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1 Introduction

Relative strength strategies, also known as price momentum strategies, have been and con-

tinue to be popular among traders. Quantitative strategies used by active money managers

often rely on some form of momentum.1 Even those who use fundamental analysis appear to

incorporate momentum into their trading decisions.2

Price momentum in stocks can be described as the tendency of those stocks with the

highest (lowest) past return to subsequently outperform (under-perform) the broader market.

Price momentum strategies exploit this pattern by taking a long position in past winners and

an equal short position in past losers. These strategies produce high abnormal returns on

average, but also generate infrequent and large losses.

Over our sample period of July 1929 through December 2010, our baseline momentum

strategy produces monthly excess returns with a mean of 1.12%, a standard deviation of 8%,

and with little systematic risk as measured by the standard CAPM or the Fama and French

(1993) three factor model: the estimated CAPM α of the strategy is 1.44%/month, and the

Fama and French (1993) three factor α is 1.70%/month. The maximum attainable sample

monthly Sharpe Ratio increases from 0.15 for a portfolio of the three Fama and French (1993)

factors to 0.28 when the three factors are augmented with the momentum strategy.

However, the momentum strategy returns have an empirical distribution that is both

highly left skewed and significantly leptokurtic. There are thirteen months with losses ex-

ceeding 20%. In its worst month the strategy experiences a loss of 79%. Were momentum

returns generated from an i.i.d. normal distribution with mean and variance equal to their

sample counterparts, the probability of realizing a loss of more than 20% in thirteen or more

months would be 0.04%, and the probability of incurring a loss of 79% or worse would be

9.95×10−24.

The pronounced leptokurtosis of the empirical distribution of momentum strategy returns

suggests that these returns may be drawn from a mixture of normal distributions. We there-

fore develop a two state Hidden Markov Model (HMM) – a variant of the regime switching

1See Swaminathan (2010), who further estimates that about one-sixth of the assets under management by
active portfolio managers in the U.S. large cap space is managed using quantitative strategies.

2Jegadeesh and Titman (1993) motivate their study of price momentum by noting that: “. . . a majority of
the mutual funds examined by Grinblatt and Titman (1989; 1993) show a tendency to buy stocks that have
increased in price over the previous quarter.”
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model of Hamilton (1989) – in which the hidden state can be “calm”or “turbulent.” The

states are persistent: successive months are more likely to be in the same state. Also, as we

shall show momentarily, the joint distribution of the momentum-strategy and stock-market

excess returns differs significantly across the two states, facilitating our estimation of the

HMM parameters. As we shall show, the HMM model we propose is generally consistent

with the time series of momentum returns: when returns are generated by our switching

model, the probability of realizing a loss of more than 20% in 13 or more months in a sample

of 978 months increases from 0.04% to 90%. The probability of incurring a loss of more than

79% increases from 9.95× 10−24 to 0.02%.

The time variation in joint distribution of momentum and market returns has been dis-

cussed in the literature from a number of perspectives: Kothari and Shanken (1992) and

Grundy and Martin (2001) observe that the market beta of momentum strategy returns

is a function of past market returns. Rouwenhorst (1998) uncovers a nonlinearity in the

momentum-market return relationship using methods suggested by Henriksson and Merton

(1981). Boguth, Carlson, Fisher, and Simutin (2011) evaluate potential biases in estimating

the momentum strategy alpha that may arise due to this nonlinearity. Daniel and Moskowitz

(2011) observe that momentum strategies incur severe losses when the stock market recovers

sharply following severe declines, and note the relationship between this nonlinearity and

past market returns and volatility.

These empirical findings suggest that the sensitivity of momentum returns to stock market

excess return – that is the beta of momentum returns – depends both on past realizations of

market excess returns, and on the contemporaneous market excess return and its volatility.

Typically, severe market declines and sharp recoveries occur during volatile market conditions,

and high volatility periods tend to cluster together and persist. That suggests that the joint

distribution of momentum and stock market returns depend on whether the market is volatile

or calm. This leads us to use a HMM to describe the joint behavior of momentum and market

returns. In our HMM specification, the joint distribution of momentum return and stock

market return depends on the hidden state. This parsimonious HMM specification performs

better than the other specifications we consider in predicting when large losses are more likely.

Based on this HMM specification, we infer the hidden state of the economy by observing

changes in the relationship between momentum returns and market excess returns. Consistent
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with the extant findings in the literature, we find that when the hidden state is “turbulent,”

momentum strategy returns have both a strongly negative beta and the characteristics of a

written call on the stock market index. These two features in particular allow us to accurately

assess the hidden state.

Our estimation reveals that the distribution from which returns are drawn is more volatile

when the market is in the unobserved turbulent state. We find that all the thirteen months

with losses exceeding 20% occur during one of the 199 turbulent months when the probability

of the market being in the turbulent state exceeds 50%. The probability of observing a loss of

20% or more in thirteen of 199 turbulent months is 60% 3and the large momentum strategy

losses become less black swan-like.

A GARCH model of time varying volatility is not as successful as the hidden regime

switching models in identifying time periods when large losses are more likely to occur. Our

findings are consistent with Ang and Timmerman (2011) who argue in favor of using regime

switching models to capture abrupt changes in the statistical properties of financial market

variables.

We find that the monthly Sharpe Ratio of momentum returns in months with a predicted

probability of being in the turbulent state exceeding 50% is -0.03. When those months are

avoided the monthly Sharpe Ratio becomes 0.30, more than twice that for all the months.

Momentum becomes more of an anomaly4, especially since the HMM based out of sample

forecasts are about as good or better.

The rest of the paper is organized as follows. We provide a brief review of related literature

in Section 2. We develop the econometric specifications of the HMM for characterizing

momentum returns in Section 3. We discuss the empirical findings in Section 4 and examine

alternative specifications in Section 5. We conclude in Section 6.

2 Related Literature

Levy (1967) was among the first academic articles to document the profitability of stock price

3Based on 1,000,000 simulations of 199 months each using estimated model parameters and realized prob-
abilities of the unobserved underlying state being turbulent

4As Hansen and Jagannathan (1991) observe, the high Sharpe Ratio portfolios pose a challenge to standard
asset pricing models.

4



momentum strategies. However, Jensen (1967) raised several issues with the methodology

employed by Levy (1967). Perhaps as a consequence, momentum received little attention

in the academic literature until Jegadeesh and Titman (1993), whose long-short portfolio

approach has proven rigorous and replicable. A number of studies have subsequently con-

firmed the Jegadeesh and Titman (1993) findings using data from markets in a number of

countries (Rouwenhorst, 1998), and in a number of asset classes (Asness, Moskowitz, and

Pedersen, 2008). As Fama and French (2008) observe, the “abnormal returns” associated

with momentum are “pervasive.”

