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The traditional view of insurance markets is that insurance companies operate in an

efficient capital market that allows them to supply insurance at nearly constant marginal

cost. Consequently, the market equilibrium is primarily determined by the demand side,

either by life-cycle demand (Yaari, 1965) or informational frictions (Rothschild and Stiglitz,

1976). Contrary to this traditional view, this paper shows that insurance companies are

financial institutions whose pricing behavior can be profoundly affected by financial frictions

and statutory reserve regulation.

Our key finding is that life insurers reduced the price of long-term insurance policies in

January 2009, when historically low interest rates implied that they should have instead

raised prices. The average markup, relative to actuarial value (i.e., the present discounted

value of future policy claims), was −25 percent for 30-year term annuities as well as life

annuities at age 50. Similarly, the average markup was −52 percent for universal life insur-

ance at age 30. These deep discounts are in sharp contrast to the 6 to 10 percent markup

that life insurers earn in ordinary times (Mitchell, Poterba, Warshawsky, and Brown, 1999).

In the cross section of insurance policies, the price reductions were larger for those policies

with looser statutory reserve requirements. In the cross section of insurance companies, the

price reductions were larger for those companies whose balance sheets were more adversely

affected prior to January 2009.

This extraordinary pricing behavior was due to a remarkable coincidence of two circum-

stances. First, the financial crisis had an adverse impact on insurance companies’ balance

sheets. Insurance companies had to quickly recapitalize to contain their leverage ratio and to

avoid a rating downgrade. Second, statutory reserve regulation in the United States allowed

life insurers to record far less than a dollar of reserve per dollar of future insurance liability in

January 2009. Since rating agencies and state regulators assess insurance companies based

on an accounting measure of liabilities, these companies ultimately care about accounting

(rather than market) leverage. Insurance companies were able to lower their accounting

leverage by selling insurance policies at a price far below actuarial value, as long as that
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price was above the reserve value.

We formalize our hypothesis in a dynamic model of insurance pricing that is otherwise

standard, except for a leverage constraint that is familiar from macroeconomics and finance

(e.g., Kiyotaki and Moore, 1997; Brunnermeier and Pedersen, 2009). The insurance company

sets prices for various types of policies to maximize the present discounted value of profits,

subject to a leverage constraint that the ratio of statutory reserves to assets cannot exceed a

targeted value. When the leverage constraint binds, the insurance company optimally prices

a policy below its actuarial value if its sale has a negative marginal impact on leverage. The

Lagrange multiplier on the leverage constraint has a structural interpretation as the shadow

cost of raising a dollar of excess reserve.

We test our hypothesis on panel data of nearly 35,000 observations on insurance prices

from January 1989 through July 2011. Our data cover term annuities, life annuities, and

universal life insurance for both males and females as well as various age groups. Relative

to other industries, life insurance presents a unique opportunity to identify the shadow cost

of financial frictions for two reasons. First, life insurers sell relatively simple products whose

marginal cost can be accurately measured. Second, statutory reserve regulation specifies a

constant discount rate for reserve valuation, regardless of the maturity of the policy. This

mechanical rule generates exogenous variation in required reserves across policies of different

maturities, which acts as relative shifts in the supply curve that are plausibly exogenous.

We find that the shadow cost of financial frictions is essentially zero for most of the sample,

except around January 2001 and in January 2009. The shadow cost was nearly $5 per dollar

of excess reserve for the average insurance company in January 2009. This cost varies from $1

to $13 per dollar of excess reserve for the cross section of insurance companies in our sample.

We also find that those companies with the highest shadow costs were actively recapitalizing

through two conventional channels. First, more constrained insurance companies received

larger capital injections from their holding company, through the issuance of surplus notes

or the reduction of stockholder dividends. Second, more constrained insurance companies
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reduced their required risk-based capital by shifting to safer assets with lower risk charges,

such as cash and short-term investments. Our findings suggest that conventional channels of

recapitalization were insufficient at the height of the financial crisis, and insurance companies

had to raise additional capital through a firesale of insurance policies.

We rule out default risk as an alternative explanation for the deep discounts on long-term

insurance policies in January 2009. Since risk-based capital requirements assure that only a

small share of life insurers’ assets are risky, the implied recovery rate on their assets is too high

for default risk to justify the magnitude of the discounts. We also find out-of-sample evidence

against default risk based on the pricing of life annuities during the Great Depression. The

absence of discounts during the Great Depression, when the corporate default spread was

even higher than the heights reached during the recent financial crisis, is inconsistent with

the hypothesis that default risk drives insurance prices. Only our explanation, based on

financial frictions and statutory reserve regulation, is consistent with the evidence for both

the Great Depression and the recent financial crisis.

Our finding that the supply curve for life insurers shifts down in response to a balance

sheet shock, causing insurance prices to fall, contrasts with the evidence that the supply

curve for property and casualty insurers shifts up, causing insurance prices to rise (Froot

and O’Connell, 1999). Although these findings may seem contradictory at first, they are both

consistent with our supply-driven theory of insurance pricing. The key difference between life

insurers and property and casualty insurers is statutory reserve regulation. Life insurers were

able relax their leverage constraint by selling new policies because their statutory reserve

regulation allowed less than full reserve during the financial crisis. In contrast, property and

casualty insurers must tighten their leverage constraint when selling new policies because

their statutory reserve regulation always requires more than full reserve.

The remainder of the paper is organized as follows. Section 1 describes our data and doc-

uments key facts that motive our study of insurance prices. Section 2 reviews key features

of statutory reserve regulation that are relevant for our analysis. In Section 3, we develop
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a structural model of insurance pricing, which shows how financial frictions and statutory

reserve regulation affect insurance prices. In Section 4, we estimate the shadow cost of finan-

cial frictions through the structural model of insurance pricing. In Section 5, we calibrate

the structural model of insurance pricing to show that it explains the observed magnitudes

of the price reductions and the shadow cost of financial frictions in January 2009. Section 6

concludes with broader implications of our study for household finance and macroeconomics.

1. Annuity and Life Insurance Prices

1.1. Data Construction

1.1.1. Annuity Prices

Our annuity prices are from the Annuity Shopper (Stern, 1989), which is a semiannual

(every January and July) publication of annuity price quotes from the leading life insurers.

Following Mitchell, Poterba, Warshawsky, and Brown (1999), we focus on annuities that

are single premium, immediate, and non-qualified. This means that the premium is paid

upfront as a single lump sum, that the income payments start immediately after the premium

payment, and that only the interest portion of the payments is taxable. Our data consist

of three types of policies: term annuities, life annuities, and guaranteed annuities. For term

annuities, we have quotes for 5- through 30-year maturities (every 5 years in between). For

life and guaranteed annuities, we have quotes for males and females between ages 50 and 90

(every 5 years in between).

A term annuity is a policy with annual income payments for a fixed maturity of M years.

Because term annuities have a fixed income stream that is independent of survival, they are

essentially bonds rather than insurance. An insurance company that issues a term annuity

must buy a portfolio of Treasury bonds to replicate its future cash flows. A portfolio of Aaa

corporate bonds, for example, does not perfectly replicate the cash flows because of default

risk. Therefore, the law of one price implies that the Treasury yield curve is the appropriate
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cost of capital for the valuation of term annuities. Let Rt(m) be the zero-coupon Treasury

yield at maturity m and time t. We define the actuarial value of an M-year term annuity

per dollar of income as

Vt(M) =

M∑
m=1

1

Rt(m)m
. (1)

We calculate the actuarial value for term annuities based on the zero-coupon yield curve for

off-the-run Treasury bonds (Gürkaynak, Sack, and Wright, 2007).

A life annuity is a policy with annual income payments until the death of the insured.

Let pn be the one-year survival probability at age n, and let N be the maximum attainable

age according to the appropriate mortality table. We define the actuarial value of a life

annuity at age n per dollar income as

Vt(n) =
N−n∑
m=1

∏m−1
l=0 pn+l

Rt(m)m
. (2)

A guaranteed annuity is a variant of the life annuity whose income payments are guaran-

teed to continue for the first M years, even if the insured dies during that period. We define

the actuarial value of an M-year guaranteed annuity at age n per dollar of income as

Vt(n,M) =
M∑

m=1

1

Rt(m)m
+

N−n∑
m=M+1

∏m−1
l=0 pn+l

Rt(m)m
. (3)

We calculate the actuarial value for life annuities based on the appropriate mortality

table from the American Society of Actuaries and the zero-coupon Treasury yield curve.

