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1 Introduction

Program evaluation is a fundamental part of empirical work in economics. Evaluations are used

to make a policy decision: should a program be implemented or not? In some cases, evaluations

are carried out in the full target population of policy interest, or in a randomly-selected subset

thereof. In most cases, however, an evaluation is performed at some sample site, and the results

are generalized to make an implementation decision in a di¤erent and often larger set of target

sites. This raises the question of "external validity": how well does a parameter estimate generalize

across sites?

When generalizing empirical results, we often implicitly or explicitly make one of two assump-

tions. First, if extrapolating from one sample site to one di¤erent target, we might assume that

the site-speci�c treatment e¤ect heterogeneity is small enough that the results can be meaningfully

generalized. However, in some contexts, this assumption is unrealistically strong, meaning that it

is important to replicate in additional sites. After enough replications, we might make a second

assumption: that the distribution of treatment e¤ects in the sample sites is a reasonable predictor

of the distribution of e¤ects in other target sites. This assumption would hold if the sample sites

had been selected randomly from the population of target sites.

In practice, there are many reasons why sample sites are selected for empirical study. For

example, because randomized �eld experiments require an implementing partner with managerial

ability and operational e¢ cacy, the set of actual partners may be able to run more e¤ective programs

than the typical potential partner. As another example, partners that are already running programs

that they know are e¤ective are more likely to be open to independent impact estimates (Pritchett

2002). Both of these features would cause a positive partner selection bias: Average Treatment

E¤ects (ATEs) from partner sites are larger than they would be in non-partner sites. Alternatively,

partners that are particularly innovative and willing to test new programs may also be running many

other e¤ective programs in the same population. If there are diminishing returns, the additional

program with an actual partner might have lower impact than at the typical potential partner site.

This would cause negative partner selection bias.

While there is a substantial theoretical discussion of external validity1 and the importance

of the problem is broadly recognized2, we know very little about the nature of partner selection

bias and other external validity problems in practice. The reason is simple: to explicitly test for

heterogeneous site-level e¤ects, one needs to compare results from multiple internally valid studies

in multiple sites. However, it is unusual for an identical treatment to be experimentally or quasi-

1Formal theoretical analyses of external validity are included in Angrist (2004), Heckman (1992), Heckman and
Vytlacil (2007a, 2007b), Hotz, Imbens, and Mortimer (2005), Imbens (2010), and others.

2Other recent articles that contain discussions of the importance of external validity include Angrist and Pischke
(2010), Banerjee (2009), Cartwright (2007, 2010), Deaton (2010a, 2010b), Du�o (2004), Du�o, Glennerster, and
Kremer (2007), Greenberg and Shroder (2004), Heckman and Smith (1995), Ludwig, Kling, and Mullainathan (2011),
Manski and Gar�nkel (1992), Manski (2011), Rodrik (2009), Rothwell (2005), Worrall (2007), and many others. See
also Campbell (1957) for an early discussion.
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experimentally evaluated multiple times, because randomized �eld experiments are costly and useful

natural experiments are rare.3 By contrast, many papers provide evidence on individual selection

bias and the "internal validity" of an estimator, as this requires a comparison of an internally valid

estimate to the non-experimental results in only one setting. Explicitly testing for partner selection

bias is even more di¢ cult: one must de�ne a population of potential partner sites and somehow

infer treatment e¤ects in sites where studies have not yet been carried out.

In this paper, we empirically analyze a series of 14 randomized experiments involving more than

one-half million households in di¤erent sites across the United States. The experiments are run by

a company called Opower, which mails Home Energy Reports to residential electricity consumers

that provide energy conservation tips and compare their energy use to that of their neighbors.

Because these Reports are e¤ectively the same in each site and because there is e¤ectively no non-

compliance with treatment assignment, we have the unusual opportunity to focus on one particular

aspect of external validity: how well the e¤ects of an identical treatment can be generalized across

heterogeneous populations and economic environments.4 The quantitative results are of course

context-speci�c. However, just as LaLonde (1986) and other context-speci�c studies of individual-

level selection bias5 have been broadly informative about internal validity, some of the qualitative

�ndings from this type of analysis may similarly be informative about aspects of external validity.

The generalizability of the Opower program�s e¤ects to potential future sites is also of great

interest per se. This is because a proliferation of new regulations mandating energy conservation,

spurred partially by concern over climate change and high energy prices, is causing many utilities

across the country to decide whether to adopt the program. Opower is also of special interest

to us because we have extrapolated the results from one early experiment, implicitly assuming

strong external unconfoundedness. We carried out this extrapolation in a short article in Science

magazine, where we argued that the treatment e¤ects from one Opower experiment in Minnesota

suggested that a nationwide rollout of the program would be cost e¤ective relative to other energy

3There is some literature that compares impacts of programs implemented at multiple sites. In the development
�eld, this includes Banerjee, Cole, Du�o, and Linden (2007), Chattopadhyay and Du�o (2004), a pair of related papers
by Miguel and Kremer (2004) and Bobonis, Miguel, and Sharma (2006), and some more recent ongoing experiments.
Also, the YouthBuild program being run by the U.S. Department of Labor requires that all sites receiving funding
participate in randomized evaluations, and the French job training program studied by Crepon et al. (2012) randomly
assigns participants at 235 di¤erent sites.
Quasi-experimental estimates can also be compared across locations or across groups to whom di¤erent instruments

are "local," as in Angrist and Fernandez-Val (2010) and Angrist, Lavy, and Schlosser (2010). Of course, as one weakens
the de�nition of what a "similar" treatment is, there are increasingly large literatures of meta-analyses that compare
the e¤ects of "similar" treatments in di¤erent settings, including Abdulkadiroglu, Angrist, Dynarski, Kane, and
Pathak (2009) and Angrist, Pathak, and Walters (2011) on pilot and charter schools, Aigner (1984) on electricity
pricing, Card, Kluve, and Weber (2009) on labor market policies, and Meyer (1995) on unemployment insurance.

4 It is well-understood that there are other classes of threats to a study�s external validity. Randomized trials
may su¤er from Hawthorne e¤ects, in which the subjects behave di¤erently because they know they are being
studied. Subjects who choose or are allowed to select into randomized trials may di¤er from the population of
interest. Treatment �delity may be questionable, for example because scienti�c projects are "gold plated" or because
programs must be adapted in order to be implemented at scale. Furthermore, when programs are scaled, there may
be general equilibrium e¤ects.

5Other closely-related studies include Dehejia and Wahba (1999), Heckman, Ichimura, and Todd (1997), Heckman
Ichimura, Smith, and Todd (1998), and Smith and Todd (2004).
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conservation programs and would generate billions of dollars in energy cost savings each year

(Allcott and Mullainathan 2010).

In the Opower example, we can now show that Average Treatment E¤ects vary by a factor of

two across the 14 existing sites, an amount which is both statistically and economically signi�cant.

In the context of the calculation in our Science magazine article, this means that depending on

which experiment we had evaluated �rst, our estimate of total annual energy cost savings from a

nationally-scaled program would have varied by several billion dollars. Furthermore, we show that

despite having seemingly good household-level demographics, controlling for these observables does

not reduce the dispersion of the experimental ATEs.

We also use the Opower example to provide evidence on partner selection bias. Our test exploits

the fact that we observe the characteristics of the population of Opower�s potential partner sites: the

set of electric utilities in the United States. We show that Opower�s current partners are selected

on site-level observables: partner utilities tend to have di¤erent ownership structure, are larger,

and tend to be in wealthier states with stronger environmental regulation. Furthermore, within

the 14 experiments where results are available, there is statistical evidence of partner selection on

observables: selection probabilities conditional on observables are systematically correlated with

treatment e¤ects. This suggests that even relatively extensive replication has not solved the external

validity problem in the Opower context: ATEs in partner sites are unlikely to be an unbiased

measure of ATEs in non-partner sites.

As with LaLonde (1986) and related analyses of experimental vs. non-experimental estimators,

the Opower �eld experiments are only one example in one setting. To provide one additional data

point on the conceptual issue of partner selection bias, we turn to micro�nance. We examine the

characteristics of micro�nance institutions (MFIs) that have partnered to carry out randomized

trials with three large academic initiatives: the Jameel Poverty Action Lab, Innovations for Poverty

Action, and the Financial Access Initiative. We show that partner MFIs di¤er from the average

MFI on characteristics that might be associated with e¤ects of various treatments, including average

loan size, sta¤ per borrower, for-pro�t status, years of experience since opening, and size. Because

micro�nance �eld experiments study a variety of di¤erent "treatments," we cannot correlate selec-

tion probabilities with treatment e¤ects as we do for the Opower experiments. However, this basic

evidence of selection suggests that partner selection bias may not be unique to the Opower energy

conservation programs.

Indeed, analyses of the Job Training Partnership Act of 1982 (JTPA) also provide closely-

related existing evidence. The JTPA initiated job training programs at 600 sites, of which 16 were

evaluated with randomized trials. These 16 experimental sites were those that agreed to participate

out of more than 200 that were originally approached (Hotz 1992). Heckman (1992) discusses how

"randomization bias" may have a¤ected the selection of experimental sites and populations within

the sites. Even if the 16 sites were representative of the broader population of sites, Heckman

and Smith (1997) simulate that because of the substantial variability in e¤ects across sites, the
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aggregate experimental impact estimates would have di¤ered substantially depending on which set

of sites were evaluated. Our paper complements this work by providing large-sample evidence of

site e¤ects and partner selection bias in a di¤erent context and by formalizing a simple model of

the partner selection process.6

Of course, one rarely has the luxury of a multi-site program evaluation. We propose a simple

set of four concrete steps that analysts can take when generalizing empirical results. First, we can

clearly de�ne the target site or population of interest. Second, just as it is common to provide evi-

dence on internal validity by comparing observable characteristics of treatment and control groups,

we can provide suggestive evidence on external validity by comparing the observable characteristics

of the sample population and the target population of policy interest. Similarly, we can compare

the observable characteristics of the experimental partner to the observable characteristics of other

organizations that might implement a scaled program. Third, observable characteristics can be

combined with a theoretical discussion of the partner selection process and how the experimental

population and partner might di¤er on unobserved characteristics that moderate the treatment

e¤ect.

The fourth potential step is an empirical test that provides suggestive evidence on strong ex-

ternal unconfoundedness: an F-test of treatment e¤ect heterogeneity across sub-sites within the

sample site. The idea is very simple: when individuals are categorized into sites by some factor such

as geographic location, that same factor can be used to categorize at a more disaggregated level.

Put di¤erently, within each site, there are a set of "sub-sites," such as zip codes within a city, schools

within a district, or job training centers within a county. If we reject the null of no unexplained

heterogeneity across sub-sites within the sample, this suggests unexplained heterogeneity between

sample and target sites unless the distribution of sub-site heterogeneity somehow happens to be

identical in sample and target. For example, in many contexts, one might extrapolate from one

geographic location to another and assume that the geographic heterogeneity is su¢ ciently small.

The assumption of no geographic heterogeneity can be explicitly tested on a more disaggregated

level using geographic sub-sites within the sample. In the body of the paper, we develop this idea

more formally and discuss the possibilities for Type I and Type II errors.7

We emphasize from the outset that our analysis cannot be used to argue that randomized

6Aside from the work on JTPA, there are other closely-related analyses of multi-site job training programs. Hotz,
Imbens, and Mortimer (2005) analyze the Work INcentive (WIN) job training program implemented at four separate
locations in the 1980s, while Dehejia (2003) and Hotz, Imbens, and Klerman (2006) examine the Greater Avenues
for Independence (GAIN) job training program, which was carried out in six California counties.

7Ours is not the only suggestive test of strong external unconfoundedness. Hotz, Imbens, and Mortimer (2005) and
Hotz, Imbens, and Klerman (2006) test whether control group data from a sample can predict outcomes in untreated
target sites. The assumption underlying this test is that if untreated outcomes can be predicted in the target, then
is more likely that treatment e¤ects can be predicted. Stuart, Cole, Bradshaw, and Leaf (2011) propose a version of
this same test using propensity score methods. Angrist and Fernandez-Val (2010) test whether di¤erences in Local
Average Treatment E¤ects (LATEs) from di¤erent instruments can be explained by observable characteristics of
compliers. The assumption underlying this test is that if di¤erent instruments give the same conditional LATEs in
samples of compliers, then it is more likely that treatment e¤ects can be predicted for target populations comprised
of always-takers and never-takers.
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control trials are not useful and important in this context. As shown in Allcott (2011), non-

experimental approaches to evaluating the Opower programs that would necessarily be used in the

absence of experimental data perform dramatically worse than experimental estimators in the same

population. In fact, non-experimental estimates from the correct Target population also perform

substantially worse than treatment e¤ects predicted for the Target using experimental data from

di¤erent Sample populations. Furthermore, while partner selection bias largely pertains to RCTs,

the rest of our discussion of the generalizability of site-speci�c parameter estimates is relevant to

both "structural" and "reduced form" parameters estimated using either randomized experiments

or natural experiments.