Korajczyk and Sadka (2004) show that historical momentum profits remain positive after

accounting for transaction costs. Chabot, Ghysels, and Jagannathan (2009) find that mo-

mentum strategies earned anomalous returns even during the Victorian era with very similar

statistical properties, except for the January reversal, presumably because capital gains were

not taxed in that period. Interestingly, they also find that momentum returns exhibited

negative episodes once every 1.4 years with an average duration of 3.8 months per episode.

The additional literature on momentum strategies is vast, and can be grouped into three

categories: (a) documentation of the momentum phenomenon across countries and asset

classes (b) characterization of the statistical properties of momentum returns, both in the

time-series and cross-section and (c) theoretical explanations for the momentum phenomenon.

We make a contribution to (b). In what follows we provide review of only a few relevant arti-

cles that characterize the statistical properties of momentum returns, and refer the interested

reader to the comprehensive survey of the momentum literature by Jegadeesh and Titman

(2005).

Our work is directly related to several other papers in the literature. First, a number of

authors, going back to Jegadeesh and Titman (1993), have noted that momentum strategies

can experience severe losses over extended periods. In particular, Griffin, Ji, and Martin

(2003) document that there are often periods of several months when momentum returns are

negative.

In addition, a large number of papers have explored the time-varying nature of the risk of

momentum strategies. Kothari and Shanken (1992) note that, for portfolios formed on the

basis of past returns, the betas will be a function of past market returns. Using this intuition,

Grundy and Martin (2001) show that beta of momentum returns become negative when the
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stock market has performed poorly in the past. Rouwenhorst (1998) documents that momen-

tum returns are nonlinearly related to contemporaneous market returns – specifically that

the up market beta is less than their down market beta.5 Daniel and Moskowitz (2011) find

that this non-linearity is present only following market losses. Building on Cooper, Gutierrez,

and Hameed (2004), who show that the expected returns associated with momentum prof-

its depends on the state of the stock market, Daniel and Moskowitz (2011) also show even

after controlling for the dynamic risk of momentum strategies, average momentum returns

are lower following market losses, and when market volatility is high. They find evidence of

these features not only in US equities, but also internationally, and in momentum strategies

applied to commodity, currency, and country equity markets. Finally, they show that the

factors combine to result in large momentum strategy losses in periods when the market

recovers sharply following steep losses.6

3 Data and Econometric Specifications

3.1 Data

Price momentum strategies using stocks have been be constructed using variety of metrics.

For this study we utilize the (12-2) momentum strategy decile portfolio returns available at

Ken French’s Data Library.7 These portfolios are formed at the beginning of month t by

ranking each stock based its cumulative return over the 11 month period from month t−12

5To our knowledge, Chan (1988) and DeBondt and Thaler (1987) first document that the market beta of
a long-short winner-minus-loser portfolio is non-linearly related to the market return, though DeBondt and
Thaler (1987) do their analysis on the returns of longer-term winners and losers as opposed to the shorter-term
winners and losers we examine here. Rouwenhorst (1998) demonstrates the same non-linearity is present for
long-short momentum portfolios in non-US markets. Finally Boguth, Carlson, Fisher, and Simutin (2011),
building on the results of Jagannathan and Korajczyk (1986) and Glosten and Jagannathan. (1994) note that
the interpretation of the measures of abnormal performance in Chan (1988), Grundy and Martin (2001) and
Rouwenhorst (1998) is problematic.

6Ambasta and Ben Dor (2010) observe a similar pattern for Barclay’s Alternative Replicator return that
mimics the return on a broad hedge fund index. They find that when the hedge fund index recovers sharply
from severe losses the replicator substantially under-performs the index. Also, Elavia and Kim (2011) em-
phasize the need for modeling changing risk for understanding the recent weak performance of quantitative
equity investment managers who had over two decades of good performance.

7http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html The specific momentum decile
portfolios we use are those designated by “10 Portfolios Prior 12 2.” Data for the CRSP value-weighted
market return and the risk-free rate is also taken from this data library.
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Table 1: Sample Moments of Momentum and Market Excess Returns

This table presents estimates of the first four moments of the monthly return distribution
for ‘mom’, the zero-investment momentum portfolio used in the study, and for the CRSP
value weighted stock portfolio net of the risk-free rate, RM (= rM−rf ). The sample period
is 1929:07-2010:12.

Mean Std.Dev Skewness Kurtosis
Rmom 1.12% 8.03% -2.47 21.03
RM 0.57% 5.50% 0.18 10.48

through month t−2.8 The decile portfolio returns are the market-capitalization weighted

portfolio of the stocks in that past return decile. Most of our analysis will concentrate on

the zero-investment portfolio which is long the top past-return decile, and short the bottom

decile. The long-short returns are defined as the difference between the top and bottom decile

returns.

3.2 Characteristics of Momentum Returns

3.2.1 Descriptive Statistics

Table 1 presents estimates of the moments of the monthly momentum strategy returns, and of

the CRSP value-weighted portfolio return, net of the risk-free rate. The monthly momentum

strategy returns averages 1.12% per month over this 978 month period, with a monthly

Sharpe Ratio of 0.14. In contrast, the realized Sharpe ratio of the market over this period is

only 0.10. Moreover, the alpha of momentum strategy is 1.70% per month with respect to

the Fama and French (1993) three factor model. When the three Fama and French factors

are combined with the momentum portfolio, the maximum achievable Sharpe Ratio rises to

0.28. Note that this is also considerably higher than the maximum Sharpe Ratio achievable

with only three Fama French factors, 0.15.

While the momentum strategy has a higher in-sample Sharpe Ratio than the stock index

portfolio, Table 1 shows that it exhibits strong excessive kurtosis and negative skewness. The

excess kurtosis is also evident from the infrequent but very large losses to the momentum

8Skipping one month after the return measurement period is done both to be consistent with the momen-
tum literature, and so as to minimize market microstructure effects and to avoid the short-horizon reversal
effects documented in Jegadeesh (1990) and Lehmann (1990).
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strategy during the 978 months in the sample period. Given the low unconditional volatility

of the momentum strategy, if returns were normal the probability of observing a month with

a loss exceeding 42% in a sample of 978 months would be one in 25,000, and the probability

of seeing five or more months with losses exceeding 42% would be almost zero. Yet the lowest

five monthly returns in the sample are: -79%, -60%, -46%, -44%, and -42%, a rare black swan

like occurrence from the perspective of someone who believes that the time series of monthly

momentum returns are generated from an i.i.d. normal distribution

When returns are simulated using our estimated HMM, the kurtosis is 8.64 for momentum

return and 6.11 for market excess return. Simulated momentum returns exhibit some negative

skewness, though not as much as in the sample data. Under the HMM model, large losses to

momentum strategy become higher: The probability of losses exceeding 40% in five or more

months increases to 1.5% from almost zero; and the probability of losses exceeding 20% in

thirteen or more months increases to 90% from 0.04%.9

In Section 3.3 we describe a hidden Markov model, based on the framework of Hamilton

(1989), which we use to capture the behavior of momentum returns. Specifically, we model

momentum returns with a mixture of normal distributions where the parameters of the normal

distributions depend on the hidden state and contemporaneous market states in possibly

nonlinear ways to accommodate the negative skewness of momentum strategy returns. Even

though the distribution of returns – conditional on the hidden state and the current market

– is normal, this model is able to capture the unconditional skewness and kurtosis of the

momentum returns to some extent, and the probability of large losses become much more

likely.