We use the 1983 Annuity Mortality Basic Table prior to December 2000, and the 2000

Annuity Mortality Basic Table since December 2000. These mortality tables are derived

from the actual mortality experience of insured pools, based on data provided by various

insurance companies. Therefore, they account for adverse selection in annuity markets, that

is, an insured pool of annuitants has higher life expectancy than the overall population.
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We smooth the transition between the two vintages of the mortality tables by geometrically

averaging.

1.1.2. Life Insurance Prices

Our life insurance prices are from COMPULIFE Software, which is a computer-based quo-

tation system for insurance brokers. We focus on guaranteed universal life policies, which

are quoted for the leading life insurers since January 2005. These policies have constant

guaranteed premiums and accumulate no cash value, so they are essentially “permanent”

term life policies.1 We pull quotes for the regular health category at the face amount of

$250,000 in California. COMPULIFE recommended California for our study because it is

the most populous state with a wide representation of insurance companies. We focus on

males and females between ages 30 and 90 (every 10 years in between).

Universal life insurance is a policy that pays out a death benefit upon the death of the

insured. The policy is in effect as long as the policyholder makes an annual premium payment

while the insured is alive. We define the actuarial value of universal life insurance at age n

per dollar of death benefit as

Vt(n) =

(
1 +

N−n−1∑
m=1

∏m−1
l=0 pn+l

Rt(m)m

)−1(N−n∑
m=1

∏m−2
l=0 pn+l(1− pn+m−1)

Rt(m)m

)
. (4)

This formula does not take into account the potential lapsation of policies, that is, the

policyholder may drop coverage prior to the death of the insured. There is currently no

agreed upon standard for lapsation pricing, partly because lapsations are difficult to model

and predict. While some insurance companies price in low levels of lapsation, others take

the conservative approach of assuming no lapsation in life insurance valuation.

We calculate the actuarial value for life insurance based on the appropriate mortality

1While COMPULIFE has quotes for various types of policies from annual renewable to 30-year term life
policies, they are not useful for our purposes. A term life policy typically has a renewal option at the end
of the guaranteed term. Because the premiums under the renewal option vary significantly across insurance
companies, cross-sectional price comparisons are difficult and imprecise.

7



table from the American Society of Actuaries and the zero-coupon Treasury yield curve. We

use the 2001 Valuation Basic Table prior to December 2008, and the 2008 Valuation Basic

Table since December 2008. These mortality tables are derived from the actual mortality

experience of insured pools, so they account for adverse selection in life insurance markets.

We smooth the transition between the two vintages of the mortality tables by geometrically

averaging.

1.1.3. Insurance Companies’ Balance Sheets

We obtain balance sheet data and A.M. Best ratings for insurance companies through the

Best’s Insurance Reports CD-ROM for fiscal years 1992 through 2010. We merge annuity

and life insurance prices to the A.M. Best data by company name. The insurance price

observed in January and July of each calender year is matched to the balance sheet data for

the previous fiscal year (i.e., December of the previous calendar year).

1.2. Summary Statistics

We start with a broad overview of the industry that we study. Figure 1 reports the annual

premiums collected for individual annuities and life insurance, summed across all insurance

companies in the United States with an A.M. Best rating. In the early 1990’s, insurance

companies collected nearly $100 billion in annual premiums for individual life insurance and

about $50 billion for individual annuities. More recently, the annuity market expanded to

$383 billion in 2008. The financial crisis had an adverse impact on annuity demand in 2009,

which subsequently recovered in 2010.

Table 1 summarizes our data on annuity and life insurance prices. We have 988 ob-

servations on 10-year term annuities across 98 insurance companies, covering January 1989

through July 2011. The average markup, defined as the percent deviation of the quoted

price from actuarial value, is 6.9 percent. Since term annuities have a fixed income stream

that is independent of survival, we can rule out adverse selection as a source of this markup.
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Instead, the markup must be attributed to marketing and administrative costs as well as eco-

nomic profits that may arise from imperfect competition. The fact that the average markup

declines in the maturity of the term annuity is consistent with the presence of fixed costs.

There is considerable cross-sectional variation in the pricing of 10-year term annuities across

insurance companies, as captured by a standard deviation of 5.9 percent (Mitchell, Poterba,

Warshawsky, and Brown, 1999).

We have 11,879 observations on life annuities across 106 insurance companies, covering

January 1989 through July 2011. The average markup is 9.8 percent with a standard de-

viation of 8.2 percent. Our data on guaranteed annuities start in July 1989. For 10-year

guaranteed annuities, the average markup is 5.5 percent with a standard deviation of 6.1

percent. For 20-year guaranteed annuities, the average markup is 4.2 percent with a standard

deviation of 4.8 percent.

We have 3,989 observations on universal life insurance across 52 insurance companies,

covering January 2005 through July 2011. The average markup is −4.2 percent with a stan-

dard deviation of 17.9 percent. The negative average markup does not mean that insurance

companies systematically lose money on these policies. With a constant premium and a

rising mortality rate, policyholders are essentially prepaying for coverage later in life. When

a universal life policy is lapsed, the insurance company earns a windfall profit because the

present value of the remaining premium payments is typically less than the present value

of the future death benefit. Since there is currently no agreed upon standard for lapsation

pricing, our calculation of actuarial value does not take lapsation into account. We are

not especially concerned that the average markup might be slightly mismeasured because

the focus of our study is the variation in markups over time and across polices of different

maturities.
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1.3. Firesale of Insurance Policies

Figure 2 reports the time series of the average markup on term annuities at various maturities,

averaged across insurance companies and reported with a 95 percent confidence interval.

The average markup varies between 0 and 10 percent, with the exception of a period of

few months around January 2009. If insurance companies were to change annuity prices to

perfectly offset interest-rate movements, the markup would be constant over time. Hence,

the variation in average markup implies that insurance companies do not change annuity

prices to perfectly offset interest-rate movements (Charupat, Kamstra, and Milevsky, 2012).

For 30-year term annuities, the average markup fell to an extraordinary −24.8 percent

in January 2009. Much of this large negative markup arises from reductions in the price of

30-year term annuities from July 2007 to January 2009. For example, Allianz Life Insurance

Company reduced the price of 30-year term annuities from $18.56 (per dollar of annual

income) in July 2007 to $13.75 in January 2009, then raised it back up to $18.23 by July 2009.

Such price reductions cannot be explained by interest-rate movements because relatively low

Treasury yields implied a relatively high actuarial value for 30-year term annuities in January

2009. Appendix A shows that our finding is robust to making a conservative adjustment to

the actuarial value to account for the special status of Treasury bonds in asset markets as

they can serve as collateral.

In January 2009, there is a monotonic relation between the maturity of the term annuity

and the magnitude of the average markup. The average markup was −16.1 percent for 20-

year, −7.7 percent for 10-year, and −3.0 percent for 5-year term annuities. Excluding the

extraordinary period around January 2009, average markup was negative for 20- and 30-year

term annuities only twice before in our sample, in January 2001 and July 2002.

Figure 3 reports the time series of the average markup on life annuities at various ages.

Our findings are similar to that for term annuities. For life annuities at age 50, the average

markup fell to an extraordinary −25.3 percent in January 2009. There is a monotonic

relation between age, which is negatively related to the effective maturity of the life annuity,
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and the magnitude of the average markup. The average markup was −19.2 percent at age

60, −11.1 percent at age 70, and −3.3 percent at age 80.

Figure 4 reports the time series of the average markup on universal life insurance at

various ages. Our findings are similar to that for term and life annuities. For universal life

insurance at age 30, the average markup fell to an extraordinary −52.2 in January 2009.

There is a monotonic relation between age and the magnitude of the average markup. The

average markup was −47.0 percent at age 40, −42.3 percent at age 50, and −29.4 percent

at age 60.

