAR errors and test-asset returns into two groups, one for 1931 to
1963 and another for 1963 to 2011, which enables us to use the same simulated realizations
in subperiod analyses. The first set of standard errors (labeled A) conditions on estimated
news terms and generates betas and return premia separately for each simulated realization,
while the second set (labeled B) also estimates the first-stage and second-stage VAR and the
news terms separately for each simulated realization. Standard errors B thus incorporate
the considerable additional sampling uncertainty due to the fact that the news terms as well
as betas are generated regressors.

Two alternative 5-percent critical values for the composite pricing error are produced
with a bootstrap method similar to the one we have described above, except that the test-
asset returns are adjusted to be consistent with the pricing model before the random samples
are generated. Critical values A condition on estimated news terms, while critical values B
take account of the fact that news terms must be estimated.

Finally, Table 7 reports the implied risk-aversion coefficient, v, which can be recovered as
g1/ g2, as well as the sensitivity of news about risk to news about market variance, w, which
can be recovered as —2 x g3/go. The three-beta ICAPM estimates are constrained so that
both v and the implied w are strictly positive.

Table 7 shows that in the 1931-1963 period, all our models explain the cross-section of
stock returns reasonably well. The cross-sectional R? statistics are almost 56% for both

19When simulating the bootstrap, we drop realizations which would result in negative RV AR and redraw.
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forms of our three-beta ICAPM. Both the Sharpe-Lintner and Black versions of the CAPM
do a slightly poorer job describing the cross section (both R? statistics are roughly 53%).
The two-beta ICAPM of Campbell and Vuolteenaho (2004) performs slightly better than the
CAPM and slightly worse than the three-beta ICAPM. None of the theoretically-motivated
models considered are rejected by the data based on the composite pricing test. Consistent
with the claim that the three-beta model does a good job describing the cross-section, Table 7
shows that the constrained and the unrestricted factor model barely improve pricing relative
to the three-beta ICAPM.

We can quantify the role that volatility betas play in our model. For the Black version of
the three-beta ICAPM, the spread in volatility betas across the 25 size- and book-to-market-
sorted portfolios generates an annualized spread in average returns of 1.6% compared to a
comparable spread of 7.3% and 3.2% for cash-flow and discount-rate betas. Variation in
volatility betas accounts for 2% of the variation in explained returns compared to 38% and
7% for cash-flow and discount-rate betas respectively. The remaining 53% of the explained
variation in average returns is due of course to the covariation among the three types of
betas.

Figure 6 provides a visual summary of the early-period results. The figure plots the
predicted average excess return on the horizontal axis and the actual sample average excess
return on the vertical axis, for test asset returns measured relative to the Treasury bill rate.
Results are shown for the Sharpe-Lintner and Black versions of the CAPM and the three-
beta ICAPM. The difficulty in distinguishing the models is visually apparent for this sample
period.

Results are very different in the 1963-2011 period. Table 8 shows that in this period,
both versions of the CAPM do a very poor job of explaining cross-sectional variation in
average returns on portfolios sorted by size and book-to-market. When the zero-beta rate
is left as a free parameter, the cross-sectional regression picks a negative premium for the
CAPM beta and implies an R? of roughly 5%. When the zero-beta rate is constrained to
the risk-free rate, the CAPM R? falls to roughly -37%. Both versions of the static CAPM
are easily rejected at the five-percent level by both sets of critical values.

In the modern period, the unconstrained zero-beta rate version of the two-beta Campbell
and Vuolteenaho (2004) model does a better job describing the cross section of average
returns than the CAPM. However, the implied coefficient of risk aversion, 20.7, is arguably
extreme.

The three-beta model with the restricted zero-beta rate also does a poor job explaining
cross-sectional variation in average returns across our test assets. However, if we continue to
restrict the risk price for discount-rate and variance news but allow an unrestricted zero-beta
rate, the explained variation increases to roughly 63%, almost three-quarters larger than the
R? of the corresponding two-beta ICAPM. The estimated risk price for cash-flow beta is
an economically reasonable 21.5 percent per year with an implied coefficient of relative risk
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aversion of 6.9 (equal to the theoretical maximum consistent with the existence of a model
solution). Neither version of our intertemporal CAPM with stochastic volatility is rejected
at the 5-percent level by either set of critical values.

Once again, we can quantify the role that volatility betas play in our model. For the
Black version of the three-beta ICAPM, the spread in volatility betas across the 25 size-
and book-to-market-sorted portfolios generates an annualized spread in average returns of
5.2% compared to a comparable spread of 2.8% and 2.2% for cash-flow and discount-rate
betas. Variation in volatility betas accounts for 104% of the variation in explained returns
compared to 19% for cash-flow betas as well as 13% for discount-rate betas. Covariation
among the three types of betas is responsible for the remaining -36% of explained variation
in average returns.

Figure 7 provides a visual summary of the modern-period results. The poor performance
of the CAPM in this sample period is immediately apparent. The version of the ICAPM with
a restricted zero-beta rate, equal to the risk-free rate or Treasury bill rate, generates some
cross-sectional spread in predicted returns that lines up qualitatively with average realized
returns. However, almost all returns are underpredicted because stocks are estimated to be
volatility hedges in the modern period, so the model implies a relatively low equity premium.
This problem disappears when we free up the zero-beta rate in the ICAPM, adding the spread
between the zero-beta rate and the Treasury bill rate to the predicted excess return over the
bill rate.

The relatively poor performance of the risk-free rate version of the three-beta ICAPM is
due to the derived link between 7 and w. To show this, Figure 8 provides two contour plots
(one each for the risk-free and zero-beta rate versions of the model in the top and bottom
panels of the figure respectively) of the R? resulting from combinations of (7,w) ranging from
(0,0) to (40,40). On the same figure we also plot the relation between v and w derived in
equation (23). The top panel of Figure 8 shows that even with the intercept restricted to
zero, R?’s are as high as 70% for some combinations of (y,w). Unfortunately, as the plot
shows, these combinations do not coincide with the curve implied by equation (23). Once
the zero-beta rate is unconstrained, the contours for R?*’s greater than 60% cover a much
larger area of the plot and coincide nicely with the ICAPM relation of equation (23).

Consistent with the contour plots of Figure 8, the pricing results in Table 8 based on
the partially-constrained factor model further confirms that the link between v and w is
responsible for the poor fit of the restricted zero-beta rate version of the three-beta ICAPM
in the modern period. When removing the constraint linking v and w but leaving the
constraint on the discount-rate beta premium in place, the R? increases from -109% to 74%.
Moreover, the risk prices for v and w remain economically large and of the right sign.

Risk-sorted test assets

We confirm that the success of the three-beta ICAPM is robust by expanding the set of
test portfolios beyond the 25 size- and book-to-market-sorted portfolios. First, we show that
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our three-beta model not only describes the cross section of characteristics-sorted portfolios
but also can explain the average returns on risk-sorted portfolios. We examine risk-sorted
portfolios as Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) argue
that asset-pricing tests using only portfolios sorted by characteristics known to be related
to average returns, such as size and value, can be misleading due to the low-dimensional
factor structure of the 25 size and book-to-market-sorted portfolios. Our focus is on the
modern period as that subperiod provides the stronger challenge to the asset-pricing models
considered.?’

Table 9 prices the six risk-sorted portfolios described in Table 6 Panel B in conjunction
with six of the 25 size- and book-to-market-sorted portfolios of Table 6 Panel A (the low,
medium, and high BE/ME portfolios within the small and large ME quintiles) in the modern
period. We find that the zero-beta rate three-beta ICAPM is not rejected by the data while
both versions of the CAPM are rejected. Importantly, the relatively high R? for the zero-beta
rate version of the volatility ICAPM (68%) is not disproportionately due to characteristics-
sorted portfolios, as the R? for the risk-sorted subset (80%) is not only comparable to but
actually larger than the R? for the characteristics-sorted subset (68%). Figure 9 provides a
graphical summary of these results.

Non-equity test assets

Our three-beta model goes some way towards explaining the average returns on non-
equity portfolios designed to be highly correlated with aggregate volatility risk, namely
the S&P 100 index straddles of Coval and Shumway (2001). We first calculate the expected
return on the straddle portfolio based on the estimate of the zero-beta rate volatility I[CAPM
in Table 8. The contributions to expected quarterly return from the straddle’s cash-flow,
discount-rate, and volatility betas are -2.14%, -1.37%, and -3.15% respectively. As the
average quarterly realized return on the straddle is -21.66%, an equity-based estimate of the
three-beta model explains roughly 31% of the realized straddle premium.

Table 10 shows that our intertemporal CAPM with stochastic volatility is rejected at the
5-percent level when we price the joint cross-section of equity, bond, and straddle returns.
The CAPM is also strongly rejected. Though the two-beta ICAPM is not rejected, the
required risk aversion is too extreme (over 53 for both versions of the model) to be realistic.
Figure 10 provides a visual summary of the CAPM and ICAPM results, illustrating the
difficult challenge posed by the extremely low realized returns on the straddle portfolio.

