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I. Introduction 

Educational interventions are often evaluated and compared on the basis of their impacts on 

test scores.  Decades of research in this vein have produced two seemingly contradictory empirical 

regularities.  An intervention in a later grade frequently has a smaller impact on test scores than the 

same intervention in an earlier grade.1  At the same time, the test score impacts of early educational 

interventions almost universally “fade out” as participants progress through school.2  On one hand, 

the scope for education to increase knowledge would appear to be greater when children are young; 

on the other, the effects of early intervention on knowledge do not appear to last.    

In this paper, we investigate the extent to which these regularities are an artifact of the 

common practice of rescaling test scores in terms of a student’s position in a widening distribution 

of knowledge. If the variance in knowledge rises as children progress through school, a standard 

deviation in test scores in a higher grade will correspond to a greater difference in knowledge than a 

standard deviation in test scores in a lower grade.3  Conversely, an educational intervention that has 

the same impact on knowledge will appear to have a smaller impact on normalized test scores when 

the intervention occurs in a later grade.  Likewise, an early intervention’s effect on normalized test 

scores may decline in magnitude over time even if its impact on knowledge persists in full.   

Though this hypothesis is intuitive, evaluating it is difficult, since knowledge has no natural 

scale.  Indeed, the near universal practice of re-expressing achievement in distributional terms is a 

practical response to this fact, as tests (and thereby test scales) often change as children in a target 

population age.  Given this, our empirical approach works off of several patterns that we might 

                                                 
1 Such interventions include test-based accountability (e.g., Dee and Jacob, 2011), charter schools (Dobbie and Fryer, 
2011), and teachers (Kane, Rockoff, and Staiger, 2008), among others.   
2 Such early interventions include compensatory preschool education (see Almond and Currie (2011) for a review), class 
size reduction (Krueger and Whitmore, 2001, Chetty, et al., 2011), and teacher assignment (Kane and Staiger, 2008; 
Jacob, Lefgren, and Sims, 2008; Rothstein, 2010, Chetty, Friedman, and Rockoff, 2011). 
3 The same intuition holds if we were to consider rescaling test scores in percentiles rather than in standard deviation 
units.  We focus on standard deviation units here because the linearity of the underlying transformation considerably 
simplifies the analysis. 
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expect to see in data if the variance of knowledge were increasing across grades.  In particular, we 

expect test scores in consecutive grades to be more correlated with one another at higher grades 

than at lower grades, since at higher grades, dramatic shifts in the accumulated knowledge 

distribution should be less likely.  Similarly, test scores in later grades should be more strongly 

correlated with long-term, non-test outcomes, like educational attainment, than test scores in earlier 

grades.4   

More formally, we lay out a simple model of education production, motivated by 

econometric specifications frequently employed in the empirical literature, in which test scores are 

noisy measures of knowledge and the stock of knowledge accumulates over time as new knowledge 

is added each year and past knowledge potentially depreciates. The variance of accumulated 

knowledge in each grade is a function of model parameters. The correlations in test scores across 

grades and with long-term outcomes are as well, allowing us to estimate the model parameters using 

minimum distance methods.  We use these parameter estimates to predict how the variance in 

knowledge evolves across grades, and in turn, the extent to which rising variance in the distribution 

of knowledge contributes to relatively weak contemporaneous impacts of educational interventions 

in later grades and to fadeout in early interventions. We fit the model using student-level 

administrative data on test scores and college-going from Charlotte-Mecklenburg Schools and 

survey data from the 1979 National Longitudinal Survey of Youth.  Neither data source is ideal for 

our analysis, but they are complementary and offer independent estimates.   

Our estimates are similar across data sets, and imply that the variance in accumulated 

knowledge increases by between 37 and 56 percent from the end of kindergarten to the end of high 

school. Due to this widening distribution of knowledge, we find that a modest amount of the 

apparent decline in the impact of interventions in later grades is an artifact of normalizing test 

                                                 
4 Increasing test reliability across grades could create similar patterns.  Our empirical approach allows us to estimate test 
reliability in a flexible way to account for this possibility.  
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scores. For example, the impact of attending a small class in kindergarten on normalized test scores 

would be 12 to 17 percent lower by eighth grade even if the effect of a small kindergarten class on 

knowledge persisted in full. Similarly, the impact of an effective teacher on students’ normalized test 

scores would be 6 to 10 percent less if she were assigned to teach eighth grade rather than third 

grade. While the statistical artifact by itself cannot explain why over half of the impact of early 

educational interventions or having an effective teacher fades in a few years, it is still substantial, 

particularly from the perspective of policymakers seeking to compare interventions across grades. 

Much of the evaluation research cited above does not directly acknowledge the 

comparability of tests across grades.  In the economics literature, the issue of test scaling has 

received most attention in the context of understanding teacher impacts on student achievement 

(Cawley et al., 1999; Ballou, 2009; Lang, 2010; Barlevy and Neal, 2011). Lang (2010), in particular, 

proposes that the apparent fadeout of teacher effects in later grades may be a statistical artifact of 

using normalized test scores. Our paper formalizes and empirically tests Lang’s idea. In the 

education literature, the issue of test scaling has received most attention in the context of 

understanding achievement gaps between groups (Selzer et al., 1994; Reardon, 2007; Reardon and 

Robinson, 2007; Bond and Lang, 2011). Our results suggest that estimates based on standardized 

tests will understate racial gaps in knowledge for later grades, and therefore understate growth in 

racial gaps as children age (see, for example, Fryer (2011)). Finally, in the psychometric literature, the 

issue of test scaling has been addressed using Item Response Theory (IRT) (Hambleton, 

Swaminathan and Rogers, 1991). The IRT model has been used to align test scores across grades 

and over time, but often yields implausible scales in practice (Ballou, 2009) and is not anchored to 

adult outcomes (Cunha and Heckman, 2008). We provide an alternative approach to IRT, based on 

commonly accepted scales with well documented relationships to adult outcomes (Chetty et al. 2011; 

Chetty, Friedman, and Rockoff, 2011). 
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II. Education Production 

Our objective is to estimate how the variance in knowledge changes as children progress 

through school.  The challenge for our analysis is that knowledge is unobservable and has no natural 

scale.  To overcome this obstacle, we model the data-generating process for correlations between 

test scores across grades and with a longer-term, non-test outcome, which can be observed.  The 

parameters of this model imply how the variance of knowledge evolves across grades and can be 

estimated using minimum distance methods, as we discuss in Section III. 

A. Model 

We begin by modeling the accumulation of knowledge.  We assume that each child starts 

school with some knowledge stock, and that education augments knowledge in ways that could be 

transitory or persistent (as in Jacob, Lefgren, and Sims, 2008).  For example, rote memorization or 

“teaching to the test” might increase knowledge temporarily,5 while deeper learning will have more 

persistent effects.   

More formally, suppose that the knowledge of child i in grade t, itg , can be decomposed into 

long-term (L) and short-term (S) components: 6 

(1) S
it

L
itit ggg  , 

We model the short-term component, S
itg , as a shock to knowledge in t that does not carry over to 

later grades, it : 

(2) it
S
itg  ,   

                                                 
5 There are other reasons that an intervention might have appear to have transitory effects on knowledge.  For example, 
if an intervention primarily affects understanding of material that is not tested in subsequent years, it would manifest as a 
transitory increase in test performance, even though this understanding might persist in full.  Alternatively, interventions 
may have true effects on knowledge that fade rapidly.  For example, mixing of treatment and control students in the 
same classrooms after a classroom-level intervention has ended may promote rapid reversion toward the mean in 
student performance on material that students learn in school, while student-level test performance may fade less slowly 
as it also includes more persistent student-level factors. 
6 For exposition, we consider one cohort of students which progresses through school one grade per year, so period is 
synonymous with grade.  We discuss our approach to handling grade repetition in the data section below. 
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and the long-term component, L
itg , as comprised of an individual’s endowment, i , and knowledge 

accumulated since starting school, it : 

(3) iti
L
itg   . 

