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I. INTRODUCTION1

This paper presents quantitative estimates of the importance of

two supply-side factors in determining the productivity of

manufacturing R&D. These are "technological opportunity" and

"spillovers" of R&D. The empirical approach is to develop variables

relating to technological opportunity and spillovers based on the

technological nature of firms' past research. The existence of

technological opportunity and spillover effects is then inferred from

the estimated effects of these constructed variables on the firm's

patent applications, its accounting rate of return, and its market

value. This estimation is carried out on a cross-section of 432

firms, using data for two time periods, one 1972-74 and the other

1978-80. All of the firms' decision variables are treated as endoge—

nous, using as instruments the spillover and technological opportunity

variables, as well as variables describing the industries that the

firms are in.

By technological opportunity, I mean exogenous variations in the

cost and difficulty of innovating in different technological areas.

These variations may be due to intrinsic characteristics of the

technology, or they may be due to the state of exogenous scientific

knowledge at a point in time. Therefore, the pattern of technological

opportunity may change over time, though I assume that it generally

changes fairly slowly, requiring a number of years for significant

changes to manifest themselves.

The other influence on the firms' R&D program that I examine is

spillovers of R&D from other firms (Griliches (1979)). Since
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knowledge is inherently a public good, the existence of tech-

nologically related research efforts of other firms may allow a given

firm to achieve results with less research effort than otherwise. If

we could observe the pure technological output of the firm's research,

this would be an unambiguously positive externality. Unfortunately,

we can only observe various economic manifestations of the firm's R&D

success. In this case, the positive technological externality is poten-

tially confounded with a negative effect of others' research due to

competition. It is not possible, with available data, to distinguish

these two effects; I do, however, find evidence that both are pre-

sent.

It should be emphasized that I do not model the strategic inter-

action of the firms doing R&D in similar areas, with or without

spillovers. I assume throughout that firms hold Cournot conjectures

about the effects of their actions on the other firms, and I do not in

any way impose equilibrium on the actions of the different firms.

The spillover and technological opportunity phenomena have in

common that their effect on a particular firm will depend on the

technological nature of the firm's research. Jaffe (1985) develops a

methodology for characterizing the "technological position" of the

firm's research program and constructing variables related to

spillovers and technological opportunity. This methodology is

summarized in the next section of this paper. Section III develops

the estimating equations. Section IV presents the main empirical

results. Section V presents additional results examining the changes
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in the apparent pattern of technological opportunity between the two

periods. Section VI contains concluding comments.

II. CHARACTERIZING THE TECHNOLOGICAL POSITION OF FIRMS

In order to look for the effects of technological opportunity and

spillovers, we would like to identify the technological areas in which

the firms are engaged in research. We could imagine, if there are K

such areas that relate to manufacturing products or processes, that

the "technological position" of a firm's research program could be

characterized by a vector F = (Fl...FK) where Fk is the fraction of

the firm's research budget devoted to area k.2 This, unfortunately,

is not observable, but data do exist that are closely related. The

patents received by the firm are classified by the patent office into

technology-based patent classes.

This classification system provides the basis for the search of

"prior art" necessary before a new patent can issue. It is important

to note that this system is. not an alternative product or industry

classification. It is technology based. There is surely some rela-

tionship between industries and patent classes, in the sense that

firms in a given industry will, on average, patent more in some

classes than in others. But the mapping from classes to industries is

not unique in either direction. This is illustrated by an example

given by Jacob Schmookler, who used these data extensively. He notes

that in a patent subclass, relating to "dispensing of solids" he found

a patent for a toothpaste tube and one for a manure spreader (Schmookler (1966)).
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The tact that the patent classification system is technology—based

rather than product-based is often viewed as a limitation on the eco-

nomic usefulness of these data. It probably is so if one is seeking a

measure of innovation by industry, for use in, for example, a

structurelperformance study. For our purposes, however, it is a

decided virtue.

Throughout this paper, I utilize the distribution of the firms'

patents over patent classes to characterize the technological position

of the firm. In the basic data, there are 328 patent classes (though

the classification system actually contains thousands of subclasses).

This information is available for the patents granted between 1969 and

1979 to about 1700 manufacturing firms in the R&D panel that has been

assembled recently at the National Bureau of Economic Research. This

dataset is a marriage of Compustat and Patent Office data that is

documented in Cummins, et al (1984) and Bound, et al (1984). The com-

panies in the dataset were granted about 260,000 patents over the

period. The average firm has one or more patents in about 20 of the

328 classes. The classes themselves vary greatly in importance, from

"Chemistry, carbon compounds" with 20,000 patents taken by 340 dif-

ferent firms to itBee culture" which has one patent.3 To make the

distribution vectors empirically usable, the 328 classes were grouped

into 49 categories. This grouping was essentially ad hoc, based on

the names, with more aggregation of classes with few patents, and less

aggregation of those that had many.

Firms' technological positions are, in the long run, a matter of
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choice for the firms. If technological opportunity affects

profitability, then we would expect firms to move to the more

profitable positions. I expect, however, that changes in the

technological position of firms can be brought about only slowly.

