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1 Introduction

The price of housing varies tremendously across the United States: for instance, the price
of the typical home in Flint, MI is $33 thousand, while in Malibu, CA it is well over $1.9
million.1 While differences in demand clearly play a role in determining these prices, the
inability of supply to equalize housing prices has attracted considerable attention (see, e.g.,
Glaeser and Gyourko, 2005, Saiz, 2010). Many commentators blame land-use restrictions
for declining housing affordability, with Summers (2014) arguing that one of “the two most
important steps that public policy can take with respect to wealth inequality” is “an easing
of land-use restrictions.” Yet, land-use restrictions are often locally supported and are ar-
gued to increase local housing demand by improve local quality of life and the provision
of public goods (Hamilton, 1975, Brueckner, 1981, Fischel, 1987). Consequently, analyses
that find land-use restrictions raise house prices could in principle reflect either increases in
housing demand or reductions in housing supply. The social benefits of land-use regulation
thus remain uncertain and debatable.

We help to resolve this debate, demonstrating that land-use restrictions raise house
prices more by limiting supply than by increasing demand. In short, the typical land-use
restriction appears to raise the cost of housing relative to land, implying that it lowers what
we call “housing productivity.” At the same time, it does little to raise housing prices rela-
tive to local wage levels, meaning it barely raises residents’ “willingness-to-pay” for local
quality-of-life amenities. Together, these findings imply that the typical land-use restric-
tion reduces social welfare. Quantitatively, we estimate that observed land-use restrictions
raise housing costs by 15 percentage points, reducing welfare on average by 2.3 percent of
income.2

More concretely, our estimation strategy posits a cost function for housing that depends
on land and construction input prices, and a multiplicative productivity factor in the spirit
of Hicks (1932) and Solow (1957). Land-use restrictions and (analogously) geographic
restrictions shift this “housing productivity” factor. Housing is more expensive in areas
with: i) high land values; ii) high construction costs; and, iii) low housing productivity.

We embed this cost function for housing into an equilibrium system of cities. This
system accounts for how fundamental determinants of supply and demand — namely, local

1Home values are from the 2011 to 2015 American Community Survey American Factfinder.
2We calculate those magnitudes by comparing the increase in housing costs implied by moving from the

fifth percentile of costs imposed by land-use regulation to the average level (15 percent), and scaling the
implied increase in costs by housing’s share of the average expenditure bundle of 16 percent.
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quality of life and productivity in both housing and traded sectors — determine the price of
housing and land simultaneously (Roback, 1982, Albouy, 2016). By conditioning on land
and construction prices, our strategy controls for demand-side determinants of housing
prices to isolate supply-side determinants.

Using novel estimates of U.S. land values adapted from Albouy et al. (2017), we find
that land-use restrictions — as measured by the Wharton Residential Land-Use Restriction
Index (WRLURI) of Gyourko et al. (2008) — impose a “regulatory tax” that drives a wedge
between output (housing) prices and input (land and construction) prices. Analogously,
geographic restrictions as measured by Saiz (2010) also lower housing productivity. These
estimates hold when we estimate housing cost function parameters using either ordinary
least squares (OLS) or instrumental variable (IV) methods, as well as when we calibrate
the housing cost function directly using a wide range of values. An expanded model with
factor bias suggests land-use restrictions lower the relative value of productivity of land.
When we examine the separate effects of 11 sub-indices provided by the WRLURI, we
find state political and court involvement predict the largest increases in costs.

Our new measure of metropolitan housing productivity supplements other metropolitan
indices of economic value, namely a productivity index for firms in the traded sector—as
in Beeson and Eberts (1989), Gabriel and Rosenthal (2004), Shapiro (2006), and Albouy
(2016)—and an index of quality of life—as in Roback (1982), Gyourko and Tracy (1991),
Albouy (2008) and others. Estimated housing productivity levels vary widely, with a stan-
dard deviation equal to 23 percent of total housing costs. Contrary to common assumptions
(e.g., Rappaport, 2008) that productivity levels in tradeables and housing are equal, we find
the two are negatively correlated across metro areas. For example, while San Francisco
has one of the most productive traded sectors, it has among the least productive housing
sectors.

Furthermore, we consolidate the predicted efficiency loss of the WRLURI subindices
into a novel “Regulatory Cost Index,” or RCI. The RCI measures the extent to which ob-
served regulations reduce housing productivity. It explains two-fifths of the variance be-
tween input costs and output prices. While the WRLURI provides a widely-used single
index of the stringency of land-use regulations through factor analysis, our RCI is based on
the marginal cost each regulation imposes, and has a stronger cardinal interpretation. We
find costs measured by the RCI rise along with city population and density.

Besides estimating housing productivity, the cross-metropolitan variation in input prices
and restriction measures provide novel estimates of a cost function for all housing. With
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only four variables, the model explains 86 percent of housing-price variation across met-
ros. The housing-to-land price gradient implies that land typically accounts for one-third of
housing costs, which rises from 6 to 50 percent from low to high-value metros, consistent
with an elasticity of substitution between inputs below one.

Our analysis concludes by considering whether the quality-of-life benefits of land-use
restrictions come with benefits that offset their costs. To do this, we estimate how house-
holds’ willingness to pay to live in a metro area changes with regulations: an increasing
relationship would suggest that regulations raise households’ quality of life. Households
do pay more to be in areas that are highly regulated, but this relationship disappears after
controlling for amenities such as climate and geography. Similarly, we do not find that
regulations raise the value of local land. Taken together, our results suggest that typical
land regulations impose costs that exceed their benefits.

2 Literature on Housing Production and Land Values

While there are many estimates of housing production parameters, there are no comparable
measures of housing productivity or the RCI. The cost effects of land-use restrictions are
identified from the wedge between housing prices and input costs, largely shielding them
from the critique that these restrictions are positively correlated with demand factors, made
here and by Davidoff et al. (2016).

That said, there is also novelty to our estimation of the housing cost function using
metro-level variation in transaction-based land prices, construction input prices, and re-
strictions. Economists since Ricardo (1817) and George (1884) have sought to quantify
the share of property values attributable to land. In fact, Ricardo’s famous “Law of Rent”
predicts that the cost share of land should approach zero in the lowest value areas. McDon-
ald (1981) surveys more modern predecessors — including Rosen (1978), Polinsky and
Ellwood (1979), Arnott and Lewis (1979) — and finds most estimates of the elasticity of
substitution (ES) between land and other inputs to be loosely centered around 0.5, pointing
out that measurement error may bias these estimates downwards.3

Thorsnes (1997) is unique among our predecessors in using market transactions for
land, with 219 lots from Portland. His data imply land’s cost share is 0.22, while his
estimates of the ES center around 0.9 4 Epple et al. (2010) use an estimator based on

3Our approach, focused on prices pooled at the city level, should be less susceptible to measurement error.
4Thorsnes (1997) and Sirmans et al. (1979) estimate a variable ES using small samples drawn from a
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how assessed land values per square foot vary with property values per square foot. They
estimate a cost share of land of 0.14 in Pittsburgh and 0.21 in Raleigh, each with an ES
close to one. Combes et al. (2017) use a method comparing construction costs to land.
They find land’s share is near 0.3 for Paris and large agglomerations, and near 0.2 for the
rest of France, with an ES close to 0.9. These studies do not exploit variation in regulation,
geography or construction prices, and focus on new buildings, while our measure is for the
entire housing stock.

Studies that find an ES of one — i.e., that the production function is of a Cobb-Douglas
form — do not sit well with studies that find cost shares that vary across cities, or with
Ricardo’s Law of Rent. With an ES of one, cost shares should be constant with a stable
technology. A similar tension exists with studies that find that housing supply is often
more inelastic in expensive cities, e.g. Green et al. (2005), Saiz (2010). When land supply
is fixed, a standard (partial-equilibrium) own-price elasticity of housing supply in a city j
is

ηYj = σY
1− φL

j

φL
j

(1)

where σY is the ES, and φL
j is the local cost share of land. If σY = 1 and φL

j does not
change, neither should ηYj . Explaining variation in housing supply elasticities requires
either a theory of varying technology or of varying land supply, neither of which is well
developed. On the other hand, an ES of less than one allows land prices to reduce the price
elasticity of housing supply.5

A few studies have examined more limited land and housing value data using less for-
mal methods. Rose (1992) examines 27 cities in Japan and finds that geographic restric-
tions raise land and housing values. Davis and Palumbo (2008) use time series methods to
estimate that the cost share of land in a sample of large U.S. metropolitan areas rose con-
siderably from 1984 to 2004. Ihlanfeldt (2007) takes assessed land values from tax rolls in
25 Florida counties, and finds that land-use regulations predict higher housing prices but
lower land values in a reduced-form framework. Glaeser and Gyourko (2003) and Glaeser
and Gyourko (2005) use an enhanced residual method to infer land values, and in a sample
of 20 cities — in a model without substitution between land and non-land inputs — find

handful of cities. Sirmans et al. reject the hypothesis of a constant ES, but Thorsnes finds that, “... the CES
is the appropriate functional form.”

5Saiz (2010) assumes σY = 0, but allows for heterogeneous land supply in a mono-centric city, with
differences in an arc of expansion explaining city-specific elasticities. Albouy and Stuart (2014) consider
both the intensive (land fixed) and extensive (land variable) margins of housing supply, and find evidence of
heterogeneity along both margins.
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that housing and land values differ most in cities where rezoning requests take the longest.6

They also find that the price of units in Manhattan multi-story buildings far exceeds the
marginal cost of producing them, attributing the difference to regulation. They argue regu-
latory costs exceed their benefits, assessed mainly from the value of preserving views.

Unlike these studies, our approach (i) applies nationwide, (ii) examines the precise costs
of land-use restrictions, and (iii) offers tests of the validity of our specification. Waights
(2015) builds on our approach using panel data and finds similar results for England, in-
cluding an ES less than one and a negative welfare consequence of land-use restrictions.

3 Model of Land Values and Housing Production

Our econometric model estimates a cost function embedded within a general-equilibrium
model of urban areas, similar to Roback (1982). Albouy (2016) develops predictions on
how local productivity should affect housing and land values differently, but lacks the data
to test them.7 The national economy contains many cities indexed by j, which produce a
numeraire good, X , traded across cities, and housing, Y , which is not traded across cities,
and has a local price, pj .

3.1 Cost Function for Housing with Productivity Shifts

Cities differ in their productivity in their total productivity in the housing sector, AY
j . Firms

produce housing, Yj , with land, L, and “structural” inputs (for installation and materials),
M . This latter measure includes local labor, and all other time and capital costs of building.8

6Their estimated zoning tax is zero in half of those cities. Nonetheless, they find that ”...a 1-unit increase
in the categorical zoning lag variable is associated with a 15-percentage-point increase in the amount of the
regulatory tax. While this sample size is quite small and no causality can be inferred, it still is comforting that
the places we estimate to have regulatory tax levels that are high are in fact those with more onerous zoning.”

7Roback (1982) first proposed a model that considers housing separately from land, but did not develop
or test it empirically. She does say on pages 1265-6: “if [an amenity] s inhibits the production of nontraded
goods, this simply has the direct effect of raising costs. For example, houses are probably more expensive to
build in a swamp.” This is consistent with the theory we develop.

8While it is easy to interpret the production model as applying to new housing construction, it is meant
to apply generally to all housing. The income that accrues to residential land and the residential construction
sector appears to be too small to account for the income spent on housing. We must also include maintenance
costs, as well as labor and capital costs (including time) associated with getting new buildings approved.
Over time, structures tend to depreciate, making land relatively more valuable than in new construction. At
the same time, new construction typically involves legal, entrepreneurial, and various time and bureaucratic
costs. These inputs are generally labor intensive, and thus we proxy them with “structural” inputs. The
estimated cost shares should reflect these additional inputs as well as structural depreciation.
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This obeys the relationship
Y = AY

j F
Y (L,M ;BY

j ) (2)

where F Y
j is concave and exhibits constant returns to scale (CRS) at the firm level. Housing

productivity, AY
j , is a city-level characteristic that may be determined endogenously by city

characteristics such as population size. The term BY
j captures the relative productivity of

land to structural inputs, or factor bias, in city j. In our primary model we ignore variation
in Bj , but include it in an extended model. Greater details are provided in Appendix A.

Assume that input and output markets are perfectly competitive. Land earns a city-
specific price, rj , while structural inputs cost vj per unit.9 By CRS, marginal and average
costs are equal, and given by the unit cost function cY (rj, vj;B

Y
j )/AY

j ≡ minL,M{rjL +

vjM : AY
j F

Y (L,M ;BY
j ) = 1}. The equilibrium condition for housing output is that in

every city j (with positive production) housing prices should equal unit costs:10

pj = cY (rj, vj;B
Y
j )/AY

j . (3)

Figure 1a illustrates how we estimate housing productivity, AY
j . The thick solid curve

represents the cost function for cities with average productivity, holding vj constant. As
land values rise from Denver to New York, housing prices rise, albeit at a diminishing rate,
as housing producers substitute away from land as a factor. The higher, thinner curve repre-
sents costs for a city with lower productivity, such as San Francisco. San Francisco’s high
price relative to New York, despite its identical factor costs, reveal its lower productivity.

Figure 1b shows how the curves in 1a changes when prices are transformed by loga-

9The use of a single function to model the production of a heterogeneous housing stock was first estab-
lished by Muth (1969). In the words of Epple et al. (2010, p. 906), “The production function for housing
entails a powerful abstraction. Houses are viewed as differing only in the quantity of services they provide,
with housing services being homogeneous and divisible. Thus, a grand house and a modest house differ
only in the number of homogeneous service units they contain.” This abstraction also implies that a highly
capital-intensive form of housing, e.g., an apartment building, can substitute in consumption for a highly land-
intensive form of housing, e.g., single-story detached houses. Our analysis uses data from owner-occupied
properties, accounting for 67% of homes, of which 82% are single-family and detached.

10In previous drafts we considered when this condition could be slack. Low-growth markets exhibited
slackness in a manner consistent with Glaeser and Gyourko (2005), but this did not change our other results
substantially. As for input markets, numerous empirical studies support the hypothesis that the construction
sector is competitive. Considering evidence from the 1997 Economic Census, Glaeser et al. (2005b) report
that “...all the available evidence suggests that the housing production industry is highly competitive.” Basu
et al. (2006) calculate returns to scale in the construction industry (average cost divided by marginal cost) as
1.00, indicating firms in construction have no market power. On the output side, competition seems sensible
as new homes must compete with the stock of existing homes. Nevertheless, if markets are imperfectly
competitive, then AY

j will vary inversely with the mark-up on price above cost.
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rithms. Using hat notation, ẑj represents, for any variable z, city j’s log deviation from
the national average, z̄, i.e. ẑj = ln zj − ln z. A first-order log-linear approximation of
(3) expresses how housing prices vary with input prices and productivity: p̂j = φLr̂j +

(1 − φL)v̂j − ÂY
j . φL is the cost share of land at the average. AY

j is normalized so that a
one-point increase in ÂY

j corresponds to a one-point reduction in log costs.11

A second-order approximation of (3) reveals two more parameters: the ES, σY , and
differences in factor bias, Bj:

p̂j = φLr̂j + (1− φL)v̂j +
1

2
φL(1− φL)(1− σY )(r̂j − v̂j − B̂Y

j )2 − ÂY
j , (4)

The data will support σY < 1 if output prices increase in the square of the factor-price
differences, (r̂j − v̂j)2. Factor biases against land, −B̂j , have a similar quadratic effect.

The third term accounts for changing cost shares of land. The cost-share in city j, φL
j ,

differs from the national average by

φL
j − φL = φL(1− φL)(1− σY )(r̂j − v̂j − B̂Y

j ) (5)

When σY < 1, this share rises with the relative price of land rj/vj , and falls with land’s
factor bias, Bj . A rising cost share then puts greater weight on land’s price in determining
costs, as seen in the quadratic term in (4). The cost share formula also predicts that the
partial-equilibrium supply elasticity in (1) is lower in places with high land prices or where
productivity is biased against land. When σY = 1, the Cobb-Douglas case, differences in
price elasticity must instead be related to changes in parameter values or in land supply
elasticities.

The estimates of ÂY
j assume that a single ES describes production in all cities. If

this elasticity varies, the estimates will conflate a lower elasticity with lower productivity.
Figures 1a and 1b illustrate this possibility by comparing the case of σY = 1, in solid
curves, with σY < 1, in dashed curves. With lower substitutability, the cost function is less
curved, as producers are less able to substitute away from land in higher-value cities. Thus
low productivity and low substitutability will both tend to raise housing costs, despite their
conceptually distinct impacts on the shape of the housing production function.12

11Bias is formally, the productivity of land relative to structural inputs, Bj ≡ AY L
j /AYM

j , where AY k
j is

the productivity of each factor k. Formal derivations in Appendix A show that we can write ÂY
j = φN ÂY L

j +

(1− φN )ÂYM
j and B̂Y

j = ÂY L − ÂYM .
12We keep σY

j fixed in the analysis because we did not find any evidence of heterogeneity when we exam-
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3.2 Adapting and Testing the Translog Cost Function

Because it is impossible to observe housing productivity directly, it must be inferred indi-
rectly. To clarify the measurement, assume housing productivity and factor bias are deter-
mined in part by a vector of observable restrictions, Z, which is partitioned into regulatory
and geographic componentsZ = [ZR, ZG]. In addition, they are determined by unobserved
city-specific components, ξj = [ξAj, ξBj], such that

ÂY
j = −ZjδA − ξAj (6a)

B̂Y
j = −ZjδB − ξBj (6b)

A positive δA therefore indicates that a restriction reduces productivity; a positive δB indi-
cates that a restriction is biased against land.

Substituting in equations (6a) and (6b) into (4), it is possible to write out the a reduced-
form equation that contains all of the structural restrictions:

p̂j − v̂j = β1(r̂j − v̂j) + β3(r̂j − v̂j)2 + γ1Zj + γ2Zj(r̂j − v̂j)j + ζj + εj. (7)

The reduced-form coefficients correspond to the following structural parameters:

β1 = φL (8a)

β3 = (1/2)φL(1− φL)(1− σY ) (8b)

γ1 = δA (8c)

γ2 = φL(1− φL)(1− σY )δB = 2β3δB (8d)

Inverting these equations, the housing cost parameters are given by φL = β1, σY =

1 − 2β3/ [β1(1− β1)], δA = γ1, and δB = γ2/(2β3). Thus, β1 identifies the distribu-
tion parameter, φL, and together with β3 it identifies the substitution parameter σY . γ1

identifies how much measures in Z raise costs (or conversely, lower productivity). γ2 and
β3 identify how measures in Z bias productivity against land when γ2β3 > 0.

The error term in (7) consist of two components. The ζj component consists mainly of
unobserved determinants of productivity and bias, and is equal to ξAj when B̂j = 0. The
εj component captures any sampling, measurement or specification errors. The latter could
result from market power in the housing sector, or disequilibrium forces causing prices to

ined the data.
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deviate from costs. It is important to consider these possibilities, as the estimated residuals
in the model may or may not be caused by unobserved differences in productivity.

The constrained reduced-form equation may be embedded inside of a more general
unconstrained equation:

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + γ1Zj + γ2Zj r̂j + γ3Zj v̂j + ε′j (9)

The first five terms corresponds to the general translog cost function (Christensen et al.,
1973) with land and construction prices, augmented with Zj and its interactions. It is
equivalent to the second-order approximation of the cost function (see, e.g., Binswanger,
1974, Fuss and McFadden, 1978) under the homogeneity constraints

β1 = 1− β2 (10a)

β3 = β4 = −β5/2 (10b)

While our model assumes constant returns to scale at the firm level, it does not rule out
non-constant returns at the city level. Urban (agglomeration) economies of scale or disec-
onomies, will be reflected in Aj

Y , as suggested by the evidence in section 6.2 below.13 The
extended model, with δB 6= 0 also imposed the restriction that γ2 = −γ3.