We model the latter as an AR(1) process: 

(4) ititit v 1 , 

where itv represents the innovation to long-term knowledge in grade t, and the parameter  captures 

the degree of persistence of innovations from previous grades.  Beyond constraining  to be 

positive, we place no restrictions on its value in our estimation:  innovations to long-term knowledge 

can decay ( 10   ) or grow ( 1 ) as a child ages.  In the special case where 1  (a random 

walk), it is simply the sum of all innovations vit from school entry through grade t.   

We assume that the it  and the itv are drawn independently over time, independently of i , 

and independently of one other.  These assumptions have several implications for interpretation of 

model parameters.7  First, equation (4) should be thought of as a linear projection, where the 

innovation to long-term knowledge is uncorrelated with accumulated knowledge by definition.  

Thus, any factors that may make innovations to long-term knowledge positively correlated over time 

for a given individual, like ability tracking, are subsumed in  .  That is, if students are tracked on the 

basis of early innovations, knowledge differences will appear more persistent, or the value of   will 

rise.   

Second, the assumption that it  and itv are independent of i  affects interpretation of the 

endowment variance, 2
 .  To see this, it is useful to rewrite equation (1) as: 

                                                 
7 Note that equations (1) through (4) imply that itg is composed of a student fixed effect plus an AR(1) plus white noise. 

It is well known (Granger and Morris, 1976) that any AR(1) + white noise process can be equivalently represented by an 
ARMA(1,1). Thus, we could equivalently capture the persistent and transitory shocks by modeling itg as the sum of a 

student fixed effect and an ARMA(1,1), where the MA term captures the transitory component of each shock.  
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(1΄) itititiit vg   1 , 

substituting for S
itg and L

itg  based on equations (2) through (4).  For the sake of argument, suppose 

that i represents i’s knowledge at the start of school.  If children with a higher stock of knowledge 

at school entry have a firmer foundation for learning – and thus learn more in the early grades – it 

would then be the case that i is positively correlated with itv (and it ).  By assuming that learning is 

orthogonal to the endowment, we thus subsume in i  some of the systematic differences across 

children in the rate of learning once they enter school.  If education accentuates pre-existing 

differences in knowledge across children, as hypothesized above, 2
 will exceed the variance in 

knowledge at the start of school. 

The variances of the innovations may change across grades.  In practice, we cannot easily 

statistically distinguish it  from testing noise, so we model the variance of it jointly with the 

variance of testing error (see below).  As for itv , we begin with a specification where  itvvar  is 

fixed, then allow the variance of itv to change smoothly across grades according to: 

(5)    1varvar  itvit vv  ,   

where 0v , and  11  vv   implies higher (lower) innovation variance in later grades.   

 Test scores, yit, are assumed to be noisy measures of knowledge at a given point in time:  

(6) ititit gy  , 

where it is a mean zero measurement error drawn independently of itg and independently over time. 

it represents idiosyncratic features of the test environment that contribute to an individual scoring 

unusually well or unusually poorly (e.g., a “barking dog”).  It is useful to parameterize the error 

variance,  itvar , alongside the variance in short-term knowledge,  itvar , using a reliability ratio, 

ty :    
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(7) 
 

     itit
L
it

L
it

y g

g
t 


varvarvar

var


 . 

ty is distinct from what is usually meant by reliability of a test, e.g., test-retest reliability.  Instead, 

ty is the share of total variance in test scores accounted for by the variance in long-term 

knowledge.  Thus, while 
ty will be lower for tests with lower test-retest reliability, it will also be 

lower when a higher share of knowledge is short-term.  Because this share might change, we 

allow
ty to vary across grades in our estimation.8  Reported test reliabilities, where available, should 

provide an upper bound on these parameters.   

Finally, we assume that some longer-term non-test outcome, wi – in our case, college going – 

is a noisy measure of the long-term knowledge at the end of secondary school, period T, L
iTg .   

Without loss of generality, we normalize wi so that the coefficient on L
iTg is equal to one:  

(8) i
L
iTi ugw  . 

iu is a mean zero independent error term that represents all factors orthogonal to L
iTg that contribute 

to variation in w.  Again, it is convenient to parameterize the error variance with a reliability ratio:  

(9) 
 

   i
L
iT

L
iT

w ug

g

varvar

var


  

We expect estimates of w  to be lower than estimates of 
ty .  Long-term outcomes like college-

going – while a function of the knowledge that tests are designed to measure – almost certainly 

depend on much more (“non-cognitive skills,” for example).  

                                                 
8 In our data, we observe multiple cohorts in the same grade.  We therefore also allow 

ty to vary over time to account 

for changes in test-retest reliability stemming from changes in the test. 
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 The model of education production represented in equations (1) through (9) is consistent 

with standard econometric specifications commonly employed in the empirical literature. For 

example, our model implies the following value-added specification for normalized test scores, ity~ :  

    111
11 11~1~


 


































 








 
 itititit

t
it

t
it

t

t
i

tt

tt
it b

v
b

y
b

b

bb

aa
y 

 

 
where at and bt represent the mean and standard deviation in period t test scores, respectively.  Thus, 

our model implies that period t normalized test scores are a linear function of fixed student 

characteristics (captured in µi), last period’s test score (the coefficient on which captures both true 

knowledge decay and changes in the variance of knowledge), the current period innovation (which 

might include teacher and peer effects), and a serially correlated measurement error.  The 

coefficients on these variables are time-varying if the standard deviation of test scores changes over 

time. This specification is similar to standard teacher value-added specifications, such as those that 

have recently been validated using both experimental and observational data (Kane and Staiger, 

2008; Chetty, Friedman, and Rockoff, 2011). In addition, we follow Jacob, Lefgren, and Sims (2008) 

in the way our model specifies short-term shocks to knowledge ( it ). This specification allows for 

rapid fadeout of interventions (e.g., of teacher effects) as found by the previously cited papers and 

others (Rothstein, 2008; McCafferty et al., 2004; Lockwood et al., 2007).  

B. Implications  

What are the implications of the model for measurement and interpretation of the impacts 

of educational intervention?  Let a randomly-assigned intervention in period t on test performance 

in period t+k (k ≥ 0) be represented by t
kt   standard deviations.  That is,   

   
01 ,,

~~
tkittkit

t
kt yEyE   , 
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where the subscripts t1 and t0 represent the treatment and control groups in the period t intervention, 

respectively, and kity 
~ represents test scores in standard deviation units, i.e., 

 
 kit

kitkit
kit y

yEy
y









var
~ . 

As described above, a number of early interventions have found that t
t

t
kt   , or that effects on 

test scores fade out over time.  Fadeout is widely interpreted as showing that the effects of 

educational intervention on knowledge rapidly decay. Our model implies that fadeout can also be a 

statistical artifact that arises from the practice of re-expressing student test scores in distributional 

terms.  The same statistical artifact can generate the finding that t
t

kt
kt  

   – that educational 

interventions have larger contemporaneous effects on test scores when they take place in earlier 

grades – even when they have identical effects on knowledge.  

To see the first result, note that under the statistical properties of the model and the 

assumption of random assignment, the contemporaneous effect of a period t intervention, t
t , and 

its effect k grades later, t
kt  , are related by the following expression: 

(10)  
   

   L
kity

L
ityk

t
t

t
kt

g

g

kt

t








var1

var1
1








,  

where  represents the share of the intervention’s contemporaneous effect that does not carry over 

to later grades:   

 
   

         0,1,0,1,

0,1,

itititit

itit

EEvEvE

EE








 . 

The last term in (10) represents the change between t and t +k in the variance in test scores, which 

depends upon changes in the variance of long-term knowledge and changes in test reliability.  This 

last part arises from the practice of normalizing test scores, and so is a statistical artifact.  The 
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common interpretation of fadeout implicitly assumes that this term is equal to one for all t and k. 

