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1 Introduction

A large recent literature has emphasized the importance of long-run risks—persistent shocks to

growth rates and uncertainty—for explaining a variety of asset market phenomena. Bansal and

Yaron (2004) demonstrated the importance of these features for explaining the high equity premium,

high volatility of stock returns, low and stable risk-free rate and predictability of stock returns.

Subsequent work has used these shocks to explain failures of the expectations hypothesis of the term

structure and uncovered interest rate parity, the return premium on value stocks and small stocks,

the term structure of equity returns, and the volatility of the real exchange rate.1 A comparably large

recent literature has focused on the macroeconomic consequences of these same types of shocks—

news shocks about future growth rates and uncertainty shocks. Beaudry and Portier (2006) argue

that news shocks about future growth rates are an important driver of business cycles.2 Bloom

(2009) highlights the role of uncertainty shocks in generating recessions.3

Bansal and Yaron (2004) propose the following time-series model of consumption growth:

∆ct+1 = µ+ xt + χσtηt+1,

xt+1 = ρxt + σtεt+1,

σ2t+1 = σ2 + γ(σ2t − σ2) + σωωt+1.

(1)

Relative to a simple, random-walk model for consumption, this model adds two novel features: 1)

consumption growth is affected by a persistent process xt, 2) the uncertainty about consumption

growth varies over time in a persistent manner. A difficulty with empirically evaluating this model is

that certain key parameters—e.g., the persistence of xt and σ2t and the volatility of the innovations

to σ2t—are difficult to estimate with 80 years of consumption data from a single country. This has led

authors in the asset pricing literature to focus on calibrations of the long-run risks model designed

to match asset pricing data (Bansal and Yaron, 2004; Bansal et al., 2012).4 A concern with this

approach is that the asset pricing data may be driven by other factors such as habits, rare disasters

and heterogeneous agents.5 More direct evidence for the mechanisms that the long-run risks model

1Important papers include Bansal and Shaliastovich (2010), Bansal, Dittmar, and Lundblad (2005), Hansen,
Heaton, and Li (2008), Malloy, Moskowitz, and Vissing-Jorgensen (2009), Croce, Lettau, and Ludvigson (2010), and
Colacito and Croce (2011). See Bansal, Kiku, and Yaron (2012) for a more comprehensive review of this literature.

2See also Aguiar and Gopinath (2007), Jaimovich and Rebelo (2009), Barsky and Sims (2010), and Schmitt-Grohe
and Uribe (2010).

3See also Bloom et al., 2011, Fernandez-Villaverde et al., 2011, and Basu and Bundick (2011).
4Several papers have also used a combination of macroeconomic and asset pricing data to estimate the parameters

of the long-run risks model (e.g., Bansal, Kiku, and Yaron, 2007; Constantinides and Ghosh, 2009).
5See Campbell and Cochrane (1999), Barro (2006) and Constantinides and Duffie (1996) for influential asset pricing

models based on there features.
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is based on would, therefore, strengthen the case for this model.

We quantify the importance of growth-rate and uncertainty shocks using recently assembled data

on aggregate consumption for a panel of 16 developed countries. We assume that certain features of

consumption dynamics are common across countries. This allows us to estimate key parameters more

accurately. An advantage of our approach is that our estimates are based purely on macroeconomic

data. We therefore avoid the concern that our estimates of growth-rate and uncertainty shocks are

engineered to fit the asset pricing data, as opposed to being a fundamental feature of the aggregate

consumption data.

Our empirical model augments Bansal and Yaron’s model to allow for common variation in

growth-rates and uncertainty across countries as well as country-specific shocks to growth rates and

uncertainty. We identify a substantial common component to expected growth rates in our panel

of developed countries. This common variation in growth rates is highly persistent. It captures

the productivity speed-up and slow-down in the second half of the 20th century as well as several

world recessions, such as those of 1979, 1990 and 2008.6 The country-specific growth-rate pro-

cesses we identify are less persistent, but nevertheless yields movements in consumption that differ

substantially from a random walk.

We also identify large and highly persistent common shocks to macroeconomic uncertainty. Our

world uncertainty process captures the large but uneven rise and fall of volatility that occurred over

the course of the 20th century. The “Great Moderation” identified by McConnell and Perez-Quiros

(2000) is evident in our estimates. But we uncover several additional sharp swings in volatility, most

recently a large increase associated with the “Great Recession.” We estimate substantial variation

across countries in the timing and direction of uncertainty shocks. For example, uncertainty rose

for several decades after World War II (WWII) in the U.K., while it fell in most countries over this

period.

Another novel feature of our empirical model relative to earlier work is that we allow the growth-

rate and uncertainty shocks to be correlated. We find that they are in fact substantially negatively

correlated. In other words, negative shocks to growth rates tend to be associated with shocks that

increase uncertainty. The 1960’s were both a period of high growth and low volatility, while in the

1970’s growth fell and uncertainty rose. More recently, during the recessions of 1990 and particularly

2008 growth fell and our estimates of uncertainty shot up.

Overall our empirical results based on macroeconomic data alone yield parameter values that are

6These findings line up well with those of Cogley (1990), who finds that long-run growth rates of output are more
highly correlated across countries than one-year growth rates for nine of the countries we study.
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quite consistent with calibrations of the long-run risks model designed to match key asset pricing

moments (Bansal and Yaron, 2004; Bansal, Kiku, and Yaron, 2012). We analyze the asset pricing

implications of our estimated model of consumption dynamics within the context of a representative

agent endowment economy—following Lucas (1978) and Mehra and Prescott (1985)—and assume

that agents have Epstein-Zin-Weil preferences (Epstein and Zin, 1989; Weil, 1990). Our model can

match the observed equity premium and risk-free rate if agents have a coefficient of relative risk

aversion (CRRA) of roughly 6.5 and an intertemporal elasticity of substitution (IES) of 1.5. For the

same utility function parameters, the model without growth-rate and uncertainty shocks generates

an equity premium that is more than an order of magnitude smaller. Bansal and Yaron (2004)

match the equity premium with a CRRA of 10. On this metric, our estimates, thus, yield more

long-run risk than their original calibration. Our model also does well when it comes to other key

asset pricing moments such as the volatility of stock returns, the volatility of the risk-free rate,

the Sharpe ratio for equity, the volatility and persistence of the price-dividend ratio on stocks and

predictability of stock returns based on the price-dividend ratio on stocks.

Uncertainty shocks play an important role in generating movements in asset prices in our model.

Shocks that raise expected future uncertainty lead stock prices to fall. And expected returns are

predictably high following stock market declines provoked by such uncertainty shocks. Through this

mechanism, our model is able to help explain the long-term predictability of stock returns (Campbell

and Shiller, 1988; Fama and French, 1988; Hodrick, 1992; Cochrane, 2008; Binsbergen and Koijen,

2010). Our model also implies that price-dividend ratios should forecast volatility and consumption

growth. We show that price-dividend ratios on stocks have substantial predictive power for future

realized volatility of consumption growth in our sample of countries—extending earlier evidence by

Bansal et al. (2005). We also extend related work by Lettau et al. (2004, 2008) that suggests that

changes in macroeconomic volatility can explain a substantial fraction of low-frequency movements

in price-dividend ratios on stocks. In the data, consumption growth is not forecastable by the

price-dividend ratio (Beeler and Campbell, 2012).7 This suggests that investors may not have had

full knowledge of the variation in growth prospects we estimate in real time (Croce, Lettau, and

Ludvigson, 2010).

We analyze the quantitative implications of growth-rate and uncertainty shocks under the as-

sumption that the CRRA is 6.5. This value is substantially lower than the standard parameterization

in the long-run risks literature of CRRA = 10. However, this degree of risk aversion is high rela-

7However, Bansal, Kiku, and Yaron (2012) show that consumption growth is substantially forecastable in a VAR
with the price-dividend ratio, the risk-free rate and consumption growth.
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tive to the values typically estimated in the microeconomics literature (Barsky et al., 1997; Chetty,

2006; Paravisini et al. 2010).8 Our findings, thus, leave ample “room” for additional factors, such

as habit, heterogeneous agents, and rare disasters to play an important role in explaining the level

and volatility of asset returns.

In addition to the work discussed above, our paper is related to several strands of work in macroe-

conomics and finance. A large body of work in macroeconomics has studied the long-run properties

of output (Nelson and Plosser, 1982; Campbell and Mankiw, 1989; Cochrane, 1988; Cogley, 1990)

and variation in the volatility of output growth (McConnell and Perez-Quiros, 2000; Blanchard

and Simon, 2001; Stock and Watson, 2002; Ursua, 2010). Our paper builds heavily on the large

and growing literature on long-run risks as a framework for asset pricing pioneered by Kandel and

Stambaugh (1990). We consider a simple representative agent asset pricing framework with known

parameter values, taking the consumption process as given. Several theoretical papers extend on this

framework, studying the production-based microfoundations for long run risks (e.g., Kaltenbrunner

and Lochstoer, 2010; Kung and Schmid, 2011), the asset pricing implications of parameter learning

(e.g., Collin-Dufresne, Johannes, and Lochstoer, 2012), deviations from the representative agent

framework (e.g., Garleanu and Panageas, 2010), and frameworks where utility depends on more

than just consumption (e.g., Uhlig, 2007).

