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1 Introduction

Labor unions play an important role in many labor markets in many countries. There is
also a large literature within labor economics studying how union presence influences labor-
market outcomes. Yet there is relatively little work studying the impact of this institution
on the aggregate labor market when this market is described as having frictions and fea-
turing unemployment due to these frictions. Since search and matching models have come
to play a central role as a workhorse for macroeconomic labor-market analyses, this gap
in the literature leaves open important questions. What is the impact of unions on aggre-
gate unemployment, and wages? How do unions affect how strongly unemployment varies
over the business cycle? What institutional settings are desirable, when considering im-
plementing rules regarding union coverage or centralized bargaining between a union and
employer representatives? This paper builds a framework suitable for addressing these kinds

of questions.

Our focus is on the case of a “large” union, i.e., one where the union has monopoly power.
This case is of particular relevance for many European economies, where there is a nationwide
union or cooperation/agreements among unions representing different industries. It is also
of relevance when workers cannot easily move across industries, and competition among
different unions within an industry is limited—arguably true for some U.S. industries as well.
To develop our understanding of the impact of a large union on the aggregate economy, this
paper develops a dynamic model of unionized frictional labor markets. Using this model,
we then examine, in turn, the union impact on wage setting in the long run, in response to

shocks, and in settings where the institutional details differ.

Our first and arguably most general finding is that the degree to which the union can commit
to future wage setting is qualitatively and quantitatively important for outcomes. We start
from a rather benevolent presumption about the union: it cares equally about employed and
unemployed workers. We also assume that the union is fully rational, taking job creation into
account when making its wage demands. Job creation helps currently unemployed workers,
but comes about by lowering wage demands, which hurts currently employed workers. For

focus, we assume all workers and jobs are identical. If the union treats these identical



workers in identical jobs the same, then in setting a single wage each period it trades these
effects against each other. We show that, under the additional assumption that the union
is also able to fully commit to future wages, the outcome is an efficient level of long-run
unemployment. In the short run, however, unemployment is inefficiently high as the union
uses its market power to appropriate surpluses from firms with existing matches by raising
current wages above the efficient level. More precisely, we show that labor-market tightness

is inefficiently low in the initial period, but efficient from then on.

These elements give rise to a time inconsistency. That is, if a union had implemented a
commitment plan yesterday but had the opportunity to revise it today, it would indeed
revise it and lower labor-market tightness relative to the plan, thus benefitting again from
the pre-existing matches. What, then, would the outcome be if one simply assumed that
unions do not have commitment? We answer this question by analyzing Markov-perfect
equilibria.! In these equilibria, we show, unemployment is above its efficient level both in
the short and in the long run. The longer is the horizon of commitment, the weaker is
this effect. For an annual commitment horizon, the effects on unemployment are still quite
sizable: unemployment without commitment is well above the efficient level, rising from 5%

to above 8%, and the output loss 3% of GDP per period.

An important reason macroeconomists have been interested in labor unions is the notion that
unions create rigidity in wages, which may help reconcile the large variation in employment
over the business cycle with macroeconomic theory. For example Blanchard and Fischer
(1989) discuss unions in this context, offering an overview of the basic theories of union
wage-setting. We build on these theories by incorporating them into a framework with an
explicitly frictional labor market, which highlights the dynamic nature of the union problem.
Interestingly, we find that economies with large unions—which are not able to commit to
future wages—also display short-run wage stickiness, which amplifies the responses of labor
market variables to shocks to labor productivity. To understand the source of this short-run

stickiness, note that the union’s incentive to distort wages upward depends on the level of

LOur focus is on differentiable Markov-perfect equilibria. Thus we do not consider other equilibria where
history matters, such as sustainable plans equilibria (Chari and Kehoe 1990). Blanchard and Summers
(1988) have argued that unions can give rise to multiple equilibria, which may help explain European labor
market outcomes.



employment: the more existing matches there are, the stronger is the union’s incentive to
raise wages. When labor productivity increases, vacancy creation increases, and employment
begins to rise over time in response. During this transition to higher employment, the union
wage distortion strengthens. Wage dynamics thus exhibit stickiness: in response to a positive
shock to labor productivity, wages rise on impact, but then continue to rise with employment
before reaching their full response. Symmetrically, in response to a negative shock, wages
continue to fall as employment falls over time, reaching their full response only as employment

does.

Throughout the analysis, our analytical work-horse, both for qualitative analysis of the
different forces underlying equilibria and for numerical computation, is the Euler equation
of the wage-setting union. This equation is readily compared to its efficient equivalent, as

well as the Euler equation under commitment compared to that without.

Although our focus is on a setting with universal union coverage, we also consider economies
with less than full unionization of workers. In order to side-step the complex issue of how
union objectives change over time as more or less workers are unionized, we consider the
case of a constant unionization rate, where a fixed subset of workers are union members, and
the remainder bargain individually with firms. In doing so, we assume that firms cannot
discriminate workers based on union membership; firms search in an undirected manner
and may end up being matched with either a union or a non-union worker. A special case
of this setting is one where the unionization rate is such that union and non-union wages
are identical, and workers thus indifferent about being unionized or not. This outcome is
possible if individual workers have strong bargaining power. We demonstrate that in this
case, a law requiring universal coverage of union wages can be welfare-enhancing. However,
if individual workers instead have low bargaining power, union members earn higher wages

than non-union workers, and outlawing unions can improve welfare.

Finally, we examine collective bargaining: a Nash bargaining game between a centralized
labor union and an employers’ association. This game leads to the same general conclusion as
in our simple monopoly union case: under commitment, outcomes are inefficient only in the

short run, and labor market tightness at the efficient level after the initial period. However,



the direction of the inefficiency—whether market tightness is above or below the efficient
level—depends on the relative bargaining strength of the union vis-a-vis the employers’
association. We show an illustrative example where, under limited commitment, a union

bargaining power close to (but strictly less than) one leads to an efficient outcome.

The assumption that unions impose identical wages for identical jobs and productivities
plays an important role in the model. In particular, unions could actually do better by
agreeing that newly hired workers be paid less than those hired earlier. Such a “tenure pre-
mium” would lower the union’s own ex-post tension between creating new jobs and collecting
surpluses on existing jobs. We do not experiment with tenure premia in our quantitative
analysis, but it is clear that the main tension we emphasize would become weaker in the
presence of such premia. We believe that the equal-wage assumption is a good approxima-
tion of union practice, perhaps reflecting the idea that “fairness” is an important concern in
wage setting. One can thus use the insights in this paper to reflect on the practice of fairness:
it actually involves a cost even if it does not compress wages across workers of different pro-
ductivities (the usual argument), since paying higher wages for more senior workers would

allow the union as a whole to do better.

At the same time, we employ other simplifying assumptions that weaken the tension between
job creation and rent extraction. Our attaching equal weight to employed and unemployed
workers in the union objective makes the time-inconsistency problem weaker than if we let
“insiders” (the employed) carry more weight than “outsiders” (the unemployed), in line with
the insider-outsider approach of Lindbeck and Snower (1986). While empirically plausible,
the latter approach raises difficult issues regarding how the union objective changes with
changing membership. We also allow the union some ability to commit to wages—within a
period (we experiment with period length in the analysis). If unions could not commit to

wages at all, the mechanism emphasized in our paper would become much stronger.

Within the literature on labor unions, this paper is most closely related to two strands:
i) a set of papers considering the dynamic decision problem faced by a union when labor
is subject to adjustment costs, and ii) a set of papers incorporating a union/unions into

the Mortensen-Pissarides search and matching framework, largely focusing on static union



decision problems.

The first group of papers develops the idea that dynamic concerns become important for
thinking about union decision-making when labor markets are not fully frictionless. The
most directly related papers in this vein are Lockwood and Manning (1989) and Modesto
and Thomas (2001). These papers study labor markets where firms face adjustment costs
to changing their labor input and forward-looking unions take these adjustment costs as
given in planning their wage-demands.? Both papers recognize that the union’s ability to
commit to future wages matters for outcomes in this setting. Lockwood and Manning (1989)
focus on the no-commitment case and how outcomes in this dynamic setting differ from the
static union problems in the literature. Modesto and Thomas (2001) consider both the
commitment and no-commitment cases, contrasting them to outcomes in a fully competitive
labor market. The simple quadratic adjustment cost framework adopted in these papers
affords closed-form results which speak to the level of union wage demands, as well as the
speed of adjustment in employment, both argued to be greater in a unionized labor market
than a non-unionized one. We, on the other hand, study dynamic union decision-making
within the context of the Mortensen-Pissarides search and matching model—the modern
workhorse model of frictional labor markets—where such adjustment costs are endogenous.
This allows us to study the impact of unions on equilibrium unemployment, vacancy creation,
output, and welfare, including getting a sense of the magnitudes of these effects in standard

parametrizations of the model.

