
NBER WORKING PAPER SERIES

OPTIMAL REGULATION IN THE PRESENCE OF REPUTATION CONCERNS

Andrew Atkeson
Christian Hellwig

Guillermo Ordonez

Working Paper 17898
http://www.nber.org/papers/w17898

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 2012

We thank Fernando Alvarez, Hal Cole, Johannes Hörner, Larry Samuelson, Jean Tirole, Ivan Werning,
and seminar participants at Berkeley, Carnegie Mellon, Chicago, Columbia, CREI, Duke, EIEF, EUI,
Minneapolis Fed, Paris School of Economics, University of Pennsylvania, Stockholm IIES, University
of Toronto, Toulouse School of Economics, Sauder School of Business-UBC, St. Louis Fed, Stanford
GSB, Wharton School, Yale University, the 2009 SED Meetings at Istanbul, and the 2010 Minnesota
Macro Workshop for their comments. We also thank Joan Gieseke for excellent editorial assistance
and the National Science Foundation and the Federal Reserve Bank of Minneapolis for support of
our research. The research leading to these results has also received funding from the European Research
Council under the European Community’s Seventh Framework Programme FP7/2007-2013 grant
agreement N263790. The usual waiver of liability applies. The views expressed herein are those of
the authors and not necessarily those of the Federal Reserve Bank of Minneapolis, the Federal Reserve
System, or the National Bureau of Economic Research.

At least one co-author has disclosed a financial relationship of potential relevance for this research.
Further information is available online at http://www.nber.org/papers/w17898.ack

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by Andrew Atkeson, Christian Hellwig, and Guillermo Ordonez. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided
that full credit, including © notice, is given to the source.



Optimal Regulation in the Presence of Reputation Concerns
Andrew Atkeson, Christian Hellwig, and Guillermo Ordonez
NBER Working Paper No. 17898
March 2012
JEL No. D21,D82,L15,L51

ABSTRACT

We study a market with free entry and exit of firms who can produce high-quality output by making
a costly but efficient initial unobservable investment. If no learning about this investment occurs, an
extreme "lemons problem" develops, no firm invests, and the market shuts down. Learning introduces
reputation incentives such that a fraction of entrants do invest. If the market operates with spot prices,
simple regulation can enhance the role of reputation to induce investment, thus mitigating the "lemons
problem" and improving welfare.

Andrew Atkeson
Bunche Hall 9381
Department of Economics
UCLA
Box 951477
Los Angeles, CA  90095-1477
and NBER
andy@atkeson.net

Christian Hellwig
Toulouse School of Economics
Manufacture de Tabacs,
21 Allées de Brienne,
31000 Toulouse
christian.hellwig@tse-fr.eu

Guillermo Ordonez
Yale University
Department of Economics
28 Hillhouse Av. Room 208
New Haven, CT, 06520
guillermo.ordonez@yale.edu



1 Introduction

In many market settings, the “lemons problem” (Akerlof (1970)) is an impediment to
trade. If buyers are unable to verify the quality of the goods or services provided, and
sellers of low-quality goods are free to enter the market, then adverse selection can
lead to a complete shut down of that market. If buyers have access to public signals of
the quality of sellers’ goods or services upon which a seller’s reputation can be based,
then sellers’ concern for their reputation is one mechanism through which the lemons
problem is mitigated.1 But do sellers’ concerns for their reputation in markets subject
to a lemons problem lead to allocations that are constrained efficient? Can regulation
of markets subject to a lemons problem enhance the role of reputation in improving
welfare? If so, what form should this regulation take?

These questions take on added urgency in the aftermath of the 2008 financial crisis.
In 1963, former Federal Reserve chairman Alan Greenspan wrote, ”Reputation, in an
unregulated economy, is...a major competitive tool.... Left to their own devices, it is
alleged, businessmen would attempt to sell unsafe food and drugs, fraudulent secu-
rities, and shoddy buildings...[but] it is in the self-interest of every businessman to
have a reputation for honest dealings and a quality product.”2 Forty-five years later,
in his remarks before the House of Representatives, he declared, ”Those of us who
have looked to the self-interest of lending institutions to protect shareholders’ equity,
myself included, are in a state of shocked disbelief.”3 So, does regulation substitute
or complement reputation forces?

In this paper we argue that, as a general matter, simple regulatory interventions in
markets subject to a lemons problem can in fact enhance market learning to foster
reputation incentives and improve welfare. We do so in a general equilibrium model
in which the production of one good is subject to an endogenous lemons problem
when traded in spot markets. We consider various assumptions about the informa-
tion available to the regulator and find that a simple form of entry regulation can
improve welfare even without access to direct information about the entering firms’

1For an excellent survey of the literature on this subject, see part 4 of the book by Mailath and
Samuelson (2006).

2”The Assault on Integrity,” The Objectivist Newsletter, August 1963. See also this statement from
Goldman Sachs’ 2009 Annual Report: “Our assets are our people, capital and reputation. If any of
these is ever diminished, the last is the most difficult to restore.”

3Edmund L. Andrews, ”Greenspan Concedes Error on Regulation,” New York Times, October 23,
2008.
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quality. The key is that entry regulation affects the firms’ incentives to enter the mar-
ket with high-quality products, which improves the quality mix of entrants and thus
mitigates the severity of the lemons problem.

In our model, consumers have utility over two final goods: a homogeneous good
that we term the numeraire good and a final good that we term the experience good. The
experience good is produced by aggregating a continuum of intermediate goods of
uncertain quality as inputs. The lemons problem occurs in the market for these in-
termediate goods.4 Individual producers of these intermediate goods are long-lived
and have zero marginal cost of production at each moment in time up to a capacity
constraint. Entering producers of the intermediate good decide whether to make a
costly investment of the numeraire good and enter with a high-quality product or to
not make the investment and enter with low-quality. A high-quality unit of the in-
termediate good has a positive marginal product in the production of the experience
good, whereas a low-quality unit has a negative marginal product. Producers of in-
termediate goods exit for exogenous reasons at a fixed rate, but they can also choose
to discontinue production and exit if it is optimal for them to do so. A steady-state in
this economy has ongoing entry and exit of intermediate good producers.

In the first-best allocation, all entrants make the required initial investment to pro-
duce with high-quality, and the level of entry is such that the discounted present
value of the marginal high-quality intermediate producer (measured at consumers’
marginal utility for the experience good) is equal to the required initial investment
of the numeraire good. Under full information, this optimal allocation is also the
equilibrium outcome in a market in which the spot market prices for all high- and
low-quality intermediate producers are equal to the marginal product of their cur-
rent output valued at consumers’ marginal utility for the experience good.

The lemons problem in this spot market arises when it is not possible to observe if
individual producers of intermediate goods have made the investment required to
provide high-quality. In this case, it cannot be that all intermediate producers are
paid a positive price for their output in equilibrium, or else low-quality producers
will earn positive profits from entry. In the complete absence of information about in-

4Our assumption that consumers consume the experience good as an aggregate of underlying in-
termediate goods of uncertain quality simplifies the computation of equilibrium and allows us to con-
struct a straightforward measure of social welfare based on the consumer surplus of a representative
household.
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termediate producers’ quality, this lemons problem leads to a complete market break
down and no production of the experience good at all in equilibrium.

The lemons problem is mitigated if producers of the experience good have access to
a public signal of the quality of each intermediate goods producer, which serves as
the basis for that producer’s reputation. In a spot market with such signals, at each
moment of time, individual intermediate producers are paid the expected marginal
product of their intermediate good valued at consumers’ marginal utility for the ex-
perience good, where that expectation is based on the individual producer’s current
reputation. Intermediate good producers’ reputations evolve over time according to
the stochastic structure of the public signals and the endogenous exit decisions of
high and low-quality producers. The reputation level of an entering intermediate
goods producer depends on the equilibrium ratio of high and low-quality entrants.

In equilibrium, the ratio of high and low-quality entrants is determined from the
firms’ free entry conditions, which equate the expected discounted payoffs for high
and low-quality entrants to the initial investment cost, or zero, respectively. Likewise,
firms are free to exit and will do so if their reputation level falls to a sufficiently low
level. These entry and exit conditions, along with the resulting firm dynamics, com-
bine to determine the severity of the adverse selection problem in general equilibrium
as a function of the public signal processes governing the reputation dynamics.

We characterize the stationary, competitive spot market equilibrium in this economy
with imperfectly informative signals. We then ask whether a regulator can, through
the use of taxes and transfers, improve on the spot market equilibrium outcome. The
extent to which a regulator can improve spot market equilibrium outcomes depends
on the information about market transactions that is available to that regulator.

First we show that a combination of entry fees and subsidies to the production of the
final experience good can be used to achieve an allocation arbitrarily close in welfare
terms to the informationally unconstrained first best. The entry fee shifts the incen-
tives of firms toward entering with a higher quality, but may also reduce the overall
level of entry of both types of firms, lowering overall entry below the first-best level.
The production subsidy then enhances entry to the efficient level, and can do so for a
quality mix of entering firms that is arbitrarily close to the first best. This simple regu-
latory scheme is therefore sufficient to drive low-quality intermediate goods produc-
ers almost completely out of the market while, at the same time, offering high-quality

4



producers sufficient compensation for their initial investment in quality, such that the
economy achieves a nearly efficient level of production of the experience good.

We interpret this finding as indicating that the lemons problem in this environment is
a problem of commitment, not one of information. The combination of entry fees
and production subsidies shifts the rewards toward high-reputation intermediate
producers, thus enhancing rewards for favorable signal outcomes over and above
those rewards offered by spot market prices. Similar incentives for quality could be
achieved privately if buyers and sellers could commit to long-term contracts involv-
ing payments that rewarded favorable signal outcomes and punished unfavorable
signal outcomes more steeply than the rewards offered in spot markets. Our central
insight is that the lemons problem reduces welfare in spot markets because rewards
to signals of quality offered in such markets are not sufficient to support a second-best
outcome.

We next consider a regulator that only has information about entry decisions, but
cannot directly observe market activity. This regulator can no longer resort to in-
terventions that subsidize or tax market transactions, but is just limited to imposing
entry fees.5

The imposition of a fixed entry fee leads to a potential trade-off between two oppos-
ing effects on equilibrium allocations: as discussed above, it improves the equilibrium
quality mix of entrants, but it may also reduce the overall level of entry. The combi-
nation may either increase or reduce the overall level of production of the experience
good and welfare in the steady-state.

We analyze the impact of a fixed entry fee on welfare in the steady-state for three
different processes of stochastic signals: one we term good news, one we term bad
news, and a third we term Brownian motion. We solve for entry conditions for high
and low-quality firms analytically, making welfare comparisons across different reg-
ulation policies tractable. We show how the dynamics of reputation accumulation as
governed by these three stochastic signal processes determine how a fixed entry fee
impacts equilibrium quality and entry. We show that in the bad news case, there is
no trade-off — an increase in the fixed entry fee always increases quality, entry, and
steady-state welfare. In the Brownian case, at least initially, there is no trade off —

5The regulator could also consider quantitative restrictions on entry. However, the set of allocations
that can be achieved using entry quotas is just a subset of the set of allocations that can be achieved
using entry costs, and cannot involve an increase in production of the experience good.
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starting from an entry fee of zero, an increase in the fixed entry fee always increases
quality, entry, and steady-state welfare. In this case, however, once the entry fee gets
large, further increases in the fee continue to increase quality but reduce entry and
steady-state welfare. In the good news case, there is an immediate trade-off — an
increase in the fixed entry fee always increases quality but immediately reduces en-
try. In this case, we show that, at least initially, starting from an entry fee of zero, an
increase in the entry fee has a second-order effect on quality and a third-order effect
on entry, and hence steady-state welfare improves. Thus, in all three cases a positive
entry fee is optimal.

Literature Review

Our paper connects two mechanisms that mitigate firms’ incentives to engage in op-
portunistic behavior: reputation and regulation. There is a rich literature studying
each of these mechanisms in isolation, but to our knowledge they have so far not
been systematically connected.

The literature on reputation concerns, surveyed recently in MacLeod (2007), inter-
prets reputation as a valuable asset that the firm may lose if it is found out to act
opportunistically (Mailath and Samuelson (2001) and Tadelis (1999, 2002). In these
models, firms differ in an unobservable exogenous characteristic. They enter the
market with an exogenous reputation level that is updated based on signals about
their performance. While the first models considered exit to be exogenous, Hörner
(2002), Bar-Isaac (2003), and Daley and Green (2010) introduce endogenous exit of
firms, when these firms know their own type.

We contribute to this literature along two important dimensions. First, we fully en-
dogenize the severity of the adverse selection problem, and the resulting trade-off
between market size and quality, in general equilibrium. We assume that firms are
free to enter or exit the market, and that the unobservable characteristic underly-
ing the lemons problem is the result of an unobserved initial investment decision by
otherwise identical firms. The firm’s incentive and participation conditions then de-
termine the number of high and low-quality entrants, as well as their respective rates
of exit, and the resulting firm dynamics determine the level of high- and low-quality
firms (and their respective reputations) in general equilibrium.

Second, as a technical contribution, we show that under natural restrictions on buyer
beliefs, the equilibrium is unique as the model approaches continuous time. We also
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fully characterize value functions in the continuous time limit, when firms know their
type and have the option to exit.6 In contrast with Bar-Isaac (2003), who introduces
a perturbation on exit strategies to obtain uniqueness, we show uniqueness without
this perturbation, as reputation is updated frequently.

Our paper contributes to the literature on regulation by showing how regulatory in-
terventions can be used to leverage reputational incentives. Leland (1979), extended
later by Shaked and Sutton (1981) and Shapiro (1983, 1986), introduce moral hazard
and investment decisions in markets with asymmetric information. Lizzeri (1999) and
Albano and Lizzeri (2001) analyze the efficiency effects of certification intermediaries.
In these environments, entry regulation plays the role of enhancing the information
about entrants that is available (”certification”). von Weizsacker (1980) discusses how
barriers to entry may increase welfare once we consider economies of scale and differ-
entiated products. Garcia-Fontes and Hopenhayn (2000) show that entry restrictions
can improve the average quality of firms in the market. In their case, the welfare
benefits arise from heterogeneous preferences about the quality of products among
buyers. To contrast our paper with this literature, none of these previous papers
considered the role of regulation together with reputational incentives in mitigating
information frictions. Furthermore, our study completely abstracts from scale effects
and product differentiation or market power as a motive for regulatory interventions,
and works with a representative consumer model. These previous papers thus point
to different, complementary channels through which regulation may enhance effi-
ciency.

Prescott and Townsend (1984) and Arnott, Greenwald, and Stiglitz (1993) discuss
whether government interventions can be Pareto improving in a world of adverse
selection and moral hazard even if they cannot directly correct these information
imperfections. Klein and Leffler (1981, p. 168) find that ”market prices above the
competitive price and the presence of nonsalvageable capital are means of enforc-
ing quality promises.” We contribute to this discussion by showing that the market
outcome with spot trade between producers and buyers is not constrained Pareto op-
timal. This result, however, does not arise from information asymmetry per se, but
from the fact that buyers and sellers are unable to commit to dynamic contracts that

6Prat and Alos-Ferrer (2010) solve similar value functions but without endogenous exit. Papers of
reputation in continuous time are Board and Meyer-ter Vehn (2010) and Faingold and Sannikov (2011);
however, they do not consider entry and exit decisions.
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generate prices that are different from spot prices. Our paper shows that government
interventions are Pareto improving if the private sector cannot reproduce the com-
mitment that a government can replicate with very simple taxes and subsidies. This,
of course, does not preclude the possibility of other market-based solutions to the
commitment problem through, e.g., longer-term contracts, back-loading of payments,
posting of bonds, other contractual clauses, or market-provided intermediation and
certification services.

In the following section, we describe the economy and characterize the spot market
equilibrium for two extreme benchmarks: full information and no learning. In Sec-
tion 3 we characterize the spot market equilibrium in steady-state with imperfectly
informative signals. In Section 4 we study the role of regulation in improving welfare
relative to a spot market economy under two settings: one where the regulator can
observe entry and transactions, and another where the regulator can only observe
entry. In Section 5 we make some final remarks. The Appendix has proofs.

2 The Model

In this section, we describe the economic environment, characterize the socially op-
timal allocation, and solve for the spot market equilibrium under two informational
benchmarks: full information, in which the quality of the producers of the intermedi-
ate goods is fully observable, and no information, in which there are no signals of the
quality of the intermediate good producers.

2.1 The Economy

Time is discrete with time periods numbered t = 0, 1, 2, . . .. We denote the length of a
time period in calendar time by ∆. For some calculations, we will consider the limit
as ∆ goes to zero.