The paper proceeds as follows. Section 2 discusses the data we use. Section 3 presents the

empirical model. Section 4 discusses our estimation strategy. Section 5 presents our empirical

estimates. Section 6 studies the asset-pricing implications of our model. Section 7 concludes.

2 Data

We estimate our model using a dataset on long-term consumer expenditures recently constructed

by Robert Barro and Jose Ursua, and described in detail in Barro and Ursua (2008).9 Our sample

includes 16 countries: Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy,

8In a static context, an agent with a CRRA of 6.5 would turn down a 50-50 gamble that either raised consumption
by a factor of 1 million or lowered it by 12%. An agent with a CRRA of 10 would turn down a 50-50 gamble that
either raised consumption by a factor of 1 million or lowered it by 8%.

9One limitation of the Barro-Ursua data set is that it does not allow us to distinguish between expenditures on
non-durables and services versus durables. Unfortunately, separate data on durable and non-durable consumption
are not available for most of the countries and time periods we study. For the U.S., non-durables and services are
about 70% as volatile as total consumption over the time period when both series are available. However, since total
consumption and non-durables and services are cointegrated, the difference in volatility is likely smaller for the long-
run risk component of these series. Also, since durable consumption made up a smaller fraction of overall consumption
for most of the twentieth century, this difference was likely smaller on average in our sample than the above noted
U.S. evidence suggests.
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Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom, United States.10

Our consumption data is an unbalanced panel with data for each country starting between 1890 and

1914. Our sample period ends in 2009. Figure 1 plots our data series for France. In analyzing the

asset pricing implications of our model, we also make use of total returns data on stocks and bills

as well as dividend yields on stocks from Global Financial Data (GFD) and data on inflation from

Barro and Ursua (2008).

3 An Empirical Model of Growth-Rate and Uncertainty Shocks

Building on the work of Bansal and Yaron (2004), we model the logarithm of the permanent com-

ponent of per capita consumption in country i at time t + 1—denoted c̃i,t+1—as evolving in the

following way:

∆c̃i,t+1 = µi + xi,t + ξixW,t + ηi,t+1,

xi,t+1 = ρxi,t + εi,t+1,

xW,t+1 = ρWxW,t + εW,t+1.

(2)

Permanent consumption growth is governed by three shocks: a random-walk shock (ηi,t+1), and

two shocks that have persistent effects on the growth rate of consumption—one of which is country

specific (εi,t+1) and one of which is common across all countries (εW,t+1). The persistence of the

effects of the last two of these shocks to consumption growth is governed by AR(1) processes xi,t+1

and xW,t+1, respectively. We allow the different countries in our sample to differ in their sensitivity

to the world growth rate process. This differing sensitivity is governed by the parameter ξi.

The volatility of the three shocks affecting permanent consumption growth is time varying and

governed by two AR(1) stochastic volatility processes:

σ2i,t+1 = σ2i + γ(σ2i,t − σ2i ) + ωi,t+1, (3)

σ2W,t+1 = σ2W + γ(σ2W,t − σ2W ) + ωW,t+1, (4)

where σ2i,t+1 is a country-specific component of stochastic volatility and σ2W,t+1 is a common com-

ponent of stochastic volatility. We refer to the innovations to these stochastic volatility processes—

ωi,t+1 and ωW,t+1—as uncertainty shocks.

The common component of stochastic volatility σ2W,t+1 affects the volatility of all three of the

shocks to permanent consumption. The idea here is that when world uncertainty rises this affects

10We exclude countries in Southeast Asia and Latin America from our sample. Including these countries raises our
estimates of the importance of long-run risks in macroeconomic consumption data.
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the volatility of all shocks to permanent consumption. The country specific component of stochastic

volatility σ2i,t+1, however, only affects the country specific shocks. Variation in this component,

therefore, represents deviations in the uncertainty faced by a particular country from that faced by

countries on average. More specifically, we assume that vart(εW,t+1) = σ2W,t, vart(εi,t+1) = σ2i,t+σ
2
W,t,

and vart(ηi,t+1) = χ2
i (σ

2
i,t +σ2W,t), where χi governs the relative volatility of the two country specific

shocks, εi,t+1 and ηi,t+1.

We allow for correlation between the growth-rate shocks and the uncertainty shocks. This is

meant to capture the possibility that times of high uncertainty may also tend to be times of low

growth. Specifically, we allow the country-specific growth-rate shock εi,t+1 and the shock to the

country specific stochastic volatility process ωi,t+1 to be correlated with a correlation coefficient of

λ. We also allow the world growth-rate shock εW,t+1 and the world uncertainty shocks ωW,t+1 to be

correlated with a correlation coefficient of λW .

To summarize, we assume the following distributions for the random-walk, growth-rate and

uncertainty shocks:

ηi,t+1 ∼ N(0, χ2
i (σ

2
i,t + σ2W,t)), (5) εi,t+1

ωi,t+1

 ∼ N

 0

0

 ,
 σ2i,t + σ2W,t λσω

√
σ2i,t + σ2W,t

λσω
√
σ2i,t + σ2W,t σ2ω

 , (6)

 εW,t+1

ωW,t+1

 ∼ N

 0

0

 ,
 σ2W,t λWσW,tσω,W

λWσW,tσω,W σ2ω,W

 . (7)

To avoid negative variances, we truncate the process for σ2W,t+1 at a small positive value ζ and we

truncate the process for σ2i,t+1 such that σ2i,t+1 > ζ − σ2W,t.11

We allow parameters to vary across countries whenever our dataset contains enough information

to make this feasible. For example, we allow σ2i to differ across countries. This allows some countries

to have permanently higher or lower volatility of macroeconomic shocks than others. However, as

Bansal and Yaron (2004) emphasize, some of the key parameters of the long-run risks model are

difficult to estimate precisely using data from a single country, even with over 100 years of data. For

these parameters, we rely on the panel structure of the data set and assume that they are equal for all

countries in our data set. The parameters we make this pooling assumption for are: the persistence

of the growth-rate components ρ and ρW , the persistence of the stochastic volatility processes γ,

11For world stochastic volatility, this means that when an ωW,t+1 is drawn that would yield a value of σ2
W,t+1 < ζ,

we set σ2
W,t+1 = ζ. This implies that the innovations to the σ2

W,t+1 have a positive mean when σ2
W,t+1 is close to ζ.

For the estimated values of the parameters of our model (baseline estimation), σ2
W,t+1 = ζ about 9.2% of the time.
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the volatility of the uncertainty shocks σ2ω and σ2W,ω, the average volatility of the world stochastic

volatility process σ2W , and the correlations between the growth-rate and uncertainty shocks λ and

λW .12

We allow measured consumption—denoted ci,t—to differ from permanent consumption c̃i,t be-

cause of two transitory shocks:

ci,t+1 = c̃i,t+1 + νi,t+1 + Idi,t+1ψ
d
i,t+1. (8)

The first of these shocks νi,t+1 is mainly meant to capture measurement error. We assume that

this shock is distributed N(0, σ2i,t,ν), where the volatility of this shock is allowed to differ before and

after 1945. By incorporating this break in the volatility of νi,t+1 we can capture potential changes

in national accounts measurement around this time (Romer, 1986; Balke and Gordon, 1989). This

is empirically important since it avoids the possibility that our estimates of the high persistence of

macroeconomic uncertainty arise spuriously from these changes in measurement procedures.

The second shock Idi,t+1ψ
d
i,t+1 captures disasters. We do not estimate the timing of disasters in

this paper. Instead, the dummy variable Idi,t is set equal to one in periods identified as disaster

periods by Nakamura et al. (2010) and during a two year recovery period after each such episode

and zero otherwise.13 The disaster shock ψdi,t is distributed N(µd, 1). We fix the variance of ψdi,t at 1

(a large value), to ensure that this shock “soaks up” all transitory variation in consumption during

the disaster periods. Were we to exclude the disaster shock, we would estimate substantially higher

volatilities of the stochastic volatility processes σ2i,t+1 and σ2W,t+1.

4 Estimation

The model presented in section 3 contains a large number of unobserved state variables, since

it decomposes consumption into several unobserved components. We estimate the model using

Bayesian MCMC methods.14 To carry out our Bayesian estimation we need to specify a set of priors

12Notice also, that we assume that the same parameter (γ) governs the persistence of both the common and
country-specific components of stochastic volatility. We do this because there is insufficient information in our dataset
to estimate a separate parameter for the persistence of world volatility.

13Nakamura et al. (2010)’s results indicate that there is unusually high growth after disasters—i.e., recoveries—but
that this unusually high growth dies out rapidly—it has a half-life of 1 year. By allowing for a two year recovery
period after disasters, we allow the disaster shocks in our model to capture the bulk of the unusually high growth after
disasters and avoid having this growth variation inflate our estimates of long-run risks.

