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ABSTRACT

Momentum strategy returns are highly left skewed and leptokurtic. We explain this by the
leverage dynamics of stocks in the momentum portfolio: under certain conditions past losers
become highly levered, embedding a call option on the market. Based on this insight, we develop
a hidden Markov model (HMM) that identifies such times when large losses are more likely using
the convex relation between momentum and market returns. The estimated HMM predicts
momentum strategy tail events better than alternative models both in- and out-of-sample. The
dramatic momentum crashes result from this time-varying interaction with market returns, and
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1 Introduction

Price momentum can be described as the tendency of securities with relatively high (low)
past returns to subsequently outperform (underperform) the broader market. Long-short
momentum strategies exploit this pattern by taking a long position in past winners and an
offsetting short position in past losers. Momentum strategies have been and continue to be
popular among traders. The majority of quantitative fund managers employ momentum a
component of their overall strategy, and even fundamental managers appear to incorporate
momentum in formulating their trading decisions.!

Notwithstanding their inherent simplicity, momentum strategies have been profitable
across many asset classes and in multiple geographic regions.? Over our sample period of
1044 months from 1927:01 to 2013:12, our baseline momentum strategy produced monthly
returns with a mean of 1.18% and a standard deviation of 7.94%, generating an annualized
Sharpe ratio of 0.52.3 In contrast, over this same period the three Fama and French (1993)
factor portfolios — Mkt-Rf, SMB, and HML — had annualized Sharpe Ratios of 0.41, 0.26, and
0.39, respectively. The profitability of this momentum strategy after adjusting for exposure
to economy wide systematic risks is still higher: the CAPM alpha is 1.52% /month (¢ = 7.10),
and the Fama and French (1993) three-factor alpha is 1.76%/month (¢ = 8.20).%

While the momentum strategy’s average risk adjusted return has been high, the strat-
egy has experienced infrequent but large losses. The historical distribution of momentum
strategy returns is highly left skewed. Consistent with the large estimated negative skew-
ness, over our sample there are eight months in which the momentum strategy has lost more
than 30%, and none in which it has earned more than 30% (the highest monthly return is

26.18%). Moreover, the magnitude of momentum’s largest losses has been extreme. The

!Swaminathan (2010) shows that most quantitative managers make use of momentum. He further esti-
mates that about one-sixth of the assets under management by active portfolio managers in the U.S. large
cap space is managed using quantitative strategies. In addition Jegadeesh and Titman (1993) motivate their
study of price momentum by noting that: “...a majority of the mutual funds examined by Grinblatt and
Titman (1989; 1993) show a tendency to buy stocks that have increased in price over the previous quarter.”

ZAsness et al. (2013) provide extensive cross-sectional evidence on momentum effects. Chabot et al.
(2014) find the momentum effect in the Victorian era UK equity market.

30ur baseline 12-2 momentum strategy, described in more detail later, ranks firms based on their cumu-
lative returns from months t—12 through ¢—2, and takes a long position in the value-weighted portfolio of
the stocks in the top decile, and a short position in the value-weighted portfolio of the bottom decile stocks.

4The t-statistics are computed using the heteroskedasticity-consistent covariance estimator by White
(1980).



worst monthly return was -79.57%, and six monthly losses exceed 40%. Normality can easily
be rejected. Also, as Daniel and Moskowitz (2015) document, these large losses cluster, and
tend to occur when the market rebounds sharply following a prolonged depressed condition.

The focus of this paper is modeling time variation in the tail risk of momentum strategies.
We argue that the way momentum strategy portfolios are constructed necessarily embeds a
written call option on the market portfolio, with time varying moneyness. The intuition here
follows Merton (1974): following large negative market returns the effective leverage of the
firms on the short side of the momentum strategy (the past-loser firms) becomes extreme.
As the firm value falls, the common shares of these firms become at- or out-of-the-money
call options on the firm’s underlying assets, and start to exhibit the convex payoff structure
associated with call options: the equity value changes little in response to even large down
moves in the underlying firm value, but moves up dramatically in response to large up moves.
Thus, when the values of the firms in the loser portfolio increase—proxied by positive returns
on the market portfolio—the convexity in the option payoff results in outsized gains in the
past loser portfolio. Since the momentum portfolio is short these loser firms, this results in
the dramatic losses for the overall long-short momentum portfolio.

We show that the dynamics of reported financial leverage are consistent with this hy-
pothesis: going into the five worst momentum crash months, financial leverage of the loser
portfolio averaged 47.2, more than an order of magnitude higher than unconditional average
of 3.97.5 Of course, a firm’s financial leverage is not a good proxy for that firm’s effective
leverage: firms have many fixed costs distinct from the repayment of their debt, including
the wages of crucial employees, the fixed costs associated with maintenance of property,
plant and equipment, etc. If these fixed costs are large, even a firm with zero debt may see
its equity start to behave like an out-of-the-money option following large losses. One recent
episode consistent with this was the collapse of many “dot-com” firms in the 2000-2002 pe-
riod, where large drops in the values of these firms did not lead to large increases in financial
leverage, yet clearly affected the operating leverage of these firms.

Because it is difficult to directly measure the effective leverage—operating plus financial—
of the firms that make up the short-side of the momentum portfolio, we instead estimate the

leverage dynamics of the momentum portfolio using hidden Markov model that incorporates

5These are the averages over the 1964-2013 period over which we have data on the book value of debt.



this optionality. In the model, we assume that the economy can be viewed as being in
one of just two unobserved states, calm and turbulent. We develop a two-state hidden
Markov model (HMM) where the momentum return generating process is different across
the two states, and estimate the probability that the economy is in the unobserved turbulent
state using maximum likelihood. One striking finding is that, while the momentum returns
themselves are highly left-skewed and leptokurtic, the residuals of the momentum return
generating process coming out of our estimated HMM specification are normally distributed.%
A key component of the HMM specification is the embedded option on the market; by
looking for periods in time where the optionality is stronger, we can better estimate whether
a momentum “tail event” is more likely. Consistent with this, we find that the HMM-
based estimate of the turbulent state probability forecasts large momentum strategy losses
far better than alternative explanatory variables such as past market and past momentum
returns and their realized volatilities or volatility forecasts from GARCH models.

Interestingly, we find that it is the incorporation of the optionality in the HMM that
is key to the model’s ability to forecast these tail events. A version of the HMM which
incorporates all other model components (i.e., the volatilities and mean returns of the both
the market and the momentum portfolios), but which does not include the optionality, is not
as successful: the model without the optionality produces about 20% more false positives
than the baseline HMM specification, suggesting that the historical convexity in the relation
between the market and momentum portfolio allows better estimation of the turbulent state
probability. Intuitively, increasing leverage in the past loser portfolio, identified by the HMM
as an increase in the convexity of the momentum strategy returns, presages future momentum
crashes.

The literature examining price momentum is vast. While the focus in this literature has
been on documenting and explaining the strategy’s high average returns” and unconditional
risk exposures, a more recent literature has focused on characterizing the time variation in the

moments. Barroso and Santa-Clara (2015) study the time-varying volatility in momentum

6In contrast, the market-returns residuals have a Student-t distribution with 5 degrees of freedom. We
account for this non-normality in one our HMM specifications and show that accounting for this non-
normality substantially improves the performance of the model in forecasting tail-events.

7 See Daniel et al. (1998), Barberis et al. (1998), Hong and Stein (1999) and Liu and Zhang (2008) for
examples.



strategy returns. Daniel and Moskowitz (2015) find that infrequent large losses to momentum
strategy returns are pervasive phenomena — they are present in several international equity
markets and commodity markets — and they tend to occur when markets recover sharply
from prolonged depressed conditions. Grundy and Martin (2001) examine the time-varying
nature of momentum strategy’s exposure to standard systematic risk factors. In contrast
to most of this literature, our focus here is on the strategy’s tail risk. In particular, we
show how this tail risk arises, model it with our HMM, estimate this model and show that
it captures these important tail risks better than other forecasting techniques suggested by
the literature.

Our findings also contribute to the literature characterizing hidden risks in dynamic
portfolio strategies and the literature on systemic risk. For example, Mitchell and Pulvino
(2001) find that merger arbitrage strategy returns have little volatility and are market neutral
during most times. However the strategies effectively embed a written put option on the
market, and consequently tend to incur large losses when the market depreciates sharply.
When a number of investors follow dynamic strategies that have embedded options on the
market of the same type, crashes can be exacerbated with the potential to trigger systemic
responses.

While our focus is in modeling systematic stochastic variations in the tail risk of momen-
tum returns—which we find is due to its embedded option on the market like features—our
findings also have implications for estimating the abnormal returns to the momentum strat-
egy. It is well recognized in the literature that payoffs on self financing zero cost portfolios
that have positions in options can exhibit spurious positive value (alpha) when alpha is
computed using the market model or linear beta models in general.® We therefore calcu-
late an option-adjusted abnormal performance for the momentum strategy. As might be
anticipated, we find that alpha of the momentum strategy is generally strongly positive and
statistically significant. However, when the ez-ante turbulent state probability is sufficiently
high—and there are several historical episodes where it is—the estimated alpha is negative
and statistically significant.

The rest of this paper is organized as follows. In Section 2, we examine the various

drivers of momentum crashes, and show that these arise as a result of the strong written call

8See Jagannathan and Korajczyk (1986) for an example.



option-like feature embedded in momentum strategy returns in certain market conditions. In
Section 3, we describe a hidden Markov model for momentum return generating process that
captures this feature of tail risk in momentum strategy returns. In Section 4, we show the
ability of our hidden Markov model to predict momentum crashes. In Section 5, we evaluate
the conditional alpha of momentum strategy returns based on the estimated parameters of

our hidden Markov model and option market prices. Section 6 concludes.

2 Momentum Crashes

In this section, we describe the return on a particular momentum strategy that we examine
in detail in this paper. We show that the distribution of momentum strategy returns is
heavily skewed to the left and significantly leptokurtic. We also find that the return on the
momentum strategy is non-linearly related to the excess return of market index portfolio.
The nature of non-linear relationship depends on market conditions. This examination

motivates the two-state model that we develop in Section 3.

2.1 Characteristics of Momentum Strategy Returns

Price momentum strategies have been constructed using variety of metrics. For this study
we examine a cross-sectional equity strategy in US common stocks. Our universe consists
of all US common stocks in CRSP with sharecodes of 10 and 11 which are traded on the
NYSE, AMEX or NASDAQ. We divide this universe into decile portfolios at the beginning
of each month ¢ based on each stock’s “(12,2)” return: the cumulative return over the 11
month period from months t—12 through t—2.° Our decile portfolio returns are the market-
capitalization weighted returns of the stocks in that past return decile. A stock is classified
as a “winner” if its (12-2) return would place it in the top 10% of all NYSE stocks, and as
a “loser” if its (12-2) return is in the bottom 10%. Most of our analysis will concentrate on
the zero-investment portfolio “MOM” which is long the past-winner decile, and short the

past-loser decile.

9The one month gap between the return measurement period and the portfolio formation date is done
both to be consistent with the momentum literature, and to minimize market microstructure effects and to
avoid the short-horizon reversal effects documented in Jegadeesh (1990) and Lehmann (1990).



Panel A of Table 1 provides various statistics describing the empirical distribution of the
momentum strategy return (MOM) and the three Fama and French (1993) factors.!® With-
out risk adjustment the momentum strategy earns an average return of 1.18%/month and an
impressive annualized Sharpe Ratio of 0.52. Panels B and C show that after risk adjustment,
the average momentum strategy return increases: its CAPM alpha is 1.52% /month (t="7.10)
and its Fama and French (1993) three factor model alpha is 1.76%/month (¢=8.20)."* This
is not surprising given the negative unconditional exposure of MOM to the three factors.

The focus of our study is the large, asymmetric losses of the momentum strategy: Panel
A of Table 1 shows that the MOM returns are highly left-skewed and leptokurtic. Figure 1.A
illustrates this graphically: we plot the smoothed empirical density for MOM returns (the
dashed red line) and a normal density with the same mean and standard deviation. Overlayed
on the density function plot are red dots that represent the 25 MOM returns that exceed
20% in absolute value (13 in the left tail and 12 in the right tail). Figure 1.B overlays the
empirical density of market excess returns which are scaled to match the volatility of MOM
returns over this sample period. The 20 Mkt-Rf* returns that exceed 20% in absolute value
(11 in the left tail and 9 in the right tail) are represented by blue dots.

