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Introduction 
Since Frank Knight (1921) introduced the distinction, economists have recognized that risk is the 

special case of uncertainty in which probabilities are known.  Probabilities are treated as known 

for outcomes of symmetric devices with known properties that are subject to random forces 

such as the toss of a coin or die, the shuffling of a deck of cards or the shaking of an urn 

containing balls of different colors.  In contrast, the uncertainty that confronts economic 

decision makers involves probabilities that are less precisely known. 1  

In this paper, we investigate the probability beliefs held by a given individual about personal 

mortality risks elicited from survey questions on the Health and Retirement Study (HRS) that ask 

respondents about the numerical probability that he or she will survive to a given age that is 10-

20 years in the future.  

In forming his belief about mortality risk, a person might consult a life table based on the 

experience of millions of individuals.  The life table provides an estimate of the mean probability 

of survival for persons of given age and sex with essentially no sampling error.  However the 

individual may be ambiguous about whether this probability represents the risk he himself 

faces.  He may have personal information that makes him think that he has a higher or lower 

risk than the average person of his age and sex.  Moreover, he may be unsure about the 

influence that personal information such as the ages of death of parents and relatives, health 

history and current symptoms, or exercise and dietary habits will have on his likely longevity.  

                                                           

1
 Paté-Cornell (1996, pp. 96-97) observes that “… uncertainties in decision and risk analyses can be divided 

into two categories: those that stem from variability in known (or observable) populations and, therefore, 

represent randomness in samples (aleatory uncertainties), and those that come from basic lack of 

knowledge about fundamental phenomena (epistemic uncertainties also known in the literature as 

ambiguity).”   
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Finally, in answering the survey question, a person must construct a probability judgment “on 

the fly,” accessing whatever frequentist data or epistemic beliefs he may have stored in his brain 

and manipulating this information through reasoning or gut reaction to produce an answer to 

the specific question about, say, the probability he will survive to age 80, all within less than a 

minute.2   

In this paper, we assume that probability beliefs about survival probabilities are ambiguous in 

the sense that an individual has in mind  a range of possible values of the probability that can be 

described by a density function, ( )g p , that can take on a variety of shapes depending on both 

its mean and the degree of ambiguity. The theory literature calls this density function second 

order probability beliefs. (See, for example, Gilboa and Maracini, 2011).  

We compare the predicted survival rates of our sample members to life tables and also to the 

actual survival of sample members eight years later, as reported in the 2010 wave of HRS.  The 

predictions from our models track life table and actual mortality fairly closely for sample 

members who are below age 80, but begin to diverge substantially at the oldest ages, with older 

respondents being overly optimistic. The predicted survival rates co-vary with personal 

characteristics, health status and cognitive status in largely the same way that they do in 

                                                           

2
 The attempt to determine the probabilistic beliefs of lay people using direct questions on surveys has 

only become commonplace in the past two decades. See Manski (2004) for a summary of the history of 

and rationale for eliciting numerical subjective probabilities on surveys.  A special issue of the Journal of 

Applied Econometrics (2010) is devoted to analysis of subjective probability questions on a variety of 

topics. There is a related but somewhat separate tradition of eliciting probability beliefs of experts as part 

of risk assessments in engineering and operations research applications.  See Paté-Cornell (1996) for a 

summary of this tradition. 
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regressions that explain actual mortality. Thus, it appears that the subjective survival probability 

answers are good candidates for modeling individual level heterogeneity in survival chances.3 

The major contribution of this paper is to provide an estimate of ambiguity about survival 

probabilities that are embodied in the spread of ( )g p . We find that survival expectations are 

very uncertain in the Health and Retirement Study (HRS) and that uncertainty varies in the 

population: more educated people have more certain beliefs, women have less certain beliefs, 

and deterioration of health, especially from previously excellent levels, leads to more 

uncertainty about survival chances, too. 

Identifying second order probability beliefs is possible under the assumptions of our survey 

response model, the Modal Response Hypothesis (MRH) which is a mapping from probability 

beliefs  g p  to survey responses. It assumes that people report the mode of  g p  whenever 

it exists and they report 50%, whenever  g p  is so ambiguous that it does not have a unique 

mode. The motivation for the MRH is twofold. First, imagine that people estimate the 

probabilities of certain events after observing some successes and failures of these events. 

Under some conditions a naïve estimator, which is the ratio of “good cases”, is exactly equal to 

the mode of the Bayesian updated posterior probability distribution. Moreover, this estimator is 

biased in finite samples. The MRH assumes that people report this simple, naïve estimator in 

surveys. The second motivation is coming from the literature using numerical subjective 

                                                           

3
 Our findings about the external validity of the HRS subjective probability questions are consistent with 

those in earlier papers that have studied these questions in the HRS (Hurd and McGarry (2002), Smith, et. 

al. (2001).  The overly optimistic expectations of people over 75 in HRS has also been noted by Hurd and 

Rohwedder (2008) who find the same pattern across eleven European countries in the SHARE (Survey of 

Health, Ageing and Retirement in Europe).   There are also a few papers that use these questions in 

models of behavior under uncertainty such as, for example, Picone, et al. (2004) who find that people who 

expect to live longer are more likely to choose medical screening tests. 
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probabilities on surveys. When people are asked to report a numerical probability using any 

digit between 0 and 100, an unusually large fraction of answers are heaped on 50.  The 

excessive use of 50 has been interpreted as occurring because many people treat “50-50” as a 

synonym for “I don’t know” or even for “God only knows,” a sentiment that suggests that the 

true probability is unknowable (Fischoff and Bruine de Bruin, 1999; Bruine de Bruin and Carman, 

2012; Lillard and Willis, 2001).4,5  Researchers have realized that these focal answers might 

introduce bias into estimates of subjective probabilities. As a remedy, Manski and Molinari 

(2010) think of focal responses as extreme versions of rounding, where some people always 

round to 0, 50 or 100 percent. Lumsdaine and Potter van Loon (2012) model the probability of 

providing a focal answer as a separate equation in their econometric model. Our approach, 

instead, is to model focal responses with an economic model and relate it to the precision of 

beliefs of individuals. In our model people answer with an epistemic 50 percent as a way of 

saying “I am very unsure”, when their beliefs are too ambiguous. As far as we know the MRH 

model is the first in the literature that makes use of the focal responses to learn something 

about the beliefs of individuals. 

For comparison, we present an alternative model of survey response which assumes that the 

person reports the mean of  g p .  We show that the MRH model can account quite well for 

heaping at 0, 50 and 100 while the mean response model cannot. The overuse of focal 

                                                           

4 In recent waves of the Health and Retirement Study, respondents have been asked a follow-up question 

if they answered 50 to survival probability question:  Do you think that it is about equally likely that you 

will die before 75 as it is that you will live to 75 or beyond, or are you just unsure about the chances?  

About two-thirds say that they are “just unsure.”  In this paper, we use data from the 2002 wave of HRS 

which did not have a follow-up question. 

5
 In addition, the answers to the survival questions also exhibit some heaping at 0 and 100.  Taken 

literally, of course, these answers cannot represent rational probability beliefs except, perhaps, in the 

case of zero for persons who know themselves to be terminally ill. 
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responses can be especially problematic when very low or very high probabilities are modeled 

since the high ratio of 50 percent responses can arbitrarily push the estimated mean 

probabilities away from their true, extreme values. We show in this paper, that our modal 

response model that explicitly models focal answers works better than the simple mean model 

typically used in research on subjective probabilities. When the modal response model is used 

for extreme probabilities both the estimated unconditional means and the average partial 

effects are closer to ones estimated from realized mortality data.6 

Learning about the degree of uncertainty in individuals’ beliefs can be important for several 

reasons. First, the value of information about mortality risk, for example, should be a function of 

this uncertainty. Uncertain people might value information more, and certain people might 

rationally ignore any new information since they have already established a good understanding 

of the risks they face. Even in a fully Bayesian SEU framework the degree of uncertainty might 

play an important role if the utility function is not linear in probabilities. This is the case, for 

example, if people can invest in learning about their own mortality risks.7 Second, learning about 

the degree of uncertainty in individuals’ beliefs is useful from a survey methodological point of 

view, too. People whose probability beliefs are more certain may answer probabilistic survey 

questions with greater precision. However, if beliefs are uncertain, as is the case with mortality 

expectations, we expect large measurement error in survey responses, that might even account 

for the discrepancy between subjective and objective survival probabilities at later ages. Future 

                                                           

6
 Alternative models of focal responses, such as Manski and Molinari (2010) and Lumsdaine and Potter 

van Loon (2012) might work equally well in terms of reducing this bias. The main advantage of the MRH 

compared to these models is that we learn about the uncertainty of individuals’ beliefs, too. 

7
 Another example is Bommier and Villeneuve (2012), who discuss a model of mortality risk aversion, 

where the utility function is not additively separable over time, and thus, mortality probabilities enter the 

model in a non-linear fashion as well. 
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research should investigate the potential role of measurement error in subjective expectation 

data and its link to uncertainty in individuals’ beliefs. Third, learning about the degree of 

uncertainty in individuals’ beliefs might be very important in Non-Bayesian/Non-Expected Utility 

models. While we don’t work in these frameworks, empirical evidence on ambiguous beliefs 

may be useful to those who do. 

The paper is organized as follows. In Section 1 we provide a quick overview of the literature on 

ambiguity and its role in economic decisions. Section 2 describes the subjective survival data in 

HRS that we use in this paper. Section 3 introduces the MRH model that can be used to model 

any subjective expectation data that uses the HRS framework. Section 4 describes a simple and 

tractable model of individual survival curves. Section 5 discusses identification and provides 

further details about the data used in the empirical part of the paper and Section 6 shows the 

result. 

1. Ambiguity in economics 
 

Knightian uncertainty, epistemic uncertainty and ambiguity are roughly synonymous terms that 

figure prominently in a longstanding and ongoing debate about the link between rationality and 

probability beliefs, on the one hand, and the relationship between beliefs and decisions, on the 

other hand. In an excellent and authoritative review of this debate since Pascal’s famous bet on 

the existence of God in 1670, Gilboa and Marinacci (2011) discusses the different models of 

expectation formation, including Bayesian and Non-Bayesian models. They call the model we 

use in this paper “the smooth model of ambiguity” or “second order probability beliefs”. In 

typical models of ambiguity agents have a set of possible probability distributions in mind but 

they are not able to compound this information into a single probability distribution. The 



 7 

smooth model, however, makes compounding possible. The real question in the smooth model 

is whether agents have a preference for known probabilities (in other words they are ambiguity-

averse) or not (in which case they are simple Bayesians). As Gilboa and Marinacci (2011) write 

“… beyond the above mentioned separation [between beliefs and utilities], the smooth 

preferences model enjoys an additional advantage of tractability. Especially if one specifies a 

simple functional form for [preferences for known probabilities], one gets a simple model in 

which uncertainty/ambiguity attitudes can be analyzed in a way that parallels the treatment of 

risk attitudes in the classical literature.”, pp. 45. 