The paper proceeds as follows. Section 2 presents our formal model of treatment e¤ects, partner

selection, and the two technical assumptions for external validity, strong external unconfoundedness

and external unconfoundedness in distribution. Section 3 introduces the Opower data, and Section

4 estimates the magnitude of site-speci�c heterogeneity. Section 5 presents empirical evidence of

partner selection bias in the Opower context, and Section 6 analyzes similar evidence for �eld

experiments with micro�nance institutions. Section 7 presents the F-test of sub-site heterogeneity,

and Section 8 concludes.

2 Model

We begin the model by setting up the basic Rubin (1974) Causal Model with selection into treat-

ment from a generalized Roy (1951) model. We then aggregate to the site level and draw direct

analogies between the assumptions for internal and external validity and the selection processes

that compromise these assumptions.

2.1 Individual-Level Model

2.1.1 Setup

There is a population of individual units indexed by i. Of interest is a binary treatment that a¤ects

observed outcome Yi. Each individual unit has two potential outcomes, Yi(1) if exposed to treatment

and Yi(0) if not. For expositional simplicity, we assume that Yi is a linear and additively-separable

function of observed and unobserved characteristics Xi and Zi:

Yi(0) = �Xi + �Zi (1a)

Yi(1) = (�+ �)Xi + (
 + �)Zi (1b)

The linear functional form is not central to our argument and could certainly be relaxed. What

is central is that there are individual-level unobservables Z that in�uence the treatment e¤ect.
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Individual i�s treatment e¤ect is the di¤erence in Yi between the treated and untreated states:

� i = Yi(1)� Yi(0) = �Xi + 
Zi (2)

In the context of program evaluation, an estimator is "internally valid" if it can be used to

consistently estimate the Average Treatment E¤ect for some subpopulation. Denote Ti 2 f1; 0g
as the indicator variable for individual i�s actual treatment assignment. Comparing the mean

outcomes of treated vs. untreated units gives:

E[Yi(1)jTi = 1]� E[Yi(0)jTi = 0] = E[� ijTi = 1]

+ �(E[XijTi = 1]� E[XijTi = 0]) + �(E[ZijTi = 1]� E[ZijTi = 0]) (3)

The right hand side of the �rst line is the Average Treatment E¤ect on the Treated (ATT). The

second line is selection bias. The �rst term in the second line is a function of observables X and

can be estimated empirically. The second term is a function of unobservables Z.

2.1.2 Unconfoundedness

The second term in the second line of Equation (3) above equals zero under the assumption of

unconfoundedness (Rosenbaum and Rubin 1983):

Ti ? (Yi(1); Yi(0)) jXi (4)

If unconfoundedness does not hold, then the ATT cannot be consistently estimated, meaning

that there is a failure of internal validity.

2.1.3 Assignment Mechanisms

Imbens and Wooldridge (2009) specify three classes of mechanisms through which individuals are

assigned to treatment or control. The �rst is random assignment, under which unconfoundedness

should hold by construction. The second is non-experimental mechanisms under which uncon-

foundedness holds by assumption. The third is all other assignment mechanisms under which

unconfoundedness does not hold.
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2.1.4 The Economics of Selection

In the absence of experimental assignment, there are economic processes that drive selection into

treatment. One natural process is that individuals decide whether to participate in a program if

the private bene�ts outweigh the private costs. To model this, assume that individuals incur some

positive or negative net cost Ci if they select into the program, and they weight their outcome Yi
by !. An individual selects into treatment if the net bene�ts are positive:

Ti = 1 [!� i � Ci > 0] (5a)

= 1 [!(�Xi + 
Zi)� Ci > 0] (5b)

If individuals self-select into treatment in this way, unconfoundedness holds if and only if it

happens to be the case that (!(�X + 
Z) � C) ? Z.8 Otherwise, there is positive or negative

selection: referring to Equation (3), the conditional di¤erence in mean outcomes between treatment

and control may be larger or smaller than the ATT. Of course, the meaning of Ci and !, and thus

the economics of the selection process, vary by application.

2.2 Site-Level Model

2.2.1 Setup

Imagine now that the population of individual units is divided mutually exclusively and exhaustively

into "sites." Informally, we think of sites as sets of individual units that often are geographically

clustered, where one program evaluation might be carried out. In applied work, this might be a

school or school district, a job training center, or a micro�nance institution. Index sites by r, and

de�ne an integer variable Ri that indicates the site of which individual i is a member. Denote

the population of sites by script R. Within each site is also a "site-level population" of individual
units.

Assume that each unit in the site-level population is treated with equal probability. This

conforms to the Opower empirical examples and keeps the analysis simple; other analyses such

as Heckman and Vytlacil (2007b) discuss the implications of di¤erential selection across sites for

external validity. To economize on notation, de�ne Yr � E[YijRi = r], Xr � E[XijRi = r], and

Zr � E[ZijRi = r]. The Average Treatment E¤ect at site r depends on the expectations of the

observable and unobservable characteristics of the units within the site-level population:

� r = �Xr + 
Zr (6)

8Here and in analogous future statements, we formally mean that selection must be independent of ZjX. For
expositional simplicity, we refer to the "unobservables" instead of "the unobservables conditional on the observables."
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In the context of program evaluation, we refer to an estimator as being "externally valid" if

it can use data from one or more Sample sites to consistently estimate treatment e¤ects in other

Target sites. We consider two di¤erent senses of external validity. First, suppose that there is one

Sample site, indexed r = s. Imagine that the Sample ATE � s can be consistently estimated, and

the analyst wishes to generalize to one Target site, indexed r = g. The ATE in the Target is:

� g = � s (7)

+ �(Xg �Xs) + 
(Zg � Zs)

Second, suppose that the Target sites are the entire population of sites R, and imagine that a
program evaluation has been replicated in many Sample sites drawn from R. Denoting Dr 2 f1; 0g
as an indicator for whether site r is a Sample site, the expectation of the Target treatment e¤ects

is:

E[� r] = E[� rjDr = 1] (8)

+ � (E[Xr]� E[XrjDr = 1]) + 
 (E[Zr]� E[ZrjDr = 1])

These two equations are comparable to each other and to Equation (3) above. The right hand

side of the �rst line is the ATE in the Sample, or the expectation across many Samples. The second

line is the bias from extrapolation: the di¤erence between Target and Sample ATEs. The �rst term

in the second line is a function of observables X and can be estimated empirically. The second

term is a function of unobservables Z.

2.2.2 External Unconfoundedness

Denote Di 2 f1; 0g as an indicator variable for whether individual i is a member of a Sample site.
Hotz, Imbens, and Mortimer (2005) introduce the assumption of unconfounded location, which we

also call external unconfoundedness:

Di ? (Yi(1); Yi(0))jXi (9)

In words, external unconfoundedness is the assumption that whether an individual unit is a

member of a Sample or Target site-level population is independent of potential outcomes conditional

on observables X.9 Here, we propose that this assumption has two di¤erent interpretations. The

�rst is relevant when there is a pair of Sample and Target sites, as in Equation (7). The second is

9 In our context, we could instead formalize weaker assumptions about independence of the di¤erence in potential
outcomes: Di ? (Yi(1)� Yi(0))jXi.
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relevant in the context of replication, when there are many Sample and Target sites, as in Equation

(8).

Consider �rst the case when the analyst has data from one Sample site-level population and

wishes to extrapolate to one Target site-level population. This extrapolation from one Sample to

one Target requires an assumption we call strong external unconfoundedness.

De�nition 1 Strong External Unconfoundedness: Di ? (Yi(1); Yi(0))j(Xi; Ri 2 fs; gg)

In words, this is that external unconfoundedness holds in a pair of sites, the Sample and the

Target. This means that the distribution of unobservables is identical in Sample and Target.

Therefore, the Conditional Average Treatment E¤ects (CATEs), conditional on X, are also asymp-

totically equal. If strong external unconfoundedness does not hold, the researcher cannot infer the

Target treatment e¤ect. An estimator based on Equation (7) above would not satisfy what we call

strong external validity.

As an example of how the strong external unconfoundedness assumption has been used, consider

analyses of the GAIN job training program that attribute di¤erences in outcomes between Riverside

County and other sites only to an emphasis on Labor Force Attachment (Dehejia 2003, Hotz,

Imbens, and Klerman 2006). These analyses formally require that there are no unobservable factors

that moderate the treatment e¤ect and di¤er across sites. More broadly, any impact evaluation

from one site that argues that its results generalize to another site implicitly or explicitly assumes

strong external unconfoundedness, or alternatively informally assumes that it is approximately true.

In many contexts, one expects unobservables to vary across sites, and strong external un-

confoundedness is unrealistically restrictive. As a result, the analyst may wish to replicate an

experiment in additional sites, or perform a meta-analysis. Suppose that the Target sites are the

entire population of sites R, and imagine that the researcher could draw a random sample of sites

from R. As the number of randomly-selected Sample sites increases, the distribution of treatment
e¤ects in the set of Sample sites would asymptotically equal the distribution of treatment e¤ects in

the Target sites. This motivates an assumption we call external unconfoundedness in distribution.

De�nition 2 External Unconfoundedness in Distribution: Di ? (Yi(1); Yi(0))j(Xi; Ri 2 R)

In words, this is that external unconfoundedness holds in a population of sites. When there

is exactly one Sample site and one Target site, this assumption is identical to strong external

unconfoundedness. However, when there are replications in many sites, external unconfoundedness

in distribution is a weaker assumption. Under this assumption, distributions of unobservables may

di¤er between any pair of Sample and Target sites, as long as the unobservables in the sets of

Sample and Target sites converge in distribution as the number of sites grows large. As a result,

the CATEs from any one Sample may not equal the CATEs from any one Target. However, the

mean CATE from Sample sites is a consistent estimator of the expected CATE in Target sites as

the number of sites increases. Put simply, external unconfoundedness in distribution means that
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once a program is replicated in enough sites, the distribution of Target treatment e¤ects is known.

If this assumption does not hold, however, an estimator based on Equation (8) would not satisfy

what we call external validity in distribution.

2.2.3 Assignment Mechanisms

The "partner assignment mechanism" could represent two situations. First, sites could represent

potential program implementation partners that would adopt a new program and evaluate it using

a randomized trial. This is the case with Opower, as they approach additional utilities about

adopting their Home Energy Report program. Second, sites could represent potential program

evaluation partners that are already running an existing program and must decide whether to run

a randomized trial for impact evaluation. This was eventually the case with the Job Training

Partnership Act (JTPA) evaluations: the researchers approached job training centers that were

already running the program and tried to convince them to implement randomized evaluations.

We specify three classes of mechanisms that assign a potential partner site to being an actual

partner for a randomized control trial. These parallel the individual-level assignment mechanisms.

The �rst is random assignment: Sample sites are randomly selected from R, the population of
Target sites. As the number of sites grows large, external unconfoundedness in distribution holds.

Of course, it is rare that the number of experimental sites would be large enough for asymptotics

to be valid. With a small number of sites such as the 14 in the Opower example, unobservables

may not be balanced between Sample and Target even if the Sample sites were randomly selected

from the population of sites. In �nite sample, just as strati�ed randomization can improve balance

between treatment and control groups, strati�ed partner sampling can improve balance between

Sample and Target sites. For example, the JTPA evaluation initially hoped to randomly select sites

for evaluations within 20 strata de�ned by size, region, and a measure of program quality (Hotz

1992).

The second class of partner assignment mechanisms includes non-randomized processes under

which external unconfoundedness in distribution holds by assumption. This might arise when the

program evaluator can choose the set of Sample sites without restrictions and does so to maximize

external validity, but does not have enough sites for the asymptotics of random assignment to

be useful. For example, the Moving to Opportunity experiment (Sanbonmatsu et al. 2011) was

implemented in �ve cities chosen for size and geographic diversity. Similarly, the RAND Health

Insurance Experiment (Manning et al. 1988) was implemented in six sites that were chosen for

diversity in geographic location, city size, and physician availability.

The third class of partner assignment mechanisms includes all other assignment mechanisms

under which external unconfoundedness in distribution does not hold. In the absence of random as-

signment or other processes intentionally designed to maximize external validity, there are economic

processes that drive selection into partnership. One natural process is that decisionmakers at each

potential partner site decide whether to adopt or evaluate a program based on whether the costs
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outweigh the bene�ts. As in the individual-level model, we assume that the decisionmaker knows

the treatment e¤ect; we would obtain analogous results under imperfect information as long as the

decisionmaker has some informative signal that the analyst does not observe. Potential partners

incur some positive or negative net cost Cr of adopting or evaluating the treatment and weight

average outcomes Yr by !. The potential partner becomes an actual partner if its net bene�ts are

positive:

Dr = 1 [!� r � Cr > 0] (10a)

= 1 [!(�Xr + 
Zr)� Cr > 0] (10b)

If this process determines selection into partnership, external unconfoundedness in distribution

only holds only if it happens to be the case that (!(�X + 
Z) � C) ? Z. Otherwise, there is

positive or negative partner selection bias: referring to Equations (7) and (8), the Sample ATEs

may be larger or smaller than the Target ATEs.10

2.2.4 The Economics of Partner Selection

So far we have been very general about the practical meaning of ! and C and how di¤erent real-

world factors might generate positive or negative partner selection bias. These factors will vary

across contexts, and many di¤erent models might apply. Here we �esh out an example set of partner

selection mechanisms that might be relatively general and discuss the sign of corr((!(�X + 
Z)�
C); 
Z).