The second group of papers develop extensions of the Mortensen-Pissarides model with a
union/unions governing wage determination. Perhaps closest in spirit to our paper in this
group is Pissarides (1986), which first introduces a monopoly union into the Pissarides (1985)
framework, and studies the impact on equilibrium outcomes in the labor market. As the
literature following it, that paper focuses on steady states, side-stepping the dynamic issues
we focus on here. Garibaldi and Violante (2005) and Boeri and Burda (2009) proceed to

study the effects of employment protection policies in a setting where a monopoly/centralized

20ther papers which feature unions in settings where labor adjustment occurs slowly due to adjustment
costs or otherwise, but focus on other issues, include Booth and Schiantarelli (1987), Card (1986), and
Kennan (1988).



union compresses wages in the face of worker heterogeneity. Ebell and Haefke (2006) study
the effects of product market regulation in a setting with firm-level unions and decreasing
returns due to monopolistic competition, while Delacroix (2006) extends their framework to
allow varying degrees of centralization in wage bargaining, illustrating the U-shaped rela-
tionship between the degree of coordination in union bargaining and economic performance,
postulated by Calmfors and Driffill (1988). Finally, Acikgoz and Kaymak (2009) study the
evolution of skill premia and unionization rates over time in a setting where firm-level unions
compress wages across skill groups, and Taschereau-Dumouchel (2011) proceeds to develop
a framework where this wage compression is an endogenous outcome of firm-level voting,

when technologies exhibit decreasing returns.?

Our paper is organized as follows. Section 2 analyzes the benchmark model: first a one-
period model to set out notation and introduce the key elements, then an infinite-horizon
model with commitment, and finally an infinite-horizon model without commitment. Section
3 provides the quantitative analysis and Section 4 considers extensions: partial unionization

in Section 4.1 and collective bargaining in Section 4.2. Section 5 concludes.

2 The benchmark model

This section begins by describing the simple Mortensen-Pissarides search and matching envi-
ronment we base our analysis on. We then introduce a monopoly union into that framework,
and characterize its behavior. We consider extensions to partial unionization and collective

bargaining later on.*

A frictional labor market Time is discrete and the horizon infinite. The economy is
populated by a continuum of measure one identical workers, together with a continuum of
identical capitalists who employ these workers. All agents have linear utility, and discount

the future at rate g < 1. Capitalists have access to a linear production technology, producing

3Further examples of work on unions in a search framework include Mortensen (1989) on multiple equi-
libria, Burdett and Wright (1993) on the impact of unions under non-transferable utility, and Alvarez and
Shimer (2008) on unions in an island framework.

4See Section 4.



z units of output per period for each worker employed.

The labor market is frictional, requiring capitalists seeking to hire workers to post vacancies.
The measure of matches in the beginning of the period is denoted by n € [0, 1], leaving 1 —n
workers searching for jobs. Searching workers and posted vacancies are matched according
to a constant-returns-to-scale matching function m(v,1 — n), where v is the measure of
vacancies. With this, the probability with which a searching worker finds a job within a
period can be written p(6) = m(0,1), and the probability with which a vacancy is filled
q(0) = m(1,071), where § = v/(1 — n) is the labor market tightness. We assume that
1 (0) is positive and decreasing and ¢/(#) negative and increasing. With this, employment
equals n plus the measure of new matches, p(6)(1 — n). Jobs are destroyed each period
with probability . Thus, the measure of matches evolves over time according to the law of

motion

ey = (1=0) (n 4 p(0) (1 — 1)) - (1)

Vo
employed,

Notice that a worker separated after production at ¢ may be re-employed in ¢ + 1 and not

need to suffer unemployment.

In addition to the market production technology, unemployed workers also have access to a

home production technology, producing b(< z) units of output per period.

Firms Capitalists operate production through firms, and these firms need to post vacancies
in order to find workers, at a cost x per vacancy. Competition drives profits from vacancy-
creation to zero, with firms taking into account the union wage-setting behavior today and
in the future. The zero-profit condition thus determines the current labor-market tightness

according to current and future wages as follows:

Kk =q(0;) Z B(1—6)° [z — weps).- (2)



A labor union Wages are set unilaterally by a labor union, with universal coverage. The
union sets wages to maximize the welfare of all workers, with equal pay for all those employed.

The union objective thus becomes

DA (et pO) (1= no)) wi+ (1= m)(1 = u(61)) 8] (3)

The union takes as given the evolution of employment according to equation (1). It also
internalizes the effect of its wage-setting decisions on hiring. Therefore, the union’s problem
is to choose a sequence of wages {w;}:°, to maximize the objective (3) subject to the law
of motion (1) and zero profit condition (2).> Below, we will consider different assumptions

regarding the union’s ability to commit to future wages.
Summarizing the events in period ¢, we have

ng given vacancy posting, vy production
]

I ] ] ] ]
i T T T T 1

union sets w; v, and 1 — n; search separations

Given the path of wages {w;};2,, then, equation (2) determines the path of market tightness

{6:}:°,, which in turn determines the evolution of employment.

2.1 A one-period example

To illustrate key forces at play, we first consider the impact of the union in a very simple
setting: a one-period version of the above economy. Many of the features present here will

be present in the subsequent analysis.

A natural starting point is the efficient benchmark—the output maximizing level of vacancy-

5In principle we also want to make sure that firms, at each point in time, make a non-negative present
value of profits from employing a worker, as otherwise they would prefer to end the match. Note, however,
that this holds whenever there is positive vacancy posting going on: firms posting vacancies break even, but
that implies that pre-existing matches must have strictly positive value.



creation a social planner would choose. Here the planner solves the problem

m(sxx(njtu(e)(l —n))z+(1—=n)(1—p@)b—06(1—n)x,
—_——

7 ’,

v g
employed unemployed vacancies

taking as given initial matches n. The planner’s optimum is characterized by the first-order

condition —x + /(0)(z — b) = 0, which pins down 6 independent of n.5

For concreteness,
consider the matching function m(v,u) = vu/(v + ), such that u(f) = 6/(1 + ). In this
case the planner’s optimum is given by 6° = \/m — 1, with labor-market tightness an
increasing function of market productivity. Of course, we must have z — b > x for vacancy

creation to be optimal.
The union instead aims to maximize

(n+p@)(1 - nl)w +(1-n)(1- ,u(ﬁ))Jb,

v g
employed unemployed

by choice of w and 6, subject to the zero-profit condition: x = ¢(#)(z — w). Using the
zero-profit condition to solve for the wage, as w = z — k/q(f), and substituting into the

union objective yields a maximization problem in # only:

max (7+u(B)(1 =) (2 - Wf;)) + (1 =n) (1= p(0) b
— max — % + (n+ p(0) (1 =)z + (1= n) (1= u(8))b— (1 — ),
S~~~ planner’svob jective

capitalists’ share

also taking as given n. The first line expresses the tradeoff the union faces in choosing 6:

increasing # increases employment, but at the cost of the lost wage income required to raise

6.

Looking at the second line, note that the union objective differs from the planner’s objective

only by the term —%. To understand how the two objectives relate to each other, recall

In the Mortensen-Pissarides model the path of 6 is generally independent of the path of employment—a
special case of the block-recursivity property of Menzio and Shi (2010). (The converse is not true, of course.)



that while the planner cares about all agents in the economy, the union only cares about
workers. The union objective thus equals the planner objective less the capitalists’ share: (i)

profits from new matches—which are zero due to free entry—and (ii) profits from existing

nK

matches, which can be expressed as n(z — w) = o)

(using the zero-profit condition).

An interior union optimum is characterized by the first-order condition —x + k™ g;gg

W(0)(z —b) = 0, which implies that the union’s choice of 6 does depend on n. In our

example, an interior union optimum is given by § = /1 — ny/(z — b)/x — 1. Labor-market
tightness is thus again an increasing function of market productivity, but now decreases in
initial matches. Clearly the union implements the socially optimal level of vacancy creation
if n = 0. But if n > 0, the union has an incentive to raise wages above the level consistent
with efficient vacancy creation, in order to collect surpluses from firms with existing matches.
(And if n is large enough, here greater than 1 — k/(z — b), vacancy creation shuts down

completely.)

The union outcome is constrained efficient, however. To see this, we need to write a Pareto
problem which specifies how output is divided among the different groups of agents:
Jax nw; + w(0)(1 —n)w, + (1 — p(0))(1 —n)b
s.t. z —w; > 0, (initial matches)

q(0)(z — w,) > K. (new matches)

Here the choice variables include “transfers” from capitalists to workers, which may differ
across initial (w;) and new (w,) matches. The objective is the welfare of workers (equally
weighted), and we require the payoffs of capitalists to be non-negative, for both types of

matches.

If we allow w; # w,, it is immediately optimal to set w; = z, and w, to maximize the
welfare of searching workers. The latter leads to the same condition on optimal hiring as the
planner problem above, —x + 1/()(z —b) = 0, and we can solve for the appropriate transfers

as Wy = 2 = gy If we instead impose equal treatment, w; = w,,, then we can drop the first

inequality constraint (it is implied by the second), which makes this Pareto problem identical

10



to the union problem above. Thus, the inefficiently low hiring in the unionized economy is

entirely due to the constraint to treat identical workers identically.