The major contribution of this paper is to provide an estimate of second order probability beliefs 

(a form of ambiguity or Knightian uncertainty) about survival probabilities that are embodied in 

the spread of ( )g p . It is important to clarify the role of this object in alternative views of risk 

and uncertainty. Conventional economic theory of behavior under uncertainty, rooted in 

subjective expected utility (SEU) theory, is often interpreted as having erased the distinction 

between risk and uncertainty because expected utility is a linear function of probabilities.  That 

is, assume that the person’s ambiguous probability beliefs are described by ( )g p .  His expected 

utility is  

1 1

0 0

[ (1 ) ] ( ) (1 )live die live dieEU pU p U g p dp pU p U       , 

where p  is the mean of this ambiguous distribution.  Clearly, expected utility is invariant to a 

mean preserving spread of ( )g p ; hence, decisions based on expected utility are unaffected by 

ambiguity.  
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In the famous Ellsberg experiments (Ellsberg, 1961) subjects were presented with choices of 

drawing balls from different urns whose compositions were either known or ambiguous. Most 

people revealed distaste for ambiguity which was at odds with the SEU theory.  During the 50 

years since Ellsberg’s experiments, the implications of ambiguity and ambiguity aversion for 

economic theory, decision science, statistics and econometrics have generated a vast literature.  

It is now widely believed that ambiguity aversion is widespread, that the link between choice 

and probability beliefs within a Bayesian framework that was established by Savage (1954) in his 

development of SEU theory needs to be modified or abandoned to accommodate ambiguity, 

and that most of the uncertainties faced by economic decision makers in the real world involve 

probabilities that are not and often cannot be fully based on objective evidence. The survey by 

Gilboa and Marinacci (2011) provides a comprehensive and insightful discussion of these issues.   

We separate the issues concerning ambiguity of probability beliefs from those concerning the 

effects of epistemic uncertainty and ambiguity aversion on decisions.  We do so by utilizing 

survey data that asks directly about people’s probability beliefs.  As Manski (2004) emphasizes, 

this approach differs from the practice in much of applied economics of assuming that 

individuals have exogenously given probabilities.  It also differs from Savage’s theory which 

infers probability beliefs from choice situations.  This means that we can explore empirically 

how beliefs about risk and uncertainty vary in the population without being required to take a 

stand on how decisions are affected by probability beliefs.   

2. Subjective Survival Probability Questions on the HRS 
The Health and Retirement Study has asked probabilistic expectation questions in various topics 

since its beginning in 1992. The survival question that we use in this paper comes from the 2002 

wave and it reads as follows: “What is the percent chance that you will live to be [TARGET AGE] 
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or more?” The target age exceeds the individual’s age by at least 10 years: it is 80 years for 

people below 70, and 85, 90, 95 and 100 for individuals in successive five year age intervals.  

Although the subjective probability responses in HRS seem reasonable when averaged across 

respondents, individual responses appear to contain considerable noise and are often heaped 

on values of “0”, “50” and “100” (See for example Manski, 2004, for a discussion).  Considering 

the whole group of probability questions in HRS-1998, for example, while only 5% of 

respondents refused to answer the probability questions, 52% of questions were heaped on 

either “0” or “100” and an additional 15% were heaped on “50”.     

Figure 1: Distribution of Survival Probabilities to Target Age, by Age of Respondent, HRS-2002 

 
Note:  Target age is 80 years for people below 70, and it is 85, 90, 95 and 100 for individuals in successive five year 

age intervals 

 



 10 

These patterns are illustrated in Figure 1 by histograms of responses to the HRS-2002 survival 

probability question.  We have included separate histograms by the target age used in the 

survival question and a total histogram in the six panels of Figure 1.  Each histogram shows a 

high frequency of focal answers, especially at 50.  The ratio of 50 responses is somewhat smaller 

at old ages where the actual survival probabilities are low, but it still accounts for 16 percent of 

the responses for people above 84.  

Some psychologists, especially Fischhoff, Bruine de Bruin and their colleagues (Fischhoff and 

Bruine de Bruin, 1999; Bruine de Bruin et al., 2000) have argued that answers of “50” may 

reflect “epistemic uncertainty;” that is, a failure to have any probability belief at all about the 

event in question or, at least, to have no clear idea of what the probability could be.  

Alternatively, of course, an answer of “50” might reflect a very precise belief about the 

probability that a fair coin will come up heads or perhaps a somewhat less precise belief that a 

given event is about equally likely to occur or not occur.  Indeed, while HRS probability questions 

offer participants a scale of integers from 0 to 100, the large majority of “non-focal” answers are 

integers ending in “5” or “0”, suggesting that responses from most people involve rounding or 

approximation. See Manski and Molinari (2010) for a discussion of the different rounding 

practices of survey respondents in the HRS and of potential remedies.  

There has been much less emphasis in the psychological literature on focal answers at “0” or 

“100”.   When a probability question concerns an event such as the chance of being alive ten or 

fifteen years from now, it does not seem credible to assume that a respondent who gives such 

an answer of “100” is completely certain he will be alive then and, apart from a person 

diagnosed with a terminal illness, an answer of “0” should not be taken at face value, either.   
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It is possible to regard answers of “0” or “100” as approximations which are no different in kind 

than rounded answers of “5”, “40” or “95”.  However, in a discussion of Gan, Hurd and 

McFadden (2005), Willis (2005) provides evidence against this interpretation in a simple 

regression of actual mortality by 1995 on individual answers to the subjective survival 

probability question in 1993 using a sample of persons over 70 from the AHEAD cohort of HRS.   

He finds that a person who responds “0” has an actual survival probability that is 13 percentage 

points higher than a person who gives very low non-focal answer.  Similarly, a person who 

responds “100” has a survival chance that is 3.8 percentage points lower than a person who 

gives a non-focal answer near 100.  This suggests that focal answers at the extreme may, like 

answers at “50”, reflect more imprecise, ambiguous or uncertain probability beliefs than those 

of persons who give non-focal answers.   

Previous researchers have found that the tendency to give focal answers is associated with 

lower cognitive ability (Lillard and Willis, 2001; Hurd and McGarry, 1995).  In particular, age and 

education, both strong correlates of mortality risk, are also related to the tendency to give focal 

answers to probability questions on a wide variety of topics.   

Focal responses, thus, might bias estimated average survival probabilities if we take them at 

face value and the bias might be stronger in situations where the underlying probability is far 

from 50 percent. Figure 2 and 3 compare the average responses to the survival questions by age 

and gender to the corresponding numbers from life tables.  The target age in the survival 

question changes with the age of the respondents, hence the apparent sawtooth shape of the 

curves in Figure 2 and 3.  

Comparing the HRS responses to life tables might be problematic for reasons we will shortly 

discuss, but we can see a quite strong bias in the survey responses toward 50 percent. We shall 
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investigate in this paper whether the discrepancy between subjective and objective survival 

probabilities is a consequence of epistemic responses. 

Figure 2: Subjective and life table survival probabilities to a target age, HRS-2002, females 

 
Note:  Target age is 80 years for people below 70, and it is 85, 90, 95 and 100 for individuals in successive five year 

age intervals; The model fits Gompertz survival functions on life table and age-aggregated subjective probabilities; 

Weighted numbers 

 

 

Figure 3: Subjective and life table survival probabilities to a target age, HRS-2002, males 

 
Note:  Target age is 80 years for people below 70, and it is 85, 90, 95 and 100 for individuals in successive five year 

age intervals; The model fits Gompertz survival functions on life table and age-aggregated subjective probabilities; 

Weighted numbers 
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It is problematic to directly compare the objective and the subjective survival curves. Life table 

probabilities are estimated from current mortality data and it is known that mortality is 

changing over time. An important advantage of the subjective survival data is that it is measured 

directly for each cohort and we do not need to extrapolate information from previous cohorts 

(Perozek, 2008; Gan et al., 2005).  In the empirical part of the paper, thus, we will compare 

estimated individual survival curves to actual survival of the respondents eight years later in 

2010, which is the last available wave of the HRS. 

3. Probability Beliefs and the Modal Response Hypothesis  
In this section, we describe a theoretical model which attempts to relate answers that an 

individual gives to a survey question about the subjective probability of a given event and his 

underlying probability beliefs.  In our model we distinguish between ambiguity, which we define 

as a second order probability distribution represented by the density function, ( )g p , and 

epistemic uncertainty, which we define as an inability or unwillingness to report a probabilistic 

belief.   Although the model is designed to apply to any subjective probability question using the 

HRS format, in this paper we discuss it in the context of survival probabilities. 

Let us assume that person i  is faced with the problem of estimating the probability ip
 
of an 

event A . Initially he has no information about the probability of this event, he has an 

uninformed prior  0,1prior

ip U , where U  denotes the uniform distribution. The person 

observes event A  happening 1i   times and event A  not happening 1i   times. In the 

survival context, for example, this means that a person is aware of 1i   people similar to 

himself who survived to the given target age and 1i   similar people who died before 

reaching that age. It is well known that if this new information is used to Bayesian update one’s 
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beliefs about
ip , the posterior distribution has a Beta distribution8 with parameters 

i  and
i , 

 ,i i ip Beta   .  

When faced with a survey question about the probability of event A  the person might respond 

with the mean or the mode of this distribution. When i  and i  are larger than one9, the mean 

and the mode of the Beta distribution are 

 mean i
i i

i i

p



 

 


 (1) 

 mod 1

2

e i
i

i i

p


 




 
 (2) 

  

A Bayesian agent would report mean

ip  which is the expected value of the Bayesian updated 

posterior distribution. Note that mode

ip  is exactly equal to the naïve estimator of the probability 

that can be computed by the number of “good cases” which is 1i   over the number of all 

cases which is 2i i   . A frequentist agent, thus, would not report the mean but, rather, the 

mode of the distribution  ig p . The modal response hypothesis assumes that people report 

mode

ip  rather than mean

ip  to probabilistic survey questions for at least two reasons. First, as 

Lillard and Willis (2001) argue, it is cognitively less burdensome for a respondent to answer a 

                                                           

8
 Hill, Perry and Willis (2004) used a model that was similar in spirit and its qualitative properties to the 

model used in this paper, but it had a number of disadvantages. First, the expected value of the subjective 

probability distribution they used did not have a closed form. Second, their distribution was not based on 

Bayesian updating and its parameters did not have a clear economic meaning. Third, as we discuss in the 

text, in our model the mode of the Beta distribution is exactly equal to a rule-of-thumb estimator for the 

probability in question. 