A �rst category of mechanisms is driven by the mechanical correlation between !
Z and 
Z:

if potential partners care about outcomes when they decide whether to evaluate a program, and

if they have some private information about outcomes that the analyst does not have, then actual

partners will be selected on unobservables. One mechanism within this category results from the

fact the "It Pays to Be Ignorant" (Pritchett 2002). Because rigorous evaluations are publicized and

a¤ect funding from foundations, governments, and other sources, potential partners that believe

they are running e¤ective programs are willing to have them evaluated, while those that believe they

are running ine¤ective programs strategically choose to remain ignorant by avoiding randomized

evaluations. Other sources of imperfect information about program quality keep this equilibrium

from unraveling into an equilibrium in which RCTs are run at all sites. A second mechanism within

this category is a simple form of "ability bias": even if there is no agency problem between potential

partners and their funders, potential partners considering whether to adopt and evaluate a new

program only want to do so if they believe it will work well at their site. Both of these two example
10Partner selection bias is related to the discussion of "randomization bias" that originates in Heckman (1992) and

continues in later work (e.g. Heckman and Smith 1995, Heckman and Vytlacil 2007b), although that discussion is
more directly concerned with how randomized experiments a¤ect the selection of individuals into programs at the
partner sites.
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mechanisms generate positive partner selection bias: potential partners with unobservably higher

returns are more likely to adopt a program.

A second category of mechanisms is driven by the potential correlation between C and 
Z: if the

net costs of running an RCT are positively or negatively correlated with unobservable moderators

of the treatment e¤ect, then actual partners will di¤er from non-partners on unobservables. One

mechanism within this category results from the fact that implementing randomized trials requires

managerial ability and operational e¢ cacy. The potential partners that are best equipped to run

RCTs, and thus have low C, may also run the most e¤ective programs. This form of positive

partner selection bias is related to the idea of gold plating (Du�o, Glennerster, and Kremer 2008):

in order to cleanly measure e¢ cacy, treatments are often implemented with much greater precision

and quality in experimental settings than they would be elsewhere. A second mechanism within this

category is "diminishing returns bias." Potential partners that might be most capable and interested

in experimenting with new programs could also be running many other e¤ective programs or could

have already treated the parts of their population that have the largest treatment e¤ects. This

would generate negative partner selection bias.

Of course, partner selection bias does not mean that the estimated Sample ATEs are biased away

from the true Sample ATEs. At its core, our model simply illustrates heterogeneous Conditional

Average Treatment E¤ects that could vary across sites. The reason why we use the phrase "partner

selection bias" is to emphasize that these CATEs in the set of partner sites may be systematically

di¤erent from the e¤ects in the set of non-partner sites. Furthermore, these systematic di¤erences

arise from a selection process that can be theoretically understood and observed in practice.

2.2.5 The Magnitude of Partner Selection Bias

What is the magnitude of partner selection bias? More precisely, how much does the expected

Sample ATE di¤er on unobservables compared to the expected ATE in the population of Target

sites R? We can see this mathematically through an analogy to Heckman�s (1979) exposition of
individual-level selection bias. For simplicity, assume that 
Zr and !� r � Cr are jointly normally

distributed in the population of sites, with standard deviations �
Z and �!��C , respectively, and

correlation coe¢ cient �. We de�ne  = E[!� r � Cr] and, without loss of generality, impose that

E[
Zr] = 0, because X can include a constant. If selection is governed by Equation (10a), then

the expected ATE in the Sample sites is:

E[� rj (Xr; Dr = 1)] = �E[Xr] + E [
Zrj!� r � Cr > 0] = E[� g] + �
Z � � �
�
�

� 
�!��C

�
�
�

 
�!��C

� (11)

This equation shows that the expected ATE in the Sample sites is the expected Target ATE

E[� g] plus an additional term, which re�ects partner selection bias from unobservables. Unobserv-
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able partner selection bias is more severe when �
Z , �, or
�

�
� 

�!��C

�
�

�
 

�!��C

� is large. What does this mean
from a practical perspective?

When �
Z is large, this means that there is signi�cant variation in treatment e¤ects across sites

that cannot be explained by observables. On the other hand, as �
Z approaches zero, there will be

no partner selection on unobservables, even if there is selection on observables. This motivates our

empirical test in the next section of the extent of explained variation in treatment e¤ects across

Opower sites.

The correlation coe¢ cient � is large when selection mechanisms such as the examples discussed

above are stronger. This occurs when ! is large relative to C, meaning that there is powerful

selection on expected ATEs, or when costs C are highly correlated with 
Z. On the other hand,

partner selection bias would not be severe if selection is largely driven by costs and costs are

uncorrelated with unobservables that moderate the treatment e¤ect. In the extreme, one could

imagine a "natural experiment" in which sites choose to run RCTs due to costs and bene�ts that

are fully independent of Z.

The inverse Mills ratio
�

�
� 

�!��C

�
�

�
 

�!��C

� is a monotonically decreasing function of  
�!��C

. When

 = E[!� r � Cr] is small, meaning that the net costs of being a partner are large, then only a

few sites will elect to be partners. The sites that do become partners would be more likely to have

large draws of the unobservable 
Z, implying more severe partner selection bias. On the other

hand, when the average net bene�t of experimentation  is large, then many sites will elect to be

partners, and partner selection bias is not severe. Therefore, as with individual-level selection into

treatment, the ratio of the number of Sample to Target sites is a useful diagnostic. With Opower

and in many other contexts, only a small number of sites that theoretically could run RCTs actually

do.

There are two basic takeaways from this section. First, just as individual units may endoge-

nously select into treatment, there is an analogous self-selection process for partners in randomized

controlled trials. Second, unconfoundedness and the external unconfoundedness assumptions are

mathematically similar and have similar statistical and economic implications. Despite this, exter-

nal unconfoundedness often receives much less attention in applied work. In the following sections,

we test the two versions of external unconfoundedness in one particular context.

3 Opower Experiment Overview

The empirical focus of this paper is on a series of randomized �eld experiments run by a company

called Opower. The "treatment" in these experiments is to mail Home Energy Reports (HERs) to

residential electricity consumers, with the goal of causing them to use less energy. These experiments

have been extensively studied, including by Allcott (2011), Allcott and Mullainathan (2010), Ayres,
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Raseman, and Shih (2009), Costa and Kahn (2010), Davis (2011), Nolan et al. (2008), Schultz et

al. (2007), and Violette, Provencher, and Klos (2009). The programs garnered signi�cant attention

in the popular press and are at the center of the energy industry�s growing interest in "behavior-

based" (as opposed to "technology-based") energy conservation programs that are evaluated using

randomized control trials. See Allcott (2011) for a basic program evaluation and additional details.

The Reports have two key components. The Social Comparison Module, which is illustrated in

Figure 1, compares the household�s energy use to its 100 geographically-nearest neighbors that have

similar house sizes and heating types. The Action Steps Module, illustrated in Figure 2, includes

energy conservation tips targeted to the household based on its historical energy use patterns and

observed characteristics. Opower takes a population of utility customers, randomizes them into

Treatment and Control, and sends Reports to the Treatment group on a monthly, bimonthly, or

quarterly basis.

Aside from the frequency with which the Reports are mailed, the treatment is almost identical

across the sites we study. While Opower is now extensively testing variations of the Home Energy

Reports, during their �rst two years they were expanding so rapidly that they did not have the man-

agerial bandwidth to vary the content of the letters. The envelope and the Home Energy Report it

contains are branded with each local utility�s name, and there are minor di¤erences in graphics and

presentation over time within an experiment and across experiments. Because these di¤erences are

so small, it is likely that the bulk of the treatment e¤ect heterogeneity results from di¤erences in

the population and from di¤erences in the economic environment such as weather-driven variability

in energy use patterns, not by di¤erences in the Reports. In any event, there is a remarkably high

degree of treatment �delity compared to other treatments of interest in economics. For example,

"job training" often takes di¤erent forms at di¤erent sites (Dehejia 2003, Hotz, Imbens, and Kler-

man 2006), and the quality of "remedial education" should depend on the teacher�s ability. The

degree of treatment �delity across Opower�s sites increases the likelihood that the treatment e¤ects

will generalize.

Aside from treatment �delity, there are two other useful features of the Opower experiments.

First, in the taxonomy of Levitt and List (2009), these are "natural �eld experiments," meaning that

people are in general not aware that they are being studied. Therefore, there are no "Hawthorne

E¤ects." Second, because opting out of the letters requires active e¤ort, there is e¤ectively no non-

compliance. This means that there is no need to model essential heterogeneity or the individual-level

selection into the experimental treatment (Heckman, Urzua, and Vytlacil 2006), and the treatment

e¤ect is a Policy-Relevant Treatment E¤ect in the sense of Heckman and Vytlacil (2001).11

As of the end of 2010, Opower had contracts to work with 45 utilities in the 21 shaded states in

Figure 3. While the partners are spread throughout the country, they tend to be concentrated along

11 In fact, following Allcott (2011), we actually de�ne the "treatment" as "being mailed a letter or actively opting
out," so there is precisely zero non-compliance. This de�nition of "treatment" does in this case produce a treatment
e¤ect of policy interest: the e¤ect of attempting to mail Home Energy Reports to an entire population. In practice,
because opt-out rates are on the order of one percent per year, the ATE is the almost exactly the same when the
"treatment" is de�ned as "being mailed a letter" (Allcott 2011).
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the West Coast, the upper Midwest, and the Northeast - areas of the U.S. that are wealthier, better

educated, often vote Democratic, and have stronger environmental regulation. Among Opower�s

partners are 30 regulated for-pro�t Investor-Owned Utilities (IOUs), nearly all of which are subject

to mandatory energy conservation targets called Energy E¢ ciency Resource Standards (EERS).

Opower also has contracts with 13 municipal utilities and three local electricity "cooperatives."

These 16 utilities are non-pro�ts that are supposed to act in the public interest, with goals that

often include environmental conservation and saving money for their customers. In Section 5, we

quantitatively analyze the characteristics of Opower�s partners.

As of October 2009, experiments had begun at 10 of these utilities, giving at least one year of

post-treatment data. Three more locations had begun pilots but were deemed too small to include

randomized control groups, so they are excluded from the present analysis. At four of the ten

utilities, the populations were divided into sub-populations with higher and lower baseline usage,

and the Treatment groups in the high-usage subpopulation were sent HERs with higher frequency.

As a result, our analysis considers 14 "experiments" at 14 "sites." Our qualitative results are similar

if we de�ne a "site" as a utility, and consider 10 separate sites.

3.1 Data

Table 1 provides an overview of the start date and size for each experiment. In total, we observe

19 million monthly electricity bills from 553,798 households. Opower has contractual obligations

to keep some of its partners� identities con�dential, so we mask utility names and locations and

number the experiments from 1 to 14. Site pairs 1 and 2, 4 and 5, 10 and 11, and 13 and 14 are

the four involving di¤erent customer subpopulations at the same utility.

This study bene�ts from exceptionally good household-level data, which improves the likelihood

that we might be able to use these data to explain di¤erences in treatment e¤ects across locations.

Opower, and the utilities they work with, gather demographic data for each customer from surveys,

public records, and private-sector marketing data providers. In addition, we have augmented the

household-level data with Census Tract-level information from the 2000 U.S. Census. From the

outset, we focused our analysis on the set of covariates that theory predicts might moderate the

treatment e¤ect.

Table 2 details the means and standard deviations of the observed individual-level characteristics

X for each of the 14 sites. There are four categories of variables: weather, energy use, Census

Tract-level demographics, and house characteristics. The �rst two columns are heating and cooling

degree-days, which measure how far temperatures deviate from 65 degrees during each month, and

thus how much electricity might be required to heat or cool a house to a comfortable temperature.12

12More precisely, the average Cooling Degree-Days for an observation is the mean, over all of the days in the billing
period, of the maximum of zero and the di¤erence between the day�s average temperature and 65 degrees. A day with
average temperature 75 has 10 CDDs, while a day with average temperature 30 has zero CDDs. Average Heating
Degree-Days is the mean, over all the days in the billing period, of the maximum of zero and the di¤erence between
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These vary over time within a site, but they do not vary across households within a site on any given

day. Sites 10 and 11 are in an especially warm climate, with low average heating degrees and high

cooling degrees, while sites 13 and 14 are in a moderate climate, and many other sites are relatively

cold. The third column is "Baseline Comparison," a normalized measure of the household�s baseline

energy usage compared to its neighbors, as presented to them on the �rst Home Energy Report

they receive. Zero corresponds to the mean of the neighbor distribution, and households with lower

values used relatively more energy. As detailed in Allcott (2011), theory predicts that responses to

these social comparisons depend on how individuals compare to their neighbors, and the treatment

e¤ects vary substantially with baseline energy usage.