This one period problem illustrates the role of our assumptions for outcomes. First, if the
union could set a different wage for new and pre-existing matches, it would attain efficient
hiring. It would raise wages in existing matches as high as possible, to z, leaving zero surplus
for firms, while new hires would get a wage consistent with efficient vacancy creation.”
Second, notice that if the union placed more weight on workers in pre-existing matches in
its objective, it would set a higher wage than above. In the limit, if it only cared about pre-
existing matches, it would set the wage to z, with no new hiring taking place. Finally, notice
that the way the timing works affords the union some ability to commit to wages within the

period. If wages were set only after vacancy creation, then the union would simply choose

to set the wage equal to z, again with no new hiring taking place.

The one-period problem captures the essence of why a monopoly union chooses a sub-
optimally low level of employment, and production. How does the argument just put forth
play out in the infinite-horizon model? What is, for example, the effect on steady-state
unemployment? The answer depends crucially, as we shall see below, on the extent to which

the union can commit to future wages.

2.2 The efficient benchmark and a recursive planner’s problem

To characterize union wage-setting when the time horizon is infinite, we again begin with the

efficient benchmark. The planner now chooses a sequence {6;}°,, with 6; > 0, to maximize

S8 (ne+ 1(B)(1 = 1)) 2+ (1= ) (1= p(6))b = 6 (1 = ) ]

' '

=0 empforyedt unemployed,; vacancies
s.t. N1 = (1 — 5) (nt + M(et)(l — nt)z,
empl‘gyedt

with ng given.

“In a multi-period version of the model, this leads to negative wages for newly hired workers, unless the
value of firm entry is very small compared to production.

11



For what comes later it will be useful to formulate problems recursively. Thus, we begin by
writing the planner’s problem recursively, and discussing efficient vacancy creation in that

context. We then compare to outcomes in the unionized economy.

The recursive form for the planner’s problem reads
V(n) = max (n4+p@)(1—n))z+ (1 —n)(1 —pu@)b—0(1 —n)sk+ BV (N(n,0)), (4)

where N(n,0) = (1—0)(n+ u(f)(1—n)). Notice that the state variable is n, the number of
matches at the beginning of the period, and that the control variable—labor-market tightness

f—determines n’ according to the law of motion N(n,#).

The first-order condition, assuming an interior solution, is
k=W (0)(z—b+B(1—-06)V'(n)). (5)

It equalizes the cost of an additional vacancy, k, to its benefits: the increase in vacancies
increases hiring by 1/(0), with each new worker delivering the flow surplus z — b today
together with a continuation value reflecting future flow surpluses. The envelope condition

gives the marginal value of a beginning-of-period match, as
V/(n) = (1= p(0) +01/(0)) (= — b+ B(1 = 9)V'(n)). (6)

An additional match has the same benefit as above: the flow surplus z — b today and the
corresponding continuation value. An increase in beginning-of-period matches increases the
planner surplus by this benefit, but there is an additional effect as well: the increase in
existing matches hampers hiring by shrinking the pool of unemployed. To see this in the
expression, note that the derivative of the matching function with respect to unemployment,

my(0,1), equals u(0) — 01/ (0).

Eliminating the derivative of the value function in (5), we can write an Euler equation as

K

(o)’

=z—b+B(1—0)(1— (@) +0u(0)) (7)

1'(0)

12



where 6 is short for the optimal choice of 8 given n. This equation states the efficiency con-
dition for the Mortensen-Pissarides model, solving a tradeoff between the costs and benefits

of creating a new match today.

To understand equation (7), note that the cost of creating an additional match today equals
the cost of a vacancy, x, times the measure of vacancies required for one match. Since an
increase in vacancies by one unit increases labor market tightness by 1/(1 —n) units, and an
increase in market tightness by one unit gives (1 — n)y/(6) new matches, one new vacancy
creates 1/() new matches. Hence, the cost of one new match today is x/p/(6). The benefits
include the market production output net of home production output today, z — b, as well
as what is saved on vacancy creation costs next period. How much is saved? First, note
that the net change in matches next period is not simply 1 — §. Although share 1 — § of
the newly created matches survive to the next period, the increase in matches also shrinks
the pool of unemployed, so that any planned vacancy-creation next period will yield fewer
matches. For each worker now out of the unemployment pool, there is a decrease in new
matches given by m,(0',1) = u(0) — 0u/(#). Creating an additional match today thus leads
to a net increase in matches next period of (1 —9)(1 — pu(0')+60'1/(')), with each additional

match worth «/p/(0") consumption units.

Looking at the Euler equation, we notice a familiar feature of the benchmark search and
matching model: it does not feature the state variable n explicitly. Only market tightness
today and tomorrow appear, so that a natural solution is a constant tightness independently
of n. It is straightforward to show that the Bellman equation is solved by a value function V'
that is linear in n, and that the efficient allocation thus features a constant 6¢, independent

of n.

2.3 A union with commitment

This planner problem and the union problem are closely related. To see this, note first that
the union can be thought of as simply choosing a sequence of market tightnesses, {6},
rather than a sequence of wages. This is because the union’s choice of a sequence of wages

{w;}52, determines, at each instant, the present value of wages workers expect to earn over

13



an employment spell, as W; = > 72 5°(1 — §)*w.rs. The sequence of these present values
{Wi}2, then pins down the sequence {6;}:°, through the zero-profit conditions. Intuitively,
choosing higher wages (in present value) reduces firm profits from vacancy creation, thereby
reducing market tightness. Conversely, given a sequence {6;}:°,, one can back out per-
period wages by first using the zero-profit condition to find the present value of wages W,
each period, and then computing wages as w; = Wy — B(1 — §)Wyyq.

Using the zero-profit condition to eliminate the wage sequence, the union objective becomes®

nNok

Q(eo)

+ Zﬁt g A p(0:)(1 = 14)) 2 + (1 = 1,) (1 = 1(6,))0 — 6, (1 — my )], (8)

revealing an identical objective to that of the planner except for the first term. This term—
familiar from the one-period example—reflects the share of the present discounted value of
output accruing to capitalists. To see this, note that the capitalists’ share, i.e., the present

value of profits to firms, can be written as
no Y BY(1—06)'[z — w +Zﬁ (6:)(1 — ny) Zﬁ 1—0)°[z — weps]) — 0:(1 — ne)s]. (9)
t=0

Here the first term captures the present value of profits to initial matches, and the second
those to new vacancies created in periods ¢ = 0, 1, . ... The expression reduces to representing
initial matches only, however, as free entry drives the present value of profits to new vacancies
to zero.? Initial matches, on the other hand, are due a strictly positive present value of profits,
because these firms paid the vacancy cost in the past, anticipating positive profits in the
future to make up for it. Using the zero-profit condition, this remaining present value can

be expressed as ngk/q(6p).

The union objective (8) reflects the fact that while the planner maximizes the present dis-
counted value of output, the union only cares about the workers’ share of it. In fact, the
union will have an incentive to appropriate some of this present value from capitalists by

raising wages above the efficient level—and this is exactly how the solutions to the two prob-

8See Appendix A.
9We can write the second term in equation (9) as > oo BY(1 —n¢)0:[q(6:) > ooy B5(1 = 0)%[z — wits) — K],
which equals zero due to the free entry condition (2).
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lems will differ. The union distorts vacancy creation when raising wages, however, because

these higher wages apply also to new vacancies.

Proposition 1. If the union is able to commit to future wages, hiring is efficient after the

wnitial period. In the initial period, hiring is efficient if ng = 0 and below efficient if ng > 0.

Note that after the initial period, the union effectively solves the planner’s problem (4), and
consequently chooses the planner’s solution 6¢. In the initial period, however, the union

chooses 6, to maximize

Nok

q(0o)

+ (10 + 1(6o)(1 = o))z + (1 = no) (1 = 1(60))b — Bo(1 — no)s + BV (N (ng, 60)),

(10)

where ng is given, and V' solves the planner’s problem (4).
Deriving the optimality condition for this initial period is straightforward using the same

methods as above. It becomes

o q’(ﬁo)] K
1 —mngq(0o)* 1/ (6h)

1 =z2—b+B(1—08)(1— p6)+6°6°)) (11)

K
CON
where we have used the fact that in subsequent periods we will have the efficient market
tightness #¢. Comparing to the efficiency condition (7), the cost of creating an additional
match today (on the left) is higher for the union than for the planner. In order to increase
hiring, the union must lower wages, but this involves giving up some of the surplus the union
could have appropriated from firms with existing matches. Moreover, the more existing

matches, the larger this cost.

Using the efficiency condition (7), we can rewrite equation (11) as

Un) q’(@o) 1 1

T (00 08) — 6

Because ¢/(0) < 0 and /() is decreasing, this equation implies: (i) a lower value of 6, in the
initial period than later on and (ii) the more initial matches, the stronger this effect. Thus,

initial market tightness depends negatively on the measure of pre-existing matches. This is
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a key feature of the model, which becomes even more important when unions do not have

commitment.

That the outcome in the initial period differs from later periods reflects a time inconsistency
issue in the union wage-setting problem. If the union were to re-optimize after the initial
period, it would face a different objective and choose a different path of wages. While
the union can thus get relatively close to the efficient outcome when it can commit, this
immediate time inconsistency begs the question: what happens if the union cannot commit
to future actions? To study time-consistent union decision making we next turn to a game-
theoretic setting, which will be based on the recursive formulation of the union problem we

set up above.