At each time t, consumers in this economy derive utility from the consumption of two
final goods: one that we term the experience good and one that we term the numeraire
good. Let Yt denote consumption of the experience good and Nt consumption of the
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numeraire good at t. Consumers’ utility is given by

∞∑
t=0

exp(−r∆t) [U(Yt) +Nt] ∆, (1)

where U ′ > 0, U ′′ < 0, and r is the discount factor.

At each time t, there is an endowment of ∆ units of the numeraire good. This good
is not storable. The experience good is produced with a constant returns to scale
technology that uses produced intermediate goods as the only inputs.

At each point in time t, there is a stock of “trees” in the economy that yield a flow
of the intermediate good as “fruit” at zero marginal cost. In each period, each tree
yields a flow of one unit of the intermediate good per unit time for as long as the
tree remains active. Each period trees can become inactive for exogenous reasons or
endogenously by the owner’s decision. Trees that become inactive at t cannot return
to production at later dates.

Trees can be one of two types, high-quality (H) or low-quality (L), depending on an
initial investment made when the tree enters production (is planted). To plant a high-
quality tree at t, an investment of C units of the numeraire good is required at that
moment. Low-quality trees can be planted at zero cost at any moment. We refer to
the planting of new trees as entry.

The quality of the tree yielding ∆ units of the intermediate good as fruit per period
determines the expected productivity of those units of the intermediate good in use
as an input to produce the experience good. One unit of the intermediate good from
a high-quality tree contributes y(1) > 0 units of output of the experience good at the
margin, whereas one unit of fruit from a low-quality tree yields y(0) < 0 units of
output of the experience good at the margin.7

Let φ denote the public belief regarding the probability that a given tree is high-
quality. We refer to φ as the tree’s reputation. The expected output of the experience
good obtained from a unit of the intermediate good from a tree with reputation φ is

7The assumptions of zero marginal cost of production for the intermediate good and a negative
marginal product of low-quality intermediate goods are normalizations that simplify the exposition.
Assuming positive production costs and positive marginal product of low-quality intermediate goods
delivers the same results but less straightforwardly.
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denoted y(φ) and is given by the affine function

y(φ) = φy(1) + (1− φ)y(0). (2)

The resource constraint for the experience good is then given by

Yt = y(1)mHt + y(0)mLt, (3)

wheremHt is the measure of active high-quality trees at t andmLt is the corresponding
measure of active low-quality trees.

We denote the measure of new trees entering at t by me
t∆ ≥ 0. The fraction of those

entrants who invest to become high-quality is denoted φet ∈ [0, 1]. The corresponding
resource constraint for the numeraire good is

Nt = 1− Cφetme
t , (4)

where Cφetme
t are the resources invested in planting high-quality trees at t.

A tree that enters at t starts production with reputation φet . Each period that this tree
is active, it generates good or bad signals. We let αi(∆) denote the probability that an
active tree of type i = {H,L} generates a good signal.

We refer to the removal of active trees from production as exit. We denote the proba-
bility of continuation of a tree of quality i = {L,H} and reputation φt at t by ωit(φ) ∈
[0, exp(−δ∆)], where δ > 0 is the exogenous exit rate.

The timing of events within a period is as follows. At the beginning of period t, trees
that are incumbent from the previous period start with initial reputation designated
by φt. These trees choose rates at which to continue ωit(φ) and new trees enter. Buyers
form interim beliefs φct(φ) (φc : [0, 1]→ [0, 1]) about the quality of those incumbent trees
that started the period with reputation φ and that continue. Likewise, buyers form
beliefs φet about the quality of entering trees. Trade occurs at these interim beliefs.
Signals are then realized, leading to updating of reputations to φt+1 to start period
t+ 1 for all trees that were active in period t.

The evolution of reputation for a tree is governed by Bayes’ rule where applicable.
A buyer who contemplates purchasing the fruit from a tree that began period t with
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reputation φ and that continues to operate in period t has interim beliefs about the
quality of the tree consistent with trees’ strategies for continuation

φct(φ) =
φωHt(φ)

φωHt(φ) + (1− φ)ωLt(φ)
, (5)

where this expression is well defined.

Likewise, the updating of reputations given signals after trade takes place is also
governed by Bayes’ rule. After a tree that started in period t with reputation φt oper-
ates and generates a signal, it starts period t + 1 with reputation φt+1 given by either
φg(φc(φt)) or φb(φc(φt)) depending on whether a good or a bad signal is realized. The
functions φg and φb are defined by

φg(φc) =
φcαH(∆)

φcαH(∆) + (1− φc)αL(∆)
(6)

and
φb(φc) =

φc(1− αH(∆))

φc(1− αH(∆)) + (1− φc)(1− αL(∆))
. (7)

At the beginning of each period t, there is a measure of reputations across high-
quality trees νHt(φ) and across low-quality trees νLt(φ). Production is determined
by the extent of trade. Hence, for an allocation to be feasible, we must have

mHt = exp(−δ∆)φetm
e
t∆ +

∫
φ

ωHt(φ)dνHt(φ), (8)

mLt = exp(−δ∆)(1− φet )me
t∆ +

∫
φ

ωLt(φ)dνLt(φ). (9)

The evolution of the measures of reputations across high- and low-quality trees νit(φ)

from one period to the next is determined in the standard way. First, firms continua-
tion strategies ωit(φ) reduce the measure of high- and low-quality trees by reputation
through exit. Second, the reputations of those trees that continue are updated accord-
ing to buyers’ interim beliefs φct(φ), and a measure exp(−δ∆)me

t∆ of trees enters with
fraction φet of those trees being high-quality and (1 − φet ) low-quality. Finally, trade
occurs, good or bad public signals are observed, and trees’ reputations are updated
again according to Bayes’ rule in (6) and (7).

An allocation in this environment is a sequence of consumption of the experience and
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numeraire goods for the representative household {Yt, Nt}, rates of entry of trees
and initial reputations for entrants {me

t , φ
e
t}, buyers’ interim beliefs {φct(φ)}, and for

i = {L,H}, continuation strategies {ωit(φ)}, reputational distributions {νit(φ)}, and
corresponding measures of active high- and low-quality trees {mit}.

An allocation is feasible if it satisfies the final good resource constraints (3) and (4), the
constraints on the evolution of reputation measures implied by continuation strate-
gies, buyers’ interim beliefs, the rates of entry and initial reputations for entrants, and
the signals stated above, and the stocks of high- and low-quality trees satisfy (8)-(9).

2.2 Signal Structures and Reputation

In what follows, we consider five signal structures on which reputation can be based,
which we term full information, no information, good news, bad news, and Brownian mo-
tion. We define these signal structures here.

Under full information, there is an immediate, perfect signal of trees’ quality so that
the reputation of a high-quality tree jumps to φ = 1 upon entry, whereas that for a
low-quality tree jumps to φ = 0 upon entry.

Under no information, there are no signals so that the reputation of a tree entered into
production with reputation φet evolves over time only according to buyers’ interim
beliefs.

In the good news case, if the tree is of high-quality, a signal that reveals that quality
arrives at rate λ > 0 per unit of time. No such signal can arrive if the tree is low-
quality. This corresponds to αL(∆) = 0 and αH(∆) = λ∆. Note that in this case, φg(0)

is not defined by Bayes’ rule. We impose that φg(0) = limφ→0 φ
g(φ) = 1.

In the bad news case, the assumption is reversed: if the tree is of low-quality, a signal
that reveals that quality arrives at rate λ > 0 per unit of time. No such signal can
arrive if the tree is high-quality. This corresponds to (1−αH(∆)) = 0 and (1−αL(∆)) =

λ∆. Note that in this case, φb(1) is not defined by Bayes’ rule. We impose that φb(1) =

limφ→1 φ
b(φ) = 0.

Finally, to approximate a Brownian motion in discrete time, we choose αH(∆) and
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αL(∆) so that for all φ

log

(
φg(φ)

1− φg(φ)

)
− log

(
φ

1− φ

)
= ζ
√

∆

and

log

(
φb(φ)

1− φb(φ)

)
− log

(
φ

1− φ

)
= −ζ

√
∆.

This is achieved if

αH(∆) =

(
exp(ζ

√
∆)

1 + exp(ζ
√

∆)

)
>

1

2
(10)

and αL(∆) = 1− αH(∆), where ζ is the signal-to-noise ratio.

The signals in the good news, bad news, and Brownian motion cases are public sig-
nals of the quality of each tree that are observed by all potential buyers. These signals
might be interpreted as ratings in some widely published guide derived from either
specialized testing or noisy surveys of past customers’ experiences with the interme-
diate good obtained from each tree. Under this interpretation, individual past buyers
of the intermediate good from a particular tree have more precise information about
that tree’s quality from their past consumption experience, but this experience is not
fully revealed to other buyers by a survey. We assume that this private information
does not affect demand for a given tree’s fruit because buyers do not buy repeatedly
from the same tree.

Alternatively, one might interpret the signals as reflecting a noisy outcome of pro-
duction of the experience good with the intermediate output supplied by a particular
tree. For example, if the good signal is a positive contribution of 1 to the production
of the experience good and the bad signal is a negative contribution of −1, the ex-
pected contribution from a high-quality tree is y(1) = 2αH(∆) − 1 and the expected
contribution from a low-quality tree is y(0) = 2αL(∆) − 1. Under this interpretation,
the outcome of each individual buyer’s experience is public information.

2.3 A Spot Market Equilibrium

We now consider the equilibrium allocation in a market in which the owners of trees
sell the intermediate goods obtained as fruit from their trees to producers of the ex-
perience good. We assume producers of the experience good face competition both
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in buying their inputs and in selling their output. Hence, at each time t, experience
good producers buy fruit at a spot market price pt(φ) that depends on the reputation
of the tree. This spot market price is equal to the expected value of the marginal prod-
uct of the intermediate good when used in production of the experience good, with
expectations based on the reputation of the tree. This expected value of the marginal
product has two components: the relative price of the experience good with respect
to the numeraire good and the expected marginal product of the intermediate good
from a tree with a given reputation, y(φ) from equation (2).

We assume the experience and numeraire final goods are also transacted at spot prices
in each period t. We denote this relative price by Pt. In equilibrium, given our as-
sumption about the competition that experience good producers face, this price of
the experience good relative to the numeraire good is given by the marginal utility of
the experience good:

Pt = U ′(Yt). (11)

Thus, the spot market price at t in units of the numeraire good, for a unit of the inter-
mediate good from a tree that is believed to be of high-quality with probability φ, is
given by

pt(φ) = y(φ)Pt. (12)

In what follows, we focus on steady-state spot market equilibrium, a spot market equi-
librium in which all prices and quantities are constant over time. To keep the notation
simple, we suppress the time subscript. If p(φ) is the steady-state spot market price for
intermediate goods based on reputation and Y is the steady-state production of the
experience good, we find it useful to directly use prices normalized by the marginal
utility of the experience good. From the previous two equations, these normalized
prices are just the expected marginal products of the intermediate good, y(φ).

Given that trees produce ∆ units of the intermediate good at zero marginal cost,
y(φ)∆ corresponds to the flow of normalized profits from an active tree with repu-
tation φ at t.

In the next lemma, we show that in a steady-state spot market equilibrium, given
buyers’ interim beliefs φc(φ), the discounted expected value of the profits earned by a
tree of quality i ∈ {H,L} and reputation φ can be characterized by a Bellman equation
in which the normalized profits y(φ)∆ are the current reward. We denote the fixed
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point of this Bellman equation by Vi(φ) and refer to it as the normalized value function
of a tree of quality i and reputation φ. Because trees find it optimal to continue when
they expect positive profits and exit if they expect negative profits from continuation,
the actual value functions, denoted W i(φ), are simply given by the normalized value
functions scaled by the price of the marginal utility of the experience good U ′(Y ) in
steady state, i.e., Wi(φ) = Vi(φ)U ′(Y ).

Lemma 1 Normalized value functions of intermediate good producers.

Take buyers’ interim beliefs based on continuation φc(φ) as given. The value of a tree with
quality i ∈ {L,H} and reputation φ is given as the unique solution Vi(φ) to the Bellman
equation

Vi(φ) = max
ω∈[0,exp(−δ∆)]

ωV c
i (φc(φ)), (13)

where

V c
i (φc) = y(φc)∆ + exp(−r∆)

(
αi(∆)Vi(φ

g(φc)) + (1− αi(∆))Vi(φ
b(φc)

)
(14)

with φg(φc) and φb(φc) defined by (6) and (7).

The proof of this lemma is given in the Appendix.

This Bellman equation (13) also defines the set of optimal continuation strategies for
a tree of quality i given buyers’ interim beliefs. Specifically, a continuation strategy
ωi(φ) is a best response to buyers’ interim beliefs φc(φ) only if ωi(φ) = exp(−δ∆) when
Vi(φ) > 0 and Vi(φ) ≥ 0 for all φ. Note that this second requirement implies that
ωi(φ) = 0 whenever V c

i (φc(φ)) < 0.

In a steady-state spot market equilibrium, we also require that there be non-positive
profits associated with entry for both high- and low-quality trees; that is,

VH(φe)U ′(Y )− C ≤ 0, (15)

with equality if φeme∆ > 0, and

VL(φe)U ′(Y ) ≤ 0, (16)

with equality if (1− φe)me∆ > 0.
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We summarize this discussion with the following definition of a steady-state spot mar-
ket equilibrium.

Definition 1 Steady-state spot market equilibrium

A steady-state spot market equilibrium consists of a feasible allocation in which all variables
are constant over time {Y,N,me, φe, φc(φ), ωi(φ), νi(φ),mi} and normalized value functions
{Vi(φ)} defined as in (13) such that

(i) The continuation strategies ωi(φ) are a best response to buyers’ interim beliefs φc.

(ii) Buyers’ interim beliefs φc(φ) are consistent with the continuation strategies ωi(φ) as in
(5) where Bayes’ rule is defined, and

(iii) The zero profits on entry conditions (15) and (16) are satisfied.

In the next two subsections, we solve for the steady-state spot market equilibrium un-
der two extreme informational benchmarks: full information and no information. We
show that under full information, the socially optimal allocation can be implemented
as a spot market equilibrium, whereas under no information, there is no production
of the experience good in a steady-state spot market equilibrium.

2.4 Full Information Benchmark

It is straightforward to characterize the socially optimal allocation in the full informa-
tion case. We have that the measure of reputation across trees has mass on φ = 0 and
on φ = 1, with no trees with intermediate reputations. The evolution of the stocks of
trees (8) and (9) in steady-state is given by

mH = exp(−δ∆)φeme∆ + ωH(1)mH (17)

and
mL = exp(−δ∆)(1− φe)me∆ + ωL(0)mL. (18)

Clearly, since the output of a tree known to be low-quality is expected to subtract
from production of the experience good (y(0) < 0), it is optimal to set ωL(0) = 0 and
φe = 1. Likewise, since an existing tree known to be of high-quality can contribute
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y(1) to production of the experience good at zero cost as long as it continues in pro-
duction, it is optimal to set ωH(1) = exp(−δ∆), its maximum value. These results then
characterize the optimal continuation decisions.

Now consider the optimal level of entry of high-quality trees. The marginal social
cost, in terms of utility, of creating a new tree at t with probability φe = 1 of being
high-quality is given by C, whereas the marginal benefit is given by

exp(−δ∆)
∞∑
τ=t

exp(−(r + δ)∆τ)y(1)U ′(Ȳ )∆,

where Ȳ denotes the full information production of the experience good in steady-
state. Then

∆ exp(−δ∆)

1− exp(−(r + δ)∆)
y(1)U ′(Ȳ ) = C. (19)

As ∆→ 0, this equation converges to

y(1)U ′(Ȳ ) = C(r + δ).

There is an optimal stock of high-quality trees in steady state determined by equation
(3), m̄H = Ȳ /y(1).

The optimal dynamic choice of entry me
t∆ is the following. If y(1)mH0 is less than

this optimal level Ȳ , the regulator creates an atom of new high-quality trees at t =

0 to attain the optimal stock m̄H of high-quality trees immediately (since utility is
quasi-linear). If y(1)mH0 exceeds this optimal level, the regulator creates no new trees
until the stock of existing high-quality trees has depreciated down to this level at
rate exp(−δ∆). Once this optimal stock of high-quality trees is attained, the regulator
chooses a flow of entry of new trees me = 1−exp(−δ∆)

∆
m̄H to maintain the stock at a

constant level. If ∆ → 0 the flow of new trees necessary to maintain the stock at a
constant level is then me = δm̄H .

