NBER WORKING PAPER SERIES

WHY DON'T WOMEN PATENT?

Jennifer Hunt Jean-Philippe Garant Hannah Herman David J. Munroe

Working Paper 17888 http://www.nber.org/papers/w17888

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 March 2012

We are grateful to Leah Brooks and Paula Stephan for comments. Hunt is grateful to the Social Science and Humanities Research Council of Canada for financial support and is also affiliated with the CEPR (London) and DIW (Berlin). The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2012 by Jennifer Hunt, Jean-Philippe Garant, Hannah Herman, and David J. Munroe. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Why Don't Women Patent? Jennifer Hunt, Jean-Philippe Garant, Hannah Herman, and David J. Munroe NBER Working Paper No. 17888 March 2012 JEL No. J7,O31

ABSTRACT

We investigate women's underrepresentation among holders of commercialized patents: only 5.5% of holders of such patents are female. Using the National Survey of College Graduates 2003, we find only 7% of the gap is accounted for by women's lower probability of holding any science or engineering degree, because women with such a degree are scarcely more likely to patent than women without. Differences among those without a science or engineering degree account for 15%, while 78% is accounted for by differences among those with a science or engineering degree. For the latter group, we find that women's underrepresentation in engineering and in jobs involving development and design explain much of the gap; closing it would increase U.S. GDP per capita by 2.7%.

Jennifer Hunt Department of Economics Rutgers University New Jersey Hall 75 Hamilton Street New Brunswick NJ, 08901-1248 and NBER jennifer.hunt@rutgers.edu

Jean-Philippe Garant Department of Economics, McGill University 855 Sherbrooke Street West, Leacock 443 Montreal, QC H3A2T7 jean-philippe.garant@mail.mcgill.ca Hannah Herman Department of Economics, McGill University 855 Sherbrooke Street West, Leacock 443 Montreal, QC H3A2T7 hannah.herman@mail.mcgill.ca

David J. Munroe Columbia University, Department of Economics 420 West 118th Street New York, NY 10027 djm2166@columbia.edu Women patent much less than men. Only 10.3% of U.S. origin patents granted in 1998 are estimated to have had at least one female inventor (United States Patent and Trademark Office 1999). Adjusting for co–authorship, Frietsch et al. (2009) estimate that women accounted for 8.2% of patents filed by Americans at the European Patent Office in 2005, a decrease from the 8.8% peak of 2001. The highest shares were for Spain and France (12.3% and 10.2% respectively), while the lowest shares were for Austria and Germany (3.2% and 4.7% respectively).¹ Scholars use patents as a proxy for technological progress, an unmeasurable driver of productivity and ultimately economic growth. While a patent represents a specific invention, patenting may be correlated with other unpatented innovations, including those embodied in tacit knowledge and disseminated by inter–firm worker mobility. The magnitude of the gender gap in patenting raises the concern that, rather than reflecting comparative advantage or differing tastes by gender, the gap reflects gender inequity and an inefficient use of female innovative capacity.

In this paper, we examine the reasons for women's underperformance in patenting using a representative sample of U.S. college graduates, the 2003 National Survey of College Graduates. Earlier studies investigating the question have been confined to samples of PhDs, generally academic scientists and engineers.² Such samples provide only limited information about patenting generally, since our data show that PhDs hold only 29% of patents, and academics only 7% of patents. The earlier studies focus on the gender gap conditional on covariates, but the unconditional gender gap appears smaller than in the general population, with men between 50% and 2.5 times more likely to patent, while the covariates appear to explain little of the gender gap.

In our data, 7.5% of patents granted are granted to women, while only 5.5% of patents commercialized or licensed, presumably those more important for economic growth, are commercialized or licensed by women. We find that the patenting rate of women with science or engineering degrees is sufficiently low that increasing women's representation in

¹ See also Ashcraft and Breitzman (2007).

 $^{^2}$ Ding et al. (2006), Thursby and Thursby (2005), Whittington and Smith–Doerr (2005, 2008); see also Stephan et al. (2010).

science and engineering would have little effect absent other changes. For commercialized or licensed patents, only 7% of the gender gap is accounted for by the lower share of women with any science or engineering degree, while 78% of the gap is explained by lower female patenting among holders of a science or engineering degree. The remaining 15% of the gender gap is explained by lower female patenting among those without a science or engineering degree.