The econometric model allows us to test for the popular Cobb-Douglas (CD) technol-
ogy, which imposes the restriction σY = 1 in (4) or

β3 = β4 = β5 = 0. (11)

in (9). To simplify exposition, we impose (11) in the following subsection.

3.3 Simultaneous Determination of Housing and Land Prices

It is important to consider that housing, land, and construction prices are determined simul-
taneously. To do this, consider the equilibrium of a system of cities adapted from Roback
(1982) and Albouy (2016). There are two sectors in the economy, producing a traded good

13Convexity of the cost gradient is limited by σY ≥ 0, which implies β3 ≤ 0.5β1(1 − β1). Finding this
inequality holds is an auxiliary test of the model. Note, the second-order approximation of the cost function
(i.e. the translog) is not a constant-elasticity form. Hence, the ES we estimate is evaluated at the sample mean
parameter values (see Griliches and Ringstad, 1971). To our knowledge, ours is the first empirical study to
identify this housing elasticity from an explicit quadratic form and to test a translog cost function using such
a wide spatial cross-section of input and output prices for housing or any other good.
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x and a non-traded (housing) good, y. Land and structural costs are determined simultane-
ously with housing prices from differences in housing productivity, AY

j , trade productivity,
AX

j , and quality of life, Qj . To simplify, assume away federal taxes and land in the traded
sector. Each production sector has its own type of worker, k = X, Y , where type-Y workers
produce housing. Preferences are represented by U(x, y;Qk

j ), where x and y are personal
consumption of the traded good and housing, and Qk

j , varies by type. Each worker supplies
a single unit of labor and earns wage wk

j , along with non-labor income, Ik, which does not
vary across metros.

As a baseline, consider the case where workers are perfectly mobile and preferences
are homogeneous. In equilibrium, this requires that workers receive the same utility in all
cities, ūk, for each type. As shown in appendix A, this mobility condition implies

Q̂k
j = sY p̂j − swŵk

j , k = X, Y, (12)

i.e., higher quality of life must offset high prices or low after-tax wages. Qk
j is normalized

such that Q̂k
j of 0.01 is equivalent in utility to a one-percent rise in total consumption. sY is

the expenditure share on housing and sw is labor’s share of income (assumed equal across
sectors). The aggregate quality of life differential is Q̂j ≡ λQ̂X

j + (1 − λ)Q̂Y
j , where λ is

the share of labor income in the traded sector. ŵ ≡ λŵX
j + (1− λ)ŵY

j .
Traded output has a uniform price of one across all cities. It is produced with CRS

and CD technology, with AX
j being factor neutral. Because the output price is uniform, the

trade-productivity differential is proportional to wages:

ÂX
j = θN ŵX

j , (13)

where θN is the cost share of labor. Mobile capital, with a uniform price across cities,
accounts for remaining costs.

Structural inputs are produced with local labor and traded capital according to produc-
tion function Mj = (NY )a(KY )1−a. This implies v̂j = aŵY

j , where a is the cost-share
of labor in structural inputs. Defining φN = a(1 − φL), recasts an alternative measure of
housing productivity on the same principle of input vs output costs, but using wages:

ÂY
j = φLr̂j + φN ŵY

j − p̂j. (14)

The sum of productivity levels in both sectors, the total-productivity differential of a city,
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is ÂTOT
j ≡ sXÂX

j + sY ÂY
j , where sX = 1− sY .

A recursive set of solutions is obtained by combining the equations (12), (13), and (14):

swŵX
j =λ−1sXÂX

j (15a)

sY p̂j =Q̂X
j + λ−1sXÂX

j (15b)

swŵY
j =Q̂X

j − Q̂Y
j + λ−1sXÂX

j (15c)

sRr̂j =λQ̂X
j + (1− λ)Q̂Y

j + sXÂX
j + sY ÂY

j = Q̂j + ÂTOT
j (15d)

where sR = sY φL is land’s share of income. Housing prices are determined by the traded
sector’s productivity and the amenities valued by its workers. Wages in the housing sector
keep up with those in the traded sector, but are lower insofar as workers in the housing
sector prefer the local amenities. Land values capitalize the full value of all amenities;
unlike housing prices, these include housing productivity and quality of life for housing
workers.

Improvements in local housing productivity do not reduce the unconditional price of
housing, a point elaborated on by Aura and Davidoff (2008). In this model, they instead
raise land values. Two amendments to the model can create a negative relationship between
housing productivity and housing prices. The first is to introduce land into the non-traded
sector (Roback, 1982). The second is to introduce heterogeneity in location preference,
which is similar to introducing moving costs.

In the case of preference heterogeneity, the willingness-to-pay of residents captured by
Qj can be decomposed into two elements: a fundamental component, Q0j , reflecting the
typical value of amenities, and an idiosyncratic component, ωij , reflecting heterogeneous
tastes. With positive assortative matching to cities, the marginal and average value of ωij

will be higher when the population is low than when it is high, as households that value
the city most bid up housing prices, outbidding those who value the city less. Because low
housing productivity will reduce the population, the marginal resident will have a higher
willingness-to-pay than if the population were larger. With higher housing productivity, the
population expands, and the willingness to pay of the marginal resident, Q̂j = Q̂0j + ωij

falls through ωij . This causes prices to fall, through equation (15b). Ceteris paribus, this
should cause Q̂j and ÂY

j to be negatively correlated even if policies that improve ÂY
j have

no effects on the fundamental amenities in Q̂0j . We revisit this point in the context of land
supply in subsection 6.3.
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The mathematics in these two richer cases are complicated, but are described and sim-
ulated in Albouy and Farahani (2017) when Q̂X

j = Q̂Y
j . The analysis suggests that land is

too minor in the non-traded sector for wages to respond much to housing productivity. Pref-
erence heterogeneity reduces how much land values rise with housing productivity, since
their derived demand through housing prices grows weaker. Regardless, the wedge be-
tween output and input prices described in (4) remains unchanged by these demand-related
considerations. In fact, the frictions introduced by heterogeneity mitigate the potential
problems of simultaneity in estimating the model described in section 3.4.

3.4 Identification, Simultaneity, and Instrumental Variables

The econometric specification in equation (9) regresses housing costs p̂j on land values r̂j ,
structural prices v̂j , and restrictions, Ẑj . The primary model without factor bias (B̂Y

j = 0)
implies the residual is either unobserved housing productivity, ζj , or a more general error
term, εj . This approach isolates supply factors in AY

j , which pull the price of housing away
from land, from the demand factors in Qj and AX

j , which move housing and land prices
together.

Identifying housing productivity and how it is affected by restrictions does require ac-
curate values of the housing cost parameters. OLS estimates of these parameters are con-
sistent if ζj = 0, εj is orthogonal to the regressors, and price variation is driven by quality
of life and trade productivity (wages).

To see this, consider a simplified CD case without factor bias (σY = 1 and B̂Y
j = 0),

using wages as in (14), imposing Q̂X
j = Q̂Y

j , and where trade-productivity is orthogonal to
quality of life and housing productivity. Then the OLS estimator of φL in (7), φL∗, is

E[φ̂L∗] = φL

{
1− sY s

Y var(ζj) + cov(Q̂j, ζj + εj)

var(Q̂j + sY ζj)

}
(16)

The first term, with var(ζj) reflects a downward simultaneity bias: in equations (15b)
and (15d) high housing productivity raises land values without raising housing prices. If
variation in land prices is driven entirely by unobserved housing productivity, then φ̂L∗

would be zero. The second term, cov(Q̂j, ζj + εj) reflects a standard omitted variable bias.
Because we find later that high quality-of-life places tend to have low housing productivity,
in practice this bias will be upwards. The net effects depend largely on how ζj varies
relative to Q̂j . More extensive measures in Z should lower variation in ζj , removing bias
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from the OLS estimator of φL as it is identified off of variation in Q̂j .14

A solution to these potential problems is to find instrumental variables (IVs) for land
values, as well as structural input prices. Variables that influence quality of life Qj or trade
productivity AX

j affect land and housing values in tandem. These variables need to be un-
related to unobserved housing productivity ζj . Motivated by the theory, we consider two
instruments. The first is the inverse of the distance to the nearest saltwater coast, a predic-
tor of Qj and Aj

X . The second is an adaptation of the U.S. Department of Agriculture’s
“Natural Amenities Scale” (McGranahan et al., 1999), which ought to correlate with Qj .15

An additional concern regarding identification in the econometric model is that regula-
tory restrictions may be endogenously determined and correlated with unobserved supply
factors. We follow Saiz (2010) in considering two instruments for regulatory restrictions.
The first is the proportion of Christians in each metro area in 1971 who were adherents
of “nontraditional” denominations (Johnson et al., 1974). The second is the share of lo-
cal government revenues devoted to protective inspections according to the 1982 Census
of Governments (of the Census, 1982). Saiz argues that the nontraditional, and especially
Evangelical, Christians measured by the first instrument have an “ethics and philosophy
... deeply rooted in individualism and the advocacy of limited government role” (p. 1276)
that is associated with a less stringent regime of land use regulations. Saiz also argues that
a higher share of expenditures related to protective inspections is indicative of a general
tendency for government to regulate economic activity, which extends to residential land
use. Saiz’s model requires that the instruments be uncorrelated with both unobserved de-
mand and supply factors; our cost model is less stringent in requiring that the instruments
be uncorrelated with unobserved supply factors alone.

14To consider the role of trade productivity, the full formula is given by

E[ ˆφL∗] = φL

1−
cov(Q̂+ ÂY ′

, ÂY ′)var(ÂX′)− cov(Q̂+ ÂY ′, ÂX′)cov(ÂY ′, ÂX′)

var(Q̂+ ÂY ′)var(ÂX′)−
[
cov(Q̂+ ÂY ′, ÂX)

]2
 (17)

where Âk′ = skÂ
k, k = {X,Y }.

15The natural amenities index in McGranahan et al. (1999) is the sum of six components: mean January
temperature, mean January hours of sunlight, mean July temperature, mean relative July humidity, a mea-
sure of land topography, and the percent of land area covered in water. We omit the last two components
in constructing the IV because they are similar to the components of the Saiz (2010) index of geographic
restrictions to development. The adapted index is the sum of the first four components averaged from the
county to MSA level.
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4 Data and Metropolitan Indicators

The residential land-value index used to estimate the housing cost function is adapted from
Albouy et al. (2017), who describe it in far greater detail. It is based on market transactions
from the CoStar group, and uses a regression framework which controls for parcel acreage
and intended use. It applies a novel shrinkage technique to correct for measurement error
due to sampling variation, which is important given sample sizes in smaller metros. It
provides flexible land-value gradients, estimated separately for each city using an empirical
Bayes-type technique that “borrows” information from other cities with a similar land area.
The residential index used in this paper differs from the index in Albouy et al. (2017) in
that it: i) weights census tracts according to the density of residential housing units, rather
than by simple land area; ii) uses fitted values for residential plots, rather than for all uses;
and iii) encompasses all metropolitan land, not only land that is technically urban.

4.1 Housing Price, Wages, and Construction Prices

Housing-price and wage indices for each metro area, j, and year, t, from 2005 to 2010,
are based on 1% samples from the American Community Survey (ACS). Prior to 2005,
the ACS is too coarse geographically; our land transaction data end in 2010. As described
fully in Appendix B, we regress the logarithm of individual housing prices ln pijt on a set of
controls Xijt, and indicator variables for each year-MSA interaction, ψijt, in the equation
ln pijt = Xijt + ψijt + eijt. The indicator variables ψijt provide the metro-level indices,
denoted p̂.16 We aggregate the inter-metropolitan index of housing prices, p̂jt, normalized
to have mean zero, across years for display.

Metropolitan wage differentials are calculated similarly, controlling for worker skills
and characteristics, for two samples: workers in the construction industry only, to esti-
mate ŵY

j , and workers outside the construction industry, to estimate ŵX
j . Appendix fig-

ure A shows that ŵY
j is similar to, but more dispersed than, overall wages, ŵj . We use the

construction-wage index as an alternative proxy for the price of structural inputs. Appendix
figure B shows how the two are highly correlated.17

Our main price index for structural inputs, vj , comes from the Building Construction
Cost data from the RS Means company. This index covers the costs of installation and

16Alternative methods using-price differences, such as letting the coefficient β vary across cities, produces
similar indicators (Albouy et al., 2016).

17Somerville (1999) critiques the RS Means index for using union wages, which account for 35 percent of
these costs. However, our analysis using construction wages yield similar results.
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materials for several types of structures and is common in the literature, e.g., Davis and
Palumbo (2008), and Glaeser et al. (2005a). It is provided at the 3-digit zipcode level.
When an MSA contains multiple 3-digit zipcodes, we weight each by the share of the
MSA’s housing units in each zipcode.

The housing-price, land-value, construction cost, and construction-wage indices are
reported in columns 2 through 5 of table 1. They tend to be positively correlated with each
other and metro population, reported in column 1, highlighting the importance of including
measures of both land and structural input costs. We mark metros in the lowest decile of
population growth between 1980 and 2010 with a “*” in case the equilibrium condition (3)
does not apply well to these areas.

4.2 Regulatory and Geographic Restrictions

Our index of regulatory restrictions comes from the Wharton Residential Land Use Regu-
latory Index (WRLURI), described in Gyourko et al. (2008). The index reflects the survey
responses of municipal planning officials regarding the regulatory process. These responses
form the basis of 11 subindices, coded so that higher scores correspond to greater regula-
tory stringency.18 The base data for the WRLURI is for the municipal level; we calculate
the WRLURI and subindices at the MSA level by weighting the individual municipal val-
ues using sampling weights provided by the authors, multiplied by each municipality’s
population proportion within its MSA. The authors construct a single aggregate WRLURI
index through factor analysis: we consider both their aggregate index and the subindices in
our analysis. We renormalize all of these as z−scores, with a mean of zero and standard
deviation one, weighting metros by the number of housing units. The WRLURI subindices
are typically, but not uniformly, positively correlated with one another.

Our index of geographic restrictions is provided by Saiz (2010), who uses satellite
imagery to calculate land scarcity in metropolitan areas. The index measures the fraction
of undevelopable land within a 50 km radius of the city center, where land is considered
undevelopable if it is i) covered by water or wetlands, or ii) has a slope of 15 degrees or
steeper. We consider both Saiz’s aggregate index and his separate indices based on solid
and flat land, each of which is renormalized as a z−score.

18The subindices comprise the approval delay index (ADI), the local political pressure index (LPPI), the
state political involvement index (SPII), the open space index (OSI), the exactions index (EI), the local project
approval index (LPAI), the local assembly index (LAI), the density restrictions index (DRI), the supply re-
striction index (SRI), the state court involvement index (SCII), and the local zoning approval index (LZAI).
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5 Cost-Function Estimates

The indices from section 4 provide considerable variation to test and estimate the cost
function presented in section 3, and to examine how costs are influenced by geography and
regulation. We restrict our analysis to MSAs with at least 10 land-sale observations, and
years with at least 5. For our main estimates, the MSAs must also have available WRLURI,
Saiz and construction-price indices, leaving 230 MSAs and 1,103 MSA-years. Regressions
are weighted by the number of housing units in each MSA.

5.1 Base OLS Estimates and Tests of the Housing Cost Model

Figure 2 plots metropolitan housing prices against land values. The simple regression
line’s slope of 0.52 corresponds to the cost share of land, φL, assuming CD production
and no other input cost or productivity differences. The convex gradient in the quadratic
regression implies that the average cost-share of land increases with land values, yielding
an imprecise estimate of the ES of 0.47. The vertical distance between each MSA marker
and the estimated regression line forms the basis of our estimate of housing productivity.
Taken at face value, San Francisco has low housing productivity and Las Vegas has high
housing productivity.

The next step of the analysis is to add in construction prices. These are plotted against
land values in figure 3. The two are strongly correlated, but the scale of the horizontal axis
for land-value differentials is much larger than the scale on the vertical than construction
prices. Most of the variation in relative factor prices r̂j − v̂j , used to identify the housing
cost parameters, is driven by land prices. These data are used to estimate the cost surface
shown in figure 4, omitting variation in Z. As before, cities with housing prices above
this surface are inferred to have lower housing productivity. Figure 3 plots estimated input
cost level curves for the surface in 4. From equation (4), these curves that satisfy φLr̂j +

φM v̂j + φLφM(1 − σY )(r̂j − v̂j)2 = c for a constant c. Since c = p̂j + ÂY
j , the curve in

the lower-left corresponds to a low fixed sum of housing price and productivity; the curve
in the upper-right corresponds to a higher sum. With the log-linearization, the slope of the
level curve equals minus the ratio of the land cost share to the structural share, −φL

j /φ
M
j .

Since the estimated σY < 1, the curves are concave as land’s cost-share increases with
land’s value.

Moving from these illustrations to our core model, table 2 presents cost-function esti-
mates with the aggregate geographic and regulatory indices. Columns 1 through 3 impose
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CD production, as in (11); columns 1 and 2 also impose the homogeneity constraint in
(10a). Column 1 is the simplest regression specification, as it excludes the restriction mea-
sures, Zj . Including the construction index in column 1 lowers the cost share of land to 47
percent from 53 percent in figure 2 from a reduction in omitted variable bias. When the
two restriction measures are included in column 2, the land share falls to 36 percent from a
further reduction. As predicted, both regulatory and geographic restrictions are estimated
to raise housing costs, a finding that persists throughout our analysis. The homogeneity
constraint is rejected at the 5% but not the 1% significance level in both columns. The
same is true of the CD constraint from (11) in column 2. Column 3 relaxes homogeneity in
(10a); this raises the coefficient on the construction price, but has little effect on the other
estimates.

Columns 4 through 6 present parallel specifications to columns 1 through 3, but using
the translog formulation (9) that allows the ES to be non-unitary. This specification does
better as the homogeneity constraints in (10a) and (10b), pass at the 5% confidence level in
columns 4 or 5. The estimated ES in columns 4 and 5 are both below one-half. The large
effects of the regulatory and geographic restrictions persist in these specifications.

Column 7 uses construction wages instead of the RS means index; it otherwise parallels
column 5. The results are similar, although the homogeneity restriction is rejected. While
this illustrates that our results are largely robust to the construction-price measure, they also
suggest that the RS Means index is a more appropriate price measure. Conceptually, this is
likely because it incorporates the price of non-labor inputs (i.e., materials), rather than the
price of labor only.19

Finally, the results in column 8 present estimates from our extended model, which
examines whether the regulatory or geographic restrictions are factor-biased against or to-
wards land. This allows γ2 to be non-zero in equation (7) by interacting the differential r̂−v̂
with the restrictions Zj . The estimate of γ2 = 0.057 > 0 for the regulatory interaction sup-
ports the hypothesis that land-use regulations are indeed biased against land. It implies a
one standard deviation increase in regulation raises the cost share of land by 5.7 percent-
age points. Using this and the estimate of β2 = 0.044, equation (8d) implies δB = 0.65,

19We also estimated a three input equation that separates the structural inputs into actual materials and
installation (labor) costs. Material costs vary little across space relative to these installation costs, making
them difficult to use reliably. That lack of variation provides weak justification for the assumption that
material costs are constant, justifying equation (14). Nevertheless, The CD formulation produced a very
similar estimate of φL = 0.35 and an estimate for labor of φN = 0.39. Interestingly, if we regress the
construction wage measure on the RS means measure, we get an implied value of a = 0.58, which implies a
similar value for φN .
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meaning a one standard deviation increase reduces the relative productivity of land by al-
most 50 percent. While this large estimate is suggestive, the specification does not pass the
additional test imposed on the reduced form equation (9) that the interaction on land prices
should be equal and opposite the interaction on construction prices, i.e., γ2 = −γ3: this
hypothesis is rejected at even a 1% size. As a result, we focus on the primary factor-neutral
case with B̂j = 0.