14Our algorithm samples from the posterior distributions of the parameters and unobserved states using a Gibbs
sampler augmented with Metropolis steps when needed. This algorithm is described in greater detail in appendix
A. The estimates discussed in section 5 for the three versions of the model, are based on four independent Markov
chains each with 5 million draws or more with the first 450,000 draws from each chain dropped as “burn-in”. To assess
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on the parameters of the model. We choose highly dispersed priors for all the main parameters of

the model to minimize their effect on our inference. The full set of priors we use is:

ρ ∼ U(0.005, 0.995), ρW ∼ U(0.005, 0.995),

γ ∼ U(0.005, 0.98), σ2W ∼ U(10−8, 10−2),

σ2ω ∼ U(10−10, 10−6), σ2W,ω ∼ U(10−10, 10−6),

λ ∼ U(−0.995, 0.995), λW ∼ U(−0.995, 0.995),

ξi ∼ U(10−4, 10), χ2
i ∼ U(10−4, 25),

σ2i ∼ U(10−8, 10−2), σ2ν,i ∼ U(10−8, 10−2),

µi ∼ N(0.015, 1), µd ∼ N(0, 1),

except that we normalize ξUS = 1 to identify the scale of the world stochastic volatility process.

We assume that the initial values of xi,t, xW,t, σi,t and σW,t are drawn from their unconditional

distributions. We assume that the initial value of c̃it for each country is drawn from a highly

dispersed normal distribution centered on the initial observation for ci,t. It can be shown that the

model is formally identified except for a few special cases in which multiple shocks have zero variance.

5 Empirical Results

Our baseline empirical results are for the full model described in section 3 for the full sample period

1890-2009. We also report results for a simplified version of the model in which we shut down the

world growth-rate and volatility components as well as the correlation between the country-specific

growth-rate and volatility shocks. We refer to this latter model as the “simple model.” Tables 1-3

present parameter estimates for these three cases. For each parameter, we present the prior and

posterior mean and standard deviation. We refer to the posterior mean of each parameter as our

point estimate for that parameter.

We estimate a highly persistent world growth-rate process in our baseline model. The autore-

gressive coefficient for the world growth-rate component is estimated to be ρ = 0.83, implying a

half-life of 3.8 years. The country specific growth-rate process is estimated to be less persist in our

model. The autoregressive coefficient for the country-specific growth-rate component is estimated to

be ρ = 0.56, implying a half-life of 1.2 years. Table 2 compares these estimates to the calibration of

the persistence of the growth-rate component in Bansal and Yaron (2004) and Bansal et al. (2012).

The persistence of our world growth-rate component is estimated to be substantially larger than the

convergence, we employ Gelman and Rubin’s (1992) approach to monitoring convergence based on parallel chains with
“over-dispersed starting points” (see also Gelman, 2004, ch. 11).
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persistence of the growth-rate component in these papers. In the simple model, the persistence of

the (country-specific) growth-rate component is estimated to be ρ = 0.68, which implies a half-life of

1.8 years. This illustrates that allowing for a world growth-rate component is important in capturing

the low-frequency variation in growth in our dataset.

Figure 2 plots the impulse response of consumption to our estimated growth-rate processes as

well as to the random-walk shock. The figure shows clearly how different the effects of the growth-

rate shocks are from those of the random-walk shock. After a country-specific growth-rate shock,

consumption continues to grow for several periods and eventually rises by more than two times the

initial size of the shock with the bulk of the growth occurring in the first 5 years. After a world

growth-rate shock, continuing growth in subsequent periods leads the eventual impact of the shock

on consumption to be six times its initial impact with roughly a third of that growth occurring more

than 5 years after the shock.

Figure 3 presents our estimate of the world growth-rate process. The most striking feature of

this process is its high values in the 1950’s, 60’s and early 70’s. This captures the persistently high

growth seen in many countries in our sample in the 3rd quarter of the 20th century.15 The world

growth-rate process also captures several major recessions such as the 1979 recession following the

spike in oil prices that accompanied the Iranian Revolution, the recession of 1990 following, among

other events, the unification of Germany and the accompanying tightening of German monetary

policy, and the 2008 recession following the sharp fall in house prices in several countries, associated

collapse of major financial institutions and turmoil in financial markets.

We estimate uncertainty shocks to be far more persistent than the growth-rate shocks. Tables

1 reports that our estimate of the autoregressive coefficient for the uncertainty processes in the

baseline estimation is γ = 0.970. This implies that uncertainty shocks in the baseline case have a

half-life of 22.8 years (Table 2). This estimate lies between the 4.4 year calibration of Bansal and

Yaron (2004) and the 57.7 year calibration of Bansal et al. (2012). Uncertainty shocks are also

estimated to be highly persistent in the simple model and in the post-WWII sample. For these

cases, we estimate half-lives of 13.5 years and 18.2 years, respectively.

Figure 4 presents our estimates of the evolution of the world stochastic volatility process (σW,t).

In studying this figure, it is important to keep in mind that our model attributes much of the

volatility in the first half of our sample to disasters and measurement error. We estimate that world

15It is intriguing that this growth spurt so closely followed World War II. It is tempting to infer that this high growth
is due to post-war reconstruction. However, for most countries, the vast majority of the unusually high growth during
this period occurred in years when consumption (and output) had surpassed its pre-WWII trend-adjusted level.
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volatility was high in the early post-WWII period and has been on an uneven downward trend since

then. World volatility fell a great deal in the 1960’s, but was high again in the 1970’s and early

1980’s. It fell sharply in the mid-to-late 1980’s but was relatively high in the early 1990’s — likely

due to the ERM crisis in Europe. From 1995 to 2007 the world experienced a long period of relative

tranquility with volatility falling sharply towards the end of this period to record lows. At the end

of our sample period, world volatility rose sharply once again.

Comparing Figures 3 and 4, it is evident that the world growth-rate process and the world

stochastic volatility process are negatively correlated. Our model allows explicitly for a correlation

between shocks to these processes (λW ). Table 1 reports that our estimate of this correlation is

-0.25. We also estimate a common correlation between the country-specific growth-rate processes

and country-specific volatility processes in our data and find this correlation to also be -0.40. Our

estimates, thus, strongly suggest that periods of high volatility are also periods of low growth.

Despite the large common variation in volatility displayed in Figure 4, we estimate a substantial

amount of heterogeneity in the evolution of volatility across countries. Figure 5 presents our esti-

mates of the evolution of the volatility process for the U.S., the U.K. and Canada (σ2i,t + σ2W,t)
1/2 in

our notation). For the United States our results reflect the “long and large” decline in macroeco-

nomic volatility documented by Blanchard and Simon (2001) and well as the rather abrupt decline

in volatility in the mid-1980’s documented by McConnell and Perez-Quiros (2000) and Stock and

Watson (2002). The experience of the U.K. is quite different. Volatility in the U.K. was lower in

the early part of the 20th century (excluding disasters), but then rose substantially over the first

three decades after WWII. Volatility in the U.K. began falling much later than in the U.S. and

has remained elevated relative to volatility in the U.S. ever since 1960. In contrast, volatility in

Canada fell much more abruptly in the 1950’s and early 1960’s than volatility in the U.S. and was

substantially below U.S. volatility in the 1960’s, 1970’s and early 80’s at which point U.S. volatility

converged down to similarly low levels.

One feature of our results that differs markedly from the calibrations of the long-run risks model

used in Bansal and Yaron (2004) and Bansal et al. (2012) is that the growth-rate shocks we estimate

are substantially more volatile. Recall that the parameter χi governs the relative volatility of the

random-walk shock (ηi,t) and the growth-rate shock (εi,t). Results for this parameter as well as

other country specific parameters are reported in Table 3. For the median country, we estimate χi

to be 0.81, while we estimate a value of 1.16 for the United States.16 Our estimates thus imply that

16Estimates for all 16 countries for our baseline case are presented in the appendix (Table A.1).
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the growth-rate shocks and the random-walk shocks are roughly equally volatile. Bansal and Yaron

(2004) and Bansal et al. (2012) calibrate the growth-rate shock to be only about 5% as volatile as

the random-walk shock.

We allow countries to differ in their sensitivity to the world growth-rate process. The parameter

ξi governs this sensitivity. We fix ξUS = 1, implying that for other countries this parameter can be

interpreted as their sensitivity to world shocks relative to the sensitivity of the U.S. to these shocks.

For the median country, our estimate of ξi = 1.51. In particular, many continental European

countries have values of ξi that are substantially larger than one (see Table A.1). This heterogeneity

in sensitivity to the world-growth rate shock is one source of heterogeneity in risk-premia across

countries in our asset-pricing calculations in section 6. We estimate a substantial decline in the

volatility of transitory shocks σν,i after 1945 in most countries. This change likely reflects in part

changes in national accounts measurement, as we discuss in section 3.17

One potential concern with our results is that they might be influenced our treatment of disasters

in the early part of our sample. Another potential concern is the quality of the data for the

period before World War II may be lower than for the more recent period. To address these

concerns, we estimate our model on data starting in 1950. Tables 1 and 3 report our parameter

estimates for this case. It yields results that are very similar to our baseline estimation along

most dimensions. The main deviation is that in this case we estimate a smaller and less volatile

world stochastic volatility process and larger values of the sensitivity to the world growth-rate shock

for most countries. However, the posterior standard deviation of several key parameters increases

substantially—in particular, the standard deviation of the sensitivity to the world growth-rate—

reflecting the much smaller sample. For the median country, the degree to which consumption

growth is driven by the world growth-rate shock rises since the increase in the sensitivity to the

world growth-rate shock is larger than the decrease in the volatility of the world growth-rate shocks.