Expertise in various areas is not easily acquired, and good will and

reputation in product markets represent sunk costs that make jumping

from one place to another costly. In this study, reflecting the view

that technological position is endogenous, but only over relatively

long time periods, I construct two technological position vectors for

the firm: one is based on all patents applied for up to 1972, and

one is based on all patents applied for after 1972. In the

estimation, I treat each of these distributions as exogenous for the

purpose of regressions involving cross—sections of firms at the end of

each period. I then examine the changes in position between the two

periods, and see if they can be explained as responses to the pattern

of technological opportunity.

Thus the basic data characterizing the firm's technological

position are two 49—element distribution vectors, one for the earlier

period and one for the later. These vectors are used in two ways.

First, they are utilized to construct a variable which will be used to

-infer the existence of spillovers. I assume that the existence of

technological spillovers implies that a firm's R&D success is affected

by the research activity of its neighbors in technology space. To

make this notion operational requires significant additional

structure. I assume that the total relevant activity of other firms
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can be summarized by a "potential spillover pool" that is simply a

weighted sum of other firms' R&D, with weights proportional to the

proximity of the firms in technology space.5 To measure the proximity

of firms I and j, I use the angular separation or uncentered

correlation of the vectors F and

PiJ r(F.F,n(F.F.n1½ (1)L 1 1 1 3 3 JJ

This proximity measure has the properties that it is unity for firms

whose position vectors are identical, it is zero for firms whose

vectors are orthogonal, and it is bounded between 0 and I for all

other pairs. It is closer to unity the greater the degree of overlap

of the two firms' research interests.6

The potential spillover pool Si is constructed using the proximi-

ties defined in Eq. (1) as weights in a summation of all other firms'

P..R, (2)
' '.1 3

This approach assumes that the conditions of appropriability are the

same across all technological areas. Suppose, as in the formulation

of Spence (1984), that imperfect appropriability means that a fraction

9 of each firm's research "leaks out." If U = 0, then appropriability

is perfect; if U = 1, R&D is a pure public good. For my formulation,

it doesn't matter what U is,6 but I have assumed that it is the same

for all firms. To the extent that this is untrue, S. is poorly measured

The 49—element technological position vectors were also utilized to
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assign the firms to "technological groups." A clustering algorithm

was utilized to group the firms based on their technological position.9

The idea is to identify those firms whose technological focus is

sufficiently similar that they face the same state of technological

opportunity. This clustering was carried out twice, yielding for each

firm a technological cluster assignment for 1972 and one for 1978.

These assignments can be used to construct dummy variables for the

technological groups. These dummy Variables will be used in the esti-

mation below to allow for variations in technological opportunity.

Tables One and Two summarize these technological clusters. For

later reference, the important thing to note is that almost a third of

the firms changed clusters between the two periods. Despite this, the

clusters themselves were fairly stable, as indicated by the high

proximity between the center of each cluster in the early period, and

its center in the later period. In Section V I will show that the

moves that did occurcanbe related to the pattern of profitability

across the groups.

III. MODELLING THE PRODUCTIVITY OF R&D

A. Overview

The general approach taken here is to assume that there exists a

stable relationship between the investment by the firm in R&D and the

production of new economically useful knowledge. This relationship is

conditioned by the spillovers that the firm receives and the state of

technological opportunity. We do not observe new knowledge, but we do
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observe several of its consequences. On average, if R&D is a sensible

activity for the firm, the new knowledge should lead eventually to the

generation of profits. This profit stream should be reflected in the

firm's market value. Along the way, the new knowledge may also

generate patent applications. In this section 1 develop estimating

equations that relate the firm's patent applications, its profits and

its market value to its R&D, its other attributes, the spillover and

technological opportunity variables, and industry variables.

A long—recognized problem in this sort of estimation is the like-

lihood that firms differ in ways that we do not observe, such as their

management skill. These unobservables are likely to enter positively

in the error terms of equations that measure, in any sense, the firm's

productivity. They will also influence the investment decisions of opti-

mizing firms, introducing correlation between the error terms and some

of the right-hand side variables in the productivity equations. The

classic solution to this problem if a panel of firms is observed over

time is to assume that the unobservables are unchanging over time for

a given firm. This limits their contamination to the cross—sectional

dimension of the data, implying that consistent estimates of struc-

tural parameters can be derived from the variance TiwithiniT firms over

time. This leads to the so—called "fixed effects" estimator.

This approach has a serious drawback, which is that the bulk of

the variance in firm data is usually in the cross—sectional dimension.

Thus, the fixed-effects approach discards most of the information in

the data. An alternative is to view the problem as a standard one of
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endogenous right-hand side variables, and to develop equations for the

endogenous variables as a function of other variables that can be

assumed to be exogenous. In this paper, the firm's R&D, its capital

stock and its market share are treated as endogenous; it is assumed

that in the reduced form of the system they depend on industry

variables such as the industry's size, growth rate and R&D intensityi°

The key assumption implicit in this approach is that the unobserved

firm characteristics do not significantly affect these industry

variables.

In order to emphasize the exploitation of the cross-sectional

information in the data, I will focus on steady—state relationships.