Under this assumption, fadeout only arises when an intervention’s effect on knowledge decays, and 

fadeout is more rapid the higher is  and the lower is  . Equation (10) implies, however, that there 

are scenarios (as when 1  and 0 ) where fadeout could be observed without any knowledge 

decay.  The statistical artifact may also be present when an intervention’s effect on knowledge does 

indeed decay ( 1  and/or 0 ). 

 This same statistical artifact will also drive a wedge between the contemporaneous test score 

impacts of two interventions that have the same impacts on knowledge in different grades.  Let t
t

~  

and kt
kt

~ represent the contemporaneous test score impacts of interventions in t and t + k that have 

identical impacts on knowledge.9  Then t
t

~  and kt
kt

~  are related by the following expression: 

(11) 
   

   L
kity

L
ity

t
t

kt
kt

g

g

kt

t









var1

var1
~

~







. 

If the variance in knowledge is increasing more quickly than test reliability, t
t

kt
kt  ~~ 

 :  the 

contemporaneous impact of the period t +k intervention on test scores will be less than that of the 

intervention in period t, despite the interventions’ identical impacts on knowledge.   

 The goal of our empirical analysis is to estimate the statistical artifact.  To do so, we must 

make several assumptions.  The first assumption concerns test reliability.  Equations (10) and (11) 

show that the statistical artifact is a function not only of the variance in accumulated knowledge, but 

also of test reliability, which varies across grades, over time, and across datasets, as shown below.  

Because changes in test reliability across grades for any given cohort will also be unique to any given 

intervention, we take as our starting point the assumption of unchanging test reliability (
ktt yy 

   

for all t and k).  If test reliability is in fact (weakly) increasing across grades – which generally appears 

                                                 
9 That is,        

0101 ,,,, ktkitktkittittit gEgEgEgE   . 
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to be the case – this assumption yields an upper bound on the magnitude of the statistical artifact.  

We show this below by re-estimating the statistical artifact using our estimates of test reliability for 

the grades represented in our data. 

 Under the assumption of constant test reliability, the statistical artifact reduces to  

   L
kit

L
it gg varvar .  As noted, estimation of this quantity would generally be impossible since the 

variance of knowledge cannot be observed.  However, the model yields an expression for it: 

(12)     it
L
itg   varvar 2  , 

where the variance in cumulative “value-added” is:  

(13)    





1

0

212

1
var

t

j

j
v

jt
vvit  , 

where 2

1v  represents the variance of the first period innovation to knowledge, and recall that v  

characterizes how  itvvar changes over time (equation (5)).   itvar will be larger and grow faster 

across grades the larger is   – or the less knowledge decays over time – and the larger is v – or 

with persistence or expansion of the innovation variance.   

Together, equations (12) and (13) show that only ratios in the variance of long-term 

knowledge can be interpreted.  For example, we could set the value of either 2
  or 2

1v , and the 

values undertaken by    L
kit

L
it gg varvar  would be unchanged.  In practice, we set 12

1
v , and 

2
  is measured in multiples thereof.  The next section discusses our approach to estimating these 

model parameters. 

III. Estimation and Identification 

 Estimation of the statistical artifact requires estimation of model parameters.  Our estimation 

strategy takes advantage of the fact that the model characterizes the data generating process for 
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correlations between test scores across grades and between test scores and the non-test outcome.  

We choose model parameters to minimize the distance between model predictions and actual 

correlations observed in the data.   

 Under the model, the correlation between test scores in periods t and t+k is given by:10 

(14)  
 

     kitit

it
k

yyyy kttktt






 








varvar

var
22

2

, 

where  itvar  is given in equation (13) and all other parameters have been previously defined.   

Analogously, the correlation between test scores in t and college-going is: 

(15)  
 

     iTit

it
tT

wywy tt 








varvar

var
22

2








 

Comparison of equation (15) to equation (14) shows that the correlation between period t test scores 

and the long-run outcome will be less than the correlation between test scores in period t and at the 

end of secondary school, period T, if the long-term outcome is a lower reliability measure of period 

T knowledge.  

It is useful to consider several special cases for intuition as to how the model parameters are 

identified.  When 0 , so that there is no long-term component to knowledge (   0var it ) and 

value-added through education decays immediately, 
kttktt yyyy 

   and wywyt
  :  the 

correlations depend only on reliability ratios, and knowledge itself is determined only by child 

endowments. Under the assumption that all tests are equally reliable, moreover, the correlations 

between test scores are exactly the same for all t and k, and the correlations between test scores and 

long-term outcomes do not vary with t.   

                                                 
10 In some specifications, we allow test reliability to vary across both grades and years, not just across grades as shown 
here.  We also allow the endowment variance to vary across cohorts.  Rationales are given in Section IV (Data). 
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Continuing with the assumption of constant reliability, consider the case where 1  and 

1v , or where knowledge accumulation is a random walk and the innovation variance is constant.  

Because the variance in knowledge is rising across grades, both 
ktt yy 

 and wyt
  fall below the values 

that would be predicted by reliability alone.  The correlations also have gradients in t, the grade in 

which the (first) test is administered.  In particular, for any given k, 
ktt yy 

 is rising in t:  intuitively, 

test scores are more correlated in higher grades, when more knowledge has been accumulated.  

ktt yy 
 is also falling in k:  the correlations between test scores are weaker the further apart the tests 

are taken.  Similarly, wyt
  is greater the later in the school career the test is administered.   

To clarify, Figures I and II plot simulated correlations from these special cases.  Figure I 

plots the 
ktt yy 

 . The x-axis gives the grade that the first test was administered (t).  The number of 

grades ahead the second test is administered (k) is represented by the number adjacent to each line; 

the correlations themselves are represented with solid dots.  Thus, the correlation between third and 

fourth grade test scores is the point on the line labeled with a one (k=1) corresponding to grade 3 

(t=3) on the x-axis.  Figure II plots the wyt
  and is arranged in a similar fashion, with the grade of 

the test on the x-axis.  We set the reliability ratios and the variance of the endowment to be roughly 

comparable to what we estimate in the CMS data.11  The figures illustrate the predictions described 

above:  the correlations are unchanging when 0  (Panel A), and increasing in t and falling in k 

when 1  and 1v  (Panel B).   

Figures like these also provide a useful vehicle for understanding the implications of further 

variation in these model parameters.  For example, consider a case where 1  and 9.0v , as 

shown in Panel C.  Here, knowledge continues to be a random walk, but the innovations to 

                                                 
11 As in our estimation, we also assume that t=1 represents kindergarten and T=13.  We are also setting 12

1
v in these 

simulations, as we do in our estimation, with 2
  rescaled accordingly.   
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knowledge are higher variance earlier in a child’s school career.  In this case, the correlations 

between test scores strengthen, particularly in higher grades: that is, the 
ktt yy 

  are much more 

similar regardless of k, particularly at high values of t (Figure I). For example, the correlations 

between test scores in grades 3 and 4, grades 3 and 5, grades 3 and 6, etc. are all stronger and more 

similar to each other than was the case in Panel B.  Similarly, there is less of a gradient in t in the 

correlation between test scores and the long-term outcome (Figure II).  These predictions are 

intuitive, since more knowledge is accumulated relatively early.  When 1v , or when knowledge is 

accumulated relatively late, the opposite happens:  the correlations weaken, and the gradients of the 

ktt yy 
 in k and the wyt

  in t steepen. 

Finally, Panel D of each figure shows what happens when 9.0  and 1v .  Here, the 

variance in the long-term innovation remains the same throughout the school career, as was the case 

in Panel B, but not all of this innovation persists.  The primary consequence of knowledge decay is 

to reduce the gradient of 
ktt yy 

 in t for any k.  For example, the correlations between test scores in 

grades 3 and 4, between grades 4 and 5, between grades 5 and 6, etc. are more similar now than they 

were in the baseline case.  Related, the correlations between test scores and long-term outcome do 

not rise as quickly in t.  Again, this is intuitive, since differences in knowledge accumulated between 

any two grades will be less than if all knowledge were to persist. Further, variation in   appears to 

add more curvature to these relationships:  for example, the correlation between test scores and 

long-run outcomes – either w or much later test scores – can fall across early grades, if knowledge 

fades more rapidly than it is accumulating.    