5.2 Estimate Stability

Several exercises, reported in table 3, help gauge the stability and robustness of our esti-
mates. All specifications in table 3 use the primary constrained model from (7), p̂j − v̂j =

β1(r̂j − v̂j) + β3(r̂j − v̂j)2 + Zjγ1 + εj from column 5 of table 2, which is reproduced in
column 1 of table 3 for convenience.

Columns 2 and 3 use two alternative — and less appropriate — land-value indices: i) for
all land uses (not just residential), and ii) weighting land by area, not by the number of res-
idential units. Using land for all uses in column 2 results in a smaller land share as well as
a higher ES. Appendix figure C shows that land values for all uses vary considerably more
than values for residential uses only. Thus, using an index that includes non-residential
uses biases the slope and curvature of the housing cost function downwards. The results in
column 4 finds that weighting all land equally, ignoring where homes are located, produces
similar biases.

Column 4 considers an alternative — and also less appropriate — housing-price index,
which makes no hedonic correction for housing characteristics. The results are largely sim-
ilar, as differences in observed housing quality do little to affect the results except introduce
more noise (as seen in the lower R-squared). If unobserved differences in housing quality
resemble observed differences, these results suggest that the former should not overturn
our main conclusions.

In columns 5 and 6, we split the sample into two periods: a “housing-boom” period,
from 2005 to 2007, and a “housing-bust” period, from 2008 to 2010. The results are not sta-
tistically different from those in the pooled sample. The former period does show stronger
effects from the restrictions, providing suggestive evidence in support of the model as the
restrictions should be more binding when housing demand is stronger.20

20Minor differences may also arise from measurement error in the housing price index resulting from ACS
respondents’ imperfect awareness of current market conditions (Ehrlich, 2014).
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Overall, the estimates in table 2 and columns 5 and 6 of table 3 support our key hy-
potheses: regulatory and geographic restrictions raise housing costs, somewhere in the
range 0.07 to 0.10 for a standard deviation increase of either measure. The translog model
also passes rather stringent tests of homogeneity in (10a) and (10b) despite the disparate
sources of data that it uses. The housing parameters it estimates are quite plausible, with a
typical cost-share of land from 0.32-0.36. The estimated ES is less stable, in the range of
0.3 to 0.6, lightly rejecting the CD hypothesis in (11).

5.3 Instrumental Variables Estimates

To assess the potential concerns regarding the endogeneity of land values and land-use
regulations discussed in section 3.4, table 4 presents IV estimates of the base CD and
translog specifications in table 2. Appendix tables A1 and A2 present corresponding first-
stage estimates. Columns 1 and 2 present IV versions of the CD estimates in column 2
of table 2.21 Column 1 uses inverse distance from the sea and the USDA amenity score
as instruments for the differential (r̂ − v̂). Column 2 adds the nontraditional Christian
share and protective inspections share suggested by Saiz as instruments, and treats both the
land-value differential and the regulatory index as endogenous. The estimated land share
in column 1 is higher than in the OLS estimates at 0.5, and a Hausman-style test rejects the
null hypothesis of exogenous land values at the 5% significance level. In column 2, which
instruments for both the land-value differential and the regulatory index, the estimated
land share is approximately one-third, similar to the OLS results. Instrumented increases
in regulatory stringency result in substantially higher, although less precise, estimates for
their efficiency costs.

Translog IV estimates in columns 3 through 5 correspond to OLS estimates in column
5 of table 2. Column 3 treats only land values as potentially endogenous, using the levels
and squares of the USDA amenities score and inverse distance to the sea, as well as their
interaction, as instruments for the differentials (r̂− v̂) and (r̂− v̂)2. Column 4 additionally
treats the regulatory index as potentially endogenous, using the nontraditional Christian
share and protective inspections share, and their interactions with the first two instruments
as excluded instruments. The estimated cost shares of land are again somewhat higher than
in the OLS estimates in table 2, but are also less precise. The IV estimates of efficiency cost
of regulations in column 4 are 14 log points per standard deviation, larger than in the OLS

21Because there is no time variation in the instrumental variables, we must restrict ourselves to cross-
sectional estimates in these specifications.
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but smaller than in the IV CD case. Column 5 uses a more limited set of instruments, using
squares and interactions of the predicted land-value minus construction cost differential
and regulatory restriction index from the first-stage regressions. The estimated cost share
of land is similar to the OLS estimates, while the efficiency cost of regulations is higher.
Tables A2 and A3 display all first-stage regressions.

In column 6 we push the IV strategy to further test for factor bias. This model does
somewhat better at passing the over-identifying restrictions test, but at the risk of be-
ing under-identified, as evidenced by the Kleibergen-Paap statistic (Kleibergen and Paap
2006).22 The results are qualitatively similar to those in column 8 of Table 2, suggesting
that regulatory restrictions are biased against land. However, the estimated magnitude of
the bias, as well as the land share and ES, are even higher than in the OLS specification.

Overall, the IV estimates are largely consistent with our OLS estimates. They sug-
gest a somewhat higher cost share of land and larger impacts of regulatory restrictions,
while being less precise. The two bottom rows of table 5 report the Wooldridge (1995)
test of regressor endogeneity and Hansen’s over-identification J-test of test of instrument
exogeneity (Hansen 1982). All of the specifications formally reject the null hypothesis of
regressor exogeneity, despite the substantive differences being small in several specifica-
tions. Half of the specifications in the table reject the over-identification test of instrument
exogeneity, although notably not the limited instrument specification in column 5, which
features a strong first stage and results close to the OLS estimates.

As we emphasized earlier, the OLS estimates are not invalidated by omitted demand
factors, as only supply factors should impact the cost equation. This makes the IV strategy
less critical to establishing our results. Given some of the problems with the diagnostic
tests, the larger standard errors, and the quality of the instruments, it is not clear that the IV
estimates are preferable to the OLS estimates.23

5.4 Calibrating Alternative Cost Parameters

The literature on the housing cost function has offered a range of values for land’s share
and the ES that are not always consistent with ours. We believe that our estimation strategy,
which is based on market-inferred land values across metro areas, innovates in some ways
on the previous literature. Nonetheless, it is entirely possible that our estimates of the

22The null hypothesis in the Kleibergen-Paap test is that the model is under-identified, so failing to reject
the null hypothesis is potential evidence of weak instruments.
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housing cost function parameters are incorrect. Because our main focus here is on housing
productivity and the costs imposed by land-use regulations, we also attempt to estimate
δA by imposing many different combinations of the cost parameters. This involves setting
values of φL and σY and estimating

p̂j − φLr̂j − (1− φL)v̂j − φL(1− φL)(1− σY )(r̂j − v̂j)2 = ZjδA + ζj + εj

Figure 5 shows the estimated effects using a range of φL from 0 to 0.5 and σY from
0 to 1.2, values that span the vast majority of previous literature. The estimated effects of
the restrictions decline as the cost share of land rises, and the effect of geographic restric-
tions rises slightly with the ES. The point estimates suggest that both types of restrictions
reduce housing productivity over the entire range of calibrated parameters, although they
are not quite statistically significant at the 5% level for the highest levels of the cost share.
These results suggest that our key finding that regulatory and geographic restrictions reduce
housing productivity is not sensitive to the exact shape of the housing cost function.24

5.5 Disaggregate Indices and the Regulatory Cost Index

Given our finding that land-use restrictions raise housing costs, the next issue is to de-
termine what kinds of land-use restrictions do so the most. As discussed previously, the
WRLURI aggregates 11 subindices, while the Saiz index aggregates two. Column 1 of ta-
ble 5 reports the factor loading of each of the WRLURI subindices in the aggregate index,
ordered according to its factor load. Alongside, in column 2, are coefficient estimates from
a regression of the aggregate WRLURI z−score on the z−scores for the subindices. These
coefficients differ from the factor loads because of differences in samples and weights. Col-
umn 3 presents similar estimates for the Saiz subindices; the coefficients on these measures
are negative because the subindices indicate land that may be available for development.

The specification in column 4 is identical to the specification in column 5 of table 2, but
with the disaggregated regulatory and geographic subindices. The fit of the model is quite
high, with a coefficient of variation (R2) near 90 percent. The estimated typical cost share
of land of φL = 0.332 and ES of σY = 0.51 are close to our estimates in column 5 from
table 2. This small change suggests that the biases from unobserved housing-productivity
determinants ζj discussed in subsection 3.4 are likely to be a minor as measures in Zj seem

24Appendix table A3 presents a similar sensitivity analysis for fewer parameter combinations in the instru-
mental variable context. The same qualitative patterns hold for the IV analysis.
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to be absorbing much of the variation.
The results for the subindices indicate that one-standard deviation increases in state

political and state court involvement reduce metro-level productivity by 6 and 4 percent.
Local supply restrictions raise costs by 1.5 percent. All of these estimates are significant at
the 5% level. At a lower level of significance of 10%, local political pressure raises costs
by 2.4%. At a significance level of 20%, approval delay, local project approval, and local
assembly also all seem to play a role in raising housing costs, the latter evoking recent
work by Brooks and Byron (2016). The one marginally significant negative coefficient is
on exactions (also known as “impact fees”). This is suggestive as exactions are thought to
be a relatively efficient land-use regulation, especially when they help pay for infrastructure
improvement (Yinger, 1998). Given the difficulties of measuring regulations as well as the
multicollinearity between them, we caution against taking any estimate too literally.

The regression coefficients are positively related to, albeit not identical to, the factor
loadings in column 1. They put relatively more weight on state restrictions than on local
ones. This is consistent with results in Glaeser and Ward (2009) that more local regulations
may have more limited effects. Indeed, builders may avoid them within a metro area by
switching communities. Moreover, the estimated coefficients are based on the economic
costs associated with each subindex. Partitioning the coefficient vectors into the regulatory
and the geographic, γR and γG, the predicted value ZR

j γ̂
R provides the cardinal estimate of

the costs of regulations, or “Regulatory Cost Index” (RCI).
Both of the Saiz subindices have statistically and economically significant negative

point estimates, indicating a one standard-deviation increase in the share of solid or flat
land is associated with a 7- and 8-percent reduction in housing costs, respectively.25

We take column 4 of table 5 — with factor-neutrality, φL = 0.33, σY =0.5, and disaggre-
gated subindices — as our favored specification to construct the RCI. From the cost-share
approximation in section 3.1, the cost share of land ranges from 6 percent in Jamestown,
NY to 50 percent in New York City. The associated partial elasticities of housing supply,
ηYj , range from 8.0 to 0.5, with a 99th-percentile of 3.0. Our housing supply elasticities are
positively related with those provided by Saiz (2010): a 1-point increase of our elasticity
predicts a 1.05-point (s.e. = 0.15) in his.

25In appendix table A4, we also consider how these specific variables may contribute to factor bias. In-
cluding so many variables pushes the data to its limits. The most significant results imply that local project
approval and supply restrictions are biased against land. Meanwhile, flat and solid land both appear to reduce
the bias against land.
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6 Housing Productivity across Metropolitan Areas

6.1 Productivity in Housing and Tradeables

Column 1 of table 6 lists our inferred measure of housing productivity using both observed
and unobserved components of housing productivity (i.e., ÂY

j = −Zjγ1 − ζj , assuming
εj = 0). The cities with the most and least productive housing sectors are McAllen, TX
and Santa Cruz, CA. Among large metros, with over one million inhabitants the top five —
excluding our low-growth sample — are Las Vegas, Houston, Indianapolis, Fort Worth, and
Kansas City; the bottom five are San Francisco, San Jose, Oakland, Orange County, and
San Diego, all on California’s coast. Along the East Coast, Hartford and Boston are notably
unproductive. Cities with approximately average productivity include Miami, Phoenix, and
Grand Rapids.26

Column 2 reports the estimated RCI, based only on the value of productivity loss pre-
dicted by the regulatory subindices, ZR

j , i.e., RCI∗j = ZR
j γ

R∗
1 . It excludes lost productivity

due to geographic restrictions, as well as any unobserved components. The cities with the
highest regulatory costs are in New England, notably Manchester, NH; Brockton, MA; and
Lawrence, MA-NH; with Boston topping the list of large cities. The West South Central re-
gions has cities with the lowest RCI: New Orleans, LA; Lake Charles, LA; and Little Rock,
AR. The differences are also quite suggestive. For example, the regulatory environment in
Chicago causes it to be 30 percent more efficient at producing housing than Boston.

Column 3 provides a comparable measure of trade-productivity, following (12), using
wages outside of the construction sector, with a value of θN = 0.85.27 Figure 6 plots
housing productivity relative to trade-productivity. The figure draws a level curve for total
productivity ÂTOT

j = sXÂX
j + sY ÂY

j , which has a slope of −sX/sY . The key result in
the figure is that trade productivity and housing productivity are negatively correlated. A
1-point increase in trade-productivity predicts a 1.6-point decrease in housing productivity.
For instance, coastal cities in California have among the highest levels of trade productivity
and the lowest levels of housing productivity. On the other hand, cities like Dallas and
Atlanta are relatively more productive in housing than in tradeables. New York, Chicago,
Philadelphia, and Las Vegas manage to achieve above average productivity in both sectors.

26See appendix table A5 for the values of the major indices and measures for all of the MSAs in our sample.
27This follows Albouy (2016) except that we exclude a small component from land used by firms in the

traded sector, which we leave for future work.
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6.2 Productivity-Population Gradients in Housing

The negative relationship between trade and housing productivity estimates appears related
to city size: while economies of scale in traded goods increase with city size — as expected
(e.g., Rosenthal and Strange, 2004) — urban economies of scale in housing seem to be be
decreasing. This may arise from technical difficulties in producing housing in crowded,
developed areas. Because housing is almost always produced on site, tight spaces around
construction sites in crowded environments force builders to use more expensive space-
saving technologies. Furthermore, large tracts of land may be more conducive to the mass
production of housing.

Furthermore, new construction imposes temporary negative externalities in consump-
tion on incumbent residents. Noise, dust, and safety hazards are greater nuisances in denser
environments. Indeed, local residents often protest new developments over fears of perma-
nent negative externalities from greater traffic or blocked views (Glaeser et al., 2005a).
These fears of negative externalities can cause incumbent residents in populous areas to
regulate new development, raising housing costs without directly intending it. This idea is
illustrated in figure 7, which plots how the RCI is positively related to population density.

Table 7 examines the relationship of productivity with population levels, aggregated at
the consolidated metropolitan (CMSA) level, in panel A, or population density, in panel B.
In column 1, the positive elasticities of trade productivity with respect to population and
density of 5.2 and 5.5 percent are consistent with many in the literature (Ciccone and Hall
1996, Melo et al. 2009). When trade-productivity Âj

X is weighted by its expenditure share,
sX = 0.64 in column 4, these elasticities are 3.3 and 3.5 percent. The results in column 2
reveal negative elasticities of housing productivity with respect to population of 6.3 and 5.4
percent; weighted by the expenditure share, sY = 0.16 in column 5, these are each about
negative 1 percent. On net, this means that the total economies of scale in production are
reduced to elasticities of 2–3 percent each for population and population density.

Column 3 uses the negative of the RCI, switching signs to be consistent with housing
productivity, but excluding biases introduced by correlated geography and various errors in
εj . The results are more modest but still substantial: a 10-percent increase in population
engenders regulations that raise housing costs by roughly 0.25 percent. Weighted by the
housing expenditure share, regulations lower the income-population and density gradients
for total productivity by about 0.4 percentage points, eliminating about one-eighth of urban
productivity gains.
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6.3 Housing Productivity and Quality of Life

The model in section 3 predicts that if regulations only reduce housing productivity, then
they simply reduce welfare. Ostensibly, though, the purpose of land-use regulations is to
raise welfare by “recogniz[ing] local externalities, providing amenities that make commu-
nities more attractive,” (Quigley and Rosenthal, 2005). In this view, sometimes termed
the “externality zoning” view, regulation raises house prices by increasing demand, rather
than by limiting supply. Moreover, so-called “fiscal zoning” may be used to preserve the
local property tax base and deliver public goods more efficiently, in support of the Tiebout
(1956) hypothesis (Hamilton, 1975, Brueckner, 1981).

On the other hand, Hilber and Robert-Nicoud (2013) argue that rent-seeking incentives
will cause nicer areas to become more highly regulated, inducing a spurious correlation.
Levine (2005) argues that incumbent residents fail to change zoning laws as cities grow,
causing inefficiently low density and excess commuting, thereby reducing quality of life.
To our knowledge, there are only a few estimates of the benefits of land-use regulations,
e.g. Cheshire and Sheppard (2002), Glaeser et al. (2005a), and Waights (2015), all of which
suggest low benefits.

To examine this hypothesis across U.S. cities we first study how housing-productivity
estimates relate to quality of life indices based on willingness-to-pay measures derived
from equation (12). 28 The simple relationship between quality of life and the RCI without
amenity controls, is shown in figure 8 and panel A of Table 8. The simple regression line
in the figure suggests that a one-point increase in housing productivity is associated with
a 0.25-point decrease in quality of life (also shown in column 1). Column 4 implies that
a one-point increase in regulatory costs is associated with a 0.46-point increase in quality
of life. Note again that the coefficients on housing productivity and the RCI in quality-of-
life regressions will tend to have opposite signs because higher values of ÂY

j denote more
efficient housing production and higher values of the RCI indicate more costly regulations.

There are grave problems with interpreting these raw correlations as causal. First, they
ignore the likelihood higher quality of life areas may be more prone to regulate. This prob-

28The derivation follows Albouy (2008) with some adjustments. We use an expenditure share of 0.16
for housing, and sX = 0.64 as mentioned earlier, for traded goods. For remaining non-housing non-traded
goods, the expenditure share is 0.2. The value of p̂j + ÂY

j is used for this non-traded good price, so as to
reflect only input costs, because their productivity is unknown, and so as to minimize problems of division
bias. The value of sw = 0.72 we use implies a value of φN = 0.4, which is consistent with the disaggregated
analysis discussed above. To account for federal taxes on labor (Albouy, 2009), wage differences are reduced
by a third; for tax benefits to owner-occupied housing, housing price differences are reduced by one-sixth.
We use only aggregate estimates of Q̂j : Q̂X

j and Q̂Y
j have a correlation of 0.91.
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lem motivates controlling for observable amenities which predict quality of life. Second,
the correlations suffer from a potential “division bias”: housing productivity is inferred in
part from low prices; quality of life, from high prices. As such, measurement error will
automatically create a negative bias. We cannot control for this directly, although the RCI
should suffer less from this problem than overall productivity.

To control for observable amenities, we estimate the following equation

Q̂j ≡ sY p̂j − swŵj = ÂY ∗
j a+

∑
k

qkj bk + ej (18)

where qkj refers to individual amenities. The coefficient a provides the elasticity of willing-
ness to pay of households, as a fraction of their income, for housing productivity. To focus
on changes in productivity due to regulations, we replace ÂY ∗ with −RCI∗j .

Controlling for observable amenities changes the estimated relationship dramatically, as
they are highly correlated with housing productivity and the RCI. Columns 2 and 5 include
controls for natural amenities, such as climate, adjacency to the coast, and the geographic
restriction index. These seemingly exogenous controls virtually eliminate the estimated
relationships between quality of life and housing productivity or regulatory costs.

Columns 3 and 6 add controls for artificial amenities such as the population level, den-
sity, education, crime rates, and number of eating and drinking establishments of each
metro area. Including these controls suggests that land-use restrictions could actually lower
quality of life, albeit insignificantly. Certainly, columns 3 and 6 provide clear evidence that
regulations and natural and artificial amenities are positively correlated.

It is worth noting that the quality of life estimates reflect values that are exhibited on
the market. Regulations may produce idiosyncratic values for local residents that are not
valued externally by the marginal buyer. For example, a majority of incumbent residents
in a community may prefer a low residential density. If outside buyers, who represent the
majority of the outside market, care nothing for low densities, this will not show up in
higher housing (and land) prices, and hence not show up in willingness-to-pay measures.
This problem is endemic to all marginal analysis.