This is not because dytamics are uninteresting. They have been the

focus of much previous work.11

B. The Patent Equation

I begin by assuming that the new knowledge produced by the firm in

any period is related to its R&D in that period according to a

modified Cobb-Douglas iechnology of the form:12

k. = 1r. + 2r.s. + ys +lOicDic
+ c.

where k1 is the new knowledge generated by firm i, r. is its R&D

spending, and is the potential "spillover pool" whose construction

is described above. All variables are expressed in logs.13 The Dic'S

are a set of dummy variables for the technological clusters discussed

in the previous section; if technological opportunity is important,
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the will differ across c. is a random disturbance, assumed

to be distributed independently but not necessarily identically across

j14 it includes unobserved firm—specific attributes that may be

correlated with ri. Eq. (3) implies that the R&D of other firms may

increase the knowledge output of the firm directly, and also may

increase the elasticity with respect to own R&D. if and y are

both zero, then Eq. (3) is a standard "knowledge production function"

(Griliches (1979)).

Knowledge is not observed, but I assume that a fraction of it is

patented according to:

P. = exp[aD.][exp(v)]K (4)

Thus, the ratio P1/K. (the "propensity to patent") for any firm i

depends on its technological position, but also contains a firm—

specific component. I will again assume v. is independent across

firms. Note that I rule out by assumption a dependence of the propen-

sity to patent on the potential spillover pool; allowing such a depen-

dence would effectively preclude identification of the spillover

effect.

Taking logs in Eq. (4) and substituting into Eq. (3) yields an

equation relating patents to R&D and the pool:15

= ,r, + $2r.s. ÷ ys +(ôic - a)D. +

Because we have to allow for the dependence of the propensity to

patent on technological position, the technological cluster dummies in
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the patent equation cannot be related solely to technological oppor-

tunity. As will be discussed below, this hinders somewhat our ability

to draw conclusions about technological opportunity.

C. The Profit or Rate of Return Equation

In modelling the profits of the firm, I want to allow for the

existence of unobserved firm-specific entreprenuerial skill, as well

as possible effects of market power. The modelling approach is simply

to treat market power and the unobserved firm attributes (as well as

the R&D of other firms) as intangible assets that augment the produc-

tivity of the firm's R&D and capital stocks. One way to do this is to

postulate a modified restricted profit function in log—log form;16

= m. + r. +
r.. + 6c. + +

+
cl62c0ic + (6)

where i is the gross operating income of firm i, m. is its market

share, and r. is the stock of accumulated R&D investments, distinct

from the annual flow used in the patent equation. c is the capital

stock, c4' is the four-firm concentration ratio in the firm's

industry, and the other variables are as before. Note that I could

have started by writing Eq. (6) in terms of the unobserved knowledge

stock, and then substituted from the knowledge production function as

above. In this case, however, no insight is gained by doing so.

If A3=y6=0, then Eq. (6) would be the restricted profit function

derived from the production function:

=
LO

R(b2 + b3s.)
exp (ro�coic)exp(c2i) (7)

by solving out labor through its optimal choice. This would be valid
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under the assumption that input and output markets are competitive,

and that all firms face the same prices or else prices are independent

of the exogenous variables and can be absorbed in C2 Adding market

share and concentration as in (6) has the following interpretation.

If output markets are not competitive, then the effect on the firm's

revenues can be seperated into a component that depends on the firms

own market share, and a component that depends on the overall struc-

ture of competition in the industry. Further, these effects enter in

a simple multiplicative way.17

As written, Eq. (6) is meanihgtul only for single product firms,

for which the market share and concentration ratio variables are well-

defined. In practice, most firms are in many industries. Data ai-e

typically unavailable, however, on the breakdown by line—of-business

of the firms! capital and R&D. This precludes any attempt at finding

the "correct" aggregation scheme within the firm. I simply specify

relationships among the firm-level variables. For market share, con-

centration and other industry variables, I utilize the sales—weighted

average across 4—digit SIC's within the firm.

Eq. (6) can be converted into an expression for the (log of the)

rate of return on the firm's capital stock by subtracting c from

both sides. This yields:

— c. = 3 m. + + + (6 1)c + T5i + y6c4.

+

ci62c0ic
+ C2. (8)
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0. Development of the Market Value Equation

Much attention has been focused in recent years on the conceptual

problems with using accounting rates of return to measure economic

profits (Fisher and McGowan(1983)). Salinger (1984) argues that the

stock market provides a better indicator, because it is free of

accounting biases and it captures long—run effects. There are,

however, also conceptual difficulties with the use of market values.

I view accounting profits and market value as multiple noisy indica-

tors of the phenomena of interest.18

There are two approaches that one can take to the firm's value.

If constant returns to scale prevails in the long run and if all the

firm's assets, including market power, spillovers and unobserved firm

skills, are traded on competitive markets, then the value of the firm

has to be equal to the sum of the replacement costs of each of these

assets. Thus one approach is simply to value the firm as a linear

function of the various assets (Griliches(1981), Salinger (1984)).

The alternative is to evaluate explicitly the present value of the

flow of expected net revenues. In practice, each of these approaches

has problems.

If some of the firm's assets are not traded in competitive

markets, or if there are long-run increasing returns, then the linear

relationship breaks down. I believe that the phenomema of interest

here suggest both of these complications are likely to be present.

Though it could be argued that market power is essentially tradeable,'9

and top executives can be bought and sold, the firm's unobserved assets
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include the organizational capital of the firm and its brand—name

loyalty, which probably cannot be,2° and spillovers of R&D are non—

tradeable by definition. Further, spillovers of R&D, market power and

the unobserved firm skills all may have attributes of public goods

within the firm, creating increasing returns.

