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1 Introduction

Housing accounts for approximately 15 percent of personal consumption expenditures and
44 percent of private fixed assets in the U.S. economy (Bureau of Economic Analysis 2013a
and 2013b). Housing values vary widely over space, and this variance is attributed primar-
ily to differences in land values (Case 2007; Davis and Palumbo 2008). Furthermore, recent
fluctuations in housing prices may stem primarily from much larger fluctuations in underly-
ing land values (Davis and Palumbo 2008; Nichols et al. 2013). Economists since Ricardo
(1817) and George (1881) have sought to quantify the share of property values attributable
to land, while land-use policies are a prominent issues facing most local governments to-
day.1

Unfortunately, market data on land values have been notoriously piecemeal, and economists
have done fairly little to tie such data to actual housing values. In this paper, we estimate
an intuitive but previously untested model for housing and land values from the popular
Roback (1982) system of urban areas. The model predicts that housing should be more
expensive in areas with i) higher land values; ii) higher costs of construction inputs such
as materials and labor; and iii) less efficient housing production. We posit and test the
prediction that housing production is less efficient in areas with more severe topographi-
cal constraints or land-use regulations — sometimes characterized as “regulatory taxes” —
which may lower the value of land, even if they raise the value of housing. Consequently,
land values disentangle how demand-side factors, such as local quality of life and employ-
ment opportunities, pull up the price of housing, from how supply-side factors, such as
building inputs and regulatory barriers, push up the price. Our framework permits us to
examine whether land-use regulations provide local quality-of-life benefits to compensate
residents for their housing costs.

As part of the analysis, we provide the first inter-metropolitan index of directly-observed
land values that is cross-sectionally comparable across U.S. metropolitan areas. Theory
suggests this index captures the full private value of amenities, employment, and building
opportunities combined across metro areas. In relative terms, land values should vary far
more across metros than housing values. By using inter-metropolitan data on non-land, as
well as land, input prices, we are able both to estimate and test a national cost function
for housing services. This model intuitively identifies both distribution and substitution

1Summers (2014) argues that one of “the two most important steps that public policy can take with respect
to wealth inequality” is “an easing of land-use restrictions that cause the real estate of the rich in major
metropolitan areas to keep rising in value.”
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parameters through duality methods (Fuss and McFadden 1978).
Our empirical analysis provides evidence supporting a Constant Elasticity of Substitu-

tion (CES) cost model. It passes several specification tests that validate the consistency of
our data. With only four measures, the model explains over 85 percent of housing-price
variation across metros. The housing-to-land price gradient implies that land acounts for
one-third of housing costs, on average. Curvature in the gradient suggests that the cost
shares rises from 15 to 50 percent in high-value areas, implying an elasticity of substitution
between land and other inputs of about 0.5.

Housing price deviations from the cost surface predicted by input prices provide a new
measure of local productivity (or efficiency) in the housing sector. This metric is a summary
indicator of how efficiently local producers transform inputs into valued housing services.
This measure complements productivity indices for tradeable sectors — seen in Beeson and
Eberts (1989), Shapiro (2006), and Albouy (Forthcoming) — and indices for local quality
of life — as in Roback (1982), Gyourko and Tracy (1991), and others. As predicted,
regulatory and geographic constraints — as measured by by Gyourko, Saiz, and Summers
(2008) and Saiz (2010) — reduce housing productivity. A standard deviation increase
in aggregate measures of these constraints is associated with 8 to 9 percent higher costs.
Among disaggregate regulation measures, state political and court involvement approval,
and local political pressure and project predict the highest efficiency costs.

Housing productivity differences across metro areas are large, with a standard deviation
equal to 22 percent of total costs. Observed regulations explain 39 percent of this variance.
Contrary to common assumptions (e.g. Rappaport 2007) that metro-level productivity lev-
els in tradeables and housing are equal, we find the two are negatively correlated across
areas. For example, the San Francisco Bay Area is very efficient in producing tradeable
output, but very inefficient in producing housing. In general, housing productivity falls
with city size, suggesting there are urban diseconomies of scale in housing production.
Additionally, housing inefficiency from land-use regulation is correlated with higher qual-
ity of life, but at such low magnitudes that the typical regulation is welfare-reducing, even
if causality is assumed to run entirely from regulation to quality of life.

2 Previous Literature on Land and Housing Costs

Our transaction-based measure differs from common ‘residual’ measures of land values,
derived from the difference between a property’s entire value and the estimated value of its
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structure. Davis and Palumbo (2008) use this method to estimate land values across metro
areas and over time, finding that the cost share of land in housing values rose to 51 percent
in 2004. Using a similar method, Case (2007) calculates lower cost shares of land of 29
percent in 2000 and 38 percent in 2005.2

As Davis and Heathcote (2007) note, the residual method attaches “the label ‘land’ to
anything that makes a house worth more than the cost of putting up a new structure of
similar size and quality on a vacant lot.” As we emphasize here, the residual method will
attribute higher costs stemming from inefficiencies in factor usage – possibly from geo-
graphic and regulatory constraints – to higher land values.3 Such inefficiencies do not raise
the market value of land for purchasers. The residual method can also cause researchers to
find negative land values — as Davis and Heathcote (2007) find for residential housing in
1940, and Case (2007) finds for commercial real estate in 1992.

We estimate the cost function of housing using metro-level variation in construction
costs, regulatory and geographic constraints, and transaction-based measures of land val-
ues. None have taken the full approach attempted here, although Rosen (1978), Polinsky
and Ellwood (1979), and Arnott and Lewis (1979) are relevant predecessors. McDonald
(1981) surveys these and other early estimates, and find that in most estimtes of the elastic-
ity of substitution between land and materials to be loosely centered around 0.5, pointing
out that measurement error may bias these estimates downwards. Our approach, focused
on prices, pooled at the city level, is largely immune to this problem. 4 Thorsnes (1997) is
unique among our predecessors in having market transactions for land. His sample is lim-
ited to 219 properties in Portland, and has no variation in non-land costs, or in regulatory or
geographic constraints. Our much larger sample and richer sample taken across the United

2Davis and Palumbo (2008) note that they use “several formulas, different sources of data, and a few
assumptions about unobserved quantities, none of which is likely to be exactly right.” Using numbers from
much earlier, Muth’s (1969) suggests numbers closer to 10 to 15 percent, with possibly as little as 5 percent
due to unimproved land.

3Hedonic methods can also provide estimates of land values from housing values. Using an augmented
residual method based on hedonics, Glaeser and Ward (2009) estimate a value of $16,000 per acre of land in
the Greater Boston area, while presenting evidence that the market price of an acre is approximately $300,000
if new housing can be built on it. They attribute this discrepancy to zoning regulations.

4Epple et al. (2010) use an alternative estimator based on separately assessed (not transacted) land and
structure values for houses in Alleghany County, PA, and estimate an elasticity of substitution greater than
one. Ahlfeldt and McMillen (2014) obtain similar estimates for Berlin and Chicago. One caveat to these
findings is that they are based on a reverse regression of log land values on property values. Any kind of
‘optimization errors’ due to housing capital and land being combined in suboptimal proportions creates a
bias similar to measurement error in the reverse regression. This imparts an upward bias to the elasticity of
substitution estimated using the Epple et al. approach. Thus, ‘classic’ and ‘reverse’ regression estimates may
bracket the correct elasticity.
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States allows us to consider and test a deeper model.5

A few studies have examined more limited housing and land value data using less for-
mal methods. Rose (1992) examines 27 cities in Japan and finds that fewer geographic
constraints correlate with both lower land and lower housing values. Ihlanfeldt (2007)
takes assessed land values from tax rolls in 25 Florida counties, and finds that land-use reg-
ulations predict higher housing prices but lower land values. Glaeser and Gyourko (2003)
use an enhanced residual method to infer land values, and find that housing and land val-
ues differ most in heavily regulated environments. Glaeser, Gyourko, and Saks (2005b)
find that the price of units in Manhattan multi-story buildings far exceeds the marginal cost
of producing them, attributing the difference to regulation. They argue regulatory costs
exceed the benefits they consider, mainly from preserving views.

Three recent papers make use of the source we use for land data, the CoStar COMPS
data, for analyses within metro areas. Haughwout, Orr, and Bedoll (2008) construct a land
price index for 1999 to 2006 within the New York metro area, demonstrating the land data’s
extensive coverage. Kok, Monkkonnen, and Quigley (2014) document land sales within the
San Francisco Bay Area, and relate the sales prices to the topographical, demographic, and
regulatory features of the site. Neither connects land values to housing prices. Nichols,
Oliner, and Mulhall (2013) construct a panel of land-value indices for 23 metro areas from
the 1990s through 2009. Their index is comparable only within metros over time, not cross-
sectionally across space. They demonstrate that land values vary more than housing values
across time, as our analysis demonstrates across space.

3 Model of Land Values and Housing Production

Our econometric model uses a housing cost function for housing embedded within a general-
equilibrium model of urban areas, similar to one proposed, but not pursued, by Roback
(1982).6 Albouy (Forthcoming) develops predictioins relating housing prices to land and
local productivity, but lacks the data to test them.7 The national economy contains many

5Thorsnes (1997) and Sirmans, Kau, and Lee (1979) estimate a variable elasticity of substitution using
small samples drawn from a handful of cities. Sirmans et al. reject the hypothesis of a constant elasticity of
substitution, but Thorsnes finds that, “... the CES is the appropriate functional form.”

6Although Roback (1982) first proposed such a model, she did not develop or test its predictions. The
most she says is on pages 1265-6: “if [an amenity] s inhibits the production of nontraded goods, this simply
has the direct effect of raising costs. For example, houses are probably more expensive to build in a swamp.”

7van Nieuwerburgh and Weill (2010) embed a Roback-style model in a dynamic framework, which they
use to study, among other issues, the effects of land-use restrictions on price dispersion across metropoli-
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cities indexed by j, which produce a numeraire good, X , traded across cities, and hous-
ing, Y , which is not traded across cities, and has a local price, pj . Cities differ in their
productivity in the housing sector, AY

j .

3.1 Cost Function for Housing

Firsm produce housing, Yj , with land L and materials M according to the function

Yj = F Y (L,M ;AY
j ), (1)

where F Y
j is concave and exhibits constant returns to scale (CRS) at the firm level. Housing

productivity, AY
j , is a city-level characteristic that may be determined endogenously by city

characteristics such as population size. Land earns a city-specific price, rj , while materials
earn price vj . We operationalize M as the installed structure component of housing, so
vj represents an index of construction input prices, e.g. an aggregate of local labor and
mobile capital. Unit costs in the housing sector, equal to marginal and average costs, are
cY (rj, vj;A

Y
j ) ≡ minL,M{rjL+ vjM : F Y (L,M ;AY

j ) = 1}.8

We assume the housing market in city j is perfectly competitive.9 Then, in cities with
postive production, equilibrium housing prices will equal the unit cost:

cY (rj, vj;A
Y
j ) = pj. (2)

tan areas. Their model emphasizes (we believe rightly) that changing marginal valuations for locations are
needed, in addition to regulations, to explain rising housing-price dispersion. Nevertheless, their framework
has an inflexible production technology without land, and disallows income effects in housing demand.

8The use of a single function to model the production of a heterogenous housing stock is well established
in the literature, beginning with Muth (1960) and Olsen (1969). In the words of Epple et al. (2010, p.
906), “The production function for housing entails a powerful abstraction. Houses are viewed as differing
only in the quantity of services they provide, with housing services being homogeneous and divisible. Thus,
a grand house and a modest house differ only in the number of homogeneous service units they contain.”
This abstraction also implies that a highly capital-intensive form of housing, e.g., an apartment building, can
substitute in consumption for a highly land-intensive form of housing, e.g., single-story detached houses.
Our analysis uses data from owner-occupied properties, accounting for 67% of homes, of which 82% are
single-family and detached.

9Although this assumption may seem stringent, the empirical evidence is consistent with perfect competi-
tion in the construction sector. Considering evidence from the 1997 Economic Census, Glaeser et al. (2005b)
report that “...all the available evidence suggests that the housing production industry is highly competitive.”
Basu et al. (2006) calculate returns to scale in the construction industry (average cost divided by marginal
cost) as 1.00, indicating firms in the construction industry having no market power. This seems sensible as
new homes must compete with the stock of existing homes. If markets are imperfectly competitive, then AY

j

will vary inversely with the mark-up on housing prices above marginal costs.
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Figure 1A illustrates how we estimate housing productivity, holding vj constant. The thick
solid curve represents the cost function for cities with average productivity. As land values
rise from Denver to New York, housing prices rise, albeit at a diminishing rate, as housing
producers substitute away from land as a factor. The higher, thinner curve represents costs
for a city with lower productivity, such as San Francisco. San Francisco’s high price relative
to New York, despite its identical factor costs, reveal its lower productivity.

We adopt a hat notation where ẑj represents, for any variable z, city j’s log deviation
from the national average, z̄, i.e. ẑj = ln zj − ln z. A first-order log-linear approxima-
tion of equation (2) expresses how housing prices vary with input prices and productivity:
p̂j = φLr̂j + (1 − φL)v̂j − ÂY

j . φL is the cost share of land at the average, and AY
j is

normalized so that a one-point increase in ÂY
j corresponds to a one-point reduction in log

costs.10 Rearranged, housing productivity can be be imputed from the difference between
a weighted average of input costs and housing prices:

ÂY
j = φLr̂j + (1− φL)v̂j − p̂j. (3)

If housing productivity is factor neutral, i.e., F Y (L,M ;AY
j ) = AY

j F
Y (L,M ; 1), then

the second-order log-linear approximation of (2), drawn in figure 1B, is

p̂j = φLr̂j + (1− φL)v̂j +
1

2
φL(1− φL)(1− σY )(r̂j − v̂j)2 − ÂY

j , (4)

where σY is the elasticity of substitution between land and non-land inputs. The elasticity
of substitution is less than one if costs increase in the square of the factor-price difference,
(r̂j − v̂j)2. The cost share of land in a particular city is given approximately by

φL
j = φL + φL(1− φL)(1− σY )(r̂j − v̂j), (5)

and thus is increasing with r̂j − v̂j when σY < 1.
Our estimates of ÂY

j assume that a single elasticity of substitution describes production
in all cities. If this elasticity varies, then our estimates will conflate a lower elasticity
with lower productivity. Figures 1A and 1B illustrate this possibility by comparing the
case of σY = 1, in solid curves, with σY < 1, in dashed curves. When production has
low substitutability, the cost curve is flatter, as producers are less able to substitute away

10This normalization implies that at the national average productivity level and prices, ĀY =
−p̄/[∂cY (r̄, v̄, ĀY )/∂A].
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from land in higher-value cities. This has the same net observable consequence on housing
prices, although the concepts may have different implications for quantities.11

Appendix B shows that modeling non-neutral productivity requires adding another term
to equation 4 to account for the productivity of land relative to materials, AY L

j /AYM
j :

− φL(1− φL)(1− σY )(r̂j − v̂j)(ÂY L
j − ÂYM

j ). (6)

If σY < 1, then cities where land is expensive relative to materials, i.e., r̂j > v̂j , see greater
cost reductions where the relative productivity level, AY L

j /AYM
j , is higher.