9
 Other cases will be discussed below. 
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survey probability question quickly by reporting the most likely value of p, given by the mode of 

, than it is to report the expected value given by ( )mean

i ip pg p dp  . Second, mode

ip  is 

equal to a very simple rule-of-thumb estimator for the probability in question: the frequentist 

response. It seems a reasonable assumption that in a survey situation where people have to 

answer many questions in a very short timeframe give frequentist approximations to probability 

questions instead of Bayesian updating their priors. Moreover, in this model the mode is often a 

good approximation of the mean10. The formula in (2) does not give the mode of the distribution 

when either i  or i  is smaller than 1. Whenever 1, 1i    the distribution is always 

decreasing and has a unique mode at zero. Whenever 1, 1i    the distribution is always 

increasing and its unique mode is at one. Finally, if 1, 1i    the distribution has a U-shape 

and it has two maxima at zero and one. In this case one finds it more probable that the 

probability of event A is zero or one than that it is 50 percent. 

We have motivated the use of the Beta distribution with a Bayesian framework where agents 

observe certain numbers of successes and failures.  As we shall show, however, the distributions 

that occur when either i  or i  is smaller than 1 cannot be derived from Bayesian updating 

based on evidence.  Indeed, these distributions correspond to situations in which, in effect, the 

agent has very little objective evidence on which to base his beliefs and, lacking evidence, tends 

to give conventional “epistemic “ responses to survey questions about his probabilistic beliefs .  

In particular, we hypothesize that the person will respond with an extreme value of either zero 

or one when ( )g p is montonically decreasing or increasing.   When the distribution is U-shaped, 

                                                           

10
 Engelberg et al. (2009) find that the large majority of respondents in the Survey of Professional 

Forecasters have tight subjective probability distributions in their head about future GDP and inflation, 

and thus, the means, the modes and medians of these distributions are very close to each other. 

( )g p
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we hypothesize that the person will answer “50” as a synonym for “God only knows” rather than 

as necessarily a belief that the outcome in question is equally likely to occur or not.11 

To show how the shape of ( )g p is related to the amount of evidence on which an individual 

bases his beliefs, it is convenient to introduce two more parameters that are functions of   and 

 : 

 i
i

i i




 



 (3) 

 i i in     (4) 

 

i  is the expected value of the distribution of the probability in question, and in  is a measure 

of the precision of beliefs. Higher in  means more precise beliefs, that is, a tighter ( )ig p  density 

function. This density function has the form 

    
 

 

  

1 11
1

| ,
, 1

i ii i
nn

i i i

i i i i

p p
g p g p n

B n n




 

 


 


 (5) 

 

where  B   is the Beta function. 

Earlier, we argued that an uninformed agent with a uniform prior over the unit interval would 

update his prior after observing 1   successes and  1   failures in a sample of

                                                           

11 In the survival context, a U-shaped distribution could represent the beliefs of someone who is unsure 

whether he had inherited a genetically transmitted disease. In case he did, he might face a low survival 
probability to the target age, but if he did not he has a high probability of surviving. The posterior 
distribution of the survival probability in this case can have a U shape, where the extreme probabilities 
are more likely than any middle values.  However, it is not plausible that such situations are common 
enough to account for the large number of “50” responses that we see in survey responses. 
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2N     .  Note that (1,1)B  is a uniform distribution so that 2in     for an 

uninformed agent.  Equivalently, such an agent observes no data since 0N  .  Thus, a necessary 

condition for Bayesian updating is that the agent observe a positive amount of data, which 

implies that  2   .  As we have seen, any Beta function satisfying this condition is 

unimodal where the mode falls in the interval, 0 1p  .  Conversely, when 1 2    , 

( )g p may be monotonically increasing, decreasing or U-shaped depending on the value of   

and if 1   , ( )g p is always U-shaped.  Obviously, Bayesian updating cannot be the source 

of such beliefs since the implied sample size is negative!  That is why we label such beliefs as 

“epistemic” and distinguish them from “ambiguous” beliefs that can be represented by a second 

order probability. 

Up to now, we have assumed that agents observe a certain number of successes and failures in 

a sample of a given size, implying that  and   are integers.  The Beta distribution, however, is 

well defined for any positive real values of   and  . The intuition for observing non-integer 

numbers of successes/failures could be that the observed success/failure is only partially 

relevant to the question. For example, assume that a person’s father died at the age of 78. 

When this person faces a survey question about the probability of surviving to at least 80 he 

might consider his father’s early death as a negative signal about his own survival chances. 

However, his father lived in a time when the health care system was not as good as today; his 

father might have lived an unhealthier life; etc. The person, thus, might put a less than unitary 

weight on his father’s death as it is only partially relevant to his own survival chances.   

In our development of the Beta model, the precision parameter, i i in    , is assumed to be 

equal to the size of the sample less two that is observed by agent i.   A broader and more useful 
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interpretation of precision is that it measures the confidence that an individual has in his 

judgment of the risk of a given event.  The person’s confidence may be either warranted or 

unwarranted when tested against objective evidence.  For example, in this paper we find that, 

on average, people aged 50-70 have quite accurate estimates of their survival chances 10-15 

years in the future while people older than 70 are significantly overoptimistic.  However, 

confidence in one’s probabilistic beliefs is often based on evidence.  For instance, educated 

individuals can utilize, in addition to their personal experience, a broader knowledge of evidence 

about mortality and its causes from past coursework, wider reading and better informed family 

and social networks.  Thus, we may interpret precision as a measure of a person’s capacity to 

assess his survival risks based on his knowledge of mortality risks and his ability to translate 

personal information about his own health, health behavior and family history into its 

implications for survival chances.12  By considering in and i  together and comparing the 

accuracy of subjective beliefs against objective evidence, we can assess whether increases in 

confidence tend to be warranted. 

The relationship between in , i  and ( )g p is depicted in Figure 4.  The figure presents a matrix 

of 81 probability density functions— ( | , )i ig p n  in equation (5)—corresponding to nine 

different values of the mean of  g p , given by i  on the horizontal axis, and nine different 

degrees of precision, measured by in , on the vertical axis.  In our model, these densities 

                                                           

12
 Of course, it is possible that a person may have a very unambiguous view about the “true” survival 

probability that is based on little or no evidence.  While our model cannot identify whether and how 

people process evidence, we will compare the effects of covariates on subjective probabilities and the 

actual mortality experience of the same people eight years later.  With a few exceptions, subjective and 

objective covariates have the same signs, but the coefficients of covariates estimated from the subjective 

data are smaller than those estimated from actual mortality.   
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represent different possible beliefs about the probability of survival to a target age.  For 

example, consider the densities for which 0.5i   so that the mean survival probability is one-

half. These are represented by the column of density graphs in the center of the figure.  The 

density in the lowest graph in the column, corresponding to a very high level of precision of 

5000i i in     , has almost all its probability mass concentrated at 0.5.  As 
in  decreases, 

the densities spread.  For example, when 100in  , ( )g p has a single mode at 0.5 and 

probability mass near zero for 0.4p   and 0.6p  .  In this case, an answer of “50” to the 

survey question means that the respondent believes that the probability is between 40 and 60 

percent, so that 50 is a reasonable approximation. When 2in  , the density is uniform, 

corresponding to the case when the posterior belief is the same as the prior because no new 

information was acquired ( 1 0i    and 1 0i   ). In this case all probabilities between 0 

and 1 are equally likely.  For values of 2in  , the density is U-shaped with two maxima at 0 and 

1. According to the MRH, a survey respondent would report “50” in any of these cases.  Thus, an 

answer of “50” by a survey respondent might reflect a very precise view that the chance of an 

event is one half; a view that the probability is approximately one half; or a view that the 

probability could be anything so that an answer of “50” indicates epistemic uncertainty. 

Figure 4 also illustrates the boundary between ambiguous beliefs that can be represented by a 

second order probability distribution based on Bayesian principles and epistemic uncertainty in 

which the individual has too little knowledge about the risk in question to be able to form an 

evidence-based probability judgment.  Possible ambiguous densities appear in the darkly 

shaded, inverted U-shaped region in Figure 4 for which 2in  .  Note that throughout this 

region, reports of meanp  and modep  tend to be very close to one another.  The reason is twofold.  
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First, as we have remarked earlier, modep provides a good estimate value of meanp  when the 

mean is in an intermediate range of about 30-70 percent even with levels of precision as low as 

5in  .  Second, when the individual’s subjective value of   is more extreme, he will provide a 

non-epistemic response (i.e., not 0, 50 or 100) only if he has a relatively high level of precision.  

For example, the MRH implies that a person who believes that the mean is 10 percent would 

report (a rounded) 10 percent if 100in  , but would report zero if 8in  .  The combinations of 

i  and in for which the MRH predicts epistemic responses are shown in Figure 4 by the two 

unshaded triangular regions corresponding to answers of 0 and 100; finally, in the lightly 

shaded, inverted U-shaped region with a minimum at 0.5i  and 2in  , a respondent always 

reports 50 regardless of their belief about risk.  

To summarize, the modal response hypothesis claims that survey respondents report a 

potentially rounded version of the mode of  ig p  whenever it exists and they report 50 

percent whenever  ig p  has a U shape. 
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Figure 4: Density of probability beliefs (gi(p)) for different mean (µi) and precision (ni) values 

 
 

The round function can be rounding to the closest 1 percent, 5 percent, 10 percent or anything 

that seems appropriate in the context of the survey. Manski and Molinari (2010), for example, 

use a framework where there are individual differences in rounding practices. Their approach 

can also be modeled in our framework by letting the round function vary across individuals.  

The hypothesis of this paper is that people answer subjective probabilistic expectation questions 

according to the MRH. It would be desirable, however, to test the MRH against other survey 

response models. A natural candidate for comparison is the mean model where people respond 

a potentially rounded version of the mean of ( )ig p .  

  mm
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In the mean model the precision of beliefs (
in ) is not identified, only the mean (

i ) is. The 

mean and the mode models however converge to each other as in  goes to infinity. One natural 

test of the MRH, thus, can be carried out by estimating the MRH model and testing whether the 

estimated precision is finite. As we will show, this is indeed the case. We will also provide other 

tests. We will simulate probabilistic survey responses from the estimated mean and MRH 

models and compare their histogram to the histogram of responses from the HRS. As we will 

show while the MRH model tracks the true histogram very closely, the mean model performs 

poorly, mostly because it cannot explain the large fraction of focal answers. Lastly, we will 

compare subjective and actual survival probabilities. We will show that while the MRH model 

still has problems predicting low probability events precisely, such as survival probabilities at old 

ages, it still performs better than the mean model. 