As documented in Costa and Kahn (2010), households that vote Democratic, donate to envi-

ronmental groups, or voluntarily purchase renewable energy have di¤erent treatment e¤ects. The

next three variables in Table 2 are Census tract-level average characteristics which we hypothesized

could be associated with these sorts of "cultural" di¤erences that moderate the treatment e¤ect.

The �nal seven variables in Table 2 are house characteristics. These include variables known to be

associated with energy use, and thus perhaps the marginal cost of energy conservation, including

whether the household has electric heat, whether the house has a pool, type of dwelling (single

family or multi-family), and the size, in thousands of square feet. Because older houses have less

insulation and are more "drafty," they take more energy to heat and cool, and additional motivation

or information regarding energy conservation could have di¤erential e¤ects by house age. Finally,

renters have less incentive to invest in the house�s energy e¢ ciency, so we consider whether the

house is rented or owner-occupied. Some characteristics are not observed at all sites; for example,

we observe House Value only in experiments 3, 9, 12, 13, and 14.

4 Opower Site-Level Heterogeneity

In this section, we test the assumption of strong external unconfoundedness: how much unexplained

heterogeneity is there across Opower sites? We �rst present the empirical speci�cation, then results,

then discuss economic signi�cance.

4.1 Empirical Speci�cation

The Average Treatment E¤ects (ATEs) for each site can be estimated simply by comparing post-

treatment energy usage Yit for treatment and control groups, controlling for pre-treatment average

usage Yi0 and site-speci�c constant �r. Denoting 1(Ri = r) as an indicator function for whether

household i is in site r, the unconditional estimating equation is:

65 degrees and the day�s average temperature. A day with average temperature 75 has zero HDDs, while a day with
average temperature 30 has 35 HDDs.
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Yit =
X
r

[� rTi + �rYi0 + �r] � 1(Ri = r) + "it (12)

In this equation, Yit is household i�s average daily consumption on the electricity bill for period

t, normalized by the control group average post-treatment consumption. This normalization is

di¤erent for each site, so reducing energy use by two percent in a site with high consumption

entails a larger level of kilowatt-hour reduction than a reduction of two percent in a site with

low consumption. If we do not normalize in this way, the unconditional dispersion of site-level

heterogeneity would appear to be larger.

Because these samples are so large and because these are randomized experiments, the estimated

ATEs are similar between this speci�cation and di¤erences-in-di¤erences models with and without

household �xed e¤ects. They are also not sensitive to di¤erent con�gurations of control variables

such as month-by-year indicators. The coe¢ cients and standard errors are also very similar if

we collapse the data over time and use average post-treatment energy usage over all periods as

the outcome variable. However, we do not collapse over time because this temporal variation will

momentarily be needed to identify interactions of the treatment e¤ect with time-varying factors

such as weather. Standard errors are robust and clustered by household to account for serially

autocorrelated errors.

To estimate how much site-level heterogeneity is explained by observable di¤erences across sites,

we add controls for X to Equation (12):

Yit = �XitTi +
X
r

[�rTi + �rXit + �rYi0 + �r] � 1(Ri = r) + "it (13)

In this equation, the parameters of interest are the unexplained site e¤ects �r, which are de-

termined by 
Zr in the notation from our model in Section 2. The � parameters capture how

observables X moderate the treatment e¤ect; these are assumed to be constant across sites. The

regression includes controls for the main e¤ects of the X variables, which can di¤er across sites

through coe¢ cients �r, as well as a vector of site-level constants �r.
13 Notice that controlling

for X could either increase or decrease the remaining variation in site e¤ects. Put di¤erently, the

variance in ��s from Equation (12) could be larger or smaller than the variance in ��s from (13).

Mathematically, if the site-level means of �X and 
Z are negatively (positively) correlated, then

controlling for �X increases (decreases) the dispersion of the residual site e¤ects.

One other way to test strong external unconfoundedness would be to extrapolate from each of

the 14 sites to each of the other 14 sites, controlling for di¤erences in characteristics observed in

both sites, and test how well ATEs predicted from each Sample match true ATEs estimated in each

Target. However, the � parameters are often imprecisely estimated when using data from only one

13Missing X variables are imputed using mean imputation. When a variable is observed at other households within
the site, missing values are replaced with the site mean. Otherwise, it is replaced with the mean value across all
households in all 14 sites. There are certainly other ways of doing this, but they are unlikely to make much di¤erence
and are not central to our argument.
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site, making it di¢ cult to control for observable di¤erences across sites. The most precise way to

estimate these parameters is to pool data from all 14 sites. Notice that this pooled approach is a

"best-case scenario" in terms of explaining variability across sites: typically, the analyst only has

data from one site, and the reduced precision of the ��s increases the variance of the residual site

e¤ects. In earlier drafts, we have also experimented with a number of re-weighting procedures to

balance each Sample with each Target on observables, and these procedures do not perform any

better.

4.2 Results

Table 3 presents the estimated unconditional ATEs from Equation (12). In sites 2, 3, and 9, the

site population was randomly assigned between monthly, bimonthly, and/or quarterly frequencies,

while all other sites involved only one frequency.14 We therefore separately present the ATEs for

each frequency. The ATEs vary by a factor of 2.0, from -1.43 percent to -2.84 percent. (Recall that

the treatment induces a reduction in energy use, so the ATEs are negative.) While some variation

in treatment e¤ects is associated with the frequency of receiving Reports, Table 3 shows that there

is still signi�cant variation within frequency across sites.

Table 4 presents the estimates of Equation (13). The speci�cation in Column I includes only

the site dummies and site-speci�c post-treatment dummies as right-hand-side variables. At the

bottom of the table, we perform an F test of the joint hypothesis that all site e¤ects � are equal.

The F statistic is 4.24, and the hypothesis is rejected with a p-value of 0.38�10�6. The estimatedb� coe¢ cients are relegated to Online Appendix Table A1.
The standard deviation of the b� point estimates is 0.48 percent of control group energy use. This

variation results both from sampling error and from true underlying variation. From the F-test, we

know that this true underlying variation is statistically signi�cant. To estimate the magnitude of

this true underlying variation, we �rst report the sampling standard deviation of the site indicators:

the standard deviation of the point estimates that we would expect if there were zero underlying

variation in the true � parameters. The implied true underlying variance in the site indicators is

the di¤erence between the variance in the estimated site indicators and the sampling variance. As

reported at the bottom of Column I, this is 0.39 percent of energy use.

Column II controls for the frequency with which the Home Energy Reports are delivered, with

quarterly frequency as the omitted category. Because the regression includes site dummies, the

frequency controls are identi�ed entirely o¤of the three sites where frequency was randomly assigned

within site. The coe¢ cients reported in Table 4 show that monthly treatment frequency causes

a 0.54 percent larger ATE than the quarterly frequency, with bimonthly causing an imprecisely-

estimated 0.02 percent smaller ATE. Although controlling for treatment frequency decreases the

F-statistic because it increases the standard errors on the estimated b��s, it does not change the
14 In some of the more recent experiments, letters are sent each month for the �rst several months of the program

and bimonthly or quarterly after that.
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implied true underlying standard deviation of the ��s. The primary reason for this is that although

the ATEs do vary systematically by treatment frequency, site 10 has monthly frequency and also

has one of the smallest ATEs. After controlling for frequency, the residual site e¤ect in site 10 is

small enough to slightly increase the standard deviation of the set of residual site e¤ects.

Column III adds an indicator variable to control for whether an experiment has been running

for less than six months. Allcott (2011) shows that the treatment e¤ects tend to strengthen over the

�rst six months, meaning that an experiment that has been running for one year will mechanically

have a weaker ATE than an experiment that has been running for two years. However, the results

in Column III show that controlling for this does not substantially change the standard deviation

of the site dummies or the F-statistic.

In Column IV, we control for the interaction of heating and cooling degrees with the treatment

e¤ect. The coe¢ cients reported in Table 4 show that one additional average cooling degree increases

the treatment e¤ect in absolute value by 0.074 percentage points. Heating degrees also appear to

increase the treatment e¤ect, but the coe¢ cient is much smaller and is not statistically di¤erent

from zero. Although the treatment e¤ect is not statistically larger during colder periods, energy

use is of course larger: the b�r coe¢ cients, which are omitted to conserve space, show that one

additional average heating degree increases energy use by one to four percentage points, depending

on the site. At the bottom of Column IV in Table 4, we see that controlling for weather increases

the dispersion of the estimated b��s and also of the implied true underlying variation of the ��s. The
primary reason is that sites 10 and 11, which were in relatively hot climates with large average

Cooling Degree Days, had relatively small unconditional ATEs. After conditioning on weather,

their unexplained residual site e¤ects b� are even smaller relative to the other sites, can be seen in
Online Appendix Table A1.

Of course, it is also possible that the true functional form of the relationship between weather

and the treatment e¤ect is not linear. We do not have enough data to estimate this relationship

between weather and the treatment e¤ect more �exibly. However, the non-parametric relationship

between degree days and electricity use is close to linear over a wide range of degree days. More

generally, while all columns of Table 4 could be improved if they re�ected the true functional forms,

it seems unlikely that the rejection of strong external unconfoundedness would be overturned by

using di¤erent functional forms.

Column V controls for all time-invariant observable characteristics from Table 2. The coe¢ -

cients in Table 4 show that the treatment e¤ect is signi�cantly stronger for households with low

Baseline Comparison, i.e. households informed that they use more energy than their neighbors.

The treatment e¤ect is also stronger in Census tracts with larger mean age, well as for single family

homes and houses with electric instead of natural gas heat, pools, and more square footage. These

latter three results are consistent with the idea that conservation is less costly when more margins

of adjustment are available. Controlling for these variables increases the F-statistic to 9.51 and also

increases the implied true underlying standard deviation of the � parameters to 0.85.

20



Column VI controls for all X variables from Columns I through V, which further increases

the F-statistic and the implied true underlying variation in the ��s. The fact that controlling

for observable characteristics increases the unexplained variation in the site e¤ects suggests that

observables are negatively correlated with unobservables in this setting.

However, there is an additional reason why controlling for observables could increase the dis-

persion of b��s: even after pooling across all experiments, the � parameters may be imprecisely
estimated in �nite sample, and extrapolating based on an imprecisely-estimated model can worsen

the predictions. We therefore include Column VII, which controls only for the X variables that

are statistically signi�cantly correlated with the treatment e¤ect with at least 90 percent con�-

dence in Column VI. The implied true underlying dispersion of the site e¤ects and the value of

the F-statistic are actually both higher in Column VII than in Column VI, which suggests that

imprecisely-estimated ��s are not the primary reason why controlling for X increases the dispersion

of the site e¤ects b�. Furthermore, Table 4 also shows that the estimated � coe¢ cients are very
stable across speci�cations.

When generalizing a site-speci�c result in situations like this when there are unobserved site

e¤ects, an analyst will typically either formally or informally adopt one of two arguments. First,

the analyst might rely on informal theoretical arguments about what are unobservables Z and

the magnitude of the di¤erence between 
Zr in Sample and Target. In the Opower setting, the

�rst argument is di¢ cult: because the program is new and unusual, it is still not fully clear what

factors Z cause site-level heterogeneity. Second, the analyst might argue that Z is unknown, but

the variance of 
Zr across sites is small enough that a site-speci�c estimate is of general interest.

We now examine this second potential argument by asking whether the variance in Opower site

e¤ects is economically signi�cant.

4.3 Economic Signi�cance

In an economic sense, how inaccurate is it to assume strong external unconfoundedness and extrap-

olate results across sites? We consider two measures of economic signi�cance: variation in predicted

e¤ects at scale and variation in cost-e¤ectiveness. This is a conservative approach to evaluating

economic signi�cance, because as we have seen, conditioning on observables increases the variation

in site e¤ects.

Variation in predicted e¤ects at scale is particularly relevant in the case of Opower because policy

analyses such as Allcott and Mullainathan (2010) and Davis (2011) have predicted the potential

impacts of scaling up the Opower program to utility customers nationwide. If this prediction

were done with results from one initial site, how much would the results vary depending on which

experiment had been evaluated �rst? Figure 4 presents the total energy cost savings predicted by

multiplying each site�s average treatment e¤ect by nationwide annual electricity costs. In this and

the subsequent �gure, sites are ordered by frequency and then by increasing ATE. As Figure 4

illustrates, the predicted savings would di¤er by several billion dollars per year depending on which
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site�s ATE is used for the prediction. These values are mechanically connected to the dispersion in

the ATEs, so the smallest and largest again di¤er by a factor of 2.0.