3.2 Adapting a Translog Econometric Cost Function

We estimate housing prices using a translog cost function (Christensen et al. 1973) with
land and non-land factor prices, and Zj , a vector of city-level attributes:

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + Zjγ + εj, (7)

This specification is equivalent to the second-order approximation of the cost function (see,
e.g., Binswager 1974, and Fuss and McFadden 1978) under the CRS restrictions

β1 = 1− β2, β3 = β4 = −β5/2, (8)

where φL = β1 and, with factor-neutral productivity, σY = 1−2β3/ [β1(1− β1)]. Housing
productivity depends on Zj and the unobserved residual, ÂY

j = −Zj(γ) + Â0Y
j − εj.

The second-order approximation of the cost function (i.e. the translog) is not a constant-
elasticity form. Hence, the elasticity of substitution we estimate is evaluated at the sample
mean parameter values (see Griliches and Ringstad 1971). To our knowledge, ours is the
first empirical study to identify this housing elasticity from an explicit quadratic form.

Cobb-Douglas (CD) technology imposes the restriction σY = 1, which in (7) is:

β3 = β4 = β5 = 0. (9)

Without additional data, non-neutral productivity differences are impossible to detect
without knowing what shifts AY L

j /AYM
j . Here it seems reasonable to interact productivity

11Housing supply, as a quantity, is less responsive to price increases when substitutability is low, rather
than when productivity is low.
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shifters Zj with the difference in input prices, r̂j− ν̂j in equation 7. The reduced-form
model allowing for non-neutral productivity shifts, imposing the CRS restrictions, is:

p̂j − v̂j = β1(r̂j − v̂j) + β3(r̂j − v̂j)2 + Zjγ1 + (r̂j − v̂j)Zjγ2 + εj (10)

As shown in Appendix B, γ2Zj/2β3 = ÂYM
j − ÂY L

j identifies observable differences in
factor-biased technical differences. If σY < 1, then γ2 > 0 implies that the shifter Z

lowers the productivity of land relative to the non-land input. Furthermore, we can see if
the elasticity of substitution varies with Zj by adding the term (r̂j − v̂j)2 Zjγ3.12

3.3 The Determination of Land and Non-Land Prices

We consider the equilibrium of a system of cities adapted from Albouy (2009). Land and
non-land costs are determined simulataneously with housing prices from differences hous-
ing productivity, AY

j , trade-productivity, AX
j , and quality of life, Qj . Our first adaptation is

that we assume each production sector has its own type of worker, k = X, Y , where type-Y
workers produce housing. Preferences are represented by Uk(x, y;Qk

j ), where x and y are
personal consumption of the traded good and housing, andQk

j , varies by type. Each worker
supplies a single unit of labor and earns wage wk

j , which with non-labor income, I , makes
up total income mk

j = wk
j + I , out of which federal taxes, τ(mk

j ) are paid.
Workers are mobile and both types occupy each city. Equilibrium requires that workers

receive the same utility in all cities, ūk for each type. Log-linearized, this implies

Q̂k
j = sky p̂j − (1− τ k)skwŵ

k
j , k = X, Y. (11)

i.e., quality of life offsets high prices or low wages, after taxes. Qk
j is normalized such

that Q̂k
j of 0.01 is equivalent to a one-percent rise in total consumption, sky is the housing

expenditure share, and τ k is the marginal tax rate, and skw is labor’s share of income. The
aggregate quality-of-life differential is Q̂j ≡ µXQ̂X

j +µY Q̂Y
j , where µk is the income share

of type k, sy ≡ µXsXy +µY sYy , and (1− τ) swŵ ≡ µX(1− τX)sXw ŵ
X
j +µY (1− τY )sYwŵ

Y
j .

Traded output has a uniform price across cities and is produced with CRS and CD
technology, with AX

j being netural. We assume land commands the same price in both

12In equation 10, non-neutral productivity implies β1 = φL + β3(ÂYM
0j − ÂY L

0j ) and εj = −[φLÂY L
j +

(1− φL)ÂYM
j ] + (12)φL(1− φL)(1− σY )(ÂY L

j − ÂYM
j )2. We normalize (ÂYM

0j − ÂY L
0j ) = 0. Note that

we do not find interactions for the quadratic interaction to be significant and thus have left a heterogenous
elasticity of substitution out of the remainder of the analysis.
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sectors. A derivation similar to (3) yields that the trade-productivity differential is

ÂX
j = θLr̂j + θN ŵX

j , (12)

a weighted sum of factor-price differentials, where θLand θN are corresponding cost shares.
Non-land inputs are produced according to Mj = (NY )a(KY )1−a, which implies v̂j =

aŵY
j , where a is the cost-share of labor in non-land inputs. Defining φN = a(1 − φL), we

can derive an alternative measure of housing productivity based on wages:

ÂY
j = φLr̂j + φN ŵY

j − p̂j. (13)

The sum of productivity levels in both sectors, the total-productivity differential of a city,
is Âj ≡ sxÂ

X
j + syÂ

Y
j , where sx = 1− sy.

Combining the equations 11, 12, and 13, the land-value differential times the income
share of land, sR = sxθL + syφL, equals the sum of the weighted productivity and quality-
of-life differentials minus the federal-tax differential, τswŵj:

sRr̂j = sxÂ
X
j + syÂ

Y
j + Q̂j − τswŵj. (14)

Land thus fully capitalizes the value of local amenities minus federal tax payments.

3.4 Identification

Our econometric specification in equation 7 regresses housing costs p̂j on land values r̂j ,
construction prices v̂j , and geographic and regulatory constraints, Zj . The model in (4)
implies the error term is the unexplained component of housing productivity, i.e., εj =

−ÂY
j −Zjγ, although it could also reflect measurement error, market power in the housing

sector, or disequilibrium forces causing prices to deviate from costs.
The geographic constraints are predetermined, so we treat them as exogenous. We also

treat the regulatory constraints as exogenous: like most researchers, we have not found
an instrument for regulations that we believe to be both relevant and excludable. While
regulations may be endogenous to housing prices, stories that support that argument are less
clear after conditioning on land values, construction costs, and geography. The prediction
that constraints imply high housing values relative to land and non-land input prices is a
novel, falsifiable prediction that has yet to be tested in the literature.
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Identification requires that land values are uncorrelated with unobserved determinants
of AY

j in the residual, εj . But, as equation 14 demonstrates, land values increase with
housing productivity. Therefore, ordinary least squares (OLS) estimates will exhibit bias if
the vector of characteristics Zj is incomplete and E[εj|Zj] 6= 0. This bias depends on the
unknown covariance structure between ÂX

j ,ÂY
j , and Q̂j . OLS estimates will be best if the

most of the variation in land values is driven by trade-productivity (i.e., jobs) and quality
of life, and our measures of Zj are rather exhaustive.13

An alternative is to find instrumental variables (IVs) for land values, as well as non-land
input prices. Equation 14 suggests that variables that influence tradeable productivityAX

j or
quality of life Qj should affect land values. Equation 4 shows that to satisfy the exclusion
restriction such variables must be unrelated to housing productivity AY

j . Motivated by
the theory, we consider two instruments. The first is the inverse of the distance to the
nearest saltwater coast, a predictor of Qj and Aj

X . The second is an adaptation of the U.S.
Department of Agriculture’s “Natural Amenities Scale” (McGranahan 1999), which ought
to correlate with Qj .14

3.5 Dynamics and Option Value

In a dynamic model with certainty, Arnott and Lewis (1979) demonstrate that our static
model produces consistent estimates with endogenous development. With uncertainty, the
irreversibility of residential investment may impart a real option value to land, as own-
ers of undeveloped land can decide not to proceed with development if market conditions
evolve unfavorably. Thus, developers may build less often in areas where house prices are
more volatile (see Capozza and Helsley 1990). If house prices are more volatile in supply-
constrained areas, this option value may be correlated with more stringent land-use regula-
tions. Thus, real option value could account for a portion of our estimated efficiency costs.
Since this enhanced option value is due to constraints, it may be considered an additional
cost from them. Regulations may also “follow the market” (Wallace 1988), potentially
limiting their effects on land and housing prices, and the inefficiencies we estimate.

13Related problems arise with the determination of non-land prices vj . Simulations in Albouy (2009)
suggest these prices are only slightly affected by home productivity.

14The natural amenities index in McGranahan (1999) is the sum of six components: mean January temper-
ature, mean January hours of sunlight, mean July temperature, mean relative July humidity, a measure of land
topography, and the percent of land area covered in water. We omit the last two components in constructing
the instrumental variable because they are similar to the components of Saiz’s (2010) index of geographic
constraints to development. The adapted index is the sum of the first four components averaged from the
county to MSA level.
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4 Data and Metropolitan Indicators

4.1 Land Values

CoStar COMPS Database
We calculate our land-value index from transactions prices recorded in the CoStar COMPS
database between 2005 and 2010. The CoStar Group provides commercial real estate in-
formation and claims to have the industry’s largest research organization.15 Appendix A
describes the sample selection criteria. CoStar provides a field describing the “proposed
use” of each property. We use 12 of the most common categories, which are neither mutu-
ally exclusive nor collectively exhaustive.

Median and mean per-acre prices are $272,838 and $1,536,374. Median lot size is
3.5 acres versus a mean of 26.4 acres. Land sales occur more frequently in the beginning
of our sample period, with 21.7% of our sample from 2005 and 11.4% from 2010. The
frequencies of proposed uses are reported in table 1. Residential uses are common but by
no means predominant in the sample: 17.5% of properties have a proposed use of single-
family, multi-family, or apartments. 23.4% is being held for development or investment,
and 15.9% of the sample had no listed proposed use.
Index of Metropolitan Land Values
We calculate the metropolitan index of land values by regressing the log price per acre of
each sale, ln r̃ijt on a set of a vector of controls, Xijt, and a set of indicator variables for
each year-MSA interaction, ψjt in the equation ln r̃ijt = Xijtβ + ψjt + eijt. We normalize
estimates of ψjt to have a national average of zero, weighting by the number of housing
units, to create year-by-MSA indices, r̂jt, used in our regression tables. For summary
statistics and figures, we report indices, r̂j , aggregated across years.

Land-value indices derived from metro areas with fewer land sales may exhibit excess
dispersion because of sampling error. We correct our estimates using shrinkage methods
described in Kane and Staiger (2008), accounting for yearly as well as metropolitan varia-
tion in the estimated ψ̂jt. These methoods correct for mild amounts of attenuation bias.

Table 1 reports the results for four successive land-value regressions. The first includes
only MSA and year-of-sale indicators. In column 2, we control for log lot size in acres,
which improves the R2 substantially from 0.30 to 0.70. The coefficient on lot size is -
0.66, illustrating the “plattage effect,” documented by Colwell and Sirmans (1978, 1980).

15The COMPS database provided by CoStar University, which is free of charge for academic researchers,
includes transaction details for all types of commercial real estate.
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In column 3, we add controls for intended use raising the R2 to 0.71. These intended
uses help to control for various characteristics of the land parcels, although ultimately their
inclusion has little impact on our land-value index. In column 4 we weight the parcels
to reflect the geographical distribution of housing units within each MSA as discussed in
Appendix A; this regression provides our preferred inter-metropolitan index of land values.
Sample Selection, Potential Bias, and Remedies
The land parcels are based on observed transactions and are not randomly selected. As
Nichols et al. (2013) discuss, it is impossible to correct for possible selection bias without
observing prices for unsold lots. Fortunately, the literature has generally found selection
bias to be surpisingly minor for land and commercial real estate prices.16

To help readers assess the gravity of these concerns, Figure 2 maps the locations of our
land sales in the New York, Los Angeles, Chicago, and Houston metro areas. The figure
shows that land sales are spread throughout these metro areas, and sales activity appears
to be more intense near city centers, where residential densities are high.17 An additional
resource for readers to assess the plausibility of the estimates is appendix table A3, which
lists every metro area in our sample ranked by estimated land values.

One potential source of selection bias is that we may be more likely to observe land
sales on the urban fringe, where development activity is more intense. Such land will more
closely reflect agricultural land values, attenuating measured land-value differences across
cities. Such selection bias would likely lead us to overestimate the cost share of land in
housing by reducing the estimated inter-metropolitan variation in land values, increasing
the perceived housing-to-land value gradient. If this bias becomes increasingly worse in
high-value areas, it could bias the estimated elasticity of substitution towards zero. Such
biases should, however, cause our specification tests using construction costs to fail.

Our preferred land-value index uses the shrunken and weighted estimators based on all
land sales, as described above. Appendix A discusses this choice relative to alternatives.

16Colwell and Munneke (1997), studying land prices in Cook County, Illinois, report, “The estimates with
the selection variable and those without are surprisingly consistent for each land use.” Munneke and Slade
study possible selection bias in the Phoenix office market using two different methodologies and find (2000):
“...the price indices generated after correcting for sample-selection bias do not appear significantly different
from those that do not consider selectivity bias”, and (2001): “Little selection bias is found in the estimates.”
Finally, Fisher et al. (2007), in their study of the National Council of Real Estate Investment Fiduciaries
Property Index, which tracks commercial real estate properties, find “...sample selection bias does not appear
to be an issue with our annual model specification.”

17This observation mirrors that of Haughwout et al. (2008), who analyze the CoStar data for New York
and write: “Overall, vacant land transactions occurred throughout the region, with a heavy concentration in
the most densely developed areas ...”.
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Land values for a selected group of metropolitan areas are reported in table 2. The weighted
standard deviation across MSAs is 76 log points. In general, large, coastal cities have the
highest land values, while smaller cities in the South and Midwest have lower values. The
New York metro area has the highest land values, which are 35 times higher than those
in Rochester, NY, which has the lowest. This range is approximately $9,000 to $320,000
for a standard fifth-acre residential lot (at the median) across metros. Overall, the inter-
metropolitan land value index appears quite reasonable.

4.2 Housing Prices, Wages, and Construction Prices

We calculate housing-price and wage indices for each year from 2005 to 2010 using the 1%
samples from the American Community Survey. Our method, described fully in Appendix
C, mimics that for land values. We aggregate our inter-metropolitan index of housing
prices, p̂jt, normalized to have mean zero, across years for display.

We estimate wage levels in a similar fashion, controlling for worker skills and char-
acteristics, for two samples: all workers, ŵj , and for the purpose of our cost estimates,
workers in the construction industry only, ŵY

j . As seen in appendix figure D, ŵY
j is similar

to, but more dispersed than, overall wages, ŵj .18

Our main price index for construction inputs comes from the Building Construction
Cost data from the RS Means company, which is common in the literature, e.g., Davis and
Palumbo (2008), and Glaeser et al. (2005b). Appendix C discusses the construction price
index in more detail.

The equilibrium condition for housing requires equation 2 to hold, so that the replace-
ment cost of a housing unit equals its market price. Because housing is durable, this condi-
tion may not bind in cities where housing demand is so weak that there is effectively no new
supply (Glaeser and Gyourko 2005). In this case, replacement costs will be above market
prices, biasing the estimate of AY

j upwards. Technically, there is new housing supply in all
of the MSAs in our sample, as measured by building permits. However, we suspect that
the equilibrium condition may not bind throughout metro areas where population growth
has been low. To indicate MSAs with weak growth, we mark with an asterisk (∗) MSAs
where the population growth between 1980 and 2010 is in the lowest decile of our sample,
weighted by 2010 population. These include metros such as Pittsburgh, Buffalo, and De-
troit. In Appendix D, we find that the results do not change meaningfully when we exclude

18We estimate wage levels at the CMSA level to account for commuting behavior across PMSAs.
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these areas. Nevertheless, estimates of housing productivity in such areas require caution.
The housing-price, construction-wage, and construction-cost indices, reported in columns

2, 3, and 4 of table 2, are strongly related to city size and positively correlated with land
values. They also exhibit considerably less dispersion. The highest housing prices are in
San Francisco, which are 9 times the lowest housing prices, in McAllen, TX. This implies
a range of about $75,000 to $675,000 for a typical (median) five-room unit. The highest
construction prices are in New York City, 1.9 times the lowest, in Rocky Mount, NC.