5.1 Evaluating Model’s Fit to Reduced Form Statistics

To assess the fit of our model, we consider reduced from statistics on the persistence and cross-

country correlation of consumption growth and the volatility of consumption growth. Table 4

present estimates of autocorrelations, cross-country correlations and variance ratios in the data and

17Ursua (2010) argues—based on methods developed by Romer (1986)—that this change also reflects changes in
macroeconomic fundamentals. Since transitory shocks turn out to be relatively unimportant for asset pricing, the
choice of whether to treat this change as a consequence of measurement or fundamental shocks plays a small role in
our asset pricing analysis.
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in the model. Both for the data and the model, we exclude disasters.18

Consider first the autocorrelation of consumption growth. In the data and the model for the

median country these are positive but relatively small. In all cases, the autocorrelation in the data is

well within the 90% probability interval from the model. For the U.S., the estimated autocorrelations

in the data oscillate around zero.19 Again, the model implies autocorrelations that line up well with

the data. Despite assigning an important role to long-run risks, our estimated model does not

yield excessive short term autocorrelation in the growth rate of consumption because the model also

features transitory shocks to the level of consumption, which generate offsetting negative correlation

in short term growth rates.

The cross-country correlation of consumption growth for the median country is estimated to be

substantial and to grow with the horizon. The median one-year cross-country correlation is 0.23,

while it is 0.44 at the five year horizon and 0.56 at the ten year horizon. The model is able to capture

both the magnitude and the increasing pattern of this cross-country correlation through the world

growth-rate process. The correlation of the U.S. with other countries in our sample is somewhat

smaller than for the median country both in the data and in the model.

Table 4 also reports estimates of variance ratios for consumption growth and the volatility

of consumption growth at the 15 year horizon for the median country and for the United States.

Variance ratios above one indicate reduced form evidence for positive autocorrelation of consumption

growth and volatility. The definition and intuition for these statistics is discussed in more detail

in appendix B. In the data, the variance ratio for consumption growth for the median country is

1.69, substantially above one. The average across country is even higher at 2.28. For the U.S. it is

somewhat smaller but still above one.20 These high variance ratios provide reduced form evidence

for positive autocorrelation of growth rates. Our model captures this well. For the median country,

the model generates a 15-year variance ratio of 2.69. The variance ratio of realized volatility is

substantially larger than one both in the median country and in the United States. Again, our

model is able to capture this feature of the data well.

18For the data, we do this by subtracting from the data the effect of disasters estimated from our model. This yields
series for consumption that smoothly “interpolate” through disasters.

19Estimated on the post-WWII sample, the autocorrelations for the U.S. oscillate less and are slightly negative at
horizons longer than one year.

20We have also calculated these variance ratios including disasters and they are lower. Excluding disasters raises
the variance ratio of consumption growth because disasters are typically followed by significant recoveries (Kilian and
Ohanian, 2002; Nakamura et al., 2010). Ursua (2010) presents a related analysis. Rather than filtering the data the
way we do, he excludes “outlier” growth observations. This simpler procedure also yields substantially larger variance
ratios than raw consumption growth in his broader sample.
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6 Asset Pricing

We analyze the asset pricing implications of the model of aggregate consumption described in sec-

tion 3 within the context of a representative consumer endowment economy with Epstein-Zin-Weil

preferences (Epstein and Zin, 1989; Weil, 1990), For this preference specification, Epstein and Zin

(1989) show that the return on an arbitrary cash flow is given by the solution to the following

equation:

Et

[
βθ
(
Ci,t+1

Ci,t

)(−θ/ψ)
R

−(1−θ)
c,t,t+1 Ri,t,t+1

]
= 1, (9)

where Ri,t,t+1 denotes the gross return on an arbitrary asset in country i from period t to period

t + 1, Rc,t,t+1 denotes the gross return on the agent’s wealth, which in our model equals the en-

dowment stream. The parameter β represents the subjective discount factor of the representative

consumer. The parameter θ = 1−γ
1−1/ψ , where γ is the coefficient of relative risk aversion (CRRA) and

ψ is the intertemporal elasticity of substitution (IES), which governs the agent’s desire to smooth

consumption over time.

We begin by calculating asset prices for two assets: a risk-free one-period bond and a risky asset

we will use to represent equity. The risk-free one-period bond has a certain pay-off of one unit of

consumption in the next period. We follow Bansal, Kiku, and Yaron (2012) in modeling equity as

having a levered exposure to the stochastic component of permanent consumption. Specifically, the

growth rate of dividends for our equity claim is

∆dt+1 = µ+ φ(xi,t + ξixW,t + ηi,t), (10)

where φ is the leverage ratio on expected consumption growth (Abel, 1999). We base our analysis

on the posterior mean estimates for the baseline case from section 5. We therefore abstract from

learning, doubt and fragile beliefs (Timmermann, 1993; Pastor and Veronesi, 2009; Hansen, 2007;

Hansen and Sargent, 2010). These issues are potentially important in our context, given the difficulty

of estimating long-run risks, both for the econometrician, and the economic agent (see, e.g., Croce

et al., 2010).

The asset-pricing implications of our model with Epstein-Zin-Weil (EZW) preferences cannot

be derived analytically. We solve for asset prices in our model using standard grid-based numerical

methods of the type used, e.g., by Campbell and Cochrane (1999) and Wachter (2005).21

21We solve the integral in equation (9) on a grid. Specifically, we start by solving for the price-dividend ratio for
a consumption claim. In this case we can rewrite equation (9) as PDRC

t = Et[f(∆Ct+1, PDR
C
t+1)], where PDRC

t

denotes the price dividend ratio of the consumption claim. We specify a grid for PDRC
t over the state space. We

13



We choose a subjective discount factor of β = 0.990 to fit the observed average risk-free rate in

our baseline specification. We choose a CRRA of γ = 6.5 to match the U.S. equity premium in our

baseline specification. We follow the long-run risks literature in choosing an IES of ψ = 1.5 (Bansal

and Yaron, 2004; Bansal et al., 2012).22 We follow Bansal and Yaron (2004) in setting leverage of

φ = 3. We calculate asset prices for the non-disaster component of consumption. We do this to

focus attention on the asset-pricing implications of long-run risks. We present asset pricing results

for the post-WWII estimation of our model—a sample without major disasters in our sample of

countries—in an appendix (Table A.2).23

6.1 The Effects of Long-Run Risks on Asset Prices

Figure 6 presents impulse responses for the return on equity and the risk-free rate to a world

growth-rate shock. A positive world growth-rate shock yields a large positive return on equity on

impact. This positive return reflects the balance of two opposing forces. On the one hand, the shock

raises expected future dividends on equity, which pushes up stock prices. On the other hand, since

consumption growth is expected to be high for some time, agents’ desire to save falls, which pushes

down all asset prices. If agents are sufficiently willing to substitute consumption over time (IES>1),

as we assume, the first of these effects is stronger than the second for equity and the price of equity

rises on impact. In the periods after the shock, returns on equity and the risk-free rate are higher

than average because of agents’ reduced desire to save.

Figure 7 presents impulse responses for the return on equity and the risk-free rate to an uncer-

tainty shock. A shock that increases economic uncertainty yields a large negative return on equity

on impact. As with the growth-rate shock, there are two opposing forces that together determine

the response of stock prices. The increase in economic uncertainty makes stocks riskier — raises

the equity premium. This tends to depress their value. However, the increase in uncertainty also

increases the desire of agents to save. This tends to raise the price of all assets. With CRRA>1 and

IES>1, the first force is stronger than the second and the price of stocks falls on impact (Campbell,

then solve numerically for a fixed point for PDRC
t as a function of the state of the economy on the grid. We can then

rewrite equation (9) for other assets as PDRt = Et[f(∆Ct+1,∆Dt+1, PDR
C
t+1, PDRt+1)], where PDRt denotes the

price dividend ratio of the asset in question and ∆Dt+1 denotes the growth rate of its dividend. Given that we have
already solved for PDRC

t , we can solve numerically for a fixed point for PDRt for any other asset as a function of the
state of the economy on the grid.

22There is little agreement in the macroeconomics and finance literatures on the appropriate value for the IES. Hall
(1988) and Campbell (1999) estimate the IES to be close to zero. However, Hansen and Singleton (1982), Bansal and
Yaron (2004), Gruber (2006), Hansen et al. (2007) and Nakamura et al. (2010) argue for values of the IES above one.

23The asset pricing implications of disaster risk has been the focus of a large recent literature (see, e.g., Barro, 2006,
and Nakamura, et al., 2010).
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1993). In the periods after the shock, the equity premium remains elevated because uncertainty has

risen. A one standard deviation shock to ωW,t raises the equity premium by roughly 0.6% in the

period after the shock.

Notice that in our model neither the growth-rate shock nor the uncertainty shock affect con-

sumption growth on impact. For an agent with power utility, these shock would therefore not affect

marginal utility on impact. This implies that agents with power utility would not demand a risk

premium on stocks as compensation for exposure to these shocks. With EZW utility, however,

marginal utility depends not only on current consumption but also on news about future consump-

tion.24 In equation (9), this is captured by the presence of the return on wealth—Rc,t+1. Since

negative growth-rate shocks and shocks that increase uncertainty imply negative returns on wealth

on impact, they increase marginal utility. Households are, thus, willing to pay a premium for assets

that provide insurance against growth-rate and uncertainty shocks. Conversely, they demand a risk

premium for holding assets that expose them to these shocks.

