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ABSTRACT

We use a unique data-set from Indonesia on what individuals know about the income distribution in
their village to test theories such as Jackson and Rogers (2007) that link information aggregation in
networks to the structure of the network. The observed patterns are consistent with a basic diffusion
model: more central individuals are better informed and individuals are able to better evaluate the
poverty status of those to whom they are more socially proximate. To understand what the theory predicts
for cross-village patterns, we estimate a simple diffusion model using within-village variation, simulate
network-level diffusion under this model for the over 600 different networks in our data, and use this
simulated data to gauge what the simple diffusion model predicts for the cross-village relationship
between information diffusion and network characteristics (e.g. clustering, density). The coefficients
in these simulated regressions are generally consistent with relationships suggested in previous theoretical
work, even though in our setting formal analytical predictions have not been derived. We then show
that the qualitative predictions from the simulated model largely match the actual data in the sense
that we obtain similar results both when the dependent variable is an empirical measure of the accuracy
of a village's aggregate information and when it is the simulation outcome. Finally, we consider a real-world
application to community based targeting, where villagers chose which households should receive
an anti-poverty program, and show that networks with better diffusive properties (as predicted by our
model) differentially benefit from community based targeting policies.
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1. Introduction

Economists are increasingly conscious of the influence that our neighbors and friends exert on
our choices. In particular, there is a growing interest in how information is aggregated within the
community. Many individuals may have information that is useful to others in their community, but
does this information get transmitted to those who need it, either through direct communication
between parties or through the observation of their choices? And how does the answer to this
question vary with the nature of the social network within the community? Being able to answer
these types of questions is important for policy design: for example, recent evidence suggests that
the speed with which new agricultural technologies are adopted depends on who talks to whom
about what (e.g., Munshi (2004), Bandiera and Rasul (2006), Duflo et al. (2004), and Conley
and Udry (2010)). Likewise, social connections have been shown to be important in spreading
information about jobs, microfinance, and public health (e.g., Munshi (2003), Bandiera et al. (2009),
Banerjee et al. (2012), Kremer and Miguel (2007)).

The increasing trend in developing countries towards the decentralization of policy to the local
level – e.g. community monitoring of teachers and health professionals or decentralized budgeting
of local public goods – is predicated, in part, on the idea that communities have more informa-
tion and can more effectively aggregate that information than central governments. For example,
decentralization has become increasingly popular for targeting the poor for government assistance
programs.1 The idea is that it is costly for the central government to identify the poorest people
within a village, whereas the community may have a good sense of who they are, simply by virtue of
living next to them. In designing these types of community-based targeting systems, it is crucial to
understand how information about poverty flows within villages and how it is aggregated through
intra-village processes.

However, despite a number of important and insightful theoretical contributions to this question
– many of which are discussed below – laying out a general relationship between a network’s
characteristics and the extent of information sharing remains challenging due to the mathematical
complexity of networks: they can differ along many dimensions, and how each individual network
characteristic relates to the degree of information aggregation within the network can depend both
on the network structure and the underlying model of social learning.2 To illustrate this point,

1The Bangladesh Food-For-Education (Galasso and Ravallion, 2005), Albanian Economic Support safety net (Alder-
man and Haque, 2006), and BRAC Ultra-Poor program (Bandeira et al., 2012) are examples of community targeted
programs.
2Due to the difficulty of describing transitional learning dynamics, much of the social learning literature has focused on
asymptotic learning. The early literature on observational learning, where agents observe others’ actions and attempt
to learn the state of the world through these observations, showed how even Bayesian agents may inefficiently herd and
ignore their own information (Banerjee, 1992; Bikhchandani et al., 1992). More recently, Acemoglu et al. (2011) show
that under sequential observational learning in stochastic networks, provided that agents have expanding observations,
asymptotic learning occurs. Gale and Kariv (2003) look at a special case in which a finite set of individuals in a
network each simultaneously take an action in every period having observed their neighbors’ actions in previous
periods, which Mueller-Frank (2011) extends considerably. Under myopic Bayesian behavior, they provide conditions
under which a consensus emerges, making use of the martingale convergence theorem. Mossel et al. (2011) show in
a world with binary uncertainty that with probability tending to one a sequence of growing networks which lead to
consensus have consensus on the right state of the world. That is, not only is there agreement, but that individuals
agree while learning the truth. Meanwhile, another strand of literature studies various rule of thumb social learning
processes. For instance Golub and Jackson (2010) and Golub and Jackson (forthcoming) look at DeGroot learning
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consider the fact that while more connections typically facilitate better communication, having
a higher average number of connections, i.e. higher average degree, is not enough to guarantee
better information aggregation. This is made clear by Jackson and Rogers (2007), who require first
order stochastic dominance of the degree distribution (which is much stronger than higher average
degree) to ensure greater diffusion of information in a meeting model where nodes meet other nodes
with probability proportional to their degree. To see why, consider the possibility that there could
be a group of people in the community who are all connected with each other (leading to a high
average degree), but are entirely disconnected from the rest of the network, making information
aggregation very inefficient relative to a network where average degree is lower but there is little
clustering in any one part of the network.3

In this simple example, the networks differ on both degree and clustering patterns. This suggests
that if we want, for example, a general prediction on the effect of degree, we might want to only
compare networks that have both similar clustering patterns and other network features. However,
there is no one measure of clustering that summarizes all the relevant information, just as no one
measure of degree is sufficient (i.e. the variance of degree matters, as do higher moments). In
particular, controlling for the average amount of clustering in the network is not sufficient (see,
for instance, Jackson (2010), Watts and Strogatz (1998), among others). In the example above,
one can even imagine cases where the average clustering in the two networks is the same because
everyone outside the one densely connected component in the first network is not connected at all.
More generally, real networks differ on so many dimensions that the theoretical results may fail to
provide clear predictions as to which networks will experience better information diffusion except
in special cases.

In this paper, we take a more rough and ready approach to the problem. As we said above, we
are interested in whether it is possible to predict the degree of information aggregation based on
network characteristics. We start from an unusual data set which is in many ways ideal for this
purpose. We have network data from 631 villages in Indonesia that we collected as a part of a study
on the effectiveness of different targeting methodologies. It is very rare to have network data for so
many separate networks and without that data it is hard to do a credible cross-village comparison
of the kind we attempt here. We also have a natural measure of information aggregation: for a
sample of villagers in each village we know how they rank a set of others in their village in terms
of relative incomes (i.e. which of the two households is richer). Finally we have a good measure
of the actual incomes of those households, from which we generate the “correct” ranking of these
households. We use the accuracy of households in ranking others in their village in terms of income
as our measure of information diffusion, and ask how this relates to various network characteristics

Our empirical analysis starts with some reduced form evidence that network position is correlated
with what people know. This is similar to the results in the literature (see for example, Munshi

on networks and speed of convergence in a model in which, in every period, individuals average the beliefs of their
network neighbors and communicate their updated beliefs to their neighbors in the following period. In contrast,
Jackson and Rogers (2007), in their seminal paper on this subject, study information transmission as a percolation
or contagion process in a model in which the network directs the probability of individuals meeting others; this setup
is closest to describing our environment and thus a key focus of our paper.
3See also the echo-chamber effect discussed in Golub and Jackson (forthcoming) describing how information aggre-
gation may be slower in more segregated networks.
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(2004), Bandiera and Rasul (2006), Kremer and Miguel (2007), Duflo et al. (2004), and Conley
and Udry (2010)). Note, however, we do not claim to make any special progress on the important
and difficult identification issues (Manski, 1993). Nonetheless, the patterns are strikingly clear
and strong. We show that better connected households are better at ranking other households,
especially if we measure being better connected by average degree. Similarly households that are
socially closer (in terms of path length) to their ranker are more likely to be more accurately
ranked. Therefore, there is at least prima facie evidence for the importance of network channels
for information transmission.

The main focus of the empirical analysis is, however, on the cross-village comparisons. Ideally, we
would like clear theoretical predictions from a diffusion model about what network characteristics
should matter. Unfortunately, there is no analytical theory rich enough for our setting. Therefore,
rather than getting the predictions of what network characteristics matter (and how) from theorems,
we get them by using what we call numerical theorizing.

Specifically, we take the following approach: we use the within village variation in our data to
estimate parameters of a model of diffusion and use that model to predict the extent of information
diffusion in every village. We then run regressions to estimate the cross-village correlations be-
tween network characteristics and the extent of information diffusion. We then use these predicted
correlations as our benchmark for what we find when we do the empirical cross-village comparisons.
This is what we mean by numerical theorizing: by comparing the reduced form regression estimates
to the counterparts generated by simulated data, we can see whether the patterns we pick up in
the data are qualitatively similar to those predicted by standard models from network theory.4

The model we estimate is inspired by the existing literature that tries to relate information
transmission to network characteristics. The closest connections are to Jackson and Yariv (2007);
Jackson and Rogers (2007); Galeotti and Vega-Redondo (2011); López-Pintado (2008) – which, in
turn, are motivated by Pastor-Satorras and Vespignani (2001), among others. The core idea of
these models is that information transmission is like an infection – individuals transmit informa-
tion with some probability to those they are connected to but also forget information with some
probability.5 We estimate a two parameter information diffusion model based on this assumption;
the two parameters are the probability of information transmission from a household that has the
information to its neighbor on the network in any period, and the probability that a household
that has the information will forget it in any given period. Then we simulate the model for each

4Simulations have also been used to study other network phenomena that are too complicated to solve analytically.
See, for example, Golub and Jackson (Forthcoming), who use simulations to complement an analytic study of a
homophily-based link formation model.
5Our modeling strategy therefore respects the local structure of the network: people only get information from people
close to them in the network. This in contrast with Jackson and Rogers (2007) who study an approximation of this
sort of process on a network. Specifically, they consider a dynamic model in which individuals meet other individuals
with probability proportional to their popularity (degree). To gain analytic tractability, they make a mean-field
approximation, which means that the local information rate in an individual’s neighborhood matches the global
average. This approximation implies that the fraction of people that each individual meets in a given period that
are informed is equal to the population average of that quantity. As noted by the authors, this means that there
is no sense in which individuals that are socially closer to one another are more likely to be informed about each
other’s information than individuals who are socially farther away. In our set-up, however, this property is clearly
violated: as we discuss below in Section 3, our reduced form evidence suggests that local connections matter greatly.
For example, households do indeed have more information about those whom they are socially close to.
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of the 631 individual networks in our data to generate a predicted level of information aggregation
for each network. We then regress the predicted information aggregation on a number of com-
monly used network statistics (size, average degree, average clustering, first eigenvalue of adjacency
matrix, link density and fraction of nodes in giant component) separately as well as jointly, to gen-
erate theoretically motivated predictions for the relationship between those networks statistics and
the extent of information aggregation.6 We can then test these theoretical predictions by asking
whether the empirical cross-network correlation between the observed degree of information aggre-
gation and network characteristics that we observe in actual data (“the reduced form results”) are
qualitatively similar to the predictions from the simulated predictions.