4.3 Regulatory and Geographic Constraints

Our index of regulatory constraints comes from the Wharton Residential Land Use Regu-
latory Index (WRLURI), described in Gyourko, Saiz, and Summers (2008). The index re-
flects the survey responses of municipal planning officials regarding the regulatory process.
These responses form the basis of 11 subindices, coded so that higher scores correspond to
greater regulatory stringency.19 The base data for the WRLURI is for the municipal level;
we calculate the WRLURI and subindices at the MSA level by weighting the individual
municipal values using sampling weights provided by the authors times each municipal-
ity’s population weight within its MSA. The authors construct a single aggregate WRLURI
index through factor analysis: we consider both the aggregate index and the subindices in
our analysis, each of which we renormalize as z−scores, with a mean of zero and standard
deviation one, as weighted by the housing units in our sample. The WRLURI subindices
are typically, but not always, positively correlated with one another.

Our index of geographic constraints is provided by Saiz (2010), who uses satellite im-
agery to calculate land scarcity in metropolitan areas. The index measures the fraction of
undevelopable land within a 50 km radius of the city center, where land is undevelopable if
it is i) covered by water or wetlands, or ii) has a slope of 15 degrees or steeper. We consider
both Saiz’s aggregate index and his separate indices based on solid and flat land, each of
which is renormalized as a z−score.

Table A3 shows that the most regulated land is in Boulder, CO, and the least regulated
is in Mobile, AL; the most geographically constrained is in Santa Barbara, CA, and the
least is in Lubbock, TX.

19The subindices comprise the approval delay index (ADI), the local political pressure index (LPPI), the
state political involvement index (SPII), the open space index (OSI), the exactions index (EI), the local project
approval index (LPAI), the local assembly index (LAI), the density restrictions index (DRI), the supply re-
striction index (SRI), the state court involvement index (SCII), and the local zoning approval index (LZAI).

14



5 Cost-Function Estimates

Below, we use the indices from section 4 to test and estimate the cost function presented
in section 3, and examine how it is influenced by geography and regulation using both
aggregated and disaggregated measures. We restrict our analysis to MSAs with at least 10
land-sale observations, and years with at least 5. For our main estimates, the MSAs must
also have available WRLURI, Saiz and construction-price indices, leaving 206 MSAs and
856 MSA-years. Regressions are weighted by the number of housing units.

5.1 Estimates and Tests of the Model

Figure 1C plots metropolitan housing prices against land values. The simple regression
line’s slope of 0.59 would estimate the cost share of land, φL, assuming CD production, if
there were no other cost or productivity differences across cities. The convex curvature in
the quadratic regression implies land costs increase with land values, yielding an imprecise
estimate of the elasticity of substitution of 0.18.20 This figure illustrates how the vertical
distance between a marker and the regression line forms the basis of our estimate of hous-
ing productivity. Accordingly, San Francisco has low housing productivity and Las Vegas
has high housing productivity. These regressions are biased, as land values are positively
correlated with construction prices and geographic and regulatory constraints.

To illustrate construction prices, we plot them against land values in figure 3A. We use
these data to estimate a cost surface shown in figure 3B without controls. As in figure 1C,
cities with housing prices above this surface are inferred to have lower housing productivity.
Figure 3A plots the level curves for the surface in 3B, which correspond to the zero-profit
conditions (ZPCs) for housing producers, seen in equation (4). These curves correspond to
fixed sums of housing prices and productivities, p̂j + ÂY

j . Curves further to the upper-right
correspond to higher sums. With the log-linearization, the slope of the ZPC is the ratio of
land cost shares to non-land cost shares, −φL

j /(1 − φL
j ). The solid line illustrates the CD

case, with constant slope. The concave dashed curves illustrate the case with an elasticity,
σY , less than one, as land’s relative cost-share increases with land values.

Columns 1 and 2 of table 3 present more complete cost-function estimates using the
aggregate geographic and regulatory indices, assuming CD production, as in 9. Column 2
imposes the restriction of CRS in 8, which is rejected at the 5% level. The CRS restriction

20In levels, the cost curve must be weakly concave, but the log-linearized cost curve is convex if σY < 1,
although the convexity is limited as σY ≥ 0 implies β3 ≤ 0.5β1(1− β1).
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is not rejected in the more flexible translog equation, presented in columns 3 and 4. The
restricted regression in column 4 estimates the elasticity of substitution σY to be 0.35.

The OLS estimates in columns 1 through 4 produce stable values of 0.34-0.38 for the
cost-share of land parameter, φL. Furthermore, we find that one standard deviation in-
creases in the geographic and regulatory indices predict a 9- and 7-percent increases in
housing costs, respectively. These effects are consistent with our theory of housing pro-
ductivity and the belief that geographic and regulatory constraints impede the production
of housing services.

Columns 5 and 6 present IV estimates, which use our two instruments and their squares
as instruments for the differentials (r̂− v̂) and (r̂− v̂)2. Column 5 imposes the CD restric-
tion, and only uses the instrument levels. Table A1 presents first-stage estimates including
assessments of instrument strength and validity. The IV estimates are largely consistent
with our OLS estimates, although they suggest a somewhat higher cost share of land and
are less precise. The last row of table 3 reports results of Wooldridge’s (1995) test of re-
gressor endogeneity: these tests do not reject the null of regressor exogeneity at the 5%
confidence level. The consistency of the IV estimates requires that distance-to-coast and
amenity scores are uncorrelated with housing productivity, conditional on measures of ge-
ography and regulation. This assumption may not hold, for instance if it is inefficient to
build housing in extreme temperatures. To assess these concerns, we perform overidenti-
fication tests of the instruments’ exogeneity as in Sargan (1958).21 In both cases, we are
unable to reject the null hypothesis that the instruments are exogenous.

We test the assumption that the productivity shifters are factor neutral in column 7.
This allows γ2 to be non-zero in equation (10) by interacting the differential (r̂ − v̂) with
the geographic and regulatory indices. The positive estimated interaction with land-use
restrictions suggest that they particularly impede the efficient use of land.22

Finally, column 8 uses wage levels in the construction industry instead of the con-
struction prices. The results in column 8 are similar to those in column 4. The CRS re-
striction fails at standard significance levels. These results cross-validate our results using
construction prices, while suggesting that construction prices vary for reasons other than
construction-sector wages.

We perform a number of additional robustness checks in table A2. We split the sam-

21Performing those tests requires us not to cluster the standard errors at the CMSA level, which should
cause the tests to be more conservative.

22Estimates for whether constraints affect the elasticity of substitution, using a quadratic interaction, are
not significant statistically or economically.
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ple into two periods: a “housing-boom” period, from 2005 to 2007, and a “housing-bust”
period, from 2008 to 2010. We also use alternative land-value indices, one using only resi-
dential land, a second not controlling for proposed use or lot size, and another not shrinking
the land-value index. The last two robustness checks drop observations in our low-growth
areas. The results of these robustness checks, discussed in Appendix D, reveal that the
regression parameters are surprisingly stable over these specifications. The stability of es-
timates across the boom and bust periods are consistent with Albouy and Ehrlich (2013),
who find that land values vary over time much less than over space, and that interactions
between space and time over this period are relatively unimportant.

5.2 Disaggregating the Regulatory and Geographic Indices

As discussed above, the WRLURI aggregates 11 subindices, while the Saiz index ag-
gregates two. Column 1 of table 4 reports the factor loading of each of the WRLURI
subindices in the aggregate index, ordered according to its factor load. Alongside, in col-
umn 2, are coefficient estimates from a regression of the aggregate WRLURI z−score on
the z−scores for the subindices. These coefficients differ from the factor loads because
of differences in samples and weights. Column 3 presents similar estimates for the Saiz
subindices. The coefficients on these measures are negative because the subindices indi-
cate land that may be available for development.

The specification in column 4 is identical to the specification in column 4 of table
3, but with the disaggregated regulatory and geographic subindices. The results indicate
that one-standard deviation increases in state political and state court involvement reduce
metro-level productivity by 4 to 5 percent. Average local political pressure, local project
approval and local political pressure each appear to reduce productivity by 2 to 3 percent.
The results at the local level, each with p-values less than 0.08, may be weaker than those at
the state level, with p-values than 0.03, as many local constraints may be avoided within a
metro area by switching communities. Approval delay is not significant, although the point
estimate suggests that a one-year delay (two standard deviations) increases costs by 3.2
percent, consistent with a standard discount rate. The remaining five coefficients are also
insignificant, although the almost significant negative coefficient on exactions is surpris-
ing and suggests that areas with them may otherwise efficient land-use regulation (Yinger
1998). The regression coefficients are positively related to, albeit somewhat differnt from,
the factor loadings.
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Both of the Saiz subindices have statistically and economically significant negative
point estimates, indicating a one standard-deviation increase in the share of flat or solid
land is associated with a 7- to 9-percent reduction in housing costs.

The tight fit of the cost-function specification, as measured by the R2 values approach-
ing 80 percent, implies that even our imperfect measures of input prices and observable
constraints explain the variation in housing prices across metros quite well. The estimated
cost share of land and the elasticity of substitution are quite plausible, and most of the coef-
ficients on the regulatory and geographic variables have the predicted signs and reasonable
magnitudes. We take column 4 of table 4 as our favored specification– with CRS, factor-
neutrality, non-unitary σY , and disaggregated subindices – and use it for our subsequent
analysis. It provides a value of φL = 0.35 and σY = 0.56. Using formula 5, the typical
cost share of land ranges from 16 percent in Rochester to 49 percent in New York City.

6 Housing Productivity across Metropolitan Areas

6.1 Productivity in Housing and Tradeables

In column 1 of table 5 we list the inferred measures of housing productivity from our
favored specification, using both observed and unobserved components of housing produc-
tivity, i.e., ÂY

j = Zj(−γ̂) − ε̂j; column 2 reports only the value of productivity predicted
by the regulatory subindices, ZR

j , i.e., ÂY R
j = −γ̂R1 ZR

j . The cities with the most and least
productive housing sectors are McAllen, TX and San Luis Obispo, CA. Among large met-
ros, with over one million inhabitants the top five, excluding our low-growth sample, are
Houston, Indianapolis, Kansas City, Fort Worth, and Columbus; the bottom five are San
Francisco, San Jose Oakland, Los Angeles, and Orange County, all on California’s coast.
Along the East Coast, Bergen-Passaic (Northern New Jersey) and Boston are notably un-
productive. Cities with average productivity include Phoenix, Chicago, Miami. and the
New York PMSA, which includes all five boroughs and Westchester county.23

Estimates of trade productivity ÂX
j and quality-of-life Q̂j are in columns 3 and 4, based

on formulas (12) and (11), calibrated with parameter values taken from Albouy (Forth-
coming). Figure 4 plots housing productivity relative to trade-productivity. The figure
draws a level curves for total productivity, as well as a curve that delineates the bias in
trade-productivity measures if housing-prices are used instead of land values, asssuming

23See Table A3 for the values of the major indices and measures for all of the MSAs in our sample.

18



Âj
Y = 0.24

Our estimates of trade-productivity, based primarily on overall wage levels, are largely
consistent with the previous literature. Interestingly, trade productivity and housing produc-
tivity are negatively related. A 1-point increase in trade-productivity predicts a 1.6-point
decrease in housing productivity. For instance, cities in the San Francisco Bay Area have
among the highest levels of trade productivity and the lowest levels of housing productiv-
ity. On the other hand, Houston, Fort Worth, and Atlanta are relatively more productive in
housing than in tradeables. The large metro area with the greatest overall productivity is
New York; that with the least is Tucson.25

The negative relationship between trade and housing productivity estimates may stem
from differing scale economies at the city level. While trade-productivity is known to
increase with city size (e.g., Rosenthal and Strange, 2004), it is possible that economies of
scale in housing may be decreasing, possibly because of negative externalities in production
from congestion, regulation, or other sources. It may be more difficult for producers to
build new housing in already crowded environments, such as on a lot surrounded by other
structures.

New construction may impose negative externalities in consumption on incumbent res-
idents, e.g., by blocking views or increasing traffic. Aware of this, residents in populous
areas may seek to constrain housing development to limit these externalities through regu-
lation, as discussed below, lowering housing productivity.

Table 6 examines the relationship of productivity with population levels, aggregated at
the consolidated metropolitan (CMSA) level, in panel A, or population density, in panel
B. In column 1, the positive elasticities of trade productivity with respect to population of

24These calibrated values are θL = 0.025, sw = 0.75, τ = 0.32, sx = 0.64. θN is set at 0.8 so that it is
consistent with sw. For the estimates of Q̂j , we account for price variation in both housing and non-housing
goods. We measure cost differences in housing goods using the expenditure-share of housing, 0.18, times the
housing-price differential p̂j . To account for non-housing goods, we use the share of 0.18 times the predicted
value of housing net of productivity differences, setting Âj

Y = 0, i.e., p̂j − Âj
Y = φLr̂j + φN ŵj , the price

of non-tradeable goods predicted by factor prices alone. Furthermore, we subtract a sixth of housing-price
costs to account for the tax-benefits of owner-occupied housing. This procedure yields a cost-of-living index
roughly consistent with that of Albouy (2008). Our method of accounting for non-housing costs helps to
avoid problems of division bias in subsequent analysis, where we regress measures of quality of life, inferred
from high housing prices, with measures of housing productivity, inferred from low housing prices. The bias
in trade-productivity without land measures is given by θL/φLÂY , and is implicit in similar measures of
trade-productivity that conflate land and housing, e.g. Beeson and Eberts (1989) and Shapiro (2006).

25The housing productivity estimates are positively related to the housing supply elasticities provided by
Saiz (2010): a 1-point increase in productivity predicts 2.25-point (s.e. = 0.24) increase in the supply elastic-
ity.
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roughly 6 percent are consistent with those in the literature. The results in column 2 reveal
elasticities of nearly negative 7 percent. According to the results in column 3, which uses
only the housing productivity component predicted by the regulatory subindices, about one
third of this relationship results from greater observed regulation. Overall productivity, ex-
amined in column 4, increases with population, but much less than trade productivity. The
results in column 5 suggest that this relationship would be stronger if the greater regulation
associated with higher populations were held constant. As we explore in the next section,
however, holding the regulatory environment constant could have negative consequences
for urban quality of life.

6.2 Housing Productivity and Quality of Life

The model in 3 predicts that if regulations only reduce housing productivity, then they will
increase housing prices and reduce land values, unambiguously lowering welfare (Albouy,
2009). Ostensibly, though, the purpose of land-use regulations is to raise welfare by “rec-
ogniz[ing] local externalities, providing amenities that make communities more attractive,”
(Quigley and Rosenthal 2005). In this view, sometimes termed the “externality zoning”
view, zoning raises house prices by increasing demand, rather than by limiting supply. To
our knowledge, there are only a few estimates of the benefits of these regulations, e.g.
Cheshire and Sheppard (2002) and Glaeser et al. (2005b), both of which suggest that the
welfare costs of regulations outweigh their benefits.