The value function associated with a high-quality tree in the socially optimal alloca-
tion in steady-state is

VH(1) = exp(−δ∆)
∞∑
τ=t

exp(−(r + δ)∆τ)U ′(Ȳ )y(1)∆ > 0,

17



whereas that associated with operating a low-quality tree is

VL(0) = 0.

This last result follows from the assumption that y(0) < 0, so it is always optimal
to remove a low-quality tree from production as rapidly as possible. Note also that
in the transition to steady state, VH(1) = C whenever there is positive entry and
VH(1) < C when there is no entry.

Clearly, the spot market prices (p(1) = y(1)U ′(Ȳ ) and p(0) = y(0)U ′(Ȳ )) implement
the value functions above and hence the optimal allocation, characterized by entry of
high-quality trees, φe = 1, and high production of the experience good, Ȳ .

2.5 No Information Benchmark

In contrast to the full information case, in the extreme case of non-observable invest-
ment and no signals from which to learn, the adverse selection problem associated
with free entry of low-quality trees is so severe that there is no production of the
experience good in steady state.

This result follows from the observation that it is impossible to offer high-quality
producers of the intermediate good a positive price for their good without attracting
unbounded entry of low-quality trees. With no dependence of the public signal on
the quality of the tree, reputation for high- and low-quality trees will not change over
time if both types of trees have the same continuation rates ωi(φ) > 0. Likewise, both
types of trees will have the same exit rates if reputation does not evolve because, if
reputation does not evolve, then they both expect the same profits, that is, VH(φ) =

VL(φ). Of course, this equality of value functions means that it is impossible to satisfy
the entry condition for high-quality trees (15) as an equality (with positive entry of
high-quality trees) without violating the entry condition (16) for low-quality trees. As
a result, there can be no positive production of the experience good once the initial
stock of high-quality trees dies out. Thus, the steady-state equilibrium allocation with
no information has no entry of trees and Y = 0.
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3 Reputation with Imperfectly Informative Signals

In this section, we solve for a steady-state spot market equilibrium when public sig-
nals about each intermediate goods producing tree are revealed over time following
the three signal structures defined above (good news, bad news, and Brownian mo-
tion). In each case, the steady-state spot market equilibrium can be solved for in
a two-step recursive manner. In the first step, we solve for the buyers’ interim be-
liefs φc(φ), trees’ normalized value functions Vi(φ), and continuation strategies ωi(φ)

consistent with conditions (i) and (ii) in the definition of a steady-state spot market
equilibrium. In the second step, we solve for the reputation of entering trees φe and
the level of output of the experience good Y consistent with the entry conditions for
high- and low-quality trees (15) and (16) expressed as equalities. The resource con-
straints that define a feasible allocation then give the remainder of the equilibrium
quantities.

We impose two “reasonable” restrictions on buyers’ interim beliefs to rule out multi-
plicity of equilibrium generated by off-equilibrium beliefs.

Assumption 1 Monotonic Updating

We say that buyers’ beliefs show monotonic updating if φc(φ) is non-decreasing in φ for all
φ ∈ [0, 1].

Using the Bellman equations developed in Lemma 1, this restriction implies that
value functions Vi(φ) are weakly increasing and VH(φ) ≥ VL(φ).

Assumption 2 High quality trees are more likely to continue than low-quality trees.

We say that buyers’ beliefs regarding trees’ continuation strategies are consistent with the
hypothesis that high-quality trees are more likely to continue than low-quality trees if φc(φ) ≥
φ for all φ.

Note that this assumption is stronger that a restriction on that ωH(φ) ≥ ωL(φ) for all
φ. It further imposes restriction on interim beliefs when both continuation strategies
are equal to zero.
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Now we show that the steady-state spot market equilibrium that we focus on here is
in fact the unique steady-state spot market equilibrium allocation as the model con-
verges to continuous time (this is, as ∆ → 0) given the three information structures
and these two restrictions on buyers’ interim beliefs. That result, and the structure of
the steady-state spot market equilibrium with imperfectly informative signals, is described
in the following proposition and proved in the Appendix.

Proposition 1 Steady-state spot market equilibrium under assumptions 1 and 2 on buyers’
beliefs.

The steady-state spot market equilibrium implemented by normalized spot prices y(φ) is
uniquely characterized, as ∆→ 0, by the following four results:

(i) There is entry of some low-quality trees, (φe < 1),

(ii) Reputations of all active trees in steady-state remain in an interval [φ̄, 1] with φ̄ > 0.
High-quality trees always strive to remain active, i.e., ωH(φ) = exp(−δ∆) for φ > 0.
Low-quality trees also strive to remain active if φ > φ̄, and otherwise they randomize
continuation with a probability ωL(φ) ∈ (0, exp(−δ∆)] such that buyers’ interim beliefs
φc(φ) = φ̄.

(iii) The steady-state equilibrium entry reputation equals the exit threshold: φe = φ̄.

(iv) The steady-state equilibrium level of production of the experience good Y satisfies

VH(φe)U ′(Y ) = C. (20)

The structure of this equilibrium allows for a two-step equilibrium construction pro-
cedure:

Equilibrium construction step 1: The first step of our equilibrium construction is
illustrated in Figures 1 and 2. The equilibrium buyers’ interim beliefs φc(φ), trees’
continuation strategies ωi(φ), and trees’ normalized value functions Vi(φ) are all in-
dexed by a reputation level φ̄ ∈ (0, 1) that we refer to as the exit threshold such that

(a) buyers’ interim beliefs are given by φc(φ) = φ for φ ≥ φ̄, φc(φ) = φ̄ for φ ∈ (0, φ),
and φc(0) = 0,
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(b) trees’ continuation strategies are given by ωH(φ) = exp(−δ∆) for all φ > 0 and
ωH(0) = 0 for high-quality trees, whereas, for low-quality trees ωL(φ) = exp(−δ∆) for
all φ ≥ φ̄, and ωL(φ) solves

φ̄ =
φ exp(−δ∆)

φ exp(−δ∆) + (1− φ)ωL(φ)

for all φ ∈ (0, φ̄), and ωL(0) = 0, and, finally,

(c) the normalized value function for high-quality trees VH(φ) is strictly positive for
φ > 0 and equal to zero for φ = 0, whereas, for low-quality trees VL(φ) = 0 for φ ≤ φ̄

and VL(φ) > 0 otherwise.

In each of our three cases of imperfectly informative signals, this first step reduces
to a fixed point problem of finding an exit threshold φ̄ such that the associated buy-
ers’ interim beliefs defined in (a) imply normalized value functions such that φ̄ is the
greatest lower bound on the set of φ such that VL(φ) > 0 as in (c), thus ensuring that
the continuation strategies specified in (b) are a best response to the buyers’ interim
beliefs.8 In the Appendix we provide closed-form solutions for the value functions
and exit thresholds for all three of our signal structures in the continuous time limit as
∆ → 0. Figures 1 and 2 are constructed based on Brownian motion and ∆ → 0. Fig-
ures 3 and 4 show the value functions for the bad and good news cases, respectively,
again as ∆→ 0.

Equilibrium construction step 2: Given a solution to step 1, the reputation at entry
is chosen as φe = φ̄. This clearly implies that the zero profit at entry condition for
low-quality trees (16) is satisfied. The aggregate production of the experience good Y
is chosen such that the normalized value function for high-quality firms, when scaled
by the marginal utility of the experience good U ′(Y ), satisfies the condition that high-
quality trees earn zero profits at entry, i.e., (15) is an equality. The remaining elements
of the equilibrium allocation can then be solved from the conditions defining feasibil-
ity.

Of course, the normalized value of high-quality trees at φe = φ̄, given by VH(φe) > 0,

is determined by the specifics of the signal structure. Hence, the equilibrium level
of production of the experience good Y, and the corresponding marginal utility of

8At φ = 0, we have assumed that buyers’ interim beliefs are absorbing at φc(0) = 0 and that both
high- and low-quality trees exit. Bayes’ rule is not defined at this point.
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Figure 1: Continuation Decisions and Interim Reputation
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that experience good U ′(Y ) needed to satisfy the zero profit condition on entry for
high-quality trees (15), are pinned down by the signal structure as well.

This procedure for computing a steady-state spot market equilibrium with imper-
fectly informative signals gives us the result that the lemons problem that arises with
imperfectly informative signals leads to a reduction in the output of the experience
good relative to the full information steady state. We state this result in the next
proposition.

Proposition 2 Comparison of equilibrium outcome with full information benchmark.

The steady-state level of the experience good output when signals about trees’ quality are not
perfectly informative is lower than that in the full information benchmark. That is, Y < Ȳ .

Proof Using (19) from the full information benchmark, the first-best level of expe-
rience good production is given by VH(1)U ′(Ȳ ) = C. With imperfectly informative
signals, we have that the fraction of high-quality trees that enter is equal to the lowest
level of reputation sustained by the market; that is, φe = φ̄ < 1. From (15), the out-
put of the experience good is given by VH(φ̄)U ′(Y ) = C. Since VH(φ̄) < VH(1), then
Y < Ȳ . Q.E.D.
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Figure 2: Value Functions: Brownian motion
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As we see from this proof, although reputation mitigates the lemons problem and al-
lows for some positive production of the experience good (relative to the no-information
benchmark), the need for high-quality trees to endure lower profits after entry as they
accumulate a good reputation constrains efficient production. Hence, in a steady-
state spot market equilibrium with imperfectly informative signals, the time that
high-quality trees spend accumulating a reputation to distinguish themselves from
low-quality trees leads to a social cost relative to the full information benchmark. The
next section focuses on the potential of regulation to mitigate this social cost.

In the next proposition, we show that regardless of the information structure, the
steady-state spot market equilibrium converges to the benchmark without informa-
tion as the precision of signals goes to zero and converges to the benchmark with
perfect information as the precision of signals goes to infinity. Hence, as the effective-
ness of learning improves, the equilibrium ranges from complete market shutdown
to the unconstrained first best.

Proposition 3 The benchmarks are the equilibria at the informational limits as ∆→ 0.

In the three information structures considered (bad news, good news, and Brownian motion),
the spot market equilibrium converges to Y = 0 as the precision of signals goes to zero and to
the unconstrained first best Y = Ȳ , as the precision of signals goes to infinity.
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Figure 3: Value Functions: Bad News
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Figure 4: Value Functions: Good News
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We prove this proposition in the Appendix by direct calculation using the analytical
solutions for the value functions in the continuous time limit.

4 Regulation with Imperfectly Informative Signals

We now study the role of regulation in improving welfare relative to a market econ-
omy with reputation based on imperfectly informative signals. We assume the reg-
ulator has access to two simple instruments: subsidies s per unit of the experience
good purchased (such that the effective price obtained by experience good producers
is P = sU ′(Y ) per unit) and taxes F on entrants into intermediate goods production.
We assume the net proceedings of these taxes and subsidies are rebated lump sum to
consumers or obtained lump sum from consumers.

We begin this section with an extension of our procedure for constructing the steady-
state spot market equilibrium with imperfectly informative signals to the case of equi-
librium with the subsidies s and taxes F . We then consider the extent to which a
regulator can improve on welfare in the spot market equilibrium with these two pol-
icy instruments and how these possibilities for welfare improvement depend on the
information available to the regulator.

Consider the construction of a steady-state equilibrium with regulation. Note that
since a subsidy s to the sale of the experience good simply alters the relative price of
the experience good to P = sU ′(Y ) and that a tax F on entry of intermediate good
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producers simply alters the conditions (15) and (16) that high- and low-quality trees
earn zero profits on entry, then the first step in our construction of equilibrium sum-
marized as finding an exit threshold φ̄ and corresponding interim beliefs for buyers
φc(φ), continuation strategies for trees ωi(φ), and normalized value functions Vi(φ)

that satisfy conditions (a), (b), and (c) is unchanged. Hence, the regulatory instru-
ments considered here have no impact on buyers’ beliefs and trees’ continuation
strategies.

The second step of equilibrium construction, however, is altered. Specifically, the zero
profit on entry conditions for high- and low-quality trees (15) and (16) now become

VH(φe)sU ′(Y ) = C + F (21)

and
VL(φe)sU ′(Y ) = F. (22)

Thus, the second step of our equilibrium construction now becomes one of solving
the two zero profit on entry conditions (21) and (22) for the endogenous reputation of
entrants φe and output of the experience good Y .

In what follows, it is useful to write these two zero profit conditions for entry (21) and
(22) equivalently as follows. First taking the ratio of (22) to (21), we have

VL(φe)

VH(φe)
=

F

C + F
. (23)

Second, taking the difference between (21) and (22), we have

(VH(φe)− VL(φe)) sU ′(Y ) = C. (24)

As these equations make clear, the reputation of entrants φe ≥ φ̄ depends only on F .
Subsidies to the sale of the experience good do not differentially affect the entry de-
cisions of high- and low-quality trees. In contrast, total production of the experience
good Y depends on φe (hence on F ) and on s.

Note also that the relationship between entry taxes F and the reputation of entrants
φe depends on how the ratio of the value functions VL and VH varies with φ. In par-
ticular, we clearly have that the right-hand side of (23) is strictly increasing from 0
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to 1 as F increases from 0 to ∞. We also have, by construction, that the ratio of the
value functions on the left-hand side of (23) is equal to zero at φe = φ̄ and equal to 1

at φe = 1. In the Appendix we prove that for the three signal structures we consider,
in the continuous time limit, the ratio of the value functions VL(φe)/VH(φe) is strictly
increasing in φe from 0 at φe = φ̄ to 1 at φe = 1, so that we have that the equation (23)
implicitly defines the reputation of entrants as a function of the tax on entry denoted
φe(F ). Moreover, this result implies that it is feasible for a regulator to implement any
initial reputation of entrants φe ∈ [φ̄, 1) desired by an appropriate choice of entry costs
F . Thus, in terms of solving for the equilibrium outcome as a function of the regula-
tory instruments F and s, we have that (23) gives the reputation of entrants φe as a
function of the entry cost F and then (24) gives the equilibrium level of production of
the experience good Y as a function of φe(F ) and s.

4.1 Regulation When Transactions Are Observable

We assume that a regulator who observes transactions in the market can choose both
the subsidy to the sale of the experience good s and the tax on entrants F . Our main
result here is that a regulator with access to these two policy instruments can imple-
ment a steady-state equilibrium outcome with welfare for the representative house-
hold that is arbitrarily close to welfare in the full information first-best outcome.
Specifically, let Ȳ and N̄ denote the full information optimal steady-state levels of
consumption of the experience and numeraire good. We then have the following
proposition.

Proposition 4 Optimal regulation with policies based on transactions.

When a regulator observes transactions, it is possible to find a combination of F and s that
implements a steady-state allocation with Y = Ȳ and N = N̄ − ε for any ε > 0.

The regulator can set F large enough to make φe arbitrarily close to 1. Then, it is
possible to find a subsidy to target the optimal Ȳ

s =
C

U ′(Ȳ ) [VH(φe)− VL(φe)]
.
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The corresponding value of φeme∆ needed to produce Ȳ is slightly higher than in the
full information first best because there is a small fraction of low-quality active trees
in steady state detracting from the output of the experience good. This additional
expenditure of the numeraire good required to pay for the extra entry of high-quality
trees can be made arbitrarily small by setting φe arbitrarily close to 1. Details of this
proof are in the Appendix.

We interpret this proposition as indicating that the lemons problem in this economy
is one of commitment rather than one of information. The lemons problem arises
because the competitive market prices based on the spot gains to trade between a
buyer and a seller do not offer sufficient rewards to reputation to ensure high-quality.
There is a welfare gain to be achieved here if buyers are able to commit to pay prices
that reward good reputation or punish poor reputation over and above the incentives
provided by spot market prices.

In some environments, it may be possible to achieve such commitment through long-
term contracts between buyers and sellers. If a contract between a buyer and seller
with prices based on reputation can be enforced, then the two parties can, with an
appropriate choice of parameters F and s, design an incentive contract guarantee-
ing that most sellers entering into the contract are high-quality. Here we interpret
the relationships between the buyers and sellers of intermediate goods as one-shot
or short-lived, and hence long-term contracts are not feasible. In this case, regula-
tion is a substitute for missing private capabilities to commit, and can replicate the
commitment allocation.

Remark on budget balance: We have not assumed budget balance in which taxes
on entry by new intermediate good producers exactly compensate subsidies to ex-
perience good producers. Budget balance would impose restrictions on how closely
one can approximate the unconstrained first best. The government revenues from en-
try taxes are Fme∆ per period, whereas, the government expenditures on subsidies
are (s − 1)U ′(Y )Y∆ per period. Revenues have an upper bound (when φe → 1 and
Y = Ȳ ) of VL(1)1−exp(−δ∆)

∆
Ȳ
y(1)

∆, which is finite. Contrarily, required subsidies explode
to infinity as φe → 1 from equation (24). This implies that budget balance restricts the
possibilities for regulation to approximate the first-best allocation.