Thus, both v  and   affect the speed through which knowledge is accumulated – albeit 

through different mechanisms – and these differences manifest in different ways in the data.  For 

example, variation in v  is manifested more in the drop off in the test score correlations in k, while 
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variation in  is manifested more in how the 
ktt yy 

 change with t for any given k.  Data on w are 

thus not needed to estimate the model, but long-term outcomes are quite useful for identification 

purposes, since v  and   are in practice identified through fairly subtle differences in the patterns 

of these correlations. The correlation of test scores from any grade with long term outcomes is 

proportional to the correlation with knowledge in the final grade, and therefore is similar to 

observing test scores in 12th grade for all students (e.g., the lower envelope of the lines plotted in 

Figure I).   In practice, identification of these parameters is complicated further by changing test 

reliability across grades, which adds noise to the relationships plotted in Figures I and II.   

IV. Data 

 Given the discussion above, the ideal data set for estimating the model offers frequent 

observations over a wide span of grades on a large number of individuals, allowing each correlation 

to be estimated precisely.  Neither of our data sources meet both of these criteria, but the two are 

complementary and provide independent estimates.  This section describes samples and key 

variables from each and discusses their relative strengths and limitations. In both samples, we focus 

on math test scores. 

A. Data from Charlotte-Mecklenburg Schools 

 Our administrative data are from Charlotte-Mecklenburg Schools (CMS), a large school 

district in North Carolina.  CMS is one of the few school districts in the country with data sufficient 

for our analysis:  similar tests (the North Carolina end of grade (EOG) exams in math) were 

administered in many consecutive years (1999 to 2009) and consecutive grades (grades 3 to 8), and 

far enough in the past that we can observe correlations between standardized test scores with a 

longer-term outcome – whether an individual enrolled in a four-year college in his first year out of 

high school, collected through the National Student Clearinghouse (NSC) – for several cohorts of 

students (those in third grade between spring of 1994 and spring of 1998).  Another benefit of the 
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CMS data is that the size of the district makes the correlations quite precise, which helps to reduce 

noise in our estimates.  The correlations are estimated on average using about 5400 students per 

cohort (grade-year). 

One drawback of the CMS data, however, is that for no one cohort can we observe all 

possible correlations.  Appendix Table I provides a description of the available data by cohort, 

where cohorts are defined on the basis of the year (spring) in which an individual should have been 

in third grade.  The table shows that the 1998 cohort is the most recent one for which we are able to 

observe correlations between test scores and college-going.  However, the 1998 cohort lacks third 

grade test score data.  Earlier cohorts (1994 to 1997) have tests available in few grades, and later 

cohorts (1999 to 2008) lack college-going information altogether.  In the present analysis, we use all 

available data, and allow the variance of the endowment ( 2
 ) to vary across cohorts in our preferred 

specifications.  

The CMS data present two additional challenges for our analysis.  First, the EOG math 

exams experienced some changes in content and in testing process over the 1999 to 2009 period.12  

In our model, such changes should affect the correlation between test scores administered in 

separate testing regimes through a change in the test’s reliability ratio.  Similarly, there were some 

changes in district demographics over the period, arising both from Hispanic immigration and white 

return to the district after the end of court-ordered school desegregation in 2001.  If test reliability 

depends on the underlying variance in achievement, these changes could also affect the reliability 

ratio.  To account for all of these factors, we ultimately allow the reliability ratio ( y ) to vary year-

by-year (not just when the tests themselves change), in addition to varying across grades.   

                                                 
12 In particular, the math test was changed in 2001, then again in 2006.  Changes in the math test editions affected the 
weights given to different topics. The main change in the testing process over the period was the addition of more time 
with each edition; the current edition is untimed.   
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Second, our model assumes that year and grade move in lockstep, one-for-one.  However, 

some children repeat grades, while others (albeit a much smaller fraction) skip ahead.  We would like 

to use these children’s scores, but we are uncomfortable assuming, for example, that a child 

repeating fifth grade and thus administered the fifth grade EOG math exam would occupy the same 

place in the distribution of sixth grade EOG math scores.  To confront this complication, we 

estimated our model using the subset of students who never repeated (or skipped) a grade. This uses 

a consistent sample to calculate all correlations.  

The first column of Table I presents demographic characteristics and college-going rates of 

the CMS students used to create these correlations.13  CMS students are more likely to be minorities 

and have lower college attendance rates than we see in a random sample of U.S. twenty year olds in 

2007, as shown in the third column based on the American Communities Survey (ACS).14  This is 

not surprising, since CMS is an urban school district.  The CMS students in our sample are also 

slightly more likely to be female than the population at large.  This finding is expected, since we have 

restricted calculation of the correlations to individuals who have not repeated grades, and boys have 

higher grade repetition rates. 

B. Data from the National Longitudinal Survey of Youth 

 The National Longitudinal Survey of Youth 1979 (NLSY79) is a widely-used, nationally 

representative longitudinal survey of roughly 12,000 individuals who were between the ages of 14 

and 21 in 1979.  In 1986, the survey incorporated data on the children born to female respondents, 

and the children have been surveyed every two years ever since, with most recent data from 2008.  

The resulting data set – the NLSY79 Child and Young Adult survey – includes biannual scores on 

                                                 
13 The unit of observation is a correlation.  For each correlation, we first calculate the demographic characteristics of the 
underlying sample.  We then take the unweighted average of these means to arrive at the figures presented in the table.  
The figures are very similar if we weight by the number of observations used to create each correlation. 
14 Twenty-year-olds in 2007 would have been born in 1987 and should have entered third grade in 1995 and 1996.  The 
sample therefore includes individuals from a cohort that is represented in both the CMS and NLSY79 Child-Mother 
data.  The NLSY79 sample is described in the next section. 
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Peabody Individual Achievement Tests (PIAT) of math while a child is between the ages of 5 and 

14, and information on whether he or she attended college after high school.  For the latter, we rely 

on questions on educational attainment fielded in the young adult questionnaire, which began in 

1994, in the survey years when an individual would have turned 20 or 21, depending on the cohort.  

 One benefit of these data over the CMS data is that test scores are available over a longer 

span.  It is also the case that we can observe all possible correlations between test scores in different 

grades and between test scores and college going for a number of cohorts.  We show available data 

by cohort in Appendix Table II; cohort now corresponds to birth year.  We restrict our analysis 

sample to individuals born between 1982 and 1987, for which we have the complete span of test 

scores and the information on college-going after high school described above.   Although 

individuals born in 1981 and prior satisfy these same criteria, we exclude them because they are born 

to increasingly younger mothers given the survey design. As is the case in our analysis of the CMS 

data, we take account of cohort differences in knowledge by allowing the endowment variance ( 2
 ) 

to vary across cohorts.   

The second column of Table I shows demographic characteristics and college-going rates of 

individuals in our sample from the NLSY79 Child and Young Adult survey.15  Despite excluding the 

oldest children surveyed, our estimation sample – like that for CMS – is high minority and has low 

college attendance relative to the national average figures from the ACS.  Our estimates may 

therefore not necessarily reflect what we would see had we access to nationally representative data.  

This is not necessarily a drawback of our analysis, however, as most educational interventions target 

more disadvantaged populations.   

 The NLSY79 has several other features that are useful for our analysis.  Compared to the 

EOG math tests in CMS, test content and scoring were consistent over the period relevant for the 

                                                 
15 The correlations are calculated in the same way they were for the CMS data. 
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cohorts in our sample (1986 to 2002), though there were some changes in test administration and 

the tested population over this span.16  Again, we account for the effects of these changes by 

allowing test reliability to change over time in addition to across grades in some specifications.  