To examine this hypothesis we relate our quality-of-life and housing-productivity esti-
mates, shown in figure 5. The simple regression line in this figure suggests that a one-point
decrease in housing productivity is associated with a 0.1-point increase in quality of life.
If we accept the relationship as causal, the net welfare benefit of this trade-off, measured
as a fraction of total consumption, equals this 0.1-point increase, minus the the expendi-
ture share of housing, whose costs are driven up a full percentage point. If the expenditure
share of housing is 0.15 of household income, a one-point decrease in housing productivity
would then result in a net welfare loss equivalent to 0.05-percent of consumption. This
estimate must be treated cautiously as places with intrinsically higher quality of life may
be more prone to regulate.

Welfare-reducing regulations may be rationalized if the quality-of-life benefits accrue
to incumbent residents, who control the political process, while the productivity losses are
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borne by potential residents, who do not have a local political voice.26

We explore this relationship further in table 7, which controls for possible confound-
ing factors and isolates housing productivity predicted by regulation. Columns 1 and 3
include controls for natural amenities, such as climate, adjacency to the coast, and the ge-
ographic constraint index; columns 2 and 4 add controls for artificial amenities, such as
the population level, density, education, crime rates, and number of eating and drinking
establishments. In columns 1 and 2, these controls undo the relationship, as geographic
amenities are related negatively to productivity and positively to quality of life. When we
focus on productivity predicted by regulation, in columns 3 and 4, the relationship from
figure 5 reappears, although weakly and insignificantly. These results suggest that land-use
regulations reduce net welfare substantially.

A one-standard deviation decrease in productivity costs due to regulations is 10.4 per-
cent. According to the most charitable specification in column 3, this produces quality of
life benefits equal to 0.4 percent of income, or about $280 annually for a household with
an average income of $71,000. The additional housing costs cause an income loss of 1.56
percent of income, or $1,110 annually. Alternatively, the typical regulation produces 25
cents of benefit per dollar of cost. These results imply that regulations applied at the metro
level will typically lower the value of land while raising the cost of housing.

Non-causal explanations for the relationship in table 7 are also plausible. For instance,
residents in areas with unobserved amenities may simply elect to regulate land-use for rea-
sons unrelated to urban quality of life. Alternatively, with preference heterogeneity, the
quality-of-life measure represents the willingness-to-pay of the marginal resident. In cities
with low-housing productivity, the supply of housing is effectively constrained, raising the
willingness-to-pay of the marginal resident, much as in the “Superstar City” hypothesis of
Gyourko, Mayer, and Sinai (2013). However, the negative relationship between productiv-
ity and quality of life appears to hold for more than a small subset of cities.

7 Conclusion

The novel index of land values assembled here contains important information independent
from, yet compatible with, more common indices of housing prices. The CES quadratic

26The net welfare loss from regulations implies that land should lose value while housing gains value.
While property owners should in the long run seek to maximize the value of their land, frictions, due to
moving costs and the immobility of housing capital, may cause most owners to maximize the value of their
housing stock over their voting time horizons.
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cost function model passes the necessary tests, validating the compatibility of our disparate
land-value, construction-cost, and housing-price indices. Moreover, the cost function fits
the data well and produces estimates with credible economic magnitudes. The two input-
price and two constraint measures together explain 75 percent of the variation in home
prices. Using 11 regulatory and two geographic subindices explains 79 percent. Further-
more, our instrumental variable estimates suggest that our ordinary least squares estimates
are likely to be consistent.

The average cost share of land in housing is about one-third and the elasticity of sub-
stitution between land and non-land inputs is roughly one-half, well in the middle of other
estimates, implying the typical cost share of land ranges from 15 to 50 percent across
metros. The estimates support the hypothesis that geographic and regulatory constraints
create a wedge between the prices of housing and its inputs, quantifying their impacts. The
disaggregated estimates suggest that state political and court involvement are associated
with large increases in particularly housing costs, which is consistent with the difficulty of
avoiding them.

Importantly, cities that are productive in traded sectors tend to be less productive in
housing as the two appear to be subject to opposite economies of scale. Larger cities have
lower housing productivity, much of which seems attributable to greater regulation. These
regulatory costs are, at best, weakly associated with a higher quality of life for residents.
Thus, land-use regulations appear to raise housing prices more by restricting supply than by
increasing demand. On net, the typical land-use regulation reduces well-being by making
housing less affordable.
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Fraction of Sample

(0) (1) (2) (3) (4)

Log lot size (acres) -0.660 -0.647 -0.597

(0.002) (0.002) (0.003)

No proposed use 15.9% -0.198 -0.332

(0.012) (0.014)

Proposed use: commercial 0.3% -0.369 -0.252

(0.064) (0.077)

Proposed use: industrial 7.5% -0.316 -0.522

(0.015) (0.019)

Proposed use: retail 8.1% 0.260 0.211

(0.014) (0.017)

Proposed use: single-family 10.7% -0.020 -0.188

(0.014) (0.020)

Proposed use: multi-family 3.3% -0.071 -0.174

(0.021) (0.019)

Proposed use: office 6.3% 0.072 0.185

(0.016) (0.020)

Proposed use: apartment 3.6% 0.468 0.366

(0.021) (0.016)

Proposed use: hold for development 19.2% -0.069 -0.085

(0.013) (0.013)

Proposed use: hold for investment 4.3% -0.358 -0.287

(0.020) (0.027)

Proposed use: mixed use 4.3% 0.373 0.407

(0.028) (0.027)

Proposed use: medical 1.0% 0.162 -0.038

(0.038) (0.051)

Proposed use: parking 0.9% 0.181 0.253

(0.039) (0.033)

Number of Observations 68,757 68,757 68,757 68,757

Adjusted R-squared 0.301 0.699 0.711 0.762

Weighted by Predicted Density No No No Yes

TABLE 1: LAND VALUE INDEX REGRESSIONS

Dependent Variable: Log Price per Acre

Robust standard errors, clustered by MSA/PMSA, reported in parentheses. Land-value data from CoStar COMPS 

database for years 2005 to 2010. All specifications include a full set of interacted MSA and year-of-sale indicators (not 

shown). Predicted density is number of land sales predicted by a geographical model of housing units relative to city 

center; please see appenedix A for a full description.



Name of Area Population

Land 

Value

Housing 

Price

Wages 

(Const. 

Only)

Const. 

Price Index

Regulation 

Index                  

(z-score)

Geo Unavail. 

Index

(z-score)

Land 

Value 

Rank

Metropolitan Areas:

New York, NY PMSA 9,747,281 1,603 1.68 0.84 0.25 0.31 -0.22 0.56 1

San Francisco, CA PMSA 1,785,097 152 1.50 1.29 0.21 0.23 1.68 2.17 3

San Jose, CA PMSA 1,784,642 217 1.31 1.08 0.21 0.18 -0.11 1.71 4

Orange County, CA PMSA 3,026,786 233 1.24 0.93 0.12 0.10 0.03 1.15 5

Los Angeles-Long Beach, CA PMSA 9,848,011 1,760 1.01 0.86 0.12 0.10 0.84 1.15 7

Washington, DC-MD-VA-WV PMSA 5,650,154 1,840 0.72 0.39 0.18 0.01 0.85 -0.74 16

Boston, MA-NH PMSA 3,552,421 122 0.52 0.62 0.10 0.18 1.26 0.24 21

Chicago, IL PMSA 8,710,824 3,511 0.25 0.14 0.06 0.17 -0.60 0.54 35

Phoenix-Mesa, AZ MSA 4,364,094 5,946 0.23 -0.03 -0.01 -0.10 0.96 -0.74 37

Philadelphia, PA-NJ PMSA 5,332,822 859 0.13 0.02 0.05 0.16 0.64 -0.93 43

Riverside-San Bernardino, CA PMSA 4,143,113 2,452 0.02 0.22 0.12 0.07 0.60 0.44 51

Atlanta, GA MSA 5,315,841 5,229 -0.15 -0.32 0.03 -0.10 0.03 -1.23 74

Houston, TX PMSA 5,219,317 1,143 -0.36 -0.54 0.04 -0.12 -0.12 -1.01 107

Dallas, TX PMSA 4,399,895 811 -0.40 -0.46 0.00 -0.14 -0.73 -0.98 114

Detroit, MI PMSA* 4,373,040 679 -0.45 -0.35 -0.04 0.05 -0.31 -0.22 118

Saginaw-Bay City-Midland, MI MSA* 390,032 41 -1.74 -0.63 -0.16 -0.03 -0.24 -0.62 216

Utica-Rome, NY MSA* 293,280 15 -1.81 -0.58 -0.27 -0.05 -1.50 -0.56 217

Rochester, NY MSA* 1,093,434 110 -1.88 -0.54 -0.07 0.01 -0.61 0.07 218

Metropolitan Population:

Less than 500,000 31,264,023 1,378 -0.52 -0.23 -0.08 -0.44 -0.04 -0.05 4

500,000 to 1,500,000 55,777,644 3,253 -0.41 -0.20 -0.07 -0.34 -0.16 -0.06 3

1,500,000 to 5,000,000 89,173,333 8,168 0.16 0.07 0.01 0.13 0.17 0.01 2

5,000,000+ 49,824,250 3,997 0.61 0.32 0.11 0.17 0.01 0.10 1

Standard Deviations (pop. wtd.) 0.76 0.51 0.16 0.14 0.96 1.01

Correlation with land values (pop. wtd.) 1.00 0.89 0.66 0.60 0.46 0.57

Land-value data from CoStar COMPS database for years 2005 to 2010. Wage and housing-price data from 2005 to 2010 American Community Survey 1-percent samples.

Wage differentials based on the average logarithm of hourly wages. Housing-price differentials based on the average logarithm of prices of owner-occupied units.

Regulation Index is the Wharton Residential Land Use Regulatory Index (WRLURI) from Gyourko et al. (2008). Geographic Availability Index is the Land Unavailability

Index from Saiz (2010). Construction-price index from R.S. Means. MSAs with asterisks after their names are in the weighted bottom 10% of our sample in population

growth from 1980-2010.

TABLE 2: MEASURES FOR SELECTED METROPOLITAN AREAS, RANKED BY LAND-VALUE DIFFERENTIAL: 2005-2010

Observed 

No. of 

Land 

Sales



Specification

Basic Cobb-

Douglas

Restricted 

Cobb-

Douglas Translog

Restricted 

Translog

Restricted 

Cobb-

Douglas 

(Instr. Var.)

Restricted 

Translog 

(Instr. Var.)

Non-neutral 

Productivity 

Translog

Restricted 

Translog 

w/ Constr 

Wages

(1) (2) (3) (4) (5) (6) (7) (8)

Land-Value Differential 0.360 0.375 0.342 0.376 0.484 0.451 0.385 0.361

(0.037) (0.034) (0.041) (0.036) (0.082) (0.080) (0.031) (0.032)

Construction-Price Differential 1.049 0.625 0.996 0.624 0.516 0.549 0.615 0.639

(0.159) (0.034) (0.160) (0.036) (0.082) (0.080) (0.031) (0.032)

Land-Value Differential Squared 0.033 0.076 0.060 0.067 0.072

(0.033) (0.034) (0.113) (0.029) (0.031)

Construction-Price Differential Squared -1.158 0.076 0.060 0.067 0.072

(1.040) (0.034) (0.113) (0.029) (0.031)

Land-Value Differential X Construction-Price Differential 0.400 -0.152 -0.120 -0.134 -0.144

(0.321) (0.068) (0.226) (0.058) (0.062)

Geographic Constraint Index: z-score 0.092 0.104 0.092 0.093 0.080 0.081 0.091 0.111

(0.025) (0.027) (0.023) (0.027) (0.031) (0.030) (0.022) (0.026)

Regulatory Index: z-score 0.058 0.068 0.072 0.075 0.047 0.059 0.081 0.063

(0.013) (0.013) (0.013) (0.014) (0.024) (0.024) (0.014) (0.015)

Geographic Constraint Index times Land Value Differential 

minus Construction Price Differential 0.050

(0.019)

Regulatory Index times Land Value Differential minus 

Construction Price Differential -0.018

(0.044)

Number of Observations 856 856 856 856 206 206 856 888

Number of MSAs 207 207 207 207 206 206 207 217

Adjusted R-squared 0.855 0.724 0.864 0.745 0.746 0.731

p -value for CRS restrictions 0.006 0.122 0.059 0.191 0.060 0.005

p -value for CD restrictions 0.409 0.027

p- value for all restrictions 0.017

Elasticity of Substitution 1.000 1.000 0.349 1.000 0.517 0.431 0.380

(0.278) (0.916) (0.242) (0.257)

p-value of test of Land-Value differential exogeneity 0.077 0.628

TABLE 3: MODEL OF HOUSING COSTS WITH AGGREGATE GEOGRAPHIC AND REGULATORY INDICES

Dependent variable in all regressions is the housing price index. Robust standard errors, clustered by CMSA, reported in parentheses. Data sources are described in Table 2. Restricted 

model specifications require that the production function exhibits constant returns to scale (CRS). Cobb-Douglas (CD) restrictions impose that the squared and interacted differential 

coefficients equal zero (the elasticity of substitution between factors equals 1). All regressions include a constant term. Instrumental variables are the inverse mean distance from the sea 

and an adapted USDA natural amenities score (McGranahan 1999); first-stage regressions are reported in table A1. Test of land-value differential engodeneity is from Wooldridge 

(1995).



Specification

Regulatory 

Index Factor 

Loading

Restricted 

Translog w 

Cons Price

Dependent Variable Reg Index Geo Index Hous. Price

(1) (2) (3) (4)

Land-Value Differential 0.354

(0.031)

Land-Value Differential Squared 0.050

(0.026)

Approval Delay: z-score 0.29 0.403 0.016

(0.000) (0.015)

Local Political Pressure: z-score 0.22 0.334 0.023

(0.000) (0.012)

State Political Involvement: z-score 0.22 0.403 0.049

(0.000) (0.019)

Open Space: z-score 0.18 0.162 -0.013

(0.000) (0.015)

Exactions: z-score 0.15 0.023 -0.024

(0.000) (0.014)

Local Project Approval: z-score 0.15 0.167 0.027

(0.000) (0.015)

Local Assembly: z-score 0.14 0.121 0.020

(0.000) (0.008)

Density Restrictions: z-score 0.09 0.194 0.012

(0.000) (0.015)

Supply Restrictions: z-score 0.02 0.089 0.010

(0.000) (0.007)

State Court Involvement: z-score -0.03 -0.060 0.044

(0.000) (0.019)

Local Zoning Approval: z-score -0.04 -0.036 -0.009

(0.000) (0.016)

Flat Land Share: z-score -0.493 -0.091

-(0.787) (0.023)

Solid Land Share: z-score -0.787 -0.067

(0.059) (0.023)

Number of Observations 890 890 856

Adjusted R-squared 1.000 0.846 0.789

Elasticity of Substitution 0.558

(0.220)

Robust standard errors, clustered by CMSA, reported in parentheses. Regressions include constant 

term. Data sources are described in table 2; constituent components of Wharton Residential Land 

Use Regulatory Index (WRLURI) are from Gyourko et al (2008). Constituent components of 

geographical index are from Saiz (2010).