Idiosyncratic benefits are also related to how preference heterogeneity impacts the
willingness-to-pay used to estimate quality of life benefits. As explained in subsection 3.3,
limiting the number of residents can raise the willingness to pay of the marginal resident
through ωij , without producing actual benefits in Q̂0j . This becomes more of an issue if
land-use restrictions reduce the supply of housing by reducing land supply. In the standard
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Roback formulation, with homogeneous preferences, simply removing land from develop-
ment on this “extensive” margin should have no impact on prices in a small open city: land
supply does not enter equation (15d). But again, if preferences are heterogeneous, reducing
land supply will lower the number of residents in a community, raising willingness-to-pay
in ωij similar to the model of Gyourko et al. (2013).

6.4 Net Effects on Welfare and Land Values

The expenditure share of housing is approximately 0.16, so the social cost of land-use
restrictions, expressed as a fraction of total consumption, is equal to 0.16 times the RCI.
For quality-of-life benefits to exceed this cost, the elasticity of quality of life with respect
to the RCI, estimated in a, must exceed this share. In other words, the net benefits are equal
to sY + a.

If we naively accept the simple regression relationship in column 4 of table 8 panel
A as causal, it would appear that benefits of regulation are greater than their costs. As
discussed above, however, the regulatory environment is highly correlated with both natural
and artificial amenities that households value. Controlling for amenities in columns 5 and
6 renders the positive effects of regulation on quality of life too small economically to
outweigh the the costs they impose on housing production. The estimates in columns 5 and
6 imply an elasticity of social welfare with respect to the RCI of negative 0.1–0.2, meaning
that regulations which lower housing productivity also reduce social welfare.

Welfare-reducing regulations may persist if quality-of-life benefits accrue to incumbent
residents, who control the political process, while the productivity losses are borne by po-
tential residents, who do not have a local political voice. Thus even a small or idiosyncratic
quality of life benefit could allow land-use restrictions that reduce overall welfare to persist.
Importantly, our results are at the metropolitan level, and could point to a Coasean failure.
Potential residents or developers may lack the coordination to buy out the incumbents in
particular neighborhoods. As a result, each local community free rides: each could incur
a small private cost in quality of life for a large social gain in housing affordability, but
chooses not to. As a result, the entire metropolitan area is organized inefficiently.

We conclude by considering the overall effect of productivity and regulations on local
land values. This involves running a regression of the form (18), except with r̂j , instead
of Q̂. Estimates are shown in Panel B. The net welfare loss from regulations implies that
land should lose value, despite increases in house prices. This prediction is subject to the
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same caveat that policies that limit the extensive margin of land supply can actually raise
the price of developable land, by limiting population and raising the willingness to pay of
the marginal resident.

The simple regressions in columns 1 and 4 reveal that land values are negatively related
to housing productivity and even more strongly positively related to the RCI. Again, this
correlation may not be causal: it omits the fact that housing productivity is negatively
correlated with both quality of life and trade productivity. The latter seems to driven more
by artificial amenities than by natural ones, which makes this analysis more circumstantial.

Nevertheless, once we add controls for both natural and artificial amenities, the rela-
tionships reverse again. In column 3, we see that housing productivity does appear to boost
land values. Column 6 suggests, less precisely, that regulatory costs indeed lower land
prices. Given the limited nature of these results, further research is certainly warranted.

The model used in the main analysis assigns all welfare losses to land owners. While
preference heterogeneity was of little consequence to our analysis thus far, it can shift the
welfare costs partly onto housing consumers. This is easiest to see if consumers are viewed
as renters, and land owners as landlords, acknowledging that owner-occupiers effectively
rent to themselves. Consumers who have strong tastes for natural amenities or dense cities
are more exposed to inefficient housing production. Limited supply causes these house-
holds either to be excluded from their preferred community, or to pay prices closer to their
reservation value, via a higher marginal ωij . This increase in willingness boosts land prices
that offset (and could even potentially reverse) the negative effects of low housing produc-
tivity. Thus, losses to land owners are mitigated, as consumers bear some of the burden.

7 Conclusion

By separating input and output prices for housing, our estimates offer a direct way to iso-
late how land-use restrictions affect housing prices through supply and demand channels.
Our estimates are unique in taking advantage of large variation regulatory and geographic
restrictions, as well as land and construction prices.

The estimated cost function fits the data well, passes multiple specification tests, and
produces estimates with credible economic magnitudes, despite being drawn from numer-
ous disparate data sources. The two input prices and two restriction measures together ex-
plain 87 percent of the variation in home prices. Furthermore, the stability of the land-share
estimate and the instrumental variable strategies suggest that the ordinary least squares es-
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timates are likely to be reasonable. Based on the observed price gradients, we estimate
the average cost share of land in housing is one-third and, less precisely, that the elasticity
of substitution between land and non-land inputs is one-half. These estimates imply that
during our time period land’s cost share ranged from 6 to 50 percent across metros, e.g.,
23 percent in Pittsburgh, 32 percent in Raleigh, 37 percent in Portland, and 48 percent in
San Francisco. These varying cost shares help to explain why price elasticities of housing
supply differ across cities.

Moreover, the estimates provide strong support for the hypothesis that regulatory and
geographic restrictions create a wedge between the prices of housing and its inputs. The
disaggregated estimates suggest that state political and court involvement are associated
with large increases in housing costs. This is sensible as developers will have the greatest
difficulty avoiding wide-ranging regulations. The Regulatory Cost Index quantifies a pre-
cise cost of housing regulations, purged of demand factors, which may be useful to other
researchers.

Importantly, cities that are productive in traded sectors tend to be less productive in
housing, as the two appear to be subject to opposite economies of scale. Larger cities
have lower housing productivity, much of which seems attributable to greater regulation.
While some regulations may be welfare enhancing, overall these regulatory costs — as
measured by our index — have little positive impact on local quality of life once observable
amenities are controlled for. Thus, land-use regulations appear to raise housing costs more
by restricting supply than by increasing demand. On net, the typical land-use regulation
reduces well-being by making housing production less efficient and housing consumption
less affordable.
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Name of Area Population
Housing 

Price
Land 
Value

Const. 
Price Index

Wages 
(Const. 
Only)

Regulation 
Index      

(z-score)

Geo Unavail. 
Index

(z-score)
(1) (2) (3) (4) (5) (6) (7)

Metropolitan Areas:
San Francisco, CA PMSA 1,785,097 1.35 1.74 0.24 0.22 1.72 2.14

Santa Cruz-Watsonville, CA PMSA 256,218 1.19 0.69 0.14 0.23 0.82 2.07
San Jose, CA PMSA 1,784,642 1.13 1.47 0.19 0.22 -0.05 1.68

Stamford-Norwalk, CT PMSA 361,024 1.02 1.07 0.14 0.23 -0.56 0.55
Orange County, CA PMSA 3,026,786 0.98 1.32 0.06 0.12 0.08 1.14

Santa Barbara-Santa Maria-Lompoc, CA MSA 407,057 0.97 0.71 0.08 -0.04 0.59 2.76
Los Angeles-Long Beach, CA PMSA 9,848,011 0.92 1.31 0.08 0.12 0.88 1.14

New York, NY PMSA 9,747,281 0.91 1.99 0.29 0.26 -0.17 0.55

Boston, MA-NH PMSA 3,552,421 0.64 0.73 0.18 0.10 1.30 0.24
Washington, DC-MD-VA-WV PMSA 5,650,154 0.41 1.07 -0.03 0.19 0.89 -0.73
Riverside-San Bernardino, CA PMSA 4,143,113 0.26 0.12 0.06 0.12 0.64 0.43

Chicago, IL PMSA 8,710,824 0.19 0.61 0.18 0.07 -0.54 0.53
Philadelphia, PA-NJ PMSA 5,332,822 0.07 0.25 0.16 0.05 0.69 -0.91

Phoenix-Mesa, AZ MSA 4,364,094 0.00 0.41 -0.10 0.00 1.00 -0.73
Atlanta, GA MSA 5,315,841 -0.29 -0.05 -0.08 0.04 0.08 -1.21

Detroit, MI PMSA* 4,373,040 -0.28 -0.33 0.04 -0.02 -0.25 -0.22
Dallas, TX PMSA 4,399,895 -0.43 -0.40 -0.17 0.01 -0.67 -0.96

Houston, TX PMSA 5,219,317 -0.50 -0.30 -0.14 0.04 -0.07 -1.00

Rochester, NY MSA* 1,093,434 -0.53 -1.43 0.03 -0.05 -0.55 0.07
Utica-Rome, NY MSA* 293,280 -0.66 -1.95 -0.03 -0.32 -1.42 -0.55

Saginaw-Bay City-Midland, MI MSA* 390,032 -0.59 -2.05 -0.01 -0.14 -0.18 -0.61

Metropolitan Population:
Less than 500,000 31,264,023 -0.23 -0.66 -0.36 -0.09 -0.06 -0.04

500,000 to 1,500,000 55,777,644 -0.19 -0.43 -0.29 -0.06 -0.16 -0.05
1,500,000 to 5,000,000 89,173,333 0.10 0.20 0.15 0.02 0.14 0.01

5,000,000+ 49,824,250 0.36 0.87 0.22 0.12 0.01 0.09

Standard Deviations (pop. wtd.) 0.52 0.86 0.13 0.17 0.96 1.01
Correlation with land values (pop. wtd.) 0.90 1.00 0.64 0.71 0.48 0.56

Land-value index adapted from Albouy, Ehrlich and Shin (forthcoming) from CoStar COMPS database for years 2005 to 2010. Wage and
housing-price data from 2005 to 2010 American Community Survey 1-percent samples. Wage differentials based on the average logarithm of
hourly wages. Housing-price differentials based on the average logarithm of prices of owner-occupied units. Regulation Index is the Wharton
Residential Land Use Regulatory Index (WRLURI) from Gyourko et al. (2008). Geographic Availability Index is the Land Unavailability Index
from Saiz (2010). Construction-price index from R.S. Means. MSAs with asterisks after their names are in the weighted bottom 10% of our
sample in population growth from 1980-2010.

TABLE 1: MEASURES FOR SELECTED METROPOLITAN AREAS, RANKED BY HOUSING-PRICE DIFFERENTIAL: 2005-2010



Specification
Constrained 

Cobb-Douglas
Constrained 

Cobb-Douglas
Unconstrained 
Cobb-Douglas

Constrained 
Translog

Constrained 
Translog

Unconstrained 
Translog

Constrained 
Translog w/ 

Constr Wages

Biased 
Productivity 
Constrained 

Translog
(1) (2) (3) (4) (5) (6) (7) (8)

Land-Value Differential 0.470 0.355 0.335 0.463 0.346 0.320 0.341 0.353
(0.039) (0.032) (0.038) (0.035) (0.032) (0.041) (0.028) (0.025)

Construction-Price (Wage) Differential 0.530 0.645 1.038 0.537 0.654 0.946 0.659 0.647
(0.039) (0.032) (0.197) (0.035) (0.032) (0.200) (0.028) (0.025)

Land-Value Differential Squared 0.069 0.075 0.044 0.062 0.044
(0.049) (0.031) (0.030) (0.028) (0.025)

Construction-Price (Wage) Differential Squared 0.069 0.075 -1.506 0.062 0.044
(0.049) (0.031) (1.975) (0.028) (0.025)

Land-Value Differential X Construction-Price (Wage) Differential -0.138 -0.150 0.337 -0.124 -0.088
(0.098) (0.062) (0.371) (0.056) (0.050)

Regulatory Index: z-score 0.069 0.065 0.081 0.083 0.058 0.088
(0.016) (0.018) (0.018) (0.018) (0.016) (0.017)

Geographic Index: z-score 0.100 0.093 0.093 0.090 0.108 0.087
(0.023) (0.021) (0.023) (0.020) (0.024) (0.020)

Regulatory Index times (Land Value Differential minus 
Construction Price Differential) 0.057

(0.021)
Geographic Index times (Land Value Differential minus 

Construction Price Differential) 0.019
(0.034)

Number of Observations 1103 1103 1103 1103 1103 1103 1087 1103
Number of MSAs 230 230 230 230 230 230 228 230

Adjusted R-squared 0.808 0.853 0.859 0.818 0.864 0.870 0.844 0.870

p -value for homogeneity constraints 0.010 0.041 0.083 0.286 0.000 0.153
p -value for CD constraints 0.160 0.017 0.412
p- value for all constraints 0.002 0.007
Elasticity of Substitution 1.000 1.000 1.000 0.444 0.333 0.452 0.616

(0.391) (0.263) (0.237) (0.214)

 CONSTRUCTION PRICES, AND AGGREGATE REGULATORY AND GEOGRAPHIC CONSTRAINTS

All regressions are estimated by ordinary least squares. Dependent variable in all regressions is the housing price index. Robust standard errors, clustered by CMSA, reported in parentheses. Data sources are 
described in Table 1. Restricted model specifications require that the production function exhibits homogeneity of degree one. Cobb-Douglas (CD) restrictions impose that the squared and interacted 
differential coefficients equal zero (the elasticity of substitution between factors equals 1). All regressions include a constant term. Column 7 replaces the construction price with wages in the construction 
sector.

TABLE 2: COST FUNCTION ESTIMATES: THE DEPENDENCE OF METROPOLITAN HOUSING PRICES ON LAND VALUES,



Specification Baseline

All-Use 
Land 

Values

Unwtd. 
Land 

Values
Raw House 

Prices

2005-2007 
Boom 

Sample

2008-2010 
Bust 

Sample

House House House House House House
Dependent Variable Price Price Price Price Price Price

(1) (2) (3) (4) (5) (6)
Land-Value Minus Construction Price 

Differential 0.346 0.213 0.249 0.381 0.353 0.338
(0.032) (0.024) (0.026) (0.040) (0.034) (0.032)

Land-Value Minus Construction Price 
Differential Squared 0.075 0.012 0.030 0.036 0.063 0.088

(0.031) (0.017) (0.017) (0.036) (0.034) (0.032)

Regulatory Index: z-score 0.081 0.105 0.116 0.094 0.091 0.071
(.018) (.018) (.015) (.020) (.018) (.019)

Geographic Index: z-score 0.093 0.115 0.093 0.048 0.106 0.080
(.023) (.025) (.028) (.029) (.025) (.022)

Adjusted R-squared 0.864 0.835 0.841 0.831 0.864 0.868

Elasticity of Subsitution 0.333 0.859 0.678 0.691 0.452 0.214
(0.263) (0.211) (0.181) (0.294) (0.284) (0.264)

TABLE 3: COST FUNCTION SENSITIVITY ANALYSES

Robust standard errors, clustered by CMSA, reported in parentheses.  Regressions correspond to the restricted 
specification in  column 4 of Table 2. Calibrated specification in column 2 imposes land share of of 23.3 percent 
and elasticity of substitution of two-thirds, consistent with the calibration in Albouy (2009). All-use land values 
allow for prediction adjustments based on all land uses, as explained Albouy et al. (forthcoming). Unweighted land 
values do weight census tracts by land area rather than the number of housing units. Raw house price does not 
control for observed housing characteristics.  Building permits information is taken from City and County Data 
Books. Appendix Table A.1 contains sensitivity analyses of the translog model with factor biases.



Specification

Constrained 
Cobb-

Douglas

Constrained 
Cobb-

Douglas
Constrained 

Translog
Constrained 

Translog

Constrained 
Translog - 
Limited 

Instruments

Biased 
Constrained 
Translog - 

Limited IVs
(1) (2) (3) (4) (5) (6)

Land-Value Minus Construction Price 
Differential 0.496 0.357 0.491 0.404 0.317 0.530

(0.094) (0.063) (0.097) (0.076) (0.085) (0.116)
Land-Value Minus Construction Price 

Differential Squared 0.007 0.056 0.093 0.010
(0.086) (0.044) (0.038) (0.106)

Regulatory Index: z-score 0.030 0.164 0.032 0.135 0.169 0.142
(0.036) (0.077) (0.035) (0.066) (0.075) (0.100)

Geographic Index: z-score 0.061 0.080 0.062 0.063 0.085 0.055
(0.037) (0.027) (0.037) (0.028) (0.027) (0.041)

Regulatory Index times (Land Value Differential 
minus Construction Price Differential) 0.549

(0.196)
Geographic Index times (Land Value 
Differential minus Construction Price -0.252

(0.140)

Number of Observations 229 217 229 217 217 217
Adjusted R-squared 0.779 0.764 0.783 0.796 0.797 0.273

Instrument for Land-Value Differential? Yes Yes Yes Yes Yes Yes
Instrument for Regulatory Index? No Yes No Yes Yes Yes

p-value for homogeneity restrictions 0.680 0.509 0.520 0.729 0.685 0.252

Elasticity of Substitution 1.000 1.000 0.942 0.535 0.137 0.917
(0.689) (0.365) (0.418) (0.850)

p-value of Kleibergen-Paap under-identification 
test 0.019 0.046 0.035 0.018 0.035 0.079

p-value of test of overidentifying restrictions 0.543 0.035 < .001 < .001 0.269 0.569
p-value of test of OLS consistency 0.005 0.010 0.014 < .001 0.034 < .001

TABLE 4: INSTRUMENTAL VARIABLES ESTIMATES OF HOUSING COST FUNCTION

All regressions are estimated by two-stage least squares. Robust standard errors, clustered by CMSA, reported in parentheses. All 
specifications are constrained to have constant returns to scale. Columns 1 and 2 correspond to the OLS specification in Table 2, 
Column 2. Columns 3 through 5 correspond to the OLS specification in Table 2, Column 5. Column 6 corresponds to the OLS 
specification in Table 2, Column 8. In columns 1 and 3, the land-value differential (and differential squared) are treated as 
endogenous, and in the other columns the regulatory constraint index is also treated as endogenous. The instrumental variables used in 
columns 1 and 3 are the inverse distance to the sea, USDA natural amenities score; column3 includes their squares and interaction. 
Columns 2 and 4  also include the nontraditional Christian share in 1971 and the share of local expenditures devoted to protective 
inspections in 1982; column 4 includes relevant interactions. Column 6 uses squares and interactions of the predicted land-value 
minus construction cost differential and regulatory constraint index from the first-stage regressions as instruments. Tables A2 and A3 
display all first-stage regressions. The null hypothesis of the Kleibergen-Paap test is that the model is underidentified. The 
overidentifying restrictions test is a J-test of the null hypothesis of instrument consistency. Test of OLS consistency is a Hausman-
style test comparing consistent (IV) and efficient (OLS) specifications.



Specification

Regulatory 
Index Factor 

Loading

Regulatory 
Index on 

Subindices

Georaphic 
Index on 

Subindices
Constrained 

Translog

Dependent Variable Reg Index Geog Index Hous. Price
(1) (2) (3) (4)

Land-Value Minus Construction Price 
Differential 0.332

(0.029)
Land-Value Minus Construction Price 

Differential Squared 0.054
(0.025)

Approval Delay: z-score 0.29 0.399 0.018
(0.000) (0.013)

Local Political Pressure: z-score 0.22 0.332 0.024
(0.000) (0.013)

State Political Involvement: z-score 0.22 0.398 0.058
(0.000) (0.018)

Open Space: z-score 0.18 0.164 -0.014
(0.000) (0.013)

Exactions: z-score 0.15 0.023 -0.022
(0.000) (0.014)

Local Project Approval: z-score 0.15 0.167 0.018
(0.000) (0.014)

Local Assembly: z-score 0.14 0.124 0.014
(0.000) (0.008)

Density Restrictions: z-score 0.09 0.194 0.018
(0.000) (0.015)

Supply Restrictions: z-score 0.02 0.087 0.015
(0.000) (0.007)

State Court Involvement: z-score -0.03 -0.059 0.042
(0.000) (0.019)

Local Zoning Approval: z-score -0.04 -0.036 -0.009
(0.000) (0.011)

Flat Land Share: z-score -0.491 -0.084
(0.034) (0.022)

Solid Land Share: z-score -0.790 -0.068
(0.054) (0.023)

Number of Observations 1103 1103 1103
Adjusted R-squared 1.000 0.846 0.895

Elasticity of Substitution 0.509
(0.214)

Robust standard errors, clustered by CMSA, reported in parentheses. Regressions include constant 
term. Data sources are described in table 1; constituent components of Wharton Residential Land Use 
Regulatory Index (WRLURI) are from Gyourko et al (2008). Constituent components of 
geographical index are from Saiz (2010).