The empirical results suggest that the observed patterns match up reasonably well with what our
theory predicts for the estimated parameter values. In particular, we show that the Jackson and
Rogers (2007) result, on stochastic dominance of the degree distribution described earlier, holds
up both in our model and in the data. To the best of our knowledge this is the first “test” of
that theory. Moreover we find that for the most part whenever either the predicted (simulated)
or the actual (empirical) correlations are significantly different from zero, they have the same sign
and this sign matches what we would have expected based on existing theoretical research.7 For
example, networks with larger first eigenvalues exhibit lower error rates, both in the predicted and
actual data.

However, we also see interesting divergences from what we might have intuitively expected:
For example, the effect of higher average degree on information aggregation, controlling for other
network characteristics, is negative both in our “numerical theoretical predictions,” as well as in
the reduced form empirical results. Though there is a standard intuition that more connections are
better, this is not true as a conditional correlation.

To make sure that our results are not driven by the specific parameter values we estimate in
the diffusion model (especially since the bounds on estimates are not very tight), we redo the
cross village simulation and regression exercise for a wide interval of parameter values more or
less centered around the estimated values. While the parameter values matter – some correlations
change when we approach the boundaries of the interval – the basic predictions turn out to be
remarkably robust. This is reassuring in the sense that it suggests our conclusions may be portable.
However, the exercise also sheds light on what set of parameter values would overturn the usual
intuitions – the qualitative results of the model are largely simliar except for the case when the
diffusion process has a very low transmission rate but a higher rate of forgetting.

Finally, we look at how actual policy decisions match up with the predictions from the theory.
This data-set comes from an experiment in which villages were randomly assigned to determine
eligibility for an anti-poverty program using either community-based targeting, in which a village

6The choice of these network characteristics is inspired by important analytical results in the literature on the
determinants of information aggregation in networks (even though they cannot be directly applied to our context).
For example, Jackson and Rogers (2007), as mentioned above, focus on the effects of first order shifts in the degree
distribution, and Bollobás et al. (2010) focus on the role of the first eigenvalue of the adjacency matrix. More
generally, though, there are an enormous number of ways of summarizing the properties of the adjacency matrix, so
it was impossible to consider all such permutations.
7In some instances, the theoretical claims that we have in mind are based on intuitive discussions rather than formal
proofs.
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meeting ranked households from poorest to richest and assigned benefits to the poorest, or using
proxy-means tests (PMT), which assign benefits based on a deterministic function of a household’s
assets. If we expect that information is efficiently aggregated in the village, we would expect that
better connected networks would be relatively better at community-based targeting. This is indeed
the case: we show that villages that our network model predicts should have better information
passing properties do better in the sense that community targeting better reflects people’s self-
assessment of their poverty.

Our overall findings are useful for at least two reasons. First, they suggest that the standard
intuitions about what the key differences between networks are may not be so far from the truth,
despite the absence of general analytical results behind them, at least if the way we model transmis-
sion is broadly correct. For example, networks that have higher first eigenvalues of their adjacency
matrices do seem to aggregate information better, and probably for reasons that we understand
from previous theoretical work (since our network model is closely related to the tractable simplified
models used in the literature).8 Second, the findings highlight the role of social networks in actual
community decision making, thus offering insights into policy design problems where governments
aim to seek out and harness aggregate local information (e.g. to whom to provide a loan, where
local infrastructure should be built) or those that rely on understanding the ways that informa-
tion spreads within a network (e.g. public health campaigns, agricultural extension programs).
They suggest the possibility of using standard network statistics to predict whether in a particular
context we would expect effective information aggregation, or conversely, whether some outside
intervention will be needed to supplement information flows through the network.

The paper is organized as follows. Section 2 describes the data. Section 3 presents reduced
form evidence at the individual level and Section 4 establishes the framework and describes the
predictions of the numerical model. Section 5 describes our main empirical results. Section 6 makes
the connection with targeting. Section 7 concludes.

2. Context and Data

2.1. Context. This study stems from a broader data collection effort that was designed to study
the efficacy of different targeting methodologies in Indonesia. Between November 2008 and March
2009, we conducted a randomized evaluation to compare the accuracy of three key common methods
to identify beneficiaries for targeted social programs: proxy-means testing (PMT), wherein one
collects asset and demographic information on everybody in the census and uses the data to predict
consumption; a community targeting approach, wherein decisions on beneficiaries are made in
a communal meeting; and a methodology that combined both community and PMT methods
(Hybrid). A detailed description and findings from this study are described in Alatas et al. (2012).

In this paper, we utilize the detailed data that we collected on social networks in that study,
as well as data on individuals’ reports about the relative incomes of other villagers. Below, we
first discuss the sample construction. In Section 2.3, we then provide a detailed description of the

8Bollobás et al. (2010) show that the appearance of a giant component of a percolation process (wherein most nodes
become informed) on a sequence of dense graphs emerges only if the transmission probability is at least as large as
the inverse of the first eigenvalue.
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survey data collected, describe the construction of the network, and then briefly discuss the design
of the targeting experiment. Finally, we report key sample statistics in Section 2.4.

2.2. Sample Description. The initial sample consists of 640 hamlets spread across three Indone-
sian provinces: North Sumatra, South Sulawesi, and Central Java. The provinces were chosen to
be broadly representative of Indonesia’s diverse geography and ethnic makeup, with one province
located on each of the three most populous islands (Sumatra, Sulawesi, and Java). Within these
three provinces, we randomly selected a total of 640 villages, stratifying the sample to consist of
approximately 30 percent urban and 70 percent rural locations. For each village, we obtained a
list of the smallest administrative unit within it (a dusun in North Sumatra and a Rukun Tetangga
(RT) in South Sulawesi and Central Java), and randomly selected one of these units (henceforth
“hamlets”) for the experiment. The hamlets are best thought of as neighborhoods. Each hamlet
has an elected or appointed administrative head, whom we refer to as the hamlet head, and contains
an average of 54 households. We make use of 631 hamlets that have network data available.

2.3. Data.

2.3.1. Data Collection. We primarily use data that was collected as part of the baseline survey
for the experiment. SurveyMeter, an independent survey organization, administered the baseline
survey in the field in November to December 2008, before any mention of the experiment or the social
program were made to villages. For each randomly selected hamlet in the village, we constructed a
census of households and then randomly selected eight households to be surveyed. In addition, we
always surveyed the hamlet head to obtain the “leadership” perspective. From this survey, we used
information on social networks and on both the perceived and actual income distribution within
the village.

To construct the social networks (discussed in Section 2.3.2), we used two forms of social connec-
tions data. First, we used a series of data on familial relationships within each hamlet. Specifically,
we asked each of the surveyed households to name all other households in the hamlet to whom they
were related (either through blood or marriage).9 We then asked the respondent to name the formal
and informal leaders, the five poorest households in the hamlet, and five richest households in the
hamlet, along with all of the relatives of each person named. Second, we asked each respondent
to name the social groups that each household member participated in within the hamlet, and
prompted them with various types of groups to ensure a complete list. The social groups included,
but were not limited to, neighborhood associations, religious groups, school groups, ROSCAs,
farmers’ associations, etc.

In this study, we are concerned with how accurately information about the income distribution
diffuses within a hamlet. Thus, we needed to construct a measure of each household’s beliefs about
the income distribution, and needed to compare it to a measure of the “true” income distribution
within the hamlet. To collect data on the perceived distribution of incomes, as part of the survey
we conducted a poverty ranking exercise where we asked each household to rank the other eight

9On the forms, there was room to list up to 10 households in the village. If households were related to more than
10 households in the hamlet, the enumerator could add additional related households to the survey. On average,
households reported that they were related to about 3.1 households in the hamlet.
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households that were interviewed from their hamlet from the “most well-off” (paling mampu) and
to the “poorest” (paling miskin). Note that this was done before any of the targeting treatments
were implemented or even discussed in the village, so individual responses should not be affected
by the subsequent targeting experiment.

We then collected two measures of the “true” income distribution of households. First, we
collected a measure of actual per capita expenditures levels at the time of the baseline survey, using
the standard 28-question Indonesian SUSENAS expenditure module. Second, we asked households
to self-assess their own poverty status. Specifically, each household was asked “Please imagine a
six-step ladder where on the bottom (the first step) stand the poorest people and on the highest
step (the sixth step) stand the richest people. On which step are you today?” Each respondent
responded with a number from 1 to 6. We can then construct an error rate for each household’s
knowledge of the income distribution. Specifically, we compute this measure as the fraction of
times that the surveyed household makes an error in the (8 choose 2) comparisons that it makes
during the poverty ranking exercise, where the right answer is either per capita consumption or the
household self-assessment.10 Note that we construct a village level error rate analogously.

2.3.2. Network Data. The networks utilized in this paper are undirected, unweighted graphs that
are constructed from the familial and social group data in a way we now describe. Specifically,
we first construct edges between the households that we sample and those that they identify as
their family members. Second, we consider each household that was named as one of the poorest or
richest, or as a leader by any household we surveyed, and then construct an edge between the named
household and all of their named relatives. Moreover, we construct an edge between each pair of
these relatives (i.e. if household i is named as being in the same extended family as household
j, and household j is separately named (potentially by another respondent) as being in the same
extended family as household k, we construct edge (i, k) in addition to (i, j) and (j, k). Third, we
construct an edge between any two households who are registered as part of the same social group.
Finally, we take the union of these graphs.

Two specifics are worth mentioning. First, the data consists of a set of subgraphs of the target
graphs that we are ultimately interested in. As noted in Chandrasekhar and Lewis (2012), regression
analysis on partial samples of network data can show biases due to non-classical measurement
error.11 However, on average, we have complete family data on 65 percent of households in each
hamlet. In addition, for a number of key quantities and specifications, for instance the first order
stochastic dominance of a village’s degree distribution against another’s, our results are conservative

10Note that if a respondent was unable to rank a household during the poverty ranking exercise (i.e. since he or she
did not know members from the household or anything about their income level), we assigned this as an “error,” i.e.,
they were unable to correctly rank the households. An alternative would have been to assume the household could
have guessed, and gotten it right with a 50 percent probability; the main results look similar if we model error in this
manner (see Appendix E), but this introduces more noise into the model.
11Most of the bias correction solutions discussed in Chandrasekhar and Lewis (2012) are not applicable as they rely
on missing-at-random data. In addition, the estimates in our structural model described in Section 4 are generated
by fitting a diffusion process taking place on sub-graphs of the true underlying network which then, in turn, are likely
to affect the relationship between the network regressors and the simulated outcomes. We discuss in footnote 18 how
this affects our qualitative predictions.

8



as the bias will generate attenuated coefficients.12 Second, our data is unique in terms of the sheer
number of networks we have at our disposal. Typical papers have very few graphs in their sample
(closer to 5 than 50). Having a sample with over 600 networks puts us in a unique position to shed
light on questions about how cross-network variation in social structure affects the outcome of a
diffusion process.