2.4 A union without commitment

The union problem (10) suggests that if the union were to re-optimize at any date, its choice
of initial 8 would depend on n, the measure of matches in the beginning of the period. In
particular, a higher n should imply a lower 6. How would outcomes change if the union could
not commit to not re-optimizing? We study this question by focusing on (differentiable)
Markov-perfect equilibria with n as a state variable. That n is a payoff- and action-relevant
state variable should be clear from the problem under commitment.!® In a Markov-perfect
equilibrium, the union anticipates its future choices of § to depend (negatively) on n, a

relationship we label ©(n). Our task is now to characterize O(n).

The function O(n) solves a problem similar to (10), namely

O(n) = argmélx—% + (n+p@)(1—n))z+ (1 —n)(1— ()b —0(1 —n)k + BV (N(n,0)),

(12)

190ne can add states, representing histories of past behavior, but we do not consider such equilibria here.
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where the continuation value V' satisfies the recursive equation

V(n) = (n+p(On)(1 —n))z + (1 —n)(1 - u(O1)))b — O(n)(L — n)x + BV (N(n,O(n))).
(13)

Here, the union recognizes that its future actions will follow ©(n), and this is reflected in
the continuation value V(n). Because ©(n) will generally not be efficient, V' will not equal

V', the continuation value under commitment.

A Markov-perfect equilibrium is defined as a pair of functions ©(n) and V (n) solving (12)—(13)
for all n. We will assume that these functions are differentiable and characterize equilibria
based on this assumption. We discuss issues of existence and uniqueness/multiplicity of

equilibria in Section 3 below.

The first-order condition for market tightness reads

_n g0
1 —nq(0)

=1/ (0)(z—b+B(1 - HV! (n')), (14)

and the equation paralleling the envelope condition—now not formally an envelope condition

since the union does not agree with its future decisions—becomes

V'(n) =(1 = u(0) + 0’ (6)) (= = b+ B(1 = 5)V'(n'))

+p/(0)(8'(n)(1—n) —0) (-

(15)

Equation (15) is derived by differentiating equation (13), and using equation (14) to arrive at
a formulation close to the equivalent condition (6) for the planner. Compared to the planner’s
envelope condition, this equation includes some additional terms, which appear because the
envelope theorem does not apply, reducing the value of additional initial matches n. The
current union regards next period’s union as setting 6 too low, and because 6 is lower the

greater is n, additional initial matches are less valuable for the union.
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Nevertheless, we can combine the above two equations to eliminate V”, obtaining

Cn O, T W ),k

N - 1— n/ q(9/)2]lu/(6)/)1
cost of m:i,tch today value of match tomorrow
/ / 9/) K
1(p! I 1 — n g\ _ n q (
OO =) = ) L))

Vv
loss in value from lack of commitment

(16)

which is a generalized Fuler equation. It is a functional equation in the unknown policy
function ©, where the derivative of © appears. The equation is written in a short-hand way:
0 is short for O(n), 0’ is short for O(N(n,O(n))), and n’ is short for N(n,O(n)). Thus, the
task is to find a function © that solves this equation for all n. In contrast to the case of the
benevolent planner, or the commitment solution after period zero, n appears nontrivially in
this equation and will generally matter for the tightness—it is easily verified that a constant

© will not solve the equation.

In terms of interpretation, this equation, like the planner’s Euler equation (7), represents
the tradeoff between the costs and benefits of creating matches today. The cost of an
additional match for the union differs from the cost for the planner, however: in addition to
the increase in vacancy costs x/p/(6), the union also takes into account that increasing hiring
requires reducing wages, thereby giving up some of the surplus it could have appropriated

n 40 «

from capitalists, as captured by the term T O )

worker must therefore, from equation (14), be higher in the unionized economy than what

The present value of an additional

is efficient. This additional cost appears also in the Euler equation (11) for the union with
commitment, but here it appears both today and tomorrow symmetrically, unlike in the
commitment solution where tomorrow’s union mechanically carries out the orders of today’s

plan.

But beyond this difference, here the union also takes into account its inability to commit to
future wages: more matches tomorrow will reduce hiring, as the union will raise wages in
response. To see this, note that the measure of vacancies can be written as ©(n)(1 —n) and

its derivative with respect to initial matches n as ©'(n)(1—n)—0(n). A marginal increase in
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matches thus reduces new hiring by p/(6)(©'(n)(1 —n) —O(n)), with each lost worker valued
at the size of the distortion in the union objective—the marginal surplus appropriated from

capitalists.

For the present model it is hard to establish, in general, that ©(n) is indeed decreasing.
In the one-period example of Section 2.1 we saw that © becomes a decreasing function of
n, and in our numerically solved examples below, this feature is always present.!! What is
possible to show for the infinite-horizon case, however, is that whenever ©(n) is decreasing,

steady-state market tightness is strictly below its efficient level:

Proposition 2. If ©(n) is decreasing in n, then the steady-state market tightness, 0, in the

unionized economy (without commitment) is strictly below its efficient level.

It follows that steady-state unemployment in the unionized economy is strictly above its

efficient level.

3 Quantitative results: comparative statics and com-

parative dynamics

The previous section shows that the presence of the monopoly union affects the levels of
unemployment, wages, and output in the economy. But are these effects quantitatively
relevant? In this section we parameterize the model in order to study this question. We will
also look at an extension with stochastic shocks to productivity and ask whether, in this

model, shock amplification is significantly different than in the standard model.

3.1 Wages, unemployment, and output in steady state

How does the presence of the union in the labor market affect the levels of wages, unem-
ployment, and output? The theory tells us that the answer hinges on the union’s ability to

commit to future wages. If the union can commit, the unionized economy attains efficiency

11We also have not been able to find an example where © is not decreasing.
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in the long run. If the union cannot commit, the theory leads us to expect higher wages and
unemployment, and consequently lower output, in the unionized economy than what would

be efficient, both in the long and the short run.

Calibration We parameterize the model such that the efficient outcome represents the US
labor market, as calibrated by Shimer (2005), and study how introducing a large union into
this economy changes outcomes.'? In doing so, we adopt an annual frequency, to reflect the
annual wage-setting practices observed (we also consider other frequencies below). We first
set the time discount rate to correspond to a 5 percent annual rate of return, with 5 = 1/1.05.
We normalize labor productivity to z = 1 and set b = 0.4 (we consider higher values of b
as well). We depart from Shimer’s specification slightly by adopting the matching function
m(v,u) = povu/(v + u), used by, e.g., den Haan, Ramey, and Watson (2000). This form
is better suited for the discrete-time setting than a Cobb-Douglas functional form because
it helps ensure that matching probabilities remain between zero and one. We pin down
the remaining parameters d, o and  as follows. First, attaining an average duration of
employment of 2.5 years requires a separation rate of 6 = 0.40. Second, to also be consistent
with a steady-state unemployment rate of 5 percent, the average job-finding rate must be
1(0) = 0.88. Finally, to also match the slope of the Beveridge curve, documented by Shimer
(2007) to equal —1, this requires setting o = 1.01 and a steady-state value of § = 7.17.13
The latter can be achieved by setting x = 0.010.

Numerical solution technique The planner’s problem, as well as the case of a union with
commitment, can be solved almost in closed form. Solving for the union’s behavior when it
cannot commit is more challenging, however, with several issues to bear in mind. On the
one hand, there are few results available on equilibrium existence for differentiable Markov-
perfect equilibria. Moreover, differentiable equilibria may not be unique. And further,

non-differentiable equilibria may exist as well.!* Clearly, one needs to proceed with caution

12Shimer (2005) calibrates a model with a decentralized labor market, but the calibration strategy causes
this equilibrium outcome to coincide with the socially optimal one.

13This holds both based on the vacancy data from JOLTS as well as the longer time series of help-wanted
advertising from the Conference Board, with dlogv/dlogu ~ —1.

1 For examples where no differentiable equilibria exist but there exists a non-differentiable equilibrium see,
e.g., Krusell, Martin, and Rios-Rull (2010); for cases with a continuum of non-differentiable equilibria along
with one or more differentiable equilibrium, see Krusell and Smith (2003) or Phelps and Pollak (1968).
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and be prepared to use several different solution techniques. The results we present in the
tables and figures below use the methods in Krusell, Kuruscu, and Smith (2002) and rely
on approximating the equilibrium function © with polynomials of increasingly higher order.
However, we have also tried a number of alternative methods, with very similar quantitative

results. We discuss these issues in more detail in Appendix B.

Results Table 1 reports the steady-state levels of the wage, unemployment, vacancies, mar-
ket tightness, and output. The table compares steady-state outcomes in a unionized economy
where the union cannot commit, to the efficient steady state.!® Without commitment, the
union’s incentive to raise wages leads to a 1.3 percent increase in steady-state wages,'® which
leads to a 34 percent reduction in firm profits per worker. This reduction in profits then
leads to a 38 percent drop in market tightness, composed of a 60 percent increase in unem-
ployment, and 36 percent drop in vacancies. Finally, the reduction in employment results in

a 3 percent drop in per-period output.