On the other hand, to correctly evaluate the expected flow of net

revenues, we should solve for the optimal investment stream. To do

this with the number of assets involved here requires heroic simplifi-

cation. Given these difficulties, Jaffe (1985) contains estimates of

two forms of a market value equation, each of which is an approxima-

tion to one of the two approaches. They yield similar results, so I

report only one set here.

The approach is related to that of Griliches (1981) and Salinger

(1984). The firm's market value is assumed to be a linear function of

a weighted sum of the firm's conventional and R&D capital stocks:

V. = 4[C + (7 i (9)

That is, the relative value of a dollar of R&D and a dollar of capital

depends on the spillover pool; for the firm with the mean pool, the

relative value is ,, which may or may not be unity. The package of

capital and R&D is valued at a price . This price is itself assumed

to depend on the firm's market power, its unobserved attributes, and

its technological cluster:

l= M9ST7(C4)78 exp(ioacDic)exp(cai) (10)

Thus market power, spillovers and technological opportunity are
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assumed to augment value multiplicatively rather than additively.21

This implies that a given degree of market power can be spread over

any amount of capital. Compare two firms who have identical shares of

identically concentrated industries, but one is twice as big as the

other, because its industry is twice as big. It seems plausible that

the market value of the larger firm should be twice that of the

smaller, as implied by (9) and (10). On the alternative that the

value is the sum of the value of the capital and the value of the

market power, the larger firm's value would be less than twice that of

the smaller.

If we now substitute (10) into (9), divide through by C, take

logs, and use the approximation log(1 + x) x, we get:

v. — c. =logq + A7(R/C). + ps (R/C). + + y,s.

+ y6c41 +163D. + £3. (11)

The dependent variable in Eq. (11) is just the log of Tobin's q, which

can be thought of as the long-run analogue of the log of the rate of

return in the profit equation.

IV. EMPIRICAL RESULTS

A. Oata and Estimation Issues

The model is estimated on two cross-sections of 432 firms from the

NBER R&D panel, one centered on 1973 and one centered on 1979. Each

cross—section is an average of three years in order to smooth out
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transient effects and approximate long-run values. Instead of simply

estimating the 3 equations on the pooled cross sections, I estimate a

6—equation system consisting of each equation for each year on the 432

firm cross—section. This allows for an arbitrary pattern of serial

correlation and heteroskedasticity across time.

The market share variable is taken from the PICA database at the

Harvard Business School (Shesko (1981)) and is available only for

1972. I use the 1972 share in the 1978 equation as a proxy. All

other firm variables are evaluated as averages for the years 1972-74

and 1978-80. The capital stock variable is a measure of the

inflation—adjusted total net capital stock of the firm (including an

allowance for inventories and unconsolidated subsidiaries). The

market value measure is the value of common stock plus estimates of

the value of preferred stock and debt.22 Gross accounting profit is

operating income plus R&D expense. The technological cluster dummies

for the 1972 equations are based on the first period clustering, and

those for the 1978 equations are based on the second.

The profit and value equation derivations refer to the stock of

accumulated R&D. This is not something reported by the firm. Stocks

must be constructed from reported R&D flows, making assumptions about

the rate of obsolescence and R&D investments before the firms began

reporting the annual R&D spending. Griliches and Mairesse (1984)

experimented with several formulations; they found that results were

relatively insensitive to the rate of obsolescence. They chose 15%

per year, and that was utilized here as well. The R&D stock used is
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the mean of the non—missing values for the three years, 1972-74 or

1978—80.

Four spillover pool variables were constructed, because the patent

equation depends on the annual R&D flow while the other equations

relate to the stocks. A pool of stocks and a pool of flows were

constructed for each cross—section using the weighted summation procedure

described in Section II. Those for 1972 use as weights proximities

based on the first period distribution vectors, while those for 1978

use proximities based on the second period distributions. For estima-

tion, I took the log of these variables and subtracted off the mean,

so that the R&D coefficients are mean R&D elasticities.

The firm's market share and capital and R&D stocks (and hence the

ratio of the R&D and capital stocks) are treated as endogenous

variables. ,Jaffe (1985) presents estimates of a more complete system,

in which the market share depends on the firm's R&D, industry R&D and

industry sales, and its (optimal) R&D stock depends on its capital

stock, the spillover pool, and industry R&D, sales and growth rate.

This implies that these industry variables are potential instruments

for the firm's R&D and market share. In addition, the industry mini-

mum efficient scale (MES) is added as an instrument for the capital

stock. The interaction between the firm's own R&D and the spillover

pool makes the equations non—linear in the variables, which means that

there is no optimal non—linear function of the exogenous variables

which should be used as instruments (Amemiya (1983)). I utilize the

industry variables, the spillover pool, and interactions between the
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pool and all the industry variables.

Industry sales and concentration at the 4—digit level from the

1972 Census of Manufactures were used to form weighted averages of

(the logs of) these variables for the firms. The weights are the

fraction of the firms' sales in each 4-digit SIC in 1972, taken from

the PICA database. The industry growth rate was taken to be the

logarithmic difference in deflated sales, 1967—72 and 1972—77. The

industry R&D numbers are only available from the FTC for 193

industries that are approximately 3J digit SIC's, so it was necessary

to assume that the R&D/Sales ratio is constant across 4-digit SIC's

within the FTC industries. The industry R&D numbers are for 1974.