In what follows we first describe some of the salient characteristics of the joint distribution

of momentum strategy and market returns documented in the literature. These features

suggest that the beta of momentum strategy returns differs across turbulent and calm market

conditions providing a rationale for hidden Markov model specification we use.

3.2.2 Momentum Beta and the Formation Period Market Return

Grundy and Martin (2001), building on the observation of Kothari and Shanken (1992), argue

that the momentum portfolio beta will be a function of the market excess return over the

9Based on 1,000,000 simulations, in each of which 978 monthly momentum returns are generated.
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measurement period.10

The intuition for the Kothari and Shanken (1992) result is as follows: if the market excess

return is negative over the measurement period then, from a Bayesian perspective, the firms

which earned the most negative return – i.e. the past losers which moved down with the

market – are likely to have a higher beta than the past winners. Because the momentum

portfolio is long past winners and short past losers, the intuition of Kothari and Shanken

(1992) and Grundy and Martin (2001) suggests that the momentum portfolio beta should

be negative following bear markets – when the market excess return was negative over the

measurement period – and positive following bull markets.

We define the down market indicator IDt as having the value of one when the sum of the

market excess returns rm,t in the formation period was negative,11 i.e. when:

IDt ≡


1 if

t−2∑
s=t−12

Rm,s < 0

0 otherwise

(1)

This suggests the following specification for the joint distribution of momentum and market

excess returns:

Rmom
t = α +

(
β0 + βDIDt

)
RM
t + εt. (2)

Estimation of this specification over our full sample yields:

α β0 βD

estimate 1.19 0.12 −1.27
t-stat 5.88 1.35 −8.37

where the t-statistics are computed using standard errors that allow for conditional het-

eroscedasticity. Consistent with the findings in the literature noted above, βD is economi-

cally and statistically significant, and abnormal return (intercept), controlling for the dynamic

market risk, is still significantly positive.

10See pp. 195-198 of Kothari and Shanken (1992).
11We follow Grundy and Martin (2001) and use the arithmetic sum of the market excess returns during

the formation period instead of the compounded total return during the formation period.
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3.2.3 Momentum Beta and Contemporaneous Market Returns

As pointed out in Section 2, a number of authors have observed the nonlinear nature of

the relationship between the returns on past-return sorted portfolios and contemporaneous

market returns.12 In the language of Henriksson and Merton (1981), momentum’s up-beta is

far less than its down-beta. We capture this option-like feature of the momentum portfolio

with the following specification:

Rmom
t = α +

(
β0 + βU · IUt

)
RM
t + εt, (3)

where IUt is an indicator variable which is 1 when the contemporaneous market return is

positive, and is zero otherwise:

IUt ≡

 1 if RM
t > 0

0 otherwise
(4)

Estimation of this specification over our full sample yields:

α β0 βU

estimate 3.27 −0.07 −0.93

t-stat 6.29 −0.64 −3.35

Notice that the estimated up-beta of our momentum portfolio is lower than the down-beta by

0.93, and is again strongly statistically significant. Also, here it is important to note that the

estimated α is no longer a valid measure of abnormal performance, since the contemporaneous

up-market indicator uses ex-post information.13

3.2.4 Dependence of Beta on Market Volatility

Boguth, Carlson, Fisher, and Simutin (2011) note the presence of a significant covariance

between momentum’s market beta and market volatility leads. Extending the approach of

Jagannathan and Wang (1996), they calibrate the magnitude of the bias arising from this

covariance.

12See, in particular, footnote 5.
13See Jagannathan and Korajczyk (1986) and, more recently, Boguth, Carlson, Fisher, and Simutin (2011).
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To see whether volatility timing exists in our sample of momentum returns, we estimate

the following regression equation:

Rmom
t = α +

(
β0 + βU · IUt + βσ · σ̂M

t

)
RM
t + εt, (5)

where IUt is defined as in (4) and σ̂M
t is the sample standard deviation of daily returns for the

value weighted portfolio during the month t. Estimation of this specification over our full

sample yields:
α β0 βU βσ

estimate 3.12 0.52 −1.07 −30.17
t-stat 7.57 2.72 −4.40 −3.36

Notice that an increase in the contemporaneous volatility of market excess returns signifi-

cantly decreases the beta of momentum returns. As in the previous subsection, the estimated

α is not a valid measure of abnormal performance, since the contemporaneous up-market

indicator and the realized daily standard deviation uses ex-post information.

3.2.5 The State Dependence of Momentum’s Optionality

Daniel and Moskowitz (2011) find that momentum portfolios incur large losses when the

market recovers sharply following bear markets. For example, the worst five months with the

largest losses on the momentum portfolio we discussed have the pattern in Table 2, consistent

with the observations in Daniel and Moskowitz (2011).

Table 2: Patterns of Historical Momentum Crashes

Month Rmom
t RM

t RM(t−24, t−1)

1932/8 -78.96 37.60 -68.35
1932/7 -60.11 33.72 -75.45
2009/4 -45.89 11.05 -44.11
1939/9 -43.94 15.96 -21.50
1933/4 -42.33 38.37 -59.46

Daniel and Moskowitz (2011) note that reason for this pattern is in part because the writ-

ten call-features of momentum noted in the literature is particularly strong in bear markets.

Daniel and Moskowitz (2011) therefore develop a specification in which beta of the momen-
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tum portfolio depends both on the long-term past return of the market, and the market’s

contemporaneous return. Consistent with this, we define two indicator variables. First, we

define the bear-market indicator to be equal to 1 if the sum of the market excess returns over

the preceding L months is negative14 :

IBt ≡

 1 if RM(t−L, t−1) < 0

0 otherwise,
(6)

For most of this analysis, we use L = 24, consistent with Daniel and Moskowitz (2011).