Table 11 uses the three-beta model to price the cross section of currency portfolios sorted

200nline Appendix Table 4 prices the six risk-sorted portfolios described in Table 5 Panel B in conjunction
with six of the 25 size- and book-to-market-sorted portfolios of Table 5 Panel A (the low, medium, and high
BE/ME portfolios within the small and large ME quintiles) in the early period. We continue to find that
the three-beta ICAPM modestly improves pricing relative to both the Sharpe-Lintner and Black versions of
the CAPM. Moreover, the relatively high R? (57%) is not disproportionately due to characteristics-sorted
portfolios, as the R? for the risk-sorted subset (68%) is not only comparable to but actually larger than the
R? for the characteristics-sorted subset (51%). Online Appendix Figure 2 shows this success graphically.
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on interest rates. A large literature studies the properties of the currency carry trade, a
strategy that exploits the forward premium puzzle of Fama (1984) by buying high interest-
rate currencies and shorting low interest-rate currencies. For these assets, the Sharpe-Lintner
CAPM does a very poor job of explaining cross-sectional variation in currency returns. When
the zero-beta rate is left as a free parameter, the CAPM R? does increase to nearly 60%.
However, the cross-sectional regression picks a premium for the CAPM beta that is more
than twice as large as the realized market premium over this time period. The unconstrained
zero-beta rate version of the two-beta Campbell and Vuolteenaho (2004) model produces a
similar R? as the Black CAPM. However, the implied risk aversion estimate is quite large at
14.4.

The three-beta model with the restricted zero-beta rate also does a poor job explain-
ing cross-sectional variation in average returns across the currency test assets. However,
if we continue to restrict the risk price for discount-rate and variance news but allow an
unrestricted zero-beta rate, the explained variation increases to roughly 81.5%, with a risk
aversion estimate of 6.9 (once again equal to the theoretical maximum). This version of our
intertemporal CAPM with stochastic volatility is not rejected at the 5-percent level by either
set of critical values. Figure 11 provides a visual summary of the relative pricing ability of
the CAPM and the volatility ICAPM for currency portfolios.

Summary of US financial history

Figure 12 (third panel) plots the time-series of the smoothed combined shock yNgp —
Npr — %wNV based on the estimate of the zero-beta model for the modern period (Table
7). The correlation of this shock with the associated Nop is 0.82. Similarly, the correlation
of this shock with the associated —Nppg is 0.21. Finally, the correlation of this shock with
the associated Ny is -0.71. Figure 12 also plots the corresponding smoothed shock series for
the CAPM (N¢r — Npgr) and for the two-beta ICAPM (yNer — Npgr). The two-beta model
shifts the history of good and bad times relative to the CAPM, as emphasized by Campbell,
Giglio, and Polk (2012). The model with stochastic volatility further accentuates that
periods with high market volatility, such as the 1930s and the late 2000s, are particularly
hard times for long-term investors.

5.4 Robustness

Table 12 examines the robustness of our findings. Where appropriate, we include in bold
font our baseline model as a benchmark. Panel A shows results using various subsets of
variables in our baseline VAR. These results indicate that including both DEF and PFE are
generally essential for our finding of a negative 3, for H M L, consistent with the importance
of these two variable to long-run volatility forecasting. Moreover, successful zero-beta-rate
volatility ICAPM pricing in the modern period requires PE, DEF', and V'S in the VAR. The
results in Panel A also show that the positive RM RE 3, in the modern period is due to the
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inclusion of PE and DEF in the VAR. This finding makes sense once one is convinced (and
the long-horizon regressions of Table 4 make a strong case) that, controlling for DEF', high
PFE forecasts high volatility in the future. Since the market will certainly covary positively
(and quite strongly) with the PE shock, one should expect this component of volatility news
to be positive and an important determinant of RM RFE”’s [3,,.

Panel B presents results based on different estimation methods for the VAR. These meth-
ods include OLS, WLS but with OLS betas, two different bounds on the maximum ratio of
WLS weights, a single-stage approach where the weights are proportional to RV AR rather
than EV AR, and a partial VAR where we throw out in each regression those variables with ¢-
statistics under 1.0 (in an iterative fashion, starting with the weakest t-statistic first). These
results show that our major findings (a negative 3, for HM L and successful zero-beta rate
ICAPM pricing in both time periods) are very robust to using different methods.

In Panel C, we vary the way in which we estimate realized variance. In the second, fifth,
and sixth columns of the Table, we estimate the VAR using annual data. Thus our estimate
of realized variance reflects information over the entire year. In columns three and five, we
compute the realized variance of monthly returns rather than the realized variance of daily
returns as in our benchmark specification. In the fourth and six columns, we simply sum
squared monthly returns. Across Panel C, the R?s of the zero-beta rate ICAPM remain high
in the modern period.

In Panel D, we augment the set of variables under consideration to be included in the
VAR. We first explore different ways to measure the market’s valuation ratio. In the second
column of the Table, we replace PE with PFER., where we construct the price-earnings
ratio by deflating both the price and the earnings series by the CPI before taking their
ratio. In the third column, we use the log price-dividend ratio, PD, instead of PE. In
column four, we replace PE with PER., and the CPI inflation rate, INF' L. Panel D also
explores adding two additional state variables. In column five, we add CAY (Lettau and
Ludvigson (2001)) to the VAR as C'AY is known to be a strong predictor of future market
returns. Finally, column six adds the quarterly FIGARCH forecast to the VAR as Table
4 Panel B documents that GARCH-based methods are useful predictors of future market
return variance. In total, this Panel confirms that our finding of a negative 3, for HM L and
successful zero-beta rate ICAPM pricing in both time periods is generally robust to these
variations.

Panel E reports the results when we vary p and the excess zero-beta rate. One might
argue that our excess zero-beta rate estimate of 112 basis points a quarter is too high to
be consistent with equilibrium. Fortunately, we find that R%s remain reasonable for excess
zero-beta rates that are as low as 50 bps/quarter when rho takes only a slightly lower value,
0.94.

Panels F and G present information to help us better understand the volatility betas we
have estimated for the market as a whole, and for value stocks relative to growth stocks.
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Panel F reports components of RM RF and HM L’s (3, in each period (estimated either with
WLS or OLS). Specifically, these results use the elements of the vector defined in equation
(17) and the corresponding VAR shock to measure how each shock contributes to the (5, in
question. Panel F' documents, consistent with Panel A, that RM RF has a positive 3 in
the modern period due in part to the PE state variable. The results in Panel F also show
that all of the non-zero components of HM L’s (3, in the modern period are negative. This
finding is comforting as it further confirms that our negative H M L beta finding is robust.
Panel F also reports OLS estimates of simple betas on RV AR and the 15-year horizon
FIGARCH forecast (FIGg) for HML and RMRF. The HM L betas based on these two
simple proxies have the same sign as our more sophisticated and more appropriate measure
of volatility news. However, conclusions about the relevance of volatility risk for the value
effect clearly depend on measuring the long-run component of volatility well.

Finally, Panel G reports time-series regressions of HM L on Ny, by itself as well as on
all three factors together. We find that Ny, explains over 20% of HM L’s returns in the
modern period. The three news factors together explain slightly over 28%. Thus our model
is able to explain not only the cross-sectional variation in average returns of the 25 size- and
book-to-market-sorted portfolios of Fama and French (1993) but also a significant amount
of time series variation in realized returns on the key factor that they argue is multifactor-
minimum-variance (Fama and French, 1996).

6 Conclusion

We extend the approximate closed-form intertemporal capital asset pricing model of Camp-
bell (1993) to allow for stochastic volatility. Our model recognizes that an investor’s invest-
ment opportunities may deteriorate either because expected stock returns decline or because
the volatility of stock returns increases. A conservative long-term investor will wish to hedge
against both types of changes in investment opportunities; thus, a stock’s risk is determined
not only by its beta with unexpected market returns and news about future returns (or
equivalently, news about market cash flows and discount rates), but also by its beta with
news about future market volatility. Although our model has three dimensions of risk, the
prices of all these risks are determined by a single free parameter, the coefficient of relative
risk aversion.

Our implementation models the return on the aggregate stock market as one element of a
vector autoregressive (VAR) system; the volatility of all shocks to the VAR is another element
of the system. The empirical implementation of our VAR reveals new low-frequency move-
ments in market volatility tied to the default spread. We show that the negative post-1963
CAPM alphas of growth stocks are justified because these stocks hedge long-term investors
against both declining expected stock returns, and increasing volatility. The addition of
volatility risk to the model helps it fit the cross-section of stock returns with a moderate,
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economically reasonable value of risk aversion. We also show that volatility risk helps to
explain the average returns on non-equity test assets, including corporate bonds, interest-
rate-sorted currency portfolios, and equity index option straddles, although the extremely
low average returns on options remain an empirical challenge for the model.

Our empirical work is limited in two important respects. First, we have assumed that
the wealth portfolio of a representative investor can be adequately proxied by a diversified
equity portfolio. To the extent that other assets, such as corporate bonds or even human
capital, are important constituents of wealth, this assumption may be inadequate. It will
be of interest to explore stochastic volatility in alternative proxies for the wealth portfolio.

Second, we test only the unconditional implications of the model and do not evaluate its
conditional implications. A full conditional test is likely to be a challenging hurdle for the
model. To see why, recall that we assume a rational long-term investor always holds 100%
of his or her assets in equities. However, time-variation in real stock returns generally gives
the long-term investor an incentive to shift the relative weights on cash and equity, unless
real interest rates and market volatility move in exactly the right way to make the equity
premium proportional to market volatility. Although we do not explicitly test whether
this is the case, previous work by Campbell (1987) and Harvey (1989, 1991) rejects this
proportionality restriction.

One way to support the assumption of constant 100% equity investment is to invoke
binding leverage constraints. Indeed, in the modern sample, the Black (1972) version of our
three-beta model is consistent with this interpretation as the estimated difference between
the zero-beta and risk-free rates is positive, statistically significant, and economically large.
While we estimate a large risk aversion coefficient, this may be consistent with a binding
leverage constraint for a long-horizon investor given the low cash-flow news volatility and
negative modern-period volatility beta that we estimate for the market portfolio.