Table 1: Effect of union on levels

Level Efficient Union Union impact
Wages 0.96 0.98 +1.3%
Unemployment  0.05 0.08 +60%
Vacancies 3.08 1.98 -36%
V-U ratio 7.17 4.43 -38%
Output 0.95 0.92 -3.2%

Notes: The table reports steady-state values. In the case of efficiency, the wage refers to one which would
implement the efficient allocation.
As a robustness check, we provide results in Table 2 for a higher value of home production,

with very similar results.

The role of the commitment horizon The recursive formulation assumes the union can
commit to current period wages, but not beyond. This suggests that the lack of commitment
becomes less of an issue as the period length increases. By adjusting the discount rate (3,

the separation rate o, and the matching function coefficient pg, one can examine different

15This efficient steady state is also identical to: (i) the long run outcome in a unionized economy where
the union can commit, and (ii) the steady state in Shimer’s (2005) decentralized model calibrated to the US
labor market.

16Relative to the wage which would implement the efficient level of vacancy creation, i.e., the efficient
vacancy-unemployment ratio 6.
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Table 2: Effect of union on levels, higher b

Level Efficient Union Union impact
Wages 0.98 0.98 +0.8%
Unemployment  0.05 0.08 +60%
Vacancies 3.08 1.98 -36%
V-U ratio 7.17 4.43 -38%
Output 0.95 0.92 -3.2%

Notes: The table reports steady-state values. Here b = 0.6 and, to maintain efficient unemployment at the
5 percent level, k = 0.007.

period lengths, and hence different degrees of commitment. Table 3 reports the results. On
the one hand, we can see that moving from the annual horizon to a shorter, semi-annual
horizon, exacerbates the negative effects of limited commitment significantly: employment
and output fall by as much as 4 percentage points, with unemployment increasing by about
the same, from 8 to 12 percent. On the other hand, moving to the infinite horizon limit

would increase employment and output by 3 percentage points, with unemployment falling

from 8 to 5 percent.!”
Table 3: Role of commitment horizon
Level 6 months 12 months Efficient
Unemployment 0.12 0.08 0.05
Vacancies 0.42 1.98 3.08
V-U ratio 1.42 4.43 717
Output 0.88 0.92 0.95

Notes: The table reports steady-state values. The annual horizon corresponds to our baseline calibration,
for the semiannual § = 0.2 and, to maintain efficient unemployment at the 5 percent level, k = 0.042.

3.2 Welfare comparisons

The union maximizes the welfare of all workers in the economy, thus internalizing the general
equilibrium effects of its wage demands. Nevertheless, the unionized economy generally

departs from efficiency. Even in the simple one-period example, the unionized economy

17Tt is intuitive that if the period length approaches zero, the lack of union commitment will lead to 100%
unemployment. It is not exactly true that if the period length approaches infinity, the commitment solution
obtains, however, as the commitment solution generally involves a time-varying policy, while here policy is
fixed within a period.
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does not attain efficient vacancy creation because it cannot differentiate between new and
existing workers when setting wages. The union seeks to redistribute from firms to workers
by raising wages in existing matches, but these higher wages also distort vacancy creation.
In the dynamic model, another source of inefficiency appears whenever the union lacks

commitment: there is a long-run loss from suboptimal job creation.

How large are the welfare losses resulting from the labor union presence? To shed light on
this question, we study the transitional dynamics of an economy with a labor union which
cannot commit to future wages. Starting from steady state, we ask: (i) what would happen
if the union gained commitment, and (i) how do these outcomes differ from the efficient
response? Figure 1 illustrates the responses of employment, market tightness and wages in
these two cases. As is clear from the pictures, the dynamics of # reflect our analytical results
above: with sudden commitment the union would maintain a low # in the initial period—
it is slightly above the no-commitment steady-state starting point—but then have a fully
efficient # in following periods.!®* Consequently, the dynamics are rather fast, in the sense
that in a few periods the efficient and commitment-union economies both have employment
very close to the efficient steady-state rate. For purposes of illustration, the figure contrasts
outcomes in the annual calibration (on the right) with those in a monthly calibration (on
the left). The difference between the efficient response and the commitment-union response

is naturally greater in the annual calibration, where the initial period is longer.

How large are the effects on welfare? The present value of output at time zero on these three
transition paths are as follows: in the annual calibration, the planner’s response yields a
present value of 19.95, attaining commitment gives a present value of 19.91, while remaining
at no commitment 19.19. In terms of the per-period increase in output from attaining
efficiency, these figures translate to 3.25%, while the increase from attaining commitment
is 3.10%. For comparison, in the monthly calibration these numbers are 38.6% and 38.5%,
respectively. Attaining commitment leads to non-trivial welfare gains in both cases, but

the gains are much larger in the monthly calibration because the no-commitment outcome is

18From the Euler equations for the commitment and no-commitment cases, a comparison reveals that it
is not clear that the dynamics will be monotone. It turns out to be the case in the graph but it could have
turned out instead that initial tightness would decrease slightly the first month before jumping up to the
steady-state level.
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Figure 1: Adjustment dynamics when union gains commitment versus efficient response
Notes: The figure plots adjustment dynamics starting from the steady state where the union cannot commit.
The figure shows the planner’s response, the union response if it gained commitment, and the union response
if it did not.
substantially worse in that case. The difference between attaining commitment and attaining

efficiency is larger in the annual calibration, however, as the initial adjustment period is

longer in that case.

3.3 Aggregate shocks

An important reason macroeconomists have been interested in labor unions is the notion
that unions create rigidity in wages, which may help reconcile the large variation in em-
ployment over time with macroeconomic theory (see, e.g., Blanchard and Fischer (1989)).
What does our theory of unions imply about the responses of wages, vacancy creation, and
unemployment to shocks? The dynamics of the model under efficiency are well known, but

how do these dynamics change when the labor market has a monopoly union that cannot
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commit to future wages? To answer this question, one can study deterministic transitions to
steady state. However, it appears more empirically interesting to compare economies that
actually feature recurring fluctuations. The standard way of conducting this kind of analysis

is that pioneered in Pissarides (1985) and revisited in Shimer (2005).

One could think of various kinds of shocks perturbing the economy over time. For purposes of
illustration, the most obvious shock to consider is one to productivity z. It is straightforward
to extend the setup above to allow z to follow a Markov process. A union that cannot commit
to future wage setting in this environment will, as in the analysis above, play a dynamic game
with its future counterparts, though the game here will be stochastic. As before, it is natural

to focus on Markov-perfect equilibria. Thus, ©(n, z) now depends on productivity, as

) + (n+pO)(1—=n))z+ (1 —n)(1—pw@)b—0(1-n)k

O(n, z) = arg max —

—i—ﬁEZV(N(n,H), z'),

where the continuation value V' satisfies the recursive equation

Vi(n,z) = (n+p(©n,2)(1—n))z+ (1 —n)(1 - pu(On,2))b—O(n,2)(1 - n)x
+5EZ\~/(N(7’L, O(n, 2)),7').

It is straightforward, along the lines above, to derive the generalized Euler equation for this
case as well. It reads
n Q'(H) K / o, n’ q/(el) K
— =z—b 1—=0)E[(1 — @)+ 6w (@)1 —
o q’(é”)] K ]
L@ W)

1

+p(0)(On(n, ) (1 —n') = O)]

thus differing only in that there is an expectations operator in front of future payoffs.

The model is calibrated as the deterministic economy, and our numerical method easily

extended to cover the shock case.!?

19Gee Appendix B for details. In brief, the numerical solution is recursive: one can first solve for deter-
ministic dynamics in the state n and, as a function of that, for responses to z.
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We first look at impulse responses. Figure 2 plots the impulse responses of wages, market
tightness, unemployment, and output, comparing the unionized economy (solid line), to the
efficient outcome (dashed line). Note that the wage response in the efficient outcome refers
to the wage which would implement the efficient allocation, i.e., which gives firms exactly the
amount of surplus in matching to induce them to create the efficient measure of vacancies.
The right panel displays the annual calibration, while the left panel again highlights the

effects by displaying a monthly calibration instead.
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Figure 2: Impulse responses: efficient versus union
Notes: The figure plots impulse responses to a one percent positive productivity shock, when labor produc-
tivity follows an AR(1) process (see Table 4 for more).

As can be observed, in the short run, the union acts so as to introduce “real wage stickiness”
into the dynamics. A positive productivity shock leaves the level of employment initially too
low relative to what the higher productivity would imply. Although employment soon rises
due to increased vacancy creation, this low initial employment works to curb the union’s
distortionary incentive to raise wages. As a result, wages appear sticky in the very short
run, while vacancy creation consequently overshoots. We see, in line with insights in the
literature following Shimer (2005), that a seemingly small change in the response of the wage
to a shock can lead to a substantial change in the response of market tightness (as firm profit

margins are relatively small).

Beyond this short-run wage stickiness, the effect of the monopoly union on dynamics is gen-
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erally stronger when employment is higher, because a large number of pre-existing matches

gives the union incentives that are different from those in the efficient allocation.?

Table 4 below reports simulated moments, quantifying the changes in volatility due to a
unionized labor market. As the impulse responses indicated, volatility in the unionized
labor market is increased for a number of variables. As expected, the effects are less striking

in magnitude for the annual horizon, however.