1.4. Default Risk

Since insurance policies are ultimately backed by the state guarantee fund (e.g., up to $250k

for annuities and $300k for life insurance in California), the only scenario in which a pol-

icyholder would not be fully repaid is if all insurance companies associated with the state

guarantee fund were to systemically fail. During the financial crisis, the pricing of annu-

ities and life insurance remained linear around the guaranteed amount, and the pricing was

uniform across states with different guarantee provisions. The absence of kinks in pricing

around the guaranteed amount rules out idiosyncratic default risk that affects only some

insurance companies, but it does not rule out systematic default risk in which the state

guarantee fund fails.

Even if we were to entertain an extreme scenario in which the state guarantee fund fails,

the magnitude of the discounts in January 2009 are too large to be justified by default

risk, given reasonable assumptions about the recovery rate. Since life insurers are subject

to risk-based capital requirements, risky assets (e.g., non-investment-grade bonds, common

and preferred stocks, non-performing mortgages, and real estate) only account for 16 percent

of their assets (Ellul, Jotikasthira, and Lundblad, 2011). The remainder of their assets are

in safe asset classes such as cash, Treasury bonds, and investment-grade bonds. Under an

extreme assumption that risky assets lose their value entirely, a reasonable lower bound on
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the recovery rate is 84 percent. To further justify this recovery rate, the asset deficiency in

past cases of insolvency typically ranges from 5 to 10 percent and very rarely exceeds 15

percent (Gallanis, 2009).

Let dt(l) be the risk-neutral default probability between year l−1 and l at time t, and let

θ ∈ (0, 1) be the recovery rate conditional on default. Then the market value of an M-year

term annuity per dollar of income is

Vt(M) =
M∑

m=1

θ + (1− θ)
∏m

l=1(1− dt(l))

Rt(m)m
. (5)

Given a recovery rate of 84 percent, an annual default probability of 6.7 percent at the 1- to

5-year horizon justifies a markup of−3.0 percent on 5-year term annuities. An annual default

probability of 40.2 percent at the 6- to 10-year horizon justifies a markup of −7.7 percent

on 10-year term annuities. This upward-sloping term structure of default probabilities is

inconsistent with the notion that the financial crisis is a transitory shock that will dissipate

in the long run. There are no default probabilities that can justify the discounts on term

annuities with maturity greater than 15 years. This is because equation (5) implies that

the discount cannot be greater than 16 percent (i.e., one minus the recovery rate), which is

clearly violated for term annuities with maturity greater than 20 years.

In Appendix B, we also find out-of-sample evidence against default risk based on the pric-

ing of life annuities during the Great Depression. The absence of discounts during the Great

Depression, when the corporate default spread was even higher than the heights reached

during the recent financial crisis, is inconsistent with the hypothesis that default risk drives

insurance prices. However, the absence of discounts is consistent with our explanation be-

cause the statutory reserve regulation that was in effect back then did not allow insurance

companies to record liabilities at less than full reserve.
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2. Statutory Reserve Regulation for Life Insurers

When an insurance company sells an annuity or life insurance policy, its assets increase by

the purchase price of the policy. At the same time, the insurance company must record

statutory reserves on the liability side of its balance sheet to cover future policy claims. In

the United States, the amount of required reserves for each type of policy is governed by state

law, but all states essentially follow recommended guidelines known as Standard Valuation

Law (National Association of Insurance Commissioners, 2011, Appendix A-820). Standard

Valuation Law establishes mortality tables and discount rates that are to be used for reserve

valuation.

In this section, we review the reserve valuation rules for annuities and life insurance.

Because these policies essentially have no exposure to market risk, finance theory implies

that the market value of these policies is determined by the term structure of riskless interest

rates. However, Standard Valuation Law requires that the reserve value of these policies be

calculated using a mechanical discount rate that is a function of the Moody’s composite yield

on seasoned corporate bonds. Insurance companies care about the reserve value of insurance

policies insofar as it is used by rating agencies and state regulators to determine the adequacy

of statutory reserves.2 A rating agency may downgrade an insurance company whose asset

value has fallen relative to its statutory reserves. In the extreme case, a state regulator may

liquidate an insurance company whose assets are deficient relative to its statutory reserves.

2.1. Term Annuities

Let yt be the 12-month moving average of the Moody’s composite yield on seasoned corporate

bonds, over the period ending on June 30 of the issuance year of the policy. Standard

2In principle, rating agencies could calculate the market value of liabilities and base their ratings on
market leverage. However, their current practice is to take reserve valuation at face value, so that ratings
are ultimately based on accounting leverage (A.M. Best Company, 2011, p. 31).
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Valuation Law specifies the following discount rate for reserve valuation of annuities:

R̂t − 1 = 0.03 + 0.8(yt − 0.03), (6)

which is rounded to the nearest 25 basis point. This a constant discount rate that is to be

applied to all expected future policy claims, regardless of maturity. The exogenous variation

in required reserves that this mechanical rule generates, both over time and across policies

of different maturities, allows us to identify the shadow cost of financial frictions for life

insurers.

Figure 5 reports the time series of the discount rate for annuities, together with the

10-year zero-coupon Treasury yield. The discount rate for annuities has generally declined

over the last 20 years as nominal interest rates have fallen. However, the discount rate

for annuities has declined more slowly than the 10-year Treasury yield. This means that

statutory reserve requirements for annuities have become looser over time because a high

discount rate implies low reserve valuation.

The reserve value of an M-year term annuity per dollar of income is

V̂t(M) =

M∑
m=1

1

R̂m
t

. (7)

Figure 6 reports the ratio of reserve to actuarial value for term annuities (i.e., V̂t(M)/Vt(M))

at maturities of 5 to 30 years. Whenever this ratio is equal to one, the insurance company

records a dollar of reserve per dollar of future policy claims in present value. Whenever this

ratio is greater than one, the reserve valuation is conservative in the sense that the insurance

company records reserves that are greater than the present value of future policy claims.

Conversely, whenever this ratio is less than one, the reserve valuation is aggressive in the

sense that the insurance company records reserves that are less than the present value of

future policy claims.

For the 30-year term annuity, the ratio reaches a peak of 1.20 in November 1994 and a
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trough of 0.73 in January 2009. If the insurance company were to sell a 30-year term annuity

at actuarial value in November 1994, its reserves would increase by $1.20 per dollar of policies

sold. This implies a loss of $0.20 in capital surplus funds (i.e., total admitted assets minus

total liabilities) per dollar of policies sold. In contrast, if the insurance company were to sell

a 30-year term annuity at actuarial value in January 2009, its reserves would only increase

by $0.73 per dollar of policies sold. This implies a gain of $0.27 in capital surplus funds per

dollar of policies sold.

2.2. Life Annuities

The reserve valuation of life annuities requires mortality tables. The American Society of

Actuaries produces two versions of mortality tables, which are called basic and loaded. The

loaded tables, which are used for reserve valuation, are conservative versions of the basic

tables that underestimate the mortality rates. The loaded tables ensure that insurance

companies have adequate reserves, even if actual mortality rates turn out to be lower than

those projected by the basic tables. For calculating the reserve value, we use the 1983

Annuity Mortality Table prior to December 2000, and the 2000 Annuity Mortality Table

since December 2000.

Let p̂n be the one-year survival probability at age n, and let N be the maximum attainable

age according to the appropriate loaded mortality table. The reserve value of a life annuity

at age n per dollar of income is

V̂t(n) =

N−n∑
m=1

∏m−1
l=0 p̂n+l

R̂m
t

, (8)

where the discount rate is given by equation (6). Similarly, the reserve value of an M-year

guaranteed annuity at age n per dollar of income is

V̂t(n,M) =
M∑

m=1

1

R̂m
t

+
N−n∑

m=M+1

∏m−1
l=0 p̂n+l

R̂m
t

. (9)
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Figure 6 reports the ratio of reserve to actuarial value for life annuities, 10-year guaranteed

annuities, and 20-year guaranteed annuities for males aged 50 to 80 (every 10 years in

between). For these life annuities, the time-series variation in the ratio of reserve to actuarial

value is quite similar to that for term annuities. In particular, the ratio reaches a peak in

November 1994 and a trough in January 2009. Since the reserve valuation of term annuities

depends only on the discount rates, the similarity with term annuities implies that discount

rates, rather than mortality tables, have a predominant effect on the reserve valuation of life

annuities.