TABLE 5: HOUSING COST FUNCTION ESTIMATES WITH DISAGGREGATED 
REGULATORY AND GEOGRAPHIC RESTRICTION INDICES



Housing 
Productivity

Regulatory 
Cost Index

Trade 
Productivity/
Wage Index

(1) (2) (3)

Metropolitan Areas:
Santa Cruz-Watsonville, CA PMSA -0.902 0.095 0.177

San Francisco, CA PMSA -0.527 0.187 0.182
San Jose, CA PMSA -0.455 0.037 0.182

Orange County, CA PMSA -0.437 0.060 0.080
Bergen-Passaic, NJ PMSA -0.376 0.024 0.136

Los Angeles-Long Beach, CA PMSA -0.385 0.121 0.080
Boston, MA-NH PMSA -0.284 0.213 0.086

Washington, DC-MD-VA-WV PMSA -0.035 0.047 0.119
Phoenix-Mesa, AZ MSA 0.041 0.128 -0.002

New York, NY PMSA 0.076 0.006 0.136
Philadelphia, PA-NJ PMSA 0.088 -0.007 0.059

Chicago, IL PMSA 0.114 -0.092 0.053
Dallas, TX PMSA 0.144 -0.094 -0.002
Atlanta, GA MSA 0.184 -0.011 -0.002

Detroit, MI PMSA* 0.165 0.031 0.002
Houston, TX PMSA 0.272 -0.071 0.017

Las Vegas, NV-AZ MSA 0.320 -0.122 0.061
McAllen-Edinburg-Mission, TX MSA 0.645 -0.118 -0.186

Metropolitan Population:
Less than 500,000 -0.006 -0.014 -0.055

500,000 to 1,500,000 0.020 -0.020 -0.042
1,500,000 to 5,000,000 -0.034 0.020 0.016

5,000,000+ 0.012 0.005 0.073

United States 0.226 0.094 0.088

TABLE 6: INFERRED HOUSING PRODUCTIVITY, REGULATORY COST, AND OTHER 
INDICES FOR SELECTED METROPOLITAN AREAS, 2005-2010

standard deviations (population weighted)

MSAs are ranked by infrred housring productivity. Housing productivity in column 1 is calculated from 
the specification in column 4 of table 5, as the negative of the sum of the regression residual plus the 
housing price predicted by the WRLURI and Saiz subindices. The Regulatory Cost Index is based upon 
the projection of housing prices on the WRLURI subindices, and is expressed such that higher numbers 
indicate lower productivity. Trade productivity is calculated as 0.8 times the overall wage differential.  
Refer to section 3.3 of the text for the calculation of quality-of-life estimates.  Quality of life and total 
amenity value are expressed as a fraction of average pre-tax household income.



Trade 
Productivity

Housing 
Productivity

Minus 
Regulatory 
Cost Index Trade Only Housing Only

Total: Trade 
and Housing

Total: Trade 
and Housing 
(RCI Only)

(1) (2) (3) (4) (5) (6) (7)
Panel A: Population

Log of Population 0.052 -0.063 -0.025 0.033 -0.011 0.023 0.029
(0.004) (0.021) (0.007) (0.003) (0.004) (0.004) (0.003)

Number of Observations 230 230 230 230 230 230 230
Adjusted R-squared 0.653 0.145 0.116 0.653 0.145 0.502 0.618

Panel B: Population Density

Weighted Density Differential 0.055 -0.054 -0.026 0.035 -0.010 0.027 0.031
(0.004) (0.026) (0.009) (0.003) (0.005) (0.004) (0.002)

Number of Observations 230 230 230 230 230 230 230
Adjusted R-squared 0.386 0.053 0.066 0.386 0.053 0.349 0.366

TABLE 7: URBAN ECONOMIES AND DISECONOMIES OF SCALE: THE RELATIONSHIP OF TRADE AND HOUSING 
PRODUCTIVITIES WITH METROPOLITAN POPULATION AND DENSITY

Dependent Variable

Robust standard errors, clustered by CMSA, reported in parentheses. Trade and housing productivity differentials and regulatory cost index are
calculated as in table 6. Weighted productivities in columns (4) and (5) are weighted by the housing share, 0.16, and the traded share, 0.64,
respectively. Total productivity in column (6) is calculated as 0.16 times housing productivity plus 0.64 times trade productivity. Weighted density
differential is calculated as the population density at the census-tract level, weighted by population. Total productivity (RCI Only) in column 7 is
defined as the traded goods share, 0.64, times trade productivity minus the housing share, 0.16, times the Regulatory Cost Index.

Weighted Productivities



(1) (2) (3) (4) (5) (6)
Panel A

Total Housing Productivity -0.25 0.01 0.04
(0.04) (0.03) (0.04)

Minus Regulatory Cost Index (RCI) -0.46 -0.04 0.05
(0.10) (0.04) (0.04)

Adjusted R-squared 0.36 0.75 0.85 0.22 0.75 0.85

Housing Share of Consumption (Direct Benefit) 0.16 0.16 0.16 0.16 0.16 0.16

Elasticity of Social Welfare with respect to 
Increasing Housing Productivity/Reducing RCI -0.09 0.17 0.20 -0.30 0.12 0.21

Panel B

Total Housing Productivity -1.72 0.29 0.62
(0.33) (0.25) (0.28)

Minus Regulatory Cost Index (RCI) -3.74 -0.86 0.26
(0.89) (0.48) (0.41)

Adjusted R-squared 0.23 0.60 0.83 0.20 0.61 0.83

Controls for Natural Amenties X X X X
Controls for Artificial Amenties X X

Number of Observations 230 225 216 230 225 216

TABLE 8: THE WELFARE CONSEQUENCES OF LAND-USE REGULATION: THE RELATIONSHIP OF 
QUALITY OF LIFE AND LAND VALUES WITH HOUSING PRODUCTIVITY

Robust standard errors, clustered by CMSA, in parentheses. Quality of life and regulatory cost index are calculated as
in table 6. Natural controls: quadratics in heating and cooling degree days, July humidity, annual sunshine, annual
precipitation, adjacency to sea or lake, log inverse distance to sea, geographic constraint index, and average slope.
Artificial controls include eating and drinking establishments and employment, violent crime rate, non-violent crime
rate, median air quality index, teacher-student ratio, and fractions with a college degree, some college, and high-school
degree. Both sets of controls are from Albouy et al. (2012) and Albouy (2016). Elasticity of Social Welfare is
calculated as expenditure share of housing, 0.18, plus elasticity of Quality of Life with respect to Housing Productivity
or the negative of the RCI.

Dependent Variable: Land Value

Dependent Variable: Quality of Life



Figure 1: The Effects of Low Productivity or Low Substitutability on Housing Prices
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Figure 2: House Prices vs. Land Values
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Figure 3: Construction Prices vs. Land Values
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estimated elasticity of substitution and average land share differ very slightly from table 2, column 4, because they are estimated over
time-averaged input and output prices, while the table uses measures that vary by year.
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Figure 4: Housing Cost Surface with φL = 0.47 and σY = 0.45
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Figure 5: Estimated Effects of Restrictions on Housing Productivity
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Figure 6: Productivity in the Tradeable and Housing Sectors
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Figure 7: Regulatory Cost Index vs. Log Population Density
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Figure 8: Quality of Life vs. Housing Productivity

Evansville

Amarillo

Ventura

Hartford

Albany

Knoxville

New Orleans*

Ann Arbor

Baton Rouge

Birmingham

Jacksonville
Colorado Springs

Nashville

Albuquerque

Toledo*
Little RockOklahoma City

Akron*

Memphis

Rochester*Syracuse*
Buffalo*

El Paso

McAllen

San Francisco

San Jose

Oakland

Orange County

San Diego

Newark*

Boston

Riverside

Seattle

Denver

Portland, OR

Raleigh-Durham

Miami

Phoenix

Austin

Salt Lake City

St. Louis

Tampa

Minneapolis

Orlando

Dallas

Detroit*ColumbusCincinnati
Kansas City

Fort Worth

Cleveland*

Indianapolis
Pittsburgh*

Las Vegas

Los Angeles

Washington

New York

Philadelphia

Chicago

Atlanta

Houston

-0
.2

0
-0

.1
0

0.
00

0.
10

0.
20

Q
ua

lit
y 

of
 L

ife

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
Housing Productivity

METRO POP

<0.5 Million 0.5-1.5 Million

1.5-5 Million >5.0 Million

Linear Fit: Slope = -0.253 (0.043)

50



Appendix for Online Publication Only

A Housing Productivity and Factor Bias
It is easiest to consider the case in which housing productivity is factor specific, so that
the production function for housing is Yj = F Y (L,M ;AY

j , B
Y
j ) = F Y (AY L

j L,AYM
j M ; 1).

Further consider the case of Hicks-neutral (total factor) productivity so thatAY L
j = AYM

j =
AY

j . The biases are captured by the ratioBY
j = AY L

j /AYM
j . It is convenient to express these

in the log-linear case as Âj ≡ φLÂL
j + (1− φL)ÂM

j and B̂j ≡ ÂL
j − ÂM

j .
To simplify the notation, consider efficiency units of land and materials, L∗ ≡ AY L

j L,M∗ ≡
AYM

j M . The prices of these efficiency units are r̃ ≡ r/AY L, v∗ = v/AYM . Further, drop
the subscripts on the prices and the superscripts Y. Because rL+ vM = r∗L∗ + v∗M∗, an
equivalent cost function can be written as

C∗ (r∗, v∗, Y ) ≡ min
L∗,M∗

{r∗L∗ + v∗M∗ : F (L∗,M∗) = Y } (A.1)

Because of constant returns to scale, the unit cost function is then

c∗ (r∗, v∗) ≡ min
l∗,m∗
{r∗l∗ + v∗m∗ : F (l∗,m∗) = 1} (A.2)

where l ≡ L/Y and m ≡ M/Y are input-output ratios. According to Shepard’s Lemma,
the first derivatives of the cost function with respect to the first and second argument are
written

c∗r ≡
∂c∗

∂r∗
= l∗ =

L∗

Y
, c∗v ≡

∂c∗

∂v∗
= m∗ =

M∗

Y
(A.3)

Taking the logarithm of the cost function, and then the first derivatives:

∂ ln c∗

∂ ln r∗
=
c∗rr
∗

c∗
=
rL

cY
= φL,

∂ ln c∗

∂ ln v∗
=
c∗vv
∗

c∗
=
vM

cY
= φM (A.4)

Assuming the equilibrium condition ln p = ln c = ln c∗ holds, then we have the first-order
approximation:

p̂j = φLr̂∗ + φM v̂∗ = φLr̂j + φM v̂j −φLÂL
j − φM ÂML

j︸ ︷︷ ︸
−ÂY

j

(A.5)

The first-order approximation is Cobb-Douglas, and does not allow us to disentangle factor
bias as both ÂL

j and ÂM
j are only in the residual. To consider factor bias, we need the
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second derivatives. Because of Young’s Theorem, only a single mixed derivative is needed

∂2 ln c∗

∂ ln r∗∂ ln v∗
=
c∗rr
∗

c∗

(
vcrv
c∗r
− vc∗v

c

)
= −φL

(
1− φL

)
(1− σ) (A.6)

The mixed derivative is the negative of the second-order pure derivatives, which are equal
due to symmetry:

∂2 ln c∗

∂2 ln r∗
=
c∗rr
∗

c∗

(
1− c∗rr

∗

c∗
− c∗rrr

∗

c∗r

)
= φL

(
1− φL

)
(1− σ) =

∂2 ln c∗

∂2 ln v∗
. (A.7)

Of course, the second-order pure derivatives are the first-order derivatives of the func-
tion describing the cost shares. Thus, the first order expression for φj

L follows directly from
a first-order Taylor expansion in r∗ and v∗

φL
j = φL + φL

(
1− φL

)
(1− σ) (r̂j − v̂j + ÂM

j − ÂL
j︸ ︷︷ ︸

−B̂j

) (A.8)

which is equation (5) in the main text. When σ = 1, the cost share does not change. If
σ < 1, the cost share of land rises with the relative price of land and falls with its relative
productivity. Thus, a factor bias against land raises its cost share.

The symmetry between the pure and mixed partial derivatives leads to a fairly straight-
forward second-order log-linear approximation of the cost function:

ĉj = φL(r̂j − ÂL
j ) + (1− φL)(v̂j − ÂL

j )

+ (1/2)φL(1− φL)(1− σY )(r̂j − v̂j − ÂL
j + ÂM

j )2

= φLr̂j + (1− φL)v̂j + (1/2)φL(1− φL)(1− σY )(r̂j − v̂j − B̂j)
2 + Âj

This provides the formulation in equation (4) in the main text.
Productivity and bias are not observed directly, but must be inferred. We write overall

productivity and factor bias as linear functions of a vector of restrictions Z

Âj = −ZjδA − ξAj (A.9a)

B̂j = −ZjδB − ξBj (A.9b)

The linear terms in Zjδ account for the (linear) observed components of total productivity
and factor biases; the ξj terms account for the unobserved components or non-linearities.

Substituting in these expressions, multiplying out the quadratic term, and subtracting
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the construction price differential, creates the series of terms

p̂j − v̂j = φL(r̂j − v̂j) (A.10a)

+ (1/2)φL(1− φL)(1− σY )(r̂j − v̂j)2 (A.10b)
+ ZjδA (A.10c)
+ ξAj (A.10d)

+ φL(1− φL)(1− σY )(r̂j − v̂j)ZjδB (A.10e)

+ (1/2)φL(1− φL)(1− σY )(ZjδB)2 (A.10f)

+ ξBjφ
L(1− φL)(1− σY )(ZjδB + r̂j − v̂j + ξBj/2) (A.10g)

The first four lines describe the main productivity model. The term on line (A.10a) iden-
tifies the cost-share terms from log-linear price differences. The term on the second line,
(A.10b), identifies the elasticity of substitution from the square of log-linear price differ-
ences. The third term, (A.10c) gives the observed productivity effect, while the fourth,
(A.10d) gives the unobserved component.

The last three lines account for factor bias. The term (A.10e) estimates factor bias in
δB through the interaction of the observable shifters Zj , and the price difference, r̂j − v̂j .
The term (A.10f) provides an alternative method of estimating factor bias that relies on the
linearity imposed in (A.9a) and (A.9b). However, it is unlikely that the relationships are
truly linear. Moreover, Z lacks the cardinal properties of the price differentials, r̂j and v̂j .
Thus, it is best to leave and the remaining terms, in an error term along with (A.10g).

Based on the above discussion, we collect the coefficients as

β1 = φL

β3 = (1/2)φL(1− φL)(1− σY )

γ1 = δA

γ2 = φL(1− φL)(1− σY )δB = 2β3δB

to create a reduced-form equation that contains all of the structural constraints:

p̂j − v̂j = β1(r̂j − v̂j) + β3(r̂j − v̂j)2 + γ1Zj + γ2Zj(r̂j − v̂j)j + ζj + εj (A.11)

where the error term consist of two components: the first component is driven mainly by
unobservable determinants of productivity and bias,

ζj = ξAj + ξBjφ
L(1− φL)(1− σY )(ZjδB + r̂j − v̂j + ξBj/2 + (ZjδB)2/2), (A.12)

the second component, εj , may capture sampling, specification, and measurement error.
The ζj component must be heteroskedastic unless δB = ξB = 0, in which case ζj = ξAj .

The constrained reduced-form equation is embedded inside of a more general uncon-
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strained equation:

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + γ1Zj + γ2Zj r̂j + γ3Zj v̂j + ε′j (A.13)

The constrained model provides a number of testable coefficient constraints:

β1 = 1− β2 (A.14a)
β3 = β4 (A.14b)

β3 = −β5/2 (A.14c)
γ2 = −γ3 (A.14d)

The first three of which apply to the standard cost function, while the fourth applies only
to factor bias.29

To obtain the elasticity of supply, take the differentials of Shepard’s Lemma for land
from (A.3):

L̂+ ÂL − Ŷ = d ln c∗r (A.15)

= −σ
(
1− φL

) (
r̂j − ÂL

j − v̂j + ÂM
j

)
(A.16)

where the last line obtains from a first-order approximation. Now, from the first-order
equilibrium condition for housing costs, (A.5), it follows from φM = 1− φL:

r̂j − v̂j =
p̂j − v̂j
φL

+ ÂL
j +

1− φL

φL
ÂM

j

Combining the last two equations to eliminate r̂j and rearranging, we are left with a general
supply equation:

Ŷ = L̂+ ÂL + σ
1− φL

φL

(
p̂j − v̂j + ÂM

j

)
(A.17)

The partial equilibrium formula in (1) comes from simply considering changes in pwithout
considering general equilibrium feedbacks.

The derivation of the estimate of trade productivity in equation (13), is parallel to the
first-order derivation above. The mobility condition for workers requires differentiating the
log expenditure function for workers ln

[
e(pj;Q

k
j , ū

k)
]

= ln
(
wk

j + Ik
)
. The expression in

29It is possible to test if the elasticity of substitution varies with Zj by adding the term (r̂j − v̂j)2 Zjγ3.
However, we do not find interactions for the quadratic interaction to be significant and thus have left a het-
erogeneous elasticity of substitution out of the formulation.
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(12) follows from

∂ ln(w + I)

∂ lnw
=

w

w + I
≡ sw

∂ ln e

∂ ln p
=
py

e
≡ sy

∂ ln e

∂ lnQ
=
Q

e

∂e

∂Q
= 1

where the last line follows from the normalization of Q described in section 3.3.

B Wage and Housing Price Indices
The wage and housing price indices are estimated from the 2005 to 2010 American Com-
munity Survey, which samples 1% of the United States population every year. The indices
are estimated with separate regressions for each year. For the wage regressions, we include
all workers who live in an MSA and were employed in the last year, and reported positive
wage and salary income. We calculate hours worked as average weekly hours times the
midpoint of one of six bins for weeks worked in the past year. We then divide wage and
salary income for the year by our calculated hours worked variable to find an hourly wage.
We regress the log hourly wage on a set of MSA dummies and a number of individual
covariates, each of which is interacted with gender:

• 16 indicators of educational attainment;

• a quartic in potential experience and potential experience interacted with years of
education;

• 9 indicators of industry at the one-digit level (1950 classification);

• 9 indicators of employment at the one-digit level (1950 classification);

• 5 indicators of marital status (married with spouse present, married with spouse ab-
sent, divorced, widowed, separated);

• an indicator for veteran status, and veteran status interacted with age;

• 5 indicators of minority status (Black, Hispanic, Asian, Native American, and other);

• an indicator of immigrant status, years since immigration, and immigrant status in-
teracted with black, Hispanic, Asian, and other;

• 2 indicators for English proficiency (none or poor).
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This regression is first run using census-person weights. From the regressions a pre-
dicted wage is calculated using individual characteristics alone, controlling for MSA, to
form a new weight equal to the predicted wage times the census-person weight. These
new income-adjusted weights allow us to weight workers by their income share. The new
weights are then used in a second regression, which is used to calculate the city-wage in-
dices from the MSA indicator variables, renormalized to have a national average of zero
every year. In practice, this weighting procedure has only a small effect. The wage regres-
sions are at the CMSA, rather than PMSA, level to reflect the ability of workers to commute
to jobs throughout a CMSA.