This motivates the following specification for the momentum return generating process.

Rmom
t = α +


β0

+βB · IBt
+βR · IBt ·IUt

RM
t + εt (7)

Following Daniel and Moskowitz (2011), we set L = 24. Estimation of this specification

yields:

α β0 βB βR

estimate 1.71 0.19 −0.96 −0.80

t-stat 8.36 2.83 −7.52 −4.19

As can seen from the above table,

• β0 = 0.19, i.e., the point estimate of the baseline beta is positive and statistically
significant, though small.

• βB = −0.96, i.e., the momentum beta is significantly negative following bear markets.

• βR = −0.80, i.e., the momentum beta is much more negative when the contemporaneous
market recovers following a bear market.

3.2.6 Summary

The sensitivity (beta) of momentum strategy return to stock market excess return depends

on the return on the market during the momentum portfolio formation period; whether the

14As before, we follow Grundy and Martin (2001), we use the arithmetic sum of the market excess returns
instead of the compounded total return.
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market has declined severely during the past two years; the volatility of the market; and

the contemporaneous return on the market. One reason we see these patterns is due to the

fact that losers tend to be stocks that are highly levered and their returns have pronounced

option like features during times when the stock market is depressed. With the result the

beta of momentum portfolio becomes large and negative, especially when the market recovers

sharply going forward, resulting in momentum crashes. Since the market is often turbulent

during such time periods, we assume that there is a single hidden state variable that can

capture all these effects, providing a rationale for the hidden Markov model of momentum

returns we describe in the next section.

3.3 A Hidden Markov Model of Momentum Strategy Returns

Let St denote the unobserved random underlying state of the economy, and st the realized

state of the economy. We assume that there are two possible states, one is Calm (C) and the

other Turbulent (T). Our specification for the momentum portfolio return generating process

is as follows:

Rmom
t = α(St) +

(
β0(St) +βU(St) · IUt

)
RM
t + σmom(St)ε

mom
t . (8)

Here εmom
t is i.i.d. N (0, 1), and σmom(St) denotes the standard deviation of the momentum

strategy residual return. Note that the volatility of the residual return is a function of the

hidden state. The specification in (8) is the same as the one in (3) except for the dependence

of model parameters on the hidden state. We do not explicitly model the dependence of the

momentum beta on IDt , σ̂M or IBt as in the specifications in (2), (5) and (7). Since we expect

the hidden state to sufficiently summarize the relevant market conditions, we let the model

parameters to be a function of only the hidden state.15 In addition, we allow momentum beta

to depend on contemporaneous market excess return in nonlinear ways, i.e., be a function of

the up market indicator variable, IUt defined in (4), in order to capture the option-like features

of momentum returns.

We further specify that the mean and the variance of the market excess return are also

15As we will see later, letting beta depend on past market returns and volatility does not improve the
model’s performance.
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functions of the hidden state, specifically

RM
t = µ (St) + σM (St) ε

M
t , (9)

where εMt ∼ i.i.d. (0, 1).

3.4 Maximum Likelihood Estimation

We estimate the parameters of the hidden Markov model using the maximum likelihood

method described in Hamilton (1989). We begin by defining the vector of observable variables

of interest at time t, Yt, as:

Yt =
(
IUt , R

mom
t , RM

t

)′
,

We let yt denote the realized value of Yt. St denotes the unobservable random state at time

t which, in our setting, is either calm or turbulent. st denotes the particular realized value

of the state at date t. Pr (St = st|St−1 = st−1) denotes the transition probability of moving

from state st−1 at time t− 1 to state st at time t.16 Finally, Ft−1 denote the information set

at time t− 1, i.e., {yt−1, · · · , y1}.
The evolution of the two hidden states are determined by the transition probabilities from

one state to another. In our estimation, we set Pr (S0 = s0) to the unconditional probabilities,

corresponding to the transition probabilities.

Suppose we know the value of Pr (St−1 = st−1|Ft−1). Then, Pr (St = st|Ft−1) is given by:

Pr (St = st|Ft−1) =
∑
st−1

Pr (St = st, St−1 = st−1|Ft−1)

=
∑
st−1

Pr (St = st|St−1 = st−1,Ft−1) Pr (St−1 = st−1|Ft−1)

=
∑
st−1

Pr (St = st|St−1 = st−1) Pr (St−1 = st−1|Ft−1) , (10)

The third equality holds since the transition probabilities depend only on the hidden state.

We can compute the expression on the right side of equation (10) using the elements of the

16Here, we use Pr(x) to denote the probability of the event x when x is discrete, and the probability density
of x when x is continuous.
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transition probability matrix, Pr (St = st|St−1 = st−1) and Pr (St−1 = st−1|Ft−1).

Next, we can compute the joint conditional distribution of the hidden state at time t, st

and observable variables at time t, yt as follows.

Pr (yt, St = st|Ft−1) = Pr (yt|St = st,Ft−1) Pr (St = st|Ft−1) (11)

The second term of this expression, Pr (St = st|Ft−1), is given by (10). The first term is the

state dependent likelihood of yt which, under the distributional assumptions from (8) and

(9), is given by

Pr (yt|St = st,Ft−1) =
1

σmom (st)
√

2π
exp

{
−(εmom

t )2

2

}

× 1

σM (st)
√

2π
exp

{
−
(
εMt
)2

2

}
(12)

where

εmom
t =

1

σmom (St)

(
Rmom
t − α (St)− β

(
St, I

U
t

)
RM
t

)
εMt =

1

σM (St)

(
RM
t − µ (St)

)
.

The likelihood of yt given Ft−1 is:

Pr (yt|Ft−1) =
∑
st

Pr (yt, St = st|Ft−1) . (13)

where the joint likelihood is be calculated using equation (11).

Finally Bayes’ rule gives the state probability at t as a function of the contemporaneous

information set:

Pr (St = st|Ft) = Pr (St = st|yt,Ft−1)

=
Pr (yt, St = st|Ft−1)

Pr (yt|Ft−1)
(14)

Using (14) to compute Pr (St = st|Ft) and the algorithm described above, we can compute
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Pr (yt+1|Ft). In this way, we can generate the likelihood Pr (yt+1|Ft) for t =∈ {0, 1, · · · , T −
1} and compute the log-likelihood L =

∑T
t=1 log (Pr (yt|Ft−1)) given specific values for the

unknown parameters that we need to estimate. Now consider the log likelihood function of

the sample given by:

L =
T∑
t=1

log (Pr (yt|Ft−1)) , (15)

which may be maximized numerically to form estimates of the parameter set

Θ =


α (C) , β0 (C) , βU (C) , σmom (C)

α (T ) , β0 (T ) , βU (T ) , σmom (T )

µ (C) , σM (C) , µ (T ) , σM (T )

Pr (St = C|St = C) ,Pr (St = T |St = T )


.