TABLE 4: MODEL OF HOUSING COSTS WITH DISAGGREGATED GEOGRAPHIC AND 

REGULATORY INDICES



Total 

(Including 

Indices)

Predicted by 

Regulation 

Subindices

Trade 

Productivity

Quality of 

Life

Total 

Amenity 

Value

(1) (2) (3) (4) (5)

Metropolitan Areas:

New York, NY PMSA 0.026 -0.018 0.151 0.098 0.199

San Francisco, CA PMSA -0.550 -0.180 0.204 0.089 0.120

San Jose, CA PMSA -0.458 -0.025 0.199 0.068 0.113

Orange County, CA PMSA -0.385 -0.042 0.097 0.094 0.087

Los Angeles-Long Beach, CA PMSA -0.424 -0.124 0.091 0.076 0.058

Washington, DC-MD-VA-WV PMSA -0.120 -0.042 0.117 0.022 0.075

Boston, MA-NH PMSA -0.331 -0.231 0.087 0.032 0.028

Chicago, IL PMSA 0.033 0.086 0.049 0.005 0.042

Phoenix-Mesa, AZ MSA 0.032 -0.117 -0.004 0.017 0.020

Philadelphia, PA-NJ PMSA 0.114 0.021 0.055 -0.011 0.045

Riverside-San Bernardino, CA PMSA -0.187 -0.087 0.066 -0.016 -0.008

Atlanta, GA MSA 0.184 0.030 -0.015 -0.023 0.000

Houston, TX PMSA 0.314 0.070 -0.001 -0.053 0.003

Dallas, TX PMSA 0.211 0.099 -0.023 -0.043 -0.020

Detroit, MI PMSA* 0.214 -0.026 -0.015 -0.042 -0.013

Fort Smith, AR-OK MSA 0.089 0.166 -0.217 -0.046 -0.169

Rochester, NY MSA* 0.038 0.009 -0.122 -0.118 -0.189

Glens Falls, NY MSA -0.240 0.100 -0.125 -0.082 -0.204

Metropolitan Population:

Less than 500,000 0.000 0.016 -0.063 -0.024 -0.065

500,000 to 1,500,000 0.021 0.023 -0.052 -0.020 -0.049

1,500,000 to 5,000,000 -0.016 -0.016 0.015 0.009 0.016

5,000,000+ -0.022 -0.005 0.073 0.028 0.071

United States 0.226 0.133 0.089 0.048 0.074

TABLE 5: INFERRED INDICES OF SELECTED METROPOLITAN AREAS, RANKED BY TOTAL 

AMENITY VALUE

standard deviations (population weighted)

Housing productivity, in column 1 is calculated from the specification in column 4 of table 4, as the negative 

of the sum of the regression residual plus the housing price predicted by the WRLURI and Saiz subindices. 

Housing productivity predicted by regulation is based upon the projection of housing prices on the WRLURI 

subindices. Trade productivity is calculated as 0.8 times the overall wage differential plus 0.025 times the land-

value differential.  Refer to section 5 of the text for the calculation of quality-of-life estimates .  Quality of life 

and total amenity value are expressed as a fraction of average pre-tax household income.

Housing Productivity



Trade 

Productivity

Housing 

Productivity

Hous. Prod. 

Predicted by 

Regulation

Total 

Productivity

Total 

Productivity 

No Reg.

(1) (2) (3) (4) (5)

Panel A: Population

Log of Population 0.056 -0.068 -0.024 0.024 0.028

(0.004) (0.023) (0.007) (0.004) (0.004)

Number of Observations 207 207 207 207 207

Adjusted R-squared 0.649 0.146 0.101 0.474 0.563

Panel B: Population Density

Weighted Density Differential 0.064 -0.066 -0.027 0.029 0.034

(0.004) (0.030) (0.010) (0.004) (0.004)

Number of Observations 207 207 207 207 207

Adjusted R-squared 0.442 0.072 0.064 0.369 0.427

TABLE 6: PRODUCTIVITY IN TRADEABLE AND HOUSING SECTORS ACCORDING TO 

METROPOLITAN POPULATION AND DENSITY

Dependent Variable

Robust standard errors, clustered by CMSA, reported in parentheses. Trade and housing productivity differentials

are calculated as in table 5. Total productivity is calculated as 0.18 times housing productivity plus 0.64 times

trade productivity. Weighted density differential is calculated as the population density at the census-tract level,

weighted by population.



Housing Productivity Measure:

(1) (2) (3) (4)

Housing Productivity 0.023 0.057 -0.038 -0.012

(0.033) (0.023) (0.029) (0.029)

Natural Controls X X X X

Artificial Controls X X

Number of Observations 201 201 201 201

Adjusted R-squared 0.54 0.74 0.54 0.73

TABLE 7: QUALITY OF LIFE AND HOUSING PRODUCTIVITY

Dependent Variable: Quality of Life

Robust standard errors, clustered by CMSA, in parentheses. Quality of life is calculated as in table

6. Housing productivity predicted by regulation is calculated as in table 5. Natural controls: heating

and cooling degree days, July humidity, annual sunshine, annual precipitation, adjacency to coast,

geographic constraint index. Artificial controls include metropolitan population, density, eating and

drinking establishments, violent crime rate, and fractions with a college degree, some college, and

high-school degree.  Both sets of controls are from Albouy et al. (2012).

Total Housing Productivity

Housing Productivity 

Predicted by Regulation
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Figure 1C: Housing Prices vs. Land Values
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Figure 5: Quality of Life vs. Housing Productivity



Appendix for Online Publication Only

A Constructing the Land Values Sample
We use every sale CoStar deems to be “land” that occurred between 2005 and 2010 in a
Metropolitan Statistical Area (MSA). We use the June 30, 1999 definitions provided by the
Office of Management and Budget. The data are organized by Primary Metropolitan Statis-
tical Areas (PMSAs) within larger Consolidated Metropolitan Statistical Areas (CMSAs).
We exclude all transactions CoStar has marked as non-arms length or without complete
information for lot size, sales price, county, and date, or that appear to feature a structure.
Finally, we drop observations we could not geocode, leaving us with 68,757 observed land
sales.27

To address the possible bias arising from the geographical distribution of observed land
sales, we re-weight the observed sales to reflect the distribution of housing units within
metro areas. For each MSA, we pinpoint the metropolitan center using Google Maps.28

Then, we regress the log number of housing units per square mile at the census-tract level
on the North-South and East-West distances between the tract center and the city center,
and the squares and product of these distances. We calculate the predicted density of each
observed land sale using the city-specific coefficients from this regression, and use this
predicted density in column 4 of Table 1, which we take as our preferred measure. The un-
weighted and weighted indices are highly correlated (the correlation coefficient is above
0.99), although the latter are somewhat more dispersed, as expected.

Because our focus is on residential housing, it may be inappropriate to use land sales
with non-residential proposed uses, especially if land markets are somehow segmented.
Ultimately, we find that indices constructed only from land sales with a proposed residen-
tial use (i.e., single family, multi-family, or apartments) do not differ systematically from
our preferred index, except that they are less precise. Figure A contrasts the differences
between shrunken and unshrunken indices, figure B, between weighted and un-weighted
indices, and figure C, between using all land and land only for residential uses. While there
are some differences between these indices, their overall patterns are quite similar.

27We consider an observation to feature a structure when the transaction record includes the fields for
“Bldg Type”, “Year Built”, “Age”, or the phrase “Business Value Included” in the field “Sale Conditions.”
We geocoded using the Stata module “geocode” from Ozimek and Miles (2011). In addition, we drop outlier
observations that we calculate as farther than 75 miles from the city center or that have a predicted density
greater than 50,000 housing units per square mile using the weighting scheme described below. We also
exclude outlier observations with a listed price of less than $100 per acre or a lot size over 5,000 acres.

28These centers are generally within a few blocks of the city hall of the MSA’s central city.
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B Factor-Specific Productivity Biases
When housing productivity is factor specific we may write the production function for
housing as Yj = F Y (L,M ;AY

j ) = F Y (AY L
j L,AYM

j M ; 1). The first-order log-linear ap-
proximation of the production function around the national average is

p̂j = φLr̂j + (1− φL)v̂j − [φLÂY L
j + (1− φL)ÂYM

j ]

As both ÂY L
j and ÂYM

j are only in the residual, it is difficult to identify them separately.
The second-order log-linear approximation of the production function is

p̂j = φL(r̂j − ÂY L
j ) + (1− φL)(v̂j − ÂYM

j ) + (1/2)φL(1− φL)(1− σY )(r̂j − ÂY L
j − v̂j + ÂYM

j )2

= φLr̂j + (1− φL)v̂j + (1/2)φL(1− φL)(1− σY )(r̂j − v̂j)2

+ φL(1− φL)(1− σY )(r̂j − v̂j)(ÂYM
j − ÂY L

j )

− [φLÂY L
j + (1− φL)ÂYM

j ] + (1/2)φL(1− φL)(1− σY )(ÂY L
j − ÂYM

j )2 (A.1)

The terms on the second-to-last line demonstrate that if σY < 1, then productivity improve-
ments that affect land more will exhibit a negative interaction with the rent variable and a
positive interaction with the material price, while productivity improvements that affect
material use more, will exhibit the opposite effects. Therefore, if a productivity shifter Zj

biases productivity so that (ÂYM
j − ÂY L

j ) = Zjζ , we may identify factor-specific produc-
tivity biases with the following reduced-form equation:

p̂j = β1r̂j + β2v̂j + β3(r̂j)
2 + β4(v̂j)

2 + β5(r̂j v̂j) + γ1Zj + γ2Zj r̂j + γ3Zj v̂j + εj (A.2)

The model embodied in (A.1) imposes the restriction that γ2 = −γ3 = ζφL(1 − φL)(1 −
σY ).

C Wage and Housing Price Indices
The wage and housing price indices are estimated from the 2005 to 2010 American Com-
munity Survey, which samples 1% of the United States population every year. The indices
are estimated with separate regressions for each year. For the wage regressions, we include
all workers who live in an MSA and were employed in the last year, and reported positive
wage and salary income. We calculate hours worked as average weekly hours times the
midpoint of one of six bins for weeks worked in the past year. We then divide wage and
salary income for the year by our calculated hours worked variable to find an hourly wage.
We regress the log hourly wage on a set of MSA dummies and a number of individual
covariates, each of which is interacted with gender:

• 12 indicators of educational attainment;

ii



• a quartic in potential experience and potential experience interacted with years of
education;

• age and age squared;

• 9 indicators of industry at the one-digit level (1950 classification);

• 9 indicators of employment at the one-digit level (1950 classification);

• 5 indicators of marital status (married with spouse present, married with spouse ab-
sent, divorced, widowed, separated);

• an indicator for veteran status, and veteran status interacted with age;

• 5 indicators of minority status (Black, Hispanic, Asian, Native American, and other);

• an indicator of immigrant status, years since immigration, and immigrant status in-
teracted with black, Hispanic, Asian, and other;

• 2 indicators for English proficiency (none or poor).

This regression is first run using census-person weights. From the regressions a pre-
dicted wage is calculated using individual characteristics alone, controlling for MSA, to
form a new weight equal to the predicted wage times the census-person weight. These
new income-adjusted weights allow us to weight workers by their income share. The new
weights are then used in a second regression, which is used to calculate the city-wage in-
dices from the MSA indicator variables, renormalized to have a national average of zero
every year. In practice, this weighting procedure has only a small effect. The wage regres-
sions are at the CMSA, rather than PMSA, level to reflect the ability of workers to commute
to jobs throughout a CMSA.

To calculate construction wage differentials, we drop all non-construction workers and
follow the same procedure as above. We define the construction sector as occupation codes
620 through 676 in the ACS 2000-2007 occupation codes. In our sample, 4.5% of all
workers are in the construction sector.

As noted in section 4.2, the construction price index is taken from RS Means company.
For each city in the sample, RS Means reports construction costs for a composite of nine
common structure types. The index reflects the costs of labor, materials, and equipment
rental, but not cost variations from regulatory restrictions, restrictive union practices, or
regional differences in building codes. We renormalize this index as a z−score with an
average value of zero and a standard deviation of one across cities.29

29The RS Means index covers cities as defined by three-digit zip code locations, and as such there is not
necessarily a one-to-one correspondence between metropolitan areas and RS Means cities, but in most cases
the correspondence is clear. If an MSA contains more than one RS Means city we use the construction cost
index of the city in the MSA that also has an entry in RS Means. If a PMSA is separately defined in RS
Means we use the cost index for that PMSA; otherwise we use the cost index for the principal city of the
parent CMSA. We only have the 2010 edition of the RS Means index.
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The housing price index of an MSA is calculated in a manner similar to the differen-
tial wage, by regressing housing prices on a set of covariates. The covariates used in the
regression for the adjusted housing cost differential are:

• survey year dummies;

• 9 indicators of building size;

• 9 indicators for the number of rooms, 5 indicators for the number of bedrooms, and
number of rooms interacted with number of bedrooms;

• 3 indicators for lot size;

• 13 indicators for when the building was built;

• 2 indicators for complete plumbing and kitchen facilities;

• an indicator for commercial use;

• an indicator for condominium status (owned units only).

A regression of housing values on housing characteristics and MSA indicator variables
is first run weighting by census-housing weights. A new value-adjusted weight is calculated
by multiplying the census-housing weights by the predicted value from this first regression
using housing characteristics alone, controlling for MSA. A second regression is run us-
ing these new weights on the housing characteristics, along with the MSA indicators. The
housing-price indices are taken from the MSA indicator variables in this second regression,
renormalized to have a national average of zero every year. As with the wage differentials,
this adjusted weighting method has only a small impact on the price differentials. In con-
trast to the wage regressions, the housing price regressions were run at the PMSA level to
achieve a better geographic match between the housing stock and the underlying land.

D Estimate Stability
We conduct several exercises to guage the stability of our estimates; the results of these
exercises are reported in table A2. First, we split the sample into two periods: a“housing-
boom” period, from 2005 to 2007, and a “housing-bust” period, from 2008 to 2010. As
seen in columns 2 and 3, the regression results for the split samples are not statistically
different from those in the pooled sample, in column 1. Comparing the two split samples,
the latter period does have a somewhat lower elasticity of substitution, and weaker effects
of geographic and regulatory constraints. Whether this is a product of sampling error or
secular changes in housing production remains to be seen.

Second, we report results for the same regressions using three alternative land-value
indices: i) residential land values only, ii) “raw” land-value indices, and iii) unshrunken

iv



land-value indicies. Land is defined as residential if its proposed use is listed as single-
family, multi-family, or apartments. Raw land-value indices are procured by regressing
log price per acre on a set of MSA indicators without any additional covariates, such as
proposed use or lot size, and are not reweighted by location, corresponding to the regression
in column 1 of table 1. The unshrunken indices are derived directly from the regression
in column 4 of table 1, without applying the Kane and Staiger (2008) shrinkage technique.
The results for the residential land values in column 4 are nearly identical to those in column
1. In columns 5 and 6, the estimated land share is lower as we see more dispersion in
the land index, which causes attenuation: the first, from noise introduced by not having
controls; the second, from sampling error.