The traded sector wage differentials are calculated excluding workers with occupations
in the construction trades. To calculate construction wage differentials, we drop all non-
construction workers and follow the same procedure as above. We define the construction
sector as occupation codes 620 through 676 in the ACS occupation codes. In our sample,
4.5% of all workers are in the construction sector.

As noted in section 4.1, the construction price index is taken from RS Means company.
For each city in the sample, RS Means reports construction costs for a composite of nine
common structure types. The index reflects the costs of labor, materials, and equipment
rental, but not cost variations from regulatory restrictions, restrictive union practices, or
regional differences in building codes. We renormalize this index as a z−score with an
average value of zero and a standard deviation of one across cities.30

The housing price index of an MSA is calculated in a manner similar to the differential
wage, by regressing housing prices for owner-occupied units on a set of covariates. The
covariates used in the regression for the adjusted housing cost differential are:

• 10 indicators of building size;

• 9 indicators for the number of rooms, 5 indicators for the number of bedrooms, and
number of rooms interacted with number of bedrooms;

• 2 indicators for lot size;

• 9 indicators for when the building was built;

• 2 indicators for complete plumbing and kitchen facilities;

• an indicator for commercial use;

• an indicator for condominium status.
30The RS Means index covers cities as defined by three-digit zip code locations, and as such there is not

necessarily a one-to-one correspondence between metropolitan areas and RS Means cities. In cases in which
there is more than one three-digit zip code with a construction cost listed for an MSA, we weight the zip
codes by the number of housing units in each zip code in the year 2000. We only have the 2010 edition of the
RS Means index.

vi



A regression of housing values on housing characteristics and MSA indicator variables
is first run weighting by census-housing weights. A new value-adjusted weight is calculated
by multiplying the census-housing weights by the predicted value from this first regression
using housing characteristics alone, controlling for MSA. A second regression is run us-
ing these new weights on the housing characteristics, along with the MSA indicators. The
housing-price indices are taken from the MSA indicator variables in this second regression,
renormalized to have a national average of zero every year. As with the wage differentials,
this adjusted weighting method has only a small impact on the price differentials. In con-
trast to the wage regressions, the housing price regressions were run at the PMSA level to
achieve a better geographic match between the housing stock and the underlying land.
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Dependent Variable

Land Rent 
minus 

Construction 
Price

Land Rent 
minus 

Construction 
Price

Regulatory 
Index: z-score

Land Rent 
minus 

Construction 
Price

Land Rent 
minus 

Construction 
Price Squared

Land Rent 
minus 

Construction 
Price

Land Rent 
minus 

Construction 
Price Squared

Regulatory 
Index: z-score

(1) (2) (3) (4) (5) (6) (7) (8)

Geographic Constraint Index: z-score 0.091 0.038 -0.072 0.108 -0.052 0.115 -0.026 -0.030
(0.084) (0.080) (0.097) (0.098) (0.074) (0.089) (0.071) (0.094)

Regulatory Constraint Index: z-score 0.187 0.184 -0.139
(0.064) (0.053) (0.057)

Inverse of Mean Distance from Sea: z-score 0.309 0.314 0.120 0.262 0.019 0.212 -0.049 0.227
(0.072) (0.068) (0.078) (0.167) (0.125) (0.160) (0.149) (0.136)

USDA Amenities Score: z-score 0.074 0.097 0.172 0.048 -0.048 0.068 -0.065 0.247
(0.031) (0.029) (0.033) (0.034) (0.031) (0.033) (0.029) (0.046)

Non-traditional Christian Share (1971): z-score -0.116 -0.333 -0.189 -0.025 -0.540
(0.050) (0.077) (0.054) (0.062) (0.109)

Protective Inspections Share (1980): z-score 0.118 -0.056 0.187 -0.101 -0.021
(0.048) (0.096) (0.054) (0.063) (0.075)

Inverse of Mean Distance from Sea: z-score squared 0.012 0.124 -0.034 0.136 -0.155
(0.047) (0.039) (0.048) (0.051) (0.051)

USDA Amenities Score: z-score squared 0.014 0.038 0.009 0.032 -0.029
(0.006) (0.009) (0.006) (0.011) (0.013)

Inverse of Mean Distance from Sea: z-score times 
USDA Amenities Score: z-score -0.044 0.003 -0.032 -0.010 0.009

(0.010) (0.010) (0.013) (0.016) (0.024)

Inverse of Mean Distance from Sea: z-score times 
Non-traditional Christian Share (1971): z-score -0.218 -0.011 -0.325

(0.081) (0.081) (0.141)
USDA Amenities Score: z-score times Non-

traditional Christian Share (1971): z-score -0.030 -0.043 0.028
(0.027) (0.034) (0.052)

Inverse of Mean Distance from Sea: z-score times 
Protective Inspections Share (1980): z-score 0.013 0.078 0.083

(0.063) (0.088) (0.099)
USDA Amenities Score: z-score times Protective 

Inspections Share (1980): z-score -0.054 0.036 -0.071
(0.021) (0.025) (0.035)

Number of Observations 229 217 217 229 229 217 217 217
Adjusted R-squared 0.558 0.548 0.264 0.578 0.364 0.609 0.370 0.342

F-statistic of Excluded Instruments 9.4 14.8 18.0 25.8 29.9 44.1 55.0 14.4

First Stage Regression for the these specifications in 
Table 5: Column 1 Column 2 Column 2 Column 3 Column 3 Column 4 Column 4 Column 4

TABLE A1: INSTRUMENTAL VARIABLES ESTIMATES, FIRST-STAGE REGRESSIONS

Robust standard errors, clustered by CMSA, reported in parentheses.  See Table 4 for variable descriptions and data sources. All regressions are first stages for second-stage regressions 
reported in coulmns 1 through 4 of Table 4.



Dependent Variable

Land Rent 
minus 

Construction 
Price

Land Rent 
minus 

Construction 
Price Squared

Regulatory 
Index: z-score

Land Rent 
minus 

Construction 
Price

Land Rent 
minus 

Construction 
Price Squared

Regulatory 
Index: z-score

Land Rent 
minus 

Construction 
Price times 
Geographic 
Constraint 

Index

Land Rent 
minus 

Construction 
Price times 
Regulatory 

Index
(1) (2) (3) (4) (5) (6) (7) (8)

Geographic Constraint Index: z-score 0.042 -0.049 -0.058 0.007 -0.076 -0.047 -0.030 0.007
(0.080) (0.070) (0.089) (0.073) (0.073) (0.093) (0.066) (0.062)

Inverse of Mean Distance from Sea: z-score 0.366 0.044 0.298 0.440 0.021 0.371 -0.087 -0.030
(0.084) (0.078) (0.085) (0.091) (0.090) (0.091) (0.064) (0.078)

USDA Amenities Score: z-score 0.101 0.003 0.186 0.076 0.004 0.165 0.015 -0.032
(0.030) (0.032) (0.031) (0.028) (0.027) (0.040) (0.025) (0.028)

Non-traditional Christian Share (1971): z-score -0.118 -0.074 -0.342 -0.140 -0.135 -0.307 -0.089 0.012
(0.051) (0.052) (0.074) (0.049) (0.059) (0.075) (0.048) (0.058)

Protective Inspections Share (1980): z-score 0.113 -0.119 -0.076 0.169 -0.106 -0.072 -0.004 -0.106
(0.047) (0.069) (0.094) (0.050) (0.060) (0.095) (0.043) (0.076)

Predicted Land Rent minus Construction Price Squared -0.179 0.799 -0.613 -0.708 1.095 -1.312 0.017 -0.578
(0.132) (0.310) (0.363) (0.499) (0.775) (0.511) (0.335) (0.316)

Predicted Land Rent minus Construction Price times 
Predicted Regulatory Constraint Index 1.042 -0.013 0.512 0.643 0.851

(0.362) (0.627) (0.489) (0.293) (0.305)
Predicted Land Rent minus Construction Price times 

Geographic Constraint Index -0.194 -0.178 0.223 0.579 0.461
(0.148) (0.186) (0.199) (0.139) (0.126)

Number of Observations 217 217 217 217 217 217 217 217
Adjusted R-squared 0.552 0.288 0.295 0.594 0.312 0.304 0.590 0.157

F-statistic of Excluded Instruments 12.2 7.7 14.6 14.3 8.1 11.5 20.8 10.0

First Stage Regression for the these specifications in 
Table 5: Column 5 Column 5 Column 5 Column 6 Column 6 Column 6 Column 6 Column 6

TABLE A2: INSTRUMENTAL VARIABLES ESTIMATES, FIRST-STAGE REGRESSIONS - LIMITED INSTRUMENTS

Robust standard errors, clustered by CMSA, reported in parentheses.  See Table 4 for variable descriptions and data sources. All regressions are first stages for second-stage regressions reported 
in coulmns 5 and 6 of Table 4.



Specification
Calibrated 

2SLS
Calibrated 

2SLS
Calibrated 

2SLS
Calibrated 

2SLS

House House House House
Dependent Variable Price Price Price Price

(1) (2) (3) (4)

Regulatory Index: z-score 0.121 0.121 0.071 0.072
(0.028) (0.033) (0.021) (0.027)

Geographic Index: z-score 0.161 0.192 0.037 0.079
(0.056) (0.068) (0.047) (0.059)

Adjusted R-squared 0.685 0.667 0.690 0.706

Land-Value Minus Construction 
Price Differential 0.233 0.233 0.433 0.433

Elasticity of Subsitution 0.000 1.000 0.000 1.000

TABLE A3: CALIBRATED IV COST FUNCTION ESTIMATES

Robust standard errors, clustered by CMSA, reported in parentheses. All regression specifications 
correspond to the constrained specification in  column 4 of Table 4, and instrument for the Wharton 
Residential Land Use Regulatory Index using the nontraditional Christian share in 1971 and the 
share of local expenditures devoted to protective inspections in 1982.



Specification Base Coefficients

Interacted with 
Land-Value Diff. 
minus Cons. Price 

Diff.

Dependent Variable

Land-Value Minus Construction Price Differential 0.329
(0.025)

Land-Value Minus Construction Price Differential Squared 0.049
(0.019)

Approval Delay: z-score 0.026 -0.018
(0.015) (0.021)

Local Political Pressure: z-score 0.008 -0.020
(0.010) (0.022)

State Political Involvement: z-score 0.056 0.027
(0.018) (0.025)

Open Space: z-score -0.022 -0.032
(0.017) (0.026)

Exactions: z-score -0.015 0.017
(0.014) (0.017)

Local Project Approval: z-score 0.038 0.066
(0.016) (0.023)

Local Assembly: z-score 0.012 -0.004
(0.010) (0.019)

Density Restrictions: z-score 0.033 0.018
(0.017) (0.019)

Supply Restrictions: z-score 0.024 0.027
(0.007) (0.012)

State Court Involvement: z-score 0.018 -0.024
(0.021) (0.027)

Local Zoning Approval: z-score -0.013 0.000
(0.014) (0.017)

Flat Land Share: z-score -0.081 -0.065
(0.023) (0.024)

Solid Land Share: z-score -0.069 -0.049
(0.020) (0.020)

Number of Observations
Adjusted R-squared

Elasticity of Substitution

TABLE A4: HOUSING COST FUNCTION ESTIMATES WITH DISAGGREGATED 
REGULATORY AND GEOGRAPHIC RESTRICTION INDICES AND NON-NEUTRAL 

PRODUCTIVITY INTERACTIONS

Robust standard errors, clustered by CMSA, reported in parentheses. Regressions include constant 
term. Data sources are described in table 1; constituent components of Wharton Residential Land Use 
Regulatory Index (WRLURI) are from Gyourko et al (2008). Constituent components of geographical 
index are from Saiz (2010).

House Prices

1,103
0.910

0.558
(0.169)

(1)
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Metropolitan Areas:
San Francisco, CA PMSA 1,785,097 9 1.740 2.613 1.904 1.353 0.216 0.223 1.716 2.137 0.236 -0.527 0.182 0.187 1

Santa Cruz-Watsonville, CA PMSA 256,218 9 0.693 0.951 0.975 1.193 0.213 0.233 0.820 2.072 0.143 -0.902 0.177 0.095 2
San Jose, CA PMSA 1,784,642 9 1.468 1.565 1.854 1.129 0.216 0.222 -0.054 1.684 0.191 -0.455 0.182 0.037 3

Stamford-Norwalk, CT PMSA 361,024 1 1.069 1.405 1.727 1.020 0.175 0.229 -0.564 0.551 0.136 -0.546 0.136 0.002 4
Orange County, CA PMSA 3,026,786 9 1.318 1.612 2.245 0.977 0.100 0.122 0.078 1.135 0.064 -0.437 0.080 0.060 5

Santa Barbara-Santa Maria-Lompoc, CA MSA 407,057 9 0.709 1.042 0.856 0.966 0.053 -0.037 0.588 2.761 0.079 -0.670 0.066 0.071 6
Los Angeles-Long Beach, CA PMSA 9,848,011 9 1.306 1.825 1.614 0.921 0.100 0.123 0.883 1.135 0.081 -0.385 0.080 0.121 7

New York, NY PMSA 9,747,281 2 1.987 3.358 2.714 0.906 0.180 0.256 -0.166 0.551 0.290 0.076 0.136 0.006 8
Oakland, CA PMSA 2,532,756 9 0.983 1.186 1.374 0.887 0.216 0.222 0.589 1.581 0.153 -0.451 0.182 0.064 9

Santa Rosa, CA PMSA 472,102 9 0.585 0.140 0.428 0.861 0.216 0.222 1.322 1.646 0.159 -0.576 0.182 0.226 10
Ventura, CA PMSA 802,983 9 0.742 0.328 0.810 0.849 0.100 0.123 1.701 2.452 0.093 -0.546 0.080 0.143 11

Salinas, CA MSA 410,370 9 0.077 0.097 0.219 0.823 -0.004 -0.292 -0.021 1.797 0.118 -0.746 0.061 0.076 12
San Luis Obispo-Atascadero-Paso Robles, CA MSA 266,971 9 0.413 0.750 1.291 0.814 -0.007 -0.031 1.435 1.783 0.059 -0.668 -0.001 0.192 13

San Diego, CA MSA 3,053,793 9 0.966 1.075 0.431 0.782 0.079 0.099 0.987 1.666 0.086 -0.385 0.063 0.113 14
Bergen-Passaic, NJ PMSA 1,387,028 2 0.849 1.270 1.550 0.753 0.180 0.256 0.366 0.551 0.146 -0.376 0.136 0.024 15

Nassau-Suffolk, NY PMSA 2,875,904 2 0.736 0.587 1.300 0.729 0.180 0.256 0.854 0.551 0.240 -0.341 0.136 -0.010 16
Jersey City, NJ PMSA 597,924 2 1.506 2.009 2.580 0.672 0.181 0.263 -0.534 0.231 0.147 0.007 0.136 -0.009 17

Boston, MA-NH PMSA 3,552,421 1 0.734 0.908 0.662 0.641 0.101 0.101 1.301 0.236 0.178 -0.284 0.086 0.213 18
Newark, NJ PMSA 2,045,344 2 0.592 0.993 0.485 0.577 0.181 0.263 0.057 0.071 0.147 -0.296 0.135 0.026 19

Vallejo-Fairfield-Napa, CA PMSA 541,884 9 0.424 0.114 0.389 0.573 0.216 0.222 0.895 0.975 0.137 -0.361 0.182 0.112 20
Middlesex-Somerset-Hunterdon, NJ PMSA 1,247,641 2 0.315 -0.020 0.453 0.497 0.180 0.256 2.208 0.551 0.139 -0.320 0.136 0.085 21

Naples, FL MSA 318,537 5 0.648 0.441 0.500 0.482 -0.037 -0.201 0.176 2.257 -0.098 -0.342 0.006 -0.043 22
Seattle-Bellevue-Everett, WA PMSA 2,692,066 9 0.983 1.271 0.779 0.457 0.056 0.039 1.675 0.707 0.078 -0.059 0.052 0.153 23

Danbury, CT PMSA 223,095 1 -0.036 -0.108 0.153 0.444 0.177 0.249 -0.527 0.551 0.125 -0.421 0.134 0.137 24
Bridgeport, CT PMSA 470,094 1 -0.190 0.232 0.583 0.437 0.178 0.249 0.353 0.551 0.120 -0.438 0.136 0.029 25

Monmouth-Ocean, NJ PMSA 1,217,783 2 0.061 -0.140 0.212 0.418 0.180 0.255 2.095 0.551 0.128 -0.349 0.136 0.098 26
Lowell, MA-NH PMSA 310,264 1 0.240 0.119 0.498 0.412 0.106 0.098 2.001 0.236 0.152 -0.253 0.092 0.316 27

Washington, DC-MD-VA-WV PMSA 5,650,154 5 1.071 1.599 0.662 0.410 0.150 0.187 0.892 -0.731 -0.030 -0.035 0.119 0.047 28
Trenton, NJ PMSA 366,222 2 0.121 -0.160 0.281 0.347 0.181 0.263 1.744 -0.836 0.134 -0.239 0.136 0.068 29
Miami, FL PMSA 2,500,625 5 1.075 1.344 1.115 0.347 -0.053 -0.070 0.707 2.306 -0.055 -0.001 -0.042 -0.007 30

Dutchess County, NY PMSA 293,562 2 -0.412 -0.856 -0.990 0.346 0.183 0.247 0.220 0.551 0.183 -0.372 0.141 -0.029 31
Brockton, MA PMSA 268,092 1 -0.251 -0.723 -0.367 0.343 0.097 0.077 2.852 0.236 0.141 -0.355 0.087 0.394 32

Lawrence, MA-NH PMSA 413,626 1 -0.012 -0.072 0.090 0.343 0.107 0.115 1.842 0.236 0.134 -0.273 0.089 0.337 33
New Haven-Meriden, CT PMSA 558,692 1 -0.010 0.095 0.279 0.312 0.180 0.256 -0.576 0.774 0.121 -0.262 0.136 -0.003 34

Stockton-Lodi, CA MSA 674,860 9 0.127 -0.216 0.449 0.266 0.094 0.174 0.150 -0.823 0.100 -0.187 0.062 0.130 35
Boulder-Longmont, CO PMSA 311,786 8 0.021 -0.260 0.157 0.261 -0.004 0.012 4.038 0.684 -0.054 -0.314 -0.007 0.290 36

Medford-Ashland, OR MSA 201,286 9 -0.494 -0.606 -0.438 0.260 -0.168 -0.188 0.917 1.973 0.025 -0.422 -0.138 0.049 37
Riverside-San Bernardino, CA PMSA 4,143,113 9 0.124 -0.489 -0.283 0.256 0.100 0.122 0.644 0.429 0.059 -0.215 0.080 0.104 38

West Palm Beach-Boca Raton, FL MSA 1,279,950 5 0.867 1.034 1.144 0.247 0.014 0.058 0.358 1.695 -0.105 -0.006 0.002 -0.023 39
Atlantic-Cape May, NJ PMSA 367,803 2 -0.148 -0.009 -0.058 0.242 0.068 0.060 0.333 1.751 0.122 -0.231 0.060 0.027 40

Fort Lauderdale, FL PMSA 1,766,476 5 0.913 0.999 1.297 0.222 -0.053 -0.071 0.932 2.262 -0.068 0.050 -0.041 0.019 41
Baltimore, MD PMSA 2,690,886 5 0.238 0.092 0.305 0.215 0.150 0.187 -0.601 -0.347 -0.045 -0.186 0.119 0.065 42

Reno, NV MSA 414,820 8 0.149 0.056 -0.737 0.213 -0.028 -0.138 -0.428 1.308 -0.002 -0.186 0.001 -0.047 43
Hartford, CT MSA 1,231,125 1 -0.684 -0.826 -0.572 0.201 0.097 0.099 0.342 -0.279 0.119 -0.341 0.082 0.048 44