Means and variances for all the -important regression variables are

presented in Table Three.

I assume that the six—element residual vector is independent of

all the instruments, that E(c.c/) = 0 for all i j, and that Var(c)

is an arbitrary matrix .. Thus I allow for unconstrained covariance

across equations and time and conditional heteroskedasticity. The

appropriate estimation procedure in this circumstance is three—stage

least squares, with the use of the procedure described by White (1982)

to calculate standard errors that are robust under conditional

heteroskedast ici ty.

The estimation of the two cross—sections as a system makes the

question of the constancy of parameters across time one of cross-

equation constraints. I group these constraints into two sets:

equality of the slope coefficients (fl's and y's) and equality of the



TABLE THREE

SIMPLE STATISTICS FOR REGRESSION VARIABLES

1972 1978

MEAN VARIANCE MEAN VARIANCE

LOG(ACCOUNTING ROR) -1.619 0.180 —2.081 0.202

L0G(Tobin's q) —0.140 0.482 —0.847 0.288

LOG(PATENTS) 2.512 2.600 2.192 2.853

WEIGHTED AVERAGE 0.885 1.252

LOG(MARKET SHARE)

L0G(CAPITAL STOCK) 5.542 2.163 6.232 2.313

LOG(R&D STOCK) 3.357 2.723 3.581 2.605

LOG(R&D FLOW) 1.708 2.639 1.866 2.889

LOG(POOL FLOW) 0 0.212 0 0.239

LOG(POOL STOCK) 0 0.220 0 0.212
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technological cluster dummy coefficients. This yields six sets of

constraints. The x2 statistics for testing each of these sets of

constraints against the unconstrained model are:

ROR q Patents

's and y's 3.8 5.2 .63

(6 d.f.) (7 d.f.) (3 d.f.)

intercepts (20 d.f.) 75.4 83.1 16.2

The constraints on the slope coefficients are easily accepted for all

equations,23 as are the constraints on the intercepts in the patent

equation. The intercept constraints in the ROR and q equations are

strongly rejected.24 Based on these tests, I will proceed to analyze

estimation results in which the slope constraints are imposed (except

on market share), but all of the intercepts are left free.

B. Results

The main regression results are presented in Table Four. Looking

first at the patent equation, the estimates imply close to constant

returns with respect to the firms' own R&D; the elasticity varies

from about .73 to about 1.03 as the pool varies plus or minus two

standard deviations from its mean. The pool has a significant posi-

tive effect, both directly and through its influence on the R&D

elasticity. For the firm with mean log(R&D), the elasticity of

patents with respect to others' R&D is about 1.1. If everyone

increased their R&D by 10, total patents would increase by 20%, with

more than half the increase coming from the spillover effect.



TABLE FOUR

3SLS ESTIMATES OF PATENT, ROR AND q EQUATIONS FOR 1972 AND 1976

(432 Observations)

log(Patents) lOQ(FrQR lop(Tobin's g)

log(R&0) .675 .180

(.183) (.042)

R&D/capital 3.31

(.209)

log(R&0)*log(Pool) .352 .058

(.048) (.020)

(R&D/capital )* .803

log(Pool) (.098)

log(Pool) .509 —.095 —.058

(.104) (.053) (.031)

log(Capital) -.175

(.044)

log(72 Share) .168 .310

(72 Equation) (.055) (.053)

log(72 Share) .057 .123

(76 Equation) (.055) (.054)

log(4—firm —.220 —.525

concentration Ratio) (.045) (.083)

on technological 89.5 82.5 95.8

cluster effects

a (1972) .842 .325 .552

a (1918) .912 .327 .420

All equations also include 21 technological cluster dummies. The
instrument set consists of the cluster dummies, the spillover pool
flow and the spillover pool stock for both years; 1974 industry R&D,
1972 and 1977 industry shipments and concentration, 1972 minimum effi-
cient scale, industry growth rates 1967—72 and 1972—77; and interac-
tions of the pool variables with the contemporaneous industry
variables. All instruments are used in all equations.

Numbers in parentheses are heteroskedasticity—consistent standard
errors calculated according to White (1982).
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At first glance, this may seem like an implausibly large spillover

effect. It is, however, consistent with a reasonable picture of R&D

as a partial public good. In terms of marginal products evaluated at

the mean of the data, the coefficients imply a return of 2.0 patents

per million dollars of own R&D, and .06 patents per million dollars of

other firms' relevant R&D. Because the total relevant R&D is large

relative to any firmvs own spending, spillovers are important even

though the implied value for Spence's 0 is only .oa.25

The results from the ROR and q equations are best considered

together. Note first that the ROR equation estimates imply constant

returns in R&D and capital for firms with the average spillover pool.

The R&D share is about 20% of the capital share. (Recall that the

capital share is the reported capital coefficient plus one.)

Converted to average gross rates of return at the mean of the data, we

get 27% for R&D and 15% for capital, which are consistent with the

conventional wisdom that the economic depreciation rate for knowledge

is higher than that for physical capital (Pakes and Schankerman(1984)).