4. Individual subjective survival curves  
In the previous section, we introduced two survey response models that transform second order 

probability distributions  | ,i ig p n  into the survey response mrh

ip
 
or mm

ip . These models can 

be applied to any subjective probabilities and not just to survival data. To close the model, 

however, we need to specify the mean ( i ) and the precision ( in ) of beliefs. There is no unique 

way of modeling these two variables; it is the task of the researcher to find the appropriate 

model in the context of the particular project. In this section, we show how i  and in  can be 

modeled in the context of survival probabilities. 

The so-called Gompertz model of longevity has been widely used in both demography and 

biology because its increasing mortality hazard assumption lines up with mortality data of 
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humans and other species very well (Vaupel, 1997). The Gompertz model assumes that the 

hazard of death is exponentially increasing with age: 

    0 1 1exph a a    (8) 

 

where 0  is a positive scale and 1  is a positive shape parameter. By simple calculation, (8) 

leads to the following survival probability from age a to age t: 

        0 1 0, exp exp exp .S a t t a      (9) 

 

We have already discussed Figure 2 and 3 in Section 2 when we compared subjective survival 

probabilities to life tables. The two figures also show fitted Gompertz values. For estimation, we 

collapsed the probabilities into age-gender cells and used non-linear least squares on the 

aggregated data to recover the unknown scale ( 0 ) and shape ( 1 ) parameters. As we can see, 

the Gompertz model gives a very good fit for both genders and for both subjective and objective 

life table probabilities. Thus, we shall maintain the assumption of exponentially increasing 

mortality hazards in this paper. 

The main advantage of subjective survival data is that we can estimate individual heterogeneity 

in survival chances. With objective survival data we can only identify group-specific survival 

probabilities by computing the ratio of survivors in a particular group. Unobserved 

heterogeneity within groups, however, is not identified. In contrast, subjective survival data 

enables us to estimate individual heterogeneity in survival chances as we collect probability data 

on the individual level. Following Vaupel (1979) we allow the scale parameter ( 0 ) to have a 

distribution but fix the shape parameter ( 1 ) in the population. We are going to use the 
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assumption that the scale parameter has a gamma distribution with shape parameter k  and 

scale parameter    

  0 , .i k   (10) 

 

The expected value of the gamma distribution is k  and thus both parameters increase 

mortality chances and decrease the probability of survival (see equation (9)). Using the gamma 

distribution has several advantages. The first is that under this assumption the average survival 

probabilities can be derived analytically. As we show in Appendix B, in the gamma-gompertz 

model the average survival probabilities from age a to age t is 

         1 1 1, | , , 1 exp exp .
k

iE S a t k t a    


    (11) 

 

The second advantage of the gamma-gompertz framework is that we can analytically derive the 

effect of individual heterogeneity on sample selection. Different survival chances are modeled 

by letting 0  have a distribution in the population. In this paper we refer to 0  as “frailty” 

(Vaupel, 1979), which includes genetic, environmental and behavioral factors that affect the 

underlying mortality of individuals other than age. As long as survival chances are 

heterogeneous in a population, fit individuals will be overrepresented in the sample over time 

as frail individuals are more likely to die and not participate in the HRS. By applying the formula 

from Vaupel (1979) we can analytically characterize this sample selection. Let ak  and a  

denote the shape and scale parameters in (10) in cohort a . The following is true for any cohorts 

 a rk k  (12) 
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where r is a reference cohort. As we can see, older and younger cohorts share the same shape 

parameter ak , but older cohorts have lower scale parameter a  (lower frailty) than younger 

cohorts. 

Another advantage of the gamma-gompertz framework is that it is relatively easy to add 

covariates to the model and recover interesting structural parameters using the delta method. 

Without a closed analytical formula for the average survival chances in (11), the use of the delta 

method would be complicated. We recommend adding covariates to r , which is the scale 

parameter of the gamma distribution in the reference cohort. To sum up, we use the following 

structural equations. 

        0 1 0, exp exp expi i iS a t t a        (14) 

  0 ,i ik   (15) 
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 (16) 

 

In equation (16) we have set the reference age to 50 ( 0.5r  ) and we have added covariates to 

the scale parameter of the 50 year old cohort ( 0.5 '

i ix   ). After fitting this model one can 

recover the average partial effect of any covariate jx  on the survival probability from age 1a  to 

age 2a  by substituting the estimated coefficients into the following equation. 

  
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1 2

,
,

i

j x
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x
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 (17) 
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Details about estimating the partial effects in (17) can be found in Appendix B.  

So far we have only talked about how to model the mean survival probability, i . For modeling 

the precision of beliefs ( in ), we use a very simple log-normal framework.13 

   'ln i i n nin z u   (18) 

  20,ni nu N   (19) 

 

Equation (14)-(19) together with the survey response models of the previous section fully 

specify our model and we are ready to estimate it with maximum likelihood. 

5. Estimation and identification  

Our structural model has two unobservables, 0i  which is a function of the mean survival 

probability and niu  which is the unobserved heterogeneity in the precision of beliefs. Based on 

the distributional assumptions from the previous section, the model is fully specified and it can 

be estimated with maximum likelihood.  

We only observe one survival probability answer in HRS. In Section 3, we proposed two survey 

response models. The mean model assumed that people report a rounded version of their true 

survival chances, while the MRH model assumed that people report a rounded version of the 

                                                           

13
 This specification is a very simple way of modeling uncertainty. One important issue is that when 1n  , 

all responses will be epistemic 50%. The empirical model, thus, can identify the ratio of responses where 

1n  , but whether the log-normality assumption is appropriate for the conditional density of n in this 

region cannot be determined from the data. 
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mode of the distribution of probability beliefs  | ,i ig p n  or 50 percent when the mode does 

not exist. 

The joint distribution of the two random variables 0i  and niu  is complicated because one is 

gamma, the other is normal and they enter the model in a non-linear fashion. The estimation of 

the MRH, thus, can be carried out by maximum simulated likelihood. The estimation of the 

mean model is more straightforward as the precision of beliefs plays no role in the model. 

5.1. Estimating the mean model 

 

The likelihood function can be written as 

   Pr ,i i i il p S a t p    (20) 

 

where ip  and ip  denote the lower and upper bound probabilities that would be rounded to 

the survey response. For example, if the rounding function rounds to the closest 1 percent and 

the survey response is 27 percent, then 0.265ip   and 0.275ip  . If the rounding function 

rounds to the closest 5 percent, then the corresponding probabilities would be 0.225ip   and 

0.275ip  .14 The likelihood function, thus, is 

                                                           

14
 As we can see, a response that is not a multiple of 5 percent cannot be a rounded version of a true 

latent probability when we round to the closest 5 percent. The rounding model we have in mind is one 

where agents only identify bins (e.g. 0%-2.5%, 2.5%-7.5%, …, 97.5%-100%) and any response in a 

particular bin only tells the econometrician that the true latent probability is also in the same bin. An 

alternative model would be that of Manski and Molinari (2010) where they identify individuals’ rounding 

practices across many probability questions and use different rounding functions for each individual. 
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which can be easily computed from the c.d.f. of the gamma distribution in (10) with parameters 

k  and i .  

5.2. Estimating the modal response model 

 

The estimation of the MRH can be carried out by maximum simulated likelihood (MSL). MSL 

computes the likelihood function by drawing many values from the distribution of one (or 

several) random variables and computing the average conditional likelihood, conditioning on 

those values. In our case, it is worth simulating values from the distribution of niu . A standard 

version of the simulated likelihood would look like the following.15 

  
1

1 S
s

i i ni

s

l l u
S 

   (22) 

 

where S is the number of simulation draws. The problem with this approach is that our model is 

full of discontinuities that make this approach infeasible. Let us take a look at the MRH formula 

by rewriting (6) with our new variables, i  and in . Let us denote 
1

i

i

n
n

  and 
1

1i

i

n
n

  . The 

MRH model assumes that the survey response is 

                                                           

15
 Note that in case the simulated values are drawn from the distribution of niu , we do not need to 

weight the terms in (22) by the density of the draw as the simulation itself already weights the data. 



 29 

 

1
if

2

.1 if ,

0 if ,

0.5 if

i i
i i i

i

mrh

i i i i

i i i

i i i

n
round n n

n

p n n

n n

n n










  
   

 


 




  

 (23) 

 

As we can see, whenever 1in   an answer can only be 50 percent. Whenever 2in  , an answer 

can only be 0, 50 or 100 percent. These discontinuities make the simulation model in (22) hard 

for the following reason. Imagine that during the maximization of the likelihood function we get 

into a region where the precision of beliefs in  is always below 2 for each simulation draw. This 

could happen if ' 2k

i nz  and 2,k

n  is small, where k  indexes the actual guesses for the 

parameters. In this case, the likelihood function would be undefined and the numerical 

maximization would fail. As a remedy, we recommend drawing separate simulation values from 

each region of in ; this assures that the likelihood is well-defined in each iteration of the 

maximization.16 The likelihood function, thus, is written  
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 (24) 

 

Now, whenever ' 2k

i nz  and 2,k

n  is small in a particular iteration for a non-focal answer, the 

likelihood is a well-defined, extremely small number. 

                                                           

16
 Hill, Perry and Willis (2004) did not use this trick when they estimated a very similar model. The 

consequence was that they had to make restrictions on their model to be able to carry out the numerical 

estimation. It turned out that our model is identified and estimable in practice under mild conditions once 

these discontinuities are properly taken care of. 
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The probabilities of the different regions of 
in  are trivial since 

in  is assumed to have a log-

normal distribution. Whenever 1in   an answer can only be fifty and thus the conditional 

likelihood is 
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, 1 .
0 otherwise
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s i
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When 1 2in  , it is assured that i in n  and thus 

  

  

  
  

Pr , if 50

Pr , if 0
,1 2 .

Pr , if 100

0 otherwise

hrs
i ii i

hrs
is i i

i ni i
hrs

ii i

n S a t n p

S a t n p
l u n

S a t n p

   

  

   
  



 (26) 

 

These probabilities can be computed analogously to the mean model derived in Section 5.1. 