The results in column 7 drop metro areas with population growth from 1980 to 2010
in the bottom decile, where the zero-profit condition may fail. The estimated cost share
of land is similar and the elasticity of substitution using this sample is lower, albeit not
significantly so. If we instead define our low-growth sample using the bottom decile of
MSAs in terms of the building permits issued from 2005 to 2010 relative to the size of the
housing stock, as in column 8, the results are close to our base specification.
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Dependent Variable

Land Rent 

minus 

Construction 

Price

Land Rent 

minus 

Construction 

Price

Land Rent 

minus 

Construction 

Price Squared

(1) (2) (3)

Geographic Constraint Index: z-score 0.075 0.076 0.021

(0.060) (0.073) (0.070)

Regulatory Index: z-score 0.108 0.113 -0.095

(0.055) (0.047) (0.040)

Inverse of Mean Distance from Sea: z-score 0.280 0.242 -0.040

(0.053) (0.139) (0.103)

Inverse of Mean Distance from Sea: z-score 

squared 0.015 0.099

(0.047) (0.028)

USDA Amenities Score: z-score 0.081 0.076 -0.039

(0.022) (0.028) (0.029)

USDA Amenities Score: z-score squared 0.003 0.026

(0.006) (0.006)

Number of Observations 206 206 206

Adjusted R-squared 0.576 0.574 0.303

F-statistic of Excluded Instruments 15.2 8.9 39.2

p-value of test of Instrument Exogeneity 0.662

First Stage Regression for

Table 3

Column 5

Table 3

Column 6

Table 3

Column 6

TABLE A1: INSTRUMENTAL VARIABLES ESTIMATES, FIRST-STAGE REGRESSIONS

Robust standard errors, clustered by CMSA, in parentheses. Inverse of mean distance from sea and 

mean winter is from Albouy et al. (2012). USDA amenities score is the sum of the fist four 

components of the USDA Amenities Score (McGranahan 1999): mean January temperature, mean 

January hours of sunlight, mean July temperature, and mean July relative humidity. The fifth and 

sixth components are ommitted because they concern topological measures and water coverage 

similar to the measures that form the Geographic Constraint Index. Test of instrument exogeneity is 

from Sargan (1958).

0.859



Specification

Base 

Specification

2005-2007 

Sample

2008-2010 

Sample

Residential 

Land Sample

Raw Land 

Values

Unshrunken 

Land Values

High Population 

Growth Sample

High Building 

Permits Sample

Dependent Variable Hous. Price Hous. Price Hous. Price Hous. Price Hous. Price Hous. Price Hous. Price Hous. Price

(1) (2) (3) (4) (5) (6) (7) (8)

Land-Value Differential 0.376 0.366 0.383 0.384 0.245 0.286 0.344 0.363

(0.036) (0.040) (0.037) (0.039) (0.028) (0.033) (0.037) (0.038)

Construction-Price Differential 0.624 0.634 0.617 0.616 0.755 0.714 0.656 0.637

(0.036) (0.040) (0.037) (0.039) (0.028) (0.033) (0.037) (0.038)

Land-Value Differential Squared 0.076 0.054 0.099 0.068 -0.006 0.060 0.103 0.077

(0.034) (0.038) (0.036) (0.036) (0.018) (0.019) (0.047) (0.035)

Construction-Price Differential Squared 0.076 0.054 0.099 0.068 -0.006 0.060 0.103 0.077

(0.034) (0.038) (0.036) (0.036) (0.018) (0.019) (0.047) (0.035)

Land-Value Differential X Construction-

Price Differential -0.152 -0.108 -0.198 -0.136 0.012 -0.120 -0.206 -0.154

(.068) (.076) (.072) (.072) (.036) (.038) (.094) (.07)

Geographic Constraint Index: z-score 0.093 0.120 0.069 0.086 0.105 0.121 0.107 0.095

(.027) (.032) (.024) (.028) (.029) (.031) (.029) (.027)

Regulatory Index: z-score 0.075 0.092 0.064 0.076 0.095 0.088 0.076 0.077

(.014) (.016) (.015) (.016) (.013) (.014) (.013) (.014)

Number of Observations 856 338 518 680 856 856 756 772

Adjusted R-squared 0.745 0.734 0.764 0.743 0.727 0.734 0.727 0.732

Elasticity of Subsitution 0.349 0.537 0.159 0.429 1.062 0.417 0.089 0.338

(0.278) (0.314) (0.288) (0.295) (0.192) (0.161) (0.396) (0.290)

TABLE A2: MODEL OF HOUSING COSTS, ROBUSTNESS ANALYSIS

Robust standard errors, clustered by CMSA, reported in parentheses.  Regressions correspond to column 4 of Table 3. See appendix D for discussion.



Full Name Population

Cen-

sus 

Div-

ision

Obs. 

Land 

Sales

Land 

Value

Land 

Value 

(No 

Wts.)

Housing 

Price

Wages 

(All)

Wages 

(Const. 

Only)

Reg. 

Index          

(z-score)

Geo 

Unavail. 

Index          

(z-score)

Const. 

Price 

Index Housing

Tradea-

bles

Land 

Value 

Rank

Metropolitan Areas:

New York, NY PMSA 9,747,281 2 1,603 1.681 1.546 0.844 0.152 0.247 -0.221 0.561 0.306 0.026 0.151 1

Jersey City, NJ PMSA 597,924 2 43 1.596 1.457 0.645 0.159 0.262 -0.594 0.236 0.118 0.084 0.153 2

San Francisco, CA PMSA 1,785,097 9 152 1.496 1.416 1.289 0.207 0.214 1.684 2.169 0.233 -0.550 0.204 3

San Jose, CA PMSA 1,784,642 9 217 1.315 1.273 1.083 0.207 0.214 -0.107 1.710 0.177 -0.458 0.199 4

Orange County, CA PMSA 3,026,786 9 233 1.243 1.192 0.932 0.087 0.115 0.026 1.153 0.097 -0.385 0.097 5

Stamford-Norwalk, CT PMSA 361,024 1 19 1.111 1.020 0.974 0.157 0.243 -0.624 0.561 0.133 -0.469 0.141 6

Los Angeles-Long Beach, CA PMSA 9,848,011 9 1,760 1.008 0.961 0.863 0.087 0.115 0.841 1.153 0.097 -0.424 0.091 7

Miami, FL PMSA 2,500,625 5 1,233 0.932 0.909 0.289 -0.057 -0.081 0.662 2.341 -0.076 0.021 -0.019 8

Seattle-Bellevue-Everett, WA PMSA 2,692,066 9 1,626 0.892 0.848 0.422 0.051 0.035 1.642 0.719 0.065 -0.051 0.065 9

Fort Lauderdale, FL PMSA 1,766,476 5 741 0.879 0.863 0.181 -0.057 -0.082 0.890 2.295 -0.100 0.092 -0.021 10

San Diego, CA MSA 3,053,793 9 957 0.877 0.878 0.739 0.061 0.093 0.946 1.691 0.065 -0.375 0.066 11

Oakland, CA PMSA 2,532,756 9 132 0.865 0.781 0.851 0.192 0.186 0.543 1.605 0.170 -0.430 0.178 12

Santa Barbara-Santa Maria-Lompoc, CA MSA 407,057 9 29 0.844 0.746 0.947 0.073 -0.066 0.542 2.802 0.074 -0.592 0.100 13

Ventura, CA PMSA 802,983 9 131 0.745 0.757 0.805 0.086 0.115 1.668 2.489 0.079 -0.489 0.084 14

Las Vegas, NV-AZ MSA 2,141,893 8 2,553 0.740 0.756 -0.012 0.044 -0.063 -1.524 0.150 -0.110 0.220 0.070 15

Washington, DC-MD-VA-WV PMSA 5,650,154 5 1,840 0.722 0.728 0.389 0.132 0.177 0.850 -0.741 0.008 -0.120 0.117 16

Bergen-Passaic, NJ PMSA 1,387,028 2 79 0.700 0.652 0.686 0.152 0.247 0.317 0.561 0.118 -0.366 0.126 17

Nassau-Suffolk, NY PMSA 2,875,904 2 396 0.695 0.663 0.665 0.152 0.247 0.811 0.561 0.306 -0.234 0.126 18

Santa Rosa, CA PMSA 472,102 9 153 0.575 0.584 0.818 0.207 0.214 1.285 1.671 0.132 -0.539 0.181 19

Naples, FL MSA 318,537 5 78 0.555 0.572 0.492 0.008 -0.213 0.125 2.291 -0.001 0.052 20

Boston, MA-NH PMSA 3,552,421 1 122 0.525 0.497 0.621 0.093 0.101 1.264 0.241 0.178 -0.331 0.087 21

West Palm Beach-Boca Raton, FL MSA 1,279,950 5 321 0.521 0.419 0.134 -0.033 0.046 0.309 1.720 -0.127 -0.033 -0.026 22

Vallejo-Fairfield-Napa, CA PMSA 541,884 9 146 0.445 0.465 0.531 0.207 0.214 0.853 0.990 0.119 -0.310 0.177 23

Tacoma, WA PMSA 796,836 9 539 0.422 0.414 0.081 0.050 0.033 -0.214 0.377 0.041 0.082 0.054 24

Newark, NJ PMSA 2,045,344 2 142 0.409 0.357 0.547 0.159 0.262 0.005 0.073 0.131 -0.335 0.123 25

Sarasota-Bradenton, FL MSA 688,126 5 601 0.406 0.420 0.130 -0.103 -0.061 1.529 1.849 -0.096 -0.056 -0.080 26

Portland-Vancouver, OR-WA PMSA 2,230,947 9 1,191 0.386 0.361 0.143 -0.049 -0.071 -0.038 0.419 0.012 -0.014 -0.027 27

San Luis Obispo-Atascadero-Paso Robles, CA MSA 266,971 9 43 0.369 0.267 0.787 0.003 -0.112 1.399 1.810 0.037 -0.648 0.028 28

Orlando, FL MSA 2,082,421 5 1,612 0.355 0.382 -0.114 -0.088 -0.121 0.079 0.350 -0.092 0.169 -0.057 29

Salinas, CA MSA 410,370 9 12 0.314 0.238 0.646 0.113 -0.035 -0.074 1.824 0.096 -0.493 0.121 30

Provo-Orem, UT MSA 545,307 8 47 0.302 0.265 -0.199 -0.128 -0.217 -0.573 1.503 -0.141 0.202 -0.083 31

Middlesex-Somerset-Hunterdon, NJ PMSA 1,247,641 2 101 0.297 0.277 0.446 0.152 0.247 2.182 0.561 0.117 -0.282 0.116 32

Tampa-St. Petersburg-Clearwater, FL MSA 2,747,272 5 1,220 0.278 0.288 -0.114 -0.091 -0.140 -0.050 0.621 -0.062 0.157 -0.060 33

Olympia, WA PMSA 250,979 9 250 0.260 0.245 0.097 0.060 0.054 0.626 0.466 0.031 -0.003 0.056 34

Chicago, IL PMSA 8,710,824 3 3,511 0.247 0.259 0.142 0.054 0.058 -0.603 0.541 0.168 0.033 0.049 35

Reading, PA MSA 407,125 2 36 0.238 0.246 -0.257 -0.050 -0.046 0.658 -0.616 0.015 0.331 -0.036 36

Phoenix-Mesa, AZ MSA 4,364,094 8 5,946 0.234 0.296 -0.028 -0.013 -0.014 0.962 -0.741 -0.100 0.032 -0.004 37

Trenton, NJ PMSA 366,222 2 35 0.233 0.258 0.324 0.159 0.262 1.712 -0.847 0.113 -0.188 0.119 38

Baltimore, MD PMSA 2,690,886 5 802 0.211 0.212 0.167 0.131 0.177 -0.661 -0.351 -0.062 -0.148 0.104 39

Melbourne-Titusville-Palm Bay, FL MSA 536,357 5 420 0.160 0.189 -0.167 -0.112 -0.065 0.352 1.732 -0.075 0.157 -0.094 40

Stockton-Lodi, CA MSA 674,860 9 163 0.148 0.128 0.226 0.067 0.165 0.099 -0.834 0.078 -0.142 0.043 41

Salt Lake City-Ogden, UT MSA 1,567,650 8 145 0.132 0.104 -0.114 -0.078 -0.159 -0.509 2.113 -0.125 0.062 -0.048 42

Philadelphia, PA-NJ PMSA 5,332,822 2 859 0.132 0.146 0.017 0.062 0.045 0.644 -0.927 0.162 0.114 0.055 43

Fort Myers-Cape Coral, FL MSA 586,908 5 294 0.128 0.140 0.003 -0.078 -0.071 -0.553 1.187 -0.120 -0.054 -0.062 44

Jacksonville, FL MSA 1,301,808 5 793 0.118 0.139 -0.194 -0.076 -0.130 0.702 0.900 -0.155 0.119 -0.051 45

Grand Junction, CO MSA 146,093 8 21 0.107 0.045 -0.006 -0.146 -0.060 0.457 0.702 -0.091 -0.035 -0.128 46

Reno, NV MSA 414,820 8 57 0.082 0.087 0.184 0.003 -0.178 -0.486 1.328 -0.023 -0.190 0.031 47

Albuquerque, NM MSA 841,428 8 114 0.049 0.020 -0.127 -0.087 -0.195 0.957 -0.854 -0.099 0.060 -0.053 48

Allentown-Bethlehem-Easton, PA MSA 706,374 2 85 0.043 0.037 -0.130 -0.040 0.079 0.412 -0.401 0.055 0.161 -0.049 49

Wilmington-Newark, DE-MD PMSA 635,430 5 107 0.028 0.051 -0.028 0.062 0.045 0.706 -0.705 0.058 0.058 0.053 50

Riverside-San Bernardino, CA PMSA 4,143,113 9 2,452 0.024 0.054 0.221 0.087 0.115 0.599 0.437 0.071 -0.187 0.066 51

Minneapolis-St. Paul, MN-WI MSA 3,269,814 4 846 0.022 0.012 -0.041 0.024 -0.011 0.104 -0.481 0.128 0.111 0.025 52

Lawrence, MA-NH PMSA 413,626 1 29 0.020 -0.028 0.340 0.099 0.121 1.811 0.241 0.134 -0.267 0.077 53

Denver, CO PMSA 2,445,781 8 2,015 0.014 0.000 0.000 -0.010 0.003 1.299 -0.604 -0.039 -0.039 -0.010 54

Kenosha, WI PMSA 165,382 3 58 0.009 0.041 -0.123 0.059 0.068 1.833 0.929 0.011 0.112 0.047 55

Fort Pierce-Port St. Lucie, FL MSA 406,296 5 71 -0.004 -0.017 -0.082 -0.075 -0.191 0.298 1.765 -0.001 -0.044 56

Boulder-Longmont, CO PMSA 311,786 8 183 -0.005 0.001 0.206 -0.010 0.003 4.034 0.695 -0.089 -0.283 -0.010 57

Modesto, CA MSA 510,385 9 142 -0.012 -0.028 0.122 0.041 0.044 -0.211 -0.724 0.079 -0.095 0.032 58

Daytona Beach, FL MSA 587,512 5 93 -0.028 -0.022 -0.141 -0.135 -0.303 -0.845 1.549 -0.107 0.042 -0.085 59

Sioux Falls, SD MSA 224,266 4 17 -0.045 -0.146 -0.554 -0.182 0.181 -1.485 -1.260 -0.189 0.395 -0.203 60
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Visalia-Tulare-Porterville, CA MSA 429,668 9 32 -0.053 -0.162 -0.036 -0.016 -0.019 0.322 -0.471 -0.001 -0.014 61