2.3.3. Aggregation of Data in Community Based Targeting. Whether to decentralize “targeting”
– the selection of beneficiaries to social programs aimed towards the poor – to local communities
has become a key policy question in recent years as household income is challenging and costly to
measure. The data used in the paper was collected prior to an experiment in which we compared
community targeting with nationally-imposed, data driven approaches. Specifically, in each ham-
let, the Central Statistics Bureau (BPS) and Mitra Samya, an Indonesian NGO, implemented an
unconditional cash transfer program, where a fixed number of households would receive a one-time,
Rp. 30,000 (about $3) cash transfer. The amount of the transfer is equal to about 10 percent of the
median beneficiary’s monthly per-capita consumption, or a little more than one day’s wage for an
average laborer. Each hamlet was randomly allocated to one of three main targeting treatments:
PMT, Community or Hybrid. In the PMT treatment, program beneficiaries were determined
through a regression-based formula that mapped easily observable household characteristics into a
single index. In the community treatment, the hamlet residents determine the list of beneficiaries
through a poverty-ranking exercise at a public meeting. In the hybrid treatment, the community
ranking procedure was done first, followed by a subsequent PMT verification. Additional details of
these three procedures can be found in Appendix C and in Alatas et al. (2012).

Using intuitions from network theory on information aggregation, we can test whether the net-
work characteristics that are typically associated with a better informed population also predict
where community-based targeting does better, i.e. where the community will do better at ranking
people when collectively entrusted to do so. Following Alatas et al. (2012), we create two metrics
to assess the degree to which these methods correctly assign benefits to poor households. First,
we compute the rank correlation between the results of the targeting experiment (the “targeting
rank list”) and per capita consumption. Second, we compute the rank correlation of the targeting
experiment with respondents’ self-assessment of poverty, as reported in the baseline survey. To as-
sess the degree to which different network structures affect the targeting outcomes, we can examine
whether the difference in these rank correlations between community / hybrid treatments (which
use community information) and the PMT treatment (which does not) is greater in villages with
network structures that should lead to better information transmission.

2.4. Sample Statistics. Table 1 reports descriptive statistics for the primary network and out-
come variables used in the study (Appendix A provides definitions of each network variable). Panel
A provides the statistics for the hamlet level variables, while Panel B provides corresponding house-
hold level statistics. We report variable means in in Column 1 and standard deviations in Column
2.
12Note that, conditional on sign-consistency, any standardized effect has to decrease even with non-classical measure-
ment error. Following Cauchy-Schwarz it is easy to show that β0 · σx > plim β̂ · σx̄ as σxσx̄ > cov (xi, x̄i) where β̂ is
the estimated regression coefficient, β0 is the true value, x is the true regressor, and x̄ is the mismeasured regressor.
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The sampled hamlets tend to be small (Panel A). The average network consists of about 53
households. The number of connections per household, called a household’s degree, averages 8.25.
Villages exhibit significant clustering, with a mean of 0.41; this means that about 41 percent of an
individual’s contacts are also linked themselves. The average path length is about 2, which suggests
that two randomly chosen households will be separated by one household in between, conditional
on being in the same component. The networks have an average fraction of nodes in the giant
component of only 0.50, which means that about half of the households are interconnected to each
other through some chain of connections.13

Households struggle with making wealth-based comparisons. The mean average error rate at the
village level based on consumption is 0.502, while the mean error rate based on the self-assessment
is about 0.463. However, there is heterogeneity in the error rate across villages – the standard
deviation for both variables is about 0.2, which means that in the very best villages the error rate
is at little as 0.1.14 Panel B provides corresponding sample statistics at the household level. Most
notable is the fact that the average clustering coefficient is 0.64. This differs from the aggregated
data in Panel A because we have more information about sampled individuals than we have about
the rest, which is natural because everything we know about non-sampled individuals comes from
reports from the sampled group.

3. Reduced Form Analysis at the Household Level

3.1. Household Level. In this section, we provide prima facie evidence of information diffusion
through the network. To begin, we explore how a household’s place in the network is correlated with
their ability to rank others within the hamlet (section 3.1.1). We then explore whether households
are better at ranking those who are more connected to them (section 3.1.2).

3.1.1. Network Position of those Ranking Others. We begin by asking whether individuals that are
more central within the network have a lower error rate in ranking other households in the hamlet
based on their well-being. Specifically, we estimate:

(3.1) Errorir = β0 + β′1W ir +X ′irδ + εir

where i is the household doing the ranking, r is a hamlet, Errorir is household i’s error rate in
ranking, Wir are i’s network characteristics, εir is the error term, and Xir are covariates for house-
hold i (log consumption, years of education of the respondent, and dummy variables that indicate
whether the household is a leader within the village, whether the household is from an ethnic mi-
nority, whether the household is from a religious minority, and whether the respondent is female).
Table 2A reports the results with no covariates (i.e. constraining δ to be zero) and Table 2B reports

13It is likely that the true underlying network is in fact fully connected, and the fact that this number differs greatly
from 1 comes from the sampling of the graph. Note that more dense graphs will exhibit a higher fraction of nodes
in the giant component under sampling. There is considerable variation in the fraction of households in the giant
component, with a standard deviation of 0.244, which implies that there is significant heterogeneity in the sparsity of
the underlying true graphs. As discussed in Footnote 18, despite the sampling problem the correlations of the data
are still in line with those predicted from the model.
14The 5th percentile for these variables are 0.254 and 0.138, respectively.
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them when we include a full set of covariates (Xir).15 The considered network characteristics are
degree (Column 1), which is the number of links to other households; the clustering coefficient
(Column 2), which is the fraction of a household’s neighbors that are themselves neighbors; and
the eigenvector centrality (Column 3), where eigenvector centrality is a measure of the node’s im-
portance defined, recursively, to be proportional to the sum of her neighbors’ importances. Formal
definitions are included in Appendix A. In Column 4, we estimate the effect of each of these three
network characteristics, conditional on one another. In Columns 5 - 8, we replicate the analysis in
Columns 1 - 4, but additionally include hamlet fixed effects. This allows us to estimate the effect
of the household’s characteristics within the network conditional on others within the network. In
Panel A of each table, the error rate is based on per-capita consumption, while it is based on the
self-assessment in Panel B. Panel C of each table shows simulations from the model, which will
be discussed in Section 4.3 below. All equations are estimated using OLS, with standard errors
clustered at the hamlet level.

Overall, households that are more connected within the network have an easier time ranking
other households. Using consumption as the measure of the truth (Panel A of Table 2A), the
univariate regressions (Columns 1-3) show that households that have higher number of links with
other households in the network (degree), that have more interwoven social neighborhoods (cluster-
ing), and that households that are a more important node in the network (eigenvector centrality)
are less likely to make errors in ranking others. Conditional on each other, we find that a one
standard deviation increase in average degree is associated with a 5pp drop in the error rate of a
household and similarly a one standard deviation increase in the clustering coefficient is associated
with a 1.2pp drop in the error rate (Column 4). Holding constant the fixed effect of the hamlet,
degree (Column 5) and eigenvector centrality (Column 7) continue to predict a household’s error
rate (both at the 1 percent level), but clustering is no longer significant. When all three measures
are included in Column 8, we find that a one standard deviation increase in degree corresponds
to roughly a 1.03pp decrease in the error rate (significant at the 5 percent level). However, the
clustering and eigenvalue centrality are no longer significant, though the magnitude of clustering
remains similar and the magnitude of eigenvector centrality drops.

Similarly, as Panel B illustrates, households that are more connected also have an easier time
ranking other households as compared against their self-assessment. In fact, the coefficient estimates
of all models in Panel B are very similar to those in Panel A, both in terms of sign and magnitude.
In Column 8, we find that a one standard deviation increase in degree corresponds to roughly a 1.4
pp decrease in the error rate (significant at the 5 percent level).

The results in Table 2B, which include a large number of additional characteristics of the house-
hold that is doing the ranking, are generally quite similar to the results in Table 2A. This suggests
that the results are not driven by observable household characteristics. For example, the coeffi-
cient estimates in Column 4, Panel A, imply that one standard deviation increases in degree and
clustering are associated with 4pp and 1.2pp declines, respectively, in the consumption error rate;
the analogous impacts from Table 2A (with no covariates Xir) were 5pp and 1.2pp. Again, the

15The remainder of the tables in the paper present results conditional on covariates, unless otherwise noted, though
we include appendix versions without covariates.
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patterns in the data look similar using self-assessment (Panel B) as the measure of the truth rather
than consumption (Panel A).

In sum, the evidence thus far suggests that a household’s position within the network is predictive
of its ability to accurately rank the income distribution within the hamlet.

3.1.2. Connections Between Ranker and Rankee. The preceding analysis explored how one’s place
in the network affected the accuracy of the ranking. We now test whether the ranker is more accu-
rate when he or she is more connected to the the households that he or she is ranking. Specifically,
in Table 3, we address whether a household i does a better job of ranking nodes j versus k if the
pair is closer to i. To measure distance on the network, we use the shortest path length. However,
because of sampling, many nodes cannot be connected by any path and therefore have infinite
distance between them. To address this, we include a term for the average reachability between
(i, j) and (i, k) as well as the average of the distances between (i, j) and (i, k).16 Specifically, we
estimate:

(3.2) Errorijkr = β0 + β′1Wijkr +X ′ijkrδ + εijkr

where Errorijkr = 1{i ranks j versus k incorrectly} (which is done for all j < k, j 6= i, k 6= i ),
Wijkr is the average network characteristics of the households that are being ranked (j and k),
and Xijkr are physical covariates. In Column 1, we show the basic correlations between the error
rate, average distance from i to j and k, and average reachability conditional on demographic
controls. In Column 2, we introduce additional network characteristics (average degree, average
clustering coefficient and average eigenvector centrality, where once again, the average is across the
two people being ranked). In Column 3 and 4, we include hamlet fixed effects and ranker fixed
effects, respectively. Note that all standard errors are clustered at the village level.