Consistent with the results in Table 1, Figure 1 reveals that both the market and momen-
tum strategy are leptokurtic. However, Panel B in particular shows the strong left skewness
of momentum. Again, one of the objectives of this paper is to show that this skewness is
completely a result of the time-varying non-linear relationship between market and momen-
tum returns that is a result of the time-varying leverage of the firms in the loser portfolio.
As a way of motivating our model, we next examine the influence of prevailing various state
variables on market conditions on momentum strategy returns.

To begin, Table 2 lays out the MOM returns in the 13 months when the MOM loss
exceeded 20%, and measures of various market conditions that prevailed during the months.
The first set of columns show that the large momentum strategy losses are generally as-
sociated with large gains on the past-loser portfolio rather than losses in the past-winner
portfolio. During the 13 large loss months, the loser portfolio earned an excess return 45.69%

whereas the winner portfolio earned only by 6.32%. Interestingly, these loser portfolio gains

10The Mkt-Rf, SMB and HML return data come from Kenneth French’s database.
1 The t-statistics are computed using the heteroskedasticity-consistent covariance estimator by White
(1980).



are associated with large contemporaneous gains in the market portfolio, which earns an
average excess return of 16.14% in these months. However, the table also shows that market
return is strongly negative and volatile in the period leading up to the momentum crashes:
the market is down, on average, by more than 37% in the three years leading up to these
crashes, and the market volatility is almost three times its normal level in the year leading up
to the crash.'? Given the past losses and the high volatility of the market, it is not surprising
that the past-loser portfolio has suffered severe losses: the threshold (breakpoint) for a stock
to be in the loser portfolio averaged -63.77% in these 13 months, about 2.7 times the average
breakpoint. Thus, at the start of the crash months, stocks in the past-loser portfolio are
likely very highly levered. Table 2 also shows that the average financial leverage (book value
of debt/market value of equity), during the 5 loss months after 1964 (when our leverage data
starts) is 47.2, more than an order of magnitude higher than the average leverage of the loser
portfolio of 3.97.

To summarize, large momentum strategy losses generally have occurred in volatile bear
markets, when the past-losers have lost a substantial fraction of their market value, and
consequently have high financial leverage, and probably high operating leverage as well.
Thus, following Merton (1974), the equity of these firms are likely to behave like out-of-the-
money call options on the underlying firm values which, in aggregate, are correlated with
the market. Consequently when the market recovers sharply, the loser portfolio experiences

outsized gains, resulting in the extreme momentum strategy losses we observe.

2.2 Time Varying Option-like Features of Momentum Strategy

Motivated by the evidence in the preceding Section, we here examine the time-variation in
the call-option-like feature of momentum strategy returns. This serves as motivation for the
two-state HMM model that we will develop in Section 3.

In particular, we consider the following augmented market model return generating pro-

12 Realized volatility is computed as the square root of the sum of squared daily returns and expressed as
annualized percentage.



cess, similar to that considered by Henriksson and Merton (1981) and others.!
R;,t =Qqp+ ﬁgRi/[KIt + ﬁ; max (Rle\/IKT,ta 0) + Epts (1)

where Ryt , is the market portfolio returns in excess of risk free return for month ¢. We note
that «, the intercept of the regression, is no longer a measure of the strategy’s abnormal
return, because the option payoff—max(R§y,0)—is not an excess return. We return to
this issue and estimate the abnormal return of the strategy in Section 5. For the moment, we
concentrate on the time-variation in 8%, which is a measure of the exposure of the portfolio
p to the payoff on a one-month call option on the stock market or, equivalently, a measure
of the convexity in the relationship between the market return and the momentum strategy
return.

To examine this time-variation, we partition the months in our sample into three groups
on the basis of three state variables: the cumulative market return during the 36 month
preceding the portfolio formation month; the realized volatility of daily market returns over
the previous 12 months; and the breakpoints of the loser portfolio — i.e., the return over the
(12,2) measurement period of the stock at the 10th percentile. Based on each of these state
variables, we partition our sample of 1044 months into ‘High’, ‘Medium’ and ‘Low’ groups.
The High (Low) group is the set of months when the state variable is in the top (bottom)
20th percentile at the start of that month. The ‘Medium’ group contains the remaining
months (i.e., the middle 60%). We present the results from sorting on the basis of the past
36-month market return in Table 3; the results from sorting on the other two state variables

are presented in Table C.5 in the Online Appendix.!4

13 To our knowledge, Chan (1988) and DeBondt and Thaler (1987) first document that the market beta
of a long-short winner-minus-loser portfolio is non-linearly related to the market return, though they do
their analysis on the returns of longer-term winners and losers as opposed to the shorter-term winners and
losers we examine here. Rouwenhorst (1998) demonstrates the same non-linearity is present for long-short
momentum portfolio returns in non-US markets. Daniel and Moskowitz (2015) show that the optionality is
time varying, and is particularly pronounced in high volatility down markets, and is driven by the behavior
of the short-side (loser) as opposed to the long (winner) side of their momentum portfolio. Moreover, Boguth
et al. (2011), building on the results of Jagannathan and Korajczyk (1986) and Glosten and Jagannathan
(1994), note that the interpretation of the measures of abnormal performance in Chan (1988), Grundy and
Martin (2001) and Rouwenhorst (1998) are biased.

14Results are similar when we group based on other variables that capture market conditions: the cumu-
lative market return during the 12 month preceding the portfolio formation month; the realized volatility of
daily market returns over the previous 6 months and the ratio of the book value of debt to the market value



Panel A presents the estimates of equation (1) for the momentum strategy returns
(Ryom), and for the returns of the winner and loser portfolio in excess of the risk free
rate (R n and R og). First, note that the estimated 5%, the exposure to the market call
payoff is significant only when the past 36-month market returns are in ‘Low’ group: consis-
tent with the leverage hypothesis, the past-loser has a positive exposure to the market option
payoff of 0.72 (t=3.60). That is, it behaves like a call option on the market. The MOM
portfolio, which is short the past-losers, thus has a significantly negative 3+.1° In contrast, in
the ‘Medium’ and ‘High’ group, 5% of the MOM returns and of the long- and short-sides are
smaller in absolute value and are not statistically significantly negative.'® Interestingly the
Low State, the Adj.R? is 48% for MOM returns, as compared to 6% in both the ‘Medium’
and ‘High’ states, a result of both the higher 8% and 8 in the Low state.

Panel C shows that large MOM losses (crashes) are clustered in months when the option-
like feature of BT is accentuated; 11 out of 13 momentum losses occur during months in the
‘Low’ group. Table C.5 shows that the results when the grouping is on other state variables:
i.e., realized volatility of market over the past 12 months or return breakpoints for stocks to
enter the loser portfolio.

The evidence in Panel D suggests that the large negative skewness of the momentum
strategy return distribution is mostly due to the embedded written call option on the market.
In the ‘Low’ group of Panel A, the skewness of the momentum strategy returns is -2.33, but
after we control for the non-linear exposure to the market through equation (1), the skewness
of residual drops to -0.48. In ‘Medium’ and ‘High’ group, the negative skewness of momentum
strategy returns is not that strong and it is not significantly reduced after controlling for the
embedded written call option on the market. This is consistent with the results in Panel A;
BT is not significantly different from zero in the other two groups. The results reported in
Table C.5 of the Online Appendix are consistent with the results presented here: the large
negative skew in momentum returns is due to the embedded written call option that gets

accentuated by market conditions.

of equity (BD/MV) of the loser stock portfolio.

15 The t-statistics are computed using the heteroskedasticity-consistent covariance estimator of White
(1980).

16 We note that 51 of winner and loser portfolios exhibit interesting patterns: It is negative and significant
for winner stocks in ‘Low’ group. It is negative and statistically significant for loser stocks in the ‘High’ group.
Understanding why we see these patterns is left for future research.



The above results suggest that the embedded written call option on the market is the
key driver of momentum crashes, and that this optionality is a result of the high leverage
of the past-loser firms. However this leverage will not always be apparent in the financial
leverage of the past-loser portfolio. For example, it is likely that the operating leverage
of many of the firms that earned low returns in the post-March 2000 collapse of the tech
sector was quite high, even though these firms’ financial leverage was insignificant. The
evidence is consistent with this: the financial leverage of the loser portfolio was low during
two episodes of large momentum losses in 2001:01 and 2002:12.17 However, as can be seen
from Table 4, the optionality is large when we estimate the augmented market model return
generating process for momentum returns given by equation (1) for the 36 monthly returns
from 2000:01-2002:12—although it is not statistically significant due to the small sample
size.

In the next section, we model the option-like relation between the market and the mo-
mentum portfolio, with the goal of employing this model to forecast momentum crashes. The
evidence above suggests that a model based on Merton (1974), using debt and equity values
would not capture these periods. Alternatively, we could form a model with a functional
form relating the state-variables explored above (past-market returns, market volatility, etc.)
and the convexity. However, this requires choosing the length of the time window over which
these state-variables are measured, and that necessarily has to be rather arbitrary. Given
these difficulties, we instead posit a two-state model, with “calm” and “turbulent” states.
When the economy is in the turbulent state the option like feature of momentum return is
accentuated, and momentum crashes are likely. This naturally leads us to the two-state hid-
den Markov model (HMM) for identifying time periods when momentum crashes are more

likely, which we explore in the next Section.

3 Model

In this section we develop a two-state hidden Markov model (HMM) in which a single state

variable summarizes the market conditions. The “turbulent” state is characterized by higher

17 Refer to Table 2. In 2001:01 (2002:12), the momentum strategy loses -41.97% (-20.40%) and the financial
leverage (BD/MV) of loser portfolio was 0.68 (2.32). The average of financial leverage over all available data
from 1964 is 3.97.

10



return volatilities and by more convexity in the market-momentum return relationship. We
then show how the HMM allows ez-ante estimation of the probability that the hidden state

is calm or turbulent based on the history of momentum and market returns.

3.1 A Hidden Markov Model of Market and Momentum Returns

Let S; denote the unobserved underlying state of the economy at time ¢, which is either
“calm” (C) or “turbulent” (T) in our setting. Our specification for return generating process

of the momentum strategy is as follows:

Ryiom: = a(S;) + 50(50 le\lKT,t + 5+(St) max (RquT,ta O) + onom (St) EMOM,t5 (2)

where eyjom s ~ i.i.d N'(0,1). Equation (2) is similar to equation (1). However, the option-
like feature, 87(S;), the sensitivity of momentum strategy return to the market return,
3°(S;), and the volatility of momentum specific shock, oyom(S;), all differ across the un-
observed turbulent and calm states of the economy. We also let the intercept, «(S;), vary
across the two hidden states of the economy. We assume that the return generating process

of the market returns in excess of risk free rate is given by:

Ryers = 1 (St) + ok (S) emxcr.e, (3)

where eyigr ~ i.i.d N(0,1). That is, u(S;) and oykr (S¢) represent the state dependent
mean and volatility of the market excess return.
Finally, we assume that the transition of the economy from one hidden state to another
is Markovian, with the transition probability matrix as given below:
Pr(S; = C|Si-1 =C) Pr(S; =T|S-1 =C)

H - ’ (4)
PI'(St - C|St,1 == T) Pr(St == T|St,1 == T)

where Sy, the unobservable random state at time ¢ which, in our setting, is either Calm(C')
or Turbulent(T) and Pr (S; = s;|S;—1 = s,—1) denotes the probability of transitioning from

state s;_; at time t—1 to state s; at time ¢.!®

18Here, we use Pr(z) to denote the probability mass of the event 2 when x is discrete, and the probability

11



3.2 Quasi Maximum Likelihood Estimation

We now estimate the set of parameters of the hidden Markov model in equations (2), (3),

and (4), which we summarize with the 14-element parameter vector 6°:

a(C) ,3° (C),B*(C),omom (C)
o (T),B(T), BT (T) ,omom (T),
2 (C) y OMKT (O) ) b (T> y OMKT (T) )

Pr (St = C’St = C) ,PI’ (St = T’St = T)

0 =

The observable variables are the time series of excess returns on the momentum portfolio

and on the market, which we summarize in the vector Ry:

R, = (Rumoms Rmcers) -

We let r; denote the realized value of R;.