For holders of science and engineering (S&E) degrees, two thirds of the gender gap reflects a gap in the probability of holding any commercialized patent. We are able to explain 61% of this probability gap, with specific fields of study within S&E accounting for 31% of the gap, and the degree to which respondents' jobs involve particular tasks accounting for at least another 13%: women are underrepresented in electrical and mechanical engineering, the most patent-intensive fields, and in development and design, the most patent-intensive job tasks. Women's education, in particular their lower share of doctorates, accounts for another 10%. The gender gap in the number of commercialized patents conditional on holding any has slightly different determinants. We are able to explain almost half this gap, with job tasks explaining 40% of the gap, women's younger age 29%, and certain other characteristics working to increase the gap. The influential job tasks are design and development.

The results make clear that the first steps towards increasing female patenting rates must be to increase women's representation in electrical and mechanical engineering, relative to life sciences, and in jobs involving design and development. Current trends are changing the patenting gap only slowly. For example, the share of women in the sample with a bachelor's degree in engineering is increasing only 0.9 percentage points per decade in our sample, and the trend is slowing. The gender patenting gap is of economic significance: eliminating the patenting shortfall of female holders of science and engineering degrees would increase GDP per capita by 2.7%.

1 Data

We use individual-level data from the 2003 National Survey of College Graduates (NSCG), data collected under the auspices of the National Science Foundation. The data may be downloaded at sestat.nsf.gov/datadownload. These data are a stratified random sample of people reporting having a bachelor's degree or higher on the long form of the 2000 census. All respondents who had ever worked were asked whether they had applied for a U.S. patent since October 1998, whether they had been granted any U.S. patent since October 1998, and if so, how many, and how many had been commercialized or licensed. The survey will not capture patents by those with less than a college degree, but we assume that most patents are captured. The data contain a rich set of variables describing respondents' education and job, including job tasks. We count as holders of S&E degrees respondents with bachelor's, master's or doctoral degrees in science (excluding social sciences) or in engineering, as well as those who minored in science or engineering in college.³ We exclude from our sample respondents 65 or older (the youngest respondent is 24, but few are younger than 26) and respondents who live outside the United States or in U.S. territories. The sample of potential patentors we work with has 88,094 observations, representing 2070 patents granted and 1299 patents commercialized or licensed.

2 Method

We first decompose the gender patenting gap so as to highlight the importance of women's lower representation among those with any degree in science or engineering. If P(SE) is the probability of having a degree in science or engineering, we may write

$$E(N) = P(SE)E(N|SE) + [1 - P(SE)]E(N|non SE),$$

or

$$\overline{N} = P^S \hat{N}^S + (1 - P^S) \hat{N}^O,$$

³ Three quarters of those who minored in S&E also majored in S&E, so including those with minors expands the sample only slightly.

where the hat denotes the average conditioning on science and engineering degree status, and O indexes non–S&E. The gender gap is therefore

$$\overline{N}_m - \overline{N}_f = [P_m^S \hat{N}_m^S + (1 - P_m^S) \hat{N}_m^O] - [P_f^S \hat{N}_f^S + (1 - P_f^S) \hat{N}_f^O],$$

where m and f subscripts denote gender. This may be rewritten as

$$\overline{N}_m - \overline{N}_f = (P_m^S - P_f^S)(\hat{N}_f^S - \hat{N}_f^O) + P_m^S(\hat{N}_m^S - \hat{N}_f^S) + (1 - P_m^S)(\hat{N}_m^O - \hat{N}_f^O).$$
(1)

The first term on the right hand side represents the share of the gap due to the gender gap in having a science or engineering degree; the second represents the share due to the gender patenting gap among those with a science or engineering degree; the third the share due to the gender patenting gap among those without a science or engineering degree.⁴

The same equation may be used to decompose the gender gap in the probability of patenting, P, by replacing \hat{N} with \hat{P} , the probability of patenting conditional on science and engineering degree status, on the right hand side. The gender gap in the number of patents conditional on having any patent, \tilde{N} , may be decomposed by replacing \hat{N} with \hat{N} , the average number of patents conditional on having a patent and on science and engineering degree status, and P^S with \tilde{P}^S , the probability of having a science or engineering degree conditional on having a patent.