Both these limitations are opportunities for future research. And our model does directly
answer the interesting microeconomic question: Are there reasonable preference parameters
that would make a long-term investor, constrained to invest 100% in equity, content to hold
the market rather than tilting towards value stocks or other high-return stock portfolios?
Our answer is clearly yes.
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Table 1: VAR Estimation

The table shows the WLS parameter estimates for a first-order VAR model. The state
variables in the VAR include the log real return on the CRSP value-weight index (7)), the
realized variance (RV AR) of within-quarter daily simple returns on the CRSP value-weight
index, the log ratio of the S&P 500’s price to the S&P 500’s ten-year moving average of
earnings (PFE), the term yield spread (T'Y") in percentage points, measured as the difference
between the log yield on the ten-year US constant-maturity bond and the log yield on
the three-month US Treasury Bill, the default yield spread (DEF) in percentage points,
measured as the difference between the log yield on Moody’s BAA bonds and the log yield
on Moody’s AAA bonds, and the small-stock value spread (V'.S), the difference in the log
book-to-market ratios of small value and small growth stocks. The small-value and small-
growth portfolios are two of the six elementary portfolios constructed by Davis et al. (2000).
For the sake of interpretation, we estimate the VAR in two stages. Panel A reports the
WLS parameter estimates of a first-stage regression forecasting RV AR with the VAR state
variables. The forecasted values from this regression are used in the second stage of the
estimation procedure as the state variable EV AR, replacing RV AR in the second-stage
VAR. Panel B reports WLS parameter estimates of the full second-stage VAR. Initial WLS
weights on each observation are inversely proportional to RV AR; and EV AR, in the first and
second stages respectively and are then shrunk to equal weights so that the maximum ratio of
actual weights used is less than or equal to five. Additionally, the forecasted values for both
RV AR and EFV AR are constrained to be positive. In Panels A and B, the first seven columns
report coefficients on an intercept and the six explanatory variables, and the remaining
column shows the implied R? statistic for the unscaled model. Bootstrapped standard errors
that take into account the uncertainty in generating £’V AR are in parentheses. Panel C of
the table reports the correlation ("Corr/std") and autocorrelation ("Autocorr.") matrices
of both the unscaled and scaled shocks from the second-stage VAR; the correlation matrix
reports shock standard deviations on the diagonal. The sample period for the dependent
variables is 1926.3-2011.4, 342 quarterly data points.

Panel A: Forecasting Quarterly Realized Variance (RV AR;1)
Constant T M.t RVAR, PE, TY; DEF; V'S R*%
-0.020 -0.004 0.394 0.006 0.000 0.006 0.001  36.88%
(0.008)  (0.005) (0.064) (0.002) (0.001) (0.001) (0.002)
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Panel B: VAR Estimates

Second stage Constant T EV AR, PE, TY, DEF, VS, R%%

"M 4+1 0.219 0.057 1.249 -0.054 0.004 -0.010 -0.032 2.85%
(0.119)  (0.068) (2.276) (0.034) (0.008) (0.023) (0.035)

EVAR; 1 -0.016 -0.002 0.440 0.005 0.000 0.004 0.002 58.93%
(0.007)  (0.001) (0.064) (0.002) (0.000) (0.001) (0.002)

PE; 1 0.154 0.138 1.136 0.955 0.004 -0.012 -0.015 94.34%
(0.114)  (0.066) (2.178) (0.032) (0.007) (0.022) (0.033)

TY, 1 -0.047 -0.097 5.091 0.030 0.820 0.166 0.004 76.56%
(0.548)  (0.337) (11.342) (0.158) (0.036) (0.112) (0.156)

DEF, 4 0.191 -0.383 6.597 -0.056  0.000 0.834 0.067 88.96%
(0.264)  (0.151) (4.856) (0.073) (0.017) (0.050) (0.075)

VSt 0.138 0.075 3.048 -0.017 -0.004 -0.004 0.939 93.94%
(0.107)  (0.064) (2.085) (0.030) (0.007) (0.021) (0.031)
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Panel C: Correlations and Standard Deviations

Corr/std 1y EV AR PE TY DEF VS
unscaled
ry 0.106 -0.488 0.907 -0.022 -0.489 -0.036
EVAR -0.488 0.004 -0.575 -0.074  0.645 0.121
PE 0.907 -0.575 0.099 -0.011 -0.601 -0.064
TY -0.022 -0.074 -0.011  0.561 0.006  -0.024
DEF -0.489 0.645 -0.601  0.006 0.290 0.316
VS -0.036 0.121 -0.064 -0.024  0.316 0.086
scaled
ry 1137 -0.484 0.904 -0.043 -0.383  0.023
EVAR -0.484 0.045 -0.561 -0.069  0.627 0.088
PE  0.904 -0.561 1.043 -0.033 -0.488  0.004
TY -0.043 -0.069 -0.033  6.493 0.018  -0.033
DEF -0.383 0.627 -0.488 0.018 2.727 0.261
VS 0.023 0.088 0.004 -0.033 0.261 0.992
Autocorr. M t+1 EVARH_l PEt+1 TYH_l DE.FH_l VSt+1
unscaled
iy -0.074 0.092 -0.067  0.047 0.100 0.045
EVAR, 0.071 -0.153 0.083 -0.126 -0.183  -0.087
PE;, -0.086 0.177 -0.151  0.070 0.221 0.093
TY, -0.046 0.075 -0.029 -0.088  0.081 0.050
DEF, 0.152 -0.124 0.186 -0.157 -0.311  -0.147
VS, 0.022 -0.034 0.020 -0.076  -0.080 -0.097
scaled
rare  0.002 0.045 -0.004 0.009 0.007  -0.006
EV AR, 0.060 -0.102 0.073 -0.082 -0.120 -0.060
PE, -0.012 0.125 -0.077  0.027 0.109 0.027
TY, -0.036 0.067 -0.028 -0.058  0.073 0.039
DEF, 0.094 -0.083 0.123 -0.111 -0.218 -0.107
VS, 0.018 -0.031 0.009 -0.044 -0.066 -0.083
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Table 2: VAR Specification Test
The table reports the results of regressions forecasting the squared second-stage residuals
from the VAR estimated in Table 1 with EV AR;. Bootstrap standard errors that take into
account the uncertainty in generating £V AR are in parentheses. The sample period for the
dependent variables is 1926.3-2011.4, 342 quarterly data points.

Heteroskedastic Shocks

Squared, second-stage,
unscaled residual Constant EV AR, R*%

Y 0.003 1912  19.78%
(0.004]  [0.309]

EVAR, ., 0.000  0.004 5.86%
(0.000]  [0.001]

PE, 0.004  1.937 19.61%
[0.004]  [0.310]

TY 1 0.205  15.082 1.67%
(0.085]  [7.323]

DEF, 0.117 27841 26.12%
0.045]  [3.718]

VS 0.004 0472  547%
(0.002]  [0.138]
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Table 3: Cash-flow, Discount-rate, and Variance News for the Market Portfolio

The table shows the properties of cash-flow news (Ngr), discount-rate news (Npgr), and
volatility news (Ny ) implied by the VAR model of Table 1. The upper-left section of the table
shows the covariance matrix of the news terms. The upper-right section shows the correlation
matrix of the news terms with standard deviations on the diagonal. The lower-left section
shows the correlation of shocks to individual state variables with the news terms. The lower-
right section shows the functions (el’ +el’Apr, €1’Apg, €2'\y) that map the state-variable
shocks to cash-flow, discount-rate, and variance news. We define Apr = pI'(I — pI') ! and
Ay = p(I—pI')~1, where T is the estimated VAR transition matrix from Table 1 and p is set
to 0.95 per annum. 7, is the log real return on the CRSP value-weight index. RV AR is the
realized variance of within-quarter daily simple returns on the CRSP value-weight index. PFE
is the log ratio of the S&P 500’s price to the S&P 500’s ten-year moving average of earnings.
TY is the term yield spread in percentage points, measured as the difference between the
log yield on the ten-year US constant-maturity bond and the log yield on the three-month
US Treasury Bill. DEF is the default yield spread in percentage points, measured as the
difference between the log yield on Moody’s BAA bonds and the log yield on Moody’s AAA
bonds. V'S is the small-stock value-spread, the difference in the log book-to-market ratios of
small value and small growth stocks. Bootstrap standard errors that take into account the
uncertainty in generating E'V AR are in parentheses.

News cov. NCF NDR NV News COI‘I‘/Std NCF NDR NV
Ner 0.00213  -0.00042  -0.00026 Ner 0.046  -0.101 -0.221
(0.00075) (0.00108) (0.00028) (0.007) (0.228) (0.257)
Npr -0.00042  0.00823  -0.00021 Npr -0.101  0.091  -0.091
(0.00108) (0.00261) (0.00063) (0.228) (0.014) (0.363)
Ny -0.00026  -0.00021  0.00067 Ny -0.221  -0.091  0.026
(0.00028) (0.00063) (0.00029) (0.257) (0.363) (0.007)

Shock corr. Ncor Npr Ny Functions Ncr Npr Ny
rar shock 0.523 -0.901 -0.019 rar shock 0.924 -0.076  -0.013
(0.210) (0.036) (0.335) (0.030) (0.030) (0.016)
EV AR shock  -0.056 0.434 0.452 RV AR shock  -0.368 -0.368  1.289
(0.151) (0.113) (0.159) (1.068) (1.068) (0.553)
PE shock 0.180 -0.967 -0.090 PFE shock -0.856  -0.856  0.189
(0.239) (0.037) (0.357) (0.165) (0.165) (0.087)
TY shock 0.104 0.078 -0.113 TY shock 0.010 0.010  -0.004
(0.152) (0.108) (0.230) (0.013) (0.013) (0.007)
DEF shock -0.160 0.490 0.741 DEF shock -0.009 -0.009  0.078
(0.198) (0.121) (0.238) (0.037) (0.037) (0.020)
V'S shock -0.435 -0.179 0.566 VS shock -0.244 -0.244  0.103
(0.187) (0.139) (0.263) (0.128) (0.128) (0.065)
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Table 4: Forecasting Long-Horizon Realized Variance
The table reports the WLS parameter estimates of constrained regressions forecasting the annualized discounted sum of