We follow Hamilton (1989) and estimate the HMM parameters by maximizing the log
likelihood of the sample under the assumption that eyion: and eyxre in (2) and (3) are
jointly normally distributed. When eyowm,: and enmkr: are not normally distributed, the
resulting estimator is referred to as QML (Quasi Maximum Likelihood). As we discuss in
Appendix A, when this assumption is violated, the QML estimator of #° can be inconsistent.
As we discuss later in more detail, while the momentum returns Ryiom, are highly skewed
and leptokurtic, the momentum return residuals (eyonm¢) appear normally distributed. In-
terestingly, the market return residual is non-normal—it is better characterized as Student-t
distributed with (d.f.=5)-but we show in Appendix A that given these distributions for the
residuals, the QML estimator provides reasonably well behaved estimates.

Let §QML denote the vector of HMM parameters that maximizes the log likelihood func-
tion of the sample given by: .,

L= log(Pr(r|Fi 1)), (6)
t=1
where F;_; denotes the agent’s time ¢ —1 information set (i.e. all market and momentum

excess returns up through time t—1).

density of x when z is continuous.

12



Given the hidden-state process that governs returns, the time-t element of this equation—

the likelihood of observing r;—is:

Pr (rt|]:t—1) = Z Pr (I't, Sy = 3t|]:t—1) ) (7)
StE{C,T}

where the summation is over the two possible values of the unobservable state variable S;.

The joint likelihood inside the summation can be written as:

Pr (I“m S; = St|-7:t—1) =Pr (rt|St = St,]:t—l) Pr (St = St|~7:t—1)
= Pr (I't|St = St) Pr (St == St’f;g_l) . (8)

The first term of equation (8) is the state dependent likelihood of r; which, under the

distributional assumptions in (2) and (3), is given by:

1 (6M0M t)2 1 (enr t)Q
P S — = - : X R ’
(xS = st) V2monom (s¢) o { 2 V2monkr (s¢) o 2

where
1
EMOM,t = (TMOM,t —a(sy) — 50 (s¢) TﬁAKT,t - 6" (st) max (TlewKT,tv O))
OMOM (St)
1 e
€ =—|(r —1n(sy)) .
MKT,t oaer (52) ( MKT,t w( t))

The second term of equation (8) can be written as a function of the time t—1 state

probabilities as:

Pr (St = 5t|-7:t—1) = Z Pr (St = 54,51 = 5t—1|Ft—1)

St_le{C,T}

= Z Pr(S; = s¢|Si—1 = -1, Fir1) Pr(Si—1 = -1 Fi—1)
St71€{C,T}

= Z Pr (St = st‘st—l = St—1) Pr (St—l = St—l‘}—t—l) ) (9)
Stflé{C,T}

where third equality holds since the transition probabilities depend only on the hidden state.
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We can compute the expression on the left hand side of equation (9) using the elements of
the transition matrix, Pr(S; = s;|S;—1 = $;—1). The right hand side of equation (9)—the

conditional state probability Pr (S;_1 = s;_1|F;_1)—comes from Bayes’ rule:

Pr (St = St’]:t) =Pr (St = St‘rh]:tfl)
_ Pr(ry, S = s Fi1)
Pr (I't|.Ft_1)

(10)

where the numerator and denominator of equation (10) come from equations (8) and (7),
respectively.

Thus, given time 0 state probabilities, we can calculate the conditional state probabilities
for all t € {1,2,---,T}. In our estimation, we set Pr(Sy = s9|Fp) to their corresponding
steady state values implied by the transition matrix.!® Table 5 gives the Quasi Maximum
Likelihood parameter estimates and standard errors of the hidden Markov model parameter
vector in equation (5).2

The parameters in Table 5 suggest that HMM does a good job of picking out two distinct
states: Notice that ST, while still negative in the calm state, is more than twice as large
in the turbulent state. Similarly The estimated momentum and market return volatilities,
omom(Sy) and oykr(S;), are more than twice as large in the turbulent state. We see also
that the calm state is more persistent than the turbulent, at least based on point estimates.

An implication of the large f7(7') is that MOM’s response to up moves in the market is
considerably more negative than the response to down-moves in the market. In the turbulent
state, MOM’s up market beta is -1.45 (=-0.20-1.25), but its down market beta is only -0.25.
The combination of this feature and the higher volatilities means that the left tail risk is
high when the hidden state is turbulent.

One rather striking feature of the numbers in Table 5 is the large differences in the market
parameters across the two states. For the calm state, the point estimates of the annualized

expected excess return and volatility of the market are, respectively, 12.7% /year and 12.5%,

19The vector of steady state probabilities is given by the eigenvector of the transition matrix given in
equation (4).

20We use standard Quasi Maximum Likelihood standard errors for inference. While the consistency of
the parameter estimates we obtain depend on the conditional normality assumption, as verified in Appendix
A.1, in the following subsection we show that biases due to deviations from normality are small.
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giving an annualized Sharpe-ratio is 1.1. In contrast, the corresponding estimated parameters
for the turbulent state are -5.7%/year and 31.0%. We caution the reader that the hidden
state is not observed, so these returns are not directly achievable. We note also that these
results consistent with prior evidence on the inverse relationship between market volatility
and market Sharpe Ratios (Glosten et al., 1993; Breen et al., 1989; Moreira and Muir, 2015).

One question the reader might have at this point is whether these parameters estimates
(and the associated standard errors) are reliable, particularly given the highly-non-normal
momentum returns distribution. We explore this question in Appendix A. As noted ear-
lier, despite the extreme skewness of the Ryowm,, the momentum residuals return (eyonm,e)
appears normally distributed. All of the skewness in the MOM return arises as a result
of the optionality on the market. While the conditional market return residual remains
non-normal-it is better characterized as Student-t distributed with (d.f.=5)-we show in
Appendix A that given these distributions for the residuals, the QML estimator provides
reasonably well behaved estimates.

We now examine the extent to which the estimated state probability can forecast the

momentum tail-events or “crashes” we see in the return data.

4 Predicting Momentum Crashes using the HMM

In this section, we examine the predictability of momentum crashes based on the esti-
mated probability of the economy being in the hidden turbulent state in a given month,
Pr(S; = T|F;—1). It is evident from Table 5 that when the hidden state is turbulent, the
written call option-like features of momentum strategy returns become accentuated, and
in addition both the momentum strategy and market excess returns become more volatile.
Hence, we should expect that the frequency with which extreme momentum strategy losses
occur should increase with Pr (S; = T|F;—1).

Figure 2 presents scatter plots of realized momentum strategy returns on the vertical
axis against Pr (S; = T|F;_1), the estimated probability that the hidden state is turbulent,
on the horizontal axis. Momentum strategy losses exceeding 20% are in red and momentum
strategy gains exceeding 20% are in green. Panel A is based on in-sample estimates using

all 1044 months of data during 1927:01-2013:12. Consistent with results in the preceding
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section, the large losses, highlighted in red, occur only when the estimated turbulent state
probability is high. The large gains (the green dots) are fairly evenly distributed across the
different state probabilities.

The analysis reflected in Panel A in in-sample, meaning that the full-sample parameters
(i.e., those presented in Table 5) are used to estimated the state probability at each point
in time. In Panel B, the turbulent state probability is estimated fully out-of-sample; the pa-
rameters are estimated by the same QML procedure, but only up through the month prior
to portfolio formation. Here the sample is 1980:09-2013:12, giving us a sufficiently large
period over which to estimate the parameters. To further challenge the HMM estimation,
we estimate the HMM parameters using only from the slightly less volatile period following
1937:01. In Panel B, just as in Panel A, there is again strong association between momen-
tum crashes worse than -20% (red dots) and high values of the (out-of-sample) estimated
turbulent state probability. In contrast, large momentum gains more than 20% (green dots)
are dispersed more evenly across high and low values of the estimated state probability.

Table 7 presents the number of large negative and large positive momentum strategy re-
turns during months when Pr (S; = T|F;_1) is above a certain threshold. Notice that all thir-
teen momentum crashes, defined as losses exceeding 20%, happen when the Pr (S; = T|F;_1)
is more than 60%. However, only eight out of twelve momentum gains exceeding 20% are
found when the Pr (S; = T|F;_1) is more than 60%, and three out of those large gains happen
when the Pr (S; = T|F;_1) is less than 10%.

We examine the extent to which our tail risk measure succinctly summarizes the infor-
mation about the likelihood of large momentum strategy losses using the following probit
and logit models:

Pr (Ryome < Threshold) = F(a+b'X,_1), (11)

where the functional form of F depends on whether we use the probit or the logit model.?!
For the predictors of X; 1, we use our tail risk measure as well as the market return during
the preceding 36 months, the realized volatility of daily market return during the preceding
12 months, the interaction of preceding market return and preceding market return volatility,

and financial leverage (BD/ME) of the loser portfolio — variables that characterize market

21 For the probit model, we use the CDF of the standard normal distribution as F(z). For the logit model,
exp(z)
1+exp(z)*

we use the logistic function: F(z) =
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conditions when large losses in momentum strategy returns end to occur, (see Tables 2 and
3). We report results in Table 8 with Threshold=-10%.?2 Panel A reports the results for
the longer sample, 1929:07-2013:12.22 The #'th entry of the coefficient vector b represents
the coefficient corresponding to i'th predictor variable. We arrange the predictor variables in
the following sequence: our tail risk measure Pr(S; = T|F;—1) as the first variable; market
return during the preceding 36 months when as the second variable; realized volatility of daily
market return during the preceding 12 months as the third variable; product of second and
third variables as the fourth variable; and financial leverage (BD/ME) of the loser portfolio
as the fifth variable. Let t(b;) denote the t-statistic associated with the coefficient b;. All the
variables are significant when used individually. When we use all variables in the estimation,
only our tail risk measure remains to be statistically significant. We find similar results in
Panel B using the shorter sample, 1964:01-2013:12 when financial leverage (BD/ME) of the
loser portfolio is available.

Most quantitative fund managers operate with mandates that impose limits on their
portfolios’ return-volatilities. Barroso and Santa-Clara (2015) demonstrate the benefit of
such mandates: when exposure to the momentum strategy is varied over time to keep its
volatility constant the Sharpe ratio significantly improves. A natural question that arises is
whether managing the volatility of the portfolio to be within a targeted range is the best way
to manage the portfolio’s exposure to left tail risk. As we saw before, left tail risk is related
to left skewness of returns, and there are no a priori reasons to believe that changes in left
skewness move in lock step with changes in the volatility of momentum strategy returns.
We therefore let the data speak, by comparing the performance of two tail risk measures:
the volatility of momentum strategy returns (measured either by realized volatility or by
GARCH) and the probability of the economy being in a turbulent state computed based on
the estimated HMM parameters in predicting momentum crashes.

Table 9 compares the number of false positives in predicting momentum crashes across
different tail risk measures. The number of false positives of a given tail risk measure is

computed as follows. Suppose we classify months in which momentum strategy returns

22Tf we lower the threshold below -10%, no single variable appears to be significant due to the rare
occurrence of the events of Rvowm,: < Threshold . For the purpose of comparison across variables, we use
-10% as Threshold.

23Gince we use the past market returns over the previous 36 months, the sample period becomes shorter.
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lost more than a threshold X. Let Y denote the lowest value attained by a given tail risk
measure during those momentum crash months. For example, consider all months during
which momentum strategy lost more than 20% (X=20%). Among those months, the lowest
value, attained by the tail risk measure of Pr (S; = T|F;_1), is 67% (Y=67%). During months
when the tail risk measure is above the threshold level of Y, we count the number of months
when momentum crashes did not occur and we denote it as the number of false positives.
Clearly, the tail risk measure that has the least number of false positives is preferable. Table
9 gives the number of false positives for different tail risk measures and different values of
threshold X=10%, 20%, 30%, 40%.

In Panel A, we use Pr(S; = T|F;_1) as a tail risk measure. The results in Panel A-1 are
from our original HMM model specified in (2), (3) and (4). To emphasize the importance
of option-like feature 87(S;) in (2), we impose the restriction 57(S;) = 0 and report the
associated results in Panel A-2. Also, motivated by the findings reported in Appendix B, we
extend our HMM model to the hybrid case where residuals for momentum strategy returns,
emoM,t, are drawn from normal distribution and residuals for market excess returns, enkr,,
are drawn from Student-t (d.f.=5) distribution. Results of which are reported in Panel A-3.