Remark on non-Markov transfers: One can also see immediately that our assump-
tion that subsidies are based on transactions rather than the full history of signals for
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each tree is restrictive. The standard result that a reputation of φ = 1 is an absorbing
state implies that VL(1) = VH(1), so it is impossible to have only high-quality trees
entering. We can get arbitrarily close to having only high-quality trees enter, but not
all the way there.

In contrast, if we allowed the regulator to make transfers based on the full history of
signals of quality associated with each tree, then, for a wide range of stochastic sig-
nal structures, the regulator could implement an allocation with exactly φe = 1. This
result follows if the distribution of signal histories for high- and low-quality trees dif-
fers sufficiently such that over time, arbitrarily precise statistical tests of tree quality
can be performed given long enough realized signal histories. A transfer scheme that
back-loads payments to trees and conditions them on this statistical test of signal his-
tories can then reward the investment of a high-quality tree and (with an entry cost
F > 0) and, at the same time, deter entry by low-quality trees by leaving them with
strictly negative expected profits upon entry. This is not possible with transfers that
are Markov in reputation because buyers ignore further signals of quality once φ = 1.
Still, the cost in terms of welfare of having such a simple subsidy scheme is negligible
compared to the possibility of having subsidies as a complex function of the whole
history of signals.

4.2 Regulation When Transactions Are Not Observable

We now assume that the regulator does not observe, and hence cannot subsidize,
transactions of the experience good. Instead, we assume that the regulator takes
as given that active trees are paid the spot market prices p(φ) = y(φ)U ′(Y ) and
that the regulator can only use fixed regulatory entry costs F (rebated lump sum
to consumers) to influence steady-state welfare. We evaluate steady-state welfare by
U(Y ) + N , where Y and N are the steady-state equilibrium levels of consumption of
the experience and numeraire goods.

The computation of equilibrium when transactions are not observable is very similar
to the case in which transactions are observable, except that now the subsidy s to the
sale of the experience good is constrained to be s = 1. Specifically, again, the first
step in our construction of equilibrium summarized as finding an exit threshold φ̄

and corresponding interim beliefs for buyers φc(φ), continuation strategies for trees
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ωi(φ), and normalized value functions Vi(φ) that satisfy conditions (a), (b), and (c) is
unchanged. It is only the second step, in which we compute the entry reputation φe

and the scale of production of the experience good Y necessary to satisfy the zero
profit at entry conditions for high- and low-quality trees, that is altered. Here, these
entry conditions are given as follows.

The steady-state equilibrium entry reputation φe satisfies

VL(φe)

VH(φe)
=

F

C + F
. (25)

The steady-state equilibrium level of production of the experience good Y satisfies

(VH(φe)− VL(φe))U ′(Y ) = C. (26)

These equations are the same as (23) and (24) except that the subsidy rate s is set to
one. Again, fixed entry costs F increase the reputation of entrants φe and thus the
average quality of intermediate goods producers in the market. Now, however, there
is no subsidy s that can be used to target the equilibrium level of production of the
experience good Y . Instead, the steady-state scale of production of the experience
good Y is determined by the difference of the value functions VH(φe)−VL(φe). This is
a choice of F that pins down φe and thus also pins down Y . Thus, a regulator poten-
tially faces a conflict in choosing F between relaxing the lemons problem, increasing
average quality at entry φe, and discouraging production of the experience good Y .

We illustrate these computations in Figure 5. The value functions shown in this figure
and the associated continuation strategies and interim beliefs are the same as those
shown in Figures 1 and 2 because an entry cost does not affect the normalized value
functions and continuation strategies for firms that have already entered. The entry
cost F impacts the reputation of entrants and the equilibrium level of production of
the experience good through equations (25) and (26). As we have argued, equation
(25) implies that the entry reputation φe is an increasing function of entry costs F be-
cause the ratio of the value functions in the left-hand side of the equation is increasing
in φe for the three signal structures. From equation (26) we see that the impact of en-
try costs on the equilibrium level of production of experience goods depends on how
the difference of the value functions depends on the entry reputation φe. As this entry
reputation rises, this difference can either rise or fall.
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Figure 5: Entry Reputation with Entry Fees
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Consider now how changes in the entry reputation φe and equilibrium level of pro-
duction of experience goods Y induced by an entry cost F impact equilibrium steady-
state welfare.

By choosing an entry cost F ≥ 0, a social planner can implement any steady-state
allocation (Y,N, φe,me) that satisfies equation (26), φe ≥ φ̄ and

Y =
(
ṼH(φe)φe + ṼL(φe)(1− φe)

)
me (27)

N = 1− Cφeme. (28)

Here, Ṽi(φe) is defined as the value function for trees of quality i ∈ {L,H}, imposing
r = 0 and the steady-state equilibrium continuation strategies and interim beliefs.
Equation (27) measures steady-state output because the average across high- and low-
quality entrants of the expected discounted value of profits with an interest rate of
zero (output since marginal cost is zero) is equal to the integral across the cross section
of profits in the steady state. Note that the computation of the value functions takes
the impact of endogenous exit on the cross section of output into account.

We can now calculate the impact of entry cost F on equilibrium steady-state welfare
by decomposing this impact into the part coming from the change in entry reputa-
tion φe and the part coming from the change in the equilibrium consumption of the
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experience good Y .

Consider first the part coming from the change in entry reputation φe, holding Y

fixed. Solving equation (27) for me, imposing equation (26), gives that

N = 1− C φe

ṼH(φe)φe + ṼL(φe)(1− φe)
Y. (29)

Clearly, if we hold Y fixed, the equilibrium steady-state welfare increases with φe

only if the fraction φe

ṼH(φe)φe+ṼL(φe)(1−φe) decreases with φe. An increase in φe poten-
tially has ambiguous impact on equilibrium steady-state welfare because an increase
in the quality of entrants has two opposing effects on the average productivity of
active trees. On the one hand, each entering cohort of trees has a higher average
quality. On the other hand, as the entry reputation φe rises above the exit reputation
φ̄, those low-quality trees that do enter potentially remain active for a longer period
of time. We show in the Appendix that for our three information structures, this frac-
tion decreases with φe (at least initially), and hence an increase in φe, holding Y fixed,
increases equilibrium steady-state welfare (again, at least initially).

Now consider the impact on equilibrium steady-state welfare of increasing output of
the experience good Y , holding fixed the entry reputation φe. In this case, welfare can
be expressed by

U(Y ) + 1− C φe

ṼH(φe)φe + ṼL(φe)(1− φe)
Y. (30)

Differentiating this expression with respect to Y and imposing the constraint (26)
implies that the partial derivative of social welfare with respect to Y is given by

U ′(Y )

[
1− φe(VH(φe)− VL(φe))

ṼH(φe)φe + ṼL(φe)(1− φe)

]
dY. (31)

Because the functions Ṽi(φe) are computed in the same way as Vi(φe), except that r is
set to zero, it is straightforward to show that VH(φe) − VL(φe) ≤ ṼH(φe) − ṼL(φe) and
ṼL(φe) ≥ 0. These inequalities imply that this partial derivative is non-negative.

We use these results in the next proposition to show that the fixed cost F that maxi-
mizes the welfare of a representative household in steady state under our three signal
structures is strictly positive.
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Proposition 5 Optimal regulation with policies not based on transactions, only entry.

The optimal level of entry costs F is always positive, in all three information cases.

The proof is in the Appendix. Here we provide the intuition for this result. Note first
that we have already shown that the equilibrium value of the reputation of entrants
φe is an increasing function of the regulatory entry cost F under all three informa-
tion structures. In the Appendix, from value functions for the three signal struc-
tures in continuous time we show the difference VH(φe) − VL(φe) is increasing under
bad news for φe ≥ φ̄ (as illustrated in Figure 3), is decreasing under good news for
φe > φ̄ (as illustrated in Figure 4), and is increasing for a range of low-entry repu-
tation φe ∈ (φ̄, φ∗), and decreasing for a range of high-entry reputation φe ∈ (φ∗, 1)

under Brownian motion (as illustrated in Figure 2). Furthermore, when signals fol-
low Brownian motion and good news, the difference does not change marginally at
φe = φ̄, since V ′H(φ̄) = V ′L(φ̄) = 0 in those cases.

Putting these results together, we have that in the case of bad news the regulator does
not face a direct conflict between the objectives of increasing quality at entry φe and
increasing production of the experience good Y . Both the ratio VL(φ)/VH(φ) and the
difference VH(φ) − VL(φ) are increasing in φ for φ > φ̄, so a regulator who increases
F increases φe and Y simultaneously. In this case, the regulator wants to increase F
to drive φe arbitrarily close to 1. Since Y increases as φe increases, in the bad news
case, a policy of increasing the entry cost F to drive the average quality of entrants φe

toward one is always welfare improving.

When the signal structure follows a Brownian motion, the regulator faces a direct
conflict between the objectives of increasing quality at entry φe and increasing pro-
duction of the experience good Y , but only after the reputation at entry has achieved
a level φ∗ strictly above the exit threshold φ̄. Since φ̄ < φ∗, then initially the ratio
VL(φ)/VH(φ) and the difference VH(φ)− VL(φ) are increasing in φ, hence inducing an
increase in both φe and Y , guaranteeing a higher welfare from a higher F , at least
initially.

In the case of good news, the regulator does face a direct conflict between the ob-
jectives of increasing quality φe and increasing production of the experience good Y .
This follows from the result that the ratio VL(φ)/VH(φ) is increasing and the difference
VH(φ)− VL(φ) is decreasing in φ for φ > φ̄. Thus, a regulator who increases F > 0 in-
creases φe but reduces Y simultaneously. Initially, at φe = φ̄, the partial derivative of
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equilibrium steady-state welfare with respect to φe and Y is zero in both cases. Hence,
there is no first-order impact of an increase in entry fee F on equilibrium steady-state
welfare starting from an entry fee of zero. We show in the Appendix, however, that
the second derivative of welfare with respect to an increase in entry fee is strictly
positive at F = 0, and hence even in this case the optimal entry fee is strictly positive.

Remark on the welfare impact of regulation: The magnitude of the impact of reg-
ulation on welfare is non-monotonic in the precision of signals. When the precision
of the signals goes to zero, entry costs do not increase Y much, since the difference
between value functions is negligible. However, since the production of the experi-
ence good is very small, the marginal welfare gain can still be important. At the other
extreme, when the precision of the signal goes to infinity, there is not much room for
improvement on the market outcome to be achieved through regulation, since this
outcome is already close to the unconstrained first best. This suggests that regula-
tory policies are more effective in improving the outcome of a market with spotprices
when the precision of signals is intermediate.

Remarks on other regulatory tools: Naturally, a regulator can use other regulatory
tools, in addition to entry costs, to increase welfare if he or she has access to interme-
diate levels of information. For example, a regulator can also offer operational sub-
sidies. Loosely, on the one hand these subsidies are expected to compensate mostly
high-quality trees, since in expectation they live longer. On the other hand, these
subsidies delay exit of low-quality trees, since they prefer to wait longer before exit
to receive the subsidy. Depending on this trade-off, operational subsidies may be
helpful in increasing welfare even further.

It may also be possible to consider policies that subsidize variables more likely to be
experienced by high-quality trees, such as age, or that punish variables more likely
to be experienced by low-quality trees, such as exit. Since these two variables are
only imperfect signals of reputation, however, these tools are likely not as effective as
subsidies to the experience good that are transferred to intermediate goods produc-
ers reflecting their reputation with precision. More generally, the regulator can use
a wide array of policy combinations to impact welfare. Our model offers a simple
framework for analyzing the impact of such policies.
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5 Conclusions

We have provided a tractable model for analyzing the interaction of regulation and
reputation on spot markets with a lemons problem and with imperfect signals about
sellers’ quality. We have argued that the lemons problem in this environment is a
problem of commitment and not a problem of information. The lemons problem
can essentially be eliminated if buyers can commit to offer sellers incentives strong
enough to invest in high-quality so as to improve their reputation. When a regula-
tor can design taxes and subsidies contingent on sellers’ reputation, a simple taxing
scheme may provide the commitment required to mitigate the lemons problem.

Even if a regulator does not have the ability to tax or subsidize sellers contingent on
their reputation, that regulator still has the ability to improve welfare by mitigating
the lemons problem in a spot market equilibrium by imposing a positive fixed entry
cost that is then rebated lump sum to households. Although the regulator poten-
tially faces a trade-off between increasing the average quality of entering sellers and
restricting the overall volume of production, we show under our three signal struc-
tures that this trade-off is resolved in favor of increasing quality, at least for small
entry costs.

Entry costs are typically criticized for reducing production and market size. The main
logic is clearly exposed in Hopenhayn (1992): higher entry costs must be compen-
sated by higher aggregate prices, hence by less total output. This argument has been
widely used by the economic literature — from supporting trade liberalization to ex-
plaining total factor productivity differences across countries — and by international
organisms in proposing policy reforms to underdeveloped countries. Still, as shown
by Djankov et al. (2002), there is heavy regulation of entry for start-up firms around
the world, under the main justification of discouraging the entry of low-quality firms.
In this paper, we provide a unifying framework to study the trade-off that entry costs
create between production and quality. Interestingly, we show there is a range of
entry costs that increase quality without reducing total output — sometimes also
increasing total output — and we characterize the optimal level of entry costs that
maximize welfare by enhancing market-provided reputation incentives.

From a technical viewpoint, we contribute in providing analytical solutions in con-
tinuous time for a model of reputation with free entry and exit of firms that know
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their type, since they know their own initial investments that determine their type.
The explicit analytical solution allows a complete welfare comparison across different
regulation policies. We also endogenize the initial reputation assigned to entrants in a
market, since the lemons problem is generated by an endogenous decision in general
equilibrium of ex ante identical firms.

An important next step in understanding optimal regulation in the presence of repu-
tation concerns is considering moral hazard problems at each moment. We have as-
sumed that quality is fixed as the result of a one-time investment decision. A large lit-
erature examines outcomes when sellers must maintain ongoing investments to pre-
serve quality.9 We anticipate that our first main result will extend to this setting: the
problem of moral hazard arises because buyers cannot commit to pay sellers prices
contingent on reputation that are high enough to preserve the incentives to invest in
quality. We conjecture, then, that a regulator with sufficient flexibility to design trans-
fers contingent on reputation would be able to mitigate both the lemons problem and
the moral hazard problem associated with investments to maintain quality. We are
not able to derive these results formally, as the required transfer schemes are likely to
be non-linear in reputation and thus outside the scope of what we can solve at this
time.

Another natural extension is to study mechanisms and institutions the market can
endogenously create to reduce commitment problems and align learning and repu-
tation compensations to improve welfare. Possible institutions are vertical integra-
tion between experience good producers and intermediate good producers that relax
informational problems and financial intermediaries or horizontal integration of in-
termediate goods producers that commit to cross-subsidize members with different
reputation (in the spirit of Biglaiser and Friedman (1994)).

Similarly, an alternative channel that markets can use to replicate positive entry costs
is burning money at the moment of entry as a signal of investment. Multiple equilib-
ria introduce this possibility, all of them sustained by an implausible degree of coor-
dination among producers of the intermediate good. Based on this required degree of
coordination, but beyond the scope of this paper, we conjecture that the only robust
equilibrium, from an evolutionary perspective, is the one we characterize without
money burning. Furthermore, money burning is an inefficient way to replace entry

9See, for example, Marvel and McCafferty (1984), Maksimovic and Titman (1991), and, more re-
cently, Board and Meyer-ter Vehn (2010).
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fees, unless that money goes back to the economy, as we assume the regulator does
by making lump-sum transfers of the entry fees to households.

Finally, it is important to mention that most of the literature that studies the effects
of costly certification to enter into a market focuses on the informational element of
certificates as screening of the initial investment (see Lizzeri (1999) and Albano and
Lizzeri (2001)). Our case is more extreme and suggests that even if certification does
not provide any additional information about the quality of new firms, it may still be
welfare improving, simply because it is costly to entrants.
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A Appendix

A.1 Proof Lemma 1

We use standard recursive techniques to prove this lemma. Let B represent the set
of bounded real functions with domain [0, 1] with the sup norm. We can specify the
perpetuity value of y(1)∆ as an upper bound on functions in this space and zero as
a lower bound on functions in this space. This space is a complete normed metric
space. Use the Bellman equation (13) to define operators Ti : B → B for i ∈ {H,L}
in the standard manner. Since functions f ∈ B are bounded between the perpetuity
value of y(1)∆ and 0, and Ti(f) satisfies the same bounds, then it is also in B.