40 40
future RV AR over the next 40 quarters (4 * Z p* VRV AR,/ Z p*=1)). The forecasting variables include the VAR
k=1 k=1

state variables defined in Table 1, the corresponding annualized long-horizon forecast implied from estimates of the VAR in
Table 1 (VARy) as well as FIGARCH (F1Gy) and two-factor EGARCH (EG49) models estimated from the full sample of
daily returns. rj; is the log real return on the CRSP value-weight index. RV AR is the realized variance of within-quarter
daily simple returns on the CRSP value-weight index. PFE is the log ratio of the S&P 500’s price to the S&P 500’s ten-year
moving average of earnings. TY is the term yield spread in percentage points, measured as the difference between the log
yield on the ten-year US constant-maturity bond and the log yield on the three-month US Treasury Bill. DEF is the default
yield spread in percentage points, measured as the difference between the log yield on Moody’s BAA bonds and the log yield
on Moody’s AAA bonds. V'S is the small-stock value-spread, the difference in the log book-to-market ratios of small value
and small growth stocks. PEO is PE orthogonalized to DEF and DEFQO is DEF orthogonalized to PE. Initial WLS
weights are inversely proportional to the corresponding F'I(G4 long-horizon forecast except in those regressions involving
V ARy or EGyy forecasts, where the corresponding VAR4 or EGy long-horizon forecast is used instead. Newey-West
standard errors estimated with lags corresponding to twice the number of overlapping observations are in square brackets.
The sample period for the dependent variable is 1930.1-2011.4.



40

40

Forecasting 10-year Realized Variance (4 Z P DRV AR/ Z ph=1)

h=1 k=1

Constant  ryy  RVAR  PE TY  DEF VS VARyg EGsy FIGyw PEO DEFO R%

1 -0.066 -0.008 0.095 0024 0000 0.013 0.001 56.67%
(0.017]  [0.005] [0.030] [0.005] [0.001] [0.002] [0.002]

2 -0.009 0.989 A47.69%
0.007] [0.256]

3 -0.067 1.458 40.01%
[0.006] [0.269]

4 -0.006 0.987 37.31%
[0.006] [0.177]

5 -0.106 -0.010 0.018  0.023 0.000 0011  0.001 0.792 58.96%
(0.021]  [0.005] [0.022] [0.004] [0.001] [0.002] [0.002] [0.250]

6 -0.075 -0.011 -0.023 0.023 0.000 0.010 -0.001 0.776 60.13%
[0.016]  [0.005] [0.021] [0.005] [0.001] [0.001] [0.001] [0.222]

7 -0.016 0.780 0.480 53.92%
[0.006] [0.243) [0.228]

8  -0.010 0.002 0.943 48.94%
[0.006] [0.003] [0.266)]

9 -0.006 0.009 -0.53%
(0.026) (0.009)

10 0.012 0.008 21.75%
(0.005) (0.004)

11 -0.052 0.025 29.36%
(0.014) (0.005)

12 0.002 0.018  50.60%
(0.003) (0.004)

13 -0.070 0.025 0.017 51.42%
(0.019) (0.006) (0.004)



Table 5: Cash-flow, Discount-rate, and Variance Betas in the Early Sample
The table shows the estimated cash-flow (5-p), discount-rate (8,5), and variance betas
(By) for the 25 ME- and BE/ME-sorted portfolios (Panel A) and six risk-sorted portfolios
(Panel B). “Growth” denotes the lowest BE/ME, “Value” the highest BE/ME, “Small” the
lowest ME, and "Large" the highest ME stocks. BAV AR and ETM are past return-loadings on
the weighted sum of changes in the VAR state variables, where the weights are according
to Ay as estimated in Table 3, and on the market-return shock. “Diff.” is the difference
between the extreme cells. Bootstrapped standard errors [in brackets| are conditional on the
estimated news series. Estimates are based on quarterly data for the 1931:3-1963:2 period
using weighted least squares where the weights are the same as those used to estimate the

VAR.
Panel A: 25 ME- and BE/ME-sorted portfolios

Beor Growth 2 3 4 Value Diff

Small 044 [0.13] 0.41 [0.11] 0.39 [0.10] 041 [0.10] 0.43 [0.10] -0.01 [0.06]
2 0.29 [0.07] 0.33 [0.09] 0.33 [0.08] 0.36 [0.08] 0.41 [0.10] 0.12 [0.04]
3 0.29 [0.08] 0.27 [0.08] 0.32 [0.09] 0.32 [0.08 0.44 [0.12] 0.15 [0.05]
4 0.25 [0.07] 0.26 [0.07] 0.30 [0.08] 0.33 [0.08] 0.43 [0.11] 0.18 [0.05]
Large 0.22 [0.07] 0.22 [0.07] 0.25 [0.08] 0.32 [0.10] 0.38 [0.29] 0.16 [0.04]
Diff  -0.22 [0.07] -0.19 [0.05] -0.14 [0.04] -0.09 [0.03] -0.05 [0.03]

Bpr Growth 2 3 4 Value Dift
Small 1.13 [0.15] 1.12 [0.16] 1.09 [0.17] 1.07 [0.16] 1.05 [0.16] -0.07 [0.07]
2 0.85 [0.11] 0.94 [0.14] 0.91 [0.14] 0.92 [0.16] 1.06 [0.13] 0.21 [0.08]
3 0.86 [0.13] 0.77 [0.09] 0.88 [0.11] 0.86 [0.11] 1.07 [0.15] 0.21 [0.09]
4 0.66 [0.07] 0.75 [0.10] 0.78 [0.09] 0.85 [0.14] 1.11 [0.16] 0.44 [0.13]
Large 0.67 [0.08] 0.63 [0.08) 0.69 [0.11] 0.89 [0.15] 0.89 [0.12] 0.22 [0.13]
Diff -0.45 [0.14] -049 [0.11] -0.41 [0.16] -0.18 [0.13] -0.17 [0.08]

By Growth 2 3 4 Value Dift
Small -0.08 [0.05] -0.09 [0.04] -0.10 [0.04] -0.09 [0.04] -0.10 [0.04] -0.02 [0.02]
2 -0.05 [0.03] -0.05 [0.03] -0.06 [0.03] -0.07 [0.03] -0.09 [0.04] -0.05 [0.02]
3 -0.05 [0.03] -0.03 [0.02] -0.05 [0.03] -0.06 [0.03] -0.10 [0.04] -0.05 [0.02]
4 -0.01 [0.02] -0.03 [0.02] -0.04 [0.03] -0.06 [0.04] -0.10 [0.05] -0.09 [0.03]
Large -0.01 [0.02] -0.02 [0.02] -0.05 [0.04] -0.08 [0.04] -0.07 [0.03] -0.06 [0.03]
Diff ~ 0.07 [0.04] 0.07 [0.02] 0.04 [0.02] 0.01 [0.02] 0.02 [0.02]
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Panel B: 6 risk-sorted portfolios

Bor Lo b,,, 2 Hib,,, Diff
Lo byar 022 [0.07] 033 [0.09] 043 [0.12] 0.21 [0.05]
Hibyar 0.18 [0.06] 0.26 [0.08] 0.36 [0.10] 0.17 [0.05]
Diff 0.04 [0.02] -0.07 [0.03] -0.08 [0.02]

Bpr Lo b,,, 2 Hib,,, Diff
Lobyar 061 [0.07] 0.87 [0.11] 1.09 [0.14] 0.48 [0.09]
Hibyar 055 [0.06] 0.76 [0.09] 0.95 [0.11] 0.40 [0.07]
Diff -0.07 [0.04] -0.12 [0.06] -0.14 [0.05]

By Lo b,,, 2 Hib,,, Diff

Lo byar -0.02 [0.02] -0.05 [0.03] -0.07 [0.04] -0.05 [0.02]
Hibyar -0.01 [0.02] -0.02 [0.02] -0.04 [0.03] -0.03 [0.02]
Diff 0.0l [0.0]] 0.03 [0.02] 0.03 [0.01]
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Table 6: Cash-flow, Discount-rate, and Variance Betas in the Modern Sample
The table shows the estimated cash-flow (5. ), discount-rate (5 ), and variance betas (3y,)
for the 25 ME- and BE/ME-sorted portfolios (Panel A), six risk-sorted portfolios (Panel B),
and the S&P 100 index straddle portfolio (STRADDLE), the Fama-French factors RM RF',
SM B, HM L, and the return on high yield (HY RET') and investment grade (/GRET') bonds
(Panel C). “Growth” denotes the lowest BE/ME, “Value” the highest BE/ME, “Small” the
lowest ME, and "Large" the highest ME stocks. ZAV AR and ZTM are past return-loadings on
the weighted sum of changes in the VAR state variables, where the weights are according
to Ay as estimated in Table 3, and on the market-return shock. “Diff.” is the difference
between the extreme cells. Bootstrapped standard errors [in brackets| are conditional on the
estimated news series. Estimates are based on quarterly data for the 1963:3-2011:4 period in
Panels A and B, the 1986:1-2011:4 period in Panel C, and the 1984:1-2010:1 period in Panel
D using weighted least squares where the weights are the same as those used to estimate the