In Panel B, we use various estimates of the volatility of momentum strategy returns as
tail risk measures. Specifically, we estimate the volatility of the momentum strategy returns
using GARCH (1,1), and realized volatility of daily momentum strategy returns over the
previous 3, 6, 12, and 36 months. In Panel C, we use the volatility of the market return
estimated using GARCH(1,1) and realized volatility of the daily market return during the
preceding 3, 6, 12, and 36 months as tail risk measures. In Panel D, we use the market
return during the preceding 3, 6, 12 and 36 month windows as tail risk measures.

When X=20%, we find that the number of false positives in Panel A-1 is always smaller
than other cases in Panel B, C and D. For example, in our 1930:01-2013:12 sample,?* we
find 137 false positives when we use the tail risk measure based on our main specification
of HMM. In contrast, if we use the realized volatility of daily momentum strategy returns

over the previous six months,? the number of false positives increases to 187 months. The

24Gince we utilize momentum returns over the previous 36 months to construct risk measures, the sample
period becomes shorter.

25Barroso and Santa-Clara (2015) used this measure to imposing the volatility target of the momentum
strategy.
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result of Panel A-2 shows that the necessity of the option features in our HMM specification.
If we impose that 87(S;) = 0 while estimating our HMM model, the performance becomes
worse. The number false positives increases from 137 to 164. When we relax the restriction
that the residuals in momentum strategy returns and market excess returns are drawn from
identical distribution and impose that eniom, is drawn from normal distribution and ek
is drawn from Student-t (d.f.=5) distribution, the number of false positives declines sharply
from 137 to 114 as reported in Panel A-3.

This establishes the link between the tail risk of momentum strategy returns and the
probability of the economy being in the hidden turbulent state. In the next section we
examine how the alpha of the momentum strategy return varies over time, as the probability

of the economy being in the turbulent state changes.

5 The Momentum Strategy’s Option Adjusted Alpha

We have shown that the two-state HMM effectively picks out changes in the market envi-
ronment that lead to dramatic shifts in the distribution of market and momentum returns.
Moreover, even when estimated out-of-sample, the HMM does a far more effective job of
forecasting momentum tail events or “crashes” than alternative methods.

These results raise the question of how the alpha of the momentum strategy varies over
time with changes in market conditions. While not the focus of our paper, in this section
we briefly examine this question, based on the estimated HMM model from Section 3. We
calculate the alpha from the perspective of an investor who can freely invest in the risk
free asset, the market index portfolio, and in at-the-money call options on the market index
portfolio without any frictions, but whose pricing kernel is otherwise uncorrelated with inno-
vations in the momentum strategy. Given this assumption our valuation requires the prices
of traded options on the market portfolio, which we proxy with one month, at-the-money
index options on the S&P 500.

Specifically, we assume that how the investor values payoffs on risky assets has the

stochastic discount factor representation.?® Let M, denote the stochastic discount factor,

26Tn our derivations, we follow the framework in Hansen and Jagannathan (1991) and Glosten and Jagan-
nathan (1994).
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and F;_; the investor’s information set at time t—1. Since the investor has frictionless access
to the risk free asset, the market portfolio, and call options on the market portfolio, the

followings relations hold:

1 = E[Mt(l‘l’Rf,t)‘]:tfl}
0 = E[MR{gr,|Fi1]
Verr = E[M;max (Riyr,,0)|Fi1],

where Ry, is the risk free rate from ¢—1 to t and V, . is the market price of the call option
which pays max (RilKT’t, 0) at the end of time ¢.

Regress M, based on a constant, the market excess return, and the payoff on the call
option on the market based on the information set F;_;. Let ]\Z be the fitted part of M,

and ¢; be the residual in that conditional regression. Then we can write M; as follows:

where
My = Mo+ Mo Biger, + Ao (Riery, 0) (13)
E [€t|ft71] = E [RIE\/IKT,tgtLFt*l} =K [maX (Ri/IKT,U 0) /é/t|ft71j| =0. (14)

The residual e; represents the risk that the investor cares about that is not an affine
function of the risk free return, market excess return, and the payoff of the call option on
the market excess return.

In a similar manner, regress the momentum strategy return on a constant, the mar-
ket excess return, and the call option payoff on the market given the information set F;_;.
Recall that when the hidden state S; is turbulent, which occurs with the probability of
Pr (S, = T|F;-1), the momentum strategy return and market excess return generating pro-
cesses are given by equation (2), where S is either calm or turbulent, and where eyon, and
emkT, are assumed to be drawn from a standard normal distribution.

We consider the following conditional regression given the information set JF;_; that
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includes the risk free return and the price of the call option on the market:
Ryomyt = i1 + 5?_1R§/[KT¢ + B max (RK/[KTyt, 0) + enmomts (15)
where
E [emone|Fi-1] = E [enoni Risxcr | Fi-1] = E [emom, max (Ripiry, 0) [Fi—1] = 0.
Specifically, the vector of regression coeflicients [at,l B, B J/ is determined as
[ By ﬁ;r—ﬂl = (E [x:%}|Fi_1]) " E [x:Rantons| Fioi]
where x; = [1 Rycr, max (R§yr,.0)]’, and

E [thft’ftfl] = Pr (St = C|E,1) E [XtX;‘St = C] + Pr (St = T”thl) E [XtXHSt = T]
E [XtRMOM,t’]'—t—l] = Pr (St = C|~7:t—1) E [XtRMOM,t‘St = C]
+ Pr (St = T|‘Ft,1) E [XtRMOM,t|St = T] .

Furthermore, the regression equation of (15) can be expressed in terms of excess returns as
follows:

max (R§xr. 0)
ch,tfl

Ruvomy = o1 + By Ryxere + 871 Ve < - (1+ Rf,t)) + emom,t,  (16)
where the quantity in parenthesis is the excess return on one-period call option on the

market.2”

ap g = a1+ (14 Bey) B Vo (17)

We denote o ; as the option adjusted alpha of the momentum strategy return. When the
o
? 14+Re ¢

following assumption holds gives the value at the margin of the momentum strategy

return from the perspective of the marginal investor.

Assumption 1. E [e;enom | Fi—1] = 0 where €; and eyom are given in equations (12) and

2TThe strike price of the option is the level of the market index times (1 + Ry, which means that the
option will be at-the-money at expiration if Ry, = 0.
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(16), respectively.
With Assumption 1, the following proposition holds.

Proposition 1. The value of momentum strategy return to the investor whose stochastic
gy
1+Re ¢ °

discount factor is My, is

Proof.

E [M; Ryon ¢ Fi-1]
= o E[M|F] + B E (MR | Fer]

E [M; max (Rjxr 4, 0) | Fi1]
Ve

+8, 1 Vera (
+E [Miemomn,¢| Fe—1]

— e +E [(J\Z + €t> 6M0Mt|~7:t—1} - —1 + E [erenonn ¢ Fr1]
1+ Ry 7 L+ By |
;g
1+ Rf,t7

— (14 Rey)E [Mt|~7:tl]>

where the first equality follows from equation (16). The second equality follows from the
assumption that the investor, whose stochastic discount factor is M;, agrees with the market
prices of the risk free asset, market excess return, and the call option payoff and the decom-
position in equation (12). The third equality follows from equation (13) and the properties of

the conditional regression residual eyjom¢. The last equality follows from Assumption 1. [

In what follows we compute the time series of the estimated option adjusted alpha, o*,
in (17) based on the time series of risk free returns and the prices of call options. We then
assess the validity of Assumption 1 by examining whether the residual in the equation (16)
is uncorrelated with various risk factors proposed in the literature. Figure 3 plots the time
series of a* calculated based on the estimated HMM model for the sample period 1996:01-
2013:12. Notice that the sample average of the a; ;’s is 1.15%/month, which is significantly
positive. However, a;_; is negative during 1998:09-1998:10 (Russian crisis), 2002:08-2002:10
(dot-com bubble bursts), 2008:10-2008:12 and 2009:02-2009:04 (financial crisis), and 2011:10
(sovereign debt crisis) — time periods when months when option prices were high and the

market was more likely to be in the hidden turbulent state.
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We compute the confidence intervals for the estimated option adjusted alphas as follows.
First, we simulate 10,000 sets of parameters from the asymptotic distributions obtained
from QML estimator, reported in Table 5. Then, for each set of parameters, we estimate
the probability for the hidden state being turbulent based on the realized market excess
returns and momentum strategy returns in our sample period 1996:01-2013:12 . With the
simulated parameters, the estimated probabilities, and the time series of risk-free returns
and call option prices, we construct the time series of a*’s for the period 1996:01-2013:12
as described earlier. Finally, for each month, we find the 95% confidence intervals of a* by
choosing the top and bottom 2.5% quantiles from the simulated 10,000 * in each month.

In Figure 3, we plot the time series of estimated a;_; along with 95% the corresponding
confidence intervals. In 167 of the 216 months in the sample period 1996:01-2013:12, the
option-adjusted alpha is significantly positive. While the option adjusted alpha is negative
during the other 49 months, only during two months — both occur during the recent financial
crisis period 2008:12 and 2009:03 — they are statistically significantly different from zero.

To assess the reasonableness of Assumption 1, we construct the time series of the residuals,

enmonm, in equation (16), based on the estimated parameter values as follows.

max (Rle\dKTm 0)
Vei—1

emon: = Raons — @ — By Mkre — B Ve < —(1+ Rf,t)) .

We regress the residual on commonly used economy wide risk factors in the literature: the
three factors of market excess returns (MKT), small minus big size (SMB), high minus
low book to market (HML) in Fama and French (1993); robust minus weak (RMW) and
conservative minus aggressive (CMA) factor in Fama and French (2015); investment to assets
(I/A) and return on equity (ROE) factor in Hou et al. (2015); quality minus junk (QM.J)
factor in Asness et al. (2014); liquidity risk factor (LIQ) in Pastor and Stambaugh (2003);
funding liquidity risk factor (FLS) in Chen and Lu (2015); betting against beta (BAB)
risk factor in Frazzini and Pedersen (2014); changes in 3-Month LIBOR (LIBOR), Term
Spread (the yield spread between the 10-year treasury bond and 3-month T-bill, TERM),
Credit Spread (the yield spread between Moody’s BAA bond and AAA bond, CREDIT), and
TED Spread (the yield spread between the 3-month LIBOR and 3-month T-bill, TED); and
returns of variance swap (VAR-SWAP) across different horizons (Dew-Becker et al., 2015);
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and the changes in VIX as well as the changes in left jump variations (LJV) embedded in
option prices measured by Bollerslev et al. (2015).2® Specifically, we estimate the regression
equation

emom,: = intercept + coeff x systematic factor, + e,

and report coeff (t-stat) and R? in Table 11. Except for ROE factor in Hou et al. (2015),
we do not find any significant correlation between the residual we computed and systematic
risk factors. These findings are mostly consistent with the Assumption 1 that the residual

is conditionally uncorrelated with the systematic risk factors.

6 Conclusion

There is a vast literature documenting that the rather simple strategy of buying past win-
ners and selling past losers, commonly referred to as the momentum strategy, generates
abnormally high risk adjusted returns. However, such a strategy also experiences infrequent
but large losses. We provide an explanation for the phenomenon, i.e., why we see such large
losses occurring at periodic but infrequent intervals. We show that the way momentum port-
folios are formed embeds features that resemble a written call option on the market portfolio
into the momentum strategy returns. These features become accentuated in prolonged bear
markets when the market is volatile due to increased financial and operating leverage. This
makes the momentum strategy susceptible to large losses when the market sharply recovers.

We document several patterns in the data. Following prolonged depressed and volatile
market conditions, stocks in the loser portfolio become highly levered, behaving like out of
the money call option on the stock market. When the market recovers, the stocks in the
loser portfolio rise much more in value than the stocks in the winner portfolio. Since the

momentum strategy takes a short position in stocks in the loser portfolio, momentum crashes

28We obtain MKT, SMB, HML, CMA and RMW from Ken French’s data library: http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html; QMJ and BAB data come from An-
drea Frazzini’s library: http://www.econ.yale.edu/~af227/data_library.htm; LIQ from Lubos Pas-
tor: http://faculty.chicagobooth.edu/lubos.pastor/research/liq_data_1962_2014.txt; LIBOR,
TERM, CREDIT, and TED from FRED: https://research.stlouisfed.org/fred2/ and VIX from the
CBOE: http://www.cboe.com/micro/vix/historical.aspx. Finally, we thank Zhuo Chen, Ian Dew-
Becker, and Grant Thomas Clayton for sharing FLS, VAR-SWAP, and LJV, respectively, and Lu Zhang
for supplying the I/A and ROE data.
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tend to occur when the market recovers sharply from depressed market conditions, causing
extremely large momentum strategy losses. That is more likely if the market is turbulent
during those periods.