Further, children of the same age are administered the same test regardless of their grade of 

enrollment.  There is therefore no need to restrict attention to non-repeaters.     

 The main drawbacks of the NLSY79 data are that the samples used to calculate any given 

correlation are quite small relative to those available for CMS,17 and data are collected only every two 

years, not annually.  This added noise to our estimates could potentially outweigh any increases in 

precision from having a wider grade span represented in the data.   

V. Estimates of the Model Parameters 

 Table II presents equal-weighted minimum distance estimates of the model parameters 

based on the correlation data derived from CMS and the NLSY79, respectively.  Panel A of the table 

pertains to the estimates based on CMS data, while Panel B corresponds to estimates based on the 

NLSY79.18   To establish a benchmark, we begin with a parsimonious specification.  In column (1), 

we force the innovation variance to be unchanging across grades, or 1v , and assume that the 

reliability ratio for the test is unchanging across grades and years.  The estimates of  from this 

specification are above one in both datasets, though not significantly so in the CMS data.  Allowing 

estimates of 2
 to vary across cohorts (column (2)) improves model fit (in the case of the CMS data) 

and reduces estimates of  , though these estimates remain above one in both datasets.  The 

specifications in the remaining columns of the table examine whether this finding continues to hold 

when we place fewer restrictions on the model estimated.   
                                                 
16 Most notably, there was a shift to computer aided test administration in 1994.  This apparently increased the 
proportion of children with valid scores by reducing interviewer error in test administration.  There was also a move to 
testing in the English language only in 2002, and the minority oversample of the NLSY79 was also excluded from the 
2000 wave (Center for Human Resource Research, 2009). 
17 On average around 350 observations are used to calculate each correlation – 15 times less than in the CMS data.     
18 Heteroskedasticity-robust standard errors are in parentheses.  
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Before turning to discussion of these next specifications, it is useful to note that estimates of 

the reliability ratios, y and w , are very precisely estimated and have magnitudes that line up with 

expectations.  In the models estimated on the correlations for CMS, for instance, the value of 

y =0.883 to 0.885 is consistent with reported reliabilities on the North Carolina EOG math test of 

0.85 to 0.90. The estimate of y =0.704 in the NLSY79 data is at the low end of the range of 

reliability estimates reported for the PIAT math test, but this may reflect noise that arises from other 

sources unique to the NLSY79, such as inconsistent child effort in a non-school testing 

environment.19 In both samples, the estimates of w are also much lower than estimates of y , 

implying that accumulated knowledge contributes considerably less power in explaining the variation 

in college-going than the variation in test scores. Our estimates of w  in the NLSY79 are consistent 

with Neal and Johnson’s (1996) findings that performance on the Armed Forces Qualifying Test as 

an adolescent explains roughly 15 percent of variation in earnings.  Estimates of w  maybe be lower 

in the NLSY79 because self-reports of college-going are noisier than the administrative data on 

college-going available for CMS students.  In any event, the finding of a relatively low reliability ratio 

for college-going reminds us that college-going is determined by much more than the notion of 

achievement that is central to student assessment.   

Moving forward, we next (column (3)) allow the reliability ratio for the test to vary across 

grades.  Recall that we are able to do this because test scores in a given grade are correlated against 

test scores in multiple other grades; our estimates attempt to pick up whether all correlations with 

                                                 
19 In our model, y  is not directly comparable to the usual test-retest reliability because short-term shocks to knowledge 

( it ) are counted as noise for the purpose of estimating y  (see equation (7)).  If we assume that the variance in the 

short-run shocks is roughly equal to the variance in the long-run shocks (consistent with about half of value added to 
knowledge fading by the next year) then our estimates of y are consistent with test-retest reliability rates of just over .9 

for the CMS data and around .75 for the NLSY79 data, which are still consistent with reported reliabilities. 
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test scores in, say, kindergarten are systematically low.  Estimates of y are now estimates of the 

reliability of the third grade test; the other coefficients presented are the predicted differences in test 

reliability between the grade specified and grade three. This specification improves model fit in both 

data sets, as reflected in the fall in the root mean squared error (RMSE) between columns (2) and 

(3).  In Panels A and B alike, the estimates of test reliability are also roughly consistent with 

expectations:  test reliability tends to improve across grades.  The improvement in test reliability 

between kindergarten and third grade in the NLSY79 Child-Young Adult data is particularly striking:  

our estimates imply that kindergarten and first grade test scores are highly unreliable, with reliability 

ratios of 0.371 and 0.481, respectively.  Increases in test reliability across grades will tend to make the 

statistical artifact less important; we show this empirically below.  Allowing baseline (third grade) test 

reliability then to vary across years (column (4)) does not alter this pattern of findings and only 

moderately improves model fit (more so in the CMS data, where the test changed across years, than 

in the NLSY, where the same test was used in all years) .   

Estimates of  in the specifications with changing reliability are lower than those in columns 

(1) and (2) for both data sets, suggesting that changes in test reliability were previously loading onto 

this parameter.  Allowing only for changes in test reliability across grades, in column (3), has the 

largest impact on estimates of  .  This is intuitive, since increases in test reliability across grades will 

strengthen the correlation between test scores in higher grades, creating the illusion of more 

knowledge accumulation as a child ages.  For the specification in column (4), the estimates of   

from the two datasets are nearly identical, and imply decay in long-term knowledge of 6 to 7 percent 

per year.  Nevertheless, estimates of   remain statistically indistinguishable from one in both data 

sets.   

 To provide a sense of model fit, Figure III and Figure IV plot average values of the 

correlations in our data, as well as average predicted correlations based on our estimates from the 
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specification in Table II, column (4) for the CMS and the NLSY79 data, respectively.  Panel A of 

each figure is arranged like Figure I, where the grade of the earlier test is represented on the x-axis 

and the grade of the later test is represented by that value plus the number to the right of each locus.  

Panel B of each figure plots the correlation between test scores and college-going and is arranged 

like Figure II, with the grade of the test on the x-axis. In each figure and panel, the free-standing 

solid markers represent the actual correlations, and the hollow markers attached by dashed lines 

represent the predicted correlations.  Note that the predicted correlations do not evolve smoothly as 

in Figures I and II, since the specification in column (4) allows for changes in the reliability ratio 

across grades and over time. Allowing for this heterogeneity generates predictions closer to the data, 

or improved model fit. In general, the model appears to fit the data quite well. 

 For completeness, the remaining column in each panel of Table II presents estimates from 

an even less restrictive specification.  Here, we loosen the requirement of constancy in the variances 

of the innovations to long-run knowledge.  We find no evidence to suggest that the variance of the 

innovations changes: the estimates of v  are 0.947 and 0.985 for the CMS and NLSY79 samples, 

respectively, and in neither case can we reject the null that the variance is unchanging ( 1v ). 

Estimates of  , w , and the grade-specific reliabilities are little changed from column (4).  Moving 

forward, we therefore consider column (4) to present our preferred estimates.  Despite considerable 

differences in the nature of the tests and the populations tested, this specification yields remarkably 

similar estimates of key parameters across the two data sets.     

VI. Estimates of the Policy Parameters 

Recall that the main objective of our analysis is to estimate the “statistical artifact”– how the 

scaling of test scores changes across grades due to differences in the ratio of the standard deviation 

in test scores in different grades.  The statistical artifact is the product of two quantities:  (1) the ratio 
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of the standard deviation in long-run knowledge in different grades, or    L
kit

L
it gg varvar ; and (2) 

the ratio of the (square root of the) inverse reliability ratios in different grades, or    
ktt yy 

 11 .  

We make our initial calculations under the assumption that test reliability is unchanging – or we 

focus initially on (1) – since variation in test reliability across grades will be idiosyncratic to the 

application. Because tests appear to become more reliable as children age, however, these initial 

estimates are likely an upper bound on the statistical artifact.  We show this by calculating the 

statistical artifact using our estimates of test reliability. 