Table 4: Effect of union on volatility

1-month horizon 1-year horizon
Volatility Efficient Union Union impact Efficient Union Union impact
Unemployment 0.87 0.72 -17% 0.85 0.84 -1.4%
Vacancies 0.61 10.9 +1700% 0.86 0.91 +5.9%
V-U ratio 0.96 10.9 +1000% 0.88 0.94 +6.6%
Output 1.04 2.05 +97% 1.04 1.07 +2.7%

Notes: The table reports standard deviations of model variables relative to the standard deviation of labor
productivity, based on simulated data from the model, logged and filtered. The monthly series are (after
aggregating to quarterly) filtered with HP(1600), while the annual series are filtered with HP(100). The
productivity process is an AR(1) such that the aggregated, logged and filtered series has standard deviation
1.62% and persistence 0.47 at the annual frequency, consistent with BLS data, and respectively 1.30% and
0.76 at the quarterly frequency.

4 Extensions

Two extensions of the setting above are particularly relevant for understanding labor-market
institutions: one where some workers are not unionized, and one where employers also act as
an entity. We study partial unionization in Section 4.1 and collective bargaining in Section

4.2.

20The percentage responses displayed also reflect the substantial differences in steady-state levels across the
two cases. This difference is responsible for, for example, the apparent dampening in the percentage response
of unemployment to the shock. The absolute responses vary, as there is amplification in unemployment but
a certain dampening in 6.
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4.1 Partial unionization

In most countries, workers are free to decide on becoming union members. The analysis above
does not allow for such a choice. One difficulty in incorporating endogenous membership
into the model has to do with the formulation of the union’s objective function. How does
membership evolve over time, and how does the endogeneity of the unionization rate affect
the incentives of the union when setting wages? The evolution of the unionization rate over
time is a focus of some recent work, e.g., Dinlersoz and Greenwood (2012). Here, we stay
short of a full analysis but nevertheless examine how key labor-market variables depend
on the unionization rate. This analysis offers some preliminary insights into the welfare
consequences of policies such as forbidding unions or requiring universal coverage of union

wages.

In the analysis below, we use « to denote the fraction of workers who belong to the union.
We treat o as exogenous, and assume that a worker’s membership status is constant over
time. We assume that the union’s objective is to maximize the utility of its members. We
also confine attention to steady states. In general, union workers may or may not earn higher
wages than non-union workers. A particularly interesting steady state is a case which would
make workers indifferent between being unionized and not, because this steady state can be
interpreted as allowing workers to choose whether or not to become union members. As we

will show, such a steady state exists for some parameter values.

Of course, we need to make clear how wages are determined for non-union workers. It is
most natural here to simply adopt the standard assumption in the literature, i.e., one of
decentralized Nash bargaining. We also need to make an assumption about whether the
labor market is segmented by worker type—union vs. non-union—since firms in general are
not indifferent about whom to meet. Our assumption is that the worker’s union status is
not observable ex ante so that matching is undirected. Moreover, we assume firms cannot
discriminate based on union status later on either, with an identical separation probability

for union and non-union workers.

Suppose, then, that only a share a of workers are unionized, while the rest bargain their

wages bilaterally with firms. Both workers search in the same labor market, and firms learn
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the union status of workers only upon matching. At that time, bilateral bargaining occurs.

ng given vacancy posting, vy bargaining separations

I ] ] ] ] ] ]
i T T T T T 1

union sets wy vy and 1 — ny; search production

In this labor market, the union recognizes the presence of the non-union workers when

deciding on its wage demands.

4.1.1 Analytical characterization

Beginning with a one-period example to gain intuition, we have that the union maximizes

utility per member:

(n+p@)(1—n))w+(1-n) (1- ,u(H))Jb,

Vo W
employed unemployed

by choice of w and €, subject to the zero-profit condition: xk = ¢(0)[a(z—w)+(1—a)(1—~)S].
Here S = 2 — b is the total surplus from a match between a firm and a non-union worker,
and ~ the worker’s bargaining power, leaving the firm with share 1 — v of the surplus.

To see how the analysis compares to that with full unionization, we again use the zero-profit

K

condition to substitute out the wage, as w = z — + 1TT‘“(l — )5, in the union objective.

aoq(6)
This leads to a maximization problem in € only:
max (n+ p(0)(1—n)) (2 — — + 2200 - )8) + (1 - n)(1— p(6)) b
; -~ > aql) o — 2
employed unemployed

also taking as given n. As before, increasing # increases employment, but at the cost of the
lost wage income on new and existing workers required to raise #. The expression differs from
the one before for two reasons. First, the union wage now has a more limited impact on
vacancy-creation, because of the non-union workers among the pool of unemployed. Raising

0 through the union wage thus requires giving up more wage income: “9) is greater with

aq(
a < 1. This works to reduce # and raise the union wage, compared to the fully unionized

case. Second, the tradeoff between the union wage and 6 also depends on the firms’ surplus
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from matching with non-union workers, (1 —~v)S = (1 — v)(z — b), in proportion with their
prevalence among the unemployed, (1 —«)/a. If the non-union firm surplus is large (relative
to the union firm surplus), the union can target a higher # without giving up as much in
wages, which works to raise both # and the union wage. In the next section, we illustrate

how these effects manifest themselves in labor market outcomes.

In a fully dynamic setting, non-union workers and firms operate according to the usual

Bellman equations:

Up = p(00) By + (1 — p(6:)) (0 + BU11),
Et = ’UJ;L + B(SUtJ,-l + B(l - 5)Et+1,
Jt =z — U);L + B(l - 5)Jt+1,

where U, is the value of an unemployed worker, E; the value of an employed worker, J; the
value of a filled job, and w;’ the wage of a non-union worker. Based on these equations, the

non-union worker-firm match surplus, defined as S; = E; + J; — b — fU;.1, satisfies

Sy =2—=b+B(1=0)(1 — pu(0r1)7)Se+1,

where bilateral wage bargains imply J; = (1 — ~)S;, and E; — b — U1 = vS;.

The zero-profit condition reads
k= q(0)[a(d_ B (1=08)z = W) + (1 — a)(1—7)S)].
s=0

Firms realize that union workers require a present value of wages of W;, while non-union

workers yield the firm a present discounted value of profits of (1 — v)S;.

Using the zero-profit condition to substitute out wages in the union objective yields

> B ne 4 p(B)(1 = ne))z + (1= p(6,)(1 = ne)b — 6,(1 — ”t)g ;! ;a(l — ) i(0:)(1 — ne) St
nok 11—«
_ aq(e()) o (1 — ’y)n(]So.
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The objective here is the dynamic extension of the objective in the one-period example
above, with terms slightly reordered. Also, S; is of course not exogenous here (it was equal

to z — b in the one-period model) because it depends on future surpluses as well.

We consider the case of no commitment again and extend the Markov-perfect equilibrium
definition to cover a general value of a. The equilibrium will have the functions ©(n), for
market tightness, V(n), for the indirect utility of union members, and S(n), the total surplus
of the match between a firm and a non-union worker. Note that no new state variable is

needed. The functions satisfy the following functional equations:

S(n) =z—=0b+B(1—=0)(1 - pu(©(n))7)S(N(n,O(n))),

V(n) = (n+p©1))(1 =n))z+ (1= p(O0))) (1 —n)b—O(n)(1 —n)

L1 )u(Om)) (1~ m)S(N(n, ©(n)) + BV (N (n, O(n)))

_|_

o

and

O(n) = argmax(n + u(6) (1 = n))z + (1 = p(0))(1 = n)b — 6(1 - n>§ - a;‘?@)
412 21 =9+ u(0)(1 = n))S(N(n,0)) + BV (N(n,6)).

(67

It is straightforward to derive the functional first-order condition for the union here, but it is
more complex since it contains both S(N(n,#)) and S’(N(n,#)), which cannot be eliminated

with simple substitution. We therefore proceed directly to the quantitative analysis.

4.1.2 Quantitative results

We calibrate as in the benchmark case and vary a and 7 to illustrate the workings of the
model. The numerical analysis uses the same methods as above, with the mere difference

that there is an additional unknown function S.%!

21For details, see Appendix B.
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Figure 3 plots the vacancy-unemployment ratio, wages, unemployment, and output as a
function of the unionization rate o when worker bargaining power v has a relatively low
value.?? In this case, firms pay non-union workers lower wages than union workers, making
non-union workers more profitable to firms. The figure contrasts outcomes with the model
calibrated to a monthly, versus annual, frequency. The annual horizon, on the right, illus-
trates the first mechanism discussed: higher unionization increases employment and output,
as the union internalizes the effects of its wage demands on the labor market. In this case

greater unionization brings the economy closer to efficiency.

With a monthly horizon, as depicted on the left, the union’s commitment problem is more
severe (reflected in lower vacancy creation than on the right). Here the second mechanism
discussed becomes dominant for vacancy creation: the presence of non-union workers in the
pool of unemployed helps mitigate the adverse effects of the commitment problem. As a
result, greater unionization reduces employment and output, taking the economy farther

away from efficiency.