Motivated by these empirical observations, we model the time-varying systematic tail
risk of momentum strategy returns using a two-state hidden Markov model (HMM) where
the embedded option-like features of momentum strategy returns become accentuated in the
hidden turbulent state. We show that when the economy is in the latent turbulent state, the
volatilities of market excess returns and momentum strategy returns are more than doubled
In the calm state, both the momentum strategy returns and the market returns are less
volatile, and the option-like features of momentum strategy returns become attenuated.

We find that momentum crashes tend to occur more frequently during months in which
the hidden state is more likely to be turbulent. The turbulent state occurs infrequently in
the sample: the probability that the hidden state is turbulent exceeds 60% in only 179 of
the 1044 months in our 1927:01-2013:12 sample. Yet in each of the 13 severe loss months,
the ez-ante probability that the hidden state is turbulent exceeds 60 percent. Interestingly,
the average momentum strategy return during those 179 months is only -0.94% per month.

We derive the conditional alpha of the momentum strategy for a given month based on
the information available till the end of the previous month using HMM return generating
process for momentum strategy returns and market excess returns and the price of call
options on the market and the risk free rate. During 1996:01-2013:12 (216 months), for
which we have call option prices, the average conditional alpha is 1.15%/month, which is
significantly positive. However, the conditional alpha is negative during 49 out of the 216
months and significantly negative for two months 2008:12 and 2009:03 of the financial crisis
period.

We show that QML estimator of HMM parameters need not to be consistent when the
wrong normal likelihood is maximized. We find that the normally distributed residuals for
momentum strategy returns and Student-t (d.f.=5) distributed residuals for market excess
returns best describe the data. Our HMM model has the least number of false positives
in predicting momentum crashes when compared to models on historical realized volatility,

GARCH or past market returns.
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Table 1: SUMMARY STATISTICS OF MOMENTUM STRATEGY RETURNS

Panel A reports the mean, standard deviation (SD), annualized Sharpe ratio (SR), skew-
ness (skew), kurtosis (kurt), maximum (max), and minimum (min) of momentum strategy
returns (MOM) along with those of market excess returns (Mkt-Rf), small size minus big
size (SMB) factor, high book-to-market ratio minus low book-to-market ratio (HML) fac-
tor, and scaled market excess returns (Mkt-Rf*) with the standard deviation equal to that
of momentum strategy returns. Panel B reports the average risk adjusted monthly return
(alpha), calculated as the intercept from time series regressions of the MOM return on the
Market and the Fama and French (1993) three factor model, respectively, along with the
corresponding risk exposures (betas). The sample period is 1927:01-2013:12. The t-statistics
are computed using the heteroskedasticity consistent covariance estimator (White, 1980).
The mean, SD, max and min in Panel A and « in Panel B are reported in percentage per
month.

PANEL A: SUMMARY STATISTICS

mean SD SR skew kurt max min

MOM 1.18 7.94 0.52 -2.43 21.22  26.18 -79.57
Mkt-Rf 0.64 5.43 0.41 0.16 10.35 38.04 -29.10
Mkt-Rt* 0.94 7.94 0.41 0.16 10.35  55.74 -42.64
SMB 0.24 3.24 0.26 2.05 23.46 37.45 -16.39
HML 0.39 3.52 0.39 1.92 18.69  34.08 -12.68

PANEL B: Risk ADJUSTED MOM RETURNS
a Brkt—RE Adj.R2

ESTIMATE 1.52 -0.52 0.13
(t-stat) (7.10) (-4.82)
o Brke—re  Psmp  Bamn  Adj.R?

ESTIMATE 1.76 -0.38 -0.23 -0.70 0.23
(t-stat) (8.20) (-5.33) (-2.11) (-4.95)
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Table 3: OPTION-LIKE FEATURE OF MOMENTUM RETURNS AND MARKET CONDITIONS

We partition the months in our sample into three groups on the basis of the cumulative market
return during the 36 months immediately preceding the momentum portfolio formation date. The
‘High’ ("Low’) group consists of all months in which this variable is in the top (bottom) 20th
percentile. The rest of the months are classified as ‘Medium’. We estimate equation (1): using
ordinary least squares for the months within each group, and report the results in Panel A. The
dependent variable is either: the momentum strategy returns (Ryom), or the returns of the winner
or loser portfolio in excess of risk free return (R and Rfng). For comparison, in Panel B we
report the estimates for the CAPM, without the exposure to the call option on the market in
(1). Panel C counts the number of momentum losses worse than 20% within each group. Panel
D reports the skewness of Ry, with that of estimated e of (1). « is reported in percentage per
month. The t-statistics are computed using the heteroskedasticity-consistent covariance estimator
by White (1980). The sample period is 1929:07-2013:12.

STATE VARIABLE: PAST 36 MONTHS MARKET RETURNS

\ Low \ MEDIUM \ HicH
RS: | Rmom  R{yw  Rfos | Bmom Ry Rfos | Rvom Ry Los
A: HENRIKSSON-MERTON ESTIMATES
« 3.00 1.12 -1.88 2.62 1.03 -1.59 0.59 0.65 0.06
t(x) (3.28) (2.88)  (-2.93) | (5.20) (3.44) (-6.03) | (1.04) (1.82) (0.17)
30 -0.44 0.97 1.41 -0.08 1.27 1.35 0.20 1.40 1.19
t(Y) (-3.14) (12.45) (16.60) | (-0.42) (11.80) (13.23) | (1.89) (17.93) (13.45)
Bt -1.01 -0.29 0.72 -0.49 -0.26 0.23 0.26 -0.12 -0.38
t(B1) (-3.17)  (-2.02) (3.60) | (-1.51) (-1.37) (1.39) (0.94) (-0.78) (-1.92)
Adj.R? 0.48 0.77 0.83 0.06 0.71 0.72 0.06 0.81 0.62
B: CAPM ESTIMATES
« 0.05 0.27 0.22 1.81 0.60 -1.21 1.08 0.41 -0.67
t(x) (0.08) (1.05) (0.45) (7.42) (4.62) (-7.42) | (2.74) (1.90) (-2.45)
153 -1.02 0.80 1.82 -0.32 1.14 1.47 0.31 1.35 1.04
t(B) (-6.60) (13.38) (18.01) | (-3.40) (21.17) (27.93) | (3.45) (30.06) (15.37)
Adj.R? 0.43 0.76 0.82 0.05 0.71 0.71 0.06 0.81 0.62
C: NUMBER OF MOMENTUM LOSSES WORSE THAN -20%
\ 11 \ 2 \ 0
D: CONDITIONAL SKEWNESS
Ry -2.33 -0.21 1.74 -0.98 -0.59 0.07 0.17 -0.73 -0.61
Ep -0.48 -0.59 0.59 -0.76 -0.21 0.94 -0.12 1.07 0.81




Table 4: OPTION-LIKE FEATURE OF MOMENTUM RETURNS DURING DoT-coM CRASH

We estimate equation (1) with the momentum strategy return (Ryowm) and the winner and loser
portfolio excess returns (R, and Rfog) as a candidate dependent variable. We use 36 monthly
data on returns during 2000:01-2002:12. « is reported in percentage per month. The t-statistics
are computed using the heteroskedasticity-consistent covariance estimator by White (1980).

Ry Ruom Ryin  Riog
« 3.41 1.57 -1.84
ta) (0.92) (0.85) (-0.71)
BO -0.42 1.25 1.67
t(p%  (-0.71) (3.06) (4.31)
Bt -1.35 -0.54 0.82
t(ﬁ+) (-1.26) (—0.81) (1.11)

Table 5: QUAST MAXIMUM LIKELIHOOD ESTIMATES OF HMM PARAMETERS

We maximize the likelihood of data with the assumption that both of eyjonm, in (2) and ey, in
(3) are drawn from a standard normal distribution. The parameters are estimated using data for
the period 1927:01-2013:12. «, omom, and oukT are reported in percentage per month.

HIDDEN STATE

Sy = Calm(C) Sy = Turbulent(7")
PARAMETER ESTIMATES (T-STAT) ESTIMATES (T-STAT)
a (%) 2.12 (6.88) 4.30 (3.54)
B0 0.37 (2.71) —0.20 (—1.25)
gt —0.54 (—2.49) —1.25 (—3.87)
ovom (%) 4.22 (12.65) 11.59 (11.65)
[ 1.00 (6.71) —0.49 (—0.82)
omr (%) 3.60 (22.78) 8.94 (9.11)
Pr(S;=s;_1]Si-1=5¢-1) 0.96 (8.19) 0.88 (6.20)
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Table 7: EXTREME LOSSES/GAINS CONDITIONAL ON Pr (S; = Turbulent|F;_;)

This table presents the fraction of the total number of extreme losses/gains greater than a given
value that occur when Pr(S; = Turbulent|F;_1) is larger than a given threshold. The sample
period is 1927:01-2013:12.

# EXTREME LOSSES DURING TURBULENT MONTHS

Pr(8=T|%i1) /# EXTREME LOSSES IN THE SAMPLE 7# of

IS MORE THAN < =20% < -175% < -15% < -125% < —-10% MONTHS
80% 11/13 16/21 19/32 23/37 26/56 123
70% 12/13 17/21 20/32 24/37 28/56 152
60% 13/13 18/21 22/32 26/37 31/56 179
50% 13/13 19/21 23/32 27/37 32/56 208
40% 13/13 19/21 23/32 27/37 33/56 229
30% 13/13 20/21 24/32 28/37 37/56 270
20% 13/13 20/21 27/32 31/37 40/56 307
10% 13/13 21/21 30/32 34/37 46/56 403
o # EXTREME GAINS DURING TURBULENT MONTHS

Pr(8=T|%i1) /# EXTREME GAINS IN THE SAMPLE 7 of

IS MORE THAN > 20% > 17.5% > 15% > 12.5% > 10% MONTHS
80% 5/12 6/15 11/28 18/45 27/74 123
70% 5/12 7/15 13/28 20/45 31/74 152
60% 8/12 10/15 16/28 23/45 35/74 179
50% 8/12 10/15 18/28 27/45 40/74 208
40% 8/12 10/15 18/28 29/45 44/74 229
30% 8/12 10/15 18/28 29/45 46/74 270
20% 9/12 11/15 19/28 31/45 49/74 307
10% 9/12 11/15 20/28 34/45 57/74 403
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Table 9: FALSE POSITIVES IN PREDICTING MOMENTUM CRASHES

We compare the number of false positives in predicting momentum crashes across different tail
risk measures. The number of false positives of a given tail risk measure is computed as follows.
Suppose we classify months in which momentum strategy returns lost more than a threshold X.
Let Y denote the lowest value attained by a given tail risk measure during those momentum crash
months. During months when the tail risk measure is above the threshold level of Y, we count the
number of months when momentum crashes did not occur and we denote it as the number of false
positives. We consider X=10%, 20%, 30%, 40%. In Panel A, we use Pr(S; = Turbulent|F;_;)
as a tail risk measure. The results in Panel A-1 are from our original HMM model specified in
(2), (3) and (4). To emphasize the importance of option-like feature 57 (S;) in (2), we impose the
restriction S7(S;) = 0 and report the associated results in Panel A-2. We examine the hybrid
case where eyion ¢ is drawn from Normal distribution and eyt is drawn from Student-t (d.f.=5)
distribution. Results of which are reported in Panel A-3. In Panel B, we use various estimates of
the volatility of momentum strategy returns as tail risk measures. Specifically, we estimate the
volatility of the momentum strategy returns using GARCH (1,1) and realized volatility of daily
momentum strategy returns over the previous 3, 6, 12, and 36 months. In Panel C, we use the
volatility of the market return estimated using GARCH(1,1) and realized volatility of the daily
market return during the preceding 3, 6, 12, and 36 months as tail risk measures. In Panel D, we
use the market return during the preceding 3, 6, 12 and 36 month windows as tail risk measures.