2.3. Life Insurance

Let yt be the minimum of the 12-month and the 36-month moving average of the Moody’s

composite yield on seasoned corporate bonds, over the period ending on June 30 of the year

prior to issuance of the policy. Standard Valuation Law specifies the following discount rate

for reserve valuation of life insurance:

R̂t(M)− 1 = 0.03 + w(M)(min{yt, 0.09} − 0.03) + 0.5w(M)(max{yt, 0.09} − 0.09), (10)

which is rounded to the nearest 25 basis point. The weighting function for a policy with a

guaranteed term of M years is

w(M) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.50 if M ≤ 10

0.45 if 10 < M ≤ 20

0.35 if M > 20

. (11)

As with life annuities, the American Society of Actuaries produces basic and loaded

mortality tables for life insurance. The loaded tables, which are used for reserve valuation,

are conservative versions of the basic tables that overestimate the mortality rates. For

calculating the reserve value, we use the 2001 Commissioners Standard Ordinary Mortality
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Table. The reserve value of life insurance at age n per dollar of death benefit is

V̂t(n) =

(
1 +

N−n−1∑
m=1

∏m−1
l=0 p̂n+l

R̂t(N − n)m

)−1(N−n∑
m=1

∏m−2
l=0 p̂n+l(1− p̂n+m−1)

R̂t(N − n)m

)
. (12)

Figure 7 reports the ratio of reserve to actuarial value for universal life insurance for males

aged 30 to 60 (every 10 years in between). Our earlier caveat regarding lapsation applies

to this figure as well, so that we focus on the variation in the ratio of reserve to actuarial

value over time and across polices of different maturities. In a period of few months around

January 2009, the reserve value falls significantly relative to actuarial value. As shown in

Figure 5, this is caused by the fact that the discount rate for life insurance stays constant

during this period, while the 10-year zero-coupon Treasury yield falls significantly. If an

insurance company were to sell universal life insurance to a 30-year old male in January

2009, its reserves would only increase by $0.87 per dollar of policies sold. This implies a gain

of $0.13 in capital surplus funds per dollar of policies sold.

3. A Structural Model of Insurance Pricing

We now develop a model in which an insurance company sets prices for various types of

policies to maximize the present discounted value of profits, subject to a leverage constraint

that the ratio of statutory reserves to assets cannot exceed a targeted value. The model

shows how financial frictions and statutory reserve regulation jointly determine insurance

prices. We show that the model explains the magnitude of the price reductions in January

2009 through estimation in Section 4 and through calibration in Section 5.

3.1. An Insurance Company’s Maximization Problem

An insurance company sells I different types of annuity and life insurance policies, which

we index as i = 1, . . . , I. These policies are differentiated not only by maturity, but also by

sex and age of the insured. The insurance company faces a downward-sloping demand curve
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Qi,t(P ) for each policy i in period t, where Q′
i,t(P ) < 0. There are various micro-foundations

that give rise to such a demand curve. For example, such a demand curve can be motivated

as an industry equilibrium subject to search frictions (Hortaçsu and Syverson, 2004). We

will take the demand curve as exogenously given because the precise micro-foundations are

not essential for our purposes.

The insurance company incurs a fixed (marketing and administrative) cost Ct in each

period. Let Vi,t be the actuarial value of policy i in period t. The insurance company’s profit

in each period is

Πt =

I∑
i=1

(Pi,t − Vi,t)Qi,t − Ct. (13)

A simple way to interpret this profit function is that for each type of policy that the insurance

company sells for Pi,t, it can buy a portfolio of Treasury bonds that replicate its expected

future policy claims for Vi,t. For term annuities, this interpretation is exact since future

policy claims are deterministic. For life annuities and life insurance, we assume that the

insured pools are sufficiently large for the law of large numbers to apply.

We now describe how the sale of new policies affects the insurance company’s balance

sheet. Let At−1 be its assets at the beginning of period t, and let RA,t be an exogenous rate

of return on its assets in period t. Its assets at the end of period t, after the sale of new

policies, is

At = RA,tAt−1 +
I∑

i=1

Pi,tQi,t − Ct. (14)

As explained in Section 2, the insurance company must also record reserves on the liability

side of its balance sheet. Let Lt−1 be its statutory reserves at the beginning of period t,

and let RL,t be the return on its statutory reserves in period t. Let V̂i,t be the reserve value

of policy i in period t. Its statutory reserves at the end of period t, after the sale of new
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policies, is

Lt = RL,tLt−1 +
I∑

i=1

V̂i,tQi,t. (15)

The insurance company chooses the price Pi,t for each type of policy to maximize firm

value, or the present discounted value of its profits:

Jt = Πt + Et[Mt+1Jt+1], (16)

where Mt+1 is the stochastic discount factor. The insurance company faces a leverage con-

straint on the value of its statutory reserves relative to its assets:

Lt

At
≤ φ, (17)

where φ ≤ 1 is the maximum leverage ratio. The underlying assumption is that exceeding

the maximum leverage ratio leads to bad consequences, such as a rating downgrade or

forced liquidation by state regulators.3 At fiscal year-end 2008, many highly rated insurance

companies were concerned that the upward pressure on their leverage ratio would trigger a

rating downgrade, which would have an adverse impact on their business.4

To simplify notation, we define the insurance company’s excess reserves as

Kt = φAt − Lt. (18)

The leverage constraint can then be rewritten as

Kt ≥ 0. (19)

3An alternative model, with similar implications to the leverage constraint, is that the insurance company
faces a convex cost whenever the leverage ratio exceeds φ.

4For example, A.M. Best Company (2009) reports that MetLife’s “financial leverage is at the high end of
its threshold for the current rating level” at fiscal year-end 2008.

19



The law of motion for excess reserves is

Kt = φRA,tAt−1 − RL,tLt−1 +

I∑
i=1

(
φPi,t − V̂i,t

)
Qi,t − Ct. (20)

3.2. Optimal Insurance Pricing

Let λt ≥ 0 be the Lagrange multiplier on the leverage constraint (19). The Lagrangian for

the insurance company’s maximization problem is

Lt = Jt + λtKt. (21)

The first-order condition for the price of each type of policy is

∂Lt

∂Pi,t
=

∂Jt

∂Pi,t
+ λt

∂Kt

∂Pi,t

=
∂Πt

∂Pi,t
+ λt

∂Kt

∂Pi,t

=Qi,t + (Pi,t − Vi,t)Q
′
i,t + λt

[
φQi,t +

(
φPi,t − V̂i,t

)
Q′

i,t

]
= 0, (22)

where

λt = λt + Et

[
Mt+1

∂Jt+1

∂Kt

]
. (23)

Equation (22) implies that

λt = −∂Πt

∂Kt
. (24)

That is, λt measures the marginal reduction in profits that the insurance company is willing

to accept to raise its excess reserves by a dollar. Equation (23) implies that λt = 0 if the

leverage constraint does not bind today (i.e., λt = 0), and increasing excess reserves does
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not relax future constraints (i.e., Et[Mt+1∂Jt+1/∂Kt] = 0). Therefore, we refer to λt as

the shadow cost of financial frictions because it measures the importance of the leverage

constraint, either today or at some future state.

Rearranging equation (22), the price of policy i in period t is

Pi,t = Vi,t

(
1− 1

εi,t

)−1
(
1 + λtV̂i,t/Vi,t

1 + λtφ

)
, (25)

where

εi,t = −Pi,tQ
′
i,t

Qi,t
> 1 (26)

is the elasticity of demand. If the shadow cost of financial frictions is zero (i.e., λt = 0), the

price of policy i in period t is

Pi,t = Vi,t

(
1− 1

εi,t

)−1

. (27)

This is the standard Bertrand model of pricing, in which price is equal to marginal cost times

a markup that is decreasing in the elasticity of demand.