To proceed, we need to choose the grade to which to compare.  Because it allows us to 

describe how the variance in accumulated knowledge evolves over the entire elementary and 

secondary career, and because it provides a useful point of reference to the literature, we start by 

choosing kindergarten (t=0) as the comparison grade.  Columns (1) and (4) of Table III present, for 

the CMS data and NLSY79 data, respectively, estimates of the statistical artifact under this 

assumption and the assumption of constant reliability, i.e., estimates of    L
ik

L
i gg varvar 0 .  In both 

datasets, the estimates are uniformly below one, and significantly so, suggesting that the variance in 

accumulated knowledge is indeed higher in subsequent grades than it is in kindergarten.  The 

estimates are also monotonically decreasing in grade, implying that the variance in accumulated 

knowledge is increasing as children age. Furthermore, knowledge accumulates most rapidly in the 

earliest grades:  in both datasets, the variance in accumulated knowledge rises by slightly more 

between kindergarten and fourth grade than it does between grades four and twelve. To see this, 

note that the variance in knowledge in each grade, relative to kindergarten, is the squared inverse of 

the estimates in columns (1) and (4). Using the CMS estimates, the variance of accumulated 

knowledge is 19 percent larger in fourth grade and 37 percent larger in twelfth grade than it was in 
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kindergarten. Using the NLSY79 estimates, these figures are larger, at 29 percent and 56 percent, 

respectively. 

 In the next columns ((2) and (5)), we use third grade instead of kindergarten as the 

comparison grade.  We choose grade three because it is observed in both datasets – thereby allowing 

us to recalculate the statistical artifact accounting for changing reliability – and it is the earliest grade 

observed for CMS.  Consistent with the observations from columns (1) and (4), the variance in 

knowledge does not rise dramatically from grade three forward.  Accounting for changing reliability 

(columns (3) and (6)), the variance in test scores increases by even less.  In the NLSY79, where we 

can estimate test reliability in earlier grades, increasing reliability of tests between kindergarten and 

third grade is large enough to offset the growing variance of knowledge, resulting in an overall 

decline in the variance of test scores until third grade. These results suggest that relative 

comparisons of intervention effects at very young ages depend importantly on the relative reliability 

of the early tests. 

 We originally motivated our analysis with two empirical regularities: interventions in later 

grades tend to have smaller effects than the same interventions in earlier grades, and the test score 

impacts of early educational interventions almost universally “fade out” over time.  The remainder 

of this section focuses on the implications that our results have for interpreting these two empirical 

regularities. 

A. Implications for Contemporaneous Effects of Interventions in Different Grades 

The statistical artifact conveys how much smaller the test score impacts of an intervention in 

a later grade will be when compared to the test score impacts of an intervention in kindergarten that 

has the same impact on knowledge (equation (11)).  That is, suppose that an intervention in 

kindergarten raises kindergarten test scores by 0.2 standard deviations.  The estimates in column (1) 

of Table III imply that an intervention with the same impact on knowledge will raise test scores by 
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only 0.175 standard deviations in eighth grade, according to the CMS (0.2*0.877), and by only 0.166 

standard deviations, according to the NLSY79 (0.2*0.828).  Thus, the estimated effects on test 

scores would shrink by 12 to 17 percent despite no change in the effects on knowledge.  Using the 

estimates in columns (2) and (5), the estimated effects on test scores of two identical interventions 

would shrink by 6 to 8 percent between grade three and grade eight.  Allowing for changing test 

reliability reduces the expected reduction in effects to less than 4 percent, based on the CMS 

estimates (column (3)), and raises it to about 10 percent, based on the NLSY79 estimates (column 

(6)).   

These estimates are too small to explain fully the differences in the effects of the same 

intervention in different grades.  For example, Dee and Jacob (2011) estimate that the No Child Left 

Behind Act (NCLB) had an effect on math test scores in eighth grade that was smaller than that 

effect in fourth grade by 58 percent or more.   Likewise, in a study of charter schools in the Harlem 

Children’s Zone, Dobbie and Fryer (2011) generally find that the achievement effects of a year of 

charter attendance in elementary school exceeds those in middle school, and by a factor much larger 

that implied by Table III. Finally, Kane, Rockoff, and Staiger (2008) estimate that differences across 

teachers in their impact on student test scores were about 40 percent lower in middle school than in 

elementary grades.20   

While the standard errors on all of these estimates might admit changes in test scores as 

small as those implied by Table III, the more plausible explanation is that the same intervention later 

in the school career has less of an impact on knowledge.  Still, the statistical artifact is economically 

meaningful.  For example, taking grades three and eight to represent elementary and middle school, 

                                                 
20 A similar set of findings also holds in studies of the net impacts of additional year of completed education on test 
scores.  For example, exploiting the sharp difference in years of school completed among children with birthdays near 
school entry cutoff dates, Anderson et al. (2011) estimate that exposure to first grade raises math achievement by 0.776 
standard deviations.  Using a similar identification strategy, Cascio and Lewis (2006) find that an additional year of 
education raises the achievement of minority teenagers by 0.3 to 0.4 standard deviations.   
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respectively, our estimates from CMS imply that at least 10 percent of the decline in teacher effects 

is a statistical artifact.  If the artifact is ignored, policymakers seeking to compare teachers in 

different grades on the basis of their value-added will systematically reward equally-effective teachers  

in earlier grades. 

B. Implications for Interpretation of Fadeout  

An alternative way to interpret the statistical artifact is that it answers the counterfactual 

question:  how much fadeout would be observed by grade k if the math knowledge gained from an 

intervention in kindergarten persisted in full; that is, what would 0
0

0 k be if 1  and 0 , i.e., 

if all knowledge gains were long term and did not fade?  Again using eighth grade (k=8) as an 

example, the answer to this question is 12 to 17 percent, depending on the dataset.  While concise, 

this explanation is a bit misleading, since estimates of    L
ik

L
i gg varvar 0  depend on estimates of 

 , and   may be non-zero.  So more precisely, the statistical artifact conveys how much more 

fadeout is observed than would be predicted by true knowledge decay alone.  By eighth grade, the 

answer to this question would be 12 to 17 percent. 

In practice, fadeout of only 12 to 17 percent by eight years after an intervention is low.  For 

example, Krueger and Whitmore (2001) estimate the effects on attending a small class in Project 

STAR on test scores through eighth grade.21  While several issues complicate comparison of their 

estimates to ours,22 one cannot deny that they find greater fade-out – on the order of 70 to 80 

percent – by eighth grade.  Moreover, most of the fadeout in effects on test scores in Project STAR 

occurs immediately after the class size intervention ends.  Similarly, estimates of fade-out in teacher 

                                                 
21 Project STAR (Student Teacher Achievement Ratio), also known as the Tennessee STAR experiment, randomly 
assigned children entering kindergarten in 1985 to small and regular sizes in roughly 80 Tennessee schools.  Children 
entering these schools in later grades were also randomly assigned to class types, and participants were expected to stay 
in their initially assigned type of class through third grade, after which the experiment ended.   
22 We normalize tests in standard deviation units and look at math, while they use percentile ranks and average across 
performance on math and reading.  Further, the treatment was not confined just to kindergarten, but spanned up to four 
years for some students.   
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effects, which generally rely on data from third grade and later, reach 50 percent or higher only one 

year out (Kane and Staiger, 2008; Jacob, Lefgren, and Sims, 2008; Rothstein, 2010; Chetty, 

Friedman, and Rockoff, 2011). As was shown in Table III, the statistical artifact is even less 

important for understanding fadeout from interventions in third grade forward (columns (2) and 

(5)), particularly once test reliability is taken into account (columns (3) and (6)). 