The most complicated, although still very straightforward, case is the conditional likelihood in 

the region where 2in  . In this region iin n . The only complication is that a 0 and a 100 

answer can now be either a focal answer or an exact rounded answer. 50 answers in this region 

cannot be focal answers as 2in   and thus either i  or i  is larger than one (See          

equation(4)). The conditional likelihood is 
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After straightforward algebra the conditional likelihood becomes 
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and again these probabilities can be computed analogously to the mean model derived in 

Section 5.1. 

5.3. Identification 

 

We seek to estimate the following set of parameters: 1, , , ,n nk     . In the case of the mean 

model, parameters of the belief precision, n  and n  are not identified. It is worth thinking 

about where the identification of the different parameters is coming from. Parameter 1  is the 

shape parameter of the individual survival function and it is identified from how fast the 

probability responses change with age (  | /hrs

iE p a a  ). Parameters k  and   determine 
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the scale parameter of the individual subjective survival curves (
0i ) and they are identified 

from the location and dispersion of the individual responses (  |hrs

i iE p x  and  |hrs

i iV p x ). 

The identification of the belief precision parameters n  and n  is primarily coming from the 

fraction of different focal answers in different demographic groups. If we have many focal 

answers, we expect in  to be small. If we have many different types of focal answers (0, 50 and 

100), we expect a high n , indicating a high dispersion of belief precision in the population.  

Finally it is worth noting that both the mean and the MRH models are identified even 

unconditionally. There is no need for instruments, exclusion restrictions, or any other variables 

beyond a single subjective survival probability question of the form used in HRS. 

6. Empirical Analysis 
Beliefs about subjective survival probabilities presumably depend on an individual’s knowledge 

of his situation, his ability to translate this information into a probability and on his level of 

optimism or pessimism.  In the empirical model estimated in this section, we use the 

information available in the HRS to try to capture several of the major determinants of beliefs in 

a parsimonious fashion.   

6.1. Sample and Measures Employed 

 

The sample used in the empirical analysis consists of 13,038 respondents to the 2002 Health and 

Retirement Study, over age 54 in 2002,17 who provided responses to the subjective survival 

                                                           

17
 The HRS is a representative panel sample of the 50+ population and their spouses. The sample is 

refreshed in every 6 years and the last time it was refreshed before 2002 was in 1998. The sample still 

contains some people younger than 54 in 2002 (mostly spouses of older people), but given that their 
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probability questions.  Excluded from the sample are proxy respondents and non-respondents in 

the 2000 wave of data collection.  Also excluded are persons over 90 who were not asked the 

survival probability questions and people for whom we did not have realized survival 

information in 2010.18 Table A1 in Appendix A presents the statistics for the variables used in 

our analyses.  The average age of our sample members is just over 68 years (ranging from 54 to 

89 years) and on average the target age was 16 years from their current age.  The modal sample 

member is a white female with a high school education although there is substantial variance in 

each of these dimensions. 

The age of death of the parents might be a primary source of information for individuals about 

their own survival chances. As Table A1 shows, 16 percent of our sample still has a living mother 

but only 5 percent has a living father. The average age of death of the mothers is 76 years while 

the corresponding number for the fathers is 72 years.  For each parent, we construct a variable 

equal to the current age of the parent if he or she is alive and the age of death otherwise. 

We also included in our analysis three sets of variables on health related behavior. As Table A1 

shows, 43 percent of our sample reports regular exercise, at least three times a week. While 

only 14 percent of the sample smoked in 2002, almost 60 percent reported having smoked in 

the past. There is a big variation in the sample in drinking behavior. Roughly half of our sample 

(48 percent) reports that they drink alcohol sometimes, but the majority are not regular alcohol 

consumers. Among those who are, the average number of days when they drink is 3.4 days a 

week, and the average number of alcoholic beverages consumed is 1.9.    

                                                                                                                                                                             

number is small and age plays a crucial role in our survival framework we decided to drop these 

observations. 

18
 Actual mortality of HRS respondent is very precisely measured from administrative data (the National 

Health Index) and it is even available for people who dropped out of the survey in a later wave. 
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Self-rated health in the HRS is measured on a five-point scale--1) Excellent, 2) Very Good, 3) 

Good, 4) Fair and 5) Poor.  We translated these into three categories:  1) excellent/very good; 2) 

good; 3) fair/poor.  We then constructed dummy variables representing the combination of self-

rated health in 2000 and 2002 for each respondent with excellent/very good in both years as the 

baseline case.  In Table A1 we only show the marginals of this joint distribution. As we can see 

the fraction of people in “excellent/very good” health decreased from 47 percent in 2000 to 43 

percent in 2002. The fraction of people in “good” health did not change much (31 and 32 

percent) and the fraction in “fair/poor” health increased from 22 to 25 percent. 

Two cognitive measures are used in the analyses: “Vocabulary” and the “27-point cognitive 

capacity scale”19. The first score “Vocabulary” aims at measuring established knowledge or 

crystallized intelligence of respondents by asking them to define 5 randomly selected words, 

such as “fabric”, “domestic”, “remorse” or “plagiarize”. 

The second measure, the “27-point cognitive capacity scale” is a composite measure aiming to 

classify HRS respondents into three cognitive function categories: Normal (12 – 27); Borderline 

(7 – 11); and Impaired (0 – 6). The questions used are 1) an immediate and delayed 10-noun free 

recall test to measure memory; 2) a serial seven subtraction test to measure working memory; 

and 3) a counting backwards test to measure speed of mental processing (Fisher et al., 2012). 

We have standardized both scores on the total 54-90 year old population in HRS. The means of 

these variables in Table A1, thus, also gives us a sense of how representative our final sample is. 

As we can see, the average respondent in our sample is 0.08 standard deviation above the 

                                                           

19
 The 27-point scale Langa-Weir method is discussed in Crimmins, et al. (2011). HRS cognitive measures 

are described in Fisher, et al. (2012).  
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average cognitive capacity of the HRS respondents, and he is also above average in his 

vocabulary (0.11 standard deviation). 

Since mood can affect the level of optimism we also include in our model a count of the number 

of depressive symptoms the respondent has exhibited over the recent past.  These range from 

disturbed sleep patterns, through feelings of hopelessness all the way up to thoughts of suicide.  

In all there are eight such symptoms measured and they are used to construct the CESD 

depression scale (Ofstedal, et. al., 2002).  On average respondents have less than one and one-

half depressive symptoms. Table A1 shows that our sample is less depressed (by 0.04 standard 

deviation) than the average HRS respondents in the same cohort. 

6.2 Maximum Likelihood Model Estimates 

 

The objective of this section is to test the modal response hypothesis (MRH) through a series of 

performance tests. All the results we present in this section are based on the six estimated 

models shown in Table A2 and A3. Table A2 reports models without covariates and Table A3 

shows estimated models with covariates appearing in the equations of 50  (or 0 ) and n . Both 

tables present three models. The first columns show actual eight year survival of the HRS 

respondents between 2002 and 2010 estimated with nonlinear least squares. The second 

columns called “Mean model” show results based on the assumption that HRS respondents 

reported a rounded version of the mean of the subjective distribution ( )ig p  when they 

answered the probabilistic survival questions in HRS in 2002. The last columns present the 

results of the MRH model where the assumption is that respondents reported a rounded version 

of the mode of ( )ig p  if it existed and 50 percent when the mode did not exist. In this paper we 
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assume that respondents round to the closest 1 percent, but the results are not sensitive to this 

assumption. 

All the parameters of our model (  50

0 1, , , , ,n k sd n   ) are assumed to be positive and thus 

their logarithms enter the likelihood function. Covariates potentially enter two equations. The 

first is the equation of 50  which is the scale parameter of the gamma distribution of the 

mortality hazard at the age of 50. Covariates with positive coefficients are estimated to increase 

the mortality hazard and decrease the survival chances. The magnitudes of these coefficients 

will be analyzed later when we derive average partial effects of them on various survival 

probabilities. The second equation where covariates appear is the equation of the precision of 

beliefs ( n ). Positive coefficients mean tighter, more precise probability beliefs. 

 

 

Figure 6: 8 year actual and expected survival probabilities by age in 2002 
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Figure 6 compares estimated actual 8 year survival probabilities of HRS respondents to 

subjective survival beliefs in 2002 computed from the models in Table 2. The horizontal axis 

shows the current age of respondents in 2002 and the vertical axis shows the fitted average 8 

year survival chances from the three models. As we discussed in Section 3, heterogeneity in 

survival chances leads to sample selection as people with better fitness are more likely to 

survive and become respondents of the HRS survey at older ages. In the case of realized survival, 

only the interpretation of the estimates changes, but we do not need to make any further 

adjustments of the parameters. In the demography literature they call survival tables of this sort 

“Survival probabilities of the survivors”. In the case of subjective survival chances, however, we 

do have to properly adjust for the unmeasured genetic and environmental differences of 

cohorts with the formula in (13). As we can see, both the mean and the MRH model track the 

actual survival chances very well up until about age 84, when the subjective probabilities 

become too optimistic. While the 8 year actual survival chance of the 90 year old is roughly 20 

percent, the corresponding numbers in the MRH and mean models are 45 and 55 percent, 

respectively. Thus, although the MRH model provides numbers that are closer to the true 

survival chances at old ages, these numbers are still too large on average. It is not obvious, 

however, whether these overly optimistic numbers are biases in people’s heads or biases due to 

measurement error in the survey. In this paper we do not try to separate these two types of bias 

and we simply compare the mean, the mode and the actual survival models using the raw data. 
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Figure 7: Heterogeneity in the subjective survival curves, MRH model 

 
 

Figure 7 shows the estimated heterogeneity of survival chances in our sample. The different 

curves correspond to different values of 0  with lower values meaning better fitness. As we can 

see, there is notable variability in survival chances. For example, the difference in median 

survival (i.e., half-life) between those in the 10th and 90th percentiles of the estimated frailty 

distribution is about 25 years.  That is, comparing two groups of 50 year olds, half of those in the 

90th percentile are expected to survive to age 70 while among those in the 10th percentile half 

are expected to survive to age 95. Using only mortality data, one cannot identify the unobserved 

heterogeneity in survival chances.20  

                                                           

20
 There is a long history of discussion about the difficulty in separately identifying duration effects and 

unobserved heterogeneity. See, for example, Vaupel (1979) and Heckman and Singer (1984). Using 

subjective survival data, however, identifying unobserved heterogeneity in frailty is easier, because we 

observe probabilities of survival on the individual level. This contrasts with the use of mortality data, 

where it is hard to know which survivor is fit and which is simply luckier than other non-survivors. Even 

though we use a particular functional form for how unobserved heterogeneity enters the model (the 
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Figure 8: Simulated survey responses based on mean and mode models with covariates and 

the empirical distribution of survey responses 

  

 

 

 

The reason the MRH model is somewhat better than the mean model in predicting low 

probability events is that the high fraction of 50 percent answers are allowed to be focal 

answers that do not arbitrarily push the mean survival chances up. To visualize this effect we 

simulated survey responses based on the estimated models of subjective survival chances in 

Table A3. In order to get precise numbers, we used 651.900 observations for simulation which is 

50 times the size of our dataset ( 651,900 50 13,038  ). As we can see in Figure 8, the MRH 

model is able to predict histograms of responses that are very similar to the histogram of actual 

responses in the bottom panel. The ratio of 50 percent answers is around 25 percent, while the 

                                                                                                                                                                             

gamma-gompertz framework) it is important to note that these functional form assumptions are not 

needed for identifying unobserved heterogeneity in subjective frailty. 
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ratio of 0 and 100 percent answers are both around 10 percent. What is more important, the 

MRH model recognizes that the high fraction of focal answers should not be taken at face value 

as a large fraction of them only reflect imprecise knowledge. The mean model, however, takes 

all the focal answers at face value. Consequently, the mean model is not able to predict a 

histogram similar to actual responses, and it seriously biases the estimation of low or high 

probability events.  