6.2 Risk-Premia and Return Volatility

Table 5 presents key asset pricing statistics in the data and for our baseline specification of the model.

The table presents results for the U.S. and for the median country in our sample. With a CRRA

equal to 6.5, our model can match the observed equity premium for the United State. This contrasts

sharply the results of Mehra and Prescott (1985). They show that a model without long-run risks

and with power utility generates equity premia that are more than 10 times too small for values of

the CRRA below 10. Our result furthermore contrasts the results of Bansal and Yaron (2004) and

Bansal et al. (2012), who match the equity premium for a CRRA of 10. On this metric, the amount

of long-run risks we estimate is, thus, larger than that implied by the original calibrations of the

long-run risks model. The estimated model also does well along a number of other key dimensions.

It generates highly volatile returns on equity. The standard deviation of equity returns for the U.S.

is 18% in the model versus 17% in the data. The model also matches the low level of the risk-free

rate seen in that data and it generates a very stable return on the risk-free asset. The standard

deviation of the risk-free rate in the model is 1.6% for the U.S. The standard deviation of ex post

real returns on U.S. T-bills (our empirical measure of the risk-free rate) is 3.3%. Since the model

does not incorporate inflation risk, it is appropriate that the model yields a lower number than the

24This implication of EZW preferences is illustrated elegantly by the decomposition developed by Borovicka et al.
(2011).
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data along this dimension. The model can also generate large and very persistent movements in the

price-dividend ratio on stocks. For the U.S., the standard deviation of the price-dividend ratio in

the model is 0.3 and its first-order autocorrelation is 0.85, while these statistics are 0.4 and 0.9 in

the data, respectively.25

Table 6 presents results on the equity premium and the risk free rate for all 16 countries in our

sample. For the equity premium, we report results for several “counter-factual” parameterizations.

This sheds light on the relative importance of the different features we introduce in our model . The

first set of results are for the full model (baseline case). It generates equity premia ranging from

8-23% with an average equity premium of 13.7%. The second case preserves the baseline parameter

values of the full model except that it eliminates the uncertainty shocks. This “constant volatility”

model yields equity premia that are roughly half as large as the full model. This illustrates the

important role uncertainty shocks play for asset prices in our model. In the the third case eliminates

all long-run risks and re-calibrate the volatility of the random-walk shocks to match the volatility of

∆c̃i,t. This case corresponds closely to the model considered by Mehra and Prescott (1985), and we

refer to this as the Mehra-Prescott model. It generates equity premia that are more than an order

of magnitude smaller than those generated by the full model. Clearly, growth-rate and uncertainty

shocks of the persistence and magnitude we estimate in the data have a first order effect on the

equity premium.

We estimate a negative correlation between growth-rate and uncertainty shocks—i.e., negative

growth-rate shocks tend to be associated with shocks that raise economic uncertainty. Since negative

growth-rate shocks and shocks that increase uncertainty both raise marginal utility, being hit by

both at the same time is particularly painful for the representative agent. This implies that the

negative correlation between these two shocks contributes positively to the equity premium in our

model. We have calculated asset prices for a case with λ = λW = 0 but keeping other parameters

unchanged. This yields an equity premium that is 0.8 percentage points smaller for the U.S. than

our baseline case.

Finally, we analyze the term structure implications of our model. We approximate long-term

bonds by a perpetuity with coupon payments that decline over time by 10% per year. This yields

25Table A.2 presents analogous results to Table 5 for our two alternative specifications. The simple model generates
a slightly smaller equity premium than the baseline case—roughly 4%. This is due to the fact that the simple
model doesn’t capture the persistent component of consumption growth that the baseline case captures with the world
component. The simple model matches the equity premium for a CRRA of roughly 10. The post-WWII case generates
very similar results for the U.S. but a larger equity premium for the median country. This is due to the very high
value of the sensitivity to the world growth-rate shock that is estimated for the median country.
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a bond with a duration similar to that of 10-year coupon bonds. In our model, the term-premium

for this real long-term bond is -2.0%. Piazzesi and Schneider (2006) document that the real yield

curve in the United Kingdom has been downward sloping, while it has been mostly upward sloping

in the United States. They caution, however, that this evidence is hard to assess because of the

short sample and poor liquidity in the U.S. TIPS market.26

6.3 Predictability of Returns, Consumption and Volatility

A large literature in finance has argued that a high price-dividend ratio predicts low stock returns

(Campbell and Shiller, 1988; Fama and French, 1988; Hodrick, 1992; Cochrane, 2008; Binsbergen and

Koijen, 2010).27 Leading asset pricing models differ in their implications about return predictability.

In the long-run risks model, uncertainty shocks cause variation in the price-dividend ratio on stocks

that forecasts stock returns. More generally, variation in the price-dividend ratio on stocks comes

from two sources in the long-run risks model: growth-rate shocks and uncertainty shocks. This

implies that the price-dividend ratio on stocks should forecast not only future returns on stocks but

also future volatility and future consumption growth.

Table 7 presents results on the predictability of five-year excess returns on equity, realized volatil-

ity and consumption growth in our estimated models. We estimate equations of the following form

yi,t+5 = αi + βipdi,t + εi,t+5, (11)

where pdi,t denotes the logarithm of the price-dividend ratio on equity and yi,t+5 is one of three

things: the five-year excess return on stocks, five-year realized volatility or five-year consumption

growth.28 We estimate these regressions in the data for the countries in our sample, and we run the

same regressions on simulated datasets of the same length (120 years) from our baseline estimation

26Building on Alvarez and Jermann’s (2005) analysis of the implication of the term structure for the properties of
the stochastic discount factor, Koijen et al. (2010) emphasize that the positive autocorrelation of growth rates in the
long-run risk model implies that the model has a downward sloping term structure of real bond yields. Binsbergen et
al. (2010a,b) show that short term dividend strips on the aggregate stock market have substantially higher expected
returns than the stock market as a whole. (The price of a k-year dividend strip is the present value of the dividend
paid in k years.) They point out that this fact is difficult to match using the original calibration of the long-run risk
model proposed by Bansal and Yaron (2004). Croce, Lettau, and Ludvigson (2010) show that a model with long-run
risk shocks that agents do not observe directly but must instead learn about over time can generate high excess returns
on short-term assets relative to long-term assets.

27The statistical significance of return predictability has been hotly debated (see, e.g., Stambaugh, 1999; Ang and
Bekaert, 2007). Recent work by Lewellen (2004) and Cochrane (2008) has exploited the stationarity of price-dividend
ratios and the lack of predictability of dividend growth to develop more powerful tests of return predictability. These
tests reject the null of no predictability of returns at the 1-2% level.

28We follow Bansal et al. (2005) in using the absolute value of the residual from an AR(1) regression for consumption
growth as our measure of realized volatility and summing this over five years.
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and our simple model. We report the median from 1000 such simulations, as well as the 5% and

95% quantiles. For comparison, Table 7 also presents the degree of predictability of these variables

in the models of Bansal and Yaron (2004) and Bansal et al. (2012).

The first panel of Table 7 presents results on the predictability of excess returns. Our point

estimates imply a large degree of predictability of returns in the U.S. data. The regression coefficient

on the price-dividend ratio is -0.41 and the R-squared of the regression is 0.24. We estimate less

predictability of returns for the median country in our sample—regression coefficient of -0.30 and

R-squared of 0.11. Our baseline case generates a median regression coefficient of -0.40 and a median

R-squared of 0.10. The simple model yields similar results. Our model can thus account for a large

fraction of the predictability of excess 5-year stock returns seen in the data. Our estimated model

generates more predictability of excess stock returns that do the calibrations of the long-run risks

model in Bansal and Yaron (2004) and Bansal et al. (2012).

The second panel of Table 7 presents results on the predictability of volatility. We find that the

price-dividend ratio on stocks has substantial predictive power for realized volatility of consumption

growth. For the U.S., the regression coefficient is -0.81 and the R-squared 0.32. For the median

country in our sample, predictability of volatility is smaller, but nevertheless substantial—regression

coefficient of -0.38 and an R-squared of 0.19. These results are in line with earlier results by Bansal

et al. (2005). Our model generates predictability of volatility that lines up well with the data. The

regression coefficients for our baseline case is -0.37 and the R-squared is 0.07, while for the simple

model we get a regression coefficient of -0.91 and an R-squared of 0.12. The values for the U.S. and

for the median country are well within the 90% confidence interval we construct.

Our model also implies a low frequency link between stock prices and macroeconomic uncer-

tainty. Figure 8 plots our estimate of the evolution of economic uncertainty in the U.S. along with

the dividend-price ratio on stocks. The figure illustrates the comovement between economic uncer-

tainty and the value of the stock market emphasized by Lettau et al. (2008). Figure 9 presents

analogous plots for all countries in our sample. This extends the results of Lettau et al. (2004)

by including more countries and longer sample periods for several countries. The comovement of

economic uncertainty and stock prices varies across countries and time. It is not very strong for

most countries before 1970, but is stronger after this.