We now prove that Ti satisfy Blackwell’s sufficient conditions for a contraction (mono-
tonicity and discounting), which guarantees there is a unique solution to the recursive
equations (13) above. We let Vi denote the unique fixed point of Ti.

a. Monotonicity: For any f, h ∈ B(0, 1), with f(φ) ≥ h(φ) for all φ ∈ (0, 1) then
Ti(f)(φ) ≥ Ti(h)(φ) for all φ ∈ (0, 1). This is immediate.

b. Discounting: There is some constant % ∈ (0, 1) such that (Ti)(f)(φ) + %a ≥ (Ti)(f +
a)(φ), for all constants a ≥ 0. Direct computation for all a ≥ 0 gives

Ti(f + a)(φ) = max
ω

ω
[
y(φc)∆ + exp(−r∆)

(
αi(∆)f(φg(φc) + a) + (1− αi(∆))f(φb(φc) + a)

)]
≤ Ti(f)(φ) + exp(−r∆)a,

which gives the result since exp(−r∆) ∈ (0, 1). Note here in the last inequality we are
allowing the tree to continue (choose ω = exp(−δ∆)) for the a > 0 separately from
the choice of ω in Ti(f), and that is what generates the inequality.

A.2 Proof Proposition 1

In what follows we characterize equilibria under the two “reasonable” restrictions on
buyers’ interim beliefs φc defined in Assumptions 1 and 2, and then we show that
the equilibrium characterized in Proposition 1 is unique when the model converges
to continuous time (∆→ 0).

Without restrictions on buyers’ interim beliefs, there is a generic multiplicity of equi-
librium that arises from off-equilibrium beliefs. If buyers expect both types of trees to
exit, then Bayes’ rule does not discipline interim beliefs about trees that continue, and
thus these beliefs can be specified in a manner that encourages trees to indeed exit.
For example, one can generate any number of equilibria by setting beliefs φc(φ) = 0
for arbitrary subsets of [0, 1]. Such beliefs, together with value functions Vi(φ) = 0
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and continuation strategies ωi(φ) = 0 on those same subsets of [0, 1] satisfy our defi-
nition of equilibrium. Our multiplicity here arises from the standard problem that if
buyers interpret continuation as a sure signal that a tree is low-quality, then all trees
prefer to exit, and Bayes’ rule cannot be used to restrict buyers’ interpretation of out
of equilibrium continuation of a tree.

Using the Bellman equations developed in Lemma 1, Assumption 1 implies that value
functions Vi(φ) are weakly increasing (since operators Ti map weakly increasing func-
tions to weakly increasing functions under this restriction) and VH(φ) ≥ VL(φ) (since
TH(VL)(φ) ≥ TL(VL)(φ) = VL(φ), because αH(∆) > αL(∆) and VL(φ) is weakly in-
creasing in φ).

This first assumption, however, is not enough to rule out multiplicity of equilibrium
generated by off-equilibrium beliefs, simply because the beliefs φc(φ) = 0 for all φ
satisfy monotonic updating, as do beliefs that set φc(φ) = 0 over regions [0, k]. This is
the reason we introduce Assumption 2. If Bayes’ rule can be used, then φc(φ) ≥ φ iff
ωH(φ,∆) ≥ ωL(φ,∆). This assumption itself is stronger in that we require it of beliefs
even when Bayes’ rule cannot be used.

The combination of these two assumptions implies that there exists a level of rep-
utation φ̄ < 1 such that both VH(φ) and VL(φ) are strictly greater than zero for all
φ > φ̄. This result follows from the observation that Vi(φ) ≥ max(0, y(φ)∆) when As-
sumption 2 is satisfied and we have y(φ) > 0 for sufficiently high φ (a tree can always
operate for one period, earning y(φc(φ))∆ and then exit). Assumption 2 together with
Assumption 1 (weakly increasing value functions) implies that the region for which
VL(φ) > 0 is an interval that we denote by (φ̄, 1] and the region for which VH(φ) > 0
is an interval that we denote by (φ, 1], with φ ≤ φ̄.

We next prove that equilibrium beliefs, value functions, and exit strategies in all equi-
libria with beliefs that satisfy Assumptions 1 and 2 have the following form.

Lemma 2 Characterization of equilibrium beliefs, value functions, and exit strategies

Under assumptions 1 and 2 on buyers’ beliefs, the equilibrium beliefs, value functions, and
continuation strategies have the following form. There exists a value of φ̄ ∈ (0, 1), which is
pinned down uniquely independently of the specification of beliefs φc(φ) for φ < φ̄, such that
VL(φ) = 0 for φ ≤ φ̄ and VL(φ) > 0 for φ > φ̄. There exists a value of φ ∈ [0, φ̄) such that
VH(φ) = 0 for φ ≤ φ, VH(φ) is constant and strictly positive on (φ, φ̄] and VH(φ) is strictly
increasing for φ > φ̄. The associated interim beliefs are φc(φ) = φ for φ ≥ φ̄, φc(φ) = φ̄ for
φ ∈ (φ, φ̄), and φc(φ) is any function bounded above by φ and that satisfies assumptions 1
and 2 on φ ∈ [0, φ]. The continuation strategies have the form ωH(φ,∆) = exp(−δ∆) for
all φ > φ, ωH(φ,∆) = 0 for all φ ≤ φ, ωL(φ,∆) = exp(−δ∆) for φ > φ̄, ωL(φ,∆) is set
greater than zero so that φc(φ) = φ̄ for φ ∈ (φ, φ̄] and ωL(φ,∆) = 0 for all φ ≤ φ.

Proof We have already shown that given Assumption 2, there exist φ sufficiently large
such that Vi(φ) > 0. Given Assumption 1, the value functions Vi are non-decreasing
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with VH(φ) ≥ VL(φ) so that the regions for which Vi are strictly positive are inter-
vals (φ, 1] and (φ̄, 1] for high- and low-quality trees respectively, with φ ≤ φ̄. The
equilibrium requirement that ωi(φ,∆) = exp(−δ∆) whenever Vi(φ) > 0 implies that
these must be the continuation strategies for φ > φ̄ and Bayes’ rule then implies that
φc(φ) = φ for φ > φ̄. Assumptions 1 and 2 then imply that φc(φ̄) = φ̄ as well.

Observe next that VH(φ̄) > 0. To see this, observe that φg(φ̄) > φ̄ and φb(φ̄) < φ̄
which implies that VL(φg(φ̄)) > 0 and VL(φb(φ̄)) = 0. This implies that TH(VL)(φ̄) >
TL(VL)(φ̄) ≥ 0, which gives the result.

Note that it is not possible to have an equilibrium with φ̄ = 0 as, in this case, φc(φ) = φ
for all φ ∈ [0, 1] and we have already assumed parameters such that V c

i (φ) < 0 for
sufficiently low φ under these interim beliefs. Also note that the value of φ̄ is the
pinned down uniquely independently of the specification of beliefs φc(φ) for φ < φ̄.
This last result follows from the fact that VL(φ) = 0 for all φ < φ̄. To be specific, note
that the most optimistic beliefs that satisfy Assumptions 1 and 2 and the result that
φc(φ) = φ for all φ ≥ φ̄ have φc(φ) = φ̄ for all φ ∈ (0, φ̄). Likewise, the most pessimistic
beliefs that satisfy Assumptions 1 and 2 have φc(φ) = φ for all φ. It is straightforward
to verify that if VL is the fixed point of the operator TL with beliefs φc(φ) = φ for all
φ ≥ φ̄ and φc(φ) = φ̄ for all φ ∈ (0, φ̄) and satisfies VL(φ) = 0 for all φ ≤ φ̄, then that
same VL is the fixed point of the operator TL with beliefs φc(φ) = φ for all φ. Hence, φ̄
is independent of the specification of beliefs for φ < φ̄.

For φ ∈ (φ, φ̄) we have VH(φ) > 0 and hence ωH(φ,∆) = exp(−δ∆). Monotonicity
of updating thus requires that ωL(φ,∆) > 0 for φ in this region. The definition of
φ̄ implies that VL(φ) = 0 in this region. Hence, we must have V c

L(φ) = 0 in this
region. The strict monotonicity of y(φ) and the weak monotonicity of VL(φ) implies
that we must have φc(φ) constant for φ in this region. The only constant that satisfies
assumption 2 is φc(φ) = φ̄, which pins down the continuation strategy ωL(φ,∆) in
this region.

What remains is to characterize equilibrium behavior for φ ≤ φ. In this region, we
have Vi(φ) = 0. Note that since V c

H(φ̄) > 0, we must have φc(φ) < φ̄ in this region.
The strict monotonicity of y(φ) and weak monotonicity of VL(φ) then implies that
V c
L(φc(φ)) < 0 in this region and thus ωL(φ,∆) = 0 in this region. To ensure that
V c
H(φ̄) < 0, we must then have φ ≤ φ in this region as well. Q.E.D.

This end the proof of Lemma 2. Now we argue that there is a value of ∆ low enough
such that there is a unique equilibrium in which φ → 0. By doing so, we will have
proved part (ii) of Proposition 1, as this result will imply that φc(φb(φ̄)) = φ̄.

First, note that Assumption 2 imposes φc ≥ φ, then the most pessimistic beliefs con-
sistent with such assumption are φc = φ. In this case, the value of φ is also pinned
down uniquely independently of the specification of beliefs φc(φ) for φ < φ. As in the
case of φ̄, this result follows from the fact that VH(φ) = 0 for all φ < φ. By Assumption
1 VH(φ) ≥ VL(φ). Since αH(∆) > αL(∆), then φ < φ̄ for all ∆ > 0. Furthermore, φ < φ̄
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also holds strictly in the continuous time limit, as ∆ → 0, (we show this later using
analytical value functions in continuous time, but intuitively this comes from a higher
drift in reputation for high-quality firms also in the limit). This implies there exists a
∆ small enough such that, φ < φb(φ̄) < φ̄. Assuming φc(φb(φ̄)) = φb(φ̄), VH(φb(φ̄)) > 0

and VL(φb(φ̄)) < 0. However, this imply ωH(φb(φ̄)) = 1 and ωL(φb(φ̄)) = 0, which are
inconsistent with pessimistic beliefs φc(φb(φ̄)) = φb(φ̄). This implies that for values of
∆ low enough the equilibrium interim beliefs and continuation strategies described
in point (ii) of Proposition 1 is unique.

To complete the proof of Proposition 1, note that points (i) and (iii) follow from the
free entry requirement that VL(φe) = 0. Point (iv) of Proposition 1 is implied by
subtracting the free entry requirement for low-quality trees from that for high-quality
trees.

A.3 Value Functions in Continuous Time and Their Properties

Here we obtain analytical solutions for the value functions Vi(φ), under bad news,
good news, and Brownian motion, for general payment functions q(φ). We also show
the properties described in the text hold when the function q(φ) is linear in φ, as we
assume is the case with spot prices where q(φ) = y(φ). In this section, for notational
simplicity we denote

y(φ) = a1φ− a0,

where a1 = y(1)−y(0) > 0 and a0 = −y(0) > 0. For simplicity we also define r̂ = r+δ.

A.3.1 Bad News

In this case dSt ∈ {0, 1}, which means there is either a signal or no signal at each t.
The bad news case is defined by Pr(dSt = 1|H) = 0 and Pr(dSt = 1|L) = λdt, which
means there is a positive Poisson arrival only for low-quality trees. When a signal
arrives, the tree is revealed to be of low quality and hence the public belief about its
quality drops to φ = 0. With this reputation, the tree would never be able to sell its
output at a non-negative price. Thus, following this event, it is optimal for the tree to
cease production and exit as quickly as possible.

It is convenient to use a transformed variable l = (1 − φ)/φ : [0, 1] → (∞, 0] to sum-
marize the reputation level of a tree. The evolution of l is determined by

dlt
dt

=

[
Pr(dSt|L)− Pr(dSt|H)

Pr(dSt|H)

]
lt.
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When bad news arrives (i.e., dSt = 1)

dlt
dt

=

[
λdt− 0

0

]
lt =∞,

and reputation jumps immediately to l = ∞. Since φ = 1
1+l

, this means reputation
drops immediately to φ = 0.

While there are no news (i.e., dSt = 0), reputation increases. From the Poisson distri-
bution, the probability that a high-quality tree does not generate news for an interval
of time of length t is e−λt. Then, after a time interval of length t of no news, accumu-
lating the change in reputation

lt =

[
Pr(St = 0|L)

Pr(St = 0|H)

]
l0 =

[
e−λt

1

]
l0 = e−λtl0,

where l0 = 1−φe
φe

. This means lt is decreasing (reputation is increasing) over time at a
rate λ ∈ [0,∞). While there is no news, the evolution of reputation for trees with high
and low-quality is the same. After bad news, a tree exits and obtains zero thereafter.
Then, the value functions for both types only differ in their discount factor.

Lemma 3 Value functions for general profit functions and bad news

A value function for a low-quality tree with reputation l, for a general q(l), is

V̂L(l) =

∫ ∞
τ=0

e−(r̂+λ)τq(e−λτ l)dτ,

and the value function for a high-quality tree with reputation l is

V̂H(l) =

∫ ∞
τ=0

e−r̂τq(e−λτ l)dτ.

Solving explicitly the integrals for the case of linear payoffs and no marginal costs,
q(φ) = y(φ) = a1φ− a0 (hence q(l) = a1

1+l
− a0),

V̂L(l) =
1

r̂ + λ

[
a1Υmr̂+λ(−l)− a0

]
, (32)

V̂H(l) =
1

r̂
[a1Υmr̂(−l)− a0] , (33)

where Υm(−l) =2 F1(1,m;m+ 1,−l) is an hypergeometric function, and

mr̂ =
r̂

λ
> 0 and mr̂+λ =

r̂ + λ

λ
= 1 +mr̂.
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The hypergeometric function has well-defined properties when m > 0. In particular,
it is monotonically increasing in φ (from 0 to 1) and monotonically decreasing in m.

Υm

(
−1− φ

φ

)
: [0, 1]→ [0, 1] and

∂Υm(·)
∂m

< 0.

Now we denote Vi(φ) = V̂i(l) for all φ and i ∈ {L,H}. Since limφ→0 VL(φ) = − a0
r̂+λ

< 0

with no exit, there is a φ = φ̄ such that VL(φ̄) = 0. Hence φ̄ is the highest reputation at
which low-quality trees are indifferent between exiting or not. As discussed above,
exiting strategies imply that in equilibrium, no tree has a reputation below φ̄. Value
functions in the range [φ̄, 1] are

VL(φ) : [φ̄, 1]→ [0,
a1 − a0

r̂ + λ
]

VH(φ) : [φ̄, 1]→ [VH(φ̄),
a1 − a0

r̂
],

where VH(φ̄) = 1
r̂

[
a1Υmr̂

(
−1−φ̄

φ̄

)
− a0

]
> 0 (since mr̂ < mr̂+λ).

Lemma 4 Derivatives with linear payoffs

For all φ ∈ [φ̄, 1] and all r̂ ≥ 0

V ′L(φ) > 0 and V ′H(φ) > 0

First recall that derivatives of hypergeometric functions are

∂Υmr̂(−l)
∂l

= Υ′mr̂(−l) = mr̂l

[
l

1 + l
−Υmr̂(−l)

]
< 0.

Then

V̂ ′L(l) =
a1l

λ

[
l

1 + l
−Υmr̂+λ(−l)

]
, (34)

V̂ ′H(l) =
a1l

λ

[
l

1 + l
−Υmr̂(−l)

]
, (35)

which are negative for all [0, l̄]. In particular, at l̄, V̂L(l̄) = 0, then Υmr̂+λ(−l̄) = a0
a1

.

The lemma follows from

V ′i (φ) = V ′i (l)
∂l

∂φ
= −V

′
i (l)

φ2
.
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Applying the properties of hypergeometric functions, the ratio VL(φ)/VH(φ) is mono-
tonically increasing, from 0 to r̂

r̂+λ
, and the difference VH(φ)− VL(φ) is also monoton-

ically increasing, from VH(φ̄) to λ
r̂+λ

VH(1).

A.3.2 Good News

In this case Pr(dSt = 1|H) = λdt and Pr(dSt = 1|L) = 0. When a signal arrives, the
tree is revealed to be of high-quality, and hence the public belief φ regarding this tree
jumps up to φ = 1. After good news, the tree maintains a reputation of φ = 1 until it
exits exogenously.