As shown in Figure 5, there is also large variation in cost e¤ectiveness, which we report in cents

of program cost per kilowatt-hour of electricity conserved. To calculate this, we divide annual costs,

which were provided on a con�dential basis by Opower, by the product of the site�s ATE and its

average electricity consumption per year. The unweighted mean is 3.30 cents per kilowatt-hour.

Cost e¤ectiveness varies across sites by a factor of 3.5, from 1.66 to 5.82 cents per kilowatt-hour.

This variation is economically signi�cant in the sense that it can cause program adoption er-

rors: program managers at a Target site might make the wrong decision if they extrapolate cost

e¤ectiveness from another site to that Target in order to decide whether to implement the program.

Alternative energy conservation programs have been estimated to cost approximately �ve cents per

kilowatt-hour (Arimura, Li, Newell, and Palmer 2011) or between 1.6 and 3.3 cents per kilowatt-

hour (Friedrich et al. 2009). Whether an Opower program at a new site has cost e¤ectiveness at

the lower end (1.66 cents per kilowatt-hour) or upper end (5.82 cents per kilowatt-hour) of the

range illustrated in Figure 5 therefore could change whether a manager would or would not want to

adopt. Extrapolating cost e¤ectiveness from other Sample sites could lead a Target to implement

when it is in fact not cost e¤ective, or fail to implement when it would be cost e¤ective. As a

concrete example, we note that in sites 10 and 11, which have two of the smallest ATEs and the

worst cost e¤ectiveness, the partner utility has cancelled the programs.

The basic takeaway from this section is that in the Opower context, there is statistically and

economically signi�cant heterogeneity in treatment e¤ects across sites, and this heterogeneity is

not explained by individually-varying observable characteristics. This is despite the fact that the

treatment is highly consistent across sites and we observe a potentially-promising set of observables

that could moderate the treatment e¤ect. In this context, the assumption of strong external

unconfoundedness does not hold: just as there are often unobservable di¤erences between treatment

and control in the absence of a randomized experiment, there are unobservable di¤erences between

Sample and Target. Of course, strong external unconfoundedness might be an unrealistically strong

assumption for most settings. In the next section, we examine the weaker assumption of external

unconfoundedness in distribution.

5 Opower Partner Selection on Observables

A potential response to the failure of strong external unconfoundedness is to replicate a program

in multiple sites. If the experimental sites are drawn randomly, then external unconfoundedness

in distribution holds. If not, then there is partner selection bias, meaning that even extensive

replication does not provide an unbiased estimate of the treatment e¤ect if the program were

scaled to the entire population of Target sites.

The ideal way to test external unconfoundedness in distribution would be to estimate Average
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Treatment E¤ects in the set of partner sites and compare the distribution to the distribution of

ATEs in non-partner sites. The problem is that by de�nition, there have been no experiments

in non-partner sites, so these ATEs cannot be estimated. Instead, we test for partner selection

on observables. Speci�cally, we �rst gather characteristics of the population of potential Opower

partners and estimate a selection equation in the population of partners. We then test whether

predicted selection probabilities are correlated with the treatment e¤ect in the set of 14 sites where

we have data to estimate treatment e¤ects.

The site-level observed characteristics used to predict partner selection do not vary at the

individual level within a site, so it would not be possible to control for them in the typical case

when an analyst is extrapolating from one Sample site. Despite being observed at the site level,

these characteristics are therefore unobservables in the context of the model in Section 2. We

denote these site-level observable characteristics by W .

5.1 Partner Data

We de�ne our population of sites R to include the 939 electric utilities in the U.S. with more than

10,000 residential customers. There are another 2100 utilities that are smaller, most of which are

rural cooperatives or small �rms in states with competitive retail electricity markets, but we omit

these because Opower has no partners with fewer than 10,000 residential customers. About �ve

percent of utilities operate in multiple states. In order to model how state and local policies a¤ect

utilities�decisions, a utility is de�ned as a separate observation for each state in which it operates.

As detailed in Table 5, we gathered a set of utility-level characteristics that could be correlated

with selection into treatment and/or the treatment e¤ect. The �rst ten are from the Energy

Information Administration (EIA) Form 861 for calendar year 2008. These include the utility�s

ownership structure (Cooperative, private "Investor-Owned Utility" (IOU), Municipal, or Other

Government), log of the number of residential consumers, average residential electricity price and

usage, reported spending on and energy conserved from energy e¢ ciency programs, and the share of

consumers that have voluntarily enrolled in "green pricing programs" that sell renewably-generated

energy at a premium price. Next, we include whether the state in which the utility operates has a

Renewables Portfolio Standard, which requires utilities to procure a certain proportion of electricity

from renewable sources, or an Energy E¢ ciency Portfolio Standard. Finally, we include state-level

average income, the percent of residents with a college degree, and the percent of voters that voted

for a Democratic candidate for the House of Representatives in elections between 2000 and 2008

from the U.S. Census (2010a, 2010b, 2010c).

Table 5 is structured similarly to the commonly-included table that provides suggestive evidence

on internal validity by comparing observable characteristics of treatment and control groups. The

�rst column presents the means and standard deviations of each of these characteristics across the

939 utilities in the sample. The second and third columns show the same statistics for Opower�s
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45 partners and 894 non-partners, respectively. The right-most column tests whether the charac-

teristics are balanced between the two groups. Eleven out of 15 are unbalanced with more than

90 percent con�dence, and an F-test easily rejects the hypothesis that the observables are jointly

uncorrelated with partner status. Opower�s partners clearly di¤er on site-level observables Wr.

5.2 Empirical Speci�cation

Our test of partner selection on observables has two steps. First, we estimate a probit model of

utility selection into partnership with Opower:

Pr(Dr = 1jWr) = � (�Wr) (14)

In this equation, � is the CDF of the standard normal distribution, and Wr is a vector of

utility-level characteristics. Standard errors are robust and clustered by state.

We then regress the ATEs from the 14 initial sites on the �tted selection probabilities:

b� r = �cPr(Dr = 1jWr) + � + "r (15)

In this regression, we use the b� r from the unconditional speci�cation in Column I of Table 4,

although the results that follow are comparable when using site e¤ects conditional on di¤erent sets

of X characteristics. This regression will have 14 observations corresponding to the 14 b� r�s. We
use robust standard errors and cluster by utility. These standard errors are further adjusted to

account for the uncertainty in the �rst-step estimate of cPr(Dr = 1jWr), per Murphy and Topel

(1985). Because of the small sample, we also report OLS standard errors.

Recall that the treatment reduces electricity demand, so b� r < 0, and "stronger" ATEs are more
negative. If � < 0, the utilities with higher selection probabilities have more negative ATEs. This

implies positive partner selection on observables: utilities that have partnered with Opower have

characteristics associated with stronger ATEs compared to non-partners. If � > 0, this implies

negative partner selection on observables: partners have characteristics associated with weaker

ATEs than non-partners.

5.3 Results

Table 6 presents the empirical results of the test for partner selection on observables. The top part

of the table presents the �rst-step estimates of Equation (14), while the bottom part presents the

second-step estimates of Equation (15). Column I is the speci�cation with the entire set of site-

level characteristics. Investor-Owned and Municipality-Owned utilities are statistically signi�cantly

more likely to partner with Opower relative to utilities with other ownership structures. Utilities

with higher mean energy usage per residential customer are less likely to partner with Opower.

Larger utilities and utilities in states with higher median income are more likely to partner.
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As reported in the bottom part of Column I, the estimated b� is 1.26. This means that a ten
percentage point increase in selection probability is associated with an ATE that is weaker by 0.126

percent of energy use. The positive b� implies negative partner selection on observables: utilities
whose observable characteristics make them more likely to have partnered with Opower have weaker

treatment e¤ects. In this and the other columns, the statistical signi�cance levels are una¤ected

by which standard errors are used for inference.

Figure 6 illustrates this regression. On the horizontal axis is the �tted selection probability for

each of the 14 existing experiments, using the selection equation estimated in Column I of Table 6.

On the vertical axis is the ATE. The slope of the best �t line is b� = 1:26.
Of course, the sign and magnitude of selection on observed characteristics will depend on what

characteristics are observed. To provide evidence of the robustness of the empirical result of negative

selection on observables, we can estimate the selection equation with di¤erent sets of observable

characteristics. This also allows us to test two potential mechanisms of negative partner selection,

both of which were suggested in discussions with Opower�s managers.

The �rst mechanism is factors related to utility size and ownership structure. For example,

large investor-owned utilities might be more likely to partner with Opower but are often thought

to have less trust from their customers compared to smaller utilities run by government agencies

that operate in the "public interest." The Opower Home Energy Reports are co-branded between

Opower and the utility, and consumers who distrust the information provider might rationally be

less responsive to information. Column II of Table 6 �ts the selection probabilities using only the

ownership type indicator variables and the log of the number of residential customers. The results

show that Investor-Owned Utilities and large utilities are more likely to partner with Opower and

tend to have weaker ATEs. The resulting partner selection coe¢ cient b� does not change signi�cantly
from the estimation with all covariates in Column I, suggesting that mechanisms related to size

and ownership drive the negative partner selection result.

The second potential mechanism of negative partner selection is "diminishing returns bias,"

which we introduced earlier in the more general discussion selection mechanisms. In this con-

text, the utilities that were su¢ ciently innovative and interested in energy e¢ ciency to be one of

Opower�s early partners might already be running a number of other energy e¢ ciency programs.

These previous programs may have already eliminated the low-cost energy conservation opportu-

nities, and the marginal opportunities may be more costly. For example, as discussed in Allcott

(2011), a common way that households respond to the Opower treatment is to be more assiduous

about turning o¤ lights when not in use. A common energy e¢ ciency program that many Opower

partners run is to encourage households to replace standard incandescent lightbulbs with energy

e¢ cient Compact Fluorescent Lightbulbs (CFLs). Because CFLs use one-fourth the electricity of

an incandescent, a household that has participated in one of these programs and then responds

to the Opower treatment by turning o¤ the lights more would save one-fourth the electricity of

household that still had incandescents.
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To test for diminishing returns bias, Column III of Table 6 �ts the selection probability with

only the Mean Electricity Usage, Energy E¢ ciency Spending, and Estimated Energy Conserved

variables. While the former variable also largely re�ects variation in weather across utilities, the

latter two are more direct measures of the extent of previous energy conservation e¤orts. Mean

Electricity Usage and Estimated Energy Conserved are both statistically signi�cantly negatively

associated with being an Opower partner. The estimated selection coe¢ cient b� is positive but very
imprecisely estimated.

We implemented four tests of the robustness of negative partner selection on observables. First,

we present Column IV of Table 6, which �ts the selection equation with the remaining utility-

level characteristics not included in Columns II or III. The estimated selection coe¢ cient b� is
again positive but also imprecisely estimated. Second, we repeated the second-step estimation of

Equation (15) in Column I 14 additional times, each time leaving out one of the sites. All of theb� coe¢ cients were still positive and statistically signi�cantly di¤erent than zero, and none were
statistically di¤erent from the b� in Column I.

Third, we estimate the selection equation an additional 15 times, each time using only one

of the Wr variables. These results are presented in Table 7. Columns I and II, respectively,

present the correlation of each individual Wr variable with the ATE and the � parameter from a

univariate estimate of Equation (14). Column III presents the b� from the second-step estimation of
Equation (15). Two of the b� coe¢ cients are statistically signi�cant and positive: when using either
the Investor-Owned Utility indicator variable or the log of the number of residential consumers.

Seven other coe¢ cients were positive and not statistically di¤erent than zero, and three coe¢ cients

were negative and insigni�cant. Only one, State Median Income, is negative and signi�cant. The

coe¢ cients for Renewables Portfolio Standards and Energy E¢ ciency Portfolio Standards cannot

be identi�ed because all of the initial 14 sites are in states with these policies in place.

Our fourth robustness check is to carry out the full selection estimation in Column I of Table

6 15 additional times, each time leaving out one of the Wr variables. These results are in Column

IV of Table 7, with each row presenting the b� when the corresponding variable is omitted. The
resulting b� coe¢ cients are highly robust: all are still positive and statistically signi�cantly di¤erent
than zero, none are statistically di¤erent from the b� in Column I of Table 6, and the point estimates
change very little.

In practical terms, how wrong is it to assume external unconfoundedness in distribution? Imag-

ine a policymaker who wants to know the distribution of ATEs across the 939 potential partner

sites in the United States. Under external unconfoundedness in distribution, the policymaker would

assume that these �rst 14 replications are random draws from the population of potential partner

sites. The solid black line in Figure 7 presents the resulting predicted distribution of site ATEs;

this is just the distribution of the 14 ATEs also illustrated in Figure 6. The mean ATE is -2.02

percent.

The dotted blue line is the predicted distribution of ATEs after adjusting for partner selection
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on observables. This distribution is calculated by giving each of the Target potential partner sites

a random draw of the 14 Sample ATEs and then adjusting for the di¤erence in predicted ATE

between the Sample and Target using the estimates of Equation (15) in Column I of Table 4.