We estimate the model parameters by maximizing the log likelihood given by (15), i.e.,

ΘML = arg max
Θ
L (Θ) , (16)

and use quasi maximum likelihood standard errors for inference.

4 Empirical Results

Table 3 summarizes the maximum likelihood estimates of the model parameters. The baseline

beta β0 is positive for the unobserved calm state and negative for the unobserved turbulent

state. βU , which captures the written-call like characteristic of the momentum portfolio, is

present in both states but much stronger in the turbulent state. The momentum return beta

during up-markets is -0.11(= β0
C + βUC = 0.41− 0.52 = −0.11) in the calm state, significantly

smaller in magnitude than -1.54(= β0
T + βUT = −0.26 − 1.28 = −1.54)), the corresponding

value of beta in the turbulent state. While both the calm and turbulent states are persistent,

the probability of remaining in the calm state starting from the calm state is higher.

Table 4 provides the t-statistics for the difference in parameter values across the calm

and the turbulent states. β0, the baseline beta, is much higher in the calm state. βU –

the parameter that captures the written call feature of the momentum strategy return is
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Table 3: Maximum Likelihood Estimates of HMM Parameters

This table presents the parameters of the HMM model, estimated using the momentum
strategy and the market excess returns over the full sample. QML standard errors are used
to compute t-statistics. The ML estimates of α, σmom and σM are each multiplied by 100.
The maximized value of the Log-Likelihood is 3.01×103; and the value of BIC is −5.93×103.

Hidden State
Calm Turbulent

Parameter MLE t-stat MLE t-stat

α (×102) 2.04 6.98 4.02 3.37
β0 0.41 2.59 −0.26 −1.63
βU −0.52 −2.46 −1.28 −4.31
σmom (×102) 4.32 15.49 11.05 11.62
µ 0.98 6.24 −0.70 −1.14
σM (×102) 3.62 24.62 9.04 9.42
Pr (St=st−1|St−1 =st−1) 0.97 57.87 0.92 15.39

accentuated in the turbulent state, resulting in a large negative momentum strategy beta in

up-markets. The volatility of the market excess return as well as the residual return of the

momentum portfolio are significantly different across two hidden states. They are more than

twice as volatile in the turbulent state when compared to the calm state. These differences

in parameter values across the two hidden states help us infer the hidden state based on past

observations on momentum and market returns. The hidden state being persistent helps in

forecasting which state is more likely to prevail in the immediate future.

Table 4: Differences in Parameter Values Across Hidden States

MLE t-stat

αC − αT −1.99 −1.60
β0
C − β0

T 0.67 3.07
βUC − βUT 0.76 2.01
σCmom − σTmom −6.73 −6.95
µC − µT 1.68 2.55
σCM − σTM −5.42 −5.97

Table 5 gives the number of positive and negative momentum strategy returns exceeding a

threshold level when the predicted probability of the next month being in the turbulent state
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is p or more, where p takes any of the values from 10% to 90% in steps of 10%, for various

threshold levels. Each entry represents the fraction of the months with large gains(losses)

exceeding a given threshold level during months when the underlying state is turbulent with

a probability exceeding p.

It is natural to classify months as being turbulent when the unobserved underlying

state is turbulent with a probability exceeding 50%. When we estimate the model using

the entire sample, all 13 months in which the momentum strategy losses exceed 20% oc-

cur during months in which Pr (St = T |Ft−1) > 50%.17 However, there are 11 months in

which the momentum strategy return exceeds 20%, and only 8 of those 11 months have

Pr (St = T |Ft−1) > 50%. That is, the predicted probability of the next month being in the

turbulent state is more informative about the likelihood of large losses than large gains.

Next, we examine the out of sample performance of the hidden Markov model to identify

months when large losses to the momentum strategy are more likely based on ex ante infor-

mation in real time. For that purpose we use an expanding window to estimate the model

parameters and that gives us real time predicted probability of the next month being in the

turbulent state for 400 months. In particular, for each month t = T −399, · · · , T, we estimate

the model parameters using maximum likelihood using data for the months {1, · · · , t − 1}.
The first out-of-sample month is September 1977 and the last is December 2010.

From Table 6 we can see that, over the out-of-sample period, there were 5 months in which

the momentum strategy lost more than 20%. All of these large losses occurred during the 79

months when the probability of the market being in the turbulent state exceeds 50%. Indeed,

all of these losses occurred when the turbulent state probability exceeds 90%. In contrast, it

is difficult to predict when large gains are more likely: There were 4 months in which gains

exceeded 20%, but only 2 of them occurred during months in which the probability of being

in the turbulent state exceeded 50%. Note also that none of these large gains were realized

when the turbulent state probability exceeded 90%.

This asymmetry is probably due to the fact that momentum crashes tend to occur when

the market recovers from steep losses but there are no corresponding gains when market

continues to depreciate instead of recovering. Interestingly, during the three consecutive

17There are a total of 199 months, out of a total of 978 months in the sample, in which Pr (St = T |Ft−1) >
50%.
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Table 5: Large Momentum Strategy Losses/Gains in Turbulent/Calm Months
– In Sample

Pr (St=T |Ft−1) # Losses Captured/Total #Losses #
is more than ≤ −10% ≤ −12.5% ≤ −15% ≤ −17.5% ≤ −20% of Months

90% 19/53 16/35 14/31 10/21 7/13 87
80% 27/53 24/35 21/31 17/21 12/13 131
70% 30/53 26/35 23/31 18/21 13/13 158
60% 31/53 27/35 24/31 19/21 13/13 188
50% 32/53 27/35 24/31 19/21 13/13 199
40% 34/53 28/35 25/31 20/21 13/13 225
30% 37/53 29/35 26/31 20/21 13/13 252
20% 40/53 31/35 28/31 20/21 13/13 291
10% 43/53 33/35 30/31 21/21 13/13 342

Pr (St=T |Ft−1) # Gains captured/Total #Gains #
is more than ≥ 10% ≥ 12.5% ≥ 15% ≥ 17.5% ≥ 20% of Months

90% 21/66 12/41 6/26 4/14 3/11 87
80% 29/66 18/41 12/26 7/14 5/11 131
70% 33/66 22/41 16/26 10/14 8/11 158
60% 39/66 27/41 18/26 10/14 8/11 188
50% 40/66 28/41 18/26 10/14 8/11 199
40% 40/66 28/41 18/26 10/14 8/11 225
30% 44/66 29/41 19/26 11/14 9/11 252
20% 47/66 31/41 20/26 11/14 9/11 291
10% 50/66 31/41 20/26 11/14 9/11 342

months in 2009 during which momentum experienced large losses, the probability of the

turbulent state exceeded 0.97, as can be seen from Table 7.