MoOMENTUM CRASH THRESHOLD (-X)
TAIL RISK MEASURE < —40% < —30% < —20% < —10%
PANEL A: HMM

A-1: MAIN SPECIFICATION

Pr(S; = T|F—1) 144 142 137 931
A-2: WITHOUT THE OPTION-LIKE FEATURE [1(S;) =0
Pr(S;, = T|F_1) 171 169 164 930
A-3: EXTENSION TO NORMAL (epom,:) AND STUDENT-T (€mKTt)
Pr(S; = T|F_1) 121 119 114 902
PANEL B: MOMENTUM STRATEGY RETURNS VOLATILITY
GARCH(1,1) 263 261 256 829
RV (3 MONTHS) 234 232 227 922
RV (6 MONTHS) 194 192 187 892
RV (12 MONTHS) 154 152 147 866
RV (36 MONTHS) 180 178 173 951

Continued on next page
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Table 9 — continued from previous page

PANEL C: MARKET RETURNS VOLATILITY

GARCH(1,1) 188 186 181 809
RV (3 MONTHS) 166 164 159 889
RV (6 MONTHS) 183 181 176 920
RV (12 MONTHS) 191 189 184 796
RV (36 MONTHS) 179 177 172 858
PANEL D: PAST MARKET RETURNS
3 MONTHS 618 616 980 948
6 MONTHS 131 129 918 944
12 MONTHS 249 247 966 938
36 MONTHS 491 489 484 930
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Table 11: SYSTEMATIC RISK IN MOMENTUM STRATEGY RETURNS

When the specification of (16) describes the systematic risk of momentum strategy returns,
emon,: should be unrelated to various economy wide factors examined in the literature.
To examine whether this is the case, we regress enonm, on various systematic risk factors,
emom, = intercept + coefl x systematic factor, + e;. Results are tabulated below using
the data from 1996:01 to 2013:12 (216 months) where we can reconstruct eyon, from the
market prices of call option on S&P 500 from OptionMetrics. Details on systematic factors
are described in the main text.

PANEL A: GENERAL FACTORS

systematic factor | coeff t(coeff) R*(%) First Month Last Month N

MKT -0.14 -0.92 0.57 1996:01 2013:12 216
SMB 0.25 0.96 1.09 1996:01 2013:12 216
HML -0.50 -1.89 3.96 1996:01 2013:12 216
RMW 0.03 0.08 0.01 1996:01 2013:12 216
CMA 0.03 0.07 0.01 1996:01 2013:12 216
I/A -0.20 -0.45 0.28 1996:01 2013:12 216
ROE 1.06 3.25 14.75 1996:01 2013:12 216
QMJ 0.56 1.86 4.39 1996:01 2013:12 216

PANEL B: LiQUIDITY RELATED FACTORS

systematic factor | coeff t(coeff) R?(%) First Month Last Month N

LIQ 0.26 1.31 1.57 1996:01 2013:12 216
FLS 0.07 0.56 0.71 1996:01 2012:10 202
BAB 0.24 0.94 1.46 1996:01 2012:03 195

A LIBOR 0.05 1.19 1.66 1996:01 2013:12 216
A TERM -0.04 -1.33 1.09 1996:01 2013:12 216
A CREDIT 0.03 0.70 0.24 1996:01 2013:12 216
A TED 0.00 -0.12 0.00 1996:01 2013:12 216

PANEL C: TAIL RISK RELATED FACTORS
systematic factor | coeff t(coeff) R?(%) First Month Last Month N

VAR-SWAP 1M | 0.00 -0.34 0.03 1996:02 2013:09 212
VAR-SWAP 3M | 0.01 0.91 0.15 1996:03 2013:08 210
VAR-SWAP 6M | 0.02 1.60 0.55 1996:08 2013:08 203
VAR-SWAP 12M | 0.01 0.59 0.09 1997:03 2013:08 193
A VIX 0.00 1.12 0.49 1996:01 2013:12 216
A LJV -0.54 -0.28 0.04 1996:01 2013:12 216
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Figure 1: EMPIRICAL FREQUENCY OF MOMENTUM STRATEGY RETURNS (MOM)

Panel A plots the smoothed empirical density of the MOM and the normal density with
the same mean and standard deviation. To highlight the left skew of momentum strategy
returns, we represent 25 MOM returns (13 in left tails and 12 in right tails) that exceed 20%
in absolute value. Panel B plots the empirical density of MOM along with the empirical
density of scaled market excess returns, Mkt-Rf*, with standard deviation equal to that of
momentum strategy returns. The sample period is 1927:01-2013:12.
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Figure 2: MOMENTUM RETURNS AND PROBABILITY OF THE HIDDEN STATE BEING TUR-
BULENT

The figure presents a scatter plot of momentum strategy return on the vertical axis and
Pr (S; = Turbulent|F;_;), the probability that the hidden state is turbulent, on the horizontal
axis. Momentum strategy returns below -20% are highlighted in red, and returns of exceeding
20% are in green. Figure (a) is based on in-sample estimates using all 1044 months (1927:01-
2013:12). For each month ¢ of the last 400 months in 1980:09-2013:12, we skip first 10 years
over 1927:01-1936:12 and estimate our HMM using data from 1937:01 till month t—1 to
compute Pr (S; = Turbulent|F;_;). Figure (b) reports out-of-sample results.
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Figure 3: TIME SERIES OF OPTION ADJUSTED ALPHA

Option adjusted alpha, o*, is computed by (17). The sample period is 1996:01 to 2013:12
where we can find the market price of call option on S&P 500 from OptionMetrics. 95%
confidence intervals are computed as follows. First, we simulate 10,000 sets of parameters
from the asymptotic distributions of parameters obtained from ML estimator. Then, for
each set of parameters, we compute the monthly time series of . Lastly, in each month,
we find 95% confidence intervals of a* by choosing top and bottom 2.5% quantiles from the
simulated 10,000 observations of a*.
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Tail Risk in Momentum Strategy Returns
Online Appendices

Appendix A QML Estimation Robustness

In Subsection 3.2, we estimate the parameters of our HMM by maximizing the likelihood
function in equation (6) under the assumption that the residuals in (2) and (3) are jointly
normally distributed. Here, we show that our HMM model behaves properly along several
dimensions even when residuals are not drawn from normal distribution and examine the
nature of deviations from normality.

To summarize, we find that point estimates for HMM parameters are fairly robust against
the deviation from the normality assumption. We show in Appendix A.1 that the QML
estimator that maximizes the (wrong) normal likelihood will not in general provide consistent
estimates of the true HMM parameters. However, we find that the QML estimates are
reasonably well behaved in finite samples when true residuals are drawn from Student-
t distribution. We further show that the momentum residuals (in equation (2)) appear
normally distributed, but the market residuals (in equation (3)) are better characterized as
Student-t (d.f.=5).

In Table 5, we examine the effect of deviations from normality on QML point estimates
using Monte Carlo simulations when the residuals in (2) and (3) are drawn from Student-
t distribution with d.f. (degrees of freedom) 10 and 5. We simulate momentum strategy
returns and market excess returns over 1044 months using HMM parameters in Table 5 and
the residuals drawn from Student-t distribution. With the simulated data, we re-estimate
the parameters of our HMM by maximizing the misspecified normal likelihood as described
in the previous subsection. By repeating this exercise 1,000 times, we construct the sampling
distribution of QML point estimates, the results of which are reported in Table B.1. When
the residuals in (2) and (3) are drawn from a Student-t distribution with d.f. 10, the mean
of QML estimator is quite close to the true value. Also, when the residuals are drawn
from Student-t distribution with d.f. 5, although the variances in calm state, omonm (C) and
omkr (C), tend to be underestimated, the magnitude of the biases are small.

Next, we examine the sensitivity of the ranking based on the conditional probability

that the (unobserved) state is Turbulent (Pr (S; = T|F;_1)) when the residuals in the return



generating processes are drawn from Student-t distributions. We generate a time series
of length 50,000 months of momentum strategy and market excess returns by Monte Carlo
simulation when these returns are generated by the hidden Markov model with parameters in
Table 5 where residuals in (2) and (3) are drawn from a bivariate Student-t distribution with
d.f. (degree of freedom) 10 and 5. Then, we compute the tail risk measure Pr(S; = T|F;_1)
for each of simulated 50,000 months using i) the true likelihood (Student-t) function and ii)
the misspecified likelihood (normal) function. This gives a set of two Pr(S; = T|F;_1) values
for each month in the simulated time series. Given Pr(S; = T|F;_1), we classify month ¢ as
belonging to the ‘Low’ (‘High’) group if Pr(S; = T|F;_1) is below the 30th percentile (above
the 70th percentile). Months with Pr(S; = T|F,_;) falling in between the 30th and 70th
percentile are classified as belonging to the ‘Med’ group. Table B.2 present a 3x3 matrix,
summarizing the joint distribution of Pr(S, = T|F,_1) inferred through the true likelihood
(Student-t) function and the misspecified likelihood (normal) function. When the residuals
are drawn from Student-t distribution with d.f. 10, 96.9% (73.8+15.3+7.8) of simulated
sample belong to the same groups whether we use the correct Student-t or the wrong normal
distribution to compute Pr(S; = T|F;—1). When the residuals are drawn from Student-t
distribution with d.f. 5, 93.4% (72.74+13.9+46.9) of samples are consistently classified by
either true likelihood (Student-t) function or misspecified likelihood (normal) function.

In what follows, we examine the nature of deviations from normality. Since we do not
directly observed the residuals of our HMM (because S; is not directly observed) we examine
the moments of the pseudo residuals — the probability weighted residuals of the two hidden

states. We can write the residuals of our HMM return generating process as follows:

evomy = I(S; = Cemom(C) + ISy = T)emom(T), (A1)
evrry = (St = C)enxr(C) +1I(S; = T)enmr (1), (A.2)
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where I(-) is an indicator function and

evom,(C) = 71 ©) (RMOM,t —a(C) - 50 () i/IKT,t - 6" (C) max (Ri/IKT,tP 0)) (A.3)
OMOM
eMOM,t<T) = ! (T) (RMOM,t -« (T) - BO (T) K/IKT,t - 6+ (T) max (RK/IKT,tv O)) (A4)
OMOM
1 €
emxt,(C) = ot (O) ( MKT,t — M (C)) (A.5)
1 €
BMKT,t(T) = 70'MKT (T) ( MKT,t — M (T)) . (A.6)

If we could observe the hidden states, exjom: and emxr, could be constructed from the
observed momentum strategy returns and market excess returns. However, since I(S; = ()
and I(S; = T') are not observed, we cannot construct a consistent estimator of eyjonm; and
emir,e in (A1) and (A.2).

We therefore define pseudo residuals — the probability weighted averages of sample counter
parts of eyom(C), emom(T), emxr(C) and enkr (1), in (A.3), (A.4), (A.5) and (A.6) —

as follows:

é\MOM,t = Pr(St = C|~Ft—1)é\MOM,t(C) (St T‘E 1)€MOM t(T) (A~7)
gMKT,t = PI"(St = C|-7:t71)/€\MKT,t(C) + Pr(St = T|]:t71)€MKT,t(T) (A~8)

by replacing the state indicator functions of I(S; = C) and I(S; = T') with the inferred
probabilities of Pr(S; = C|F;_1) and Pr(S; = T|F;_1), respectively, and using QML esti-
mates for our HMM of & (C), @ (T), 5°(C),5°(T), B+ (C), B (T), Griom (C) , Griom (),
1 (C), (1), oukr (C), onxr (1):

N 1 S .

Puion(C) = 2o (Bvows = 8 (C) = B (C) Rier, = B (€) max (R, 0))
(A.9)

N 1 IS R

emom(T) = o (1) (RMOM,t —a(T)— " (T) Ry, — B (T) max (R, )
(A.10)

. 1 . .

GMKT,t(C) = m (RMKT,t — K (C)) (A11)

N 1 . .

evomi(1T) = =—— ( MKT,t — M (T)) . (A.12)

omom (1)

iii



Note that the pseudo residuals of Eyiom; and vkt will in general not normally dis-
tributed even when the true residuals are normally distributed and we replace the estimated
emom.t(C), enmom(T), emxr(C), and eyon(T) in (A.9) - (A.12) with the population coun-
terparts eyom(C), emom(T), emxr(C), and eyxr+(T) in (A.3) - (A.6) due to the unob-
servability of the hidden state .S;.