If the shadow cost of financial frictions is positive (i.e., λt > 0), the price of policy i in

period t satisfies the inequality

Pi,t ≷ Vi,t

(
1− 1

εi,t

)−1

if
V̂i,t

Vi,t

≷ φ. (28)

That is, the price of the policy is higher than the Bertrand price if selling the policy tightens

the leverage constraint on the margin. This is the case with property and casualty insurers

(Froot and O’Connell, 1999), whose statutory reserve regulation requires that V̂i,t/Vi,t > 1

(American Academy of Actuaries, 2000). Conversely, the price of the policy is lower than

the Bertrand price if selling the policy relaxes the leverage constraint on the margin. This

21



was the case with life insurers in January 2009.

When the leverage constraint binds, equation (25) and the leverage constraint (i.e., Kt =

0) forms a system of I +1 equations in I +1 unknowns (i.e., Pi,t for each policy i = 1, . . . , I

and λt). Solving this system of equations for the shadow cost of financial frictions,

λt =
1

φ

⎛⎝∑I
i=1

(
φVi,t(1− 1/εi,t)

−1 − V̂i,t

)
Qi,t + φRA,tAt−1 − RL,tLt−1 − Ct

−∑I
i=1 V̂i,t(εi,t − 1)−1Qi,t − (φRA,tAt−1 −RL,tLt−1 − Ct)

⎞⎠ . (29)

4. Estimating the Structural Model of Insurance Pricing

In this section, we estimate the shadow cost of financial frictions through the structural

model of insurance pricing. Before doing so, we first present reduced-form evidence that is

consistent with a key prediction of the model. Namely, the price reductions were larger for

those companies that experienced more adverse balance sheet shocks just prior to January

2009, which are presumably the companies for which the leverage constraint was more costly.

4.1. Price Changes versus Balance Sheet Shocks

Figure 8 is an overview of how the balance sheet has evolved over time for the median

insurance company in our sample. Assets grew by 3 to 14 percent annually from 1989

through 2010. The only exception to this growth is 2008 when assets shrank by 3 percent.

The leverage ratio stays remarkably constant between 0.91 and 0.95 throughout this period,

including 2008 when the leverage ratio was 0.93 for the median insurance company.

Figure 9 is a scatter plot of the percent change in annuity prices from July 2007 to January

2009 versus asset growth from fiscal year-end 2007 to 2008. The four panels represent term

annuities, life annuities, and 10- and 20-year guaranteed annuities. The dots in each panel

represent the insurance companies in our sample in January 2009. The linear regression

line shows that there is a strong positive relation between annuity price changes and asset

growth. That is, the price reductions were larger for those companies that experienced more
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adverse balance sheet shocks just prior to January 2009.

Our joint interpretation of Figures 8 and 9 is that insurance companies were able to

maintain a stable leverage ratio in 2008 and 2009 by taking advantage of statutory reserve

regulation that allowed them to record far less than a dollar of reserve per dollar of fu-

ture insurance liability. The incentive to reduce prices was stronger for those companies

that experienced more adverse balance sheet shocks and, therefore, had a higher need to

recapitalize.

4.2. Empirical Specification

Let i index the type of policy, j index the insurance company, and t index time. Based on

pricing equation (25), we model the markup as a nonlinear regression model:

log

(
Pi,j,t

Vi,t

)
= − log

(
1− 1

εi,j,t

)
+ log

(
1 + λj,tV̂i,t/Vi,t

1 + λj,tLj,t/Aj,t

)
+ ei,j,t, (30)

where ei,j,t is an error term with conditional mean zero.

We model the elasticity of demand as

εi,j,t = 1 + exp{−β ′yi,j,t}, (31)

where yi,j,t is a vector of policy and insurance company characteristics. In our baseline spec-

ification, the policy characteristics are sex and age. The insurance company characteristics

are the A.M. Best rating, the leverage ratio, asset growth, and log assets. We also include

a full set of time dummies to control for any variation in the elasticity of demand over the

business cycle. We interact each of these variables, including the time dummies, with dummy

variables that allow their impact on the elasticity of demand to differ across term annuities,

life annuities, and life insurance.

In theory, the shadow cost of financial frictions depends only on insurance company

characteristics that appear in equation (29). However, most of these characteristics do not
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have obvious counterparts in the data except for φ, which is equal to the leverage ratio when

the constraint binds (i.e., φ = Lt/At). Therefore, we model the shadow cost of financial

frictions as

λj,t = exp{−γ′zj,t}, (32)

where zj,t is a vector of insurance company characteristics. In our baseline specification, the

insurance company characteristics are the leverage ratio and asset growth. Our use of asset

growth is motivated by the reduced-form evidence in Figure 8. We also include a full set of

time dummies and their interaction with insurance company characteristics to allow for the

fact that the leverage constraint may only bind at certain times.

4.3. Identifying Assumptions

If the elasticity of demand is correctly specified, the regression model (30) is identified by

the fact that the markup has a nonnegative conditional mean in the absence of financial

frictions (i.e., − log(1− 1/εi,j,t) > 0). Therefore, a negative markup must be explained by a

positive shadow cost of financial frictions whenever the ratio of reserve to actuarial value is

less than the leverage ratio (i.e., V̂i,t/Vi,t < Lj,t/Aj,t).

Even if the elasticity of demand is potentially misspecified, the shadow cost of financial

frictions is identified by exogenous variation in the ratio of reserve to actuarial value across

different types of policies. To illustrate this point, we approximate the regression model (30)

through first-order Taylor approximation as

log

(
Pi,j,t

Vi,t

)
≈ αj,t +

1

1/λj,t + Lj,t/Aj,t

(
V̂i,t

Vi,t
− Lj,t

Aj,t

)
+ vi,j,t, (33)

where

vi,j,t = −αj,t − log

(
1− 1

εi,j,t

)
+ ei,j,t (34)
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is an error term with conditional mean zero. For a given insurance company j at a given

time t, the regression coefficient λj,t is identified as long as V̂i,t/Vi,t is orthogonal to vi,j,t.

More intuitively, Standard Valuation Law generates relative shifts in the supply curve across

different types of policies that an insurance company sells, which we exploit to identify the

shadow cost of financial frictions.

4.4. Estimating the Shadow Cost of Financial Frictions

Since the data for most types of annuities are not available prior to July 1998, we estimate the

structural model on the sub-sample from July 1998 through July 2011. Table 2 reports our

estimates for the elasticity of demand in the regression model (30). Instead of reporting the

raw coefficients (i.e., β), we report the average marginal effect of the explanatory variables

on the markup. The average markup on policies sold by A or A− rated insurance companies

is 3.13 percentage points higher than that for policies sold by A++ or A+ rated companies.

The leverage ratio and asset growth have a relatively small economic impact on the markup

through the elasticity of demand. Every 1 percentage point increase in the leverage ratio is

associated with a 6 basis point increase in the markup. Every 1 percentage point increase

in asset growth is associated with a 4 basis point increase in the markup.

Figure 10 reports the time series of the shadow cost of financial frictions for the average

insurance company (i.e., at the conditional mean of the leverage ratio and asset growth).

The leverage constraint is not costly for most of the sample period. There is evidence that

the leverage constraint was costly around January 2001 with a point estimate of $0.79 per

dollar of excess reserve. The leverage constraint was clearly costly in January 2009 with a

point estimate of $4.58 per dollar of excess reserve. That is, the average insurance company

was willing to accept a marginal reduction of $4.58 in profits to raise its excess reserves by

a dollar. The 95 percent confidence interval ranges from $2.78 to $6.39 per dollar of excess

reserve.

In Table 3, we report the shadow cost of financial frictions for the cross section of insurance
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companies in our sample that sold annuities in January 2009. The table shows that there

is considerable heterogeneity in the shadow cost of financial frictions. The shadow cost of

financial frictions is positively related to the leverage ratio and negatively related to asset

growth. In January 2009, MetLife was the most constrained insurance company with a

shadow cost of $13.38 per dollar of excess reserve. Metlife had a relatively high leverage

ratio of 0.97 at fiscal year-end 2008 and suffered a balance sheet loss of 10 percent from fiscal

year-end 2007 to 2008. American General was the least constrained insurance company with

a shadow cost of $1.41 per dollar of excess reserve, which is explained by the bailout of its

holding company as we discuss below.