The association between large losses and the turbulent state probability is further illus-

trated in Figure 1 using the entire sample and in Figure 2 using an expanding window in

real time. The vertical axis is the realized momentum return and the horizontal axis is the

predicted probability of the month being in a turbulent state. As can be seen, the scatter plot

fans out with lot more dispersion when we move from the left to the right, providing a visual

measure of the ability of the hidden Markov model to predict months when large losses are

more likely. Note that months losses exceeding 20% per month occur when the probability
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Figure 1: Momentum Returns & Probability Of Hidden State Being Turbulent
(In-sample)
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Figure 2: Momentum Returns & Probability Of Hidden State Being Turbulent
(Out-of-sample)
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Table 6: Large Momentum Strategy Losses/Gains in Turbulent/Calm Months
– Out of Sample

Pr (St=T |Ft−1) # Losses captured/Total #Losses #
is more than ≤ −10% ≤ −12.5% ≤ −15% ≤ −17.5% ≤ −20% of Months

90% 12/26 10/16 8/12 6/7 5/5 41
80% 13/26 11/16 8/12 6/7 5/5 53
70% 13/26 11/16 8/12 6/7 5/5 59
60% 14/26 11/16 8/12 6/7 5/5 72
50% 14/26 11/16 8/12 6/7 5/5 79
40% 14/26 11/16 8/12 6/7 5/5 86
30% 14/26 11/16 8/12 6/7 5/5 91
20% 15/26 12/16 9/12 6/7 5/5 107
10% 16/26 13/16 10/12 7/7 5/5 132

Pr (St=T |Ft−1) # Gains captured/Total #Gains #
is more than ≥ 10% ≥ 12.5% ≥ 15% ≥ 17.5% ≥ 20% of Months

90% 7/29 5/18 3/12 1/5 0/4 41
80% 8/29 6/18 4/12 2/5 1/4 53
70% 8/29 6/18 4/12 2/5 1/4 59
60% 12/29 9/18 6/12 3/5 2/4 72
50% 15/29 11/18 6/12 3/5 2/4 79
40% 16/29 12/18 7/12 3/5 2/4 86
30% 17/29 13/18 8/12 4/5 3/4 91
20% 18/29 13/18 8/12 4/5 3/4 107
10% 21/29 14/18 9/12 4/5 3/4 132

being in the turbulent hidden state exceeds 70%, both in and out of sample. In the out of

sample period, all of the large losses and no large gains are realized when the turbulent state

probability exceeds 90%, occur

As can be seen from Panel A of Table 8 the distribution of momentum returns depend on

whether the hidden state is more likely to be turbulent or calm. The estimated Sharpe Ratio

of momentum returns in months when the hidden state is more likely to be calm is more

than double the estimated unconditional Sharpe Ratio. If we classify the sample with the

threshold level of 50% predicted probability for the hidden state being turbulent, then out of

the 978 months 199 months are turbulent and 779 months are calm. The average momentum
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Table 7: Probability of Hidden State Being Turbulent During Momentum
Crashes – Out of Sample

Date Pr(St = T |Ft−1) Rmom
t

Mar 2009 0.9728 -39.32
Apr 2009 0.9726 -45.89
May 2009 0.9723 -19.08

return is negative in turbulent months, but not statistically different from zero. Strikingly, the

average return in turbulent months is a full 2%/month lower than the average in calm months,

and this difference increases as the threshold probability increases. Momentum returns and

almost three times more volatile in turbulent months, compared to calm months.

For comparison, we also report the corresponding statistics for the market excess return

in the panel B of table 8. While market volatility is quite different in calm and turbulent

states, the average returns are almost equal in calm and turbulent months, consistent with

the observations in Breen, Glosten, and Jagannathan (1989).

The properties of momentum and market returns during the out of sample period is

summarized in Table 9. With the threshold level of 50% for the probability for the month

being in the turbulent state, about 80% of the sample months are classified as calm and 20%

of the months are classified as turbulent. The characteristics of momentum returns for the out-

of-sample months are similar to that during the in-sample results. As we increase threshold

level for the probability of the underlying state being turbulent in a given month, the sample

mean of the momentum returns during turbulent months decrease while the sample mean

of the market excess returns increase. With the threshold level of 90% for the probability

for being in the turbulent state, which classifies 10% of the 400 out-of-sample as turbulent,

the Sharpe ratio of momentum returns for turbulent months becomes, -0.26. The Sharpe

Ratio of market returns during those months is 0.38, rather high. This is to be expected

since momentum crashes tend to occur when the market recovers, as observed by Daniel and

Moskowitz (2011).

Figure 3, plots the time series of the estimated predicted probability of the hidden state

being turbulent in a given calendar month along with an indicator as to whether it is recession

month according to NBER. As can be seen, there is not much of a relationship between the
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Table 8: Returns in Turbulent and Calm Months
Months with Pr (St=T |Ft−1) exceeding the threshold level are counted as turbulent and other
months are counted as calm.

Panel A: Momentum Returns
Forecast State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 1.64 4.62 0.35 636 0.16 11.99 0.01 342
20% 1.62 4.82 0.34 687 -0.06 12.67 -0.00 291
30% 1.58 4.93 0.32 726 -0.20 13.36 -0.01 252
40% 1.58 5.05 0.31 753 -0.43 13.89 -0.03 225
50% 1.53 5.14 0.30 779 -0.47 14.54 -0.03 199
60% 1.54 5.17 0.30 790 -0.62 14.86 -0.04 188
70% 1.59 5.32 0.30 820 -1.30 15.72 -0.08 158
80% 1.54 5.91 0.26 847 -1.60 15.79 -0.10 131
90% 1.35 6.79 0.20 891 -1.27 15.79 -0.08 87

Panel B: Market Excess Returns
Forecast State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 0.68 4.10 0.17 636 0.37 7.45 0.05 342
20% 0.61 4.25 0.14 687 0.49 7.71 0.06 291
30% 0.56 4.31 0.13 726 0.60 8.02 0.08 252
40% 0.55 4.32 0.13 753 0.64 8.33 0.08 225
50% 0.61 4.39 0.14 779 0.44 8.60 0.05 199
60% 0.55 4.40 0.13 790 0.65 8.75 0.07 188
70% 0.50 4.45 0.11 820 0.95 9.22 0.10 158
80% 0.52 4.63 0.11 847 0.94 9.38 0.10 131
90% 0.56 5.07 0.11 891 0.65 8.82 0.07 87
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Table 9: Returns in Turbulent and Calm Months (Out of Sample)
Months with Pr (St=T |Ft−1) exceeding the threshold level are counted as turbulent and other
months are counted as calm.