The q equation imposes constant returns by assumption; we esti-

mate only the relative implicit price of the R&D and capital stocks.

The market apparently places more than 3 times as much value on a

dollar of R&D stock as on a dollar of capital stock, for firms with

the average pool. Given the average returns implied by the profit

equation, it would appear that R&D spending conveys some sort of

signal about long—run returns over and above its direct contribution

to measured profits.



—2].—

Turning to the spillover effects, we find a slightly different

pattern than in the patent equation. The direct effect of the pool is

to lower profits and market value. There is, however, an interaction

between own and others R&D that implies that the return to own R&D is

increased by the spillovers. For the firm with mean log(R&D), the net

elasticity of profits with respect to the pool is about plus .1. If

everyone increased their R&D by 10%, the aggregate profits would

increase by about 3%, with about one-third of the net increase coming

from the spillovers. For firms whose log(R&D) is about .6 standard

deviations below the mean, the net effect of the pool is zero; for

those with less R&D it has a net negative effect.

The pool effect in the q equation is quite similar, though much

more significant statistically. Evaluated at the average log(R&D) and

log(capital), the net elasticity of value with respect to the pool is

about .05. Note that the "competitive" (i.e. negative) effect of the

pool is not significantly different from zero in either equation at

conventional significance levels. The data do, however, reject at the

1% level the hypothesis that the log(pool) coefficient is zero in both

equations. It appears that both technological spillovers and com-

petitive effects of others' R&D cone into play when we consider the

economic returns to the firm's research. Comparing firms whose neigh-

bors do a lot of R&D to those whose neighbors do little, the former

are characterized by lower profits and market value if they do no R&D

themselves, but a higher return to doing R&D. For firms with the

average R&D budget, the net effect of others' R&D is positive.
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Finally, a brief comment is in order on the effect of market share

and concentration on profits and market value. Table Four shows that

higher market shares are associated with higher profits and market

value, but increasing the 4—firm concentration lowers the profits and

market value of the average firm. Results not reported here show that

each of these effects remains if the other variable is dropped, and

interactions do not appear to be important. These results are con-

sistent with other studies finding negative effects of concentration

on profits at the firm or line-of—business level (Demsetz (1974),

Ravenscraft (1983)). They imply that the larger firms in a given

industry have systematic advantages over their smaller rivals. It is

not possible, with these aggregate firm data, to determine the extent

to which the advantages are on the cost side, and the extent to which

large market shares confer or reflect market power.

V. ANALYSIS OF TECHNOLOGICAL OPPORTUNITY EFFECTS

The coefficients on the technological cluster dummies in the ROR,

q and patent equations measure, in some sense, the average excess

returns (positive or negative) experienced by the firms in the group.

In the patent equation, it is the average excess return to R&D, in

terms of patents. In the ROR and q equations, it is the average

excess profits or market value remaining after controlling for the

average rate of return on all of the firms' observed assets. These

include R&D, capital, the spillover pool, market share and industry

concentration. The motivation for including these dummies in all the
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equations has been to allow for variations in technological oppor-

tunity, defined above as exogenous, technologically determined

variations in the productivity of R&D. The x2 statistics reported in

Table Four show clearly that the cluster dummies are important in all

equations. It is difficult to know, however, whether technological

opportunity is really the driving force behind the cluster effects.

One way to investigate this question is to analyze and compare the

patterns of coefficients across equations.

Table Five presents the correlation matrix across the ROR, q and

patent equations for the 21 intercept coefficients. Consistent with

the test statistics reported above, the correlation across time is .62

for the patent equation, .25 for the ROR equation and .05 for the q

equation. Within cross—sections, the ROR—q correlation is high (.84

for 1972, .80 for 1976), while the patent equation intercepts are

relatively uncorrelated with those from the ROR and q equations (.15

and .23 for 1972, .14 and .01 for 1976). It appears that the ROR and

q intercepts share a common influence that is relatively fleeting;

the patent intercepts are driven by something else that is relatively

stable over time.

There are two possible interpretations of these results, one sym-

pathetic to the technological opportunity story and one not. The sym-

pathetic interpretation is that ROR, q and patents are all responding

to technological opportunity, but that in the case of patents this

response is drowned out by the pattern of the propensity to patent,

which is stable over time. The other view is that the absence of any



TABLE FIVE

CORRELATION MATRIX FOR TECHNOLOGICAL CLUSTER INTERCEPTS

ROR q ROR q Patents
(72) (72) (78) (78) (72)

q(72) .84

ROR(78) .26 .16

q(78) .11 .05 .80

Patents(72) .23 .15 .22 .15

Patents(78) .15 —.01 .00 .14 .62
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correlation between the effects on patents and profits suggests that

the cluster effects in the ROR and q equations come from somewhere

else. Implicit in the model as formulated is an assumption that all

relevant influences from the market or demand side are captured by the

industry variables that are in the model. To the extent that this is

not true, then the cluster dummies could be capturing industry

effects, since there is some correspondence between the clusters and

industry groups.