Substituting eyom(C), emom+(T), emxr(C), and eykr4(7) in the RHS of (A.7) and
(A.8) with the expressions of (A.9) - (A.12) and rearranging terms, we get

~ _ At—1 1-X¢—1 [ —10(0) (1-=X¢e—1)a(T)
EMOMt = (5MOM(C) t 3M0M(T)> Raom,e (?TMOM(C) T amom(T) )

_ (At—lgo(c) + (17)\7571)30(,11)) -

avom(0) amoM(T)

. (xt,ma) N <1w4>3+<T>) max (R§gr,, 0) .

amom(C) amom(T)

~ _ At—1 1-Ae—1 e [ Ae—188(0) (I=X—1)E(T)
EMKT,t = (31\/[1('1“(0) + EMkT(T)) RMkT,t (GMKT(C) + ovkT(T) ) ’

where \;_y = Pr(S; = C|F_1). We will examine whether the empirical distribution of
Emon and Eyxr¢ constructed from estimated HMM parameters and observed momentum
strategy returns and market excess returns matches its’ analogue constructed from Monte
Carlo simulation where Ryion,: and Ry, are generated by our HMM model in (2), (3), and
(4) when true residuals of eyjom and ey, are drawn from normal or Student-t (d.f.=5)
distribution.

Monte Carlo simulation is performed as follows. First, we take the estimated parameters
of our HMM model in Table 5 as given and generate the time series of moment strategy
returns and market excess returns of length of 1044 months (the number of months during
1927:01-2013:12 in our sample) with a distributional assumption. Second, using this time
series, we re-estimate our HMM parameters, construct the time series of Pr(S; = C|F;_1)
and Pr(S; = T|F;—1), and obtain the simulated time series of Eyioms and Eykr, defined in
(A.7) and (A.8). Finally, we compute the first four moments of Eyiom and Eyir . We then
repeat this exercise 10,000 times and generate the sampling distribution of four moments of
Emon ¢t and Eyxry, summarized in Table 6. Panel A (B) of Table 6 reports the results using
normal distribution (Student-t distribution with d.f.=5). First three moments of Eyion .+
lie within 95% confidence region for the corresponding moments obtained by Monte Carlo

simulation using normal distribution while the kurtosis of Eyion ¢ lies just to the left of the
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95% interval with p-value 4%. In contrast, if we use Student-t (d.f.=5) distribution, the
standard deviation and kurtosis of Eyionm, fall outside of 99% confidence interval. Hence, the
empirical behavior of Eyom; fits better with normal distribution. Regarding the behavior
of vk, both distributions fits well to the data, while the standard deviation of &yt is
slightly off the 95% confidence interval from the simulated distribution of using Student-t
distribution. In summary, we find that the diagnosis using pseudo residuals supports that
the residuals in our HMM model are close to normal distribution.

Another diagnostic is to compare the empirical moments of momentum strategy returns
and market excess returns with our HMM-implied moments for various combination of nor-
mal and Student-t distributions for residuals. Details are given in Appendix B. We find that
normally distributed residuals for momentum strategy returns and Student-t distributed
residuals for market excess returns help match the empirical moments. We treat QML es-
timates obtained with this distributional assumption as a distinct alternative specification

when we compare models later.

A.1 Inconsistency of QML

In this paper, we estimate the parameters for our HMM specification under the assumption
that shocks are drawn from ¢.7.d. normal distributions. We showed that the estimates are
reasonably well behaved even when shocks are drawn from Student-¢ distributions, even
though the parameters are estimated under the normality assumption, i.e., our estimates are
Quasi-Maximum Likelihood (QML). Wooldridge (1999) provides sufficient conditions for the
consistency and asymptotic normality of QML estimators. These conditions are not satisfied
in our case. Below, we provide an example where the HMM return generating process
innovations are drawn from a non-normal distribution and the resulting QML estimator—
obtained by maximizing the misspecified normal likelihood—gives an asymptotically biased
(inconsistent) estimate of the true parameter value.

Suppose R; follows the process given below:
Rt =0 (St) Et, (Al?))

where o (S;) is either oy or oy, depending on the realization of hidden state of S; which is

either H or L. The transition probability matrix that determines the evolution of the hidden



state S; is given by

= Pr(St = H’St—l = H) Pr(St = L’St—l = H) :| _ |: P 1 —p :|

_ A4
Pr(S, = H|S, 1 = L) Pr(S = LIS, — L) 1—p (A-14)

An econometrician observes the time series of {R;}{_; but not the underlying state. The
parameters p and op, are known. The econometrician estimates the unknown parameter oy
by QML, that is by assuming that ¢; is drawn from the standard normal distribution, whereas

g is either 1 or -1 with equal probability. In what follows, we show that when
opg= 1500 =1, and p = 0.52, (A.15)

the QML estimator of oy is inconsistent.

The misspecified normal log likelihood of {R;}L; is given by

T > log (L (Ry)), (A.16)
t=1
where
L(Re) = Mo19 (Relon) + (1 = A1) ¢(Relon), (A.17)
o (x)|o) = m}ﬂ exp <—%) is the density function of N (0,0?), and )\, ; is the probability
for S; = H given the information set F;,_; = {R1, Ra, -+, Ri_1} when the econometrician

uses the (incorrect) normal density for inference. When the true likelihood is used, let A} ;
denote the probability of S; = H given F;_;. Since S; is hidden, both A;_; and A\;_; are
weighted averages of p and 1 — p and the following should be satisfied:

l—p< AN, N; <p (A.18)

for every F;_1.
The QML estimate oy is obtained by maximizing (A.16), giving rise to the first order
condition:

1 < dlog (£ (Ry))
?Z aCTH

t=1

low=on = 0 (A.19)
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If oy converges to oy, the true value of oy, the following should hold:

E|E [Wu” =0 (A.20)

aO'H

We show the inconsistency of oy by verifying that (A.20) cannot hold. When oy =
ol there exists 6 > 0 such that E [%Tt))|ﬂ_1} < —¢ for every F;_1, implying that
E [E [mog(gf,itw))\ﬂq” < —§.

Hereafter, we will evaluate the conditional expectation at oy = oly. From (A.17), note

that E [Mﬂ" } is decomposed as follows:

dlog (L (Ry)) A1 09 (Ri|on)
[ty | _ st
+ Elo(Rilow) = 6 (Rlow) (il S8 (A1)

To determine the sign of each component in RHS of (A.21), we need the conditional distri-
bution of R;. Since A;_; is the true probability of S; = H given F;_; and &; in (A.13) is

drawn from a binomial distribution of 1 or -1 with equal probability, the probability mass of
A:—l 1- At 1 1- )‘t 1 ASL‘—l)

R, over (—oy, —oy, 01, 01) equals( S, e,

First, we determine the sign of E [ )\tR,j) (%(Rtwm | Fi— } From the properties of the normal
density, it follows that 2 I‘ = ¢(z|o) (—; + ;) and ¢(—z|o) = ¢(x|o). Hence
)\t—l 8(;5 (Rt|O'H) )\:_1 )\t—l 1 R?
E _ = R S W 2
L doy [Fia 2 L (Rt)¢( tlo) on * o
Ri=—on,on
=X, VI 1 R?
+ (Rylon) (| —— + —
2 [ L (Ry) t on oy
(1= Ay) A 1 o
= Sy et (g
2 _ 2
¢(oLloL) ot

where the last inequality is from (A.18) and L(o1) < ¢(o|oL).

Next, from the property, ¢(—z|o) = ¢(z|o), and the fact that ¢ (z|o) = o\}ﬁ exp (—%) ,
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the sign of E [¢ (Ri|on) — ¢ (Ri|ov) | Fi—1] is determined as follows:

E (¢ (Rilon) — ¢ (Rilov) | Fi-1]

= 2 S (Bl o (Rlo) + T T (6 (Ridow) — 6 (Rilow)
= N1 (¢ (oulon) — ¢ (oulon)) + (1= A,) (¢ (ovlou) — ¢ (orov))
> (1=p)(¢(oulon) — ¢ (oulor)) + p (¢ (orlon) — ¢ (or|or)) > 0, (A.23)

where the last two inequalities can be verified by (A.18) and the given parameter values of
(A.15).

Finally, we show that i1

o = 0 by induction. We assume that Ay is determined as

the steady state distribution determined by (A.14). Since Ay does not depend on oy, the
following holds:

0o

Next, we show that % < 0 implies 22£ < 0. Note that the process of {\;}{_, is constructed
H OH

by the following recursion:

X _ >\t71¢(Rt|0’H)
" NC10 (Relon) + (1= Nor) ¢ (Rilon)’

(A.25)

and
A =ph+ (1 —p) (1 - Xt) . (A.26)

Equation (A.25) describes how the econometrician updates the probability on the hidden
state of S; using the misspecified normal likelihood after observing R;. Equation (A.26)
shows how the econometrician predicts the hidden state of S;;; with the given information

set F; through the transition matrix given in (A.14). Combining (A.25) and (A.26), we get

At +p -1 _ )\t—1¢ (Rt’(TH) (A 27)
2p—1 A—1¢ (Relon) + (1 — X—1) ¢ (Relon) .
Taking the derivative of (A.27) with respect to oy, we obtain the following:
At 10(Re|ow) AG(Ri|om)
1 0N 5 @m0 0ole) N1 Ol 0N el 09 (RtIUH)(AQg)

2p— 100y ON_1 ooy 06 (Ry|on) Ooy
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To determine the sign of each component in RHS of (A.28), we use the following properties:

a)\er)sz)\)n _ mn >0 (A 29)
OA (Am 4 (1 = A\)n)? .
ML) ML= Mn >0 (A.30)

dm (Am+ (1 —=X)n)

for m,n > 0 and A € (0, 1). Further, using the properties of % = ¢(x|o) <—§ + ﬁ%) and
¢ (z|o) = ¢ (—x|o), we have that

2
200ulon) (o) (—Ul+ ZI;) 0

H H H

9¢ (ovlon) 1 a
80‘H = qb(O'L‘O'H) _O'H + o_% < 0,

implying
99 (Ri|ow) <0 (A.31)
60H

for every possible realization of R; from {—oy, —op,o0p,0n}. With the assumption that

%: < 0, inequalities of (A.29), (A.30), and (A.31) ensure that RHS of (A.28) is non-
positive. Hence, with p > 1/2 as assumed in (A.15), it follows that % < 0. Combining
(A.24) with this finding, we conclude that

ON—1

80H

<0, (A.32)

for every possible information set of F;_.
Recall that we want to show that (A.21) is strictly negative. Finally, combining (A.22),
(A.23), and (A.31), we conclude that

. [Glog (E(Rt!o—H))|ft1] < s (A.33)
80’H
where
2 Plonlon) (UIQ{ ~ UE)
0=(1-p) é(or|on.) o >0, (854

completing the proof that QML estimate of oy in (A.19) will not converge to the true

parameter value.
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Appendix B Explaining the moments of the momen-
tum strategy returns

In this appendix, we examine the extent to which we can match the unconditional sample
moments of momentum strategy returns and market excess returns based on the HMM
return generating process. For this purpose, we consider the following distributions for the
pair of (eyoms, emkre): (Normal, Normal), (Student-t, Student-t), (Normal, Student-t),
and (Student-t, Normal). We assume that the QML estimates of HMM parameters in Table
5 are the true parameters.

We generate a 1044 month-long time series of momentum strategy and market excess
returns based using monte carlo simulation and obtain their first four moments. We then
repeat this exercise 10,000 times to obtain the distribution of the first four momentums.Table
B.3 summarize the distribution of first four moments of momentum strategy returns and
market excess return obtained in this way for the four sets of distributions. Panel A of Table
B.3 gives the result for normal (epowm) and normal (eykr:). We find that the skewness
(-2.43) and kurtosis (21.22) of momentum strategy returns, over our sample period 1044
months (1927:01-2013:12), fall outside of the 99% confidence interval of our HMM-implied
moments obtained by simulation. However, once we use Student-t (d.f.=5) distribution for
eMKT,t, those sample moments lie within the 95% confidence interval of our HMM-implied
moments, as shown in Panel C of Table B.3. If we use Student-t for both enjon,: and evkr
those sample moments lie within 95% confidence intervals of our HMM-implied moments.
However, the intervals becomes too wide. When we compare Panel B with Panel C, the 95%
confidence intervals of skewness and kurtosis of momentum strategy returns are (-2.85,0.77)
and (7.98,43.38) when eyom: has Student-t distribution which are much wider than the
corresponding 95% confidence intervals of (-2.63,0.01) and (6.69,29.77) when eyowm, has a
normal distribution.