Panel A: Momentum Returns
Forecasted State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 1.63 5.10 0.32 268 0.40 11.14 0.04 132
20% 1.59 5.30 0.30 293 0.20 11.88 0.02 107
30% 1.54 5.37 0.29 309 0.15 12.60 0.01 91
40% 1.61 5.45 0.30 314 -0.20 12.74 -0.02 86
50% 1.72 5.49 0.31 321 -0.80 13.05 -0.06 79
60% 1.83 5.55 0.33 328 -1.53 13.31 -0.11 72
70% 1.87 5.82 0.32 341 -2.55 13.65 -0.19 59
80% 1.84 5.81 0.32 347 -2.84 14.29 -0.20 53
90% 1.82 5.93 0.31 359 -4.03 15.39 -0.26 41

Panel B: Market Excess Returns
Forecast State

Calm Turbulent

Pr (St=T |Ft−1) Mean SD SR Months Mean SD SR Months

10% 0.70 6.79 0.10 268 0.74 6.42 0.12 132
20% 0.61 6.90 0.09 293 0.99 6.00 0.16 107
30% 0.71 7.10 0.10 309 0.73 4.96 0.15 91
40% 0.68 7.05 0.10 314 0.83 5.07 0.16 86
50% 0.66 7.00 0.09 312 0.93 5.11 0.18 79
60% 0.59 7.02 0.08 328 1.24 4.74 0.26 72
70% 0.58 6.95 0.08 341 1.50 4.71 0.32 59
80% 0.53 6.98 0.08 347 1.89 3.90 0.48 53
90% 0.61 6.88 0.09 359 1.63 4.25 0.38 41
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month being in an NBER recession and the associated probability of the state being turbulent.
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Figure 3: NBER Recessions & Probability Of The Hidden State Being Turbulent

We also examine the association between the probability of the state being turbulent in

a given month and likelihood of a momentum crash during that month using the following

Probit model:

Pr (Rmom
t < Threshold Loss ) = Φ (a+ bPr (St = T |Ft−1)) (17)

where Φ is the CDF of standard normal distribution and Threshold Loss is a critical level

that defines a momentum crash. This specification helps us evaluate whether Pr (St = T |Ft−1)

is related to the left tail of momentum returns. We consider Threshold Loss = −10%,−12.5%,−15%,−17.5%,−20%.

Table 10 gives the estimated parameter values and the associated t-statistics for the Probit

model in equation (17) for the in-sample as well as the out-of-sample estimates of Pr (St = T |Ft−1).

Except for the case when Threshold Loss = −20% out-of-sample, b, the coefficient on

Pr (St = T |Ft−1), is positive and statistically significant. The statistical insignificance for

Threshold Loss = −20% out-of-sample, is probably due to there being too few months
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with large losses during the out-of-sample period. Interestingly, the size of b monotonically in-

creases as we lower Threshold Loss from −10% to −20%, indicating that the probability

of more extreme losses are more likely when Pr (St = T |Ft−1) is high.

Table 10: Probit Model of Momentum Crashes

Threshold In Sample Out of Sample
Loss a b a b

-10% -2.11 1.40 -1.89 1.16
(-19.08) (7.41) (-13.20) (4.49)

-12.5% -2.60 1.84 -2.34 1.51
(-15.35) (7.47) (-11.44) (4.81)

-15% -2.67 1.84 -2.42 1.40
(-14.62) (7.03) (-10.89) (4.08)

-17.5% -3.24 2.33 -3.01 1.84
(-9.60) (5.45) (-7.34) (3.53)

-20% -5.04 4.13 -7.14 6.14
(-3.20) (2.29) (-1.56) (1.28)

5 Alternative Specifications

In this section, we examine alternative specifications for the stochastic process governing the

temporal evolution of momentum returns and market excess returns. We relax the mean

equation in the regime Switching model and let the beta of the momentum return to depend

on past market conditions. We find that the more general specification is not necessarily

better in terms of identifying months when large losses are more likely. We also evaluate a

bivariate GARCH model of momentum and market excess returns.

For HMM, consider the following extended specification:

Rmom
t = α(St) +


β0(St)

+ βD(St) IDt

+ βU(St) IUt

+ βR(St) IBt IUt

RM
t + σmom(St)ε

mom
t . (18)

RM
t = µ (St) + σM (St) ε

M
t , (19)
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Comparing to the equations (8) and (9), the above specification differs in that the beta of

momentum portfolios can depend on past market conditions. We consider variations of the

HMM specification by restricting the model parameters as given below:

Main: βR = 0, βB = 0

Alt-1: No Restriction

Alt-2: βU = 0

Alt-3: βU = 0, βR = 0

Alt-4: βU = 0, βR = 0, βB = 0

Alt-1 is the most general specification. Alt-2 is similar to the specification in Daniel and

Moskowitz (2011). Alt-3 captures the effects documented in (Grundy and Martin, 2001).

Alt-4 corresponds to the market model. Note that Alt-2, Alt-3, Alt-4 and Main are nested

within Alt-1. For IBt as in (6), we consider L = 12, 24, 36.

We also estimate the bivariate GARCH model given below:

Rmom
t = α +

(
β0 +βU · IUt

)
RM
t + σmom,tε

mom
t . (20)

RM
t = µ+ σM,tε

M
t , (21)

where εmom
t and εMt are drawn from i.i.d standard normal distributions, and σmom,t and σM,t

evolve according to the bivariate GARCH process given below:

σ2
mom,t = σ2

mom,0 + p1σ
2
mom,t−1 + q1

(
σmom,t−1ε

mom
t−1

)2
(22)

σ2
M,t = σ2

M,0 + p2σ
2
M,t−1 + q2

(
σM,t−1ε

M
t−1

)2
(23)

Table 11 gives ML estimates of the parameters for the various specifications given in (20),

(21), (22) and (23).

For the bivariate GARCH model, using the estimated parameter values, we compute

Std(Rmom
t |Ft−1), the conditional volatility of the momentum return for each month and use

it as a measure of the tail-risk of the momentum returns.

In Figure 4 we plot the realized momentum return in a month against its standard devi-

ation according to the bivariate GARCH model. A comparison of Figure 4 with Figures 1
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Table 11: GARCH Model Parameter Estimates

Mean-Return

MLE t-stat
α 2.11 8.83
β0 0.19 2.97
βU -0.55 -5.56
µ 0.71 5.37

GARCH of MOM

MLE t-stat
σ2

mom,0 3.46 3.82
p1 0.63 11.05
q1 0.34 5.35

GARCH of MKT

MLE t-stat
σ2

M,0 0.69 2.99
p2 0.85 41.68
q2 0.13 5.98
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Figure 4: Realized Momentum vs GARCH forecast of Volatility

and 2 indicates that the association between momentum losses in a month and the riskiness

of the month as measured by the standard deviation of momentum return during that month

is not as strong for the bivariate GARCH model.