Tables A4-A6 show estimated average partial effects of surviving between three different age 

intervals: current age to eight years later, 55-75 and 75-95. For all the three tables, we use 

results from Table A3 and the formula in (17). Figures 9-11 show the estimated average partial 

effects from the subjective survival models as a percentage of partial effects from mortality 

data. A 100% on these figures means that the estimated average partial effect is the same in the 

subjective and the actual mortality models, and a number that is higher than 100% means that 

the given covariate has a stronger effect on subjective than on objective mortality. The general 

pattern is the following. The partial effects of different covariates are in general smaller in 

absolute value on subjective than on objective survival probabilities. This can be seen on Figure 

9-11 where the majority of the bars lie below 100%. The only important exceptions are parental 

longevity and the depression score which seem to have stronger effects on subjective than on 

objective survival chances. This result is consistent with a model in which agents base their 

expectations on easily observable determinants of mortality (parents’ survival) because they 

have limited information on demographic differences in the society and on the role of different 

behavioral factors, such as smoking and exercising, on survival. Although this result is not shown 

in this paper, it is important to note that covariates other than parents’ mortality and the 

depression score are smaller in absolute value even if we do not control for these covariates. 
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Figure 9: Average partial effects of surviving eight more years in the subjective survival models 

as a percentage of partial effects using mortality data 

 

The second general finding in Tables A4-A6 and Figure 9-11 is that the discrepancy between 

objective and subjective survival probabilities is higher for low probability events than for 

moderate probability events. While the different columns contain similar numbers for the 

probability of surviving from age 55 to age 75, the numbers are wildly different when we look at 

survival chances from age 75 to 95. Whether this is evidence for biased expectations or 

measurement error in the HRS cannot be determined from our tables.  

  

-200% -100% 0% 100% 200% 300% 400%

Mother's age of death

Father's age of death

Exercises regularly

Ever smoked

Smokes now

Ever drinks alcohol

# of days when drinks

# of drinks when drinks

Excellent/good

Excellent/poor

Good/excellent

Good/good

Good/poor

Poor/excellent

Poor/good

Poor/poor

Years of education

Female

Black

Hispanic

Cognition score

Vocabulary score

CESD depression score

Mean model MRH



 42 

Figure 10: Average partial effects of survival from age 55 to 75 in the subjective survival 

models as a percentage of partial effects using mortality data 

 

The third general finding is that the MRH model seems to outperform the mean model as the 

partial effects derived from the MRH model are closer to the ones derived from actual mortality. 

The difference between the mean and the MRH models are more obvious for low probability 

events (surviving from age 75 to 95), when the estimated partial effects are roughly two times 

as big in the MRH model than in the mean model. We take it as evidence that by directly 

modeling focal responses we are able to get rid of an important bias in subjective survival data. 
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Figure 11: Average partial effects of survival from age 75 to 95 in the subjective survival 

models as a percentage of partial effects using mortality data 

 

Table A4 shows average partial effects of surviving 8 more years until 2010. As we can see 

almost all coefficients are closer to zero in the subjective survival models than in the realized 

survival model. The main exception is parental mortality, where the effects are higher for 

subjective than for objective survival in both the mean and the MRH models. Furthermore, 

almost all coefficients in the MRH model are closer to the ones in the actual survival model than 

the coefficients of the mean model. For example, people who were in poor health both in 2000 

and in 2002 had a 16 percent lower 8 year survival probability than people who were in 

excellent health, while the corresponding numbers in the MRH and mean models are 15 percent 

and 12 percent respectively; females had a 5.6 percent higher survival chances than males, but 
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the subjective probabilities were 3 percent and 1.8 percent in the MRH and in the mean models; 

other things equal blacks had a 4.1 percent higher21 survival chance and the subjective 

estimated probabilities were 5.2 and 2.4 percent. Thus, not only is the MRH model better in 

predicting low probability events compared to the mean model, the estimated partial effects of 

different covariates are also closer to the realized partial effects estimated from mortality data. 

A surprising finding in Table A4 is that while education has a positive partial effect on subjective 

survival chances, it has negative partial effect on realized mortality. This is entirely driven by the 

cognitive capacity control variable that positively affects survival and is also strongly correlated 

with the years of education variable.  Another interesting finding in Table A4 is about the role of 

smoking. The actual mortality data shows us that while, other things equal, smokers have a 12.4 

percent lower chance of surviving 8 more years ( 5.2 7.2 12.4  ), those who quit smoking are 

still 5.2 percent more likely to die than those who never smoked. The effect of smoking on 

subjective probabilities is different. Smokers seem to understand the health risks of their 

addiction, although they strongly underestimate it, but quitters falsely believe that their survival 

chances are the same as those who never smoked. These findings are in line with Sloan et al. 

(2003). Such beliefs might help convince smokers to quit, but nevertheless these beliefs are not 

based on strong evidence. 

In Table A5 and A6 and Figure 10-11 we estimated partial effects of surviving from age 55 to age 

75 and from age 75 to age 95. This exercise is useful to see whether the estimated partial effects 

behave differently for moderate and relatively low probability events. In Table A5 we can see 

that for moderate probability events (surviving from 55 to 75) the mean and the MRH models 

give very similar average partial effects of almost all coefficients, and even the actual survival 

                                                           

21
 Unconditionally, though, blacks have lower survival probabilities than whites. 
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chances are very close. For example, the partial effect of being in poor as opposed to excellent 

health in 2000 and 2002 decreases survival chances by 21 percent, while the mean model 

predicts 24 and the MRH model predicts 26 percent differentials. The corresponding numbers 

for gender are 6.6 percent, 3.5 percent and 5.1 percent. We can also see that parental mortality 

has a stronger effect on subjective as opposed to objective survival probabilities. Thus, both the 

mean and the MRH subjective survival models are performing comparably well for predicting 

partial effects on moderate probabilities. In Table A6, though, we can see that the subjective 

survival models are performing poorly at lower probabilities when we estimate the average 

partial effects of surviving from age 75 to 95. Almost all coefficients are closer to zero in the 

subjective models compared to the objective actual survival model and the differences are quite 

substantial. Nevertheless, the MRH model seems to be closer to actual survival data than the 

mean model. For example, while the partial effect of being in poor health in 2000 and 2002 

decreases survival chances by 27 percent, the mean model predicts only 9 and the MRH model 

predicts only 16 percent differentials. The corresponding numbers for gender are 8.4 percent, 

1.4 percent and 3.1 percent; for blacks 6.7 percent, 1.9 percent and 5.4 percent. The effect of 

parental mortality is estimated to be stronger in the MRH model than in the realized mortality 

model, but now the mean model gives similar numbers to the objective survival model. The 

effect of smoking is similar to the models when we looked at 8 year survival chances. Present 

smokers seem to understand the health risks of smoking, although they underestimate its 

magnitude, but the average quitter holds the false belief that his survival chance is as good as 

that of someone who has never smoked before. 

To sum up, we found evidence that the subjective survival data gives very reasonable estimates 

of unconditional and conditional probabilities for moderate probability events but they both 
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perform poorly for low probability events, with the MRH model being better than the mean 

model.  
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Figure 12: Estimated distribution of probability beliefs  ig p of surviving from age 50 to age 

80 

 
 

Finally let us take a look at the estimated distribution of probability beliefs (second order 

probability distribution,  ig p ) of HRS respondents. Based on the MRH model without 

covariates (Table A2) we computed the 10th, 25th, 50th, 75th and 90th quantiles of belief precision 

( n ) and the scale parameter of the survival function ( 0 ) for the cohort of age 50. These 

numbers can be found in Table A7. Figure 12 shows the corresponding probability belief 

distributions of the probability of surviving from age 50 to age 80. As we can see there is an 

enormous heterogeneity in probability beliefs. The median responder in HRS (3rd row and 3rd 

column of Figure 12) has a belief distribution that is single peaked but wide, having significant 

probability mass for any possible probability values between zero and one. It means that 

although the median responder’s best guess for the probability of surviving from age 50 to age 

80 is roughly 50 percent, she is quite unsure about this probability. People with even less precise 
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beliefs are very unsure. For example, already at the 25th percentile of belief precision (where 

1.58n  ) everyone provides a focal response of either 0, 50 or 100. At the 10th percentile 

(where 0.4n  ) everyone has U-shaped beliefs and, thus, responds with an epistemic 50%..22 

As we increase belief precision to the 75th percentile, the second order probability belief 

distribution becomes quite tight, having most of its mass in the neighborhood of the mean 

probability. It means that at least 25 percent of the respondents have very precise beliefs about 

their own survival chances.  