Again, we use the variable l = (1− φ)/φ. When good news arrives (i.e., dSt = 1)

dl

dt
=

[
0− λdt
λdt

]
lt = −lt,

and reputation jumps immediately to l = 0, or φ = 1.

While there is no news (i.e., dSt = 0), reputation decreases. After a time interval of
length t of no news, accumulating the change in reputation

lt =

[
Pr(St = 0|L)

Pr(St = 0|H)

]
l0 =

[
1

e−λt

]
l0 = eλtl0,

which means lt is increasing (reputation is decreasing) over time at a rate λ.

Denoting q(l(1)) the payoffs for a tree with φ = 1, the value function for a tree that
has experienced good news is,

V (l(1)) =
q(l(1))

r̂
.

There is a key difference between good news and bad news. Under bad news, reputa-
tion only increases, which means endogenous exit never occurs unless a bad signal is
revealed. Under good news, reputation continuously decreases and low-quality trees
that hit φ̄ will exit at a rate λ such that reputation never drifts below φ̄.

Lemma 5 Value functions for general profit functions and good news

The value function for a low-quality tree with reputation l is

V̂L(l) =

∫ T (l)

τ=0

e−r̂τq(eλτ l)dτ. (36)
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The value function for a high-quality tree with reputation l is

V̂H(l) =

∫ T (l)

τ=0

e−(r̂+λ)τ

[
q(eλτ l) + λ

q(l(1))

r̂

]
dτ +

∫ ∞
τ=T (l)

e−(r̂+λ)(τ−T (l))λ
q(l(1))

r̂
dτ, (37)

where T (l) is the time required for l to increase up to l̄ = 1−φ̄
φ̄

.

T (l) =
log(l̄/l)

λ
> 0. (38)

In the case of linear payoffs and no marginal costs, the reputation at which low-
quality trees are willing to exit is given by q(l̄) = a1

1+l̄
− a0 = 0. In this case, l̄ is

given by the reputation below which profits are negative. Then l̄ = a1−a0
a0

and T (l) is
given following equation (38). The value functions are

V̂L(l) =
1

r̂

[
a1

(
1−Υmr̂

(
−1

l

))
− a0

]
(39)

−e
−r̂T (l)

r̂

[
a1

(
1−Υmr̂

(
− a0

a1 − a0

))
− a0

]
,

V̂H(l) =
1

r̂ + λ

[
a1

(
1−Υmr̂+λ

(
−1

l

))
− a0 + λ

a1 − a0

r̂

]
(40)

−e
−(r̂+λ)T (l)

r̂ + λ

[
a1

(
1−Υmr̂+λ

(
− a0

a1 − a0

))
− a0

]
.

Now we denote Vi(φ) = V̂i(l) for all φ and i ∈ {L,H}. Since T (l(1)) = ∞, using the
previously discussed properties of the hypergeometric functions,

VL(φ) : [φ̄, 1]→ [0,
a1 − a0

r̂
],

VH(φ) : [φ̄, 1]→ [
λ

r̂ + λ

a1 − a0

r̂
,
a1 − a0

r̂
].

Lemma 6 Derivatives with linear payoffs

For all r̂ ≥ 0,

V ′L(φ) > 0 and V ′H(φ) > 0 for all φ ∈ (φ̄, 1]

V ′L(φ̄) = V ′H(φ̄) = 0

V ′′L (φ̄) = V ′′H(φ̄) > 0.
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First recall that derivatives of hypergeometric functions are

∂Υmr̂(−1/l)

∂l
= Υ′mr̂(−

1

l
) = mr̂l

[
l

1 + l
−Υmr̂(−1/l)

](
− 1

l2

)
and define

Xmr̂ = (a1 − a0)− a1Υmr̂

(
−1

l̄

)
.

Taking derivatives

V ′L(l) = −a1

r̂
Υ′mr̂(−

1

l
) +

r̂T ′(l)e−r̂T (l)

r̂
Xmr̂

and plugging in the expressions above for Υ′mr̂(−
1
l
) and T ′(l), we have that

V ′L(l) =
a1

λl

[
l

1 + l
−Υmr̂(−

1

l
)

]
− e−r̂T (l)

λl

[
a1

(
1−Υmr̂(−

1

l̄
)

)
− a0

]
and similarly for high-quality firms

V ′H(l) =
a1

λl

[
l

1 + l
−Υmr̂+λ(−1

l
)

]
− e−(r̂+λ)T (l)

λl

[
a1

(
1−Υmr̂+λ(−1

l̄
)

)
− a0

]
.

These derivatives are negative for l ∈ [0, l̄) and exactly zero at l̄ = a1−a0
a0

(this is the
point φ̄ at which profits are zero, a1φ̄− a0 = 0), regardless of the r̂ used. Since

V ′i (φ) = V ′i (l)
∂l

∂φ
= −V

′
i (l)

φ2
.

Then the first derivatives of value function are positive for φ ∈ (φ̄, 1] and

V ′L(φ̄) = V ′H(φ̄) = 0 for all r̂. (41)

Now we take second derivatives, for low-quality firms

V ′′L (l) = − a1

λ(1 + l)2

[
1− r̂(1 + l)

λl

]
+
λ− r̂
λ2l2

[
a1Υmr̂(−

1

l
) + e−r̂T (l)Xmr̂

]
and similarly for high-quality firms

V ′′H(l) = − a1

λ(1 + l)2

[
1− (r̂ + λ)(1 + l)

λl

]
− r̂

λ2l2

[
a1Υmr̂+λ(−1

l
) + e−(r̂+λ)T (l)Xmr̂+λ

]
.
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Evaluating these expressions at l̄ for low-quality firms, for all r̂

V ′′L (l̄) =
λa3

0

λ2a1(a1 − a0)

and similarly for high-quality firms

V ′′L (l̄) = V ′′H(l̄) =
a0

λl̄(1 + l̄)
> 0.

Again, using transformed derivatives to compute derivatives with respect to φ

V ′′i (φ) =
V ′′i (l)

φ4
+

2V ′i (l)

φ3
.

This implies that, at φ̄,

V ′′L (φ̄) = V ′′H(φ̄) > 0 for all r̂. (42)

Finally, applying the properties of hypergeometric functions, the ratio VL(φ)/VH(φ) is
monotonically increasing, from 0 to 1, and the difference VH(φ)− VL(φ) is monotoni-
cally decreasing, from λ

r̂+λ
a1−a0
r̂

to 0.

A.3.3 Brownian Motion

Assume now the signal process follows a Brownian motion

dSt = µidt+ σdZt,

where i = {L,H}, drifts depend on the tree’s type µH > µL and the noise σ is the
same for both types.

The following proposition shows that reputation, for both high- and low-quality
trees, also follows a Brownian motion process when based purely on signals. As
discussed in Proposition 1, given the equilibrium exit rates, this is also the updating
rule for all φ > φ̄, whereas the updating for all φ ≤ φ̄ follows an immediate jump up
to φ̄.

Lemma 7 Reputation process based on Brownian motion signals.

The reputation process high-quality trees expect is a submartingale

dφHt =
λ2(φt)

φt
dt+ λ(φt)dZt, (43)
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and the reputation process low-quality trees expect is a supermartingale

dφLt = − λ2(φt)

(1− φt)
dt+ λ(φt)dZt, (44)

where λ(φt) = φt(1− φt)ζ and ζ = µH−µL
σ

is the signal-to-noise ratio.

Proof The activities of the two types of trees induce two different probability mea-
sures over the paths of the signal St. Fix a prior φe and assume exogenous exit. Then
reputation evolves following the equation:

φt =
φePr(St|H)

φePr(St|H) + (1− φe)Pr(St|L)

or
φt =

φeξt
φeξt + (1− φe)

, (45)

where ξt is the ratio between the likelihood that a path Ss : s ∈ [0, t] arises from
type H and the likelihood that it arises from type L. As in Faingold and Sannikov
(2011), from Girsanov’s Theorem, this ratio follows a Brownian motion characterized
by µξ = 0 and σξ = ξtζ ,

dξt = ξtζdZ
L
s , (46)

where ζ = µH−µL
σ

and dZL
s = dSt−µLdt

σ
is a Brownian motion under the probability

measure generated by type L.10

By Ito’s formula,

dφ = [φ′µξ +
1

2
φ′′σ2

ξ ]dt+ φ′σξdZ
L
s

dφt = −1

2

2φe2(1− φe)
(φeξt + (1− φe))3

ξ2
t ζ

2dt+
φe(1− φe)

(φeξt + (1− φe))2
ξtζdZ

L
s ,

and from equation (45) we can express it in terms of φt rather than φe

dφt = −φ2
t (1− φt)ζ2dt+ φt(1− φt)ζdZL

s

dφt = φt(1− φt)ζ[dZL
s − φtζdt]

replacing by the definition of dZL
s ,

dφt = λ(φt)dZ
φ
t , (47)

10It is also possible to solve the problem defining ξt = Pr(St|L)
Pr(St|H) such that φt = φe

φe+(1−φe)ξt
, where

dξt = ξtζdZ
H
s .
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where dZφ
t = 1

σ
[dSt − (φtµH + (1− φt)µL)dt] and

λ(φt) = φt(1− φt)
µH − µL

σ
. (48)

Conversely, suppose that φt is a process that solves equation (47). Define ξt using
equation (45),

dξt = −1− φe

φe
φt

1− φt
By applying Ito’s formula again, ξt satisfies equation (46). This implies ξt is the ratio
between the likelihood that a path Ss : s ∈ [0, t] arises from type H and the likelihood
it arises from type L. Hence, φt is determined by Bayes’ rule.

Finally, consider that different types will have different paths, that in expectation will
move their reputation. Replacing dSit in dZφ

t in equation (47) for the two different
types of trees, deliver equations (43) and (44). Q.E.D.

Four clear properties arise from inspecting equations (43) and (44). First, high-quality
trees expect a positive drift in their evolution of reputation, whereas low-quality trees
expect a negative drift. Second, when reputation φt is either 0 or 1, drifts and volatil-
ities are zero, which means at those points reputation do not change, for both high-
and low-quality trees. Third, reputation varies more at intermediate levels of φt, and
volatilities are larger. Finally, the drift for high-quality trees is higher than for low-
quality trees for bad reputations and lower for good reputations, since φt is in the
denominator of the drift for high-quality trees, whereas (1−φt) is in the denominator
of the drift for low-quality trees.

Lemma 8 The ordinary differential equations that characterize the value functions for high
and low-quality trees are

r̂ρVL (φ) = ρq (φ)− φ2 (1− φ)V ′L (φ) +
1

2
φ2 (1− φ)2 V ′′L (φ) , (49)

r̂ρVH (φ) = ρq (φ) + φ (1− φ)2 V ′H (φ) +
1

2
φ2 (1− φ)2 V ′′H (φ) , (50)

where

ρ =
σ2

(µH − µL)2
. (51)

Proof First, we prove the following lemma.

Lemma 9 Define Ψ the space of progressively measurable processes ψt for all t ≥ 0 with
E[
∫ T

0
ψ2
t dt] <∞ for all 0 < T <∞. A bounded process W i

t for all t ≥ 0 is the continuation
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value for type i = {H,L} if and only if, for some process ψit in Ψ, we have

dW i
t = r̂[W i

t − q(φt)]dt+ ψitdZt. (52)

Proof The flow continuation value W i
t for type i is the expected payoff at time t,

W i
t = r̂Ei

t

[∫ ∞
t

e−r̂(τ−t)q(φτ )dτ

]
.

Denote U i
t the discounted sum of payoffs for type i conditional on the public infor-

mation available at time t,

U i
t = r̂Ei

t

[∫ ∞
0

e−r̂τq(φ)dτ

]
=

∫ t

0

e−r̂τ r̂q(φτ )dτ +W i
t . (53)

Since U i
t is a martingale, by the Martingale Representation Theorem, there exists a

process ψit in Ψ such that
dU i

t = e−r̂tψitdZt. (54)

Differentiating (53) with respect to time

dU i
t = e−r̂tr̂q(φt)dt− r̂e−r̂tW i

t dt+ e−r̂tdW i
t . (55)

Combining (54) and (55), we can obtain (52). Q.E.D.

In a Markovian equilibrium, we know W i
t = Vi(φt). Since this continuation value

depends on the reputation, which follows a Brownian motion, using Ito’s Lemma,

dVi(φ) =

[
µi,φV

′
i (φ) +

1

2
σ2
φV
′′
i (φ)

]
dt+ σφV

′
i (φ)dZ, (56)

where µH,φ = λ2(φ)
φ

, µL,φ = − λ2(φ)
(1−φ)

and σφ = λ(φ) from Proposition 7.

Matching drifts of equations (52) and (56) for each type i yields the linear second-
order differential equation that characterizes continuation values VH(φ) and VL(φ),

1

2
λ2(φ)V ′′L (φ)− λ2(φ)

(1− φ)
V ′L(φ)− r̂VL(φ) + q(φ) = 0 (57)

and
1

2
λ2(φ)V ′′H(φ) +

λ2(φ)

φ
V ′H(φ)− r̂VH(φ) + q(φ) = 0. (58)

Using the definition for λ(φ) from equation (48) we obtain the second-order differen-
tial equations in the proposition. Q.E.D.
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Solving these ordinary differential equations (ODEs), we can obtain the value func-
tions for high- and low-quality trees. Imposing that these value functions are non-
negative introduces endogenous exit, which regulates the reputation process.

Lemma 10 Value functions for general profit functions and Brownian motion

The value function of low-quality trees with reputation l is

V̂L (l) = K

{∫ 1

0

θγ−1q (θl) dθ −
∫ 1

χ/l

θ−γq (θl) dθ

}
. (59)

The value function of high-quality trees with reputation l is

V̂H (l) = K

{∫ 1

0

θγ−2q (θl) dθ −
∫ 1

ψ/l

θ−γ−1q (θl) dθ +
q(0)

γ

(
ψ

l

)−γ}
, (60)

where θ = l′/l,

γ =
1

2
+

√
1

4
+ 2r̂ρ and K =

ρ√
1
4

+ 2r̂ρ
.

Proof We first solve the previous ODEs imposing the boundary conditions at φ = 1
and φ = φ̄. After simplifying the expressions we take derivatives, which will be
useful later to characterize the properties of these value functions.

Changing variables to l = (1− φ) /φ and defining V̂ (l) = V (φ), the ODEs above can
be written as

r̂ρV̂L (l) = ρq (l) + lV̂ ′L (l) +
1

2
l2V̂ ′′L (l)

r̂ρV̂H (l) = ρq (l) +
1

2
l2V̂ ′′H (l) .

1. Solving the ODEs

1.a) Solving for V̂L (l): We conjecture a solution of the form

V̂L (l) = K

[
l−γ
∫ l

χ1

l′γ
q (l′)

l′
dl′ − lγ−1

∫ l

χ2

l′1−γ
q (l′)

l′
dl′
]

for some parameters γ and K. With this, we have

V̂ ′L (l) = K

[
(−γ) l−γ−1

∫ l

χ1

l′γ
q (l′)

l′
dl′ − (γ − 1) lγ−2

∫ l

χ2

l′1−γ
q (l′)

l′
dl′
]
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V̂ ′′L (l) = K

[
(−γ) (−γ − 1) l−γ−2

∫ l

χ1

l′γ
q (l′)

l′
dl′ − (γ − 1) (γ − 2) lγ−3

∫ l

χ2

l′1−γ
q (l′)

l′
dl′
]

+K (1− 2γ)
q (l)

l2

lV̂ ′L (l) +
1

2
l2V̂ ′′L (l) =

γ (γ − 1)

2
V̂L (l) +K

(
1− 2γ

2

)
q (l) ,

which solves the ODE when 2r̂ρ = γ (γ − 1) and K (1− 2γ) = −2ρ, or

γ =
1

2
+

√
1

4
+ 2r̂ρ and K =

ρ√
1
4

+ 2r̂ρ
.

Recall γ(ρ) : [0,∞] → [1,∞] and K(ρ) > 0. The parameters χ1 and χ2 will be deter-
mined later from boundary conditions.

1.b) Solving for V̂H (l): Define: ∆H (l) = q (0)− V̂H (l), q̄ (l) = q (0)− q (l). Notice q̄ (l)
is increasing in l.

Rewriting the ODE for the high type as

ρ∆H (l) = ρq̄ (l) +
1

2
l2∆′′H (l) .