Average reachability and distance tend to be highly predictive of the accuracy in the ranking.
Using consumption as the measure of truth (Panel A), if both are on the same connected component
as i as compared to neither being on the same component, then household i is 6 to 13 percentage
points less likely to rank them incorrectly, and if the average distance of the ranked pair increases
by one standard deviation, then there is a resulting increase of 1 to 1.5 percentage points in the
probability that household i ranks them incorrectly. These results are generally robust to using
physical covariates (Columns 2-4), hamlet fixed effects (Columns 3-4), and ranker fixed effects
(Column 4). Using self-assessment as the truth (Panel B), the average reachability and distance
predict the error of the ranked pairs with physical controls and hamlet fixed effects (Column
3). However, when controlling for ranker fixed effects (Column 4), it is no longer significant at
conventional levels, although the sign and magnitudes of the coefficients are generally similar to
Column 3. Panel C of each table once again shows simulations from the model, which will be
discussed in Section 4.3
16If there is no path from node i to j, the distance is by convention infinite. In regression, then, we use instead of
distance two terms: whether i is reachable from j and a second term which is an indicator function of reachability
times the distance between i and j (where infinite paths are replaced by any arbitrarily high finite number). Note
that distance is not interpretable without reachability and therefore we always include them both in the regression
analysis.
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4. Framework

The results thus far suggest that a network-based model may plausibly describe how information
is spread, since a household’s characteristics within the network predict how much it know about
others. In this section, we carry out what we have previously described as numerical theorizing.
We begin by describing a simple model of information transmission on a network that captures the
basic features of our environment. We derive the expressions for the village level error rates and the
cross-village rankings of village level error rates (our main outcomes of interest) as a function of the
parameters of that simple model. In the next sub-section we turn towards structurally estimating
the parameters of the model using within-village variation. Subsection 4.3 then confirms that the
model does generate the cross-individual patterns that we found in the reduced form analysis in
Section 3(the effect of distance, etc.). The last sub-section reports on our cross-village simulations
which give us our numerical propositions: We estimate the effects of various village characteristics
on village level error rates that we generate by simulating our model.

4.1. Model. We consider a simple variation on the standard Susceptible-Infected-Susceptible (SIS)
model. While this model originates in the epidemiological literature (see e.g., Pastor-Satorras and
Vespignani (2001)), it has also been extended to study the diffusion of information through the
network (e.g. Jackson and Yariv (2007); Jackson and Rogers (2007); Galeotti and Vega-Redondo
(2011); López-Pintado (2008)). As it is not easy to analytically analyze, the literature typically
models the network diffusion process by an approximation wherein nodes independently meet other
nodes with probability proportional to their degree. The authors use a mean-field approximation
to compute the steady state information rate in the network. In a mean-field approximation,
essentially the heterogeneity in local information in the neighborhoods of households is assumed
away and replaced with steady-state mean values.17 This makes the problem analytically tractable.
As the authors of the literature note, the price paid for gaining analytical tractability is assuming
away much of the rich local structure – a phenomenon that we believe is particularly important in
our setting.

We depart from this literature in two main ways. First, our problem is fundamentally multi-
dimensional. We are interested in whether or not an individual node has two distinct pieces of
information. They need to know the income status of two different households in order to rank
them. Second, since our goal is not to recover an analytic approximation to the steady-state distri-
bution, we take the literal environment wherein nodes pass information to their network neighbors
and do not make any mean-field approximation. The mean-field approximation would force us, by
assuming the average neighborhood information rate is also the one that any node faces locally
in her neighborhood, to ignore some of the richness encoded in the process that we are trying to
study. We describe the model below and, in greater detail, in Appendix B.

Let G = (V,E) be a graph, which consists of a set of vertices, V , and a set of (undirected,
unweighted) edges, E. The graph can be described by its adjacency matrix A := A(G) where
Aij = 1{ij ∈ E} and Aii = 0.

17When a node meets a collection of other nodes in a given period, the share of its partners that are informed is the
same as the population average share of neighbors that are informed. This homogeneity makes the problem tractable.
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We use I to denote the set of nine chosen households in the hamlet. The wealth of these
households in I will be the information being transmitted through the graph via a simple diffusion
process. We assume that a household i can correctly rank the wealth of j versus k if and only if i
knows both j and k’s wealths.

Let S(j)
t be an n-vector indicating whether individuals at time t know j’s wealth. That is, S(j)

ti = 1
indicates that i knows j’s wealth at time t while S(j)

ti = 0, says that i does not know j’s wealth at
time t.We are interested in the evolution of this information on our networks. In particular, we are
interested in an |I|-dimensional transmission process where each household’s wealth information is
transmitted through the graph.

To have a steady state where some, but not all nodes, are fully informed, we follow the literature
and model the interplay of two forces. First, a household that has information about some indi-
vidual’s wealth will transmit information to a neighbor with some probability in any given period.
Second, a household that knows some information may forget it in a given period. We establish
three simple rules for the process:

(1) If it is informed, household i ∈ V transmits the wealth of j to neighbors with probability
p, independently of each other.

(2) Household i ∈ I never forgets its own wealth.
(3) Household i ∈ V rI forgets the wealth of j with probability δ, independently of each other.

It helps to define ∆ to be a random matrix with entries ∆ij which are independent Bernoulli
random variables taking on 1 with probability δ and impose the restriction ∆ii = 0. Also, let X(j)

ti

be distributed as Bernoulli with probability p(j)
ti = 1− (1− p)Ai·S

(j)
t−1 . Note that (1− p)Ai·S

(j)
t−1 is the

probability that that none of i’s neighbors who at time t− 1 are informed about j actually inform
i about j’s wealth. Therefore p(j)

ti is the complementary probability.
The behavior of the diffusion processes is then given by the following system of stochastic evo-

lution equations:

S
(j)
t,i = X

(j)
t,i (1− S(j)

t−1,i) + S
(j)
t−1,i(1−∆ij) ∀j ∈ I, ∀i ∈ V.

In vector form: for every j ∈ I,

S
(j)
t = Diag

(
X

(j)
t

) (
ιn − S(j)

t−1

)
+ S

(j)
t−1
′
(
In −Diag

(
∆(j)

))
,

where ιn = (1, ..., 1)′. This generates a well-defined Markov process, albeit one that is difficult to
characterize analytically.

Since we are interested in whether i can rank the wealth of j versus k, we define D(j,k)
ti as:

D(j,k)
ti := S

(j)
ti S

(k)
ti .

Therefore, D(j,k)
ti is a random variable which describes whether at period t, i knows whether j or k

is wealthier – note that as assumed above D(j,k)
ti is only equal to 1 when both S(j)

ti and S(k)
ti are equal

to one.
In what follows, we use the empirical analogues of D(j,k)

ti and functions of D(j,k)
ti to construct the

outcome measures:
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(1) Hamlet level error rate for hamlet r:

Errorr := 1
|I|
(|I|−1

2
) ∑

i

∑
j<k: j 6=i,k 6=i

(
1−D(j,k)

ti

)
.

(2) Whether the error rate of hamlet I exceeds that of J :

ErrorI>J := 1{ErrorI > ErrorJ}.

(3) Household level error rate for household i in hamlet r:

Errorir := 1(|I|−1
2
) ∑
j<k: j 6=i,k 6=i

(
1−D(j,k)

ti

)
.

(4) Whether household i ranked j versus k correctly (all in hamlet r):

Errorijkr := 1−D(j,k)
ti .

4.2. Structural Estimation and Numerical Propositions. In this section, we estimate the
diffusion model that we detailed in the previous section. The parameter estimates of γ = (p, δ)
are interesting in their own right as they represent the underlying transmission and forgetting
probabilities. More importantly, having a structural estimate of the model also enables us to
simulate out information transmission and then study the behavior of the reduced form regressions
under these simulations. This is useful because the model itself is analytically intractable, i.e. it
does not allow for clear predictions as to what regression coefficients ought to theoretically look
like if we conduct regressions of information outcomes on network statistics for data generated by
this model. The exercise conducted here provides a method of numerical theorizing: by comparing
the reduced form regression estimates to the counterparts generated by simulated data, we can see
whether the patterns we pick up in the data are qualitatively similar to those predicted by standard
models from network theory.18

To estimate the model, we use simulated method of moments (SMM). We use two moments, so
the model is just-identified. The first moment is the error rate for the graph. The second moment
is a weighted version of an error rate, where when considering how i ranks j versus k we weight
by how well connected i is to each of j and k. The key difference between the two moments is this
weighting.

Specifically, define m1(Zr) as the empirical error rate for graph r, Errorr as defined in Section
4.1, and set:

ψ1(Zrs; γ) := m1(Zrs; γ)−m1(Zr)

where m1(Zrs; γ) is the error rate for graph r under simulation s. Let m2(Zr) be the error rate
among the i ranking j versus k, weighted by the number of paths between i and j as well as i and

18We are focusing on the qualitative as opposed to the quantitative predictions from the model. Given that for much
of the parameter space we retain the same predictions, we argue that our findings should typically be conservative.
Note that for our simulation exercise to be misleading, the following must be true. It must be the case that the
relationship between the simulated outcomes based on a diffusion process on the induced subgraph and the sampled
network statistics has to have a different sign than the relationship between the true outcomes (generated by a
diffusion process on the entire graph) and the sampled network statistics.
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k, and put
ψ2(Zrs; γ) := m2(Zrs; γ)−m2(Zr),

where m2(Zrs; γ) is the analogue from simulation s. Intuitively, the differential variation in ψ2

versus ψ1 identifies δ under our model, while ψ1 identifies p given δ. (In practice, of course, they
are jointly estimated.) We estimate:

γ̂ = argmin
γ∈[0,1]2

∥∥∥∥∥ 1
R

R∑
r=1

1
S

S∑
s=1

ψ(Zrs; γ)
∥∥∥∥∥

2

where ψ = (ψ1, ψ2)′.
For some intuition on identification, consider the following example where i is ranking j versus k

as well as j′ versus k′. Assume d (i, j′) = d (i, k′) = 2 and there are many such path between i and
each of j′ and k′. Meanwhile assume d (i, j) = d (i, k) = 2 but there is only one such path between
i and each of j and k. Then, ceteris paribus, i is more likely to hear about the wealths of j′ and
k′ as compared to the wealths of j and k. However, notice that if i has D(j,k)

ti = 1 and D(j′,k′)
ti = 1,

the probability i forgets either the wealth of j′ or k′ is the same as the probability that i forgets
either the wealth of j or k: each occurs with probability 1− (1− δ)2.

Using this approach, we find that γ̂ = (0.4, 0.35), with standard errors of (0.21, 0.21). While the
standard errors are quite large, in Section 5.3 we show robustness of our approach to a variety of
other parameter values.

4.3. Simulation Results at the Individual Level. We begin by exploring the predictive capa-
bilities of these parameter estimates at the individual level.

Given the parameter γ̂, we simulate out a diffusion process in the following manner: Every
individual in I, the set of randomly chosen households, is thought to know their own wealth.
We take 100 draws from the invariant distribution of the diffusion process described above by
running the transmission process out 100 times after a burn-in phase of 50 rounds. For every draw,
s = 1, ..., 100, we compute an error dummy, Errorsijkr indicating whether i ranked j versus k wrong
in hamlet r. We then compute the expected error rate across the 100 simulations, Errorijkr :=
1
S

∑
sError

s
ijkr. To generate predictions corresponding to Table 2, we use as an outcome variable

ErrorSIMir :=
(|I|−1

2
)−1∑

j<k: j 6=i,k 6=iErrorijkr and to generate predictions corresponding to Table
3, we use Errorijkr directly. Note that this is described in more detail in Appendix B.