Because there is negative partner selection on observables, this distribution lies to the left of the

unadjusted distribution drawn in black. The mean predicted ATE is now -2.55 percent. Of course,

this does not mean that if Opower were to expand nationwide, the mean ATE would be exactly

-2.55 percent. This would be the case only if there are no other unobserved factors associated with

the initial partner selection mechanism.

The basic empirical result from this section is thus that Opower�s partners are negatively selected

on observables. This is driven by the fact that large Investor-Owned Utilities are more likely to

partner with Opower and, within the �rst 14 sites, have weaker average treatment e¤ects. If this

association holds more generally, an operational takeaway might be that more small publicly-run

utilities should consider partnering with Opower. This interpretation is analogous to the way one

would interpret meta-analyses that identify factors that moderate treatment e¤ects across sites,

such as tests of what school management approaches are associated with larger test score gains.

However, behind this operational takeaway is a deeper point, which is our core argument. In

many situations, conditioning on observables is insu¢ cient to solve selection problems, and ev-

idence of selection on observables generates concern about selection on unobservables. In the

Opower context, we do not know whether there is positive or negative partner selection on un-

observables. Opower is close to a best-case scenario for program evaluation: a nearly-identical

treatment evaluated with randomized control trials and replicated 14 times. But unless we can use

either econometric analysis or economic theory to understand partner selection on both observables

and unobservables, we still do not know what the e¤ects would be if the program were scaled up.

6 Partner Selection in Micro�nance

Of course, Opower is only one context. In this section, we test for selection on observables in a

second context of broad economic interest: micro�nance. Speci�cally, we examine what types of

micro�nance institutions (MFIs) partner with major academic organizations to carry out random-

ized �eld experiments. Unlike with Opower, we do not have a set of ATEs for the same treatment

across di¤erent MFIs, as micro�nance �eld experiments have tested a wide array of treatments.

Therefore, we do not show, as we had with Opower, that treatment e¤ects are correlated with se-

lection probabilities. Instead, we simply show that MFIs that carry out RCTs di¤er on observables

that could moderate the e¤ects of a variety of interventions.

There are two reasons why micro�nance is a convenient area to quantitatively examine partner

selection. First, there are many micro�nance �eld experiments with many partners. Second, there

is a centralized global database of MFIs that both de�nes the set of potential partners and contains

relevant partner characteristics.
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The database we use is called the Micro�nance Information Exchange (MIX), which includes

information on the characteristics and performance of 1903 MFIs in 115 countries. These MFIs

are our population of sites R. We consider characteristics Wr that might be correlated with the

outcomes of di¤erent �eld experiments, including Non-Pro�t status, the age of the organization,

number of borrowers, percent of borrowers who are women, average loan balance, MFI expenditures

per borrower, ratio of borrowers to sta¤ members, and repayment rates. Of course, the charac-

teristics correlated with the treatment e¤ect will vary depending on the treatment, whether it is

di¤erent presentations of loan o¤er letters as in Bertrand et al. (2010), variation in consumer loan

interest rates as in Karlan and Zinman (2009), the opportunity to take out a micro�nance loan as

in Banerjee, Du�o, Glennerster, and Kinnan (2009), or any other intervention.

For each MFI in the database, we then determined whether it had partnered with major aca-

demic groups to carry out a randomized experiment. This was done using the lists of partners on

the Jameel Poverty Action Lab, Innovations for Poverty Action, and Financial Access Initiative

websites. Roughly two percent of MFIs listed on MIX have partnered with one of these groups on

randomized control trials and thus have Dr = 1.

Table 8 presents the means and standard deviations of these characteristics by partner status.

It is analogous to Table 5, which presents characteristics of Opower partners and non-partners.

The �rst column presents statistics for all MFIs, the second column for partner MFIs, and the

third column for non-partner MFIs. The fourth column presents a t-test of the di¤erence in means

between partners and non-partners. At the bottom of the fourth column, we report the F-test of

a joint regression of partner status on all characteristics. Field experiment partner MFIs clearly

di¤er on site-level observables.

Speci�cally, we see that for-pro�t, larger, and older MFIs are substantially more likely to carry

out randomized trials. This is quite natural: experiments require stable, well-managed partners

and large sample sizes. In some situations, a more established or larger MFI might implement a

treatment more or less e¤ectively, or might have more or less trust from borrowers. MFIs with

smaller average loan balances are also substantially more likely to be experiment partners, and

loan size could a¤ect baseline repayment rates. MFIs with more borrowers per sta¤ member and,

relatedly, lower cost per borrower are more likely to be experiment partners. The number of

sta¤ per borrower could a¤ect baseline repayment rates through improved monitoring and could

also in�uence the e¢ cacy of interventions that require attention from MFI personnel. Two other

correlations are not statistically signi�cant but are suggestive: partner MFIs have less Portfolio at

Risk, which corresponds to better 30-day repayment rates, and a larger share of women borrowers.

Both of these factors could moderate the e¤ects of a variety of micro�nance interventions. We note

that these results are not driven by the countries in which RCTs are carried out: they are robust

to limiting the population of sites to MFIs in countries where there is at least one partner.

There are two basic takeaways from this section. First, MFIs that partner with academics to

carry out randomized �eld experiments di¤er from the broader population of MFIs on observables
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that could moderate the e¤ects of the interventions. Second, Table 8 provides a template for testing

partner selection bias. Just as it is common to compare treatment and control group individual-

level observables as a suggestive test of unconfoundedness, it is possible to compare Sample and

Target site-level observables as a suggestive test of external unconfoundedness in distribution. In

the next section, we propose a second statistical test, which provides suggestive evidence on strong

external unconfoundedness.

7 F-Test of Sub-Site Heterogeneity

7.1 Overview

In Section 4, we showed that there is signi�cant site-level heterogeneity in the Opower setting.

Documenting this required having data from multiple sites. The di¢ culty of generalizing, of course,

is that we do not know the parameter value in the Target. Given data from a Sample site, we must

decide whether to assume strong external unconfoundedness, without being able to explicitly test

this assumption. In this section, we present a suggestive test of strong external unconfoundedness.

As with the common suggestive tests of internal validity, it is an imperfect test of an untestable

assumption about unobservables, and we will be clear about the possibilities for Type I and Type

II errors.

The test is an F-test for whether the treatment e¤ect varies by "sub-sites" within a site. The

intuition is that strong external unconfoundedness requires that observable characteristics capture

all heterogeneity between sites. But a "site" is often de�ned by a particular level of disaggregation of

some variable, and within each site there are "sub-sites" de�ned by more disaggregation of the same

variable. For example, Opower programs are implemented in cities that have distinct zip codes.

Similarly, educational interventions may be implemented in districts with a number of di¤erent

schools. The test we propose is based on the idea that unexplained treatment e¤ect heterogeneity

at a disaggregated level is suggestive of unexplained heterogeneity at a more aggregated level.

7.2 Procedure

More formally, allow each site to be divided into a mutually exclusive and exhaustive set of sub-sites.

Our test is an explicit test of strong external unconfoundedness across sub-sites within the Sample.

It is informative in contexts when this predicts the validity of strong external unconfoundedness

across sites within the population of sites.

To carry out the test, de�ne a vector of sub-site indicator variablesM , leaving one sub-site as the

excluded group. Then run the following regression, which interactsM and observable characteristics

X with the treatment indicator and controls for lower-order interactions and pre-treatment outcome

Y0i:
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Yi = [�Xi + �Mi + �0] � Ti + �Xi + �Mi + Y0i + �0 + "i (16)

The F-test of sub-site heterogeneity is simply a test of the joint hypothesis that all ��s are equal

to zero. This equation is the simplest implementation of this regression appropriate for the Opower

context, and there are other possible versions.

There are two di¤erences between our test and a more generic test of treatment e¤ect hetero-

geneity. First, we propose testing for a speci�c type of heterogeneity: heterogeneity conditional

on the same variable across which the extrapolation occurs, except at a more disaggregated level.

When considering extrapolating from one geographical area to another, we are interested in hetero-

geneity by geographical sub-area, not by income or any other observed characteristics. Second, this

heterogeneity cannot be addressed statistically, even with parametric out-of-sample predictions.

For example, when extrapolating treatment e¤ects from a low-income to a high-income population,

one could under some assumptions estimate how treatment e¤ects vary by income within the low-

income population and project the treatment e¤ect onto the high-income population. By contrast,

because our proposed test is of heterogeneity conditional on a set of binary sub-site indicator vari-

ables with no overlap, there is no statistical way to project the heterogeneous sub-site e¤ects from

the Sample onto the Target.

Of course, because strong external unconfoundedness is untestable in the absence of data from

the Target site, the test is only suggestive. Both Type I and Type II errors are possible. An

common reason for a false failure to reject is that geographic heterogeneity could occur at a level

higher than the sub-site. A treatment with homogeneous e¤ects across sub-sites in Kenya could

still have di¤erent e¤ects in India. A treatment carefully implemented across many sub-sites by

a partner in Tennessee might be poorly implemented by another potential partner in California.

Furthermore, if the statistical power of the test is low, perhaps because there are few observations

within each sub-site, the test could also falsely fail to reject. Therefore, a failure to reject may not

be good evidence that strong external unconfoundedness holds.

However, the converse is more likely to be true: rejecting than � = 0 more forcefully suggests

that strong external unconfoundedness does not hold. Certainly, false rejections are possible: Sam-

ple and Target could both have sub-site heterogeneity, but the distribution of sub-site heterogeneity

could be identical in the two sites. For example, if a treatment e¤ect is a function of teacher quality,

and two school districts have the same distribution of teacher quality, the test could reject � = 0,

yet the average treatment e¤ect in each district could be the same. However, rejecting equality puts

a burden on the analyst who wants to assume strong external unconfoundedness: the analyst must

argue that the distribution of unobserved sub-site e¤ects is somehow the same.

Of course, the common suggestive tests of internal validity similarly generate Type I and Type

II errors. Treatment and Control groups could be balanced on exogenous observables but unbal-

anced on unobservables, and in principle they could also be unbalanced on observables but balanced

on unobservables. However, rejecting covariate balance between Treatment and Control places a

30



perceived burden of proof on the analyst who wants to assume unconfoundedness. The overidenti�-

cation test has false rejections, when all instruments are valid but act on di¤erent sets of compliers

with di¤erent Local Average Treatment E¤ects, as well as false failures to reject, when all instru-

ments are equally biased. In the Regression Discontinuity context, it is common to test whether

control variables are discontinuous around the cuto¤ (Lee and Lemieux 2009). There could be

false failures to reject: even if no observable characteristics are discontinuous at the cuto¤, there

often may be unobservables that are discontinuous. In principle, there could also be false rejec-

tions: there could be discontinuities in observables, which can in principle be controlled for, but no

discontinuities in unobservables. However, �nding discontinuities in exogenous covariates around

the cuto¤ again places a burden on the analyst who wants to assume continuity of the conditional

regression function.

7.3 Sub-Site Heterogeneity in Opower Experiments

We now present the results of the F-test for sub-site heterogeneity in the context of the 14 Opower

experimental sites. In separate tests, we de�ne sub-sites at two di¤erent levels: Census tract and zip

code. In each experiment, we control for the set of observed X variables that vary at the individual

household level. Standard errors are robust and clustered by household. In �nite sample, the

distribution of errors may no longer be normal when a sub-site has very few individual units. We

therefore group sub-sites with fewer than 50 households together with the omitted sub-site.

As a visual illustration of the test, Figure 8 presents the distribution of sub-site heterogeneity

in Experiment 3, when a "sub-site" is de�ned to be each of the 86 Census tracts within the site

with more than 50 households. In other words, the �gure plots the elements of the b� vector, which
have a standard deviation of 1.9 percent. Of course, this �gure is illustrative only: it is not a

statistical test of whether � = 0. This is because the distribution of point estimates in b� depends
on both the true underlying distribution and sampling error.

Table 9 presents the statistical results of the F-tests of sub-site heterogeneity for each of the

14 Opower sites. The �rst pair of columns presents results for sub-sites de�ned by zip codes, and

the second pair of columns presents results for Census tracts. At each site, the results tend to be

roughly consistent between the two levels of geographical aggregation. At sites 5 and 6, the F-tests

reject that the ��s are equal with greater than 90 percent con�dence at both levels of aggregation.

At sites 3 and 13, the F-tests reject equality of Census tract-level e¤ects and nearly reject (with

greater than 85 percent con�dence) equality of zip code-level e¤ects. At site 10, the F-tests reject

equality of the zip code-level e¤ects and nearly reject (with 85 percent con�dence) equality of the

Census tract-level e¤ects. At site 14, the test rejects equality at the tract level but not at the zip

code level. At all other sites, the tests fail to reject equality at both levels.