4.5. Conventional Channels of Recapitalization

Since insurance companies cannot issue public debt or equity, they essentially have three

channels of raising capital surplus funds (i.e., accounting equity). The first, which we em-

phasize in this paper, is the sale of new policies at a price above reserve value, which generates

accounting profits. The second is direct capital injection from the holding company (that

can issue public debt or equity), through the issuance of surplus notes or the reduction of

stockholder dividends. The third is the reduction of required risk-based capital by shifting

to safer assets with lower risk charges, such as cash and short-term investments (A.M. Best

Company, 2004). We now provide evidence that these three channels were complementary

during the financial crisis.

For the same set of insurance companies as Table 3, Figure 11 reports the inflow of

capital surplus funds for fiscal years 2008 and 2009 as a percentage of capital surplus funds

at fiscal year-end 2007. The linear regression line shows that there is a strong positive

relation between the inflow of capital surplus funds and the shadow cost of financial frictions

in January 2009. In particular, MetLife had both the highest inflow of capital surplus funds

(224 percent) and the highest shadow cost ($13.38 per dollar of excess reserve). American

General is an outlier in Figure 11 with a relatively high inflow of capital surplus funds
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(158 percent), despite having the lowest shadow cost ($1.41 per dollar of excess reserves).

This is explained by the bailout of its holding company, American International Group, in

September 2008.

For the same set of insurance companies as Table 3, Figure 12 reports the change in

cash and short-term investments in fiscal years 2008 and 2009 as a percentage of capital

surplus funds at fiscal year-end 2007. The linear regression line shows that there is a strong

positive relation between the change in cash and short-term investments and the shadow cost

of financial frictions in January 2009. In particular, MetLife had both the highest increase

in cash and short-term investments (142 percent) and the highest shadow cost ($13.38 per

dollar of excess reserve).

The picture that emerges from Figures 11 and 12 is that those companies that were fi-

nancially constrained received capital injections from their holding company (Berry-Stölzle,

Nini, and Wende, 2011) and reduced their required risk-based capital. However, these con-

ventional channels of recapitalization were insufficient at the height of the financial crisis, and

insurance companies had to raise additional capital through a firesale of insurance policies.

5. Calibrating the Structural Model of Insurance Pricing

In this section, we calibrate the structural model of insurance pricing and solve explicitly

for the insurance company’s policy and value functions. Compared to the estimation in

the last section, the advantage of this approach is that we gain additional insight into how

optimal insurance pricing is related to firm value and the shadow cost of financial frictions.

The disadvantage is that we must make additional parametric assumptions regarding asset

returns, demand, and fixed costs. We view the two approaches as providing complementary

evidence that the model explains the magnitude of the price reductions in January 2009.
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5.1. Additional Parametric Assumptions

Our goal is to calibrate and solve the simplest version of the model in Section 3 that captures

the essence of our empirical findings. Therefore, we start with the version in which the

insurance company sells only one type of policy. We assume that the return on assets and

statutory reserves are constant and equal to the riskless interest rate (i.e., RA,t = RL,t = R).

The stochastic discount factor is constant and equal to the inverse of the riskless interest

rate (i.e., Mt = 1/R). We assume that both the reserve and the actuarial value of the policy

are constant and denote them as V̂ and V , respectively. Under these assumptions, the law

of motion for excess reserves (20) simplifies to

Kt = RKt−1 +
(
φPt − V̂

)
Qt − Ct. (35)

We parameterize demand as

Qt = XtP
−ε
t , (36)

where ε > 1 is a constant elasticity of demand. The demand shock follows a geometric

random walk:

ΔXt =
Xt

Xt−1

= exp

{
ut − σ2

2

}
, (37)

where ut ∼ N(0, σ2). Finally, we parameterize the fixed cost as

Ct = cXω
t−1X

1−ω
t V 1−ε. (38)

The parameter c ∈ [0, 1) determines the size of the fixed cost, and ω ≥ 1 determines its

sensitivity to demand shocks. The presence of fixed costs creates operating leverage, which

causes the leverage constraint to bind for sufficiently adverse demand shocks.
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We calibrate the parameters of the model, summarized in Table 4, to explain the pricing

of 30-year term annuities in January 2009. As reported in Figure 7, the ratio of reserve

to actuarial value for 30-year term annuities was 0.73 in January 2009. A riskless interest

rate of 0.5 percent is based on the 1-year nominal Treasury yield in January 2009. An

elasticity of demand of 11 generates a realistic markup of 10 percent when the leverage

constraint does not bind. A standard deviation of 30 percent for demand shocks is based on

the standard deviation of the growth rate for annual premiums on individual annuities in

Figure 1. We calibrate the size of the fixed cost to match the typical general expense ratio

(excluding commissions) of 2 percent for individual annuities. As explained in Appendix C,

we calibrate the sensitivity of the fixed cost to demand shocks so that the leverage constraint

binds for sufficiently adverse demand shocks. The maximum leverage ratio is 0.97 to match

the highest leverage ratio for the cross section of insurance companies in Table 3.

5.2. Optimal Insurance Pricing and Firm Value

Figure 13 reports the optimal insurance price, firm value, and the shadow cost of financial

frictions as functions of initial excess reserves. The figure is shown for a −3.70 standard

deviation demand shock, which is sufficiently adverse for the leverage constraint to bind

even with positive initial excess reserves. The leverage constraint does not bind when initial

excess reserves are greater than 42 percent of firm value. In this region of the state space, the

insurance company sells its policies at a markup of 10 percent, and its firm value is $100. In

the region of the state space where the leverage constraint binds, both the optimal insurance

price and firm value are decreasing in initial excess reserves.

When initial excess reserves are 3 percent of firm value, the insurance company sells its

policies at a markup of −12 percent, and its firm value is $59. Put differently, the insurance

price falls by 22 percent, and the firm value falls by 41 percent relative to when the leverage

constraint does not bind. The shadow cost is $4.71 per dollar of excess reserve. When we

decompose this shadow cost through equation (23), the impact of future constraints (i.e.,
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Et[Mt+1∂Jt+1/∂Kt]) only accounts for $0.01 of the shadow cost. These magnitudes in the

calibrated model are consistent with our empirical findings. Namely, 30-year term annuities

sold at a markup of −25 percent, and the shadow cost was $4.58 per dollar of excess reserve

for the average insurance company in January 2009.

6. Conclusion

This paper shows that financial frictions and statutory reserve regulation have a large and

measurable impact on insurance prices. More broadly, we show that frictions on the supply

side have a large and measurable impact on consumer financial markets. The previous

literature on household finance has mostly focused on frictions on the demand side of these

markets, such as household borrowing constraints, asymmetric information, moral hazard,

and near rationality. While these frictions on the demand side are undoubtedly important,

we feel that financial and regulatory frictions on the supply side are also important for our

understanding of market equilibrium and consumer welfare.

Another broader implication of our study is that we provide micro evidence for a class

of macro models based on financial frictions, which is a leading explanation for the Great

Recession (see Gertler and Kiyotaki, 2010; Brunnermeier, Eisenbach, and Sannikov, 2012, for

recent reviews of the literature). We feel that this literature would benefit from additional

micro evidence on the cost of these frictions for other types of financial institutions, such as

commercial banks and health insurance companies. The empirical approach in this paper

may be extended to estimate the shadow cost of financial frictions for other types of financial

institutions.
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Table 1: Summary Statistics for Annuity and Life Insurance Prices
The markup is defined as the percent deviation of the quoted price from actuarial value. The actuarial value is based on the
appropriate basic mortality table from the American Society of Actuaries and the zero-coupon Treasury yield curve. The sample
is semiannual from January 1989 through July 2011.

Number of Markup (percent)

Sample Insurance Standard
Type of policy starts in Observations companies Mean Median deviation

Term annuities:
5-year January 1993 732 83 6.7 6.5 8.4
10-year January 1989 988 98 6.9 7.0 5.9
15-year July 1998 418 62 4.3 4.8 5.6
20-year July 1998 414 62 3.8 4.4 6.6
25-year July 1998 339 53 3.4 3.7 7.5
30-year July 1998 325 50 2.9 2.8 8.8

Life annuities:
Life only January 1989 11,879 106 9.8 9.8 8.2
10-year guaranteed July 1998 7,885 66 5.5 6.1 7.0
20-year guaranteed July 1998 7,518 66 4.2 4.8 7.5

Universal life insurance January 2005 3,989 52 -4.2 -5.5 17.9
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Table 2: Estimated Model of Insurance Pricing
The table reports the average marginal effect of the explanatory variables on the markup
through the elasticity of demand in percentage points. The model for the elasticity of demand
also includes time dummies and its interaction effects for life annuities and life insurance,
which are omitted in the table for brevity. The omitted categories for the dummy variables
are term annuities, A++ or A+ rated, male, and age 50. The t-statistics, reported in
parentheses, are based on robust standard errors clustered by insurance company, type of
policy, sex, and age. The sample is semiannual from July 1998 through July 2011.