We then regress the simulated outcomes on the various network characteristics of interest to
observe what the qualitative relationship between the network characteristic and the error rate
should have been under the null of our model. Specifically, we rerun the same regressions as in
Tables 2A, 2B, and 3 using the simulated data from the model. The results using the simulated
data are shown in Panel C of each table.19

19We note that it may be the case that projecting a complex diffusion process into a specific linear regression
specification may itself generate unintuitive coefficient estimates. However, as our method compares the signs of those
generated by simulations from the model and the real data, if the model is a good description of the information
transmission process, the unintuitive projections should be similar across both the simulations and the real data.
That is, even still, it is the case that comparing two regressions – one with a simulated outcome variable and another
with an empirical one – turns out to be a reasonable test of whether the real-life process is like the model process.
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By and large, Panel C of Tables 2A and 2B confirms our intuitions. Households that have a higher
degree are associated with lower error rates, households that have higher clustering are associated
with lower error rates, and households that are more eigenvector central are associated with lower
error rates. Similarly, the distance and reachability results also conform to our intuitions. In Panel
C of Table 3, we find that being in the same component as those who an individual is ranking reduces
the error rate while being several steps farther away increases the error rate. Qualitatively, the
patterns all match the actual empirical results shown in Panels A and B of both tables, though the
simulated magnitudes for clustering and eigenvector centrality are larger in the simulated data than
in the actual data in Tables 2A and B and the simulated magnitudes for distance and reachability
are larger in the simulated data than in the actual data in Table 3.20

4.4. Simulation Results at the Village Level: Numerical Propositions. A key question is
how network-level characteristics affect information diffusion across the network. We start from
the important analytical result in Jackson and Rogers (2007) showing that if network I’s degree
distribution and neighbor degree distribution first-order stochastic dominates network J ’s degree
distribution and neighbor degree distribution, respectively, then in steady state of a mean-field
approximation to the matching process described above, network I should have a higher equilibrium
information rate than network J .21

As noted above, this result unfortunately cannot be directly applied to our context for at least
two reasons. First, as discussed in Section 4.1, the model uses a mean-field approximation to
a matching process, which itself tries to approximate the contagion process described above, to
gain analytic tractability. However, we are precisely interested in the cases where the mean-field
approximation may not be apt, i.e. where we do not believe that everyone’s local neighborhood
essentially contains the same average information as the global average. The approximation does
not work well when, for instance, each node does not have a proportion of neighbors who are
infected equal to the average neighbor infection rate. We would imagine this not to be true, for
instance, when a household does not forget its own wealth. Second, to rank households, each node
needs to have two pieces of information, whereas there is only thing to learn in Jackson and Rogers
(2007). While one can readily extend their model and use a two mean-field approximations while
tracking two independent diffusion processes, again the aforementioned local patterns will be lost.

We therefore use the numerical simulations of our model to test whether we should expect the
equivalent result to hold in our context. The simulations are described in detail in Appendix B. As
discussed above, we generate Errorijkr via the aforementioned simulation process and, in this case,
we construct hamlet level error rates by averaging over the individual level error rates ErrorSIMir .
Then, we compute the share of times ErrorSIMI > ErrorSIMJ for hamlets I and J . We regress this
variable on whether I stochastically dominates J or vice versa. The results, which are reported in
20One reason for this is that the simulations assume that our sampled network is the true network, whereas in fact it
is a subset of the true network. There is therefore more measurement error in the true network measures (in Panels
A and B) than in the simulated network measures (Panel C). As discussed by Chandrasekhar and Lewis (2012), this
problem is likely to be least severe for degree and most severe for eigenvector centrality, since centrality is the most
global network feature and thus most sensitive to measuring the entire network. This is consistent with the empirical
results.
21The neighbor degree distribution is the empirical cdf of the number of links a neighbor has, taken over all neighbors
as we count over all nodes.
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Panel C of Table 4, suggest that the Jackson and Rogers (2007) pattern holds in our context and
a complete discussion of the table is provided in Section 5.1.

We can also apply the same methodology to test other claims about the role of other fundamental
network characteristics. We choose six standard measures used in various related, but otherwise
different, models – network size, average degree, average clustering, first eigenvalue of adjacency
matrix, link density and fraction of nodes in giant component – and simulate how they affect
diffusion within our estimated model, described in detail in Appendix B. As discussed above, we
generate Errorijkr via the aforementioned simulation process and we then construct hamlet level
error rates by averaging over the individual level error rates ErrorSIMir .

Given these simulation-based hamlet level error rates, we estimate:

(4.1) ErrorSIMr = β0 +W ′rβ1 +X ′rδ + εr

where ErrorSIMr is the average error rate in hamlet r from the simulations and Wr is a vector
of graph level statistics including average degree, average clustering, the number of households
in the hamlet, first eigenvalue, link density, and fraction of nodes in giant component. Together
with the set of hamlet-level covariates Xr, we include many potentially correlated variables in the
specification of the regression model. It is not ex ante obvious that the conditional correlations of
network features with the outcome variables will behave the same as the unconditional correlations,
and this is what we look at here.

The results are reported in Panel C of Table 5. When the network characteristics W are in-
cluded one by one, most of the network statistics of interest have significant effects on the error
rate and they all go in the “intuitive” direction: there are lower error rates in villages where the
average degree is higher, clustering is higher, the first eigenvalue of adjacency matrix is bigger,
the link density is higher and there are more households that are in the giant component.22 The
inclusion of hamlet level covariates make no difference (see Appendix F, Table F.5). When we
jointly estimate the relationship of all of these network variables with the error rate, we observe
some counterintuitive patterns (Column 7, Panel C). In particular, while most of the effects remain
significant, average degree and average clustering now have the “wrong” sign, suggesting that even
with more than 600 hamlets, we may not have enough independent variation to properly estimate
these effects jointly.23 This suggests that it is hard to separately identify the effects of these very
interconnected variables or that or that some of our intuition is off when we are considering the
variables conditional on others.

5. Cross hamlet comparisons

5.1. Stochastic Dominance Results. We are interested in testing the Jackson and Rogers (2007)
predictions about stochastic dominance in the degree distribution. In addition to being interesting
22We do not interpret the effect of hamlet size because it is difficult to do so in our framework.
23A natural worry is that average degree, number of households, and link density (which amounts to average degree
over number of households) may be generating too much collinearity. However, conditional on the other covariates
in column 7, omitting link density makes no difference to the “wrong” sign that degree takes on in the the regression.
It appears, instead, that conditioning on the first eigenvalue and clustering leaves average degree to not matter in an
obvious way. A table documenting this is available upon request.
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in its own right, focusing on stochastic dominance has a major advantage in our context. Working
with a sampled graph, rather than the full network, may result in bias that could lead to sign
reversals in the estimates. An advantage of working with FOSD is that while we would expect
attenuation bias in our estimates, we would not expect a sign reversals (Chandrasekhar and Lewis,
2012).24 As such, our results would provide a lower bound of the predictive capabilities of the
network.

To our knowledge, the claim about stochastic dominance has not been empirically tested before
due to data limitations. In order to do so, a large sample of both locality networks and information
diffusion is necessary. The data collected for this study provides a plausibly large enough sample
(631 hamlets) to do so. We begin by estimating a regression of whether the error rate of the hamlet
I exceeds the error rate of hamlet J (ErrorI>J) on dummy variables that indicate whether hamlet
I stochastically dominates hamlet J (1 {I � J}) and vice versa (1 {J � I}):25

(5.1) ErrorI>J = β0 + β1 · 1 {I � J}+ β2 · 1 {J � I}+X ′IJδ + εIJ .

The omitted category is when hamlet I’s and hamlet J ’s degree distribution are not comparable.26

We can also estimate regressions where we drop hamlets that are not comparable:

(5.2) ErrorI>J = β0 + β1 · 1 {I � J}+X ′IJδ + εIJ .

Table 4 presents the results of these regressions. Column 1 presents the results from estimating
equation (5.1), while Column 2 presents the results from estimating equation (5.2). For both mod-
els, we include stratification group fixed effects, estimate with OLS, and specify two-way clustered
standard errors, for hamlet I and hamlet J . Once again, we compute error rates with consumption
as measure of truth (Panel A) and with self-assessment as measure of truth (Panel B). The results
validate the implications of the model: if a hamlet’s degree distribution first-order stochastic domi-
nates another hamlet’s distribution, it will have lower error rates in ranking the income distribution
of the hamlet (for both measures of truth). Specifically, as Panel B, Column 2 shows, if hamlet I
dominates J , then I has on average a 17pp lower error rate than J (significant at the 1 percent
level). Columns 3 and 4 repeat the exercises of Columns 1 and 2, respectively, adding in physical
controls to which the results are robust and the coefficients remain stable.

5.2. General Cross-Hamlet Results. We now present the general hamlet level regression. Our
theoretical benchmarks are the numerical simulations described above and presented in Panel C
of Table 5. We thus present equivalent reduced form analysis in Panel A and B of Table 5. In
Columns 1 to 6, we present the univariate regressions while in Column 7 we present the multivariate
regression. Once again, we consider error rates based on consumption (Panel A) and the self-
assessment metric (Panel B).

24Sign-switching would be possible only when over half of the categorizations of I dominating J become flipped due
to sampling, which probabilistically does not happen.
25Stochastic dominance was determined at the decile level. If the distribution function for the degree of hamlet I
was weakly lower than J at all deciles (and was strict for at least one), then we say that I dominates J .
26Stochastic dominance establishes a partial ordering only.
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The results look very similar regardless of using consumption or the self-assessment metric. The
univariate regressions tend to have the expected sign. For instance, an increase in the average
degree of the hamlet is associated with a lower error rate (column 1), an increase in the average
clustering coefficient is associated with a lower error rate (column 2), and an increase in the number
of households is not associated with the error rate (column 3, Panel A) or associated with a higher
error rate (column 3, Panel B). In addition, as seen in Column 4, a higher first eigenvalue of the
adjacency matrix is associated with a considerable reduction of the error rate (a one standard
deviation increase is associated with a 6pp drop in error rate ). Column 5 shows that a higher
fraction of nodes being in the giant component is associated with an extremely lowered error rate.
As expected, Column 6 of Panel B shows that a higher density of links corresponds to a lower
error rate, though we do not find this in Panel A. Column 7 yields the expected results except
for the case of average degree (for both outcome variables). However, this is likely to be the case
because the first eigenvalue is highly correlated (0.88) with average degree and that error rates are
really a function of the entire distribution of links. As discussed in footnote 23, it appears that
conditional on the first eigenvalue (a global property that captures a key aspect of the diffusion
process), average degree need not enter in the obvious way.

When we run the regressions one by one, the reduced form results match up quite closely with
our numerical predictions. Whether it is Panel A or Panel B that we compare with Panel C and
irrespective of whether the covariates get included (see Appendix F, Table F.5 for comparison
without covariates), whenever both coefficients are significant (which is most of the time), they
always have the same sign. Including all network variables in the regression model (Column 7), we
once again find a good match between the actual and simulated results. Strikingly, higher average
degree appears to be a positive and significant predictor of error rate (higher degree means more
errors) across both our reduced form and simulated results in this column. The first eigenvalue of
the adjacency matrix, the link density and the fraction of nodes in the giant component all come
negative (and mostly significant) in Panels A and B, exactly as our simulations would have had
us expect and confirming intuitions that come from Bollobás et al. (2010), among others. The one
exception is clustering which comes in with the “right” sign in the data, but was positive in the
simulations.