The third panel of Table 7 presents results on the predictability of consumption growth. The

price-dividend ratio on stocks has little predictive power for consumption growth both in the U.S.

or in the median country in our sample. These results extends earlier work by Beeler and Campbell
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(2012). Our estimated version of the long-run risks model generates more predictability of consump-

tion growth than we see in the data. In the data, the regression coefficients and R-squared for these

regressions are less than 0.05, while it is 0.29 in our baseline case and 0.18 in our simple model. Our

estimated model generates a degree of predictability of consumption growth that is intermediate

between that in Bansal and Yaron (2004) and Bansal et al. (2012).

6.4 The Volatility of Real Exchange Rates

An important finding from our empirical analysis is that there is a large amount of comovement of

growth-rates and uncertainty across countries. This has important implications for real exchange

rates. In a world with complete markets, the log change in the real exchange rate between two

countries is

∆et = m∗
t −mt, (12)

where et denotes the log real exchange rate (home goods price of foreign goods), and mt and mf
t are

the logarithm of the home and foreign stochastic discount factors, respectively. The annual standard

deviation of changes in real exchange rates has been roughly 10% in the post-Bretton Woods period

(see Table 8). However, Hansen and Jagannathan (1991) show that σ(Mt)R
f
t ≥ E(Ret )/σ(Ret ),

where Mt is the level of the stochastic discount factor and Re is the excess return on the stock

market. From Table 5 we can see that Rf ' 1.01, E(Ret ) ' 7%, and σ(Ret ) ' 18%, which implies

σ(Mt) ≥ 40%. Brandt, Cochrane, and Santa-Clara (2006) point out that this logic combined with

equation (12) implies that either mt and m∗
t are highly correlated—i.e., there is a high degree of

international risk sharing—or exchange rates are not as volatile as the theory predicts. In addition,

the low degree of comovement of consumption growth across countries at short horizons suggests

that stochastic discount factors are not highly correlated. Colacito and Croce (2011) refer to this

as the international equity premium puzzle.

The common components of growth-rates and uncertainty that we estimate have the potential

to resolve this puzzle. They generate comovement in the stochastic discount factors across countries

that is not evident from the short-run comovement of consumption growth. Table 8 presents the

standard deviation implied by our estimated model of annual changes in the bilateral real exchange

rate versus the United State for each country in our sample. The table also presents a counter-

factual for this statistic based on the same simulated data from our estimated model but ignoring

the correlation between the stochastic discount factors of each country and the United States that

is implied by our model—i.e., simply adding the variances of the two stochastic discount factors and
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taking a square root. We see that the presence of common long-run risk shocks in our model lowers

the volatility of the real exchange rate by roughly a factor of two relative to what it would be if the

stochastic discount factors were uncorrelated. Our model can therefore account for a large part of

the discrepancy between the observed volatility of the real exchange rate and the volatility implied

by a model in which marginal utility across countries is uncorrelated. Our results complement those

of Colacito and Croce (2011), who carry out a related exercise for the exchange rate of the U.S.

versus the U.K.

7 Conclusion

The long-run risks model is one of the leading frameworks of consumption-based asset pricing.

Because the model is difficult to estimate using macroeconomic data alone, most previous estimation

approaches use a combination of macroeconomic and asset price data to estimate the model. The

key difficulty is obtaining accurate estimates of persistent fluctuations in macroeconomic growth

and uncertainty using data from a single country. Our model of consumption dynamics allows for

country-specific variation in the average level of volatility across countries, but pools across countries

in estimating the persistence of growth-rate and uncertainty shocks as well as the volatility of shocks

to uncertainty. This allows us to estimate long-run risk parameters using macroeconomic data alone.

We can thereby avoid any reliance of our estimates on a particular asset pricing model, and the

concern that our estimates derive from a need to fit the asset pricing data.

Our estimates suggest that growth-rate and uncertainty shocks play an important role in as-

set pricing. We identify a large and persistent world growth-rate component and a less persistent

country-specific growth-rate process. Shocks to uncertainty are highly persistent and yield substan-

tial variation in uncertainty over time. With EZW preferences, current marginal utility depends

not only on current consumption growth but also on news about future growth and uncertainty.

With a CRRA>1 and IES>1, shocks that lower future expected growth or raise future economic

uncertainty raise current marginal utility and cause stock prices to fall. This generates a substantial

equity premium, high volatility of equity returns, predictability as well as a low and stable risk-free

rate.
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A Model Estimation

We employ a Bayesian MCMC algorithm to estimate our model. More specifically, we employ

a Metropolized Gibbs sampling algorithm to sample from the joint posterior distribution of the

unknown parameters and variables conditional on the data. The full probability model we employ

may be denoted by

f(Y,X,Θ) = f(Y,X|Θ)f(Θ),

where Y ∈ {ci,t, Idi,t+1} is the set of observable variables for which we have data,

X ∈ {zi,t, xi,t, xW,t, σ2i,t+1, σ
2
W,t+1}

is the set of unobservable variables, and

Θ ∈ {ρ, ρW , γ, σ2W , σ2ω, σ2W,ω, λ, λW , ξi, χi, σ2i , σ2ν,i, µi, µd, }

is the set of parameters. From a Bayesian perspective, there is no real importance to the distinction

between X and Θ. The only important distinction is between variables that are observed and those

that are not. The function f(Y,X|Θ) is often referred to as the likelihood function of the model,

while f(Θ) is often referred to as the prior distribution. Both f(Y,X|Θ) and f(Θ) are fully specified

in sections 3 and 4 of the paper. The likelihood function may be constructed by combining equations

(2)-(4) and (8), the distributional assumptions for the shocks in these equations detailed in section

3 and the assumptions about the distributions of zi,t, xi,t, xW,t, σi,t, and σW,t for the initial period

for each country that are detailed in section 4. The prior distributions are described in detail in

section 4.

The object of interest in our study is the distribution f(X,Θ|Y ), i.e., the joint distribution of

the unobservables conditional on the observed values of the observables. For expositional simplicity,

let Φ = (X,Θ). Using this notation, the object of interest is f(Φ|Y ). The Gibbs sampler algorithm

produces a sample from the joint distribution by breaking the vector of unknown variables into

subsets and sampling each subvector sequentially conditional on the value of all the other unknown

variables (see, e.g., Gelman et al., 2004, and Geweke, 2005). In our case we implement the Gibbs

sampler as follows.

1. We derive the conditional distribution of each element of Φ conditional on all the other elements

and conditional on the observables. For the ith element of Φ, we can denote this conditional

distribution as f(Φi|Φ−i, Y ), where Φi denotes the ith element of Φ and Φ−i denotes all but
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the ith element of Φ. In most cases, f(Φi|Φ−i, Y ) are common distributions such as normal

distributions or gamma distributions for which samples can be drawn in a computationally

efficient manner. In cases where the Gibbs sampler cannot be applied, we use the Metropolis

algorithm to sample values of f(Φi|Φ−i, Y ).29

2. We propose initial values for all the unknown variables Φ. Let Φ0 denote these initial values.

3. We cycle through Φ sampling Φt
i from the distribution f(Φi|Φt−1

−i , Y ) where

Φt−1
−i = (Φt

1, ...,Φ
t
i−1,Φ

t−1
i+1, ...,Φ

t−1
d )

and d denotes the number of elements in Φ. At the end of each cycle, we have a new draw Φt.

We repeat this step N times to get a sample of N draws for Φ.

4. It has been shown that samples drawn in this way converge to the distribution f(Φ|Y ) under

very general conditions (see, e.g., Geweke, 2005). We assess convergence and throw away an

appropriate burn-in sample.

In practice, we run four such “chains” starting two from one set of initial values and two from

another set of initial values. We choose starting values that are far apart in the following way: For

one chain, we set the initial values of xi,t = 0 for all i and t. For the other chain, we set the initial

values of xi,t = ∆ci,t for all i and t.

Given a sample from the joint distribution f(Φ|Y ) of the unobserved variables conditional on

the observed data, we can calculate any statistic of interest that involves Φ. For example, we can

calculate the mean of any element of Φ by calculating the sample analogue of the integral∫
Φif(Φi|Φt−1

−i , Y )dΦi.

29The Metropolis algorithm samples a proposal Φ∗
i from a proposal distribution Jt(Φ

∗
i |Φt−1

i ). This proposal dis-
tribution must by symmetric, i.e., Jt(xa|xb) = Jt(xb|xa). The proposal is accepted with probability min(r, 1) where
r = f(Φ∗

i |Φ−i, Y )/f(Φt−1
i |Φ−i, Y ). If the proposal is accepted, Φt

i = Φ∗
i . Otherwise Φt

i = Φt−1
i . Using the Metropolis

algorithm to sample from f(Φi|Φ−i, Y ) is much less efficient than the standard algorithms used to sample from known
distributions such as the normal distribution in most software packages. Intuitively, this is because it is difficult to
come up with an efficient proposal distribution. The proposal distribution we use is a normal distribution centered at
Φt−1

i .
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B Variance Ratios

Variance ratios are a simple tool to quantify the persistence of shocks to aggregate consumption

(Cochrane, 1988). The k-period variance ratio for consumption growth is defined as the ratio of the

variance of k-period consumption growth and 1-period consumption growth divided by k:

VRi,k =
1

k

var
(∑k−1

j=0 ∆ci,t−j

)
var(∆ci,t)

. (13)

The intuition for this statistic comes from the fact that for a simple random-walk process var(ci,t −

ci,t−k) is equal to k times var(ci,t−ci,t−1), implying that the variance ratio for such a process is equal

to one for all k. For a trend-stationary process, the variance ratio is less than one and falls toward

zero as k increases. However, for a process that has persistent growth-rate shocks—i.e., positively

autocorrelated growth rates—the variance ratio is larger than one.