VAR.
Panel A: 25 ME- and BE/ME-sorted portfolios

Beor Growth 2 3 4 Value Diff

Small 0.23 [0.06] 0.24 [0.05] 0.24 [0.04] 0.23 [0.04] 0.26 [0.05] 0.03 [0.03]
2 022 [0.05] 022 [0.04] 024 [0.04 024 [0.04] 026 [0.05] 0.04 [0.03]
3 0.20 [0.05] 0.22 [0.04] 0.22 [0.04] 0.23 [0.04] 0.24 [0.04] 0.05 [0.03]
4 0.19 [0.04] 0.21 [0.04] 0.22 [0.04] 0.22 [0.04] 0.24 [0.04] 0.05 [0.03]
Large 0.13 [0.03] 0.17 [0.03] 0.16 [0.03] 0.17 [0.03] 0.19 [0.04] 0.05 [0.03]
Diff  -0.10 [0.04] -0.07 [0.03] -0.08 [0.02] -0.06 [0.02] -0.07 [0.03]

Bpr Growth 2 3 4 Value Dift
Small 1.31 [0.10] 1.06 [0.08] 0.89 [0.07] 0.83 [0.07] 0.87 [0.09] -0.44 [0.08]
2 1.21 [0.09] 0.97 [0.07] 0.85 [0.06] 0.76 [0.07] 0.80 [0.08] -0.42 [0.08]
3 1.14 [0.07] 0.89 [0.05] 0.77 [0.06] 0.72 [0.06] 0.72 [0.07] -0.42 [0.08]
4 1.03 [0.06] 0.85 [0.05] 0.74 [0.06] 0.72 [0.06] 0.75 [0.07] -0.28 [0.08]
Large 0.84 [0.05] 0.71 [0.04] 0.60 [0.05] 0.59 [0.06] 0.64 [0.06] -0.20 [0.06]
Diff  -0.46 [0.10] -0.35 [0.08] -0.29 [0.06] -0.24 [0.07] -0.23 [0.08]

By Growth 2 3 4 Value Dift
Small 0.18 [0.07] 0.12 [0.06] 0.08 [0.06] 0.07 [0.05] 0.03 [0.07] -0.15 [0.03]
2 0.19 [0.07] 0.12 [0.06] 0.08 [0.05] 0.06 [0.06] 0.04 [0.06] -0.15 [0.03]
3 0.19 [0.06] 0.11 [0.05] 0.08 [0.05] 0.04 [0.06] 0.06 [0.04] -0.13 [0.03]
4 0.17 [0.06] 0.11 [0.05] 0.06 [0.06] 0.05 [0.06] 0.04 [0.06] -0.13 [0.03]
Large 0.13 [0.05] 0.10 [0.04] 0.06 [0.04] 0.04 [0.05] 0.04 [0.05] -0.09 [0.02]
Diff  -0.05 [0.03] -0.02 [0.03] -0.03 [0.02] -0.03 [0.02] 0.01 [0.03]
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Panel B: 6 risk-sorted portfolios

Beor Lo b,,, 2 Hi b,,, Diff

Lo byar 0.16 [0.03] 0.17 [0.03] 0.25 [0.05] 0.08 [0.04]

Hibyar 0.15 [0.02] 0.17 [0.04] 0.23 [0.05] 0.08 [0.04]

Diff -0.01 [0.02] 0.00 [0.02] -0.01 [0.02]

Bpr Lo b,,, 2 Hi b,,, Diff

Lo byar 0.55 [0.05] 0.71 [0.06] 1.11 [0.09] 0.56 [0.08]

Hibyar 0.73 [0.06] 0.95 [0.05] 1.27 [0.09] 0.54 [0.11]

Diff 0.18 [0.07] 0.24 [0.07] 0.16 [0.06]

By Lo b,,, 2 Hi b,,, Diff

Lo byar 0.06 [0.05] 0.08 [0.05] 0.12 [0.07] 0.07 [0.03]

Hibyar 0.11 [0.04] 0.16 [0.04] 0.18 [0.07] 0.07 [0.04]

Diff 0.05 [0.02] 0.08 [0.02] 0.06 [0.02]

Panel C: Option, equity, and bond portfolios
STRADDLE RMRF SMB HML HY RET IGRET
Ber -0.39  [0.27] 0.18 [0.05] 0.04 [0.02] 0.05 [0.03] 0.06 [0.02] 0.00 [0.01]
Bpr -1.71 [0.47] 0.81 [0.06] 0.19 [0.05] -0.25 [0.09] 0.26 [0.07] 0.03 [0.03]
By 038 [0.21] -0.00 [0.07] -0.00 [0.02] -0.12 [0.03] -0.05 [0.05] 0.01 [0.01]
Panel D: Currency portfolios
Low r* 2 3 4 High r* Diff

Ber 0.00 [0.02] -0.03 [0.02] 0.00 [0.02] 0.02 [0.02] 0.02 [0.02] 0.02 [0.02]
Bpr -0.16 [0.08] -0.08 [0.10] -0.09 [0.07] 0.01 [0.08] -0.01 [0.08] 0.15 [0.09]
By 0.01 [0.03] -0.04 [0.04] -0.03 [0.02] -0.02 [0.03] -0.05 [0.04] -0.07 [0.06]
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Table 7: Asset Pricing Tests for the Early Sample
The table shows the premia estimated from the 1931:3-1963:2 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the pp premium is restricted, and an unrestricted factor model. The test assets are the

25 ME- and BE/ME-sorted portfolios. The first column per model constrains the zero-beta rate (RR,5) to equal the risk-free rate
(R, f) while the second column allows R,; to be a free parameter. Estimates are from a cross-sectional regression of average simple

excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (8,p), discount-rate (8 p), and variance

betas (/). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate full estimation

uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted
R.; less Ry (go) 0 -0.002 0 0.001 0 0.002 0 0.015 0 0.023
% per annum 0% -0.90% 0% 0.21% 0% 0.86% 0% 6.08% 0% 8.98%
Std. err. A 0 [0.016] 0  [0014] 0 [0.011] 0 [0.018] 0 [0.022]
Std. err. B 0 (0.016) 0 (0.016) 0 (0.014) 0 (0.017) 0 (0.020)
Bep premium (g;) 0.038 0.040 0.096 0.094 0.086 0.081 0.081 0.009 0.075 0.057
% per annum 15.11% 15.82% 38.33% 37.74% 34.30% 32.52%  32.48%  3.67%  29.88%  22.69%
Std. err. A [0.015] [0.024] [0.054] [0.079] [0.038]  [0.048]  [0.062]  [0.106]  [0.125] [0.129]
Std. err. B (0.015) (0.024) (0.142) (0.111) (0.072) (0.082) (0.101) (0.118) (0.129)  (0.139)
Bpgr premium (gs) 0.038 0.040 0.016 0.016 0.016 0.016 0.016 0.016 0.018 -0.012
% per annum 15.11% 15.82% 6.40% 6.40%  6.40% 6.40% 6.40% 6.40% 7.28% -4.78%
Std. err. A 0.015] [0.024] [0.004] [0.004] [0.004] [0.004] [0.004] [0.004] [0.050]  [0.064]
Std. err. B (0.015) (0.024) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.075)  (0.089)
By e premium (gs) 0.053  -0.045 0077 -0.227 -0.080  -0.258
% per annum 21.27%  -17.97% -30.67% -90.62% -31.96% -103.04%
Std. err. A [0.048]  [0.061] [0.186] [0.237]  [0.210] [0.304]
Std. err. B (0.146)  (0.146) (0.549) (0.558) (0.684)  (0.782)
R? 53.01% 53.12% 54.72% 54.73% 55.65% 55.83%  55.74% 57.94%  55.75% 58.87%
Pricing error 0.024 0.023 0.022 0.022 0.020 0.021 0.020 0.022 0.020 0.023
5% critic. val. A [0.062] [0.031] [0.058] [0.038] [0.065] [0.044] [0.043] [0.038] [0.037]  [0.038]
5% critic. val. B (0.062) (0.031) (0.097) (0.046) (0.179) (0.052) (0.049) (0.040) (0.037)  (0.042)
Implied ~ N/A N/A 6.0 5.9 5.4 5.1 N/A N/A N/A N/A
Implied w N/A N/A N/A N/A 6.7 5.6 N/A N/A N/A N/A



Table 8: Asset Pricing Tests for the Modern Sample
The table shows the premia estimated from the 1963:3-2011:4 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the pp premium is restricted, and an unrestricted factor model. The test assets are the
25 ME- and BE/ME-sorted portfolios. The first column per model constrains the zero-beta rate (RR,5) to equal the risk-free rate

(R, f) while the second column allows 2, to be a free parameter. Estimates are from a cross-sectional regression of average simple

excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (8,p), discount-rate (8 p), and variance

betas (/). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate full estimation

uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted

R.; less Ry (go) 0 0.027 0 -0.019 0 0.011 0 -0.004 0 -0.005
% per annum 0% 10.62% 0% -7.71% 0% 4.50% 0% -1.66% 0% -2.00%
Std. err. A 0  [0.014 0  [0.013 0 0.012] 0 0013) 0 [0.013]
Std. err. B 0 (0.014) 0 (0.019) 0 (0.015) 0 (0.015) 0 (0.015)
Bep premium (g;) 0.020 -0.004 0.074 0.161 0.047 0.054 0.112 0.128 0.175 0.199
% per annum 798% -1.67% 29.41% 64.39% 18.78%  21.49% 44.65% 51.35% 70.18% 79.55%
Std. err. A [0.010]  [0.019] [0.047] [0.070] [0.024] [0.013]  [0.050] [0.071] [0.070] [0.084]
Std. err. B (0.010) (0.019) (0.087) (0.113) (0.040)  (0.053) (0.114) (0.116) (0.124) (0.126)
Bpgr premium (gs) 0.020  -0.004  0.008 0.008 0.008 0.008 0.008 0.008 -0.018  -0.020
% per annum 7.98% -1.67% 3.11% 3.11% 3.11% 3.11% 3.11% 3.11%  -7.30% -7.83%
Std. err. A 0.010] [0.019] [0.002] [0.002] [0.002]  [0.002] [0.002] [0.002] [0.023] [0.025]
Std. err. B (0.010) (0.019) (0.002) (0.002) (0.002)  (0.002) (0.002) (0.002) (0.054) (0.055)
By ag premium (gs) 0.039  -0.081 -0.094 -0.089 -0.002 0.009
% per annum -15.51%  -32.47% -37.65% -35.60% -0.72%  3.62%
Std. err. A [0.039] [0.024]  [0.063] [0.069] [0.092] [0.094]
Std. err. B (0.091)  (0.151) (0.356) (0.349) (0.399) (0.387)
R 36.51% 5.22% 25.10% 39.97% -108.63% 62.74% 73.90% 74.45% 76.46% 77.25%
Pricing error 0.110 0.107 0.058 0.042 0.210 0.042 0.027 0.025 0.026 0.023
5% critic. val. A [0.050] [0.034] [0.061] [0.056] [0.503]  [0.101]  [0.051] [0.037] [0.046] [0.031]
5% critic. val. B (0.049) (0.033) (0.096) (0.083) (0.492)  (0.119) (0.104) (0.078) (0.065) (0.049)
Implied ~ N/A N/A 9.5 20.7 6.0 6.9 N/A N/A N/A N/A