Explanatory variable Average marginal effect

Rating: A to A− 3.13 (17.69)
Rating: B++ to B− 9.16 (13.28)
Leverage ratio 6.13 (23.55)
Asset growth 3.91 (15.08)
Log assets 2.31 (40.53)
Interaction effects for life annuities:

Rating: A to A− -2.26 (-17.94)
Rating: B++ to B− -8.77 (-11.02)
Leverage ratio 16.88 (26.27)
Asset growth -5.58 (-19.58)
Log assets -1.89 (-44.69)
Female 0.27 (10.18)
Age 55 0.25 (1.74)
Age 60 0.60 (3.90)
Age 65 0.83 (11.94)
Age 70 1.14 (10.25)
Age 75 1.45 (2.99)
Age 80 1.80 (10.60)
Age 85 2.36 (10.41)
Age 90 3.28 (6.58)

Interaction effects for life insurance:
Rating: A to A− -23.21 (-5.12)
Leverage ratio 21.78 (3.02)
Asset growth -30.05 (-5.27)
Log assets -13.21 (-7.36)
Female 0.18 (1.03)
Age 30 2.38 (0.21)
Age 40 0.62 (0.03)
Age 60 0.18 (0.00)
Age 70 0.64 (0.31)
Age 80 0.65 (0.27)
Age 90 24.12 (4.74)

R2 (percent) 48.51
Observations 29,570
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Table 3: Shadow Cost of Financial Frictions in January 2009
The table reports the shadow cost of financial frictions for the cross section of insurance companies in our sample that sold
annuities in January 2009, implied by the estimated model of insurance pricing. The leverage ratio is at fiscal year-end 2008.
The growth in total admitted assets is from fiscal year-end 2007 to 2008.

A.M. Best Leverage Asset Shadow
Insurance company rating ratio growth cost

MetLife Investors USA Insurance Company A+ 0.97 -0.10 13.38
Allianz Life Insurance Company of North America A 0.97 -0.03 10.47
Lincoln Benefit Life Company A+ 0.87 -0.45 8.76
OM Financial Life Insurance Company A- 0.95 -0.04 8.31
Aviva Life and Annuity Company A 0.95 0.12 4.44
Presidential Life Insurance Company B+ 0.91 -0.06 4.33
EquiTrust Life Insurance Company B+ 0.95 0.13 4.12
Integrity Life Insurance Company A+ 0.92 0.03 3.85
United of Omaha Life Insurance Company A+ 0.91 -0.03 3.65
Genworth Life Insurance Company A 0.90 0.00 3.13
North American Company for Life and Health Insurance A+ 0.94 0.24 2.44
American National Insurance Company A 0.87 -0.02 1.84
American General Life Insurance Company A 0.87 0.05 1.41
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Table 4: Parameters in the Calibrated Model

Parameter Symbol Value

Riskless interest rate R− 1 0.5%

Ratio of reserve to actuarial value V̂ /V 0.73
Elasticity of demand ε 11
Standard deviation of demand shocks σ 30%
Size of the fixed cost c 2%
Sensitivity of the fixed cost to demand shocks ω 2.88
Maximum leverage ratio φ 0.97
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Figure 1: Annual Premiums for Individual Annuities and Life Insurance
The figure reports the total annual premiums collected for individual annuities and life
insurance, summed across all insurance companies in the Best’s Insurance Reports. The
sample is from fiscal year 1992 through 2010.
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Figure 2: Average Markup on Term Annuities
The markup is defined as the percent deviation of the quoted price from actuarial value. The actuarial value is based on the
zero-coupon Treasury yield curve. The average markup is estimated from a regression of markups onto dummy variables for
A.M. Best rating and time. The figure reports the conditional mean for policies sold by A++ and A+ rated companies. The
confidence interval is based on robust standard errors clustered by insurance company. The sample is semiannual from January
1989 through July 2011.
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Figure 3: Average Markup on Life Annuities
The markup is defined as the percent deviation of the quoted price from actuarial value. The actuarial value is based on
the appropriate basic mortality table from the American Society of Actuaries and the zero-coupon Treasury yield curve. The
average markup is estimated from a regression of markups onto dummy variables for A.M. Best rating, sex, and time. The
figure reports the conditional mean for male policies sold by A++ and A+ rated companies. The confidence interval is based
on robust standard errors clustered by insurance company, sex, and age. The sample is semiannual from January 1989 through
July 2011.
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Figure 4: Average Markup on Universal Life Insurance
The markup is defined as the percent deviation of the quoted price from actuarial value. The actuarial value is based on
the appropriate basic mortality table from the American Society of Actuaries and the zero-coupon Treasury yield curve. The
average markup is estimated from a regression of markups onto dummy variables for A.M. Best rating, sex, and time. The
figure reports the conditional mean for male policies sold by A++ and A+ rated companies. The confidence interval is based
on robust standard errors clustered by insurance company, sex, and age. The sample is semiannual from January 2004 through
July 2011.

41



2
4

6
8

10
P

er
ce

nt

Jan 1989 Jan 1994 Jan 1999 Jan 2004 Jan 2009
Date

Annuities
Life insurance
10−year Treasury

Figure 5: Discount Rates for Annuities and Life Insurance
The figure reports the discount rates used for statutory reserve valuation of annuities and
life insurance (with guaranteed term greater than 20 years), together with the 10-year zero-
coupon Treasury yield. The sample is monthly from January 1989 through July 2011.
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Figure 6: Reserve to Actuarial Value for Annuities
The reserve value is based on the appropriate loaded mortality table from the American Society of Actuaries and the discount
rate specified by Standard Valuation Law. The actuarial value is based on the appropriate basic mortality table from the
American Society of Actuaries and the zero-coupon Treasury yield curve. The sample is monthly from January 1989 through
July 2011.
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Figure 7: Reserve to Actuarial Value for Universal Life Insurance
The reserve value is based on the appropriate loaded mortality table from the American
Society of Actuaries and the discount rate specified by Standard Valuation Law. The actu-
arial value is based on the appropriate basic mortality table from the American Society of
Actuaries and the zero-coupon Treasury yield curve. The sample is monthly from January
2005 through July 2011.
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Figure 8: Asset Growth and the Leverage Ratio for Life Insurers
The figure reports the growth rate of total admitted assets and the leverage ratio for the
median insurance company in our sample. The leverage ratio is the ratio of total liabilities
to total admitted assets. The sample is from fiscal year 1989 through 2010.
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Figure 9: Price Change versus Asset Growth in January 2009
The percent change in annuity prices is from July 2007 to January 2009. The growth in total admitted assets is from fiscal
year-end 2007 to 2008. For term annuities, the average price change is estimated from a regression of the price change onto
dummy variables for insurance company and maturity. The figure reports the conditional mean for 30-year term policies. For
life annuities, the average price change is estimated from a regression of the price change onto dummy variables for insurance
company, sex, and age. The figure reports the conditional mean for male policies at age 50. The linear regression line weights
the observations by annual premiums collected for individual annuities in fiscal year 2008.
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Figure 10: Shadow Cost of Financial Frictions
The figure reports the shadow cost of financial frictions for the average insurance company,
implied by the estimated model of insurance pricing. The confidence interval is based on
robust standard errors clustered by insurance company, type of policy, sex, and age. The
sample is semiannual from July 1998 through July 2011.
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Figure 11: Inflow of Capital Surplus Funds in 2008–2009
The vertical axis reports the inflow of capital surplus funds in fiscal years 2008 and 2009 as
a percentage of capital surplus funds at fiscal year-end 2007. The inflow of capital surplus
funds includes the issuance of surplus notes and the reduction stockholder dividends. The
horizontal axis reports the shadow cost of financial frictions in January 2009, for the same
set of insurance companies as Table 3.
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Figure 12: Change in Cash and Short-Term Investments in 2008–2009
The vertical axis reports the change in cash and short-term investments in fiscal years 2008
and 2009 as a percentage of capital surplus funds at fiscal year-end 2007. The horizontal axis
reports the shadow cost of financial frictions in January 2009, for the same set of insurance
companies as Table 3.
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Figure 13: Optimal Insurance Price and Firm Value in the Calibrated Model
The figure reports the optimal insurance price (i.e., Pt/V − 1), firm value (i.e., Jt), and the shadow cost of financial frictions
(i.e., λt) as functions of initial excess reserves (i.e., RKt−1) when the realized demand shock is −3.70 standard deviations. Firm
value is normalized to $100 at the highest value of initial excess reserves. Initial excess reserves are normalized by the firm value
corresponding to the highest value of initial excess reserves. Table 4 reports the parameters of the calibrated model.
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Appendix