The results illustrate the possibility of false failures to reject: as we showed in Section 4,

unconfounded location does not hold for these experiments, yet in many cases the F-test fails

to reject equality of the ��s. These failures to reject likely result either from insu¢ cient power,
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meaning that there are too few observations to precisely estimate the sub-site heterogeneity, or

from the fact that there are unobservables Z with more variation between sites than within sites.

However, in the several sites where the F-test does reject equality, this result would correctly force

the analyst to proceed with caution in extrapolating results to other sites.

8 Conclusion

While external validity has long been a fundamental concern to empiricists in economics and other

�elds, there have been few opportunities to quantitatively assess the ability to generalize parameter

estimates from the same treatment across di¤erent settings. This paper analyzes a remarkable series

of nearly-identical energy conservation �eld experiments run by Opower in a number of di¤erent sites

across the U.S. We document statistically and economically signi�cant heterogeneity in treatment

e¤ects across sites that cannot be explained by observed covariates. Furthermore, we show that the

electric utilities that partner with Opower di¤er from those that do not on observable characteristics

that correlate with the treatment e¤ect, implying negative selection on observables. This suggests

that replicating the Opower program with additional partners has not given an unbiased estimator

of the potential e¤ects of the program in non-partner sites.

While our quantitative results are speci�c to this set of energy conservation programs, we think

that the concept of partner selection bias may be general to empirical analyses in other settings.

As an additional example, we document suggestive evidence in the context of micro�nance. We

show that MFIs that partner with academics to carry out RCTs di¤er on observables that could be

correlated with the e¤ects of di¤erent interventions, suggesting that we should continue to exercise

caution in generalizing results from partner MFIs to non-partner MFIs.

Our analysis suggests a speci�c set of steps that could be taken regularly when generalizing

empirical results. First, the analyst would clearly de�ne the Target site or population of interest.

Second, the analyst would formally compare the observable characteristics of the population, the

partner, the intervention, and the economic environment between Sample and Target. Part of this

comparison might resemble our Tables 5 and 8, which are analogous to tables commonly used to

compare observable characteristics of Treatment and Control groups in a suggestive test of internal

validity. Third, the analyst could use theory to understand potential unobserved di¤erences between

Sample and Target sites that could moderate the treatment e¤ects. Fourth, if appropriate in a given

setting, the analyst could use formal statistical tests that provide suggestive evidence on external

validity, including our F-test of sub-site heterogeneity, the untreated outcomes test of Hotz, Imbens,

and Mortimer (2005) and Hotz, Imbens, and Klerman (2006), and the conditional LATE test of

Angrist and Fernandez-Val (2010).

At the project design stage, there are a wider array of options to improve external validity.

First, when treatment e¤ects are di¢ cult to generalize, these results suggest the importance of

RCTs with representative samples of the Target population of policy interest. For example, each of
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the Opower experiments is at a site where the ATE is of some interest per se, as the partner utility

decides whether to continue running the program. If the e¤ects of large-scale social programs need

to be measured accurately, it might be especially important for policymakers to implement the

program itself - not just a pilot in a particular location - using an RCT. Second, researchers can

attempt to replicate similar �eld experiments in multiple locations. Importantly, these locations

would ideally be run at sites with attributes, including partner characteristics, that lie in di¤erent

parts of the distribution of factors that moderate the treatment e¤ect. Third, some have argued

that theoretically-motivated "mechanisms" are often more generalizable than average treatment

e¤ects of speci�c programs (Deaton 2010a, Deaton 2010b, Ludwig, Kling, and Mullainathan 2011).

If this is the case, researchers can focus on identifying mechanisms upon which policy decisions

hinge and designing empirical studies to tease them out.

In conclusion, we re-emphasize that the empirical results from our context simply cannot be

used to argue against using randomized control trials. To the contrary, the Opower experiments

are excellent examples of the importance of RCTs. Allcott (2011) shows that non-experimental

estimates perform extremely poorly in the Opower context. Indeed, within the set of 14 initial

sites, internally-valid estimators from other Sample sites predict true ATEs at a Target site far

better than non-experimental estimators from the same Target. Allcott and Mullainathan (2010)

and Allcott and Greenstone (2012) highlight Opower as an example of the importance of using

randomized control trials to evaluate energy conservation programs. Discussion of external validity

certainly does not diminish the importance of internal validity.
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Tables

Table 1: Overview of Opower Experiments

Site Treated
Number Region Start Date Households Households Observations
1 Urban Midwest July, 2009 36,603 18,790 1,264,375
2 Urban Midwest July, 2009 54,475 28,027 1,873,482
3 Rural Midwest January, 2009 78,129 39,024 3,421,306
4 Suburban Mountain October, 2009 11,593 7,254 394,525
5 Suburban Mountain October, 2009 27,117 16,947 914,344
6 West Coast October, 2009 33,506 23,906 570,386
7 Rural Midwest April, 2009 17,728 9,861 794,457
8 Urban Northeast September, 2009 49,522 24,808 1,712,530
9 West Coast October, 2008 79,017 34,893 3,121,879
10 West Coast January, 2009 25,150 5,570 985,148
11 West Coast January, 2009 17,669 3,852 672,629
12 West Coast September, 2009 39,334 19,663 671,990
13 West Coast March, 2008 59,664 24,761 1,809,427
14 West Coast April, 2008 24,291 9,903 735,663
Combined March, 2008 553,798 267,259 18,942,141
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Table 3: Average Treatment E¤ects

Frequency
Site Monthly BiMonthly Quarterly
1 -1.94 (0.2)
2 -1.43 (0.2) -1.45 (0.19)
3 -2.65 (0.15) -2.17 (0.17)
4 -2.55 (0.41)
5 -1.79 (0.32)
6 -2.56 (0.22)
7 -2.56 (0.34)
8 -1.73 (0.14)
9 -2.09 (0.14) -1.47 (0.2)
10 -1.62 (0.32)
11 -1.47 (0.48)
12 -1.88 (0.2)
13 -2.84 (0.16)
14 -1.49 (0.32)
Mean -2.23 -2.12 -1.64

Notes: This table presents the Average Treatment E¤ect for each site as a percent of control group
post-period usage. Standard errors are in parenthesis. The columns group the experiments by monthly,
bi-monthly, and quarterly frequency of treatment.
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Table 4: Tests for Site E¤ects
Interactions with Ti I II III IV V VI VII
Monthly Frequency -0.54 -0.52 -0.55

( 0.14 )��� ( 0.14 )��� ( 0.14 )���

Bi-Monthly Frequency 0.02 -0.01
( 0.22 ) ( 0.21 )

Duration<6 Months 0.52 0.50 0.47
( 0.13 )��� ( 0.15 )��� ( 0.14 )���

Cooling Degrees -0.074 -0.08 -0.060
( 0.030 )�� ( 0.03 )�� ( 0.031 )�

Heating Degrees -0.005 -0.01
( 0.008 ) ( 0.01 )

Baseline Comparison 1.25 1.26 1.27
( 0.13 )��� ( 0.13 )��� ( 0.13 )���

Tract Mean Age -0.027 -0.027 -0.034
( 0.015 )� ( 0.015 )� ( 0.015 )��

Tract Median Income -0.002 -0.002
( 0.004 ) ( 0.004 )

Tract Percent Caucasian -0.10 -0.11
( 0.50 ) ( 0.50 )

Electric Heat House -0.70 -0.71 -0.67
( 0.28 )�� ( 0.28 )�� ( 0.28 )��

House Age -0.001 -0.001
( 0.003 ) ( 0.003 )

House Value -0.001 -0.001
( 0.001 ) ( 0.001 )

House Has Pool -1.38 -1.38 -1.41
( 0.30 )��� ( 0.30 )��� ( 0.30 )���

Rental House 0.20 0.19
( 0.33 ) ( 0.33 )

Single Family House -1.04 -1.05 -1.14
( 0.30 )��� ( 0.30 )��� ( 0.27 )���

House Square Footage -0.32 -0.31 -0.44
( 0.13 )�� ( 0.13 )�� ( 0.10 )���

Xit Main E¤ects Yes Yes Yes Yes Yes Yes Yes
N (millions) 8.01 8.01 8.01 8.01 8.01 0.00 0.00
R2 0.53 0.53 0.54 0.62 0.63 0.63 0.61
F Stat (Regression) 16085 15338 13897 18616 7950 7551 8610

Site E¤ects Tests
F Stat (Site Indicators) 4.25 3.65 4.13 4.55 9.51 9.79 10.35
F-test p-Value (x10�6) 0.38 0.00 0.00 0.00 0.00 0.00 0.00
SD (Estimated Site Indicators) 0.48 0.50 0.48 0.62 0.91 1.02 1.05
Sampling SD (Site Indicators) 0.28 0.31 0.29 0.30 0.33 0.35 0.32
Implied True SD (Site Indicators) 0.39 0.39 0.39 0.54 0.85 0.96 1.00

Notes: This table presents tests of whether site indicator variables estimated in Equation (13) are
di¤erent from each other. Columns I through VII condition on di¤erent sets of observables. The estimatedb� coe¢ cients are presented in Online Appendix Table A1. Robust standard errors, clustered by household,
are in parenthesis. *, **, ***: Statistically signi�cant with 90%, 95%, and 99% con�dence, respectively.
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Table 5: Opower Partner Characteristics

All Partners Non-Partners Di¤erence
Investor-Owned Utility 0.18 0.62 0.16 0.46

( 0.39 ) ( 0.49 ) ( 0.37 ) ( 0.07 )���

Municipality-Owned Utility 0.25 0.27 0.25 0.02
( 0.43 ) ( 0.45 ) ( 0.43 ) ( 0.07 )

Other Government-Owned Utility 0.04 0.02 0.04 -0.02
( 0.19 ) ( 0.15 ) ( 0.20 ) ( 0.02 )

Cooperative-Owned Utility 0.48 0.07 0.50 -0.43
( 0.50 ) ( 0.25 ) ( 0.50 ) ( 0.04 )���

log(Residential Customers) 3.66 5.69 3.56 2.13
( 1.26 ) ( 1.63 ) ( 1.15 ) ( 0.24 )���

Residential Electricity Price (cents/kWh) 10.59 12.21 10.51 1.70
( 3.20 ) ( 4.08 ) ( 3.13 ) ( 0.61 )���

Mean Electricity Usage (MWh/year) 12.4 9.4 12.6 -3.1
( 3.4 ) ( 2.4 ) ( 3.4 ) ( 0.4 )���

Energy E¢ ciency Spending ($/customer-year) 15.4 25.1 14.9 10.2
( 138.2 ) ( 29.7 ) ( 141.4 ) ( 6.4 )

Estimated Energy Conserved (kWh/customer-year) 25.3 48.3 24.1 24.2
( 178.1 ) ( 69.9 ) ( 181.8 ) ( 12.0 )��

Green Energy Market Share (Percent) 0.72 1.58 0.67 0.90
( 4.98 ) ( 3.89 ) ( 5.02 ) ( 0.60 )

State Has Renewables Portfolio Standard 0.52 0.84 0.50 0.34
( 0.50 ) ( 0.37 ) ( 0.50 ) ( 0.06 )���

State Has Energy E¢ ciency Portfolio Standard 0.6 0.9 0.5 0.4
( 0.5 ) ( 0.3 ) ( 0.5 ) ( 0.0 )���

State Percent Democrat Voters 49.1 55.5 48.8 6.7
( 9.4 ) ( 8.6 ) ( 9.3 ) ( 1.3 )���

State Median Income ($000s) 49.3 55.9 49.0 6.9
( 6.8 ) ( 5.5 ) ( 6.7 ) ( 0.8 )���

State Percent College Graduates 26.0 29.5 25.8 3.7
( 4.4 ) ( 3.8 ) ( 4.4 ) ( 0.6 )���

N 939 45 894
F Test p-Value 0.000 ���

Notes: The �rst three columns of this table present the means of site-level characteristics for all utilities,
for Opower partners, and for Opower non-partners, respectively. Standard deviations are in parenthesis. The
fourth column presents the di¤erence in means between partners and non-partners, with robust standard
errors in parenthesis. *, **, ***: Statistically signi�cant with 90%, 95%, and 99% con�dence, respectively.
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Table 6: Opower Partner Selection

I II III IV
Probit Selection Equation
Investor-Owned Utility Yes Yes
Municipality-Owned Utility Yes Yes
Other Government-Owned Utility Yes Yes
Cooperative-Owned Utility Yes Yes
log(Residential Customers) Yes Yes
Residential Electricity Price (cents/kWh) Yes Yes
Mean Electricity Usage (MWh/year) Yes Yes
Energy E¢ ciency Spend ($/cust.-yr) Yes Yes
Energy Conserved (kWh/cust.-yr) Yes Yes
Green Energy Market Share (Percent) Yes Yes
State Renewables Portfolio Standard Yes Yes
State Energy E¢ ciency Portfolio Standard Yes Yes
State Percent Democrat Voters Yes Yes
State Median Income ($000s) Yes Yes
State Percent College Graduates Yes Yes