Raleigh-Durham-Chapel Hill, NC MSA 1,589,388 5 782 -0.069 -0.060 -0.203 -0.042 -0.033 1.107 -1.027 -0.231 0.011 -0.038 62

New Haven-Meriden, CT PMSA 558,692 1 43 -0.092 -0.135 0.293 0.159 0.262 -0.636 0.786 0.108 -0.274 0.111 63

Eugene-Springfield, OR MSA 351,109 9 36 -0.100 -0.173 0.107 -0.154 -0.239 0.152 1.647 -0.001 -0.163 -0.115 64

Norfolk-Virginia Beach-Newport News, VA- MSA 1,667,410 5 392 -0.101 -0.092 0.031 -0.078 -0.053 -0.222 1.512 -0.117 -0.162 -0.069 65

Monmouth-Ocean, NJ PMSA 1,217,783 2 124 -0.109 -0.122 0.371 0.152 0.247 2.067 0.561 0.306 -0.221 0.106 66

Huntsville, AL MSA 406,316 6 29 -0.112 -0.115 -0.435 -0.055 -0.177 -2.387 -0.230 -0.148 0.278 -0.029 67

Salem, OR PMSA 396,103 9 54 -0.122 -0.182 -0.048 -0.042 -0.063 0.580 0.199 0.003 -0.011 -0.034 68

Newburgh, NY-PA PMSA 444,061 2 54 -0.124 -0.120 0.170 0.166 0.265 -0.538 0.047 0.162 -0.126 0.116 69

Lakeland-Winter Haven, FL MSA 583,403 5 561 -0.130 -0.080 -0.357 -0.138 -0.201 0.337 0.156 -0.070 0.246 -0.106 70

Savannah, GA MSA 343,092 5 64 -0.131 -0.144 -0.204 -0.102 -0.168 -0.280 1.528 -0.179 0.021 -0.076 71

Bridgeport, CT PMSA 470,094 1 26 -0.149 -0.253 0.475 0.157 0.254 0.304 0.561 0.106 -0.474 0.108 72

Merced, CA MSA 245,321 9 64 -0.149 -0.139 -0.011 -0.005 0.255 0.603 -0.927 -0.001 -0.046 73

Atlanta, GA MSA 5,315,841 5 5,229 -0.154 -0.113 -0.323 -0.007 0.033 0.028 -1.225 -0.099 0.184 -0.015 74

Madison, WI MSA 491,357 3 239 -0.156 -0.150 -0.032 -0.070 -0.180 0.326 -0.869 -0.003 -0.043 -0.044 75

Brockton, MA PMSA 268,092 1 22 -0.158 -0.170 0.331 0.097 0.096 2.833 0.241 0.120 -0.325 0.074 76

Colorado Springs, CO MSA 604,542 8 892 -0.162 -0.198 -0.229 -0.134 -0.150 0.239 -0.331 -0.070 0.109 -0.111 77

Janesville-Beloit, WI MSA 160,155 3 15 -0.176 -0.255 -0.380 -0.172 -0.046 -0.764 -1.190 -0.018 0.286 -0.162 78

Hamilton-Middletown, OH PMSA 363,184 3 151 -0.195 -0.172 -0.465 -0.052 -0.040 -0.641 -1.083 -0.089 0.318 -0.049 79

Medford-Ashland, OR MSA 201,286 9 12 -0.197 -0.338 0.288 -0.164 -0.046 0.874 2.003 0.003 -0.375 -0.155 80

Lincoln, NE MSA 281,531 4 24 -0.209 -0.264 -0.442 -0.212 -0.189 0.750 -1.348 -0.116 0.272 -0.180 81

Bremerton, WA PMSA 240,862 9 18 -0.209 -0.249 0.240 0.060 0.063 0.026 1.124 0.065 -0.290 0.043 82

Fargo-Moorhead, ND-MN MSA 200,102 4 13 -0.219 -0.378 -0.513 -0.188 -0.340 -2.158 -1.281 -0.164 0.307 -0.135 83

Tucson, AZ MSA 1,020,200 8 1,749 -0.220 -0.230 -0.070 -0.123 -0.178 0.200 -0.292 -0.135 -0.115 -0.097 84

Fort Collins-Loveland, CO MSA 298,382 8 344 -0.223 -0.216 -0.078 -0.116 -0.216 0.831 0.110 -0.086 -0.075 -0.085 85

Champaign-Urbana, IL MSA 195,671 3 22 -0.229 -0.273 -0.385 -0.130 -0.289 -0.900 -1.355 0.045 0.316 -0.087 86

Rocky Mount, NC MSA 146,596 5 12 -0.236 -0.382 -0.641 -0.100 -0.275 -0.921 -0.519 -0.314 0.333 -0.061 87

Lexington, KY MSA 554,107 6 29 -0.241 -0.303 -0.419 -0.156 -0.100 -0.153 -1.136 -0.120 0.237 -0.141 88

New Orleans, LA MSA* 1,211,035 7 66 -0.241 -0.292 -0.193 -0.057 -0.156 -2.433 2.255 -0.110 0.016 -0.038 89

Danbury, CT PMSA 223,095 1 23 -0.266 -0.336 0.513 0.149 0.255 -0.586 0.561 0.306 -0.412 0.098 90

Nashville, TN MSA 1,495,419 6 455 -0.267 -0.252 -0.265 -0.066 -0.095 -1.132 -0.795 -0.119 0.076 -0.056 91

Atlantic-Cape May, NJ PMSA 367,803 2 37 -0.278 -0.307 0.248 0.074 0.055 0.284 1.778 0.101 -0.294 0.056 92

Asheville, NC MSA 251,894 5 41 -0.280 -0.302 -0.019 -0.174 -0.229 0.097 1.891 -0.264 -0.271 -0.139 93

Lafayette, IN MSA 202,331 3 13 -0.281 -0.297 -0.569 -0.207 -0.454 -1.015 -0.147 -0.090 0.392 -0.138 94

Springfield, MA MSA* 609,993 1 28 -0.294 -0.362 0.060 -0.011 -0.007 0.056 -0.095 0.051 -0.146 -0.017 95

South Bend, IN MSA* 267,613 3 12 -0.305 -0.410 -0.639 -0.182 0.057 -2.105 -0.907 -0.080 0.460 -0.191 96

Fresno, CA MSA 1,063,899 9 137 -0.329 -0.304 0.076 -0.013 -0.034 1.181 -0.793 0.081 -0.151 -0.016 97

Billings, MT MSA 144,797 8 25 -0.337 -0.383 -0.259 -0.198 -0.441 -0.616 -0.868 -0.095 0.060 -0.133 98

Austin-San Marcos, TX MSA 1,705,075 7 384 -0.339 -0.295 -0.302 -0.049 -0.069 1.035 -1.241 -0.209 0.028 -0.046 99

Dutchess County, NY PMSA 293,562 2 33 -0.340 -0.304 0.327 0.170 0.262 0.169 0.561 0.162 -0.351 0.115 100

Worcester, MA-CT PMSA 547,274 1 56 -0.343 -0.359 0.193 0.093 0.101 2.406 0.241 0.110 -0.252 0.065 101

Columbus, OH MSA 1,718,303 3 671 -0.349 -0.319 -0.393 -0.058 -0.040 0.165 -1.303 -0.045 0.224 -0.059 102

Richland-Kennewick-Pasco, WA MSA 245,649 9 27 -0.349 -0.397 -0.316 0.022 0.146 0.789 -0.823 -0.037 0.153 -0.009 103

Cleveland-Lorain-Elyria, OH PMSA* 2,192,053 3 416 -0.350 -0.340 -0.415 -0.084 -0.115 -0.765 0.565 0.010 0.283 -0.072 104

Greeley, CO PMSA 254,759 8 320 -0.353 -0.303 -0.303 -0.010 0.002 -0.696 -0.930 -0.154 0.064 -0.019 105

Charleston-North Charleston, SC MSA 659,191 5 214 -0.359 -0.352 -0.083 -0.111 -0.107 -1.255 1.545 -0.189 -0.185 -0.100 106

Houston, TX PMSA 5,219,317 7 1,143 -0.359 -0.336 -0.537 0.014 0.036 -0.124 -1.013 -0.121 0.314 -0.001 107

Chattanooga, TN-GA MSA 510,388 6 51 -0.364 -0.373 -0.397 -0.141 -0.219 -1.395 -0.157 -0.148 0.154 -0.112 108

Richmond-Petersburg, VA MSA 1,119,459 5 399 -0.369 -0.354 -0.124 -0.012 -0.072 -0.859 -0.993 -0.123 -0.101 -0.010 109

La Crosse, WI-MN MSA 132,923 3 21 -0.380 -0.435 -0.333 -0.154 -0.258 -0.464 0.333 -0.051 0.149 -0.119 110

Cincinnati, OH-KY-IN PMSA 1,776,911 3 637 -0.383 -0.366 -0.394 -0.052 -0.040 -1.092 -0.920 -0.074 0.196 -0.054 111

Gary, IN PMSA 657,809 3 111 -0.386 -0.412 -0.423 0.060 0.068 -1.469 0.124 0.035 0.296 0.037 112

York, PA MSA 428,937 2 47 -0.388 -0.383 -0.215 -0.022 -0.107 0.836 -0.831 -0.021 0.049 -0.015 113

Dallas, TX PMSA 4,399,895 7 811 -0.395 -0.381 -0.459 -0.014 0.000 -0.728 -0.976 -0.141 0.211 -0.023 114

McAllen-Edinburg-Mission, TX MSA 741,152 7 61 -0.398 -0.409 -0.957 -0.205 -0.136 -0.795 -1.380 -0.261 0.627 -0.186 115

Hagerstown, MD PMSA 145,910 5 28 -0.407 -0.403 -0.031 0.136 0.171 0.137 -0.505 -0.271 -0.307 0.094 116

Fayetteville-Springdale-Rogers, AR MSA 425,685 7 43 -0.418 -0.410 -0.359 -0.118 -0.152 -0.688 -0.004 -0.272 0.015 -0.101 117

Detroit, MI PMSA* 4,373,040 3 679 -0.447 -0.442 -0.345 -0.010 -0.037 -0.309 -0.221 0.052 0.214 -0.015 118

Lancaster, PA MSA 507,766 2 57 -0.455 -0.451 -0.185 -0.083 -0.154 0.030 -0.841 -0.062 -0.029 -0.068 119

Boise City, ID MSA 571,271 8 106 -0.458 -0.461 -0.220 -0.136 -0.186 -1.095 0.361 -0.112 -0.027 -0.114 120

Fort Walton Beach, FL MSA 178,473 5 14 -0.459 -0.595 -0.199 -0.152 0.283 -0.523 1.457 -0.001 -0.200 121

Milwaukee-Waukesha, WI PMSA 1,559,667 3 399 -0.460 -0.445 -0.074 -0.031 -0.015 -0.514 0.628 0.051 -0.062 -0.039 122
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Portsmouth-Rochester, NH-ME PMSA 262,128 1 13 -0.465 -0.545 0.187 0.095 0.171 0.994 0.241 -0.038 -0.388 0.054 123

Myrtle Beach, SC MSA 263,868 5 84 -0.466 -0.493 -0.209 -0.185 -0.128 -1.005 1.614 -0.001 -0.170 124

Manchester, NH PMSA 212,326 1 23 -0.468 -0.537 0.134 0.095 0.171 2.615 0.241 -0.037 -0.335 0.054 125

Harrisburg-Lebanon-Carlisle, PA MSA 667,425 2 89 -0.470 -0.451 -0.342 -0.068 -0.006 0.597 -0.245 -0.011 0.160 -0.076 126

Galveston-Texas City, TX PMSA 286,814 7 39 -0.480 -0.498 -0.496 0.032 0.063 0.349 2.266 -0.139 0.221 0.009 127

Indianapolis, IN MSA 1,823,690 3 193 -0.506 -0.514 -0.498 -0.065 -0.119 -1.804 -1.355 -0.059 0.271 -0.058 128

Spokane, WA MSA 468,684 9 55 -0.530 -0.578 -0.202 -0.118 -0.148 0.755 -0.082 -0.053 -0.029 -0.104 129

Baton Rouge, LA MSA 685,419 7 99 -0.535 -0.548 -0.348 -0.069 -0.044 -1.582 0.222 -0.149 0.050 -0.073 130

Tulsa, OK MSA 873,304 7 245 -0.539 -0.527 -0.516 -0.129 -0.069 -1.737 -1.117 -0.219 0.170 -0.127 131

Akron, OH PMSA* 699,935 3 169 -0.542 -0.523 -0.442 -0.084 -0.114 -0.080 -1.109 -0.024 0.227 -0.077 132

Bakersfield, CA MSA 807,407 9 64 -0.570 -0.604 -0.081 0.044 -0.102 -0.373 -0.236 0.065 -0.079 0.042 133

Louisville, KY-IN MSA 1,099,588 6 126 -0.571 -0.592 -0.364 -0.101 -0.141 -1.193 -0.802 -0.079 0.102 -0.090 134

Fort Worth-Arlington, TX PMSA 2,113,278 7 506 -0.575 -0.572 -0.568 -0.014 0.000 -0.478 -1.185 -0.172 0.242 -0.028 135

Roanoke, VA MSA 243,506 5 23 -0.584 -0.641 -0.265 -0.105 -0.138 -1.335 0.513 -0.160 -0.056 -0.095 136

Johnson City-Kingsport-Bristol, TN-VA MSA 503,010 6 28 -0.590 -0.634 -0.550 -0.217 -0.206 -1.569 1.292 -0.221 0.184 -0.192 137

Dayton-Springfield, OH MSA* 933,312 3 116 -0.591 -0.613 -0.508 -0.119 -0.193 -1.553 -1.375 -0.091 0.231 -0.100 138

Yuba City, CA MSA 165,539 9 13 -0.592 -0.735 -0.215 0.012 -0.066 -0.769 -0.743 -0.001 0.006 139

Greensboro--Winston Salem--High Point, NC MSA 1,416,374 5 438 -0.594 -0.590 -0.406 -0.124 -0.190 -0.815 -1.273 -0.240 0.029 -0.106 140

Omaha, NE-IA MSA 799,130 4 118 -0.595 -0.618 -0.520 -0.126 -0.065 -0.492 -1.262 -0.092 0.243 -0.126 141

Gainesville, FL MSA 243,574 5 34 -0.597 -0.637 -0.126 -0.148 -0.215 -0.237 -0.669 -0.129 -0.178 -0.125 142

Racine, WI PMSA 200,601 3 80 -0.616 -0.597 -0.176 -0.028 0.024 -1.338 1.233 0.015 -0.031 -0.046 143

Springfield, MO MSA 383,637 4 43 -0.618 -0.643 -0.559 -0.201 -0.260 -1.394 -1.100 -0.098 0.271 -0.169 144

Rockford, IL MSA 409,058 3 104 -0.622 -0.564 -0.542 -0.089 -0.011 -1.104 -1.319 0.103 0.395 -0.100 145

St. Louis, MO-IL MSA 2,733,694 4 364 -0.648 -0.638 -0.312 -0.039 -0.126 -1.636 -0.881 0.043 0.116 -0.036 146

Hartford, CT MSA 1,231,125 1 101 -0.657 -0.664 0.201 0.090 0.091 0.293 -0.281 0.103 -0.358 0.056 147