Adjusted Differentials Raw Differentials Productivity
TABLE A5: ALL METROPOLITAN INDICES RANKED BY HOUSING PRICE DIFFERENTIAL, 2005-2010
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Chicago, IL PMSA 8,710,824 3 0.615 1.114 0.407 0.190 0.063 0.069 -0.543 0.532 0.180 0.114 0.053 -0.092 45
Worcester, MA-CT PMSA 547,274 1 -0.194 -0.303 -0.386 0.185 0.101 0.102 2.430 0.236 0.131 -0.181 0.086 0.268 46

Bremerton, WA PMSA 240,862 9 -0.183 -0.245 0.208 0.180 0.046 0.009 0.078 1.107 0.065 -0.231 0.048 0.069 47
Portsmouth-Rochester, NH-ME PMSA 262,128 1 -0.610 -0.501 -0.040 0.179 0.104 0.119 1.035 0.236 -0.028 -0.405 0.085 0.251 48

Portland-Vancouver, OR-WA PMSA 2,230,947 9 0.447 0.408 0.063 0.176 -0.043 -0.062 0.015 0.412 0.033 -0.029 -0.032 -0.014 49
Sarasota-Bradenton, FL MSA 688,126 5 0.424 0.001 0.278 0.163 -0.088 -0.053 1.563 1.822 -0.074 -0.090 -0.082 0.076 50

Manchester, NH PMSA 212,326 1 -0.417 -0.509 -0.287 0.162 0.111 0.146 2.637 0.236 -0.018 -0.332 0.087 0.406 51
Modesto, CA MSA 510,385 9 0.008 -0.260 0.059 0.161 0.048 0.049 -0.156 -0.715 0.100 -0.123 0.041 0.017 52

Fresno, CA MSA 1,063,899 9 -0.100 -0.640 -0.565 0.129 -0.009 -0.024 1.219 -0.783 0.102 -0.132 -0.004 0.173 53
Tacoma, WA PMSA 796,836 9 0.393 0.146 0.034 0.122 0.056 0.037 -0.158 0.371 0.063 0.030 0.052 0.116 54

Portland, ME MSA 256,178 1 -0.422 -0.345 -0.236 0.120 -0.077 -0.025 0.888 0.989 -0.062 -0.325 -0.077 0.179 55
Eugene-Springfield, OR MSA 351,109 9 -0.388 -0.627 -0.866 0.085 -0.166 -0.206 0.202 1.622 0.021 -0.207 -0.132 -0.029 56

Olympia, WA PMSA 250,979 9 0.098 -0.437 -0.160 0.081 0.057 0.040 0.671 0.458 0.052 -0.036 0.052 0.106 57
Philadelphia, PA-NJ PMSA 5,332,822 2 0.249 0.381 0.028 0.074 0.066 0.053 0.689 -0.915 0.158 0.088 0.059 -0.007 58

Grand Junction, CO MSA 146,093 8 -0.108 -0.501 -0.266 0.073 -0.221 -0.383 0.504 0.690 -0.070 -0.176 -0.151 -0.022 59
Newburgh, NY-PA PMSA 444,061 2 -0.296 -1.043 -0.713 0.071 0.183 0.255 -0.479 0.045 0.138 -0.097 0.139 -0.111 60

Yuba City, CA MSA 165,539 9 -0.707 -0.671 -0.963 0.071 -0.006 -0.023 -0.707 -0.734 0.098 -0.248 -0.002 0.057 61
Springfield, MA MSA 609,993 1 -0.321 -0.283 0.034 0.056 -0.031 -0.048 0.108 -0.095 0.072 -0.134 -0.023 0.127 62

Denver, CO PMSA 2,445,781 8 0.119 0.320 -0.227 0.050 -0.004 0.012 1.335 -0.597 -0.021 -0.050 -0.007 0.058 63
Fort Collins-Loveland, CO MSA 298,382 8 -0.344 -0.672 -0.262 0.036 -0.134 -0.226 0.873 0.107 -0.065 -0.216 -0.093 -0.007 64

Merced, CA MSA 245,321 9 -0.144 -0.557 -0.342 0.026 0.062 0.290 0.649 -0.915 0.100 -0.036 0.001 0.090 65
Wilmington-Newark, DE-MD PMSA 635,430 5 0.040 -0.502 -0.199 0.018 0.066 0.054 0.750 -0.697 0.045 -0.003 0.059 0.119 66

Norfolk-Virginia Beach-Newport News, VA- MSA 1,667,410 5 -0.123 -0.417 -0.237 0.006 -0.062 -0.032 -0.167 1.489 -0.104 -0.138 -0.059 0.054 67
Las Vegas, NV-AZ MSA 2,141,893 8 0.869 0.579 0.222 -0.002 0.046 -0.049 -1.453 0.147 0.080 0.320 0.061 -0.122 68
Hagerstown, MD PMSA 145,910 5 -0.315 -0.827 -1.106 -0.003 0.148 0.176 0.188 -0.499 -0.077 -0.196 0.119 0.027 69
Phoenix-Mesa, AZ MSA 4,364,094 8 0.414 -0.082 -0.626 -0.004 -0.002 0.000 1.003 -0.731 -0.104 0.041 -0.002 0.128 70

Fort Myers-Cape Coral, FL MSA 586,908 5 0.183 -0.082 0.583 -0.005 -0.078 -0.070 -0.494 1.168 -0.098 -0.043 -0.068 -0.094 71
Milwaukee-Waukesha, WI PMSA 1,559,667 3 -0.398 -0.695 -0.472 -0.014 -0.021 -0.008 -0.455 0.618 0.066 -0.090 -0.021 0.039 72

Madison, WI MSA 491,357 3 0.105 0.031 -0.340 -0.023 -0.092 -0.171 0.374 -0.858 0.013 0.048 -0.061 0.060 73
Minneapolis-St. Paul, MN-WI MSA 3,269,814 4 0.101 0.102 -0.201 -0.031 0.028 0.000 0.155 -0.475 0.139 0.130 0.030 -0.013 74
Visalia-Tulare-Porterville, CA MSA 429,668 9 -0.327 -0.409 -0.568 -0.032 -0.017 -0.033 0.371 -0.465 0.087 -0.011 -0.011 0.073 75

Tucson, AZ MSA 1,020,200 8 -0.256 -0.534 -0.664 -0.035 -0.126 -0.166 0.250 -0.289 -0.113 -0.153 -0.098 0.122 76
Asheville, NC MSA 251,894 5 -0.460 -0.842 -0.483 -0.047 -0.196 -0.263 0.149 1.863 -0.243 -0.291 -0.151 -0.014 77

Salem, OR PMSA 396,103 9 -0.272 -0.427 -0.308 -0.049 -0.043 -0.063 0.626 0.195 0.026 -0.044 -0.032 0.019 78
Fort Pierce-Port St. Lucie, FL MSA 406,296 5 0.025 -0.215 0.096 -0.053 -0.096 -0.166 0.347 1.739 -0.105 -0.050 -0.066 -0.039 79

Bakersfield, CA MSA 807,407 9 -0.508 -0.640 -1.106 -0.061 0.004 -0.108 -0.316 -0.234 0.077 -0.063 0.029 0.024 80
Fort Walton Beach, FL MSA 178,473 5 -0.152 -0.001 0.463 -0.066 -0.146 -0.213 -0.465 1.435 -0.116 -0.110 -0.109 -0.035 81

Tampa-St. Petersburg-Clearwater, FL MSA 2,747,272 5 0.287 0.074 0.047 -0.076 -0.095 -0.136 0.003 0.611 -0.072 0.096 -0.071 0.016 82
Orlando, FL MSA 2,082,421 5 0.369 -0.077 -0.056 -0.082 -0.087 -0.110 0.131 0.344 -0.071 0.135 -0.069 0.005 83

Kenosha, WI PMSA 165,382 3 -0.215 -0.977 -0.653 -0.100 0.063 0.069 1.863 0.914 0.038 0.028 0.053 0.093 84
Allentown-Bethlehem-Easton, PA MSA 706,374 2 -0.111 -0.813 -0.571 -0.108 -0.015 0.083 0.459 -0.396 0.071 0.092 -0.035 -0.068 85

Richmond-Petersburg, VA MSA 1,119,459 5 -0.508 -0.906 -0.595 -0.114 -0.025 -0.069 -0.796 -0.980 -0.104 -0.139 -0.011 -0.022 86
Charleston-North Charleston, SC MSA 659,191 5 -0.235 -0.066 -0.450 -0.120 -0.094 -0.077 -1.187 1.522 -0.167 -0.098 -0.084 -0.091 87

Melbourne-Titusville-Palm Bay, FL MSA 536,357 5 0.131 -0.534 0.019 -0.135 -0.096 -0.058 0.400 1.707 -0.056 0.105 -0.090 0.001 88
Racine, WI PMSA 200,601 3 -0.723 -1.196 -0.916 -0.149 -0.019 0.022 -1.269 1.215 0.037 -0.060 -0.025 0.040 89
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Salt Lake City-Ogden, UT MSA 1,567,650 8 0.091 0.075 0.729 -0.152 -0.105 -0.158 -0.451 2.082 -0.108 0.085 -0.078 0.044 90
Jacksonville, FL MSA 1,301,808 5 0.054 -0.513 -0.045 -0.161 -0.079 -0.118 0.746 0.886 -0.133 0.060 -0.058 0.087 91

Daytona Beach, FL MSA 587,512 5 -0.148 -0.432 -0.018 -0.162 -0.152 -0.181 -0.783 1.526 -0.082 0.039 -0.123 -0.076 92
Gainesville, FL MSA 243,574 5 -0.607 -0.655 -0.607 -0.166 -0.146 -0.157 -0.181 -0.661 -0.108 -0.120 -0.122 -0.054 93

Albuquerque, NM MSA 841,428 8 -0.085 -0.167 -0.169 -0.167 -0.113 -0.185 0.998 -0.843 -0.078 0.067 -0.080 0.033 94
Colorado Springs, CO MSA 604,542 8 -0.226 -0.247 -0.049 -0.188 -0.122 -0.133 0.289 -0.328 -0.048 0.061 -0.102 -0.025 95

Lancaster, PA MSA 507,766 2 -0.489 -0.859 -0.660 -0.199 -0.121 -0.263 0.082 -0.830 -0.036 0.007 -0.070 -0.109 96
Ann Arbor, MI PMSA* 630,518 3 -0.491 -0.855 -1.109 -0.205 -0.003 -0.023 1.273 -0.937 0.026 0.038 0.001 0.078 97

Raleigh-Durham-Chapel Hill, NC MSA 1,589,388 5 -0.222 -0.663 -0.427 -0.208 -0.042 -0.035 1.146 -1.014 -0.210 -0.029 -0.038 0.012 98
Spokane, WA MSA 468,684 9 -0.655 -0.379 -0.436 -0.219 -0.123 -0.128 0.799 -0.083 -0.032 -0.011 -0.103 0.051 99

Myrtle Beach, SC MSA 263,868 5 -0.588 -0.634 -0.576 -0.220 -0.169 -0.097 -0.940 1.590 -0.228 -0.147 -0.159 0.037 100
New Orleans, LA MSA* 1,211,035 7 -0.360 -0.105 -0.307 -0.231 -0.090 -0.167 -2.352 2.222 -0.102 0.029 -0.059 -0.254 101

Albany-Schenectady-Troy, NY MSA 906,208 2 -1.219 -1.195 -1.566 -0.233 -0.035 -0.074 -0.186 -0.277 0.011 -0.114 -0.021 -0.082 102
York, PA MSA 428,937 2 -0.502 -0.920 -0.420 -0.254 -0.055 -0.098 0.879 -0.821 0.001 0.079 -0.038 -0.020 103

Provo-Orem, UT MSA 545,307 8 0.256 0.149 0.449 -0.254 -0.132 -0.168 -0.513 1.480 -0.112 0.244 -0.123 0.054 104
Boise City, ID MSA 571,271 8 -0.327 -0.387 0.126 -0.257 -0.154 -0.192 -1.029 0.354 -0.090 0.060 -0.122 -0.074 105
Nashville, TN MSA 1,495,419 6 -0.333 -0.535 -0.176 -0.264 -0.074 -0.094 -1.066 -0.785 -0.097 0.067 -0.058 -0.007 106

Yuma, AZ MSA 196,972 8 -1.081 -1.239 -1.615 -0.266 -0.134 -0.203 -0.458 -1.078 -0.079 -0.121 -0.098 0.061 107
Greeley, CO PMSA 254,759 8 -0.457 -0.841 -0.744 -0.267 -0.004 0.010 -0.635 -0.919 -0.117 0.020 -0.007 -0.054 108

Savannah, GA MSA 343,092 5 -0.418 -0.958 -0.655 -0.278 -0.101 -0.147 -0.224 1.506 -0.158 0.024 -0.076 0.024 109
Detroit, MI PMSA* 4,373,040 3 -0.332 -0.504 -0.344 -0.285 -0.003 -0.024 -0.253 -0.219 0.040 0.165 0.002 0.031 110

Austin-San Marcos, TX MSA 1,705,075 7 -0.173 -0.515 -0.466 -0.285 -0.042 -0.057 1.075 -1.225 -0.189 0.079 -0.032 0.081 111
Atlanta, GA MSA 5,315,841 5 -0.046 -0.546 -0.373 -0.290 0.007 0.042 0.080 -1.209 -0.080 0.184 -0.002 -0.011 112
Reading, PA MSA 407,125 2 -0.022 -0.344 0.015 -0.295 -0.057 -0.043 0.703 -0.609 0.036 0.308 -0.051 -0.051 113

St. Louis, MO-IL MSA 2,733,694 4 -0.687 -0.954 -0.527 -0.295 -0.058 -0.128 -1.564 -0.870 0.046 0.092 -0.034 -0.081 114
Vineland-Millville-Bridgeton, NJ PMSA 157,745 2 -0.626 -0.922 -0.624 -0.297 0.075 0.098 1.595 0.326 0.120 0.180 0.058 0.031 115

Roanoke, VA MSA 243,506 5 -0.820 -0.915 -0.723 -0.306 -0.113 -0.111 -1.266 0.504 -0.138 -0.061 -0.097 -0.009 116
Billings, MT MSA 144,797 8 -0.585 -0.797 -0.701 -0.316 -0.171 -0.298 -0.556 -0.857 -0.073 0.058 -0.162 -0.119 117

Harrisburg-Lebanon-Carlisle, PA MSA 667,425 2 -0.423 -0.594 -0.585 -0.323 -0.059 -0.015 0.643 -0.243 0.009 0.171 -0.061 -0.034 118
Lakeland-Winter Haven, FL MSA 583,403 5 -0.219 -1.106 -0.707 -0.324 -0.145 -0.197 0.385 0.152 -0.049 0.191 -0.112 -0.016 119

Glens Falls, NY MSA 128,774 2 -2.107 -2.775 -2.776 -0.328 -0.139 -0.142 -2.552 0.574 -0.047 -0.199 -0.118 -0.102 120
Green Bay, WI MSA 247,319 3 -0.658 -0.589 -0.460 -0.328 -0.084 -0.068 -0.419 -0.279 -0.008 0.098 -0.075 -0.012 121

Baton Rouge, LA MSA 685,419 7 -0.605 -0.794 -0.347 -0.344 -0.065 -0.042 -1.511 0.217 -0.129 0.041 -0.061 -0.225 122
Columbus, OH MSA 1,718,303 3 -0.368 -0.792 -0.708 -0.348 -0.046 -0.024 0.216 -1.286 -0.024 0.181 -0.044 -0.146 123

Cleveland-Lorain-Elyria, OH PMSA* 2,192,053 3 -0.306 -0.650 -0.445 -0.349 -0.083 -0.105 -0.704 0.555 0.016 0.228 -0.065 -0.134 124
Cincinnati, OH-KY-IN PMSA 1,776,911 3 -0.309 -0.490 -0.619 -0.350 -0.040 -0.036 -1.026 -0.908 -0.046 0.191 -0.035 -0.120 125

Pensacola, FL MSA 455,102 5 -1.076 -0.895 -1.073 -0.356 -0.193 -0.255 -1.495 1.141 -0.116 -0.045 -0.151 -0.165 126
Appleton-Oshkosh-Neenah, WI MSA 385,264 3 -1.473 -1.824 -1.522 -0.359 -0.092 -0.081 -0.376 -0.538 -0.035 -0.064 -0.081 -0.010 127

Louisville, KY-IN MSA 1,099,588 6 -0.654 -0.798 -0.475 -0.363 -0.114 -0.141 -1.126 -0.792 -0.070 0.094 -0.090 -0.137 128
Fayetteville-Springdale-Rogers, AR MSA 425,685 7 -0.483 -0.775 -0.385 -0.374 -0.130 -0.157 -0.627 -0.005 -0.250 0.012 -0.105 -0.205 129

Richland-Kennewick-Pasco, WA MSA 245,649 9 -0.556 -0.581 -0.553 -0.375 0.026 0.120 0.832 -0.813 -0.016 0.172 0.001 0.081 130
Charlotte-Gastonia-Rock Hill, NC-SC MSA 1,937,309 5 -1.233 -2.105 -1.748 -0.377 -0.056 -0.059 -1.288 -1.180 -0.223 -0.156 -0.047 -0.009 131

Akron, OH PMSA* 699,935 3 -0.709 -1.242 -0.627 -0.379 -0.083 -0.105 -0.026 -1.095 -0.005 0.134 -0.065 -0.087 132
St. Cloud, MN MSA 189,148 4 -0.977 -1.231 -1.125 -0.380 -0.130 -0.268 -0.404 -0.409 0.125 0.172 -0.079 -0.034 133

Des Moines, IA MSA 536,664 4 -1.074 -1.224 -1.103 -0.388 -0.063 -0.006 -1.475 -1.108 -0.090 0.000 -0.066 -0.131 134
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Benton Harbor, MI MSA* 160,472 3 -1.438 -1.518 -0.967 -0.398 -0.132 -0.088 -1.088 1.024 -0.035 -0.023 -0.122 -0.009 135
Greensboro--Winston Salem--High Point, NC MSA 1,416,374 5 -0.708 -1.109 -0.614 -0.400 -0.137 -0.185 -0.752 -1.256 -0.221 0.009 -0.105 0.023 136

Champaign-Urbana, IL MSA 195,671 3 -0.517 -0.789 -0.991 -0.403 -0.153 -0.228 -0.836 -1.337 0.067 0.284 -0.113 -0.161 137
Gary, IN PMSA 657,809 3 -0.225 -0.210 -0.098 -0.403 0.063 0.069 -1.399 0.121 0.056 0.337 0.053 -0.056 138

Kansas City, MO-KS MSA 2,005,888 4 -0.718 -0.976 -0.774 -0.411 -0.062 -0.083 -1.382 -1.125 0.045 0.208 -0.048 -0.112 139
Birmingham, AL MSA 997,770 6 -0.907 -1.052 -0.598 -0.412 -0.061 -0.050 -0.417 -0.712 -0.093 0.043 -0.054 -0.037 140

Knoxville, TN MSA 785,490 6 -0.788 -1.069 -0.442 -0.412 -0.143 -0.148 -0.864 0.460 -0.180 0.021 -0.120 -0.021 141
Lansing-East Lansing, MI MSA 453,603 3 -1.273 -1.415 -1.535 -0.414 -0.099 -0.049 -0.553 -1.075 0.009 0.062 -0.096 0.048 142

Hamilton-Middletown, OH PMSA 363,184 3 -0.360 -1.020 -0.089 -0.418 -0.040 -0.037 -0.580 -1.069 -0.067 0.223 -0.035 -0.204 143
La Crosse, WI-MN MSA 132,923 3 -0.576 -0.493 -0.421 -0.418 -0.185 -0.262 -0.406 0.327 -0.014 0.198 -0.140 0.056 144