For comparing different models, we count the minimum number of months to be classified

as turbulent such that all months with large losses (exceeding a threshold) occur during those

turbulent months. Let it denote the predicted level of tail-risk in a month: it ≡ Pr(St =

T |Ft−1) for HMM and it ≡ Std(Rmom
t |Ft−1) for GARCH. For each threshold level of large

loss L, we pick an i(L) such that months exceeding the threshold level of loss L occur

during months with it > i(L) that are classified as being turbulent. We then count the
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number of turbulent months corresponding to each threshold loss L. We view the model that

require classifying fewer number of months as being turbulent to capture months with large

momentum losses as better.

Table 12 reports the number of months, the negative of a measure of a model to identify

months when large losses are more likely. For extreme losses exceeding 20%, HMM spec-

ifications are much more effective than GARCH. Among HMM models, for L = 12, Alt-1

and Alt-2 require smaller number of months than the Main Model, but the differences are

small. For out-of-sample months, the Main Model classifies 40 months as turbulent months,

in contrast to 87 months classified as turbulent months with GARCH model. Also, among

various HMM specifications, the Main HMM performs as well or better.

In Section 4, we observed that the relation between the probability of large gains and

the probability of the hidden state being turbulent was weaker the corresponding relation for

large losses. We therefore compare the sample mean of momentum returns during months

for turbulent and calm months. If an indicator for the momentum risk can detect large losses

only, the sample mean will be significantly negative for turbulent months.

The properties of momentum returns during turbulent months – i.e., months when the

probability for the hidden state being turbulent(HMM criterion) or conditional standard

deviation of momentum returns(GARCH criterion) are sufficiently high to identify all months

with losses exceeding a given threshold level – are reported in table 13. Interestingly, with

a -20% threshold loss, with HMM, less months are classified as turbulent; the sample mean

of momentum returns during turbulent months is lower ; and the sample standard deviation

of momentum returns during turbulent months is higher, when compared to the GARCH

model.

For out-of-sample months, the differences becomes more significant. With the threshold

loss of -20%, less than a half months are classified as turbulent with HMM when compared to

GARCH. The sample mean of momentum returns during the 40 turbulent months is -3.51%

per month for HMM. With the GARCH model, the average momentum return is -0.11% per

month during the 87 months classified as being turbulent. Furthermore, as we lower the level

of threshold loss from -10% to -20%, the standard deviation of momentum returns during

turbulent months increases much more for HMM when compared to GARCH.
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Table 12: Comparison of Models: Number of Turbulent Months to Capture Large
Losses

Threshold In Sample Out of Sample
Loss Model L=12 L=24 L=36 L=12 L=24 L=36

-10% Main 941 381
Alt-1 965 959 964 389 384 388
Alt-2 970 960 962 382 388 385
Alt-3 970 383
Alt-4 951 382

Garch 942 396

-12.5% Main 570 205
Alt-1 497 495 499 201 201 204
Alt-2 506 464 484 223 199 210
Alt-3 557 250
Alt-4 601 246

Garch 480 185

-15% Main 368 147
Alt-1 378 378 390 147 152 149
Alt-2 399 379 388 164 150 162
Alt-3 422 173
Alt-4 420 179

Garch 480 157

-17.5% Main 292 123
Alt-1 274 276 275 125 119 122
Alt-2 286 283 281 140 122 127
Alt-3 300 145
Alt-4 323 160

Garch 480 133

-20% Main 148 40
Alt-1 147 153 156 51 52 54
Alt-2 145 184 156 50 49 52
Alt-3 176 48
Alt-4 154 41

Garch 236 87
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Table 13: HMM vs GARCH: Number of Turbulent Months to Capture Large
Losses (In Sample)

HMM GARCH
Threshold # of # of
Loss Months Mean Std Months Mean Std

-10% 941 1.11 8.16 942 1.08 8.16
-12.50% 570 0.97 9.89 480 0.60 10.56
-15% 368 0.19 11.64 480 0.60 10.56
-17.50% 292 -0.05 12.65 480 0.60 10.56
-20% 148 -0.92 15.26 236 -0.10 13.37

Table 14: HMM vs GARCH: Number of Turbulent Months to Capture Large
Losses (Out of Sample)

HMM GARCH
Threshold # of # of
Loss Months Mean Std Months Mean Std

-10% 381 1.25 7.78 396 1.23 7.65
-12.50% 205 0.86 9.71 185 0.43 10.12
-15% 147 0.45 10.83 157 0.58 10.57
-17.50% 123 0.42 11.34 133 0.66 11.02
-20% 40 -3.51 15.22 87 0.11 11.98

6 Conclusion

Momentum strategies are widely used by active quantitative portfolio managers and individ-

ual investors. These strategies generate large positive returns on average with little systematic

risk as measured using standard asset pricing models and remain an anomaly.

In this paper we examine the monthly returns of a widely examined equity price mo-

mentum strategy. Over our July 1929 - December 2010 sample, the strategy excess returns

average 1.12%/month, and yield an alpha of 1.70%/month with respect to the Fama and

French (1993) three-factor model. Momentum strategy returns, when combined with the

Fama and French factors, gives rise to a portfolio with a monthly Sharpe Ratio of almost

0.28.

However momentum strategies also suffer infrequent, but large losses. Over our sample,

there are 13 months in which losses exceed 20%/month. The probability of such an event

occurring if momentum strategy returns were independently and normally distributed would
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be 0.04%. We show that such periodic but rare large loss episodes can be captured by a two

state hidden Markov model, where one state is turbulent and the other is calm. We find that

it is possible to predict which of the two hidden state the economy is in with some degree

of confidence. All the 13 months with losses exceeding 20%/month occur during turbulent

months, i.e., months when the predicted probability of the hidden state being turbulent ex-

ceeds 0.5. The probability of 13 months with losses exceeding 20% increases to 60% and

momentum losses are less Black Swan-like. Momentum returns averaged -0.47%/month dur-

ing turbulent months, with a Sharpe Ratio of -0.03. When such turbulent states are avoided,

the momentum strategy’s monthly Sharpe Ratio increases to 0.30 – slightly more than dou-

ble the unconditional Sharpe ratio of 0.14. The striking performance of the price momentum

strategy in the calm months poses still more of a challenge to standard asset pricing models.
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