N 938 939 939 938

OLS Regression of b� on cPr(T = 1)b� Coe¢ cient 1.26 1.46 2.54 0.73
Murphy-Topel (1985) Standard Error ( 0.25 )��� ( 0.34 )��� ( 4.83 ) ( 3.33 )

Robust Standard Error, Clustered by Utility ( 0.11 )��� ( 0.16 )��� ( 4.68 ) ( 3.30 )

OLS Standard Error ( 0.37 )��� ( 0.44 )��� ( 3.92 ) ( 3.67 )

Notes: The top section of this table presents the results of estimating the Opower partner selection
function from Equation (14). Robust standard errors, clustered by state, are in parenthesis. *, **, ***:
Statistically signi�cant with 90%, 95%, and 99% con�dence, respectively. The bottom section of this table
presents the estimation results from Equation (15). The "Murphy-Topel (1985) Standard Error" is robust,
clustered by utility, with the Murphy-Topel (1985) adjustment.
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Table 7: Additional Partner Selection Results
Univariate Univariate Univariate b� Coe¢ cient
Correlation b� Selection b� when
with ATE Coe¢ cient Coe¢ cient Omitted

I II III IV
Probit Selection Equation
Investor-Owned Utility 0.58 1.04 4.07 1.26

( 0.11 )��� ( 0.19 )��� ( 2.30 )� ( 0.26 )���

Municipality-Owned Utility -0.25 0.05 -49.16 1.32
( 0.20 ) ( 0.20 ) ( 793.85 ) ( 0.29 )���

Other Government-Owned Utility -0.17 -0.27 7.97 1.24
( 0.14 ) ( 0.38 ) ( 56.09 ) ( 0.25 )���

Cooperative-Owned Utility -0.57 -1.11 7.21 1.28
( 0.13 )��� ( 0.24 )��� ( 8.82 ) ( 0.27 )���

log(Residential Customers) 0.18 0.46 1.49 2.71
( 0.033 )��� ( 0.070 )��� ( 0.37 )��� ( 1.19 )��

Residential Electricity Price (cents/kWh) 0.025 0.055 4.15 1.24
( 0.036 ) ( 0.021 )��� ( 8.75 ) ( 0.24 )���

Mean Electricity Usage (MWh/year) -0.062 -0.134 2.29 1.24
( 0.092 ) ( 0.027 )��� ( 4.87 ) ( 0.25 )���

Energy E¢ ciency Spending ($/customer-year) 0.0059 0.0002 296 1.26
( 0.0052 ) ( 0.0002 ) ( 1460 ) ( 0.25 )���

Estimated Energy Conserved (kWh/customer-year) 0.0018 0.0003 67.7 1.26
( 0.0016 ) ( 0.0002 ) ( 177.7 ) ( 0.25 )���

Green Energy Market Share (Percent) -0.032 0.011 -27.7 1.24
( 0.027 ) ( 0.008 ) ( 83.1 ) ( 0.25 )���

State Has Renewables Portfolio Standard 0.74 1.26
( 0.23 )��� ( 0.26 )���

State Has Energy E¢ ciency Portfolio Standard 1.03 1.27
( 0.25 )��� ( 0.25 )���

State Percent Democrat Voters 0.013 0.030 1.86 1.30
( 0.004 )��� ( 0.011 )��� ( 1.36 ) ( 0.26 )���

State Median Income ($000s) -0.054 0.066 -4.51 1.23
( 0.016 )��� ( 0.012 )��� ( 2.58 )� ( 0.25 )���

State Percent College Graduates -0.007 0.081 -0.05 1.28
( 0.039 ) ( 0.018 )��� ( 2.33 ) ( 0.25 )

Notes: Column I presents the coe¢ cient of a regression of the ATE � r on each Wr variable. Column II
presents the b� coe¢ cient from estimating the Opower partner selection function from Equation (14) using
eachWr variable individually. Column III presents the b� from the selection estimation using eachWr variable
individually. Column IV presents the b� from the selection estimation from Equation (15) leaving out each
Wr variable individually. Robust standard errors, clustered by state, are in parenthesis. Columns III and IV
include robust standard errors, clustered by utility, with the Murphy-Topel (1985) adjustment. *, **, ***:
Statistically signi�cant with 90%, 95%, and 99% con�dence, respectively.
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Table 8: MFI Partner Characteristics
All Partners Non-Partners Di¤erence

Average Loan Balance ($000�s) 1.42 0.58 1.44 -0.86
( 3.07 ) ( 0.51 ) ( 3.10 ) ( 0.12 )���

Borrowers/Sta¤ Ratio (103) 0.13 0.22 0.13 0.09
( 0.21 ) ( 0.19 ) ( 0.21 ) ( 0.03 )���

Cost per Borrower ($000�s) 0.18 0.10 0.18 -0.08
( 0.19 ) ( 0.08 ) ( 0.19 ) ( 0.01 )���

MFI Age (Years) 13.99 21.86 13.84 8.02
( 10.43 ) ( 11.21 ) ( 10.36 ) ( 1.88 )���

Non-Pro�t 0.63 0.37 0.64 -0.27
( 0.48 ) ( 0.49 ) ( 0.48 ) ( 0.08 )���

Number of Borrowers (106) 0.06 0.85 0.05 0.80
( 0.40 ) ( 1.84 ) ( 0.27 ) ( 0.31 )���

Percent Portfolio at Risk 0.083 0.068 0.083 -0.015
( 0.120 ) ( 0.066 ) ( 0.121 ) ( 0.012 )

Percent Women Borrowers 0.62 0.69 0.62 0.07
( 0.27 ) ( 0.27 ) ( 0.27 ) ( 0.05 )

N 1903 35 1868
F Test p-Value 0.000 ���

Notes: The �rst three columns of this table present the mean characteristics for all MFIs, for �eld exper-
iment partners, and for �eld experiment non-partners, respectively. Standard deviations are in parenthesis.
The fourth column presents the di¤erence in means between partners and non-partners, with robust standard
errors in parenthesis. *, **, ***: Statistically signi�cant with 90%, 95%, and 99% con�dence, respectively.
Currencies are in US dollars at market exchange rates. Percent of Portfolio at Risk is the percent of gross
loan portfolio that is renegotiated or overdue by more than 30 days.

Table 9: Results of F-Tests of Sub-Site Heterogeneity

Zip Census
Code Tract

Site Degrees of F-Test Degrees of F-Test
Number Freedom p-Value Freedom p-Value
1 40 0.279 176 0.948
2 40 0.557 267 0.358
3 31 0.104 85 0.025 **
4 4 0.903 33 0.655
5 4 0.079 * 36 0.020 **
6 9 0.017 ** 36 0.000 ***
7 56 0.540 35 0.905
8 25 0.098 * 95 0.229
9 40 0.928 178 0.720
10 4 0.010 *** 33 0.149
11 3 0.264 30 0.360
12 20 0.364 120 0.754
13 28 0.132 84 0.000 ***
14 27 0.451 79 0.030 **
Mean 24 0.338 92 0.3682

Notes: This table shows the results of the F-test of sub-site heterogeneity for each of the 14 Opower sites
with sub-sites de�ned as Zip Codes and Census Tracts. *, **, ***: Statistically signi�cant with 90%, 95%,
and 99% con�dence, respectively.
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Figures

Figure 1: Home Energy Reports: Social Comparison Module

Figure 2: Home Energy Reports: Action Steps Module
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Figure 3: Map of Opower Partner Utilities

Notes: Highlighted states are those where Opower has a partner.

Figure 4: Predicted National Annual Savings

Notes: This �gure illustrates the U.S. annual electricity cost savings that would be predicted from gen-
eralizing the treatment e¤ect from each of Opower�s �rst 14 sites. Lines illustrate 90% con�dence intervals.
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Figure 5: Cost E¤ectiveness by Site

Notes: This �gure presents the cost e¤ectiveness at each site in cents of program cost per kilowatt-hour
conserved. Lines illustrate 90% con�dence intervals.

Figure 6: Partner Selection Bias

Notes: This �gure shows the �tted relationship between the estimated unconditional Average Treatment
E¤ect and the �tted probability of being an Opower partner, for the �rst 14 sites.
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Figure 7: Predicted Distributions of ATEs in the Population of Sites

Notes: The black line is the predicted distribution of Opower ATEs in the population of potential partner
sites assuming that partners are randomly drawn from the distribution of potential partners. The dotted
blue line is the predicted distribution of ATEs after adjusting for partner selection on observables using the
estimates of Equation (15) in Column I of Table 4. These distributions are estimated using a kernel density
estimator with bandwidth of 0.1 percentage points.

Figure 8: Distribution of Sub-Site E¤ects at Site 3

Notes: This �gure is a histogram of the point estimates of Census Tract-level heterogeneous treatment
e¤ects at Opower site 3.
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Appendix: For Online Publication
External Validity and Partner Selection Bias
Hunt Allcott and Sendhil Mullainathan
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Tables

Online Appendix Table A1: Estimated Site E¤ects for Table 4

Interactions with TxPost I II III IV V VI VII

Site 1 -1.94 -1.39 -2.07 -1.64 4.05 4.478 4.554
( 0.20 )��� ( 0.24 )��� ( 0.20 )��� ( 0.25 )��� ( 0.93 )��� ( 0.950 )��� ( 0.921 )���

Site 2 -1.44 -1.45 -1.60 -1.17 3.10 3.027 2.950
( 0.16 )��� ( 0.19 )��� ( 0.17 )��� ( 0.21 )��� ( 0.86 )��� ( 0.872 )��� ( 0.839 )���

Site 3 -2.46 -2.13 -2.57 -2.25 1.29 1.558 1.385
( 0.13 )��� ( 0.16 )��� ( 0.14 )��� ( 0.21 )��� ( 0.80 ) ( 0.806 )� ( 0.737 )�

Site 4 -2.55 -2.57 -2.72 -2.30 2.67 2.566 2.547
( 0.41 )��� ( 0.46 )��� ( 0.41 )��� ( 0.43 )��� ( 0.92 )��� ( 0.949 )��� ( 0.879 )���

Site 5 -1.79 -1.79 -1.99 -1.57 1.16 1.044 1.001
( 0.32 )��� ( 0.32 )��� ( 0.32 )��� ( 0.36 )��� ( 0.83 ) ( 0.837 ) ( 0.774 )

Site 6 -2.56 -2.58 -2.77 -2.36 1.16 0.976 1.047
( 0.22 )��� ( 0.31 )��� ( 0.22 )��� ( 0.23 )��� ( 0.85 ) ( 0.892 ) ( 0.831 )

Site 7 -2.56 -2.58 -2.70 -2.44 1.21 1.167 1.166
( 0.34 )��� ( 0.40 )��� ( 0.34 )��� ( 0.36 )��� ( 0.93 ) ( 0.960 ) ( 0.894 )

Site 8 -1.73 -1.75 -1.90 -1.48 2.40 2.293 2.233
( 0.14 )��� ( 0.26 )��� ( 0.15 )��� ( 0.20 )��� ( 0.88 )��� ( 0.909 )�� ( 0.843 )���

Site 9 -1.92 -1.53 -2.01 -1.81 2.06 2.394 2.393
( 0.13 )��� ( 0.16 )��� ( 0.13 )��� ( 0.17 )��� ( 0.78 )��� ( 0.794 )��� ( 0.764 )���

Site 10 -1.62 -1.08 -1.77 -0.81 3.54 3.940 4.026
( 0.32 )��� ( 0.35 )��� ( 0.32 )��� ( 0.42 )� ( 1.00 )��� ( 1.026 )��� ( 1.005 )���

Site 11 -1.47 -1.47 -1.62 -0.61 1.97 1.838 1.780
( 0.48 )��� ( 0.48 )��� ( 0.49 )��� ( 0.56 ) ( 1.06 )� ( 1.074 )� ( 1.055 )�

Site 12 -1.88 -1.90 -2.06 -1.81 2.32 2.216 2.096
( 0.20 )��� ( 0.30 )��� ( 0.21 )��� ( 0.22 )��� ( 0.82 )��� ( 0.852 )��� ( 0.790 )���

Site 13 -2.84 -2.30 -2.94 -2.62 1.57 2.030 2.169
( 0.26 )��� ( 0.30 )��� ( 0.25 )��� ( 0.25 )��� ( 0.83 )� ( 0.843 )�� ( 0.808 )���

Site 14 -1.49 -1.49 -1.57 -1.31 2.15 2.094 2.188
( 0.37 )��� ( 0.37 )��� ( 0.38 )��� ( 0.38 )��� ( 0.90 )�� ( 0.910 )�� ( 0.880 )��

Notes: This table presents tests of whether site indicator variables estimated in Equation (13) are
di¤erent from each other. Columns I through VII condition on di¤erent sets of observables. These are the
estimated b� coe¢ cients that correspond to the same columns in Table 4. Robust standard errors, clustered
by household, are in parenthesis. *, **, ***: Statistically signi�cant with 90%, 95%, and 99% con�dence,
respectively.
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