Some additional insight can be gained by comparing these results

to analagous ones where I substitute dummies based on industry groups

for those based on technological clusters. I have relevant data on

the industry distribution of firms' sales only for 1972, so I can look

only at the contemporaneous correlations. I find that the ROR—q

correlation is .88, while the patent intercepts are correlated .09

with those from the ROR equation and .07 with those from the q

equation. Thus, when looking at industries, patents are even less

correlated with ROR and q, which are still highly correlated with each

other. This is at least consistent with the view that there is a

small "piece" of the variation in profits that is related to tech-

nological opportunity. If this piece accounts for the .15 to .2

correlation of patents to ROR and q in Table Five, it would make sense

that it is reduced when we look at the industry grouping, since this

does not control for technology directly.

Regardless of whether excess profits or value are associated with

industries or technological positions, it is interesting that they do
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not appear to be persistent over time; the correlations between the

ROR and q intercepts in each cross-section are much larger than the

correlation across time for either. This is consistent with the

absence of significant nobility barriers, allowing firms to move even-

tually to join high profit clusters. Such movements would tend to

compete away the excess returns. We would expect that, over time, the

economic return to R&D in a "hot'1 area would fall, even if the poten-

tial of the area in a strictly technological sense remained high.

This appears to be exactly what happened.

As discussed above, I take the view that firms cannot change their

position in technology space overnight, but that over some horizon

they do move in response to perceived profit possibilities. The

results presented here suggest an obvious test of this view. Did the

movements in the firms' patent distributions between the 1965—72

period and the 1973—79 period bear any relation to the pattern of

excess returns?

Figure One shows a plot of the proportional growth rate26 of the

number of firms in each technological cluster against the cluster

intercepts in the 1972 q equation. There is a clear positive rela-

tionship. The correlation coefficient for the 21 observations is .63,

which is significantly positive at the 1% level. The correlation of

the growth rate with the intercepts from the 1972 ROR equation is .35.

It appears clear that entry and exit were driven by the contem-

poraneous profit opportunities.

we would expect that this entry and exit would have an effect on
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the future realized profitability of the clusters. Again, the results

seem to be consistent with this prediction. Figure Two shows a plot

of the change in the q equation intercept between the two cross-

sections against the growth rate of the cluster. The correlation

coefficient is —.79, which is again highly significant. Even the 1978

intercepts themselves are negatively correlated with the growth rate,

though somewhat less so (-.56). Thus there is a clear association

between entry (exit) into a cluster and a decrease (increase) in the

average returns.

In interpreting these results, it is important to keep in mind

that we are looking at snapshots, while the true process takes place

in continuous time. It appears as if the firms do not have rational

expectations, because they choose to move toward what will be, on

average, low profit clusters. Such moves may well be rational,

however, because the firms may make sufficient profits during the

transition to make the move worthwhile——and they may well be in the

process of moving on again to greener pastures.

One interesting question raised by these results is whether the

"movers" are fundamentally different as a group from the firms that

stay put. The above results regarding the effects of entry could be

explained without reference to competitive forces if it were the case

that the firms that move are, on average, low profit firms. One way

to get at this is to examine the mean residuals for the two groups

from the ROR and q equations. The two equations for the two cross—

sections yield four such comparisons. In every case, the movers are
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actually higher profit firms (though in three out of the four

comparisons one cannot reject the hypothesis that the groups have the

same mean). Thus, instead of weakening the entry story, this effect

only strengthens it. Entrants are, on average, good firms; despite

this fact, entry is associated with a fall in the average returns for

the group.

VI. CONCLUSION

I have presented an analysis of the effect on the productivity of

R&D of certain factors from the 'supply—side" of innovation. In par-

ticular I find evidence of spillovers of R&D from several indicators

of technological success. Firms whose research is in areas where

there is much research by other firms have, on average, more patents

per dollar of R&D and a higher return to R&D in terms of accounting

profits or market value, though firms with very low own—R&D suffer

lower profits and market value if their neighbors do a lot. All of

these effects remain after controlling for the possibility that the

technological areas themselves are associated with variations in the

productivity of R&O.

I view these results as demonstrating that "there is something to"

the spillover phenomenon. Understanding the implications for

industrial structure and public policy will require more detailed work

that focuses on the variations in the extent of spillovers in dif-

ferent areas, as well as examining the spillovers in a context where

their implications for firms' strategic behavior are recognized.
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The results regarding technological opportunity are less satisfac-

tory. The patent class distribution data clearly contain useful

information about the composition of firms' research activities.

Further, I find clear evidence that firms adjust their technological

positions in response to profit possibilities, and that these adjust-

ments tend to dissipate excess returns. It is not yet clear, however,

to what extent the exogenous variations in profit potentials can

really be attributed to technological opportunity rather than demand—

side effects. More careful examination of the "movements" of firms in

technology space, combined with similar analysis of changes in firms'

market positions, should provide more complete understanding of the

inter—relations among technological opportunity, changes in the struc-

ture of demand, profitability, and firms' actions in positioning their

research and their sales.



NOTES

1• This paper is based on my PhD dissertation (Jaffe (1985)). More
detailed derivations and further empirical results are contained
therein. I am indebted to Zvi Griliches, Richard Caves, Mark
Schankerman and workshop participants at Harvard and the NBER for
many helpful comments. Financial support was provided by the NSF
under grant PRA81-08635 and by an Alfred P. Sloan Doctoral

Dissertation Fellowship.