1-month horizon L-year horizon
V-U Ratio Wages V-U Ratio Wages
0.03 1 1
4.4
. \ .
0.025 0.95 0.95|  [—— Union
' 0.9 4.2 - = = Non-union
----------- 09k = e e mm e e == =
0.02 0.85 4
0.8 0.9 1 0.8 0.9 1 0.8 0.9 1 0.8 0.9 1
Unemployment Output Unemployment Output
0.6 0.5 0.09 0.92
0.55 0.45 0.085 0.915
0.5 0.4 0.08 0.91
0.8 0.9 1 0.8 0.9 1 0.8 0.9 1 0.8 0.9 1
a a a a

Figure 3: Labor markets when non-members are poor bargainers
Notes: The figure plots outcomes as a function of the unionization rate a for v = 0.7.
Figure 4 turns to the case where workers are good bargainers on their own. Interestingly,
the figure shows that there is a level of unionization such that workers earn the same wages

whether unionized or not. That is, if given the choice between becoming a union member

22The specific value is 0.7; qualitatively, the graphs do not change if 7 is lowered further.
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1-year horizon

V-U Ratio Wages
5 1
4 0.99
3 0.98
2 0.97
0.2 04 06 08 1 02 04 06 08 1
Unemployment Output
016 0.95
0.14 0.9
0.12 -
01 0.85 —— Union ‘
= = =Non-union
0.08 08 T
02 04 06 08 1 ‘02 04 06 08 1

a a

Figure 4: Labor markets when non-members are good bargainers
Notes: The figure plots outcomes as a function of the unionization rate « for v = 0.95.

or not, they would be indifferent. This steady state can be interpreted as the equilibrium
outcome when workers can choose, at time zero, whether or not to be unionized. For these
parameter values, the steady-state union wage can be non-monotonic in a. For very low
unionization rates the union wage is high, and falling in a (following the first mechanism
above), but can eventually start to rise again. This last part can be understood by noting
that, when non-union workers earn high wages (relative to union workers), the union may
find it optimal to moderate its wage claims to prevent employment from falling. As the
unionization rate rises, these non-union workers become less important for vacancy creation,

however, allowing the union to raise the union wage.

This example demonstrates that requiring all workers to be unionized—or covered by the
union wage—can be welfare improving. Interpreting the intermediate value of o where wages
are the same for union and non-union workers as an equilibrium where workers can choose
membership status: for that value of a, forced union membership would lead to better
outcomes (and outlawing unions to worse), in a steady-state sense. In the previous example
the situation is of course the reverse. There, workers would all choose to become unionized,
leading to @ = 1, but outlawing unions could still be a good idea in the presence of large

enough union distortions.
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4.2 Collective bargaining

We can generalize the monopoly union framework to collective bargaining between a labor
union and an employers’ association, using a “right-to-manage” approach. Right-to-manage
refers to firms having the right to decide on hiring independently, taking as given wages
that are centrally bargained between the labor union and the employers’ association. In
the Mortensen-Pissarides framework this translates to hiring being determined by the usual
zero-profit condition, given centrally bargained wages. Proceeding directly to the fully dy-
namic model, we adopt the same union objective in equation (3), and assume the employers’
association maximizes the present value of profits accruing to firms in equation (9). We look

at both (joint) commitment and lack thereof.

4.2.1 With commitment

We now denote the bargaining power of the labor union vis a vis the employers’ association by

~v. With commitment to future wages, the collective bargaining problem solves the problem

{wt 7975}?10

max {) B'[(ne + p(0:)(1 = ng))w; + (1= ny) (1= u(6))b]}{ng > 81— 8)"[z — wy]}' ™

subject to the law of motion (1) and the zero-profit condition (2). Note that, as before, the
zero-profit condition implies that the employers’ association objective reduces to representing

initial matches only.?3
To simplify, this bargaining problem can then be rewritten as a choice of a sequence of 6,’s.

Using the zero-profit condition, we arrive at

Nok

q(6o)

x {—

ma
{et}?io

28 [(ne+ p(B)(1 =)z + (1= n)(1 = ()b = B,(1 = m)s]}{ s}

subject to the law of motion (1).

For thinking about how the solution differs from the monopoly union case, it is useful to

230ne could go into more detail in specifying alternative threat points in this bargaining problem, but we
refrain to simply outlining the broader approach here.
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note that future values of 6, only enter the union objective, not the employers’ association
objective. Given this, one could equally well follow the earlier approach of reformulating the

objective as

Nok

a(6o)

+ (no 4+ w(6o)(1 — no))z + (1 — ng) (1 — (o) )b — 6o (1 — no)k + BV (- )}V{M}I—W

{_ Q(eo)

where V'(n) solves the recursive form of the planner’s problem in equation (4). The solution
to this planner’s problem has 6 constant at the efficient level, with V' (n) linear and increasing
in n. The bargaining problem gives a different 8, in the initial period, however, depending
on the bargaining power of the union vis-a-vis the employers’ association. The employers’
association moderates union wage demands, which translates into increased hiring. In fact,

one can show that as union power v declines, 6, increases from the monopoly union level.

Proposition 3. If the labor union and the employers’ association are able to commit to future
wages, hiring is efficient after the initial period. In the initial period, hiring is efficient if
ng = 0. If ng > 0, hiring is decreasing in the union bargaining power v, and generically

inefficient.

4.2.2 Without commitment

We can adapt the right-to-manage formulation to the case of no commitment to future wages

as follows. As before, we have an accounting equation for the continuation value

V(n) = (n+p(O©n)(1—n))z+ (1 —n)(1—uOM)b—O(n)(1—n)k+ BV (N(n,0(n))),
where

O(n) := arg meax{—ﬂ + (n+ p(0)(1 = n))z + (1 —n)(1 — u(6))b

q(0)

—0(1 = n)r + BV ((1 = 8)(n+ p(6)(1 ~ n)))}”{m}l‘”-

This differs from the monopoly union case only in that the choice of ©(n) is now determined

based on the bargaining problem instead of maximizing the union objective alone.
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We proceed immediately to a numerical illustration, computed as in Section 4.1. Figure
5 plots the outcomes for key labor-market variables as a function of the union bargaining
power 7, over a range where steady-state unemployment takes on values both above and
below the efficient level. As the the figure shows, the stronger is union bargaining power,
the higher union wages, leading to higher unemployment and lower output. Moreover, the

collective bargaining outcome is efficient for an intermediate value of ~.

1-year horizon

V-U Ratio Wages
15 1
— Union
- - = Efficient
0 0.9 I
0.996 0.998 1 0.996 0.998 1
Unemployment Output
0.1 1

0.05 0.95

0 0.9
0.996 0.998 1 0.996 0.998 1
Y Y

Figure 5: Labor market with collective bargaining
Notes: The figure plots outcomes as a function of the labor union bargaining power 7.

5 Conclusions

This paper studies the impact of labor unions on the aggregate economy, when labor markets
are modeled as frictional. In particular, we study the forward-looking decision problem of
a benevolent, centralized labor union setting wages over time. Our results highlight the
dynamic nature of optimal wage policy in this context, and the role of commitment in
determining outcomes. If the union can commit, then it attains efficient vacancy creation
in the long run, but has, in the short run, an incentive to raise wages to appropriate rents
from firms with existing matches, reducing vacancy creation. This wage policy is clearly
time-inconsistent. If the union cannot commit to future wages, wages and unemployment

are (quantitatively significantly) above the efficient level also in the long run. Moreover,
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union wages exhibit short-run stickiness, leading to increased volatility in the labor market.

Writing down the union problem is a challenging task, and clearly the union objective, as
well as how the union treats different workers, are important determinants of outcomes.
Our modeling approach is very simple by design—a Ramsey-style analysis with a natural
analogy to the time-inconsistency problems in optimal capital taxation—but we believe that
it is a reasonable starting point. Our analysis highlights several features as important—
both qualitatively and quantitatively—for labor-market outcomes: “fairness” (equal pay for
equal work), the role of insiders vs. outsiders, and ways the unions could try to commit by
forming wage norms. We plan to investigate these issues more in future work; studying the
formation of wage norms, and their determinants, appears both challenging and potentially

quite rewarding.
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For Online Publication

A Proofs

Proof of relationship between union and planner objectives For the benchmark

model, we need to show that

o0

h t hy)z — 0,(1 — —
; nt+ twt ;5 ng + t)Z A ne) K] 7(60)’

where h; stands for newly hired workers, i.e., hy = u(6;)(1 — ny).

First, note that the law of motion for employment implies that n, = (1 — §)*ng + Zz;lo(l —
)" Fhy, so we can write n; + hy = (1 — 8)'ng + 3p_o(1 — 8)"Fhy. Using this identity, the

left hand side of equation (17) can then be written as

Z B (nt + ht)wt =Ny Z ﬁt(l — wt + Z Ik Z t khew;. (18)
t=0 t=0 t=0

The first term on the right of equation (18) can be written, using the zero-profit condition,

as
Nok
0 +n026t1—

The second term can be written, rearranging and using the zero-profit condition, as

ZBZ 8)!F hyw —fo thW 8)'Fw,
t=0
:_Zﬁkhk +Zﬁkh Zﬁt k t—
:—Zﬁtht +Zﬁtz 0) Fhyz.
t=0
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These two terms combine into

;ﬁ[(nt + h)z — 0,(1 —ny)k] — 200)

i.e., the right hand side of equation (17). To see this, note that h;/q(6;) = 6:(1 — n;), and

noy B(1—0 z+ZﬁtZ tkhkz_Zﬁ (ne + hy)z.
t=0

With partial unionization, the zero-profit condition changes, affecting this derivation. The

zero-profit condition now implies that the present value of wages W, satisfy

> K 11—«
— kzzoﬁm — &)z — g (@) + ” (1 —7)S,.