 Yet, our estimates can be reconciled with this pattern of findings from the literature.  While 

our model predicts a small degree of fadeout from the statistical artifact, it can generate overall 

fadeout of roughly this magnitude.  To see this, recall that our model allowed for two sources of true 

knowledge decay, embodied in the parameters   and  .  captures the persistence of innovations 

to long-run knowledge, vit.  Our preferred specification from Table II, column (4) estimates   at 

0.935 or 0.936, implying that innovations to long-run knowledge fade by only 6 to 7 percent per 

year.   , in turn, is the share of the intervention’s contemporaneous effect that does not carry over 

to later grades (equation (10)), which depends on an intervention’s effect on ωit – the transitory 

innovation to knowledge – relative to its effect on vit.  

Unfortunately, we cannot estimate  directly from our data, and it may vary depending on 

the intervention. As discussed earlier, the prior literature suggests that half or more of the effects of 

teachers and other interventions fade after the first year, suggesting that a value of 5.0 seems 

reasonable. Alternatively, we can use the reported reliability ratios for the tests in CMS (0.9 or lower) 

– which account only for testing noise – to put an upper bound on the variance of the transitory 

innovations to knowledge (which our model does not separately identify from the variance of testing 

noise, var(εit), so it is subsumed in our estimates of the reliability ratio, 
ty ). Using this upper bound 

on var(ωit), and taking advantage of the fact that our specification can be rewritten as an ARMA(1,1) 
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in which the MA parameter corresponds to   (see footnote 7), we can get a sense of a reasonable 

value for  .  These back-of-the-envelope calculations suggest   on the order of 0.3 to 0.4.23   

Assuming a mid-range value of  = 0.4, Figure V plots estimates of total fadeout against k 

from an intervention in kindergarten for the CMS data (upper row) and NLSY79 data (lower row), 

respectively. The underlying estimates of model parameters correspond to the preferred 

specification, presented in column (4) of Table I. The solid lines connect the estimates themselves, 

and the dotted lines represent their 95 percent confidence intervals.24  The first column of each row 

plots the total fadeout from all sources – both true knowledge decay, embodied in the parameters   

and  , and the statistical artifact. The overall pattern of fadeout in these figures is consistent with 

the general pattern observed in the literature, with an initial sharp decline of about half, followed by 

a more gradual decline toward one quarter or one third of the original effect.  For the purposes of 

comparison, the second column of each row presents estimates of the statistical artifact (from 

columns (1) and (4) of Table III), and the third column presents the percent of total fadeout that is a 

statistical artifact.  The statistical artifact accounts for little of the short-run fadeout in test scores, 

but accounts for approximately 20 percent of total fadeout after four to five years. 

VII. Conclusion  

 Interventions in education are frequently found to have effects on test scores that fade over 

time:  those that occur earlier tend to have larger test score impacts than those that occur later, and 

the test score impacts of earlier interventions do not appear to last.  This paper has examined 

                                                 
23 Based on the estimates from our preferred specification for CMS in column 4 of Table II, values of var(ωit) (relative to 
the variance of the AR(1) innovations in long-term knowledge, which are normalized to 1) of .6 to 1 (depending on 
grade) are consistent with conventional test reliability rates of .9. This implies that short-term plus long-term knowledge 
in our model (excluding the fixed component) is the sum of an AR(1) with AR parameter .936 and innovation variance 
of 1, and a white noise term with variance .6 to 1. Using results from Granger and Morris (1976), this model is 
equivalent to an ARMA(1,1) with AR parameter .936 and MA parameter between -.29 and -.38. The MA parameter 
explicitly represents the proportion of this periods innovation that disappears immediately, as opposed to the geometric 
decay after the first period driven by the AR parameter. 
24 Standard errors were calculated using the delta method.  Given that the underlying specification estimated different 
values of 2

 for each cohort, we used the weighted average of the cohort-specific variances, where the weight is the 

frequency with which the cohort contributes to the estimation sample.   
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whether this pattern of findings can be explained by the common practice of rescaling test scores in 

distributional terms in an environment where the variance in knowledge is rising as children progress 

through school.  Intuitively, if this variance grows, the same increase in knowledge will change a 

child’s position in the achievement distribution by less in later grades: the effect on test scores falls, 

but the effect on knowledge does not – a “statistical artifact.”  We estimate the statistical artifact by 

fitting the predictions of a standard model of education production to correlations in test scores 

across grades and with college-going using both administrative and survey data.    

Our findings suggest that the variance in knowledge does indeed increase in a statistically 

and economically significant way from the start of elementary school to the end of secondary school 

– by between 37 and 56 percent in our relatively unrestricted preferred specification, depending on 

the data set.  Correspondingly, our estimates of the statistical artifact imply, for example, that that 

the test score impacts of attending a small class in kindergarten would be 12 to 17 percent lower by 

eighth grade even if the effect of a small kindergarten class on knowledge persisted in full.  While the 

overall fadeout of an intervention in kindergarten observed in practice – and predicted by our model 

– is much greater, the statistical artifact is still substantial, representing approximately 20 percent of 

overall fadeout over the longer term.  To take another example, our estimates imply that a teacher 

assigned to an eighth grade class would increase her students’ test scores by 6 to 10 percent less than 

if she were assigned to teach third grade.  Again, while the statistical artifact does not account for all 

observed decline in contemporaneous teacher effects, it is still substantial, particularly from the 

perspective of policymakers seeking to evaluate teachers from different grades on the basis of their 

value-added.   

Our findings also have wider implications.  This is perhaps most notably the case for 

research on racial, ethnic, and socioeconomic achievement gaps, which are commonly measured in 

distributional terms.  Our findings suggest a standard deviation difference in test scores translates 
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into a somewhat larger difference in knowledge in higher grades, with the implication that gaps in 

knowledge expand more rapidly as children progress through school than any expansion in the 

normalized test score gap (see, for example, Fryer (2011)) would imply.   
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For Comparison:
Charlotte-Mecklenburg 

Schools Data
NLSY79 Child and Young 

Adult Data
American Community 

Survey, 2007
(1) (2) (3)

Female 0.531 0.510 0.477
Non-black, non-Hispanic 0.533 0.461 0.668
Black 0.377 0.318 0.142
Hispanic 0.072 0.220 0.170
Multi-racial 0.018 n/a 0.021

College Attendance 0.484 0.508 0.600

Table I.  Demographic Characteristics of Underlying Samples

Analysis Data:

Notes: In columns (1) and (2), the unit of observation is the correlation.  For each correlation, we calculate the 
demographic characteristics of the underlying sample.  The table presents unweighted averages of these 
demographic characteristics; figures are very similar if we weight by the number of observations used to 
generate the correlation. Means in column (3) are based on the sample of 36,252 20 year olds in the 2007 ACS 
and are calculated using population weights provided in the data.
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(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

σμ
2 (natural log) 2.424 -20.12

(0.152) (0)

δ 1.060 1.019 0.916 0.936 0.922 1.164 1.051 0.908 0.935 0.933
(0.0353) (0.0278) (0.0432) (0.0330) (0.0395) (0.0242) (0.0166) (0.0584) (0.0518) (0.0573)

λw 0.289 0.272 0.279 0.283 0.276 0.167 0.207 0.208 0.206 0.203
(0.00578) (0.00515) (0.00548) (0.00581) (0.00941) (0.0119) (0.0165) (0.0172) (0.0162) (0.0228)

λy 0.883 0.885 0.865 0.704 0.743 0.718
(0.00519) (0.00434) (0.00436) (0.0135) (0.0153) (0.0352)

   + kindergarten Δ λy -0.347 -0.341 -0.338
(0.0492) (0.0497) (0.0514)

   + 1st grade Δ λy -0.237 -0.227 -0.224
(0.0359) (0.0381) (0.0403)

   + 2nd grade Δ λy -0.0717 -0.0725 -0.0704
(0.0470) (0.0401) (0.0409)

   + 4th grade Δ λy 0.0103 0.0150 0.0112 0.0263 0.0231 0.0233
(0.00545) (0.00508) (0.00735) (0.0376) (0.0311) (0.0317)