Bansal and Yaron (2004) introduce a variance ratio statistic for assessing the persistence of

shocks to volatility. They first compute the innovations to consumption growth ui,t as the residuals

from an AR(5) regression and use the absolute value of these innovations |ui,t| as a measure of

realized volatility of consumption growth. They then construct variance ratios for |ui,t|,

VRu
i,k =

1

k

var
(∑k−1

j=0 |ui,t−j |
)

var(|ui,t|)
. (14)

This statistic provides a rough measure of the persistence of stochastic volatility. As with the

variance ratio for consumption growth, if this variance ratio is above one, it indicates that uncertainty

shocks have persistent effects on volatility—i.e., high volatility periods are “bunched together”

leading to a high value of the variance in the numerator.
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Prior Baseline Simple Model Post-WWII

Persistence:

Country-Specific Growth-Rate Shocks (ρ) 0.500 0.565 0.682 0.622
(0.286) (0.046) (0.038) (0.060)

World Growth-Rate Shocks (ρW) 0.500 0.832 -- 0.832
(0.286) (0.077) (0.093)

Stochastic Volatility (γ) 0.493 0.970 0.950 0.963
(0.281) (0.011) (0.028) (0.024)

Standard Deviations:
Mean of World Stoch. Vol. Process (σW) 0.0667 0.0053 -- 0.0032

(0.0236) (0.0028) (0.0025)
Country-Specific Stoch. Vol. Shock (σω) 0.000667 0.000028 0.000054 0.000037

(0.000236) (0.000007) (0.000015) (0.000011)
World Stoch. Vol. Shock (σω,W) 0.000667 0.000024 -- 0.000007

(0.000236) (0.000009) (0.000007)

Correlations:
Country-Specific (λ) 0.00 -0.40 -- -0.34

(0.57) (0.17) (0.20)
World (λW) 0.00 -0.25 -- -0.32

(0.57) (0.28) (0.32)
The table reports prior and posterior means of the parameters with prior and posterior standard deviations in parentheses.
The "Baseline" case is for our full model estimated on data from 1890-2009. The "Simple Model" case is for our simple
model estimated on data from 1890-2009. The "Post-WWII" case is for our full model estimated on data from 1950-2009.

TABLE I
Estimates for Pooled Parameters

Country-Specific 
(xi,t)

World            
(xW,t)

Baseline 1.2 3.8 22.8
Simple Model 1.8 -- 13.5
Post-WWII 1.5 3.8 18.2

Bansal and Yaron (2004) 2.7 -- 4.4
Bansal, Kiku and Yaron (2012) 2.3 -- 57.7

TABLE II
Half-Life of Growth-Rate and Uncertainty Shocks 

Half-Life in Years

Growth-Rate Process Uncertainty       
Process           

(σ2
i,t and σ2

W,t)



Median U.S. Median U.S. Median U.S.

Rel. St. Dev. of Random Walk Shock (χi) 3.38 0.81 1.16 0.87 0.99 1.09 1.09
(1.18) (0.45) (0.44) (0.45) (0.50) (0.60) (0.60)

Sensitivity to Common Shocks (ξi) 5.00 1.51 1.00 -- -- 4.65 1.00
(2.89) (0.55) (0.00) -- -- (1.62) (0.00)

Average Growth (μi) 0.015 0.016 0.018 0.016 0.017 0.022 0.021
(1.00) (0.008) (0.006) (0.004) (0.004) (0.015) (0.006)

Standard Deviations:
Average Stochastic Volatility (σi) 0.067 0.009 0.009 0.013 0.012 0.011 0.011

(0.024) (0.004) (0.004) (0.005) (0.005) (0.004) (0.004)
Post-1945 Transitory Shock (σνi) 0.067 0.004 0.003 0.004 0.004 0.003 0.003

(0.024) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002)
Pre-1945 Transitory Shock (σνi) 0.067 0.024 0.023 0.022 0.023 -- --

(0.024) (0.005) (0.005) (0.005) (0.005) -- --

TABLE III

Prior

The table reports prior and posterior means of the parameters with prior and posterior standard deviations in parentheses. The "Baseline" case is for our
full model estimated on data from 1890-2009. The "Simple Model" case is for our simple model estimated on data from 1890-2009. The "Post-WWII"
case is for our full model estimated on data from 1950-2009. "Median" refers to the median country. In other words, we report the value of each statistic
- both means and standard deviations - for the country that has the median value of that statistic.

Baseline Simple Model Post-WWII

Estimates for Country-Specific Parameters



Median [5%, 95%] Median [5%, 95%]

AC(1) 0.13 0.20 [-0.05,0.47] -0.08 0.04 [-0.29,0.28]

AC(2) 0.14 0.29 [0.06,0.48] 0.15 0.16 [-0.03,0.36]

AC(3) 0.04 0.21 [0.00,0.42] -0.21 0.11 [-0.07,0.31]

AC(4) 0.07 0.15 [-0.05,0.37] 0.28 0.08 [-0.10,0.28]

AC(5) 0.00 0.11 [-0.09,0.33] -0.09 0.06 [-0.14,0.25]

AC(10) 0.12 0.01 [-0.20,0.23] 0.12 0.01 [-0.21,0.18]

CrossC(1) 0.23 0.34 [0.11,0.56] 0.18 0.27 [0.06,0.47]

CrossC(5) 0.44 0.65 [0.30,0.84] 0.43 0.55 [0.24,0.79]

CrossC(10) 0.56 0.73 [0.31,0.91] 0.54 0.64 [0.22,0.87]

VR(15) ΔC 1.62 2.69 [1.02, 5.47] 1.29 1.69 [0.75, 3.65]

VR(15) Vol 2.14 1.72 [0.66, 3.62] 1.80 1.87 [0.76, 3.96]

The Table reports autocorrelations, cross-country correlations and variance ratios for the real-world data and simulated
data from the model (excluding disasters in both cases). The first row presents the autocorrelation of one year
consumption growth. The second through sixth rows present the autocorrelation of two year through five year and ten
year consumption growth. The next three rows present cross-country correlations of one, five and ten year consumption
growth. The last two rows present the fifteen year variance ratio of consumption growth and the fifteen year variance
ratio of the realized volatility of consumption growth. For the cross-country correlations, the median country results are
the median of the 120 cross-country correlations across our 16 countries. For the results based on data from the model,
we simulate 500 datasets from the model of the same size as the actual data and calculate all statistics for each and report
the median across samples along with the 5% and 95% quantiles for each statistic. For the median country, we report the
value of each statistic - median, 5%, 95% quantiles - for the country that has the median value of that statistic.

Properties of Consumption Growth
TABLE IV

Data

United States
Model Model

Median Country

Data

Median U.S. Median U.S.

E(Rm-Rf) 6.87 7.10 11.07 7.41

σ(Rm-Rf) 21.82 17.37 21.69 17.88

E(Rm-Rf)/σ(Rm-Rf) 0.32 0.41 0.51 0.41

E(Rm) 9.10 8.23 11.83 8.83

σ(Rm) 21.99 17.89 21.65 17.84

E(Rf) 1.43 1.13 0.66 1.41

σ(Rf) 4.57 3.33 2.26 1.74

E(p-d) 3.30 3.30 2.58 2.94
σ(p-d) 0.41 0.40 0.36 0.30
AC1(p-d) 0.85 0.90 0.85 0.85

Columns labeled as "Median" report the result for the median country for each statistic. Columns labeled as "U.S."
report these statistics for the United States. For the model, we report the value of these statistics from a sample of
length 1 million years. For returns the statistics we report are the unconditional average of the level of the ex-post
real net return in percentage points (i.e., multiplier by 100). Rm denotes the return on equity (the market), while Rf 

denotes the return on a short term nominal government bond (risk-free rate). The last three rows report statistics
for the logarithm of the price-dividend ratio on equity. These results are for a CRRA = 6.5, IES = 1.5 and
subjective discount factor of β = 0.99.

TABLE V
Asset Pricing Statistics

Data Baseline Model



Data
Full    

Model
Constant 
Volatility

Mehra-
Prescott

Data
Full    

Model
Australia 0.090 0.083 0.036 0.005 0.007 0.010
Belgium 0.068 0.137 0.064 0.006 0.012 0.000
Canada 0.061 0.098 0.045 0.008 0.013 0.009
Denmark 0.043 0.094 0.045 0.005 0.028 0.010
Finland 0.128 0.193 0.105 0.014 -0.001 -0.006
France 0.078 0.123 0.056 0.006 -0.018 0.005
Germany 0.101 0.110 0.053 0.008 -0.027 0.007
Italy 0.061 0.153 0.088 0.008 -0.008 0.000
Netherlands 0.067 0.147 0.072 0.007 0.007 0.001
Norway 0.058 0.111 0.052 0.007 0.013 0.008
Portugal 0.089 0.187 0.094 0.016 0.001 -0.005
Spain 0.051 0.221 0.116 0.011 0.006 -0.011
Sweden 0.073 0.099 0.046 0.004 0.019 0.011
Switzerland 0.056 0.084 0.037 0.002 0.009 0.009
United Kingdom 0.054 0.104 0.048 0.005 0.013 0.007
United States 0.075 0.074 0.033 0.005 0.009 0.014

Average 0.072 0.126 0.062 0.007 0.005 0.004
Median 0.067 0.111 0.053 0.006 0.008 0.007
The table presents asset pricing statistics based on simulated data from our model as well as historical data from the
world. The "Constant Volatility" model is version of the full model where we "turn off" the stochastic volatility by
setting the volatility of the uncertainty shocks ω and ωW to zero but keep other parameters at their estimated values

for the full model. For the "Mehra-Presott" model we "turn off" both the stochastic volatility and the growth-rate
shocks and then we recalibrate the random-walk shocks based on the volatility of zit in the full model. These results

are for a CRRA = 6.5, IES = 1.5 and subjective discount factor of β = 0.99.