Using this new zero-profit condition, the first and second terms on the right of equation (18)

can be written, respectively, as

Nk ’ 11—«
1— 1 —~)S,
aqHO +n025 )z +mng - ( 7)So,

and

- Zﬁtht Z Zﬁthtst
t=0

t=0

These terms now combine into

> 11—« 11—«
3" B+ he)z — 6:(1 — ni) = + (1—)hS)] — -2 (1 — 7)10S0.
— a a aq(6y) a

U

Proof of Proposition 1 The union objective can be written in terms of the planner’s value
function, as in equation (3). The planner problem is standard, and known to have a linear

solution V' (n), with the planner’s choice of f constant, independent of n. The union objective
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differs in the initial period by the —ngx/q(6y) term, however, which implies that the initial

0y is below the planner’s choice, and this difference is greater the greater is ny. O

Proof of Proposition 2 Consider a steady state of the unionized economy, where ©’(n) =
—c for some ¢ > 0. Using this fact, steady-state employment can be written as n = (1 —

Nu(d)/(1 — (1 —9)(1 — u(d))), equation (16) implies that the steady-state 6 satisfies the

equation

;o2 —b
1= /(0)

81— 8)(1— ul6) + 04 (6)) — A®). (19)

where A(f) = 0 in the efficient outcome, and

1—-946 q 0

Al) = —2=240) ' (6)oc

1= (1=0)(1 - p()

)1 - 51— 8)(1 - u(6)

q(0) )

in the unionized economy. The term A(€) thus captures the union distortion. Under effi-
ciency, the right-hand side of equation (19) is strictly decreasing in # pinning down a unique
steady-state 6 (as long as 4/(0)=2 + 5(1 — §) > 1).* Because the union distortion A(6) is

strictly positive for any 6 > 0, the unionized economy must have lower steady-state . [

Proof of Proposition 3 Similarly to Proposition 1, this result follows from writing the

union problem in terms of the planner’s value function, as in the text. 0

B Numerical approach

This section discusses our numerical solution approach in the case where the union cannot
commit to future wages. We begin with the benchmark model in Section 2, and then turn

to the extensions.

24Note that my (v, u) = u() — p/(0)6, an expression which is reasonable to assume to be increasing in 6.
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B.1 Solving the benchmark model

As discussed in Section 3, solving the no-commitment union problem requires special care.
With this in mind, we tried several different numerical approaches, comparing results across

methods. We begin with an overview of the methods tried, before discussing the conclusions.

Local polynomial approximation approach to solving the generalized Euler equa-
tion Our baseline solution method is that outlined in Krusell, Kuruscu, and Smith (2002),
based on solving the generalized Euler equation (16). This equation is a functional equa-
tion in ©(n), defined over a range of values of n encompassing the steady state value of
n. This approach amounts to calculating a Taylor polynomial approximating ©(n) around
its steady state. Calculating a k' order polynomial involves first analytically differentiat-
ing the Euler equation k times with respect to n, acknowledging that ©(n) is a function
of n, and that N(n,0(n)) is one as well. This yields k& + 1 equations, which pin down
the k + 1 coefficients in the polynomial. Evaluating the equations in steady state, with
n=u(0)(1—-09)/(6+w1(0)(1—0)), the unknowns become the steady state values of 6,6, 6", ...
up to the k£ + 1 derivative. Setting the last derivative to zero, the system determines these
derivatives up to the k& order. We first calculate the analytical derivatives, and the equations
they yield, in Mathematica. We then turn to Matlab, solving for these derivatives (which
determine the coefficients of the Taylor polynomial) using a non-linear equation solver. In
practice, solving this system of equations can require a good initial guess, so we approach
the problem iteratively, starting with a 0* order Taylor polynomial and proceeding to suc-

cessively higher-order polynomials, using the results from the previous step as initial guesses.

Global polynomial approximation approach to solving the generalized Euler
equation As a functional equation, one can also look for a global solution to the Euler
equation by approximating the solution ©(n) with a cubic spline over some range of n’s.
Here we selected a grid on n, with the unknowns being the values of ©(n) on that grid.
These values determine the spline coefficients, which can be used to evaluate the Euler equa-
tion on the grid (and at intermediate points). This problem involves using a non-linear

equation solver to find the values of ©(n) on the grid, to minimize Euler equation errors.

Iterative approach to solving the generalized Euler equation One can also approach
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solving the Euler equation globally with an iterative approach. One way to do this is iterating
backward, for example from a function ©(n) which solves the final period optimization
problem of a finite horizon union problem, with each step updating the values of ©(n) on a
fixed grid of n. In each step, for each grid point of n, we use the current set of ©(n) to find
n' next period, and then evaluate the right-hand-side of the Euler equation at these points
using a cubic spline and the current set of ©(n). One can then calculate a revised set of

values of ©(n), as the values of 6 on the left-hand-side of the Euler equation.

Carroll’s (2006) iterative approach to solving the generalized Euler equation One
could also implement the iteration in the style of Carroll (2006), on an endogenous grid.
Here we first rewrite the Euler equation with N(n) as the unknown function instead of
©(n). In doing so, the equation will have three successive values {n;_1,n, 1441}, instead of
the two {6;,6,.1}. At each iteration, we have for a grid of n;, and corresponding values of
ngr1 = Ny(ngy). With these we can use the Euler equation to calculate the corresponding
values of n;_;. This gives a new grid on n;_1, over which we have corresponding values

ny = Nt—l(nt—l)-

Value function iteration Finally, one can also use a value function iteration approach.
Starting from a guess for V, at each step we first solve the maximization problem determining
the optimal ©(n) on a grid of n, and then calculate the preceding period’s value of V using the
recursive equation. A natural starting point is a value of V consistent with the final period
of a finite-horizon problem. Here the recursive equation is not a contraction, however, so

there is no guarantee of convergence.

Conclusions Each of these methods shows convergence toward very similar results, which
is reassuring. In particular, they deliver functions ©(n) which are quite similar. Moreover,
the steady states we find are all stable. But each method also exhibits signs of numerical
instability. To some extent we would anticipate this, because the recursive expressions
need not be contractionary, and therefore the iterations may not converge from arbitrary
initial guesses. Moreover, even the non-iterative approach to solving the Euler equation
may be sensitive to numerical error. It is possible that these numerical issues are related

to the presence of multiple equilibria, which confuse the algorithms. The fact that these
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varied numerical methods nevertheless show signs of convergence to very similar outcomes
supports the idea that the equilibrium we study exists and is the relevant one to study. The
infinite-horizon model using the concept of a differentiable Markov-perfect equilibrium thus
delivers very similar intuition to the one-period example we started with, supporting it as

the natural candidate to consider.

B.2 Solving the extended models

In addition to the basic non-stochastic no-commitment union problem discussed above, we
also consider extensions to allow: i) aggregate shocks, ii) partial unionization, and iii) col-
lective bargaining. We describe below how we extended our numerical methods in order to

compute solutions in these cases as well.

Aggregate shocks Our baseline solution method can be extended to allow aggregate shocks
by treating ©(n, z) as a function of z also. We approximate this function again as a k** order
polynomial in n, but include also a linear, and quadratic term in z, as well as an interaction
term. The coefficients of the polynomial in n are the same as in the non-stochastic case.
Finding the terms involving z requires differentiating the generalized Euler equation with
respect to z and proceeding with the same approach as described for n above. (It is important

not to stop at just a linear term in z here, as the coefficient on z sharpens as more terms are

added.)

To evaluate this procedure, we compare the results in the case of a fully persistent shock to
the transitional dynamics to a permanent shock calculated using our baseline approach for

non-stochastic problems.

Partial unionization and collective bargaining We extend our baseline solution method
to these cases. There is no generalized Euler equation here, so we need to alter the approach
somewhat. For simplicity, we describe how we do this in the context of the collective bar-

gaining problem, which is slightly more straightforward.

In the collective bargaining problem, the first order condition involves V’ (+), as before, but

now also ‘7(), which prevents us from simply eliminating these functions to arrive at a
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generalized Euler equation. We can still implement the basic approach by allowing these f/()
to remain in the first order condition as we successively differentiate it k times (analytically).
We simply need to use the recursive equation for ‘7() to compute the successively higher
order derivatives of ‘7() which will show up in these k£ + 1 equations. As before, in doing so

we acknowledge the law of motion N(n,O(n)) as we proceed with taking derivatives.

In the partial unionization problem, the approach is similar, but in addition to needing
to calculate derivatives of V(-) based on the recursive equation for V(-), one also needs to

calculate derivatives of S(-) based on the recursive equation for S(-).

To evaluate this procedure, we compare the results in these extensions with our baseline
model in the special cases where, in the case of collective bargaining, the union has full

bargaining power, and in the case of partial unionization, the unionization rate is one.
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