Implied w N/A N/A N/A N/A 10.0 20.9 N/A N/A N/A N/A



Table 9: Asset Pricing Tests for the Modern Sample: Inclusion of Risk-sorted Portfolios
The table shows the premia estimated from the 1963:3-2011:4 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the 8pp premium is restricted, and an unrestricted factor model. The test assets are six ME-
and BE/ME-sorted portfolios and six risk-sorted portfolios. The first column per model constrains the zero-beta rate (R.;) to equal
the risk-free rate (R, f) while the second column allows . to be a free parameter. Estimates are from a cross-sectional regression of

average simple excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (8., discount-rate (Bpp),

and variance betas (y,). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate
full estimation uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted
R.; less Ry (go) 0 0.017 0 -0.004 0 0.009 0 0.005 0 0.006
% per annum 0% 6.60% 0% -1.74% 0% 3.50% 0% 2.00% 0% 2.26%
Std. err. A 0 [0.009] 0O [0.011] 0 0.011] 0 [0.010] 0 [0.011]
Std. err. B 0 (0.009) 0 (0.013) 0 (0.011) 0 (0.012) 0 (0.011)
Bep premium (g;) 0.016 0.001 0.057 0.078 0.047 0.054 0.111 0.090 0.136 0.074
% per annum 6.26%  0.44% 22.63% 31.12% 18.64% 21.49% 44.55% 36.07% 54.41%  29.63%
Std. err. A [0.009] [0.014] [0.049] [0.071]  [0.026]  [0.022] [0.055] [0.073] [0.109]  [0.124]
Std. err. B (0.009) (0.014) (0.080) (0.102) (0.040) (0.050) (0.125) (0.132) (0.154) (0.159)
Bpgr premium (gs) 0.016 0.001 0.008 0.008 0.008 0.008 0.008 0.008 -0.001 0.013
% per annum 6.26%  0.44%  3.11% 3.11% 3.11% 3.11% 3.11% 3.11%  -0.58%  5.10%
Std. err. A 0.009] [0.014] [0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.036]  [0.037]
Std. err. B (0.009) (0.014) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.061) (0.059)
By e premium (gs) 0.038 -0.081 -0.108 -0.114 0076  -0.132
% per annum -15.08% -32.47% -43.08% -45.57% -30.43% -52.72%
Std. err. A [0.039] [0.034] [0.065] [0.066] [0.142]  [0.146]
Std. err. B (0.088)  (0.131) (0.367) (0.367) (0.435) (0.430)
R? -19.85% 8.49% 16.45% 17.89% -10.28% 68.23%  74.97%  76.43% 74.67% 76.37%
characteristics -4.98% 15.02% 28.30% 32.35% 12.32% 68.27% 76.80% T77.18%  76.90% 77.21%
risk-sorted -48.82% 10.69% -11.29% -23.53% -82.01% 80.25% 75.35% 81.72% 73.13% 81.24%
Pricing error 0.050 0.041 0.032 0.032 0.058 0.016 0.016 0.016 0.016 0.015
5% critic. val. A [0.035] [0.022] [0.041] [0.029] [0.250]  [0.074]  [0.037]  [0.023] [0.031]  [0.016]
5% critic. val. B (0.035) (0.022) (0.049) (0.028) (0.235) (0.077) (0.060) (0.044) (0.040) (0.023)
Tmplied N/A  N/A 7.3 10.0 6.0 6.9 N/A  N/A  N/A  N/A
Implied w N/A N/A N/A N/A 9.7 20.9 N/A N/A N/A N/A



Table 10: Asset Pricing Tests for the Equity and Option Sample

The table shows the premia estimated from the 1986:1-2011:4 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the 3, premium is restricted, and an unrestricted factor model. The test assets are the three

equity factors of Fama and French (1993), the returns on high yield and investment grade bond portfolios, and the S&P 100 index
straddle return from Coval and Shumway (2001). The first column per model constrains the zero-beta rate ([2.;) to equal the

risk-free rate (IR, ;) while the second column allows [2; to be a free parameter. Estimates are from a cross-sectional regression of

average simple excess test-asset returns (quarterly in fractions) on an intercept and estimated cash-flow (8, p), discount-rate (Bp5),

and variance betas (fy/). Standard errors and critical values [A] are conditional on the estimated news series and (B) incorporate

full estimation uncertainty of the news terms. The test rejects if the pricing error is higher than the listed 5 percent critical value.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted
R, less Ry (go) 0 -0.019 0 20.024 0 20.025 0 20.016 0 20.004
% per annum 0% -7.64% 0% -9.58% 0% -10.06% 0% -6.45% 0% -1.54%
Std. err. A 0 [0.009] 0 [0.023] 0 [0.009] 0 [0.017] 0 [0.013]
Std. err. B 0 (0.009) 0 (0.017) 0 (0.010) 0 (0.012) 0 (0.013)
Bep premium (g;) 0.089 0.086 0.455 0.447 0.055 0.055 0.143 0.209 -0.516 -0.410
% per annum 35.49% 34.49% 181.86% 178.60% 22.11% 22.11%  57.38% 83.39%  -206.38% -164.08%
Std. err. A [0.025] [0.026]  [0.348] [0.435] [0.014]  [0.013] [0.323] [0.358] [0.444] [0.505]
Std. err. B (0.026) (0.027) (0.383)  (0.414) (0.041) (0.040)  (0.306) (0.331) (0.523) (0.666)
Bpgr premium (gs) 0.089 0.086 0.008 0.008 0.008 0.008 0.008 0.008 0.129 0.112
% per annum 35.49% 34.49%  3.20% 3.20% 3.20% 3.20% 3.20% 3.20% 51.42% 44.82%
Std. err. A 0.025] [0.026] [0.001] [0.001] [0.001] [0.001]  [0.001]  [0.001]  [0.124]  [0.133]
Std. err. B (0.026) (0.027) (0.001) (0.001) (0.001) (0.001)  (0.001) (0.001) (0.190) (0.248)
By are premium (gs) 0.084 -0.084 -0376 0291  -0.538  -0.496
% per annum -33.39% -33.39% -150.49% -116.38% -215.25% -198.25%
Std. err. A [0.023]  [0.022] [0.323] [0.267] [0.529] [0.571]
Std. err. B (0.162)  (0.159)  (0.646)  (0.657)  (L.100)  (1.411)
R? 85.78% 89.63% 87.66%  93.79% 54.12%  60.90% 95.36% 97.74% 99.02% 99.09%
Pricing error 1.167 1.721 1.003 1.633 0.264 2.414 0.814 1.110 0.378 0.459
5% critic. val. A [0.798] [1.019] [2.519] [5.166] [0.328]  [0.745] [2.386] [3.792] [1.118] [1.037]
5% critic. val. B (0.784) (1.011) (2.629)  (3.994) (0.286) (0.566)  (1.409)  (1.149)  (1.177)  (1.043)
Tmplied ~ N/A N/A 569 55.8 6.9 6.9 N/A N/A N/A N/A
Implied w N/A N/A N/A N/A 20.9 20.9 N/A N/A N/A N/A