TABLE VI
The Equity Premium and Risk-Free Rate Across Countries and Models

Risk-Free RateEquity Premium



BY BKY
Median U.S. Median 90% Prob. Int. Median 90% Prob. Int. Median Median

5 Year Excess Returns on Price Dividend Ratio

β -0.30 -0.41 -0.40 [-0.92, 0.06] -0.44 [-0.96, 0.10] -0.23 -0.39

R2 0.11 0.24 0.10 [0.00, 0.36] 0.09 [0.00, 0.33] 0.03 0.05

5 Year Realized Volatility on Price-Dividend Ratio

β -0.38 -0.81 -0.37 [-1.12, 0.23] -0.91 [-1.98, -0.07] -0.10 -0.83

R2 0.19 0.32 0.07 [0.00, 0.35] 0.12 [0.00, 0.40] 0.02 0.13

5 Year Consumption Growth on Price-Dividend Ratio

β 0.03 0.02 0.19 [0.06, 0.32] 0.18 [0.01, 0.35] 0.35 0.12

R2 0.04 0.02 0.29 [0.04, 0.62] 0.18 [0.01, 0.50] 0.32 0.08

TABLE VII
Predictability Regressions

Data Simple Model (U.S.)

The table reports results from regressions of excess returns, consumption growth and realized volatility at a 1, 3 and 5
year horizon on the price-dividend ratio. Our measure of realized volatility is the absolute value of the residual from an
AR(1) model for consumption growth. The first two columns report results using data from our 16 country sample and
the U.S., respectively. The first column is the median across countries of the statistic in question. The next two columns
report results from our model. The last two columns report results for the models of Bansal and Yaron (2004) and
Bansal, Kiku and Yaron (2012). The results for the Bansal-Yaron model are taken from Beeler and Campbell (2009).
We use the end of year convention for the timing of consumption. 

Baseline (U.S.)

Data Full Model No World LRR
Australia 0.09 0.37 0.79
Belgium 0.11 0.51 1.06
Canada 0.05 0.40 0.85
Denmark 0.10 0.38 0.87
Finland 0.10 0.71 1.22
France 0.10 0.45 1.00
Germany 0.10 0.42 0.94
Italy 0.10 0.58 1.13
Netherlands 0.10 0.56 1.11
Norway 0.08 0.42 0.94
Portugal 0.10 0.69 1.21
Spain 0.11 0.88 1.43
Sweden 0.11 0.38 0.89
Switzerland 0.11 0.34 0.82
United Kingdom 0.09 0.39 0.91

Average 0.10 0.50 1.01
Median 0.10 0.42 0.94

World Long-Run Risks and Real Exchange Rate Volatility
TABLE VIII

The table presents the standard deviation of the log change in the real exchange rate of each country
with the U.S.

Exchange Rate Volatility



Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.
Australia 1.73 0.61 1.05 0.42 0.008 0.004 0.004 0.002 0.035 0.009 0.015 0.006
Belgium 1.01 0.50 1.95 0.56 0.007 0.003 0.004 0.002 0.020 0.008 0.012 0.009
Canada 1.96 0.63 1.17 0.41 0.009 0.004 0.003 0.001 0.028 0.009 0.018 0.006
Denmark 0.79 0.41 1.29 0.58 0.012 0.004 0.007 0.003 0.012 0.003 0.016 0.007
Finland 2.00 1.23 2.30 0.83 0.012 0.006 0.004 0.002 0.024 0.007 0.022 0.012
France 0.83 0.42 1.73 0.46 0.007 0.004 0.002 0.001 0.027 0.004 0.015 0.008
Germany 0.63 0.34 1.54 0.53 0.012 0.004 0.003 0.001 0.012 0.004 0.015 0.008
Italy 0.58 0.30 2.16 0.65 0.011 0.004 0.003 0.002 0.015 0.003 0.017 0.011
Netherlands 0.59 0.32 2.09 0.63 0.010 0.004 0.003 0.002 0.023 0.004 0.016 0.010
Norway 1.17 0.57 1.49 0.60 0.009 0.004 0.006 0.003 0.006 0.003 0.019 0.008
Portugal 2.59 0.80 2.27 0.68 0.008 0.004 0.005 0.003 0.030 0.009 0.021 0.011
Spain 0.76 0.45 3.24 0.86 0.010 0.004 0.002 0.001 0.048 0.008 0.019 0.016
Sweden 0.72 0.47 1.36 0.52 0.010 0.004 0.004 0.002 0.024 0.005 0.018 0.007
Switzerland 0.64 0.44 1.21 0.42 0.009 0.004 0.001 0.001 0.043 0.006 0.011 0.006
United Kingdom 0.63 0.30 1.48 0.49 0.010 0.004 0.004 0.002 0.006 0.002 0.013 0.008
United States 1.16 0.44 1.00 0.00 0.009 0.004 0.003 0.001 0.023 0.005 0.018 0.006

Average 1.11 0.51 1.71 0.54 0.010 0.004 0.004 0.002 0.024 0.006 0.017 0.009
Median 0.81 0.45 1.51 0.55 0.009 0.004 0.004 0.002 0.024 0.005 0.016 0.008

St. Dev. Transitory Shock (σνi)              
post-1945                    pre-1945

The table presents our estimates of the posterior mean and standard deviation of the country-specific parameters in our full model. 

Sensitivity to 
Common Shocks (ξi)

Rel. St. Dev. Random 
Walk Shock (χi)

TABLE A.1
Estimates of Country-Specific Parameters

Average St. Dev. 
Stoch. Vol. (σi)

Average Growth (μi)



Median U.S. Median U.S. Median U.S. Median U.S.

E(Rm-Rf) 6.87 7.10 11.07 7.41 4.13 3.98 20.74 6.39

σ(Rm-Rf) 21.82 17.37 21.69 17.88 13.76 13.53 31.38 16.99

E(Rm-Rf)/σ(Rm-Rf) 0.32 0.41 0.51 0.41 0.30 0.29 0.66 0.38

E(Rm) 9.10 8.23 11.83 8.83 5.68 5.68 19.94 8.13

σ(Rm) 21.99 17.89 21.65 17.84 13.81 13.55 31.40 16.86

E(Rf) 1.43 1.13 0.66 1.41 1.54 1.71 -0.77 1.74

σ(Rf) 4.57 3.33 2.26 1.74 1.41 1.34 3.51 1.50

E(p-d) 3.30 3.30 2.58 2.94 3.45 3.52 2.08 3.10
σ(p-d) 0.41 0.40 0.36 0.30 0.20 0.19 0.48 0.26
AC1(p-d) 0.85 0.90 0.85 0.85 0.79 0.79 0.84 0.81

Data

TABLE A.2
Asset Pricing Statistics

Post-WWII

Columns labeled as "Median" report the result for the median country for each statistic. Columns labeled as "U.S." report these
statistics for the United States. For the model, we report the value of these statistics from a sample of length 1 million years.
For returns the statistics we report are the unconditional average of the level of the ex-post real net return in percentage points
(i.e., multiplier by 100). Rm denotes the return on equity (the market), while Rf denotes the return on a short term nominal

government bond (risk-free rate). The last three rows report statistics for the logarithm of the price-dividend ratio on equity.
These results are for a CRRA = 6.5, IES = 1.5 and subjective discount factor of β = 0.99.

Baseline Simple Model



 

 
FIGURE I 

Log per Capita Consumption in France 
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FIGURE II 

Response of Consumption to Growth-Rate and Random-Walk Shocks 
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FIGURE III 

The World Growth-Rate Process 
The figure plots the posterior mean value of xw,t for each year in our sample. 
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FIGURE IV 

World Stochastic Volatility 
The figure plots the posterior mean value of σw,t for each year in our sample. 
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FIGURE V 

Stochastic Volatility for the United States, the United Kingdom and Canada 
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FIGURE VI 

Asset Returns in Response to a World Growth-Rate Shock 
 

 
 

 
FIGURE VII 

Asset Returns in Response to a World Uncertainty Shock 
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FIGURE VIII 

Stock Prices and Economic Uncertainty for the United States 
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FIGURE IX 
Dividend-Price Ratio for Stocks and Economic Uncertainty 
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FIGURE IX (cont.) 
Dividend-Price Ratio for Stocks and Economic Uncertainty 
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Dividend-Price Ratio for Stocks and Economic Uncertainty 
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