   + 5th grade Δ λy 0.0184 0.0242 0.0194 0.0514 0.0405 0.0391
(0.00656) (0.00597) (0.00909) (0.0293) (0.0304) (0.0310)

   + 6th grade Δ λy 0.0345 0.0412 0.0359 0.0186 0.00496 0.00418
(0.00639) (0.00579) (0.00939) (0.0367) (0.0378) (0.0394)

   + 7th grade Δ λy 0.0433 0.0518 0.0456 0.00462 -0.00907 -0.0113
(0.00542) (0.00528) (0.0102) (0.0381) (0.0349) (0.0355)

   + 8th grade Δ λy 0.0304 0.0416 0.0322 0.00429 -0.0264 -0.0292
(0.00674) (0.00648) (0.0129) (0.0416) (0.0527) (0.0568)

   + 9th grade Δ λy 0.0931 0.0578 0.0521
(0.0392) (0.0442) (0.0550)

βv 0.947 0.985
(0.0586) (0.0974)

Root MSE 0.0150 0.0120 0.00955 0.00793 0.00795 0.0485 0.0508 0.0361 0.0341 0.0343
N (correlations) 145 145 145 145 145 90 90 90 90 90

Model:

σμ
2 varies by cohort X X X X X X X X

λy varies by year X X X X

Table II.  Estimates of Model Parameters

B. NLSY79 Child and Young Adult DataA. Charlotte-Mecklenburg Schools Data

 

Notes:  The models are estimated using equal weighted minimum distance.  See text for description of the model and the 
data.  Robust standard errors are in parentheses. 
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Assuming: Changing λ y

t = K (0) 3rd grade (3) 3rd grade (3) K (0) 3rd grade (3) 3rd grade (3)
t +k = (1) (2) (3) (4) (5) (6)

0 K 1.000 1.000 1.109 0.807
(0.027) (0.059)

1 1st grade 0.973 0.959 1.064 0.881
(0.003) (0.011) (0.015) (0.038)

2 2nd grade 0.950 0.927 1.028 0.975
(0.007) (0.017) (0.007) (0.033)

3 3rd grade 0.932 1.000 1.000 0.902 1.000 1.000
(0.010) (0.022)

4 4th grade 0.917 0.984 0.992 0.881 0.977 0.993
(0.014) (0.004) (0.006) (0.026) (0.007) (0.021)

5 5th grade 0.904 0.970 0.984 0.864 0.958 0.985
(0.017) (0.009) (0.011) (0.030) (0.014) (0.025)

6 6th grade 0.894 0.959 0.981 0.850 0.943 0.946
(0.021) (0.013) (0.015) (0.034) (0.021) (0.030)

7 7th grade 0.885 0.949 0.977 0.838 0.930 0.924
(0.025) (0.017) (0.019) (0.039) (0.027) (0.032)

8 8th grade 0.877 0.941 0.963 0.828 0.919 0.902
(0.028) (0.021) (0.023) (0.043) (0.034) (0.047)

9 9th grade 0.870 0.820 0.910 0.945
(0.031) (0.048) (0.040) (0.057)

10 10th grade 0.865 0.813
(0.035) (0.053)

11 11th grade 0.860 0.807
(0.038) (0.057)

12 12th grade 0.856 0.802
(0.040) (0.061)

NLSY79 Child and Young Adult Data

Table III.  Estimates of Policy Parameters:

Charlotte-Mecklenburg Schools Data
Constant λ y Constant λ yChanging λy

Notes: Standard errors (calculated using the delta method) in parentheses.  The underlying specification is that 
presented in column (4) of Table II.  This specification allows σ2

μ (the endowment variance) to vary across cohorts 
and λy (the reliability ratio for third grade test scores) to vary across years.  To calculate var(g) in this table, we 
therefore must assume values for σ2

μ (in all columns) for λy (columns (3) and (6)).  For σ2
μ , we use the weighted 

average of the cohort-specific variance estimates, where the weight is the relative frequency with which the cohort 
contributes to the sample.  For λy, we use the weighted average of the year-specific third-grade reliability ratio 
estimates, where the weight is the relative frequency with which test scores from the year appear in the correlations.
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Figure I. Simulations of corr(y(t),y(t+k))
Under Alternative Assumptions on Model Parameters
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Figure III. Average Correlations and Average Predicted Correlations
from Preferred Specification: the Charlotte-Mecklenburg Schools Data

 
Notes:  The free-standing solid markers represent the (unweighted) average of the actual correlations, 
and the hollow markers attached by dashed lines represent the (unweighted) average of the predicted 
correlations.  Predictions are from the model presented in column (4) of Table II. 
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Figure IV. Average Correlations and Average Predicted Correlations
from Preferred Specification: the NLSY79 Child and Young Adult Data

 
 

Notes:  See notes to Figure III. 
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Figure V. Comparison of Statistical Artifact to Total Fadeout:
Intervention in Kindergarten

 
Notes:  Graph 1 of each panel plots          L

kity
L
ity

k gg
ktt 

 var1var11   under the assumption that 4.0 , 

ktt yy 
  , and t=0 (kindergarten).  Graph 2 of each panel plots        L

kity
L
ity gg

ktt 
var1var1   under the assumption that 

ktt yy 
   and t=0.  The underlying specification is that in Table II, column (4).  This specification allows σ2

μ (the endowment 

variance) to vary across cohorts.  To calculate var(g) in this table, we set σ2
μ as the weighted average of the cohort-specific variance 

estimates from this model, where the weight is the frequency with which the cohort contributes to the sample.  The dashed lines 
represent 95 percent confidence intervals. Standard errors were calculated using the delta method.  
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3 4 5 6 7 8 College 1

1994 1995 1996 1997 1998 1999 2004
1995 1996 1997 1998 1999 2000 2005
1996 1997 1998 1999 2000 2001 2006
1997 1998 1999 2000 2001 2002 2007
1998 1999 2000 2001 2002 2003 2008
1999 2000 2001 2002 2003 2004 2009
2000 2001 2002 2003 2004 2005 2010
2001 2002 2003 2004 2005 2006 2011
2002 2003 2004 2005 2006 2007 2012
2003 2004 2005 2006 2007 2008 2013
2004 2005 2006 2007 2008 2009 2014
2005 2006 2007 2008 2009 2010 2015
2006 2007 2008 2009 2010 2011 2016
2007 2008 2009 2010 2011 2012 2017
2008 2009 2010 2011 2012 2013 2018

Appendix Table I.  Data Availability by Cohort:   Administrative Data from Charlotte-
Mecklenburg Schools

Year (Spring) in Grade:

Notes: The shaded cells correspond to years in which data are available for CMS.  
The test score data thus span 1999 2009, and college-going in the first year after 
high school is available through fall 2008.  The present analysis uses data on all 
cohorts.
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Year Born 5 6 7 8 9 10 11 12 13 14 20 or 21

1972 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1992
1973 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1994
1974 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1994
1975 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1996
1976 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1996
1977 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1998
1978 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1998
1979 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 2000
1980 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 2000
1981 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 2002
1982 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 2002
1983 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 2004
1984 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 2004
1985 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2006
1986 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2006
1987 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2008
1988 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2008
1989 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2010
1990 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2010
1991 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2012
1992 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2012
1993 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2014
1994 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2014
1995 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2016
1996 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2016
1997 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2018
1998 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2018
1999 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2020
2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2020
2001 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2022

Year Turn Age:

Appendix Table II.  Data Availability by Cohort:  National Longitudinal Survey of Youth 1979 Child-Young Adult Survey

Notes: The shaded cells correspond to years in which either PIAT assessments were administered in the child survey or college-going 
information is reported in young adult survey,  The child survey began in 1986 and the young adult survey began in 1994; both are administered 
biennially.  The present analysis uses data on the 1982 to 1987 birth cohorts.  