5.3. Robustness. To study the robustness of our numerical propositions, especially since the
bounds on estimates are not very tight, we redo the cross village simulation and regression exercise
for a wide interval of parameter values more or less centered around the estimated values. While
the parameter values matter – some correlations change when we approach the boundaries of the
interval – the basic predictions turn out to be remarkably robust.

For ease of presentation, we report the results on four chosen parameter values: (p, δ) ∈ {0.1, 0.8}2.
We present these because it allows us to document four conceptually distinct cases: high p/δ ra-
tio wherein the effective rate of transmission is high, low p/δ ratio wherein the effective rate of
transmission is low, and p/δ ratio of 1 with high transmission levels versus low transmission levels.
These last two cases are ones in which the level of transmission (0.1 versus 0.8) and the network
architecture may generate different patterns despite having the same effective transmission rate.
We present our results in a collection of tables in Appendix (D).
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While in principle we only needed the numerical propositions to be confirmed by the data local
to the parameter value estimated under the model, there are several reasons why we like this
exercise. First, if we find that the qualitative predictions are robust to (p, δ), then the conclusions
of our specific exercise are more likely to be portable to outside contexts. Second, we are interested
in the qualitative predictions of the structural model for several reasons: we are working with
sampled network data, we do not add disturbance terms into the model and we refrain from adding
high dimensional complexities such as allowing for heterogeneous transmission probabilities (e.g.,
p (X; θp) and δ (X; θδ) as functions). As such, it would be more reassuring if we found that the
patterns held for a larger region of the parameter space. Third, such a robustness exercise will
provide us with insights as to when and why our standard intuitions are likely to fail.

Ultimately, as seen in Appendix (D), we find that the aforementioned results are essentially
robust; the qualitative predictions are mostly invariant to the parameter values (p, δ). While some
of the magnitudes change (higher δ tends to correspond to lower correlations between network
characteristics and outcomes), the basic qualitative predictions remain the same. In addition,
there is power against unreasonable regions of the parameter space. For instance, we often get
qualitatively different predictions in the low transmission, high forgetting regime (0.1, 0.8). This is
a case in which information essentially travels very short distance as the probability of forgetting is
very high relative to the transmission rate and therefore diffusion is greatly handicapped. At this
boundary, we find, for example, that the conditional effects of eigenvector centrality of the ranker
(Table D.2), eigenvector centrality of the rankees (Table D.3), average degree of a village, the first
eigenvalue of the adjacency matrix and the fraction of nodes in the giant component (Table D.5) all
switch signs relative to both the effects we find in the data and also the other parameter values.27

6. Application: Targeting

In this section, we test whether the network characteristics affect the quality of real-world deci-
sions that rely on communal information. To do so, we examine the targeting experiment discussed
in Section 2.3.3 above. In particular, we test whether community-based targeting is relatively bet-
ter than proxy-means testing at identifying the poor in networks that we expect to be better at
diffusing information about poverty. If communities efficiently aggregate information, we would
expect that this would be the case, since community-based targeting utilizes local information and
the findings thus far have shown that better networked communities hold more accurate informa-
tion. However, if there are distortions in the processes through which information is aggregated,
this may not necessarily be the case.

We estimate regressions of the form:

(6.1) yr = α+ βC1 {r ∈ C} · ρr + βH1 {r ∈ H} · ρr + τc1 {r ∈ C}+ τh1 {r ∈ H}+ ρr + εr,

where yr is the rank correlation between the targeting program’s assessment of poverty and the
benchmark of true poverty (either based on per-capita consumption or based on the self-assessment),
1 {r ∈ C} and 1 {r ∈ H} are dummies for experimental assignment of hamlet r to either community

27The stochastic dominance results, however, remain completely robust across all presented parameter values (Table
D.4).
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or a hybrid treatment (the omitted category is PMT), and ρr is a measure (discussed below) of
how diffusive a network is. We are mostly interested in βC , and to a lesser extent, βH . Given that
higher ρr indicates that a network is better at spreading information, then we would expect that
βC > 0, or in other words, we expect community-based targeting to perform better relative to a
proxy-means test when ρr is higher.

We take two approaches to computing ρr, the diffusiveness of a hamlet network. In Table
6, we first compute ρr by using principal-components to aggregate the six measures of network
diffusiveness from Table 5: average degree, clustering, first eigenvalue, number of households, link
density and fraction of nodes in the giant component. We then take the first principal component
vector corresponding to the covariance matrix between these six network attributes and define
ρr =

∑6
k=1 vkWk,r where vk are the entries of the principal component vector and {Wk,r} are the

six network features for hamlet r. Panel A of Table 6 shows that βC and βH are not distinguishable
from zero when we take yr to be the rank correlation using consumption data, i.e. we do not
observe that community targeting is more accurate in more diffusive communities relative to the
PMT (Columns 2-5 of Panel A of Table 6). However, when we take yr to be the rank correlation
using self-assessment data, we find positive and significant estimates of βC and βH (Columns 2-5
of Panel B of Table 6). Conditional on community targeting, a one standard deviation increase in
diffusiveness corresponds to a 0.06 increase in the rank correlation of the targeting outcome with the
self-assessment benchmark (which has a mean of 0.4) relative to the PMT. Not surprisingly, when
we pool the treatments, the relationship persists.The fact that ρr only matters for the effectiveness
of community targeting when assessed using self-assessment is consistent with the experimental
findings in Alatas et al. (2012), which also showed that in general, community meetings increased
the rank correlation with self-assessment, but not with per-capita consumption.

A second approach is to use the model from Section 4 and simulations as discussed in Appendix
B to compute ρr. Specifically, we use the simulated error rate for a hamlet, ErrorSIMr , as an inverse
measure of its diffusiveness since, by definition, networks that are better at spreading information
should exhibit lower error rates. Table 7 replicates the exercises in Table 6, but now uses the
simulated error rate as ρr. Since higher ErrorSIMr means less diffusiveness, i.e. lower, ρr, we
instead hypothesize that βC < 0. As expected, we find that community targeting differentially
works better when a hamlet has lower error rates when measured using self-assessment. A one
standard deviation increase in the simulated error rate, conditional on community targeting, a
0.075 decrease in the rank correlation of the targeting outcome with the self-assessment benchmark,
relative to the PMT.28

Taken together, the findings show that the network structure and diffusion model not only
accurately predict how information spreads, but are also useful in understanding how real decisions
are made using that information.

28We note that in Panel B of both Tables 6 and 7, a more diffusive network is correlated with worse targeting under
PMT when measured by the correlation with self-assessment. In fact, we can show that the covariance between
consumption based wealth ranking and self-assessment based wealth ranking decreases as we look at more diffusive
hamlets. Therefore, it seems that high ρr hamlets (for the case of the principal component) makes the self-assessment
based notions of poverty harder to detect by conventional means. However, it seems that the community does know
more about who is poor by this criterion; as the community also puts weight on this criterion, the community pulls
the outcome closer to the self-assessment metric.
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7. Conclusion

In this paper, we estimate a simple model of how information about poverty status is transmitted
within the network, and then use the estimated model to predict the relationship between the
network characteristics and how information on poverty status is aggregated within the network.
We then compare our predictions with empirical evidence from a unique dataset of 631 villages,
where we have both detailed social network data and measures of how accurately households can
describe the poverty status of other households. The empirical results match up nicely with the
model predictions: the characteristics that predict better information aggregation in the model also
do so in the data. In particular, we provide evidence supporting the Jackson and Rogers (2007)
claim that if a network’s degree distribution first-order stochastic dominates another’s distribution,
it will have an overall lower error rates in ranking the income distribution of the hamlet. We then
show that the network can be utilized for real-world policy decision making: communities that
are better networked are more likely to accurately choose the beneficiaries in community-based
targeting relative to more traditional data-driven approaches.

The results are encouraging because they suggest that possibility of using standard network sta-
tistics to predict whether in a particular context we would expect effective information aggregation,
or conversely, whether some outside intervention will be needed to supplement information flows
through the network. Moreover the results give us some confidence that we are not very far off in
using very simple infection style models to study communications in networks.

One limitation of what we do here comes from the data: while we had access to over 600 networks,
a relatively small fraction of each network was sampled and as a result, our measures of the network
characteristics are likely to be biased. This no doubt limits the precision of our predictions in the
cross-village data – here we only ask whether the correlations ar e qualitatively similar to those
observed in the data. One important next step would be to find/collect a dataset that has much
more detailed network data and see how much better we do in quantitatively predicting network
outcomes.
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Tables

Mean Standard Deviation
(1) (2)

Number of households 53.08 27.32
Average degree 8.25 2.65
Variance of degree distribution 16.35 13.63
Average clustering coefficient 0.41 0.18
Fraction of nodes in giant component 0.50 0.24
Average path length 2.02 0.50
First eigenvalue 8.57 3.13
Inequality 1.02 0.39
Error rate (consumption) 0.50 0.17
Error rate (self-assessment) 0.46 0.22

Degree 8.35 4.91
Clustering coefficient 0.64 0.30
Eigenvector centrality 0.23 0.14
Error rate (consumption) 0.50 0.20
Error rate (self-assessment) 0.45 0.26

Table 1: Descriptive Statistics

Panel A: Village level

Panel B: Household level

Notes:  Panel A provides sample statistics on the network characteristics of the 631 villages in the sample.  It 
also provides information on the average level of competency in the village in assessing the poverty level of 
other members of the village.  Panel B provides equivalent sample statistics for the 5,633 households in the 
sample.
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(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

D
egree

-0.0098***
-0.0103***

-0.0029***
-0.0021**

(0.0010)
(0.0013)

(0.0006)
(0.0010)

C
lustering

-0.0525***
-0.0415***

-0.0087
-0.0062

(0.0128)
(0.0119)

(0.0079)
(0.0087)
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(0.0012)
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0.0002

(0.0158)
(0.0145)

(0.0010)
(0.0108)
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0.107**
-0.103***

-0.0439
(0.0415)

(0.0545)
(0.0247)

(0.0408)
R
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0.061

0.004
0.008

0.065
0.674

0.672
0.673

0.674
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-0.0280***
-0.0251***

-0.0127***
-0.0081***

(0.0011)
(0.0011)

(0.0008)
(0.0012)
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-0.227***
-0.193***

-0.0856***
-0.0830***

(0.0145)
(0.0113)

(0.0106)
(0.0095)
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-0.746***
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-0.445***

-0.223***
(0.0346)
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(0.0259)

(0.0381)
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(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

D
egree

-0.0080***
-0.0082***

-0.0023***
-0.0016

(0.0009)
(0.0012)

(0.0006)
(0.0009)

C
lustering

-0.0489***
-0.0389***

-0.0087
-0.0063

(0.0120)
(0.0116)