2 One night ask whether it is the technological nature of the
firm's research program or that of its current production tech-
nology that really matters. To the extent that the two do
differ, it would seen that what matters most for the effects of
technological opportunity and spillovers is the nature of the

research program.

3. There are eight classes in which these firms took no patents,
including "Land vehicles, animal draft" and "Whips and whip

apparatus."

4. classifying the patents by date of application rather date of issue
is preferable because that is when the firm perceived itself to
have generated new knowledge, and because there are long and
variable lags in the patent office's processing of applications.
Recall, however, that the dataset consists of all patents granted
to these firms between 1969 and 1979. Because of the lags in
granting, this includes essentially all of the successful appli-
cations filed between 1968 and 1976, but only some of those
filed 1977—79, and also includes some from 1965—67 and a
sprinkling from before. If we can view the patents we do have
for the incomplete years as a random sample of all applications,
then the incompleteness doesn't matter for this purpose. If,
however, some patent classes have systematically long or short
processing lags, then the early period totals are biased towards
long lag categories and the later period towards short lag
categories.

5. This is the basic approach suggested by Griliches (1979).
Bernstein and Nadiri (1983) neasure spillovers using a cost func-
tion approach and tine series data for the chemical industry. Their
pool variable is the unweighted sum of the R&D of all other firms in

the industry.

. This measure of proximity is purely directional; that is, it is
not directly affected by the length of the F vectors. The
length of the vector depends on the degree of focus or con-
centration of the firm's research interests. (It is actually
the square root of the Herfindahl index of concentration of the

category shares.) Other proximity measures, notably the
Euclidean distance between the vector endpoints, are very sen-
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sitive to the length. For example, all pairs of relatively
diversified firms are "close' bythe Euclidean measure, because
they are close to the origin of the coordinate system, even if
the vectors are orthogonal. If the vectors are all normalized
to have the same length, then (1 — P) is proportional to the
squared Euclidean distance between the endpoints of the vectors
F. and F.

In matrix terms, if n is the number of firms, define F as the
nx49 matrix whose rows are the Fi's. Let FN be the matrix derived
from F by normalizing each row so its sum of squares is unity.
Then the column n-vector S is given by S = (FwFw- I)R where R is
the n—vector of firms' R&D spending.

8 The units of s-j are arbitrary anyway, because there is no
natural normalization of the proximity weights. This does not
matter because I am primarily interested in elasticities. Of
course, if 9 = 0, then this pool is a mere illusion and should
have no direct effect on firm i.

. The algorithm used was derived from the K—means algorithm (McQueen
(1967) and Hartigan (1975)), modified to exploit the multinomial
structure of the elements of the F-vectors. For more detail see
.Jaffe (1985).

For more detail, see Jaffe (1985).

See Pakes and Griliches (1984), Pakes (1985) and Hall, Griliches and
Hausman (1983).

12 Actually, we expect knowledge production to depend on a distributed
lag of R&D, but this lag structure is difficult to identify, and
much of the weight appears to fall on the contemporaneous R&D. See
Pakes and Griliches (1984) and Hall, Griliches and Hausman (1983).

13 Throughout this paper, lower case letters will represent the logs
of variables. 's indicate coefficients of endogenous variables
and y's those of exogenous variables.

14 If there is covariance across firms in the productivity of R&D,
then that is precisely what we mean by patterns of technological
opportunity. Hence we assume that this will be picked up by the

terms 6ic0ic

s. There has been a long debate on the general question of the use-
fulness of patent data as an indicator of inventive output. For pre-
sent purposes, suffice it to say that patents have repeatedly
passed tests of their economic relevance. See Schmookler (1966),
Pakes and Griliches (1984), Bound, et al (1984), Pakes (1985), and
Hirschey (1982).



—31—

For a related approach, see Slu (1964).

17, The concentration and market share effects are not the focus of
this paper, but they are included because they were found to be
significant in Jaffe (1985).

For a similar view, see Hirschey and Wichern (1984). other papers
using q to measure profitability include Griliches (1981),
Lindenburg and Ross (1951) and Pakes (1985).

See Posner (1975).

20, Oemsetz (1973) makes exactly this argument to explain why profits
due to "success" are persistent despite the absence of entry
barriers.

21, This differs from the treatment in Salinger (1984).

22 For more detail on the construction of the capital stock and market
value variables, see Cummins, et al (1984).

23 Because the 1978 market value variable (in the ROR and q
equations) is "wrong," its coefficient is left free and not
included in the tests. Note that each equation also has a free
intercept even in the constrained versions; the test on the
dummy coefficients is testing equality over time of the
deviations from the reference group. The 99.5% critical value
for is 40.0.

24 Note that the cluster assignments of 35% of the firms change bet-
ween the two cross—sections. Given the persistence of firm-
specific effects (discussed below), one might be concerned that the
rejection of stability of the cluster effects is due simply to the
changing populations in each cluster. To check for this, the test
was rerun using the 1972 cluster assignments in both equations.
This yielded x2 's of 52.3 for the ROR equation and 57.8 for the q

20
equation.

25 This number should be taken with a large grain of salt. As noted
above, the units of the pool variable are essentially arbitrary.
The "true" relevant R&D for each firm could be 10 times smaller;
this would not affect the elasticity estimates, but would lead us
to conclude that spence's 0 is .3.

26 (N79 — N72)/N72
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