Table 11: Asset Pricing Tests for the Currency Sample

The table shows the premia estimated from the 1984:1-2010:1 sample for the CAPM, the 2-beta ICAPM, the 3-beta volatility
ICAPM, a factor model where only the Spp premium is restricted, and an unrestricted factor model. The test assets are five
interest-rate-sorted currency portfolios from developed countries of Lustig, Roussanov, and Verdelhan (2011). The first column per
model constrains the zero-beta rate (1,5) to equal the risk-free rate ([2, ) while the second column allows .4 to be a free parameter.
Estimates are from a Cross- sectional regressmn of average simple excess test-asset returns (quarterly in fractions) on an intercept and
estimated cash-flow (ﬁc ), discount-rate (ﬁ pr)s and variance betas (BV) Standard errors and critical values [A] are conditional on
the estimated news series and (B) incorporate full estimation uncertainty of the news terms. The test rejects if the pricing error is
higher than the listed 5 percent critical value.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted
R less Ry (go) 0 0.007 0 0.006 0 0.004 0 0.004 0 -0.001
% per annum 0% 2.76% 0% 2.29% 0% 1.42% 0% 1.41% 0% -0.22%
Std. err. A 0 [0.005] 0 [0.005] 0 [0.005] 0 [0.007] 0 [0.016]
Std. err. B 0 (0.005) 0 (0.005) 0 (0.005) 0 (0.007) 0 (0.014)
Bep premium (g;) -0.019 0.031 0.041 0.108 0.052 0.052 0.079 0.102 0.167 0.174
% per annum S157%  12.30%  16.36% 43.24%  20.72%  20.72%  31.41%  40.65% 66.62%  69.61%
Std. err. A [0.036] [0.021] [0.207] [0.097]  [0.021] [0.019] [0.174] [0.119] [0.225] [0.813]
Std. err. B (0.036) (0.022) (0.166)  (0.082) (0.046) (0.037) (0.191) (0.133) (0.210) (0.300)
Bpgr premium (gs) -0.019 0.031 0.008 0.008 0.008 0.008 0.008 0.008 -0.027 -0.032
% per annum S757%  12.30%  3.00% 3.00%  3.00% 3.00% 3.00% 3.00% -10.95% -12.72%
Std. err. A [0.036] [0.021] [0.001] [0.001]  [0.001] [0.001] [0.001] [0.001] [0.088] [0.193]
Std. err. B (0.036) (0.022) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.100) (0.155)
By ar premium (gs) -0.078 -0.078 -0.167 -0.086 -0.150 -0.160
% per annum -31.31% -31.31% -66.75% -34.28% -59.81% -64.09%
Std. err. A [0.034] [0.031] [0.282] [0.239] [0.360] [0.601]
Std. err. B (0.121)  (0.093) (0.463) (0.402) (0.620) (0.801)
R? -161.43% 59.39% -213.31% 59.43% -28.05% 81.49%  44.85% 87.36%  99.70%  99.90%
Pricing error 0.053 0.008 0.063 0.008 0.025 0.004 0.010 0.003 0.000 0.000
5% critic. val. A [0.100] [0.022] [0.125] [0.027]  [0.13§] [0.029] [0.100] [0.021] [0.055] [0.013]
5% critic. val. B (0.098) (0.022) (0.116) (0.025) (0.172) (0.028) (0.120) (0.019) (0.060) (0.013)
Implied v N/A N/A 5.5 14.4 6.9 6.9 N/A N/A N/A N/A

Implied w N/A N/A N/A N/A 20.9 20.9 N/A N/A N/A N/A



Table 12: Robustness

The table provides a variety of robustness tests. When appropriate, the baseline model
appears in bold font. Panel A reports the results when only a subset of state variables from
the baseline VAR (D = DEF, T =TFERM,V =VS, P = PFE) are used to forecast returns
and realized variance. Panel B reports the results when different estimation techniques are
used. Panel C reports results as we change the estimate of realized variance. Panel D
reports the results when other state variables either replace or are added to the VAR. These
variables include the log real PE ratio (PEReq), the log price-dividend ratio (PD), log
inflation (INFL), CAY, and the quarterly FIGARCH variance forecast. Panel E reports
results when the excess zero-beta rate is varied from 40 to 86 basis points per quarter. Panel F
reports the components of RM RF and HM L’s BV by re-estimating B v using each component
of €2'\y,. Panel F also reports simple loadings of RM RF and HM L on RV AR and the 15-
year F'IGARC H variance forecast. Panel G reports time-series regressions explaining H M L
with the three news terms described in Table 3.
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Panel A: Results Using Various Subsets of the Baseline VAR (r); and RV AR always included)

None D D/T/V  ALL P/D/V P/D P
Mz 4.5 3.2 3.1 6.9 6.7 8.9 14.9

Early Period

By
RMRF -0.03 -0.23 -0.20 -0.03 -0.03 -0.02 0.08
SMB -0.01 -0.08 -0.07 -0.02 -0.02 -0.02 0.03
HML 0.00 -0.12 -0.14 -0.06 -0.06 -0.04 0.06
Risk-free Rate ICAPM
~ 2.1 2.3 2.4 5.4 5.4 5.5 8.1
w 2.0 2.5 3.2 6.7 6.9 5.3 12.3
R? 51.35% 51.63% 53.78%  55.65% 55.63%  52.14% 42.27%
Zero-beta Rate ICAPM
}Aizb less Ry -0.08% -0.20% -0.10% 0.21% 0.22% -0.10% 0.78%
~ 2.2 2.3 2.5 5.1 5.1 5.7 5.3
W 2.1 2.8 3.4 5.6 5.8 5.7 4.4
R? 51.36% 51.72% 53.81% 55.83% 55.82%  52.17% 44.61%
Modern Period
By
RMRF -0.11 -0.15 -0.07 0.10 0.11 0.07 0.00
SMB -0.03 -0.05 -0.03 0.02 0.03 0.01 0.00
HML 0.00 -0.01 -0.10 -0.11 -0.11 -0.05 -0.02
Risk-free Rate ICAPM
~ 2.3 2.3 2.6 6.0 5.6 8.6 6.15
w 3.0 2.9 4.7 10.0 8.3 21.6 6.34
R? -37.26%  -37.15%  1.711% -108.63% -136.46% -27.78% -43.34%
Zero-beta Rate ICAPM
ﬁzb less Ry 2.12% 2.09%  -0.70% 1.12% 1.22% 0.45% 1.60%
~ 0.0 0.0 3.1 6.9 6.7 8.9 0.0
w 1.3 1.1 12.6 20.9 19.4 28.3 0.2
R? 5.04% 6.72%  21.89%  62.74% 57.42% 3.38% -0.48%
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Panel B: Results Using Different Estimation Methods

All OLS WLS WLS WLS RVAR Partial
OLS Betas 3 5 8 Weighted VAR
Mo 1.5 6.9 7.0 6.9 6.7 5.8 4.1
Early Period
By
RMRF -0.08 -0.06 -0.05 -0.03 -0.01 -0.02 0.00
SMB -0.03 -0.03 -0.02 -0.02 -0.02 -0.02 -0.02
HML -0.08 -0.07 -0.07 -0.06 -0.05 -0.05 -0.06
Risk-free Rate ICAPM
~y 1.5 4.6 5.1 5.4 5.7 5.4 4.1
w 4.7 4.2 5.7 6.7 8.4 8.4 10.6
R? -178.32% 55.23%  54.95%  55.65% 56.50% 56.47% 19.70%
Zero-beta Rate ICAPM
]3% less Ry 1.85% 0.29% 0.27% 0.21% 0.17% 0.16% 0.80%
~ 1.5 4.3 4.8 5.1 5.5 5.2 4.1
w 4.7 3.3 4.7 5.6 7.3 7.2 9.6
R? 47.74%  55.51% 55.22%  55.83% 56.64% 56.59% 58.27%
Modern Period
By
RMRF 0.07 0.07 0.09 0.10 0.12 0.09 0.17
SMB 0.02 0.02 0.02 0.02 0.02 0.02 0.04
HML -0.09 -0.09 -0.10 -0.11 -0.11 -0.13 -0.13
Risk-free Rate ICAPM
~ 1.4 6.5 6.3 6.0 5.6 5.6 2.4
w 1.4 13.2 12.1 10.0 7.9 9.8 0.9
R? -356.06% -76.45% -81.60% -108.63% -144.04% -95.09% -337.38%
Zero-beta Rate ICAPM
ﬁzb less Ry 1.41% 0.91% 0.99% 1.12% 1.27% 0.91% 1.88%
~ 1.5 6.9 7.0 6.9 6.7 5.8 4.1
w 4.7 20.9 21.8 20.9 19.3 13.7 10.6
R? 12.56%  58.22% 62.57%  62.74% 61.71% 55.28% 51.83%
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Panel C: Results Using Different Measures of Realized Variance

Quarterly ~ Annual Quarterly Quarterly Annual Annual
Var Daily Var Daily Var Monthly Sum Monthly Var Monthly Sum Monthly

FMaz 6.9 5.8 5.1 5.1 6.2 5.5

Early Period

By
RMRF -0.03 0.21 -0.18 -0.24 0.12 0.19
SMB -0.02 0.07 -0.08 -0.07 0.04 0.05
HML -0.06 0.06 -0.14 -0.15 0.00 0.10
Risk-free Rate ICAPM
o 5.4 3.7 4.0 4.2 5.5 4.6
o 6.7 2.0 3.5 3.1 6.9 3.4
R? 55.65%  -991.53% 56.95% 53.85% -781.40% _887.87%
Zero-beta Rate ICAPM
R.less Ry 0.21% 3.68% 0.11% 0.19% 3.31% 3.51%
o 5.1 1.5 3.9 4.1 3.7 2.7
o 5.6 0.1 3.3 2.7 1.8 0.5
R? 55.83%  16.70% 56.99% 53.96% 18.74% 17.89%
Modern Period
By
RMRF 0.10 0.12 0.03 -0.01 0.09 0.10
SMB 0.02 -0.02 -0.01 -0.03 -0.03 -0.06
HML -0.11 -0.06 -0.12 -0.14 -0.05 -0.06
Risk-free Rate ICAPM
o 6.0 4.5 5.1 5.1 5.6 5.3
o 10.0 3.9 11.6 8.7 7.1 6.1
R? -108.63% -361.48%  -27.69% 2.44% -235.53% -229.17%
Zero-beta Rate ICAPM
R, less Ry 1.12% 1.83% 0.66% 0.49% 1.45% 1.35%
o 6.9 5.8 5.1 5.1 6.2 5.5
o 20.9 13.4 11.6 8.7 14.0 9.0
R? 62.74%  62.14% 56.63% 49.08% 58.73% 54.49%
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Panel D: Results Replacing/Adding Other State Variables to the VAR