El Paso, TX MSA 751,296 7 94 -0.662 -0.699 -0.657 -0.215 -0.182 0.350 -1.174 -0.234 0.260 -0.195 148

St. Cloud, MN MSA 189,148 4 17 -0.665 -0.818 -0.368 -0.113 -0.313 -0.463 -0.414 0.102 0.207 -0.079 149

Bismarck, ND MSA 106,286 4 22 -0.672 -0.797 -0.768 -0.218 -0.262 -0.505 -1.138 -0.169 0.413 -0.187 150

Kansas City, MO-KS MSA 2,005,888 4 477 -0.675 -0.657 -0.456 -0.068 -0.086 -1.452 -1.140 0.048 0.256 -0.070 151

Amarillo, TX MSA 238,299 7 27 -0.677 -0.749 -0.554 -0.176 -0.414 -0.910 -1.254 -0.181 0.189 -0.124 152

Green Bay, WI MSA 247,319 3 49 -0.683 -0.700 -0.325 -0.076 -0.005 -0.477 -0.282 -0.030 0.065 -0.089 153

Canton-Massillon, OH MSA* 408,005 3 40 -0.689 -0.735 -0.524 -0.122 0.048 -1.172 -0.808 -0.066 0.237 -0.142 154

Hickory-Morganton-Lenoir, NC MSA 365,364 5 88 -0.708 -0.687 -0.431 -0.201 -0.171 -0.979 -0.395 -0.303 -0.027 -0.185 155

Biloxi-Gulfport-Pascagoula, MS MSA 355,075 6 30 -0.712 -0.779 -0.447 -0.127 -0.019 -1.198 1.134 -0.178 0.074 -0.137 156

Brazoria, TX PMSA 309,208 7 62 -0.730 -0.730 -0.542 0.035 0.056 -0.871 -1.013 -0.121 0.205 0.007 157

Memphis, TN-AR-MS MSA 1,230,253 6 173 -0.737 -0.726 -0.527 -0.050 -0.075 1.490 -0.827 -0.137 0.177 -0.056 158

Knoxville, TN MSA 785,490 6 193 -0.793 -0.779 -0.409 -0.156 -0.175 -0.928 0.468 -0.201 -0.005 -0.143 159

Ann Arbor, MI PMSA* 630,518 3 136 -0.795 -0.762 -0.229 -0.010 -0.036 1.235 -0.949 0.019 -0.027 -0.024 160

Portland, ME MSA 256,178 1 25 -0.798 -0.881 0.137 -0.079 -0.156 0.846 1.005 -0.084 -0.468 -0.072 161

San Antonio, TX MSA 1,928,154 7 348 -0.801 -0.800 -0.590 -0.126 -0.136 1.707 -1.270 -0.187 0.185 -0.120 162

Wichita, KS MSA 589,195 4 54 -0.820 -0.889 -0.641 -0.112 -0.183 -1.987 -1.345 -0.176 0.237 -0.101 163

Lake Charles, LA MSA 187,554 7 14 -0.822 -0.925 -0.605 -0.079 0.268 -2.005 0.980 -0.190 0.190 -0.136 164

Little Rock-North Little Rock, AR MSA 657,416 7 110 -0.838 -0.849 -0.458 -0.116 -0.181 -1.894 -0.752 -0.156 0.063 -0.106 165

Des Moines, IA MSA 536,664 4 99 -0.854 -0.855 -0.368 -0.079 -0.036 -1.546 -1.123 -0.112 0.002 -0.091 166

Pittsburgh, PA MSA* 2,287,106 2 240 -0.866 -0.844 -0.542 -0.097 -0.118 -0.131 0.050 0.016 0.268 -0.098 167

Fort Wayne, IN MSA 528,408 3 39 -0.866 -0.871 -0.685 -0.142 -0.142 -1.612 -1.300 -0.105 0.320 -0.137 168

Cedar Rapids, IA MSA 209,226 4 33 -0.874 -0.946 -0.488 -0.124 -0.159 -1.435 -1.252 -0.088 0.132 -0.118 169

Oklahoma City, OK MSA 1,213,704 7 395 -0.887 -0.905 -0.550 -0.154 -0.276 -1.133 -1.305 -0.175 0.134 -0.129 170

Jackson, MS MSA 483,852 6 43 -0.916 -0.940 -0.523 -0.091 -0.138 -2.341 -0.869 -0.152 0.110 -0.090 171

Birmingham, AL MSA 997,770 6 148 -0.920 -0.943 -0.399 -0.071 -0.141 -0.476 -0.720 -0.113 0.022 -0.070 172

Brownsville-Harlingen-San Benito, TX MSA 396,371 7 52 -0.920 -0.954 -0.955 -0.239 -0.280 -0.811 -0.068 -0.001 -0.210 173

Wausau, WI MSA 131,612 3 16 -0.923 -1.013 -0.446 -0.132 -0.040 -0.731 -0.843 -0.059 0.098 -0.143 174

Greenville-Spartanburg-Anderson, SC MSA 1,096,009 5 507 -0.938 -0.923 -0.480 -0.126 -0.174 -1.647 -0.794 -0.252 -0.011 -0.118 175

Scranton--Wilkes-Barre--Hazleton, PA MSA* 614,565 2 27 -0.948 -1.006 -0.503 -0.147 -0.257 -0.495 -0.011 0.018 0.205 -0.127 176

Augusta-Aiken, GA-SC MSA 516,357 5 66 -0.948 -0.971 -0.499 -0.104 -0.102 -1.687 -0.913 -0.167 0.066 -0.108 177

Fayetteville, NC MSA 315,207 5 25 -0.952 -1.000 -0.575 -0.191 -0.259 -1.631 -0.663 -0.229 0.097 -0.169 178

Pensacola, FL MSA 455,102 5 102 -0.954 -0.980 -0.336 -0.173 -0.162 -1.566 1.158 -0.137 -0.075 -0.165 179

Tyler, TX MSA 204,665 7 13 -0.962 -1.057 -0.541 -0.146 -0.862 -0.116 -0.930 -0.204 0.077 -0.036 180

Macon, GA MSA 356,873 5 20 -0.963 -0.989 -0.606 -0.076 -0.097 -1.734 -1.038 -0.172 0.164 -0.083 181

Davenport-Moline-Rock Island, IA-IL MSA* 362,790 4 28 -0.966 -1.018 -0.532 -0.111 0.184 -1.893 -1.201 -0.051 0.179 -0.158 182

Columbia, SC MSA 627,630 5 139 -0.969 -0.983 -0.431 -0.136 -0.141 -1.177 -0.678 -0.235 -0.054 -0.134 183

Lynchburg, VA MSA 232,895 5 13 -0.982 -1.045 -0.405 -0.168 -0.147 -0.984 -0.329 -0.151 -0.027 -0.164 184
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TABLE A3: LIST OF METROPOLITAN INDICES RANKED BY LAND PRICE DIFFERENTIAL, 2005-2010

Duluth-Superior, MN-WI MSA* 242,041 4 22 -0.985 -1.046 -0.480 -0.149 -0.058 -0.923 0.266 0.074 0.214 -0.159 185

Elkhart-Goshen, IN MSA 200,502 3 14 -0.995 -1.028 -0.622 -0.097 -0.071 -1.531 -1.100 -0.001 -0.108 186

Benton Harbor, MI MSA* 160,472 3 12 -1.003 -1.120 -0.335 -0.142 0.075 -1.155 1.040 -0.001 -0.173 187

Corpus Christi, TX MSA 391,269 7 74 -1.010 -1.047 -0.633 -0.154 -0.155 -1.222 0.443 -0.230 0.137 -0.150 188

Montgomery, AL MSA 354,108 6 33 -1.023 -1.086 -0.526 -0.136 -0.138 -1.759 -0.897 -0.204 0.047 -0.136 189

Lubbock, TX MSA 270,550 7 45 -1.027 -1.039 -0.628 -0.185 -0.207 -1.611 -1.404 -0.209 0.143 -0.172 190

Bryan-College Station, TX MSA 179,992 7 34 -1.029 -1.058 -0.435 -0.178 -0.634 0.314 -1.110 -0.196 -0.042 -0.102 191

Buffalo-Niagara Falls, NY MSA* 1,123,804 2 104 -1.056 -1.054 -0.593 -0.076 -0.067 -1.215 -0.490 0.034 0.281 -0.090 192

Lafayette, LA MSA 415,592 7 15 -1.074 -1.169 -0.571 -0.118 -0.065 -1.803 -1.327 -0.190 0.087 -0.130 193

Grand Rapids-Muskegon-Holland, MI MSA 1,157,672 3 121 -1.114 -1.144 -0.448 -0.113 -0.176 -0.522 -0.970 -0.122 0.005 -0.110 194

Beaumont-Port Arthur, TX MSA* 378,477 7 60 -1.140 -1.167 -0.731 -0.051 -0.259 -1.492 -0.499 -0.176 0.241 -0.039 195

Killeen-Temple, TX MSA 358,316 7 32 -1.153 -1.187 -0.691 -0.180 -0.219 -1.913 -1.262 -0.260 0.135 -0.169 196

Lansing-East Lansing, MI MSA 453,603 3 40 -1.154 -1.164 -0.451 -0.112 -0.083 -0.613 -1.089 -0.011 0.081 -0.124 197

St. Joseph, MO MSA* 106,908 4 12 -1.155 -1.251 -0.619 -0.112 0.000 -2.497 -1.119 -0.050 0.219 -0.029 198

Kalamazoo-Battle Creek, MI MSA* 462,250 3 31 -1.163 -1.175 -0.517 -0.124 -0.110 -0.993 -0.941 -0.062 0.106 -0.131 199

Mobile, AL MSA 591,599 6 135 -1.176 -1.186 -0.463 -0.147 -0.272 -2.767 0.015 -0.155 -0.020 -0.131 200

Flint, MI PMSA* 424,043 3 85 -1.179 -1.152 -0.681 -0.010 -0.037 -0.528 -0.955 -0.010 0.306 -0.034 201

Longview-Marshall, TX MSA 222,489 7 14 -1.202 -1.245 -0.619 -0.123 -0.377 -2.513 -0.903 -0.290 0.028 -0.092 202

Erie, PA MSA* 280,291 2 29 -1.297 -1.354 -0.611 -0.163 -0.211 -0.980 1.080 -0.042 0.185 -0.158 203

Appleton-Oshkosh-Neenah, WI MSA 385,264 3 79 -1.303 -1.294 -0.364 -0.090 -0.058 -0.434 -0.544 -0.068 -0.084 -0.110 204

Toledo, OH MSA* 631,275 3 107 -1.317 -1.322 -0.540 -0.096 -0.217 -2.296 -0.494 -0.010 0.135 -0.093 205

Fort Smith, AR-OK MSA 225,132 7 18 -1.336 -1.409 -0.650 -0.222 -0.200 -1.839 -0.454 -0.205 0.089 -0.217 206

Albany-Schenectady-Troy, NY MSA 906,208 2 120 -1.381 -1.369 -0.173 -0.026 -0.067 -0.241 -0.279 -0.004 -0.242 -0.049 207

Sherman-Denison, TX MSA 120,030 7 19 -1.410 -1.390 -0.728 -0.160 -0.024 -1.719 -1.090 -0.001 -0.112 208

Peoria-Pekin, IL MSA* 357,144 3 25 -1.417 -1.447 -0.513 -0.060 0.003 -0.588 -1.181 0.044 0.130 -0.093 209

Syracuse, NY MSA* 725,610 2 65 -1.452 -1.456 -0.595 -0.091 -0.040 -1.782 -0.549 -0.016 0.158 -0.117 210

Binghamton, NY MSA* 244,694 2 16 -1.494 -1.571 -0.699 -0.104 0.088 -1.494 0.262 -0.035 0.235 -0.151 211

Youngstown-Warren, OH MSA* 554,614 3 49 -1.507 -1.526 -0.739 -0.169 -0.232 -0.842 -0.909 -0.039 0.271 -0.166 212

Evansville-Henderson, IN-KY MSA 305,455 3 33 -1.531 -1.667 -0.632 -0.136 -0.347 -1.385 -1.000 -0.070 0.136 -0.117 213

Sioux City, IA-NE MSA* 123,482 4 17 -1.670 -1.770 -0.822 -0.227 -0.590 -1.938 -1.276 -0.149 0.231 -0.172 214

Glens Falls, NY MSA 128,774 2 21 -1.699 -1.681 -0.291 -0.131 -0.292 -2.636 0.583 -0.069 -0.240 -0.125 215

Saginaw-Bay City-Midland, MI MSA* 390,032 3 41 -1.736 -1.763 -0.629 -0.118 -0.165 -0.236 -0.620 -0.035 0.122 -0.132 216

Utica-Rome, NY MSA* 293,280 2 15 -1.809 -1.889 -0.575 -0.082 -0.267 -1.495 -0.556 -0.048 0.041 -0.084 217

Rochester, NY MSA* 1,093,434 2 110 -1.883 -1.896 -0.538 -0.089 -0.071 -0.614 0.071 0.007 0.038 -0.122 218

Census Divisions:

New England 8,966,068 1 530 0.050 0.010 0.423 0.092 0.117 0.912 0.240 0.126 -0.332 0.072 5

Middle Atlantic 36,338,768 2 4,567 0.323 0.278 0.262 0.072 0.121 0.144 0.080 0.165 -0.013 0.059 2

East North Central 34,462,007 3 8,534 -0.407 -0.405 -0.272 -0.036 -0.047 -0.689 -0.299 0.030 0.146 -0.038 6

West North Central 12,363,802 4 2,206 -0.495 -0.513 -0.339 -0.063 -0.085 -1.002 -0.900 0.017 0.173 -0.059 7

South Atlantic 41,912,174 5 19,501 0.105 0.109 -0.050 -0.031 -0.032 0.015 0.177 -0.102 0.017 -0.023 4

East South Central 9,366,975 6 1,473 -0.629 -0.642 -0.419 -0.105 -0.138 -0.934 -0.418 -0.141 0.103 -0.096 9

West South Central 26,109,488 7 4,823 -0.567 -0.569 -0.521 -0.066 -0.080 -0.526 -0.795 -0.164 0.198 -0.066 8

Mountain 15,672,803 8 14,517 0.148 0.157 -0.056 -0.040 -0.084 0.296 -0.046 -0.096 0.034 -0.022 3

Pacific 40,847,165 9 10,840 0.677 0.643 0.606 0.080 0.089 0.668 0.988 0.089 -0.306 0.080 1

Metropolitan Population:

Less than 500,000 31,264,023 1,378 -0.525 -0.563 -0.225 -0.065 -0.077 -0.438 -0.041 -0.055 0.000 -0.063 4

500,000 to 1,500,000 55,777,644 3,253 -0.411 -0.423 -0.202 -0.053 -0.066 -0.345 -0.159 -0.060 0.021 -0.052 3

1,500,000 to 5,000,000 89,173,333 8,168 0.163 0.159 0.074 0.013 0.009 0.131 0.174 0.005 -0.016 0.015 2

5,000,000+ 49,824,250 3,997 0.613 0.589 0.316 0.078 0.113 0.173 0.012 0.103 -0.022 0.073 1
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Figure A: Shrunken vs. Unshrunken Land Values
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Figure B: Weighted vs. Unweighted Land Values
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Figure C: Residential vs. Overall Land Values
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Figure D: Construction Wages vs. Overall Wages
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Figure E: Construction Prices vs. Construction Wages
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