A. Special Status of Treasury Bonds

The low Treasury yields in January 2009 may reflect to some extent the special status of

Treasury bonds as they can serve as collateral. To understand the magnitude of this effect,

we calculate the actuarial value based on the Aaa corporate yield curve, instead of the zero-

coupon Treasury yield curve. Unfortunately, the spread between Aaa corporate and Treasury

bonds not only measures the special status of Treasury bonds, but also the difference in credit

risk. The latter may be significant during the financial crisis. Krishnamurthy and Vissing-

Jørgensen (2012) estimate that 64 percent of the spread between Aaa corporate and Treasury

bonds can be attributed to the special status of Treasury bonds and the remainder to credit

risk. As a conservative upper bound, we use the entire spread between Aaa corporate and

Treasury bonds in the following calculations.

Table A1 shows that the Aaa corporate yield curve reduces the implied discounts on

term annuities in January 2009. However, this comes at the cost of generating puzzlingly

high markups in July 2007. The average markup on 30-year term annuities under the Aaa

corporate yield curve is 10.6 percent in July 2007 and −8.2 percent in January 2009. This

18.8 percent reduction in the average markup during the financial crisis is substantial, but

smaller than the 29.6 percent reduction implied by the Treasury yield curve. We conclude

that life insurers sold long-term insurance policies at deep discounts in January 2009, even

under this conservative upper bound that accounts for the special status of Treasury bonds.

B. Life Annuities during the Great Depression

Following Warshawsky (1988), our prices on life annuities from 1929 through 1938 are from

annual editions of The Handy Guide (The Spectator Company, 1929). We focus on quotes

for males between ages 50 and 80 (every 10 years in between). We match the quoted price

for each year of The Handy Guide to the actuarial value in January of that year. We
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calculate the actuarial value based on the annuitant mortality table from M’Clintock (1899)

and the zero-coupon Treasury yield curve. We derive the zero-coupon yield curve from the

constant-maturity yield curve reported in Cecchetti (1988).

Figure B1 reports the time series of the average markup on life annuities at various ages,

averaged across insurance companies and reported with a 95 percent confidence interval.

The key finding is that the markup remained positive throughout the Great Depression. In

particular, the average markup for life annuities at age 50 was 28 percent in 1932, when

the corporate default spread was much higher than the heights reached during the recent

financial crisis.

Prior to the adoption of Standard Valuation Law in the mid-1940’s, individual states

had their own standards for reserve valuation. However, many states used the annuitant

mortality table from M’Clintock (1899) and a constant discount rate for reserve valuation

(e.g., 3.5 percent in California). Figure B2 reports the ratio of reserve to actuarial value for

life annuities for males aged 50 to 80 (every 10 years in between) at the discount rate of 3.5

percent. The ratio of reserve to actuarial value remained close to or above one throughout

the Great Depression. This implies that insurance companies could not lower their leverage

ratio by selling life annuities at a price below actuarial value, which is consistent with the

absence of discounts in Figure B1.

C. Solving the Model by Dynamic Programming

Because demand follows a geometric random walk, we must scale both the value function and

excess reserves by market size to make the model stationary. We rewrite the value function

as

jt =
Jt + Ct

XtV 1−ε
= j(kt) =

(
Pt

V
− 1

)(
Pt

V

)−ε

+
1

R
Et

[
ΔXt+1

(
jt+1 − c

ΔXω
t+1

)]
. (C1)
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We rewrite the law of motion for excess reserves as

kt+1 =
RKt − Ct+1

Xt+1V 1−ε
=

R

ΔXt+1

[
kt +

(
φ
Pt

V
− V̂

V

)(
Pt

V

)−ε
]
− c

ΔXω
t+1

. (C2)

We rewrite the leverage constraint as

kt +

(
φ
Pt

V
− V̂

V

)(
Pt

V

)−ε

≥ 0. (C3)

The insurance company chooses Pt to maximize firm value (C1) subject to the law of motion

for excess reserves (C2) and the leverage constraint (C3).

We discretize the state space into 50 grid points, which we denote as {ks}Ss=1. We also

discretize the demand shock into 7 grid points by Gauss-Hermite quadrature, which we

denote as {ΔXn}Nn=1 . Equation (25) implies that

Pt ≥ V̂ (1− 1/ε)−1

φ
(C4)

when V̂ /V < φ. Therefore, the leverage constraint (C3) can be satisfied as long as initial

excess reserves, prior to the sale of new policies, satisfies

kt ≥ k1 = −φε

ε

(
V̂

V

)1−ε(
1− 1

ε

)ε−1

. (C5)

Equations (C2) and (C3) imply that kt+1 ≥ k1 if

− c

ΔXω
1

≥ k1. (C6)

Therefore, we set the sensitivity of the fixed cost to demand shocks to

ω =
log(−c/k1)

log(ΔX1)
. (C7)
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This assures that the lower bound of the state space (i.e., k1) can be realized with the worst

possible demand shock (i.e., ΔX1).

Starting with the initial guess

P1(ks) = V

(
1− 1

ε

)−1

(C8)

for the policy function, we solve the model by value iteration.

1. Iterate on equation (C1) to compute the value function ji(ks) corresponding to the

current policy function Pi(ks).

2. For each point ks on the grid, find Pi+1(ks) that maximizes equation (C1) with jt+1 =

ji(ks).

3. If maxks |Pi+1(ks)−Pi(ks)| is less than the convergence criteria, stop. Otherwise, return

to step 1.
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Table A1: Average Markup on Term Annuities under the Aaa Corporate Yield Curve
The average markup on term annuities is calculated under the zero-coupon Treasury yield
curve and the Aaa corporate yield curve. The Aaa corporate yield curve is estimated based
on the spread between Moody’s seasoned Aaa corporate bonds and the 20-year constant-
maturity Treasury bond as well as the spread between 3-month Aa nonfinancial commercial
paper and the 3-month Treasury bill.

Treasury yield curve Aaa corporate yield curve

Maturity July 2007 January 2009 July 2007 January 2009

5 years 7.4 -3.0 8.6 -1.4
10 years 7.2 -7.7 9.5 -3.4
15 years 6.5 -11.9 9.8 -4.2
20 years 5.6 -16.1 9.8 -5.2
25 years 5.6 -20.2 10.7 -6.4
30 years 4.8 -24.8 10.6 -8.2
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Figure B1: Average Markup on Life Annuities: 1929–1938
The markup is defined as the percent deviation of the quoted price from actuarial value. The actuarial value is based on the
annuitant mortality table from M’Clintock (1899) and the zero-coupon Treasury yield curve. The average markup is estimated
from a regression of markups onto dummy variables for time. The confidence interval is based on robust standard errors clustered
by insurance company and age. The sample is annual from January 1929 through January 1938.
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Figure B2: Reserve to Actuarial Value for Life Annuities: 1929–1938
The reserve value is based on the annuitant mortality table from M’Clintock (1899) and
a constant discount rate of 3.5 percent. The actuarial value is based on the annuitant
mortality table from M’Clintock (1899) and the zero-coupon Treasury yield curve. The
sample is monthly from January 1929 through January 1938.
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