Determinants of belief precision appear in the last column of Table A3. Positive coefficients 

mean tighter, more precise beliefs. As we can see more educated people have more certain 

beliefs.  This is consistent with our hypothesis, discussed in Section 3, that more educated 

people may have a broader knowledge of evidence about mortality and its causes. We can also 

see that the deterioration of health, especially from previously excellent levels, leads to more 

uncertainty about survival chances, perhaps because of uncertainty about the future course of 

of a new disease. Those who were in poor health both in 2000 and in 2002, however, hold the 

most certain and pessimistic beliefs about their survival chances. The effect of age and the time 

horizon of the survival question in HRS have complicated relations to uncertainty. For a fixed 

time horizon, the net effect age on uncertainty is positive. It seems older people are less sure 

about their survival chances. Whether it is an age or a cohort effect cannot be determined from 

this table. For a fixed age, the net effect of the time horizon on uncertainty is negative, because 

                                                           

22
 Note, however, that the particular shape of the distribution of beliefs is only identified from the 

lognormal functional form in the region where n is below 1. Because there are many focal responses in 

the HRS data, the model estimates many uncertain responses where 1n  . It is hard to know, however, 

what the distribution of n  looks like, conditional on being below 1. The log-normality assumption might 

or might not describe this conditional distribution well. It is possible, for example, that no-one has U-

shaped beliefs, but all epistemic focal responses come from a uniform distribution. If that is the case, then 

the log-normality assumption of n is inappropriate. 
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the interaction term dominates within the age interval used in this project. It seems people hold 

more precise views about their long run than their short run survival chances. Table 3 also 

shows that women and those who quit smoking have less precise expectations (the latter not 

significant); infrequent alcohol consumers and those whose father lived longer have more 

precise beliefs. 

Conclusion 
The modal response hypothesis is used in this paper as the foundation for an econometric 

model that is intended to provide a mapping between survey responses to probability questions 

and the underlying subjective probability beliefs of individuals about their chances of surviving 

to a target age.  In this paper, we have presented the MRH as a hypothesis designed to capture 

the kinds of “gut response” to such questions that would be made after about 15 seconds of 

consideration by persons who vary in the amount of information they have about actuarial risks 

to health, about their own health-related circumstances and in their capacity to process such 

information into subjective beliefs.  We argued in Section 3 that reporting the mode is relatively 

easier from a cognitive point of view than the mean or the median; the mode is equal to a very 

simple rule-of-thumb estimator for the probability in question; and that the mode often 

provides a good approximation to the expected probability that is called for in SEU theory.  

Our empirical findings suggest that there is considerable heterogeneity in subjective survival 

risks, some of it associated with age, sex, race, education, health related behavioral factors, 

parental mortality and cognitive capacity.  We have shown that subjective survival expectations 

line up with actual mortality very well when the objective probabilities are moderate. The 

subjective survival probabilities, however, become overly optimistic at old ages when the true 

survival probabilities are relatively low. We have shown that the MRH model does a better job 
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compared to a standard mean model in reducing this bias as the MRH models focal answers in 

an explicit way. It remains for future research to learn whether the overly optimistic subjective 

expectations are biases in individuals’ head, potentially having behavioral consequences, or they 

are a result of survey measurement error, potentially being related to uncertain beliefs. 

In the empirical section of this paper we have also found substantial uncertainty about mortality 

risks which is manifested by considerable spread in the estimated distribution of subjective 

survival probabilities for a typical respondent.  In addition, we found significant variation in 

uncertainty, holding expected survival risk constant.   It remains for future work to explore the 

explanation of these findings more deeply and to see whether survival risk and uncertainty 

about this risk play a role in decisions made by HRS respondents. 
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Appendix A: Tables and figures 
Table A1: Descriptive statistics, HRS-2002 

  mean sd 

Alive in 2010 0.77 0.42 

Subjective survival probability to target age 48.40 32.13 

Age 68.15 8.69 

Target age less actual age 15.97 4.17 

Female 0.59 0.49 

Black 0.12 0.33 

Hispanic 0.06 0.24 

Years of education 12.54 3.00 

Mother is alive 0.16 0.37 

Mother's age of death/100 or current age 0.76 0.15 

Father is alive 0.05 0.23 

Father's age of death/100 or current age 0.72 0.14 

Exercises at least 3 times a week 0.43 0.49 

Ever smoked 0.59 0.49 

Smokes now 0.14 0.34 

Ever drinks alcohol 0.48 0.50 

# of days a week when drinks alcohol 1.10 2.08 

# of days a week when drinks alcohol if positive 3.42 2.34 

# of drinks when drinks alcohol 0.61 1.18 

# of drinks when drinks alcohol if positive 1.92 1.36 

Health excellent / very good, 2002 0.43 0.49 

Health good, 2002 0.32 0.47 

Health fair / poor, 2002 0.25 0.43 

Health excellent / very good, 2000 0.47 0.50 

Health good, 2000 0.31 0.46 

Health fair / poor, 2000 0.22 0.42 

Cognition score, std. 0.08 1.01 

Vocabulary score, std. 0.11 0.97 

CESD depression score, std. -0.04 1.04 

N 13038   
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Table A2: Actual survival until 2010 and the mean and MRH models of subjective survival 

expectations, models without covariates 

  Actual survival Mean model MRH 

ln(γ0) -8.404 
  

 

[0.21]*** 
  

ln(θ50) 
 

-11.174 -8.827 

 
 

[0.150]*** [0.169]*** 

ln(n) 
  

1.978 

 
  

[0.040]*** 

ln(γ1) 2.277 2.73 2.397 

 

[0.024]*** [0.012]*** [0.020]*** 

ln(k) 
 

-0.656 0.121 

 
 

[0.011]*** [0.025]*** 

ln(sd(n)) 
  

0.814 

 
  

[0.025]*** 

N 13038 13038 13038 

Log-likelihood   -57961.459 -47058.606 

*, ** and *** denote significance at 10, 5 and 1 percent   

Table A3: Actual survival until 2010 and the mean and MRH models of subjective survival 

expectations, models with covariates 

  
Actual 

survival Mean model MRH 

  ln(γ0) ln(θ50) ln(θ50) ln(n) 

Mother's age of death/100 or current 
age -0.305 -1.292 -1.044 -0.194 

 
[0.101]** [0.137]** [0.095]** [0.169] 

Father's age of death/100 or current age -0.265 -0.744 -0.544 0.358 

 
[0.113]* [0.128]** [0.089]** [0.173]* 

Exercises at least 3 times a week -0.313 -0.144 -0.13 0.023 

 
[0.038]** [0.034]** [0.024]** [0.053] 

Ever smoked 0.311 0.032 0.011 -0.096 

 
[0.038]** [0.036] [0.026] [0.055] 

Smokes now 0.431 0.298 0.221 0.008 

 
[0.049]** [0.051]** [0.037]** [0.078] 

Ever drinks alcohol -0.21 -0.127 -0.068 0.184 

 
[0.043]** [0.041]** [0.030]* [0.064]** 

# of days a week when drinks alcohol -0.024 -0.009 -0.008 -0.015 

 
[0.011]* [0.011] [0.008] [0.017] 

# of drinks when drinks alcohol 0.047 0.048 0.026 -0.033 

  [0.019]* [0.019]* [0.014] [0.029] 

Health in 2000/2002 
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Excellent/excellent ref. ref. ref. ref. 

Excellent/good 0.445 0.366 0.311 -0.182 

 
[0.065]** [0.055]** [0.040]** [0.087]* 

Excellent/poor 0.831 0.69 0.588 0.122 

 
[0.091]** [0.120]** [0.085]** [0.163] 

Good/excellent 0.231 0.3 0.243 -0.102 

 
[0.079]** [0.061]** [0.044]** [0.098] 

Good/good 0.445 0.571 0.498 -0.057 

 
[0.059]** [0.049]** [0.035]** [0.076] 

Good/poor 0.891 0.985 0.751 -0.062 

 
[0.066]** [0.086]** [0.061]** [0.108] 

Poor/excellent 0.569 0.582 0.452 -0.109 

 
[0.119]** [0.155]** [0.106]** [0.204] 

Poor/good 0.663 0.814 0.637 -0.054 

 
[0.076]** [0.087]** [0.063]** [0.120] 

Poor/poor 0.978 1.374 1.135 0.183 

 
[0.057]** [0.069]** [0.051]** [0.088]* 

Years of education 0.026 -0.037 -0.019 0.055 

 
[0.006]** [0.007]** [0.005]** [0.010]** 

Female -0.311 -0.206 -0.222 -0.177 

 
[0.035]** [0.035]** [0.026]** [0.054]** 

Black -0.245 -0.279 -0.385 0.014 

 
[0.053]** [0.051]** [0.037]** [0.078] 

Hispanic -0.341 0.209 0.061 0.141 

  [0.077]** [0.078]** [0.056] [0.109] 

Cognition score, std. -0.23 -0.053 -0.036 0.026 

 
[0.019]** [0.020]** [0.015]* [0.029] 

Vocabulary score, std. -0.013 -0.022 0.004 0.011 

 
[0.018] [0.020] [0.014] [0.029] 

CESD depression score, std. 0.043 0.148 0.13 0.049 

  [0.016]** [0.020]** [0.014]** [0.027] 

Age / 100 
   

-2.895 

    
[1.475]* 

Horizon   (Target age - age)/100 
   

-8.636 

    
[6.251] 

Age X Horizon 
   

26.986 

        [10.572]* 

Constant -7.611 -9.285 -6.646 1.771 

 
[0.261]** [0.228]** [0.195]** [0.969] 

Other parameters         

ln(γ1) 2.152 2.694 2.264 
 

 
[0.027]** [0.012]** [0.021]** 
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ln(k) 
 

-0.541 0.329 
 

  
[0.011]** [0.025]** 

 ln(sd(n)) 
  

0.794 
       [0.026]** 
 N 13038 13038 13038   

Log-likelihood   -57001.593 -45889.598   
*, ** and *** denote significance at 10, 5 and 1 percent   

 

Table A4: Average partial effects of surviving 8 more years 

  Actual survival Mean model MRH 

Mother's age of death/100 or current age 0.051 0.112 0.141 

 
[0.017]** [0.019]** [0.027]** 

Father's age of death/100 or current age 0.044 0.064 0.074 

 
[0.019]* [0.014]** [0.017]** 

Exercises at least 3 times a week 0.053 0.012 0.018 

 
[0.006]** [0.003]** [0.005]** 

Ever smoked -0.052 -0.003 -0.001 

 
[0.007]** [0.003] [0.004] 

Smokes now -0.072 -0.026 -0.03 

 
[0.008]** [0.006]** [0.007]** 

Ever drinks alcohol 0.035 0.011 0.009 

 
[0.007]** [0.004]** [0.004]* 

# of days a week when drinks alcohol 0.004 0.001 0.001 

 
[0.002]* [0.001] [0.001] 

# of drinks when drinks alcohol -0.008 -0.004 -0.003 

  [0.003]* [0.002]* [0.002] 

Health in 2000/2002 
   Excellent/excellent ref. ref. ref. 