(0.0078)
(0.0086)

E
igenvector C

entrality
-0.135***

0.0344
-0.0683***

-0.0318
(0.0310)

(0.0411)
(0.0206)

(0.0331)
R

-squared
0.081

0.052
0.055

0.083
0.666

0.665
0.666

0.666

D
egree

-0.0102***
-0.0109***

-0.0030***
-0.0021*

(0.0012)
(0.0015)

(0.0007)
(0.0012)

C
lustering

-0.0517***
-0.0423***

-0.0028
0.0001

(0.0146)
(0.0141)

(0.0097)
(0.0106)

E
igenvector C

entrality
-0.148***

0.0709
-0.0819***

-0.0376
(0.0394)

(0.0529)
(0.0243)

(0.0398)
R

-squared
0.098

0.066
0.069

0.100
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0.677
0.678
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D
egree

-0.0277***
-0.0245***

-0.0127***
-0.0081***

(0.0012)
(0.0011)

(0.0008)
(0.0012)

C
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-0.228***
-0.192***

-0.0866***
-0.0833***

(0.0143)
(0.0114)

(0.0106)
(0.0095)

E
igenvector C

entrality
-0.746***

-0.233***
-0.444***

-0.224***
(0.0348)

(0.0379)
(0.0258)

(0.0379)
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0.096
0.188

0.390
0.676

0.656
0.683
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(1) (2) (3) (4)

Average Reachability -0.128*** -0.0858*** -0.0657*** -0.0577**
(0.0181) (0.0180) (0.0127) (0.0278)

Average Distance 0.0183* 0.00845 0.0156*** 0.0184*
(0.0099) (0.0094) (0.0057) (0.0098)

Average Degree -0.0056*** 0.0010 0.0007
(0.0015) (0.0026) (0.0026)

Average Clustering -0.0102 0.0162 0.0140
Coefficient (0.0211) (0.0219) (0.0229)
Average Eigenvector 0.0485 -0.0512 -0.0590
Centrality (0.0538) (0.0726) (0.0757)
R-squared 0.015 0.016 0.112 0.168

Average Reachability -0.152*** -0.102*** -0.0722*** -0.0397
(0.0239) (0.0230) (0.0149) (0.0324)

Average Distance 0.0209* 0.0113 0.0163** 0.0152
(0.0126) (0.0120) (0.0070) (0.0124)

Average Degree -0.0071*** -0.0003 -0.0010
(0.0020) (0.0032) (0.0033)

Average Clustering -0.0346 -0.0098 -0.0127
Coefficient (0.0262) (0.0271) (0.0273)
Average Eigenvector 0.115 0.0381 0.0098
Centrality (0.0719) (0.0911) (0.0952)
R-squared 0.035 0.038 0.187 0.269

Average Reachability -0.758*** -0.624*** -0.578*** -0.726***
(0.0080) (0.0103) (0.0142) (0.0290)

Average Distance 0.0934*** 0.0588*** 0.0592*** 0.0419***
(0.0063) (0.0059) (0.0069) (0.0094)

Average Degree -0.0098*** -0.0079*** -0.0073***
(0.0006) (0.0016) (0.0016)

Average Clustering -0.0982*** -0.112*** -0.0577***
Coefficient (0.0103) (0.0143) (0.0146)
Average Eigenvector -0.130*** -0.199*** -0.0844
Centrality (0.0214) (0.0509) (0.0516)
R-squared 0.599 0.619 0.650 0.868

Physical Controls No Yes Yes Yes
Village FE No No Yes Yes
Ranker FE No No No Yes

Table 3: The Correlation Between Inaccuracy in Ranking a Pair of Households in a Village and the 
Average Distance to Rankees

Panel A:   Consumption Metric

Panel B:  Self-Assessment Metric

Panel C:   Simulation

Notes:  This table provides an estimate of the correlation between the accuracy in ranking a pair of households in a village and the 
characteristics of the households that are being ranked.  In Panel A, the dependent variable is a dummy variable for whether person i  ranks 
person j  versus person k  incorrectly based on using consumption as the metric of truth (the sample mean is 0.497).  In Panel B, the self-
assessment variable is the metric of truth (the sample mean is 0.464).  In Panel C, the outcome variables are whether i  ranks j  versus k 
incorrectly in the simulated data, described in greater detail in Appendix B.  The sample is comprised of 155,751 ranked pairs in Panel A, 
117,157 in Panel B, and 139,420 in Panel C.  Standard errors are clustered by village and are listed in parentheses.  *** p<0.01, ** p<0.05, * 
p<0.1.
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(1) (2) (3) (4)

I fosd J -0.0853*** -0.123*** -0.0902*** -0.125***
(0.0196) (0.0306) (0.0195) (0.0291)

J fosd I 0.0394** 0.0499***
(0.0185) (0.0182)

Observations 192,510 141,755 192,510 141,755

I fosd J -0.102*** -0.174*** -0.0795*** -0.129***
(0.0180) (0.0268) (0.0182) (0.0264)

J fosd I 0.0748*** 0.0621***
(0.0170) (0.0169)

Observations 192,510 141,755 192,510 141,755

I fosd J -0.160*** -0.348*** -0.175*** -0.356***
(0.0163) (0.0224) (0.0165) (0.0223)

J fosd I 0.190*** 0.204***
(0.0178) (0.0166)

Observations 179,101 130,739 179,101 130,739

Non-Comparable Yes No Yes No
Physical Controls No No Yes Yes
Stratification Group FE Yes Yes Yes Yes

Table 4: Stochastic Dominance

Panel A:   Consumption Metric

Panel B:  Self-Assessment Metric

Panel C:  Simulation

Notes:  In these regressions, the outcome variable is a dummy for whether the error rate of village I  exceeds the error rate of village 
J .  When included, physical controls are differences between the standard controls for villages I  and J .  Panel A presents results 
for error rates using the consumption metric.  Panel B presents results for error rates using the self-assessment metric. Panel C 
presents results for error rates using simulated data, as described in Appendix B.  Standard errors in parentheses, two-way clustered 
at I and J.  *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5) (6) (7)

Average Degree -0.0073** 0.0206*
(0.0035) (0.0110)

Average Clustering -0.211*** -0.265**
(0.0632) (0.106)

Number of 0.0006 0.0004
Households (0.0004) (0.0004)
First Eigenvalue of -0.0053* -0.0103*
Adjacency Matrix (0.0028) (0.0061)
Fraction of Nodes -0.156*** -0.139**
in Giant Component (0.0447) (0.0599)
Link Density -0.0808 0.183

(0.0852) (0.133)
R-squared 0.261 0.280 0.260 0.260 0.277 0.255 0.295

Average Degree -0.0127*** 0.0117
(0.0033) (0.0125)

Average Clustering -0.311*** -0.321***
(0.0640) (0.113)

Number of 0.0012*** 0.0007
Households (0.0004) (0.0005)
First Eigenvalue of -0.0063** -0.0053
Adjacency Matrix (0.0023) (0.0065)
Fraction of Nodes -0.223*** -0.106
in Giant Component (0.0461) (0.0831)
Link Density -0.233*** 0.204

(0.0751) (0.135)
R-squared 0.316 0.337 0.319 0.308 0.332 0.311 0.340

Average Degree -0.0274*** 0.0424***
(0.0037) (0.0100)

Average Clustering -0.303*** 0.295**
(0.0570) (0.113)

Number of 0.0003 0.0001
Households (0.0003) (0.0004)
First Eigenvalue of -0.0243*** -0.0376***
Adjacency Matrix (0.0032) (0.0051)
Fraction of Nodes -0.379*** -0.578***
in Giant Component (0.0478) (0.0820)
Link Density -0.381*** -0.261**

(0.0768) (0.113)
R-squared 0.583 0.544 0.506 0.603 0.606 0.534 0.670

Table 5: Correlation between Village Network Characteristics and Village-Level Error Rate

Panel A:   Consumption Metric

Panel B:  Self-Assessment Metric

Panel C:   Simulation

Notes:  This table provides village network characteristics and the error rate in ranking others in the village.  Columns 1-6 show the univariate regressions, 
while column 7 provides the multvariate regressions.  Physical covariates include consumption, education, PMT score, agricultural share, education of 
household head and RT head, urban dummy, stratification group FE, and inequality.  The sample comprises 631 villages.  Panel A presents results for error 
rates using the consumption metric.  Panel B presents results for error rates using the self-assessment metric.  Panel C presents results for error rates using 
simulated data, as described in Appendix B.  Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1.
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(1) (2) (3) (4) (5) (6)

Community x Diffusiveness -0.0101 -0.0102 -0.0109 -0.0125
(0.0164) (0.0165) (0.0172) (0.0176)

Hybrid x Diffusiveness -0.0104 -0.0110 -0.0161
(0.0152) (0.0153) (0.0169)

Community -0.0587* -0.0622* -0.0588* -0.0617* -0.0594*
(0.0319) (0.0323) (0.0323) (0.0336) (0.0340)

Hybrid -0.0592* -0.0608* -0.0579* -0.0515
(0.0327) (0.0329) (0.0331) (0.0348)

Diffusiveness -0.0065 -0.003 0.0010 0.0057 0.0008
(0.0109) (0.0114) (0.0140) (0.0162) (0.0140)

Community or Hybrid -0.0571*
(0.0294)

Community or Hybrid x Diffusiveness -0.0135
(0.0146)

R-squared 0.014 0.015 0.019 0.096 0.150 0.096

Community x Diffusiveness 0.0323** 0.0321** 0.0278* 0.0266
(0.0154) (0.0155) (0.0164) (0.0167)

Hybrid x Diffusiveness 0.0368** 0.0357** 0.0353**
(0.0150) (0.0151) (0.0160)

Community 0.108*** 0.108*** 0.114*** 0.114*** 0.112***
(0.0321) (0.0323) (0.0321) (0.0338) (0.0342)

Hybrid 0.0842** 0.0793** 0.0852** 0.0846**
(0.0330) (0.0334) (0.0332) (0.0346)

Diffusiveness -0.0311*** -0.0239** -0.0272* -0.0290* -0.0267*
(0.0111) (0.0116) (0.0143) (0.0157) (0.0142)

Community or Hybrid 0.100***
(0.0299)

Community or Hybrid x Diffusiveness 0.0311**
(0.0142)

R-squared 0.033 0.029 0.043 0.127 0.163 0.126

Keca FE No No No Yes Yes Yes
Demographic Covariates No No No Yes Yes Yes

Panel B: Rank Correlation (Self-Assessment)

Panel A: Rank Correlation (Consumption)

Notes:  The outcome variable is the rank correlation.  Panel A presents rank correlation with community using the consumption metric.  Panel B presents 
rank correlation with community using the self-assessment metric.  Diffusiveness is the predicted value based on the first principal component vector of 
the covariance matrix of the network characteristics described in Table 4.  Physical covariates include consumption, education, PMT score, agricultural 
share, education of household head and RT head, urban dummy, stratification group FE, and inequality.  Robust standard errors in parentheses.  *** 
p<0.01, ** p<0.05, * p<0.1