PE PFERea PD INFL CAY FIGARCH
Mo 6.9 8.8 4.5 9.0 14.7 5.4
Early Period
By

RMRF -0.03 0.01 -0.12 0.02 0.06 -0.03
SMB -0.02 -0.01 -0.05 -0.01 0.01 -0.02
HML -0.06 -0.04 -0.10 -0.03 0.00 -0.03

Risk-free Rate ICAPM
~ 5.4 5.4 3.1 5.8 12.4 5.0
W 6.7 4.3 2.9 5.1 26.8 8.0
R? 55.65%  55.89% 57.77% 55.98% -1228.81% 56.57%

Zero-beta Rate ICAPM
Ry less Ry 0.21%  -017% -0.15% -0.23%  2.19% 0.10%
~ 5.1 5.7 3.2 6.2 14.7 4.9
W 5.6 4.9 3.2 6.0 56.6 7.3
R? 55.83%  55.97% 57.83% 56.13% = 23.45% 56.60%

Modern Period
By

RMRF 0.10 0.12 -0.01 0.13 0.06 0.09
SMB 0.02 0.03 -0.01 0.03 0.02 0.03
HML -0.11 -0.08 -0.09 -0.08 -0.05 -0.07

Risk-free Rate ICAPM
~ 6.0 8.0 4.1 8.0 14.5 4.6
W 10.0 13.4 8.3 12.8 48.3 5.7
R? -108.63% -32.02% 2.59% -38.01%  17.06% -183.16%

Zero-beta Rate ICAPM
Rupless Ry 1.12%  0.72% -0.36% 0.81%  0.35% 1.21%
~ 6.9 8.8 4.5 9.0 14.7 5.4
w 20.9 22.8 15.9 234 56.6 13.5
R? 62.74%  26.08% 20.12% 31.92%  35.16% 41.44%
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Panel E: Varying p and the Excess Zero-beta Rate in the Modern Period

p =0.94
Ry less Ry 0.40%  0.50%  0.60% 0.70%  0.80% 0.91%
~ 6.7 6.8 6.9 7.0 7.0 7.1
w 15.3 16.5 18.0 19.9 22.1 22.7
R 32.51%  44.22% 52.83% 58.84% 62.78%  64.21%

Pricing error  0.062 0.051 0.044 0.039 0.038 0.038

p =0.95
Ry less Ry 0.40%  0.50%  0.60% 0.70% 0.80%  1.12%
~ 6.3 6.3 6.5 6.6 6.7 6.9
W 11.4 12.1 13.0 14.3 15.8 20.9
R 0.48%  18.27% 32.50% 43.46% 51.54% 62.74%

Pricing error  0.094 0.076 0.062 0.052 0.046 0.042

p = 0.96
R less Ry 040%  0.50% 0.60% 0.70% 0.80%  1.35%
3 5.7 5.8 5.9 6.0 6.1 6.7
" 8.1 8.5 9.0 9.8 10.8 19.1
R 42.66% -18.68% 1.56% 18.21% 31.48%  60.67%

Pricing error ~ 0.138 0.113 0.092 0.076 0.063 0.046
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Panel F: Components of and Proxies for Bv

Early Period

RMRF HML

WLS OLS ~WLS OLS
By -0.03 -0.06  -0.06 -0.07
@W Shock 0.00 0.00  0.00 0.00
Bxopvar swow 006 -0.05  -0.02 -0.03
Bt iz Shock 014 0.4 006 0.8
BALTY Shock 0.00 000  0.00 0.00
Bt DEF Shock 013 -0.13  -0.09 -0.09
BAG VS Shock 0.02 -0.02  -0.02 -0.03
Bryar -0.01 1.50
BricircH 0.02 0.04

Modern Period

RMRF HML

WLS OLS WLS OLS
By 0.10 0.07  -0.11 -0.09
@WM Shock 0.00 0.00  0.00 0.00
Bxpvan sho 008 =007 -0.01 -0.01
Bt P Sthock 014 0.14  -0.02 -0.02
BALTY Shock 0.00 000  0.00 0.00
B5,DEF Shoch 0.02 -0.02  -0.02 -0.01
BAG VS Shock 0.03 003  -0.05 -0.05
Bryan -3.31 -0.51
BFIGARCH -0.08 -0.01
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Panel G: Time-series Regressions explaining H M L

Early Period

(1) (2)
Intercept 0.01  1.30 0.01 1.99
Ner 0.39 3.78
—Npr 0.40 6.69
Ny -2.00 -6.61 -1.31 -5.02
R? 25.14% 50.91%
Modern Period
0 @)
Intercept 0.01  2.30 0.01 2.54
Nor 0.25 2.27
—Npr -0.24 -4.69
Ny -0.99 -7.09 -0.66 -4.46
R? 20.33% 28.45%
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Figure 1: This figure graphs the relation between the parameter v and the parameter w
described by equation (23). These functions depend on the loglinearization parameter p,
set to 0.95 per year and the empirically estimated VAR parameters of Table 1. ~ is the
investor’s risk aversion while w is the sensitivity of news about risk, Ng;sk, to news about
market variance, Ny .
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Figure 2: This figure plots quarterly observations of realized within-quarter daily return
variance over the sample period 1926:2-2011:4 and the expected variance implied by the
model estimated in Table 1 Panel A.
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Figure 3: This figure plots normalized cash-flow news, the negative of normalized discount-
rate news, and normalized variance news. The series are smoothed with a trailing
exponentially-weighted moving average where the decay parameter is set to 0.08 per quarter,
and the smoothed news series is generated as M A;(N) = 0.08N;+(1—0.08) M A;_1(N). This
decay parameter implies a half-life of six years. The sample period is 1926:2-2011:4.
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Figure 4: We measure long-horizon realized variance (LH RV AR) as the annualized dis-
43! pI T RV ARy
S . Each
panel of this figure plots quarterly observations of ten-year realized variance, LH RV ARy,
over the sample period 1930:1-2001:1. In Panel A, in addition to LH RV ARy, we also plot
lagged PE and DEF'. In Panel B, in addition to LH RV AR, we also plot the fitted value
from a regression forecasting LH RV ARy with DEFO, defined as DEF orthogonalized to

demeaned PFE. Table 4 Panel B reports the WLS estimates of this forecasting regression.

counted sum of within-quarter daily return variance, LH RV AR), =
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Figure 5: The top left portion of the figure plots the market return against RV AR. The top
right portion of the figure plots the market return against volatility news, Ny,. The bottom
left of the figure plots PE against DEFO (DEF orthogonalized to PE). The bottom right
of the figure plots market returns against the contemporaneous change in DEF O, our simple
proxy for news about long-horizon variance. In all four subplots, observations from the early
period as denoted with blue triangles while observations from the modern period data are
denoted with red asterisks.
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Figure 6: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPM with a free zero-beta rate, and the three-factor ICAPM with the zero-beta rate
constrained to the risk-freee rate. The horizontal axes correspond to the predicted average
excess returns and the vertical axes to the sample average realized excess returns for the 25
ME- and BE/ME-sorted portfolios. The predicted values are from regressions presented in
Table 7 for the sample period 1931:3-1963:2.
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Figure 7: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPM with a free zero-beta rate, and the three-factor ICAPM with the zero-beta rate
constrained to the risk-freee rate. The horizontal axes correspond to the predicted average
excess returns and the vertical axes to the sample average realized excess returns for the 25
ME- and BE/ME-sorted portfolios. The predicted values are from regressions presented in
Table 8 for the sample period 1963:3-2011:4.
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Figure 8: The two contour plots show how the R? of the cross-sectional regression explaining
the average returns on the 25 size- and book-to-market portfolios varies for different values
of v and w for the risk-free rate (top panel) and zero-beta rate (bottom panel) three-beta
ICAPM model estimated in Table 8 for the sample period 1963:3-2011:4. The two plots also
indicate the ICAPM relation between v and w described in equation (23).
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Figure 9: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPM with a free zero-beta rate, and the three-factor ICAPM with the zero-beta
The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess returns for
six ME- and BE/ME-sorted portfolios (denoted by triangles) and six risk-sorted portfolios
(denoted by asterisks). The predicted values are from regressions presented in Table 9 for
the sample period 1963:3-2011:4.

rate constrained to the risk-freee rate.
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Figure 10: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPM with a free zero-beta rate, and the three-factor ICAPM with the zero-beta
rate constrained to the risk-freee rate. The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess returns
for the the three equity factors of Fama and French (1993), the returns on high yield and
investment grade bond portfolios, and the S&P 100 index straddle return from Coval and
Shumway (2001). The predicted values are from regressions presented in Table 10 for the
sample period 1986:1-2011:4.
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Figure 11: The four diagrams correspond to (clockwise from the top left) the CAPM with
a constrained zero-beta rate, the CAPM with an unconstrained zero-beta rate, the three-
factor ICAPM with a free zero-beta rate, and the three-factor ICAPM with the zero-beta
rate constrained to the risk-freee rate. The horizontal axes correspond to the predicted
average excess returns and the vertical axes to the sample average realized excess returns for
the 5 interest-rate-sorted, developed-countries currency portfolios from Lustig, Roussanov,
and Verdelhan (2010). The predicted values are from regressions presented in Table 11 for
the sample period 1984:1-2010:1.
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Figure 12: This figure plots the time-series of the smoothed combined shock for the CAPM
(Ner—Npr), the two-beta ICAPM (yNor— Npr), and the three-beta ICAPM that includes
stochastic volatility (YNer—Npr— %wNV) for the unconstrained zero-beta rate specifications
estimated in Table 8 for the modern subperiod. The shock is smoothed with a trailing
exponentially-weighted moving average. The decay parameter is set to 0.08 per quarter, and
the smoothed news series is generated as M A,(SDF) = 0.08SDF; + (1 — 0.08)M A;—1(N).
This decay parameter implies a half-life of six years. The sample period is 1926:2-2011:4.
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