Excellent/good -0.075 -0.032 -0.042 

 
[0.011]** [0.007]** [0.009]** 

Excellent/poor -0.14 -0.06 -0.08 

 
[0.016]** [0.013]** [0.018]** 

Good/excellent -0.039 -0.026 -0.033 

 
[0.013]** [0.006]** [0.008]** 

Good/good -0.075 -0.049 -0.067 

 
[0.010]** [0.008]** [0.013]** 

Good/poor -0.15 -0.085 -0.102 

 
[0.012]** [0.014]** [0.019]** 

Poor/excellent -0.096 -0.05 -0.061 

 
[0.020]** [0.015]** [0.018]** 

Poor/good -0.111 -0.071 -0.086 

 
[0.013]** [0.012]** [0.017]** 
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Poor/poor -0.164 -0.119 -0.154 

 
[0.011]** [0.018]** [0.027]** 

Years of education -0.004 0.003 0.003 

 
[0.001]** [0.001]** [0.001]** 

Female 0.052 0.018 0.03 

 
[0.006]** [0.004]** [0.006]** 

Black 0.041 0.024 0.052 

 
[0.009]** [0.006]** [0.011]** 

Hispanic 0.057 -0.018 -0.008 

  [0.013]** [0.007]* [0.008] 

Cognition score, std. 0.039 0.005 0.005 

 
[0.003]** [0.002]* [0.002]* 

Vocabulary score, std. 0.002 0.002 -0.001 

 
[0.003] [0.002] [0.002] 

CESD depression score, std. -0.007 -0.013 -0.018 

  [0.003]** [0.002]** [0.004]** 
*, ** and *** denote significance at 10, 5 and 1 percent   

 

Table A5: Average partial effects of survival from age 55 to age 75 

  Actual survival Mean model MRH 

Mother's age of death/100 or current age 0.065 0.222 0.238 

 
[0.022]** [0.038]** [0.043]** 

Father's age of death/100 or current age 0.056 0.128 0.124 

 
[0.024]* [0.028]** [0.028]** 

Exercises at least 3 times a week 0.067 0.025 0.03 

 
[0.008]** [0.007]** [0.007]** 

Ever smoked -0.066 -0.006 -0.003 

 
[0.009]** [0.006] [0.006] 

Smokes now -0.092 -0.051 -0.05 

 
[0.011]** [0.011]** [0.011]** 

Ever drinks alcohol 0.045 0.022 0.015 

 
[0.009]** [0.008]** [0.007]* 

# of days a week when drinks alcohol 0.005 0.002 0.002 

 
[0.002]* [0.002] [0.002] 

# of drinks when drinks alcohol -0.01 -0.008 -0.006 

  [0.004]* [0.003]* [0.003] 

Health in 2000/2002 
   Excellent/excellent ref. ref. ref. 

Excellent/good -0.095 -0.063 -0.071 

 
[0.014]** [0.013]** [0.015]** 

Excellent/poor -0.177 -0.119 -0.134 

 
[0.021]** [0.026]** [0.029]** 
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Good/excellent -0.049 -0.052 -0.055 

 
[0.017]** [0.013]** [0.013]** 

Good/good -0.095 -0.098 -0.113 

 
[0.013]** [0.016]** [0.020]** 

Good/poor -0.19 -0.17 -0.171 

 
[0.016]** [0.028]** [0.031]** 

Poor/excellent -0.121 -0.1 -0.103 

 
[0.026]** [0.030]** [0.029]** 

Poor/good -0.141 -0.14 -0.145 

 
[0.017]** [0.024]** [0.027]** 

Poor/poor -0.208 -0.237 -0.259 

 
[0.015]** [0.035]** [0.043]** 

Years of education -0.005 0.006 0.004 

 
[0.001]** [0.002]** [0.001]** 

Female 0.066 0.035 0.051 

 
[0.008]** [0.008]** [0.010]** 

Black 0.052 0.048 0.088 

 
[0.011]** [0.011]** [0.017]** 

Hispanic 0.073 -0.036 -0.014 

  [0.017]** [0.014]* [0.013] 

Cognition score, std. 0.049 0.009 0.008 

 
[0.004]** [0.004]* [0.004]* 

Vocabulary score, std. 0.003 0.004 -0.001 

 
[0.004] [0.003] [0.003] 

CESD depression score, std. -0.009 -0.025 -0.03 

  [0.003]** [0.005]** [0.006]** 
*, ** and *** denote significance at 10, 5 and 1 percent   

 

Table A6: Average partial effects of survival from age 75 to age 95 

  Actual survival Mean model MRH 

Mother's age of death/100 or current age 0.083 0.088 0.145 

 
[0.027]** [0.018]** [0.032]** 

Father's age of death/100 or current age 0.072 0.051 0.076 

 
[0.031]* [0.012]** [0.020]** 

Exercises at least 3 times a week 0.085 0.01 0.018 

 
[0.011]** [0.003]** [0.005]** 

Ever smoked -0.084 -0.002 -0.002 

 
[0.011]** [0.003] [0.004] 

Smokes now -0.117 -0.02 -0.031 

 
[0.013]** [0.005]** [0.008]** 

Ever drinks alcohol 0.057 0.009 0.009 
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[0.012]** [0.003]** [0.005]* 

# of days a week when drinks alcohol 0.007 0.001 0.001 

 
[0.003]* [0.001] [0.001] 

# of drinks when drinks alcohol -0.013 -0.003 -0.004 

  [0.005]* [0.001]* [0.002] 

Health in 2000/2002 
   Excellent/excellent ref. ref. ref. 

Excellent/good -0.121 -0.025 -0.043 

 
[0.019]** [0.006]** [0.011]** 

Excellent/poor -0.225 -0.047 -0.082 

 
[0.027]** [0.012]** [0.021]** 

Good/excellent -0.063 -0.02 -0.034 

 
[0.022]** [0.005]** [0.009]** 

Good/good -0.121 -0.039 -0.069 

 
[0.017]** [0.008]** [0.015]** 

Good/poor -0.242 -0.067 -0.105 

 
[0.021]** [0.013]** [0.023]** 

Poor/excellent -0.154 -0.04 -0.063 

 
[0.033]** [0.013]** [0.020]** 

Poor/good -0.18 -0.056 -0.089 

 
[0.022]** [0.011]** [0.021]** 

Poor/poor -0.265 -0.094 -0.158 

 
[0.020]** [0.017]** [0.033]** 

Years of education -0.007 0.003 0.003 

 
[0.002]** [0.001]** [0.001]** 

Female 0.084 0.014 0.031 

 
[0.010]** [0.003]** [0.007]** 

Black 0.067 0.019 0.054 

 
[0.015]** [0.005]** [0.013]** 

Hispanic 0.092 -0.014 -0.009 

  [0.022]** [0.006]* [0.008] 

Cognition score, std. 0.062 0.004 0.005 

 
[0.006]** [0.002]* [0.002]* 

Vocabulary score, std. 0.004 0.002 -0.001 

 
[0.005] [0.001] [0.002] 

CESD depression score, std. -0.012 -0.01 -0.018 

  [0.004]** [0.002]** [0.004]** 
*, ** and *** denote significance at 10, 5 and 1 percent   
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Table A7: Quantiles of belief precision ( n ) and probabilities of surviving from age 50 to age 80 

quantiles n γ0 S(50,80) 

10 0.40 0.000022 0.87 

25 1.58 0.000054 0.71 

50 7.23 0.000120 0.47 

75 33.12 0.000229 0.23 

90 130.31 0.000370 0.10 

 

Figure A1: The hypothetical modal response probability answer by the log of precision (ni), 

when the mean is set to 0.1 
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Appendix B: Derivations 

Proof of equation (11) 

The density function of the gamma distribution is  

  
 

 1 11
,k k

k

x x
f x x exp c k x exp

k


  

    
      
    

  

 It is well known that expected value of the gamma function is 

      1

0 0
, ,k kx x

E x xc k x exp dx c k x exp dx k  
 

 
    

       
   

    

The expected value of a scaled gamma function is also gamma and its expected value is 

  E cx ck   

The expected value of the negative exponentiated gamma function is 
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 

  

 Note that this is very similar to the expected value formula of the gamma function, thus 
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 

 

  

Note that      1 1k k k      and thus 

    
1

* 1 1
1

k
k k

k

k

k


 



 
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Thus if  0 ~ ,i k   then  

            0 1 1 1 1, 1
k

i iE S a T E exp exp T exp a exp T exp a     


                 
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Details about the use of the Delta method to derive average partial effects 

The goal is to derive point estimates and standard errors of the partial effects of the form in (17)

. The point estimates can be computed by expanding (17). 

  
       1 11,
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j x x

j j
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      

  

Let us denote      1 1,e a a exp a exp a    . Then  
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By substituting the estimated coefficients into this formula we have a point estimate for the 

average partial effect of jx   on the survival probability from age a  to age T . The standard 

errors can be computed with the delta method. For any differentiable transformation  g    

and variance-covariance matrix  , the variance covariance matrix of  g    is    
T

g g   . 

Thus, we only need to compute the first derivatives of g . Let us see them one-by-one. 
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 
 

             

               

               

1 1

2 1

1 2

,

, , ,

1 , , , 2

1 , , , 2

j

l

k k

x i i i

k k

x i i i j il

k k

x i i i j il

x

APE a T
I j l

E k exp x e T r exp x e a r e T a exp x

E k k exp x e T r exp x e a r e T a exp x x

E k k exp x e T r exp x e a r e T a exp x x

E k e



  

   

   

  

  

  


   



        
 

         
 

         
 

              
1 1

, , ,
k k

i i i j ilxp x e T r exp x e a r e T a exp x x   
         

 

  

 

 
             

             

          

1 1

1 1

,
,50 ,50 ,

, , ,

,50 ,50

k kj

x i i i j

k k

x i i i

j i x i

APE a T
E exp x e T exp x e a e T a exp x

k

E k exp x e T r exp x e a r e T a exp x

ln exp x e T E ln exp x e a

   

  

  

  

  


         
 

         


          

  

 

 
   

               
                

1 1

1

2 1

1 2

,
50 50

1 ,50 ,50 ,

1 ,50 ,50 ,

j

k k

x i i i j

k k

x i i i j

APE a T
Texp T exp

E k k exp x e T exp x e a e T a exp x

E k k exp x e T exp x e a e T a exp x

 


   

   

  

  


    

         
 

         
 

  
By substituting the estimated coefficients into these formulas we have an estimator for the 

variance covariance matrix of the average partial effects. 