Proceeding as above, we conjecture a solution of the form

∆H (l) = K

[
l1−γ

∫ l

ψ1

l′γ−1 q̄ (l′)

l′
dl′ + lγ

∫ ψ2

l

l′−γ
q̄ (l′)

l′
dl′
]

for the same parameters γ and K defined previously. With this, we have

∆′H (l) = K

[
(1− γ)l−γ

∫ l

ψ1

l′γ−1 q̄ (l′)

l′
dl′ + γlγ−1

∫ ψ2

l

l′−γ
q̄ (l′)

l′
dl′
]

∆′′H (l) = K

[
−γ (1− γ) l−γ−1

∫ l

ψ1

l′γ−1 q̄ (l′)

l′
dl′ + γ (γ − 1) lγ−2

∫ ψ2

l

l′−γ
q̄ (l′)

l′
dl′
]

+K (1− 2γ)
q̄ (l)

l2

1

2
l2∆′′H (l) =

γ (γ − 1)

2
∆H (l) +K

(
1− 2γ

2

)
q (l)

that fulfill the ODE by construction with the parameters γ and K defined above. The
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parameters ψ1 and ψ2 will be determined later also from boundary conditions.

2. Dealing with the boundary conditions at l = 0.

Notice that we need liml→0 V̂L (l) = liml→0 q (l) = q(0), and liml→0 ∆H (l) = liml→0 q̄(l) =
liml→0 q (l)−q(0) = 0. The two limiting properties hold if and only if χ1 = 0 and ψ1 = 0
(we then relabel χ2 = χ and ψ2 = ψ).

We will proceed with the proof for the high type. The proof for the low type is related.
Using Lipschitz continuity of q̄ (l), assuming q̄ (l) ≤ Λl, and ψ2 ≤ ∞:

∆H (l) = K

[
l1−γ

∫ l

ψ1

l′γ−1 q̄ (l′)

l′
dl′ + lγ

∫ ψ2

l

l′−γ
q̄ (l′)

l′
dl′
]

≤ ΛK

[
l1−γ

∫ l

ψ1

l′γ−1dl′ + lγ
∫ ψ2

l

l′−γdl′
]

= ΛK

[
l1−γ

(
lγ

γ
− ψγ1

γ

)
+ lγ

(
ψ1−γ

2

1− γ
− l1−γ

1− γ

)]
= ΛK

[
l

(
1

γ
− 1

1− γ

)]
= Λl

if and only if ψ1 = 0 and assuming ψ2 = ∞. Hence, liml→0 ∆H (l) = 0 if and only if
ψ1 = 0. A similar analysis delivers liml→0 V̂L (l) = q(0) if and only if χ1 = 0.

3. Simplifying the Value Functions.

Changing variables inside the integrals: θ = l′/l, so ldθ = dl′ and the limits of integra-
tion. We start from obtaining VH(l).

∆H (l) = K

{∫ 1

0

θγ−2q̄ (θl) dθ +

∫ ψ/l

1

θ−γ−1q̄ (θl) dθ

}

Since q̄(θl) = q(0)− q(θl) and V̂H(l) = q(0)−∆H(l)

V̂H (l) = q(0)

(
1−K

∫ 1

0

θγ−2dθ −K
∫ ψ/l

1

θ−γ−1dθ

)

+K

{∫ 1

0

θγ−2q (θl) dθ +

∫ ψ/l

1

θ−γ−1q (θl) dθ

}

V̂H (l) = q(0)

[
K

γ

(
ψ

l

)−γ]
+K

{∫ 1

0

θγ−2q (θl) dθ +

∫ ψ/l

1

θ−γ−1q (θl) dθ

}
.
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Hence,

V̂H (l) = K

{∫ 1

0

θγ−2q (θl) dθ −
∫ 1

ψ/l

θ−γ−1q (θl) dθ +
q(0)

γ

(
ψ

l

)−γ}
. (61)

Similarly, the low type’s value function can be written as

V̂L (l) = K

{∫ 1

0

θγ−1q (θl) dθ −
∫ 1

χ/l

θ−γq (θl) dθ

}
. (62)

In reduced form,

V̂L (l) = K[BL(l)− AL(l)] (63)
V̂H (l) = K[BH(l)− AH(l)], (64)

where

BL(l) =

∫ 1

0

θγ−1q (θl) dθ and AL(l) =

∫ 1

χ/l

θ−γq (θl) dθ

BH(l) =

∫ 1

0

θγ−2q (θl) dθ and AH(l) =

∫ 1

ψ/l

θ−γ−1q (θl) dθ − q(0)

γ

(
ψ

l

)−γ
.

4. Taking Derivatives.

Taking derivatives of V̂L(l) components and multiplying by l,

l
∂AL(l)

∂l
=

∫ 1

χ/l

θ−γq′ (θl) θldθ −
(χ
l

)−γ
q(χ)

(
−χ
l2

)
l.

Integrating the first term by parts,∫ 1

χ/l

θ1−γq′ (θl) ldθ = θ1−γq(θl)|1χ/l −
∫ 1

χ/l

(1− γ)θ−γq(θl)dθ

= q(l)−
(χ
l

)1−γ
q(χ)− (1− γ)

∫ 1

χ/l

θ−γq(θl)dθ.

Then,

l
∂AL(l)

∂l
= q(l)− (1− γ)

∫ 1

χ/l

θ−γq(θl)dθ = q(l)− (1− γ)AL(l).
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Similarly,

l
∂AH(l)

∂l
= q(l) + γ

∫ 1

ψ/l

θ−γ−1q(θl)dθ − q(0)

γ
(−γ)

(
ψ

l

)−γ−1(
−ψ
l2

)
l

= q(l) + γ

∫ 1

ψ/l

θ−γ−1q(θl)dθ − γ q(0)

γ

(
ψ

l

)−γ
= q(l) + γAH(l)

l
∂BL(l)

∂l
= q(l)− γ

∫ 1

0

θγ−1q(θl)dθ = q(l)− γBL(l)

l
∂BH(l)

∂l
= q(l)− (γ − 1)

∫ 1

0

θγ−2q(θl)dθ = q(l)− (γ − 1)BH(l).

The derivatives can then be simplified as follows:

lV̂ ′L (l) = K[−γBL(l) + (1− γ)AL(l)] (65)
lV̂ ′H (l) = K[(1− γ)BH(l)− γAH(l)]. (66)

5. Smooth Pasting Conditions.

Boundary conditions (value matching and smooth pasting for low and high types)
must be satisfied at l̄. These conditions jointly determine l̄, χ and ψ:11

V̂L
(
l̄
)

= V̂ ′L
(
l̄
)

= V̂ ′H
(
l̄
)

= 0.

Using the formal expressions of the value functions and derivatives,

V̂L(l̄) = 0⇒
∫ 1

χ/l̄

θ−γq
(
θl̄
)
dθ =

∫ 1

0

θγ−1q
(
θl̄
)
dθ,

l̄V̂ ′L(l̄) = 0⇒ (1− γ)

∫ 1

χ/l̄

θ−γq
(
θl̄
)
dθ = γ

∫ 1

0

θγ−1q
(
θl̄
)
dθ.

Combining the two conditions, we find the equation that pins down l̄:∫ 1

0

θγ−1q
(
θl̄
)
dθ = 0 (67)

11Value matching and smooth pasting conditions for low-quality trees arise from optimal exiting
decisions, and the smooth pasting condition for high-quality trees arises from the belief process that is
reflecting at φ̄.
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and the equation that pins down χ:∫ 1

χ/l̄

θ−γq
(
θl̄
)
dθ = 0 ⇒ χ = l̄. (68)

Finally, the condition that pins down ψ is

(1− γ)

∫ 1

0

θγ−2q(θl̄)dθ = γ

[∫ 1

ψ/l̄

θ−γ−1q(θl̄)dθ − q(0)

γ

(
ψ

l̄

)−γ]
. (69)

These expressions completely characterized value functions and the reputation at
which low-quality trees exit. Q.E.D.

Here we can make a digression. In proving Proposition 1, we show that φ < φ̄. Here
we can see this property also holds in continuous time. The condition that pins down
φ̄ is the one shown in equation (67). Similarly, under the pessimistic beliefs φc = φ,
φ = 1

1+l
can be pinned down from the conditions

V̂H(l) = 0⇒ AH(l) = BH(l)

lV̂ ′H(l) = 0⇒ γAH(l) = (1− γ)BH(l).

This implies AH(l) = 0, since the condition that pins down l̄ is AL(l̄) = 0. Then,∫ 1

0

θγ−2q (θl) dθ =

∫ 1

0

θθγ−2q
(
θl̄
)
dθ = 0.

Since θ ∈ [0, 1], then q (θl) < q
(
θl̄
)

for all θ. Hence, φ < φ̄ strictly.

Lemma 11 Ratio and Differences of Value Functions for linear payoffs

The ratio of value functions VL(φ)/VH(φ) is monotonically increasing in φ. The difference
between value functions VH(φ)−VL(φ) is increasing for low reputation levels and decreasing
for high reputation levels.

Proof First we prove the ratio of value functions VL(φ)/VH(φ) is monotonically in-
creasing in φ. Then we prove the difference between value functions VH(φ)− VL(φ) is
increasing for low reputation levels and decreasing for high reputation levels.

1. Increasing Ratio VL(φ)/VH(φ)

The ratio VL(φe)
VH(φe)

is an increasing function of φe if and only if VL(l0)
VH(l0)

is a decreasing

function of l0. This is because l0 = 1−φe
φe

, then V ′i (φ
e) = V ′i (l0) ∂l0

∂φe
= −V ′i (l0)

φe2
and

∂(VL(φe)/VH(φe))
∂φe

= − 1

φe2
∂(VL(l0)/VH(l0))

∂l0
.
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First, we define the domain and image of the function. The lowest possible reputation
in the market is l̄, where V̂L(l̄) = 0 and V̂H(l̄) > 0. We also know that V̂L(1) = V̂H(1) >

0. Finally, 0 < V̂L(l) < V̂H(l) for all other l0 ∈ [0, l̄). This implies V̂L(l0)

V̂H(l0)
is a mapping

from l0 = [0, l̄] to [1, 0].

We show the ratio V̂L(l)

V̂H(l)
is monotonically decreasing in l ∈ [0, l̄]. This is the case if

lV̂ ′L(l)

V̂L(l)
<
lV̂ ′H(l)

V̂H(l)
.

Using the simplified expressions for the value functions, after some algebra, dropping
the argument l, this condition implies

BH

[(
1− γAH

BH

)
(BL − AL) + (2γ − 1)AL

]
> AH [γ(BL − AL) + (2γ − 1)AL] . (70)

We show the left-hand side of (70) is positive and the right-hand side of (70) is neg-
ative for all l ∈ [0, l̄]; hence, the condition is always satisfied and the ratio of value
functions decreasing in that range.

1.a. BH(l) > 0 for all l ∈ [0, l̄]

First, we develop the integrals BL(l) and BH(l).

Recall the profit function is linear in φ, (y(φ) = a1φ− a0) and φ = 1
1+l

,

q(θl) =
a1

1 + θl
− a0

and consider the general solution to the following integral (see Abramowitz and Ste-
gun (1972)),

∫
θm
(

a1

1 + θl
− a0

)
dθ = a1θ

m+1Φ(−θl, 1,m+ 1)− θm+1

m+ 1
a0,

where Φ(−θl, 1,m+ 1) is a Hurwitz Lerch zeta-function.

Applying this result to BL,

BL(l) =

∫ 1

0

θγ−1

(
a1

1 + θl
− a0

)
dθ =

[
a1θ

γΦ(−θl, 1, γ)− θγ

γ
a0

]1

0

BL(l) = a1Φ(−l, 1, γ)− a0

γ
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and similarly,
BH = a1Φ(−l, 1, γ − 1)− a0

γ − 1
.

Our strategy is to prove firstBL(l) > 0 for all l ∈ [0, l̄] and then to proveBH(l) > BL(l)
for all l ∈ [0, l̄].

Important properties of Herwitz Lerch zeta functions for the parameters we are con-
sidering (γ ≥ 1) are (see Laurincikas and Garunkstis (2003)):

• Φ(0, 1, γ) = 1
γ

• ∂Φ(−l,1,γ)
∂l

= 1
l

[
1
l+1
− γΦ(−l, 1, γ)

]
< 0

• (γ − 1)Φ(−l, 1, γ − 1) > γΦ(−l, 1, γ).

By construction, BL(l̄) = 0, hence Φ(l̄, 1, γ) = a0
γa1

. Given the properties above,

BL(l) : [0, l̄]→ [
a1 − a0

γ
, 0].

Furthermore, BL(l) is monotonically decreasing in the range

BH(l) > BL(l) for all l ∈ [0, l̄] if

γ(γ − 1)[Φ(−l, 1, γ − 1)− Φ(−l, 1, γ)] >
a0

a1

.

Considering the third property above,

(γ − 1)Φ(−l, 1, γ − 1) > Φ(−l, 1, γ) + (γ − 1)Φ(−l, 1, γ) >
a0

γa1

+ (γ − 1)Φ(−l, 1, γ),

and hence, BH(l) > 0 for all l ∈ [0, l̄].

1.b. AH(l) < 0 for all l ∈ [0, l̄]

We develop the integral AL(l) and AH(l) following the steps above:

AL(l) =

∫ 1

χ/l

θ−γ
(

a1

1 + θl
− a0

)
dθ =

[
a1θ

1−γΦ(−θl, 1, 1− γ)− θ1−γ

1− γ
a0

]1

χ/l

AL(l) = a1

[
Φ(−l, 1, 1− γ)− (χ/l)1−γΦ(−χ, 1, 1− γ)

]
+

a0

γ − 1

(
1− (χ/l)1−γ)
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and,
AH(l) = a1

[
Φ(−l, 1,−γ)− (ψ/l)−γΦ(−ψ, 1,−γ)

]
+
a0

γ
− a1

γ
(ψ/l)−γ.

Consider AH(0) = AH(ψ) = −a1−a0
γ

< 0. We show that, if the function grows, the
maximum is still negative. That is, we prove that AH(l̂) < 0, where l̂ = argmaxAH(l)

(hence ∂AH(l)
∂l
|l=l̂ = 0):

∂AH(l)

∂l
=
a1

l

[(
1

1 + l
+ γΦ(−l, 1,−γ)

)
− γ(l/ψ)γΦ(−ψ, 1,−γ)

]
− a1

l
(l/ψ)γ.

The condition satisfied at l ∂AH(l)
∂l

= 0 is

[
Φ(−l, 1,−γ)− (ψ/l)−γΦ(−ψ, 1,−γ)

]
=

1

γ
(l/ψ)γ − 1

1 + l
.

Evaluating AH(l̂) considering that condition

a1

[
1

γ
(l/ψ)γ − 1

1 + l

]
+

a0

γ − 1

(
1− (χ/l)1−γ) < 0

since
γa1

1

1 + l
> a0.

Hence, AH(l) < 0 for all l ∈ [0, l̄].

Finally, just for completeness, AL(0) = −a1−a0
γ−1

< 0, AL(χ) = 0 because χ/l = 1 and
AL(l̄) = 0 by construction. It can be further shown that AL(l) < 0 for all l ∈ (0, χ) and
AL(l) > 0 for all l ∈ (χ, l̄).

1.c. γ(BL(l)− AL(l)) + (2γ − 1)AL(l) > 0 for all l ∈ [0, l̄]

Recall γ(BL − AL) + (2γ − 1)AL = γBL + (γ − 1)AL = − lV̂ ′L(l)

K
.

By construction γBL + (γ − 1)AL = 0 at l = 0 and l = l̄.

For l ∈ (χ, l̄), since AL(l) ≥ 0 and BL(l) > 0, γBL + (γ − 1)AL > 0. In particular, at l̄,
AL(χ) = 0 and γBL(χ) > 0.

As shown above, for l ∈ [0, χ], BL(l) > 0 monotonically increasing and AL(l) < 0
monotonically increasing. This implies γBL + (γ − 1)AL goes monotonically from 0
at l = 0 to γBL(l̄) > 0 and hence positive in the whole range.

1.d.
[(

1− γAH(l)
BH(l)

)
(BL(l)− AL(l)) + (2γ − 1)AL(l)

]
> 0 for all l ∈ [0, l̄]
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First, recall (γ−1)BH+γAH = − lV̂ ′H(l)

K
. Hence, as in the point above, (γ−1)BH+γAH =

0 at l = 0 and l = l̄ by construction, which we can rewrite as 1−γAH(0)
BH(0)

= 1−γAH(l̄)

BH(l̄)
= γ.

Hence at these two extreme points, the term in the left-hand side is zero, the same as
the one in the right-hand side.

More generally (γ − 1)BH + γAH > 0 (and then 1 < 1− γAH(l)
BH(l)

< γ). Since AL(χ) = 0,(
1− γAH(l)

BH(l)

)
BL(l) > 0. This part of the proof follows from the same monotonicity

arguments above.