Dallas, TX PMSA 4,399,895 7 -0.405 -0.556 -0.275 -0.429 -0.001 0.008 -0.666 -0.963 -0.173 0.144 -0.002 -0.094 145
Grand Rapids-Muskegon-Holland, MI MSA 1,157,672 3 -1.174 -1.083 -0.966 -0.435 -0.110 -0.129 -0.463 -0.958 -0.089 0.018 -0.089 -0.017 146

Columbia, SC MSA 627,630 5 -0.907 -0.977 -0.876 -0.436 -0.144 -0.182 -1.110 -0.669 -0.214 -0.005 -0.114 -0.007 147
Hickory-Morganton-Lenoir, NC MSA 365,364 5 -0.878 -1.483 -1.004 -0.437 -0.203 -0.188 -0.915 -0.391 -0.281 -0.052 -0.175 -0.072 148

Lynchburg, VA MSA 232,895 5 -1.155 -1.399 -0.891 -0.441 -0.170 -0.197 -0.919 -0.325 -0.131 -0.006 -0.139 -0.002 149
Chattanooga, TN-GA MSA 510,388 6 -0.500 -0.612 -0.628 -0.446 -0.149 -0.218 -1.326 -0.156 -0.137 0.178 -0.111 -0.027 150

Huntsville, AL MSA 406,316 6 -0.324 -0.809 -0.335 -0.446 -0.085 -0.186 -2.306 -0.228 -0.133 0.225 -0.049 -0.039 151
State College, PA MSA 146,212 2 -1.283 -1.550 -1.504 -0.447 -0.191 -0.219 1.122 -0.808 -0.030 0.040 -0.156 -0.007 152

Mobile, AL MSA 591,599 6 -1.192 -1.409 -1.200 -0.457 -0.173 -0.269 -2.682 0.013 -0.133 0.002 -0.126 -0.085 153
Lincoln, NE MSA 281,531 4 -0.496 -0.755 -0.706 -0.461 -0.200 -0.172 0.793 -1.330 -0.095 0.225 -0.176 0.052 154

Janesville-Beloit, WI MSA 160,155 3 -0.418 -0.808 -0.615 -0.467 -0.114 -0.128 -0.703 -1.175 0.003 0.321 -0.093 -0.003 155
Bryan-College Station, TX MSA 179,992 7 -1.240 -1.519 -1.346 -0.478 -0.262 -0.522 0.363 -1.096 -0.175 -0.003 -0.165 0.013 156

Little Rock-North Little Rock, AR MSA 657,416 7 -0.866 -0.988 -0.530 -0.480 -0.124 -0.144 -1.819 -0.743 -0.136 0.105 -0.101 -0.240 157
Indianapolis, IN MSA 1,823,690 3 -0.574 -0.992 -0.635 -0.483 -0.073 -0.107 -1.730 -1.337 -0.044 0.245 -0.054 -0.100 158

Greenville-Spartanburg-Anderson, SC MSA 1,096,009 5 -1.021 -1.397 -0.854 -0.485 -0.124 -0.152 -1.574 -0.784 -0.231 -0.002 -0.099 -0.062 159
Dayton-Springfield, OH MSA* 933,312 3 -0.737 -0.940 -0.506 -0.485 -0.127 -0.162 -1.482 -1.357 -0.069 0.198 -0.100 -0.220 160

Duluth-Superior, MN-WI MSA* 242,041 4 -0.820 -1.200 -1.324 -0.485 -0.184 -0.399 -0.860 0.261 0.077 0.280 -0.108 -0.061 161
Lexington, KY MSA 554,107 6 -0.441 -0.482 -0.180 -0.490 -0.116 -0.051 -0.098 -1.121 -0.098 0.255 -0.113 -0.038 162

Toledo, OH MSA* 631,275 3 -1.465 -1.721 -1.434 -0.493 -0.113 -0.192 -2.216 -0.488 0.011 0.104 -0.078 -0.203 163
Cedar Rapids, IA MSA 209,226 4 -1.111 -1.310 -0.924 -0.500 -0.112 -0.093 -1.365 -1.236 -0.067 0.111 -0.100 -0.083 164

Kalamazoo-Battle Creek, MI MSA 462,250 3 -1.334 -1.475 -1.178 -0.502 -0.118 -0.136 -0.929 -0.929 -0.029 0.104 -0.097 0.033 165
Houston, TX PMSA 5,219,317 7 -0.305 -0.523 -0.579 -0.503 0.025 0.044 -0.070 -1.000 -0.142 0.272 0.017 -0.071 166

Wausau, WI MSA 131,612 3 -1.368 -1.787 -1.441 -0.504 -0.121 -0.150 -0.669 -0.833 -0.038 0.092 -0.097 -0.015 167
Canton-Massillon, OH MSA* 408,005 3 -0.874 -1.186 -0.855 -0.510 -0.116 -0.031 -1.105 -0.798 -0.044 0.196 -0.118 -0.175 168

Omaha, NE-IA MSA 799,130 4 -0.683 -0.736 -0.617 -0.512 -0.102 -0.051 -0.433 -1.245 -0.076 0.228 -0.098 -0.033 169
Waterloo-Cedar Falls, IA MSA* 129,276 4 -0.920 -0.946 -0.556 -0.514 -0.306 -0.821 -1.470 -1.256 -0.186 0.091 -0.144 -0.120 170

Pittsburgh, PA MSA* 2,287,106 2 -0.809 -0.941 -1.124 -0.516 -0.098 -0.102 -0.077 0.048 0.029 0.279 -0.083 -0.063 171
Peoria-Pekin, IL MSA* 357,144 3 -1.519 -1.816 -1.708 -0.519 -0.075 -0.101 -0.528 -1.166 0.065 0.168 -0.058 -0.073 172

Biloxi-Gulfport-Pascagoula, MS MSA 355,075 6 -0.870 -1.109 -0.962 -0.526 -0.145 -0.159 -1.131 1.116 -0.156 0.124 -0.120 -0.099 173
Rockford, IL MSA 409,058 3 -0.812 -1.557 -1.440 -0.526 -0.059 -0.002 -1.038 -1.301 0.124 0.360 -0.063 -0.188 174

Augusta-Aiken, GA-SC MSA 516,357 5 -1.136 -1.257 -0.832 -0.528 -0.066 0.031 -1.614 -0.902 -0.136 0.091 -0.078 -0.069 175
Sioux Falls, SD MSA 224,266 4 -0.445 -0.710 -0.628 -0.529 -0.122 -0.194 -1.415 -1.244 -0.167 0.252 -0.134 -0.004 176

Scranton--Wilkes-Barre--Hazleton, PA MSA* 614,565 2 -1.039 -1.473 -1.272 -0.529 -0.165 -0.206 -0.436 -0.012 0.013 0.210 -0.131 -0.087 177
Memphis, TN-AR-MS MSA 1,230,253 6 -0.921 -1.180 -0.443 -0.529 -0.048 -0.071 1.525 -0.817 -0.126 0.147 -0.036 0.109 178

Davenport-Moline-Rock Island, IA-IL MSA* 362,790 4 -1.180 -1.377 -1.275 -0.531 -0.088 0.022 -1.818 -1.185 -0.006 0.183 -0.100 -0.116 179
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Galveston-Texas City, TX PMSA 286,814 7 -0.706 -0.738 -0.176 -0.531 0.022 0.046 0.398 2.232 -0.120 0.212 0.013 -0.042 180
Rochester, NY MSA 1,093,434 2 -1.425 -1.452 -2.287 -0.533 -0.079 -0.051 -0.554 0.069 0.029 0.174 -0.073 -0.020 181

Fort Worth-Arlington, TX PMSA 2,113,278 7 -0.598 -0.759 -0.487 -0.535 -0.001 0.008 -0.420 -1.169 -0.153 0.219 -0.002 -0.094 182
Jackson, MS MSA 483,852 6 -1.024 -1.276 -1.297 -0.540 -0.115 -0.126 -2.260 -0.858 -0.131 0.134 -0.096 -0.132 183

Montgomery, AL MSA 354,108 6 -1.247 -1.347 -1.102 -0.542 -0.142 -0.150 -1.685 -0.886 -0.182 0.043 -0.119 -0.047 184
Tulsa, OK MSA 873,304 7 -0.763 -0.877 -1.117 -0.547 -0.105 -0.051 -1.664 -1.102 -0.201 0.171 -0.101 -0.154 185

Bloomington-Normal, IL MSA 167,699 3 -0.800 -0.947 -1.017 -0.550 -0.050 0.093 -0.586 -1.339 0.051 0.320 -0.075 -0.136 186
Oklahoma City, OK MSA 1,213,704 7 -1.027 -1.238 -1.160 -0.555 -0.173 -0.275 -1.067 -1.288 -0.157 0.130 -0.125 -0.074 187

Lafayette, IN MSA 202,331 3 -0.701 -1.185 -0.747 -0.557 -0.171 -0.204 -0.951 -0.146 -0.069 0.274 -0.138 -0.002 188
Tyler, TX MSA 204,665 7 -1.172 -1.532 -1.329 -0.558 -0.156 -0.226 -0.062 -0.918 -0.183 0.065 -0.117 0.113 189

Springfield, MO MSA 383,637 4 -0.859 -1.047 -1.097 -0.567 -0.225 -0.275 -1.324 -1.086 -0.077 0.245 -0.180 -0.029 190
Johnson City-Kingsport-Bristol, TN-VA MSA 503,010 6 -0.900 -1.248 -0.764 -0.567 -0.207 -0.267 -1.498 1.272 -0.197 0.144 -0.163 -0.024 191

Brazoria, TX PMSA 309,208 7 -1.018 -1.529 -1.020 -0.567 0.032 0.057 -0.808 -1.000 -0.135 0.160 0.021 -0.125 192
Buffalo-Niagara Falls, NY MSA* 1,123,804 2 -0.994 -0.949 -0.978 -0.576 -0.076 -0.066 -1.147 -0.484 0.053 0.308 -0.066 -0.088 193

Sumter, SC MSA 104,495 5 -1.239 -1.752 -1.207 -0.576 -0.325 -0.629 -1.557 -0.298 -0.214 0.057 -0.207 -0.017 194
Elkhart-Goshen, IN MSA 200,502 3 -1.159 -1.558 -1.020 -0.581 -0.098 -0.079 -1.460 -1.086 -0.059 0.202 -0.124 -0.140 195

Flint, MI PMSA* 424,043 3 -1.032 -1.440 -1.031 -0.588 -0.003 -0.024 -0.469 -0.943 0.011 0.276 0.002 0.051 196
Amarillo, TX MSA 238,299 7 -0.959 -1.212 -0.999 -0.588 -0.204 -0.282 -0.847 -1.237 -0.160 0.176 -0.156 -0.126 197

Saginaw-Bay City-Midland, MI MSA* 390,032 3 -2.051 -2.375 -1.983 -0.590 -0.118 -0.142 -0.181 -0.613 -0.014 0.103 -0.095 -0.033 198
Erie, PA MSA* 280,291 2 -1.416 -1.364 -1.446 -0.596 -0.187 -0.257 -0.916 1.063 -0.021 0.196 -0.143 -0.054 199

Fayetteville, NC MSA 315,207 5 -0.961 -1.057 -0.479 -0.599 -0.183 -0.225 -1.559 -0.655 -0.208 0.148 -0.146 -0.192 200
San Antonio, TX MSA 1,928,154 7 -0.852 -0.965 -0.759 -0.601 -0.121 -0.119 1.739 -1.254 -0.168 0.205 -0.103 0.060 201

South Bend, IN MSA 267,613 3 -0.676 -1.119 -0.748 -0.602 -0.112 0.001 -2.027 -0.896 -0.059 0.332 -0.121 -0.082 202
Syracuse, NY MSA* 725,610 2 -1.189 -1.331 -1.921 -0.610 -0.096 -0.102 -1.709 -0.542 0.004 0.265 -0.080 -0.163 203

Evansville-Henderson, IN-KY MSA 305,455 3 -1.496 -1.485 -1.230 -0.620 -0.159 -0.338 -1.316 -0.987 -0.052 0.171 -0.095 -0.043 204
Macon, GA MSA 356,873 5 -1.264 -1.566 -1.011 -0.626 -0.071 -0.021 -1.660 -1.024 -0.150 0.160 -0.072 -0.123 205

Rocky Mount, NC MSA 146,596 5 -0.759 -1.029 -0.587 -0.632 -0.163 -0.273 -0.857 -0.513 -0.290 0.165 -0.114 -0.144 206
Lafayette, LA MSA 415,592 7 -1.286 -1.442 -1.224 -0.643 -0.131 -0.154 -1.729 -1.310 -0.169 0.141 -0.106 -0.185 207

Lake Charles, LA MSA 187,554 7 -0.888 -0.859 -0.740 -0.646 -0.107 -0.099 -1.928 0.964 -0.142 0.244 -0.093 -0.243 208
Lubbock, TX MSA 270,550 7 -1.386 -1.720 -1.182 -0.646 -0.209 -0.239 -1.539 -1.385 -0.187 0.113 -0.171 -0.028 209
Wichita, KS MSA 589,195 4 -1.101 -1.304 -1.001 -0.648 -0.135 -0.185 -1.911 -1.327 -0.155 0.206 -0.104 -0.082 210

Fort Wayne, IN MSA 528,408 3 -1.255 -1.590 -1.416 -0.655 -0.141 -0.147 -1.540 -1.283 -0.084 0.246 -0.118 -0.098 211
St. Joseph, MO MSA* 106,908 4 -1.713 -1.808 -1.517 -0.657 -0.205 -0.354 -2.414 -1.104 -0.028 0.199 -0.174 -0.113 212

Utica-Rome, NY MSA* 293,280 2 -1.950 -2.347 -2.233 -0.664 -0.155 -0.322 -1.425 -0.549 -0.026 0.172 -0.094 -0.042 213
Sherman-Denison, TX MSA 120,030 7 -1.606 -2.370 -1.933 -0.670 - - -1.646 -1.076 -0.222 0.068 - -0.107 214

Corpus Christi, TX MSA 391,269 7 -1.196 -1.266 -1.024 -0.674 -0.168 -0.230 -1.155 0.435 -0.209 0.165 -0.129 -0.176 215
Dothan, AL MSA 148,232 6 -1.296 -1.825 -1.451 -0.677 -0.131 -0.001 -1.610 -0.965 -0.217 0.148 -0.140 -0.012 216

Fargo-Moorhead, ND-MN MSA 200,102 4 -0.652 -0.846 -0.869 -0.679 -0.211 -0.456 -2.080 -1.264 -0.097 0.376 -0.125 -0.065 217
Youngstown-Warren, OH MSA* 554,614 3 -1.782 -2.155 -1.652 -0.709 -0.178 -0.208 -0.780 -0.898 -0.020 0.252 -0.145 -0.141 218

Columbus, GA-AL MSA 285,800 5 -0.479 -0.649 -0.481 -0.716 -0.162 -0.175 -1.452 -1.109 -0.151 0.425 -0.135 -0.100 219
El Paso, TX MSA 751,296 7 -0.586 -0.495 -0.086 -0.738 -0.200 -0.133 0.398 -1.159 -0.213 0.377 -0.185 -0.042 220

Killeen-Temple, TX MSA 358,316 7 -1.382 -1.573 -1.133 -0.741 -0.188 -0.214 -1.838 -1.246 -0.239 0.162 -0.155 -0.070 221
Beaumont-Port Arthur, TX MSA* 378,477 7 -1.311 -1.443 -1.389 -0.747 -0.073 -0.104 -1.422 -0.493 -0.155 0.262 -0.055 -0.101 222

Binghamton, NY MSA* 244,694 2 -1.358 -1.592 -1.566 -0.754 -0.127 -0.134 -1.423 0.257 -0.015 0.342 -0.106 -0.122 223
Longview-Marshall, TX MSA 222,489 7 -1.896 -2.429 -2.098 -0.764 -0.201 -0.412 -2.430 -0.891 -0.266 0.081 -0.123 -0.169 224
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Fort Smith, AR-OK MSA 225,132 7 -1.633 -1.969 -1.691 -0.784 -0.178 -0.180 -1.764 -0.449 -0.187 0.200 -0.179 -0.163 225
Bismarck, ND MSA 106,286 4 -0.925 -1.267 -1.228 -0.837 - - -0.446 -1.123 -0.149 0.435 - -0.075 226

Sioux City, IA-NE MSA* 123,482 4 -1.768 -1.755 -1.885 -0.840 -0.060 0.038 -1.863 -1.259 -0.120 0.288 -0.169 -0.080 227
Jamestown, NY MSA* 133,503 2 -2.423 -2.738 -2.358 -0.931 -0.241 -0.339 -0.790 0.036 -0.013 0.406 -0.183 -0.110 228

Brownsville-Harlingen-San Benito, TX MSA 396,371 7 -1.130 -1.171 -0.349 -0.982 -0.246 -0.281 -0.749 -0.069 -0.240 0.471 -0.201 -0.108 229
McAllen-Edinburg-Mission, TX MSA 741,152 7 -0.497 -0.735 -0.367 -0.990 -0.230 -0.271 -0.733 -1.362 -0.240 0.645 -0.186 -0.118 230

Census Divisions:
New England 9,276,332 1 0.150 0.216 0.270 0.429 0.101 0.114 0.988 0.235 0.130 -0.302 0.083 0.175 4

Middle Atlantic 36,776,228 2 0.439 0.767 0.593 0.288 0.083 0.121 0.201 0.075 0.155 -0.002 0.063 -0.013 2
East North Central 34,629,706 3 -0.336 -0.415 -0.447 -0.234 -0.031 -0.038 -0.628 -0.301 0.043 0.147 -0.025 -0.068 6

West North Central 12,493,078 4 -0.570 -0.732 -0.644 -0.332 -0.064 -0.101 -0.943 -0.892 0.026 0.160 -0.048 -0.062 7
South Atlantic 44,239,778 5 0.090 -0.100 -0.040 -0.049 -0.027 -0.027 -0.006 0.105 -0.102 0.005 -0.023 0.005 5

East South Central 9,515,207 6 -0.746 -0.961 -0.578 -0.437 -0.108 -0.129 -0.882 -0.423 -0.124 0.104 -0.087 -0.033 9
West South Central 26,109,488 7 -0.616 -0.784 -0.613 -0.520 -0.064 -0.072 -0.467 -0.785 -0.167 0.193 -0.053 -0.085 8

Mountain 15,869,775 8 0.196 -0.006 -0.201 -0.043 -0.043 -0.075 0.335 -0.060 -0.059 0.044 -0.030 0.043 3
Pacific 41,103,383 9 0.795 0.910 0.849 0.652 0.090 0.095 0.713 0.980 0.091 -0.312 0.075 0.099 1

Metropolitan Population:
Less than 500,000 31,264,023 -0.661 -0.870 -0.666 -0.228 -0.069 -0.092 -0.359 -0.055 -0.042 -0.006 -0.055 -0.014 4

500,000 to 1,500,000 55,777,644 -0.428 -0.614 -0.398 -0.193 -0.051 -0.058 -0.288 -0.158 -0.045 0.020 -0.042 -0.020 3
1,500,000 to 5,000,000 89,173,333 0.199 0.080 0.097 0.097 0.019 0.017 0.151 0.142 0.008 -0.034 0.016 0.020 2

5,000,000+ 49,824,250 0.866 1.321 0.899 0.363 0.093 0.122 0.223 0.011 0.094 0.012 0.073 0.005 1

See Table 1 and text for explanatory details.



Figure A: Construction Wages vs. Overall Wages
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Note: Wages are estimated at the CMSA level, but the figure plots PMSAs to be consistent with the other
figures. Concentric circles represent multiple PMSAs of different populations in the same CMSA.
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Figure B: Construction Prices vs. Construction Wages
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Figure C: Residential vs. All-Use Land Values
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