Table 6: Rank Correlation on Targeting Type Interacted with Diffusiveness
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(1) (2) (3) (4) (5) (6)

Community x Simulated Error Rate -0.181 -0.166 -0.101 -0.113
(0.166) (0.166) (0.180) (0.183)

Hybrid x Simulated Error Rate -0.195 -0.199 -0.126
(0.161) (0.161) (0.170)

Community -0.0587* 0.0484 0.0444 0.00288 0.0155
(0.0319) (0.100) (0.100) (0.107) (0.108)

Hybrid -0.0592* 0.0507 0.0583 0.0207
(0.0327) (0.104) (0.104) (0.109)

Simulated Error Rate 0.155 0.142 0.0896 0.117 0.0901
(0.0993) (0.100) (0.129) (0.137) (0.128)

Community or Hybrid 0.0117
(0.0915)

Community or Hybrid -0.113
x Simulated Error Rate (0.145)
R-squared 0.014 0.010 0.016 0.094 0.150 0.094

Community x Simulated Error Rate -0.378** -0.355** -0.364** -0.398**
(0.169) (0.167) (0.176) (0.176)

Hybrid x Simulated Error Rate -0.247 -0.257 -0.238
(0.180) (0.177) (0.182)

Community 0.108*** 0.330*** 0.324*** 0.328*** 0.345***
(0.0321) (0.102) (0.102) (0.107) (0.108)

Hybrid 0.0842** 0.235** 0.248** 0.236**
(0.0330) (0.111) (0.110) (0.112)

Simulated Error Rate 0.394*** 0.374*** 0.324** 0.330** 0.321**
(0.117) (0.117) (0.150) (0.165) (0.149)

Community or Hybrid 0.283***
(0.0950)

Community or Hybrid -0.302**
x Simulated Error Rate (0.152)
R-squared 0.033 0.040 0.055 0.138 0.178 0.137

Keca FE No No No Yes Yes Yes
Demographic Covariates No No No Yes Yes Yes

Table 7: Rank Correlation on Targeting Type Interacted with Simulated Error Rate

Panel A: Rank Correlation (Consumption)

Panel B: Rank Correlation (Self-Assessment)

Notes:  The outcome variable is the rank correlation. Panel A presents rank correlation with community using the consumption metric.  Panel B 
presents rank correlation with community using the self-assessment metric.  The simulated error rate is described in Appendix B.  It is the 
expected predicted value of the error rate in a hamlet under the estimated parameters of the diffusion model. Physical covariates include 
consumption, education, PMT score, agricultural share, education of household head and RT head, urban dummy, stratification group FE, and 
inequality. Robust standard errors in parentheses.   *** p<0.01, ** p<0.05, * p<0.1
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Appendix A. Network definitions

In this section, we provide basic definitions and interpretations for the different network
characteristics that we consider. At the household level, we study:

• Degree: the number of links that a household has. This is a measure of how well connected
a node is in the graph.
• Clustering coefficient: the fraction of a household’s neighbors that are themselves neighbors.
This is a measure of how interwoven a household’s neighborhood is.
• Eigenvector centrality: recursively defined notion of importance. A household’s importance
is defined to be proportional to the sum of its neighbors’ importances. It corresponds to
the ith entry of the eigenvector corresponding to the maximal eigenvalue of the adjacency
matrix. This is a measure of how important a node is, in the sense of information flow. We
take the eigenvector normalized with ‖·‖2 = 1.
• Reachability and distance: we say two households i and j are reachable if there exists a
path through the network which connects them. The distance is the length of the shortest
such path.

At the hamlet level, we consider:
• Average degree: the mean number of links that a household has in the hamlet. A network
with higher average degree has more edges on which to transmit information.
• Average clustering: the mean clustering coefficient of households in the hamlet.This mea-
sures how interwoven the network is.
• Average path length: the mean length of the shortest path between any two households in
the hamlet.Shorter average path length means information has to travel less (on average)
to get from household i to household j.
• First eigenvalue: the maximum eigenvalue of the adjacency matrix.This is a measure of
how diffusive the network is. A higher first eigenvalue tends to mean that information is
generally more transmitted.
• Fraction of nodes in the giant component: the share of nodes in the graph that are in
the largest connected component. Typically, realistic graphs have a giant component with
almost all nodes in it. Thus, the measure should be approaching one. For a network
that is sampled, this number can be significantly lower. In particular, networks which were
tenuously or sparsely connected, to begin with, may “shatter” under sampling and therefore
the giant component may no longer be giant after sampling. In turn, it becomes a useful
measure of how interwoven the underlying network is.
• Link density: the average share of connections (out of potential connections) that a house-
hold has. This measure looks at the rate of edge formation in a graph.
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Appendix B. Model and Structural estimation

In this section we formally describe the model and the estimation procedure.

Model Algorithm.

(1) t = 0:
Every i ∈ I is informed about i’s own wealth (and only i’s own wealth) and every j ∈ V \I

is completely uninformed. Therefore, S(i)
0i = 1 for i ∈ I and S(j)

0i = 0 for every j ∈ V with
j 6= i.

(2) At t = 1:
Every i ∈ I informs each neighbor j ∈ Ni about its wealth with probability p.

(3) At each t ≥ 2:
• For every i ∈ V \ {j} with S(j)

t−1,i = 1, i informs every k ∈ Ni about j’s wealth with iid
probability p.

– If k becomes informed, then we have S(j)
t,k = 1.

• For every i ∈ V \ {j} with S(j)
t−1,i = 1, S(j)

t,i = 0 with probability δ.

Estimation Algorithm. Let Γ = [0, 1]2 be the parameter space and Ξ a grid on Γ. As described
in Section, we use moment functions ψ (Z; γ) = (ψ1 (Z; γ) , ψ2 (Z; γ))′. Also, put B as the number

of bootstraps and S as the number of draws from the invariant distribution of the diffusion
process used to construct the simulated moment. This nests the case with B = 1 when we just

find the minimizer of the objective function

(1) Pick lattice Ξ ⊂ Γ.
(2) For ξ ∈ Ξ on the grid:

(a) For each hamlet r ∈ [R], compute

d(r, ξ) := 1
S

∑
s∈[S]

ψ(Zrs; ξ).

(b) For each b ∈ [B], compute

D(b) := 1
R

∑
r∈[R]

ωbr · d(r, ξ)

where ωbr := ebr/ēr with ebr iid exp(1) random variables and ēr := 1
R

∑
ebr if we are

conducting bootstrap and ωbr = 1 if we are just finding the minimizer.
(c) Find ξ?b = argminQ?b(ξ), with

Q?b (ξ) := D(b)′D(b).

(3) Obtain {ξ?b}b∈B.
(4) For conservative inference on γ̂j , the jth component, consider the 1−α/2 and α/2 quantiles

of the ξ?bj marginal empirical distribution.

We use the grid Ξ = [0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9]2 and set
B = 1000 and S = 100.
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Numerical Propositions. We now describe the procedure by which we generated the Panel C’s
in Tables 2-5.

(1) Run the model described above at γ̂ for t0 = 50 burn in periods.
(2) Take S = 100 draws from the distribution of D(j,k)

ti from the diffusion process.
(3) Compute Errorsijkr for each i, j, k ∈ I for s = 1, ..., S.
(4) Compute Errorijkr := 1

S

∑
sError

s
ijkr.

(5) Compute outcome variables used in equations (3.1), (3.2), (5.1), (5.2) and the cross-hamlet
regressions from Errorijkr for i, j, k ∈ I and r ∈ [R].

Appendix C. Details on Poverty Targeting Procedures

This appendix briefly describes the poverty targeting procedures used to allocate the transfer
program to households. Additional details can be found in Alatas et al. (2012).

• PMT Treatment: the government created formulas that mapped 49 easily observable house-
hold characteristics into a single index using regression techniques.29 Government enumer-
ators collected these indicators from all households in the PMT hamlets by conducting a
door-to-door survey. These data were then used to calculate a computer-generated pre-
dicted consumption score for each household using a district-specific PMT formula. A list
of beneficiaries was generated by selecting the pre-determined number of households with
the lowest scores in each hamlet, based on quotes determined by a geographic targeting
procedure.
• Community Treatment: To start, a local facilitator visited each hamlet to publicize the
program and invite individuals to a community meeting.30 At the meeting, the facilitator
first explained the program. Next, he or she displayed the list of all households in the hamlet
(which came from the baseline survey). The facilitator then spent about 15 minutes having
the community brainstorm a list of characteristics that differentiate the poor from the
wealthy households in their community. The facilitator then proceeded with the ranking
exercise using a set of randomly-ordered index cards that displayed the names of each
household in the neighborhood. He or she hung a string from wall to wall, with one end
labeled as “most well-off” (paling mampu) and the other side labeled as “poorest” (paling
miskin). Then, he or she started by holding up the first two name cards from the randomly-
ordered stack and asking the community, “Which of these two households is better off?”
Based on the community’s response, he or she attached the cards along the string, with the
poorer household placed closer to the “poorest” end. Next, the facilitator displayed the third
card and asked how this household ranked relative to the first two households. The activity

29The chosen indicators encompassed the household’s home attributes (wall type, roof type, etc), assets (TV, motor-
bike, etc), household composition, and household head’s education and occupation. The formulas were derived using
pre-existing survey data: specifically, the government estimated the relationship between the variables of interest
and household per-capita consumption. While the same indicators were considered across regions, the government
estimated district-specific formulas due to the perceived high variance in the best predictors of poverty across regions
30On average, 45 percent of households attended the meeting. Note, however, that we only invited the full community
in half of the community treatment hamlets. In the other half (randomly selected), only local elites were invited, so
that we can test whether elites are more likely to capture the community process when they have control over the
process.
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continued with each card being positioned relative to the already-ranked households one-by-
one until complete. Before the final ranking was recorded, the facilitator read the ranking
aloud so adjustments could be made if necessary. After all meetings were complete, the
facilitators were provided with “beneficiary quotas” for each hamlet based on the geographic
targeting procedure. Households ranked below the quota were deemed eligible.
• Hybrid Treatment: This method combines the community ranking procedure with a sub-
sequent PMT verification. The ranking exercise, described above, was implemented first.
However, there was one key difference: at the start of these meetings, the facilitator an-
nounced that the lowest-ranked households would be independently checked by the govern-
ment enumerators before the beneficiary list was finalized. After the community meetings
were complete, the government enumerators indeed visited the lowest-ranked households
to collect the data needed to calculate their PMT score. The number of households to be
visited was computed by multiplying the “beneficiary quotas” by 150 percent. Households
were ranked by their PMT score, and those below the village quota became beneficiaries
of the program. Thus, it was possible that some households could become beneficiaries
even if they were ranked as slightly wealthier than the beneficiary quota cutoff line on the
community list. Conversely, some relatively poor-ranked households on the community list
might become ineligible.
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