Motivated by this finding, we estimate the HMM parameters assuming that enon is
drawn from a normal distribution and eykr, is drawn from a Student-t (d.f.=5) distribu-
tion. Results are reported in Table B.4. We find that the point estimates in Table B.4 are
reasonably close to those in Table 5. This is consistent with our findings, reported earlier,

that the QML estimates obtained by maximizing the wrong normal likelihood are reasonably



robust.
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Table B.1: SENSITIVITY OF HMM QML ESTIMATES TO DEVIATIONS FROM NORMALITY

Given the estimated parameters in Table 5 as true parameters, we generate momentum
returns and market excess returns by simulation using the return generating equations (2),
(3), and (4) when the residuals in the equations drawn from an i.i.d. bivariate Student-t
distribution with the d.f. (degrees of freedom) 10 and 5. Given the simulated sample over
1044 months, we estimate the parameters using quasi maximum likelihood, maximizing the
likelihood when residuals are drawn from an i.i.d. bivariate normal distribution. By repeating
this exercise 1,000 times, we construct the sampling distribution of estimated parameters,
the properties of which are reported in this table. Pr(-|-) represents the probability for
the same underlying state to be realized, Pr (S;=s;_1]S;-1=5;-1). @, omom, and oygr are
reported in percentage per month.

HIDDEN STATE

Sy = Calm(C) Sy = Turbulent(7")

PARA- QUANTILE QUANTILE

METER TRUE MEAN 10% 50% 90% TRUE MEAN 10% 50% 90%

PANEL A: WHEN THE TRUE DISTRIBUTION IS STUDENT-T WITH D.F.=10

o 2.12 211 1.78 2.11 2.45 4.30 4.25 2777 4.25 2.77
A0 0.37 0.36 0.22 0.36 0.49 -0.20 -0.19 -0.38 -0.19 0.00
Bt —-0.54 —-0.52 -0.73 —-0.52 —-0.34 —1.25 —-1.22 —-1.56 -1.23 —0.88
OMOM 4.22 4.08 391 4.08 4.26 11.59 11.68 10.85 11.67 12.57
I 1.00 1.00 0.82 1.00 1.17 —-049 —-046 —-1.20 -0.45 0.30
OMKT 3.60 349 3.34 3.49 3.64 8.94 8.99 8.32 8.98 9.69
Pr (") 0.96 0.95 094 0.95 0.96 0.88 0.85 0.81 0.85 0.89
PANEL B: WHEN THE TRUE DISTRIBUTION IS STUDENT-T WITH D.F.=5
o 2.12 2.13 1.82 2.14 2.41 4.30 4.14 258 4.15 5.79
S0 0.37 0.35 0.22 0.35 0.49 -0.20 —-0.15 —-0.34 -0.16 0.04
B -0.54 -0.53 -0.72 —-0.53 —0.33 -1.25 -1.15 -1.51 -1.15 —-0.80
OMOM 4.22 3.79  3.58 3.79 3.98 1159 12.04 10.82 11.90 13.22
I 1.00 0.99 0.83 0.99 1.15 -049 -0.38 —-1.16 -0.35 0.37
OMKT 3.60 3.24  3.07 3.24 3.42 8.94 9.16 8.23 9.10 10.09

Pr (") 0.96 0.93 091 0.93 0.95 0.88 0.78 0.71  0.79 0.85
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Table B.2: PROPERTIES OF Pr(S; = T'|F;—1) CONSTRUCTED USING MISSPECIFIED (NOR-
MAL) LIKELIHOOD

We examine the sensitivity of the ranking of Pr(S; = T'|F;_1) constructed using misspec-
ified (normal) likelihood, where the joint process of the momentum strategy returns and
the market excess returns follow the hidden Markov model with the parameters in Ta-
ble 5 and residuals are drawn from t-distribution with d.f. (degree of freedom) 10 and 5.
Specifically, we simulate the joint process of momentum strategy returns and market excess
returns over 50,000 months and compute the tail risk measure Pr(S; = T|F,_;) for each
of simulated 50,000 months using the true likelihood (t-distribution) function and the mis-
specified likelihood (normal distribution) function. This table gives 3 (Low,Med,High) by
3 (Low,Med,High) matrix, summarizing the joint distribution of Pr(S; = T|F;_;) inferred
through the true likelihood (t-distribution) function and the misspecified likelihood (normal
distribution) function. We classify a month as Low (High) group if the inferred probability
of Pr(S; = T|F;_1) is below 30% (above 70%). Months with the inferred probability between
30% and 70% are classified as Med group. Number are reported in percentage.

Misspecified | True Likelihood Misspecified | True Likelihood
Likelihood of Student-t Likelihood of Student-t
of normal with d.f. 10 of normal with d.f. 5

| Low Med High | Low Med High

Low 73.8 00 08 Low 72.7 00 2.2

Med 0.0 153 0.8 Med 0.3 139 1.2

High 09 05 78 High 1.5 14 6.9
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Table B.4: QuAst MAXIMUM LIKELIHOOD ESTIMATES OF HMM PARAMETERS WHEN
emom,: HAS A NORMAL DISTRIBUTION AND eykr: HAS A STUDENT-T (D.F.=5) DISTRI-
BUTION

We maximize the likelihood of data with the assumption that eyom: in (2) has a Normal
distribution and eyt in (3) has a Student-t (d.f=5) distribution. The parameters are
estimated using data for the period 1927:01-2013:12. «, omowm, and omkr are reported in
percentage per month.

HIDDEN STATE

Sy = Calm(C) Sy = Turbulent(7T')
PARAMETER ESTIMATES (T-STAT) ESTIMATES (T-STAT)
a (%) 1.95 (6.87) 4.05 (3.31)
30 0.34 (3.43) —0.32 (—1.11)
Bt —0.46 (—2.57) ~1.14 (—3.51)
ovom (%) 4.31 (5.11) 11.02 (14.19)
] 1.11 (8.76) —0.38 (—0.59)
ouxr (%) 4.04 (12.92) 8.36 (5.46)
Pr(S;=5,_1]S;-1=5,_1) 0.98 (3.21) 0.94 (4.16)
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Appendix C Additional Tables

Table C.5: OPTION-LIKE FEATURE OF MOMENTUM RETURNS AND MARKET CONDI-
TIONS

We partition the months in our sample into three groups: ‘High’ group is made up of months
when variable describing the market conditions (past market returns, realized volatility of
the market, or leverage of loser portfolio stocks) was in the top 20th percentile and the ‘Low’
group corresponds to months when the market condition variable was in the bottom 20th
percentile. The rest of the months are classified as ‘Medium’. For Panel A, the sample
period is 1929:07-2013:12. For Panel B and C, the sample period is 1927:07-2013:12. In
Panel A, we group the sample on the basis of cumulative market return during the 36
months preceding the month in which the momentum portfolios are formed. In Panel B, we
group the months based on the realized volatility of daily market returns over the previous
12 months. In Panel C, we use the breakpoints of the loser portfolio for grouping. We then
pool the months within each group and analyze the behavior of momentum strategy returns.
Specifically, we estimate equation (1) with ordinary least squares using momentum strategy
returns (Ryowm) and the returns of winner and loser portfolio in excess of risk free return
(R{yx and Rf o) as LHS variables and report results in Panel A-1-1, B-1-1, and C-1-1. For
comparison, we report the estimates for the CAPM, without the exposure to the call option
on the market in (1), in Panel A-1-11, B-1-11, and C-1-11. Then, we count the numbers of
large momentum losses worse than negative 20% within the groups and report those in Panel
A-2, B-2, and C-2. Finally, we compare the skewness of Ry, with that of estimated ¢ of (1)
in Panel A-3, B-3, and C-3. « is reported in percentage per month. The t-statistics are
computed using the heteroscedasticity-consistent covariance estimator by White (1980).

Continued on next page
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Table C.5 — continued from previous page

PANEL B: PAsT 12 MONTHS REALIZED VOLATILITY OF MARKET RETURNS

\ HicH \ MEDIUM \ Low
LHS ‘ Rmowm R%VIN Rios ‘ Rmowm R%VIN Rfos ‘ Ryowm R%VIN Rfos
B-1: OPTION-LIKE FEATURES
B-1-1: HENRIKSSON-MERTON ESTIMATES
« 2.90 1.07 -1.83 1.93 0.77 -1.16 2.40 1.38 -1.02
t(a) (2.96) (2.71) (-2.58) | (5.73) (4.05) (-5.01) | (4.55) (4.21)  (-2.98)
B0 -0.59 0.94 1.52 0.16 1.35 1.19 0.54 1.55 1.02
t(8°) (-4.83) (13.78) (17.78) | (1.72) (25.36) (18.24) | (3.00) (14.91) (8.23)
Bt -0.91 -0.27 0.63 -0.25 -0.19 0.06 -0.63 -0.46 0.17
t(B8T) (-3.23) (-2.14) (3.39) | (-1.38) (-1.93) (0.51) | (-1.92) (-2.39) (0.79)
Adj.R%(%) 0.49 0.74 0.83 0.00 0.78 0.68 0.03 0.73 0.57
B-1-11: CAPM ESTIMATES
« 0.12 0.23 0.11 1.48 0.43 -1.04 1.58 0.78 -0.80
t(a) (0.18) (0.82) (0.20) (6.69) (3.58) (-6.96) | (4.87) (4.16)  (-3.56)
B8 -1.10 0.78 1.88 0.05 1.27 1.22 0.19 1.30 1.11
t(B) (-8.43) (14.68) (21.61) | (0.78) (41.31) (29.99) | (1.83) (23.47) (15.56)
Adj.R? 0.45 0.73 0.82 0.00 0.78 0.68 0.01 0.72 0.57
B-2: NUMBER OF MOMENTUM LOSSES WORSE THAN -20%
\ 13 \ 0 \ 0
B-3: CONDITIONAL SKEWNESS
LHS -1.88 -0.21 1.42 -0.17 -0.65 -0.23 0.00 -0.13 0.16
e -0.62 -0.86 0.70 -0.11 0.33 0.41 -0.01 0.59 0.48
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Table C.5 — continued from previous page

PANEL C: BREAKPOINTS OF LOSER PORTFOLIO

| Low MEDIUM HicH
LHS ‘ Ryviom R\CNIN Rfos ‘ Ryom R%VIN Rfos ‘ Ryom R%VIN Rfos
C-1: OPTION-LIKE FEATURES
C-1-1: HENRIKSSON-MERTON ESTIMATES
«@ 2.67 0.96 -1.71 2.79 1.21 -1.58 0.81 0.32 -0.50
t(a) (2.67) (2.35)  (-2.38) | (5.82) (6.23)  (-4.50) | (1.40) (0.84)  (-1.51)
B -0.65 0.91 1.56 0.22 1.39 1.17 0.52 1.48 0.96
t(8°) (-5.46) (14.09) (17.98) | (1.83) (25.31) (13.89) | (2.96) (10.89) (13.27)
Bt -0.92 -0.29 0.63 -0.61 -0.35 0.26 -0.14 -0.09 0.05
t(8") (-3.31)  (-2.37)  (3.34) | (-2.07) (-3.18) (1.23) | (-0.42) (-0.44) (0.27)
Adj.R? 0.50 0.70 0.83 0.03 0.80 0.67 0.16 0.81 0.75
C-1-11: CAPM ESTIMATES
« -0.07 0.10 0.16 1.76 0.62 -1.14 0.57 0.17 -0.40
t(a) (-0.09)  (0.33) (0.31) (8.50) (5.77)  (-7.58) | (1.86) (0.76)  (-2.50)
B8 -1.15 0.75 1.91 -0.08 1.22 1.30 0.45 1.43 0.98
t(B) (-9.05) (14.61) (22.14) | (-0.95) (34.29) (20.93) | (4.67) (25.29) (16.17)
Adj.R? 0.47 0.69 0.82 0.00 0.79 0.67 0.17 0.81 0.75
C-2: NUMBER OF MOMENTUM LOSSES WORSE THAN -20%
\ 12 1 0
(C-3: CONDITIONAL SKEWNESS

LHS -1.70 -0.02 1.44 -1.21 -0.73 0.50 0.04 -0.51 0.07
5 -0.39 0.06 0.75 -0.72 -0.05 0.69 -0.09 0.31 0.70
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