2. Non-monotonic Difference VH(φ)− VL(φ)

First, V̂ ′L(φ̄) = V̂ ′H(φ̄) = 0 by construction and V̂ ′L(1) = V̂ ′H(1) = 0, from the expressions
above. Second V̂ ′L(φ) and V̂ ′H(φ) are positive for all φ ∈ (φ̄, 1). Third, these derivatives
are single peaked and the reputation that maximizes V̂ ′H(φ) is lower than the reputa-
tion that maximizes V̂ ′L(φ). Finally, V̂ ′′H(φ̄) > V̂ ′′L (φ̄) and V̂ ′′H(1) < V̂ ′′L (1), which means
the two derivatives cross only one time, at φ∗. These properties arise from inspection
of the derivatives of linear profits value functions and from properties of the hyper-
geometric functions that characterize them.

Q.E.D.

A.4 Proof Proposition 3

We split the proof in two parts.

1) As the precision of signals go to zero.

In this case, to prove the steady-state spot market equilibrium converges to the bench-
mark without information (Y → 0), it is enough to prove that VH(φ) → VL(φ) for all
φ. This is because, from equation (26), Y → 0 as VH(φe)→ VL(φe).

In the bad and good news cases, the precision of signals is zero when λ = 0, hence
there are no news about the true type of the firm. It is trivial to see, from Propositions
3 and 5, that VL(φ) = VH(φ) = q(φ)/r̂ for all φ when λ = 0.

In the Brownian motion case, the precision of signals is zero when the signal to noise
ratio µH−µL

σ
= 0, and then ρ = ∞. From the ODEs (49) and (50), VH(φ) = VL(φ) =

q(φ)/r̂.

2) As the precision of signals go to infinity.

In this case, to prove that the steady-state spot market equilibrium converges to the
unconstrained first best benchmark with perfect information (Y → Ȳ ), it is enough
to prove that VH(φ)→ VH(1) and VL(φ)→ 0 for all φ > 0, as precision goes to infinity.
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This is because, from Proposition 1, VH(φe)U ′(Y ) = C. As precision goes to infinity,
low-quality firms exit fast, and the reputation at entry does not matter to determine
the average quality of firms in steady-state (that is, m(1)

m(0)+m(1)
→ 1 regardless of φ̄ > 0).

In the bad and good news cases, the precision of signals is infinity when λ =∞, hence
news about the true type of the firm arrive immediately. In this case, low-quality firms
spend almost no time with a reputation different than 0. From Propositions 3 and 5,
it is straightforward to check that VH(φ) = q(1)/r and VL(φ) = 0 for λ = ∞ and all
φ > 0. Even when φ̄ < 1, since all low-quality firms almost instantaneously leave the
market when λ→∞, effectively m(1)

m(0)+m(1)
→ 1 in the market.

In the Brownian motion case, the precision of signals is infinite when the signal-to-
noise ratio µH−µL

σ
=∞. Then ρ = 0 and γ = 1. From evaluating equation (50) at l with

ρ = 0, V ′′H(l) = 0 for all l. Combining this result with equations (69) and the definition
of V ′H(l) in the Appendix, V ′H(l̄) = 0. This implies that VH(φ̄) = VH(1), and then the
production of the experience good is Ȳ . Furthermore, even when φ̄ < 1, since all
low-quality firms almost instantaneously leave the market, effectively m(1)

m(0)+m(1)
→ 1

in the market.

A.5 Proof Proposition 4

Specifically, under full information, the steady-state measure of high-quality trees is
m̄H = Ȳ /y(1), so the rate of entry of high-quality trees is φem̄e = (1−exp(−δ∆))

∆
Ȳ
y(1)

and

the associated consumption of the numeraire good is N̄ = 1 − (1−exp(−δ∆))
∆

Ȳ
y(1)

C. In

continuous time, N̄ = 1− δ Ȳ
y(1)

C.

In the equilibrium with regulation, a fraction (1−φe) of entering trees are low-quality
in steady state, since we proved φe < 1 in equilibrium. Hence, there is a fraction of all
active trees that is low-quality, where this fraction is positive. Denote the equilibrium
steady-state ratio of low- to high-quality trees by m̂L/m̂H , also positive. From the
resource constraint for the experience good (3) in steady state, to produce output Ȳ
there must be a stock of m̂H high-quality trees given by

m̂H =
Ȳ

y(1) + y(0)m̂L/m̂H

> m̄H ,

and a steady-state entry rate of high-quality trees of φeme = (1−exp(−δ∆))
∆

m̂H is required
to maintain that production. As a result of this required elevated rate of entry of high-
quality trees, consumption of numeraire good is N = 1 − (1−exp(−δ∆))

∆
m̂HC < N̄ . The

gap between N and N̄ can be made arbitrarily small by choosing F to set φe as close
to one as is required to drive m̂L/m̂H sufficiently close to zero and hence drive m̂H

sufficiently close to m̄H .
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A.6 Proof Proposition 5

By choosing an entry cost F ≥ 0, a social planner can implement any steady-state
allocation (Y,N, φe,me) that satisfies the following constraints:

Y =
(
ṼH(φe)φe + ṼL(φe)(1− φe)

)
me

N = 1− Cφeme

U ′(Y ) (VH(φe)− VL(φe)) = C

φe ≥ φ̄,

where Ṽi(φe) is defined as the value function imposing r = 0 and respecting the evo-
lution of reputation and exiting in equilibrium. Why is Y constructed with these
redefined value functions the right measure of steady-state output? This is because,
when the interest rate is zero, then the expected discounted value of profits (output
since marginal cost is zero) for all trees at entry is equal to the integral across the cross
section of profits in the steady state. What about endogenous exit? The computation
of the value functions takes the impact of endogenous exit on the cross section of
output into account.

For notation purposes, define ỹ(φe) by

ỹ(φe) = ṼH(φe)φe + ṼL(φe)(1− φe).

Hence, Y = ỹ(φe)me and

ỹ′(φe) = ṼH(φe)− ṼL(φe) + Ṽ ′H(φe)φe + Ṽ ′L(φe)(1− φe).

Also define the implicit function me(φe) as the solution to the constraint

U ′(ỹ(φe)me(φe))) (VH(φe)− VL(φe)) = C.

Note that the derivatives of the original objective with respect to the two arguments
φe and me are, with respect to φe,

U ′(Y )ỹ′(φe)me − Cme,

and with respect to me,
U ′(Y )ỹ(φe)− Cφe,

and that the derivatives of the constraint with respect to the two arguments are, with
respect to φe,

U ′′(Y )ỹ′(φe)me (VH(φe)− VL(φe)) + U ′(Y ) (V ′H(φe)− V ′L(φe)) ,
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and with respect to me,

U ′′(Y )ỹ(φe) (VH(φe)− VL(φe)) .

These two derivatives of the constraints imply that

me′(φe) = −U
′′(Y )ỹ′(φe)me (VH(φe)− VL(φe)) + U ′(Y ) (V ′H(φe)− V ′L(φe))

U ′′(Y )ỹ(φe) (VH(φe)− VL(φe))
.

Note that in the Brownian motion and good news cases, V ′H(φ̄) = V ′L(φ̄) = 0 due to
smooth pasting, so at φe = φ̄

me′(φ̄)

me(φ̄)
= − ỹ

′(φ̄)

ỹ(φ̄)
.

Note that this statement is simply that Y stays constant due to smooth pasting.

Now consider the change in the objective at φe = φ̄. Using the derivatives above, this
is given by(

U ′(Y )ỹ′(φ̄)me(φ̄)− Cme(φ̄)
)
dφe +

(
U ′(Y )ỹ((φ̄))− Cφ̄

)
me′(φ̄)dφe.

Using the constraint itself and dividing by me, we have that this derivative has the
same sign as the following expression:

ỹ′(φ̄)−
(
VH(φ̄)− VL(φ̄)

)
+
(
ỹ((φ̄))− φ̄

(
VH(φ̄)− VL(φ̄)

)) me′(φ̄)

me(φ̄)
.

Using the expression for the derivative of me, we then have that this derivative has
the same sign as

ỹ′(φ̄)− ỹ(φ̄)

φ̄
= Ṽ ′H(φ̄)φ̄+ Ṽ ′L(φ̄)(1− φ̄)− ṼL(φ̄)

φ̄
.

In order to use the value functions derived above with the transformed variable l̄ =
1−φ̄
φ̄

, recall Ṽ ′i (φ̄) = Ṽ ′i (l̄)
∂l̄
∂φ̄

= − Ṽ ′i (l̄)

φ̄2
. Then, multiplying the whole expression by φe,

we can reexpress the change in welfare evaluated at φe = φ̄ as

−[Ṽ ′H(l̄) + l̄Ṽ ′L(l̄) + ṼL(l̄)].

Brownian Motion

Value functions ṼL(φ) and ṼH(φ) and their derivatives have the same structure than
equations (63) and (65), but since r = 0, they are computed with 1 ≤ γ̄ < γ and
K̄ > K and the same χ and ψ that were computed under r > 0.
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Since χ = l̄, ĀL(l̄) = AL(l̄) = 0. Similarly,

B̄L(l̄) =

∫ 1

0

θγ̄−1q(θl̄)dθ > BL(l̄) = 0

since ∂θγ−1

∂γ
= θγ−1 ln(θ) < 0 for all θ. This implies that

ṼL(l̄) > VL(l̄) = 0

and
l̄Ṽ ′L(l̄) < l̄V ′L(l̄) = 0

Combining the last two terms

l̄Ṽ ′L(l̄) + ṼL(l̄) = K̄[(1− γ̄)B̄L − γ̄ĀL] < 0.

Similarly,
l̄Ṽ ′H(l̄) < l̄V ′H(l̄) = 0,

which implies that the change in the welfare function at φ̄ is positive.

Bad News

From Lemmas 3 and 4, and by definition of φ̄, the change in welfare evaluated at φ̄ is
strictly positive for all r̂ ≥ 0. In particular, for r̂ = 0,

ṼL(l̄) =
1

λ

[
a1

log(1 + l̄)

l̄
− a0

]
> 0

Ṽ ′L(l̄) =
a1

λ

[
1

l̄(1 + l̄)
− log(1 + l̄)

l̄2

]
< 0

and

Ṽ ′H(l̄) = − a1

a0(1 + l̄)
< 0,

Then

Ṽ ′H(l̄) + l̄Ṽ ′L(l̄) + ṼL(l̄) = −a0

λ
+

(
a1

λ
− a1

a0

)
φ̄ < 0

since a1φ̄− a0 < 0.

Good News

From equation (41), and by definition of φ̄, Ṽ ′H(φ̄) = Ṽ ′L(φ̄) = ṼL(φ̄) = 0, then the
first-order change of the objective function at φ̄ is zero. Here we show the second-
order change of the objective function at φ̄ is always positive, implying that φ̄ is a
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constrained local minimum, and welfare always increases initially, and then attaining
an entry reputation φe above φ̄, using F > 0, is always beneficial.

The second derivative of the objective function with respect to φe is given by

U ′′(Y ) (ỹ′(φe)me(φe) + ỹ(φe)me′(φe))
2

+ U ′(Y ) (ỹ′′(φe)me(φe) + 2ỹ′(φe)me′(φe) + ỹ(φe)me′′(φe))

− C (2me′(φe) + φeme′′(φe)) .

In the good news case, because of smooth pasting, at φe = φ̄, dY = 0, or equivalently

ỹ′(φe)me(φe) + ỹ(φe)me′(φe) = 0.

Hence, the first term in this second derivative is zero at φe = φ̄. Dividing the remain-
ing terms by U ′(Y ) (which is strictly positive) and substituting in the entry constraint,
we have that the second derivative of social welfare at φe = φ̄ has the same sign as
the expression

ỹ′′(φ̄)me(φ̄) + 2ỹ′(φ̄)me′(φ̄) + ỹ(φ̄)me′′(φ̄) (71)
−

(
VH(φ̄)− VL(φ̄)

) (
2me′(φ̄) + φ̄me′′(φ̄)

)
.

To sign this term, recall

ỹ(φe) = φeṼH(φe) + (1− φe)ṼL(φe)

and
ỹ′(φe) = ṼH(φe)− ṼL(φe) + φeṼ ′H(φe) + (1− φe)Ṽ ′L(φe)

and second derivatives are

ỹ′′(φe) = 2
(
Ṽ ′H(φe)− Ṽ ′L(φe)

)
+ φeṼ ′′H(φe) + (1− φe)Ṽ ′′L (φe).

Evaluating these expression at φ̄

ỹ(φ̄) = φ̄ṼH(φ̄) > 0 (72)

ỹ′(φ̄) = ṼH(φ̄) > 0 (73)

and
ỹ′′(φ̄) = φ̄Ṽ ′′H(φ̄) + (1− φ̄)Ṽ ′′L (φ̄) > 0, (74)

where this last inequality follows from equation (42).

Now consider the derivatives of me(φe). This function is defined implicitly by the
constraint

U ′(ỹ(φe)me(φe)) (VH(φe)− VL(φe)) = C.
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Thus, the first derivative me′(φe) is solved from

U ′′(Y ) (ỹ′(φe)me(φe) + ỹ(φe)me′(φe)) (VH(φe)− VL(φe)) + U ′(Y ) (V ′H(φe)− V ′L(φe)) = 0

and the second derivative me′′(φe) is solved from

U ′′′(Y ) (ỹ′(φe)me(φe) + ỹ(φe)me′(φe))
2

(VH(φe)− VL(φe))

+ U ′′(Y ) (ỹ′′(φe)me(φe) + 2ỹ′(φe)me′(φe) + ỹ(φe)me′′(φe)) (VH(φe)− VL(φe))

+ 2U ′′(Y ) (ỹ′(φe)me(φe) + ỹ(φe)me′(φe)) (V ′H(φe)− V ′L(φe))

+ U ′(Y ) (V ′′H(φe)− V ′′L (φe)) = 0.

Again, from equation (41), at φe = φ̄, we have VL(φ̄) = 0, V ′H(φ̄) = V ′L(φ̄) = 0, and
dY = 0 so we have that me′(φ̄) is the solution to

ỹ′(φ̄)me(φ̄) + ỹ(φ̄)me′(φ̄) = 0 (75)

and me′′(φ̄) is the solution to

U ′′(Y )
(
ỹ′′(φ̄)me(φ̄) + 2ỹ′(φ̄)me′(φ̄) + ỹ(φ̄)me′′(φ̄)

) (
VH(φ̄)− VL(φ̄)

)
+

U ′(Y )
(
V ′′H(φ̄)− V ′′L (φ̄)

)
= 0,

which implies that

ỹ′′(φ̄)me(φ̄) + 2ỹ′(φ̄)me′(φ̄) + ỹ(φ̄)me′′(φ̄) =
U ′(Y )

U ′′(Y )

V ′′H(φ̄)− V ′′L (φ̄)

VH(φ̄)− VL(φ̄)
.

Since V ′′H(φ̄) = V ′′L (φ̄), from equation (42),

ỹ′′(φ̄)me(φ̄) + 2ỹ′(φ̄)me′(φ̄) + ỹ(φ̄)me′′(φ̄) = 0. (76)

With this last expression, we can rewrite (71) as

−
(
VH(φ̄)− VL(φ̄)

) (
2me′(φ̄) + φ̄me′′(φ̄)

)
.

Hence, we have that the second derivative of welfare at φe = φ̄ has the same sign as

−2me′(φ̄)− φ̄me′′(φ̄).

Using (75) we have that this expression equals

2
ỹ′(φ̄)me(φ̄)

ỹ(φ̄)
− φ̄me′′(φ̄).
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Using (76) we have that

me′′(φ̄) = − ỹ
′′(φ̄)me(φ̄)

ỹ(φ̄)
− 2

ỹ′(φ̄)me′(φ̄)

ỹ(φ̄)
.

Using (75) again, we have that

me′′(φ̄) = − ỹ
′′(φ̄)me(φ̄)

ỹ(φ̄)
+ 2

(
ỹ′(φ̄)

ỹ(φ̄)

)2

me(φ̄).

Hence, we have that the second derivative of welfare at φe = φ̄ has the same sign as

2
ỹ′(φ̄)

ỹ(φ̄)
+ φ̄

ỹ′′(φ̄)

ỹ(φ̄)
− 2φ̄

(
ỹ′(φ̄)

ỹ(φ̄)

)2

.

Using (72) and (73), we can write this expression as

2

φ̄
+ φ̄

ỹ′′(φ̄)

ỹ(φ̄)
− 2

φ̄
> 0.

Then φ̄ is a constrained local minimum, and welfare always increases initially.
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