In the same spirit, we investigate the degree to which the gender patenting gap is caused by the gender difference in the probability of having any patent, and the gender difference in the number of patents conditional on having any. If N is the number of patents, $E(N) = P(Any \ patent) \times E(N|Any \ patent)$, or $\overline{N} = P\widetilde{N}$, where the tilde denotes the average conditioning on having a patent. The gender gap is therefore

$$\overline{N}_m - \overline{N}_f = P_m \widetilde{N}_m - P_f \widetilde{N}_f.$$

⁴ The decomposition is sensitive to the choice of this variant rather than its dual. We consider this one more appropriate in a context where the counterfactual of increasing the share of women in S&E is of interest: the additional women would presumably experience a patenting boost equal to the current female S&E/non–S&E differential, so the weight on the S&E representation gap (the first component in equation 2) should be the female S&E/non–S&E patenting differential, not the male as in the dual.

This may be rewritten as

$$\overline{N}_m - \overline{N}_f = P_m(\widetilde{N}_m - \widetilde{N}_f) + \widetilde{N}_f(P_m - P_f), \qquad (2)$$

with the first term on the right hand side reflecting the share of the gap due to the gender gap in the number of patents conditional on having any patent, and the second term reflecting the gap in the probability of having any patent.

Having performed these decompositions, we run regressions on separate samples of science and engineering degree holders and other degree holders, and we separately examine the probability of patenting and the number of patents conditional on having any, as the determinants may differ. We focus on patents commercialized, given their probable greater contribution to economic growth, but results for patents granted are similar. For the full samples of all those who have ever worked, we report linear probability coefficients (probit marginal effects are similar) from regressions of the form:

$$P(Any \ commercialized \ patent)_i = \alpha_0 + \alpha_1 F_i + \alpha_2 X_i + \epsilon_i, \tag{3}$$

where the coefficient of interest is α_1 , the coefficient on the female dummy. For the samples of commercialized patent holders (whom we sometimes refer to as inventors) we report coefficients from least squares estimation of

$$log(Commercialized \ patents|any)_i = \beta_0 + \beta_1 F_i + \beta_2 X_i + \nu_i, \tag{4}$$

where β_1 is the coefficient of interest. Finally, for the samples of patent holders (commercialized or not), we report linear probability coefficients from regressions for the probability of commercializing a patent conditional on any patent being granted:

$$P(Patent \ commercialized | patent \ granted)_i = \gamma_0 + \gamma_1 F_i + \gamma_2 X_i + \eta_i.$$
(5)

All regressions are weighted with the survey weights, and robust standard errors are calculated in all cases. In all regressions, we gradually add covariates to assess how much of the gender gap is due to gender differences in particular characteristics. The controls include demographics, detailed fields of study, highest degree, employment and student status, whether a bachelor's degree level knowledge of science or engineering was necessary for the job, the degree to which the work on the job is related to the field of highest degree, and controls for whether at least 10% of time on the job is spent in activities we judged likely to be associated with patenting: basic research, applied research, development, design, computer tasks and management. Job-related covariates are interacted with a dummy for employed.

3 Descriptive statistics

Table 1, based on samples where an observation is a patent, shows that 7.5% of patents granted were reported by female inventors (column 1), while only 5.5% of commercialized or licensed patents, were reported by female inventors (column 4). The lower figure for commercialized patents is due to the fact that while overall 77% of patents granted were commercialized (column 1), only 62% of patents granted to female inventors were commercialized (column 3), compared to 79% for men (column 2). 74% of patent holders hold S&E degrees (column 1), a share that is slightly higher for women than men and lower among holders of commercialized patents, especially men (68%, column 4).

Table 2 shows statistics based on the full sample of respondents (those who have ever worked), split by gender and S&E degree status. S&E degree holders patent more than others, and within both degree categories men patent more than women. For example, 4.4% of men with S&E degrees report being granted a patent, and 2.9% report commercializing a patent (column 2), compared to 1.0% and 0.6% respectively for women (column 3). The male–female disparity is larger for the (unconditional) number of patents, indicating that male inventors have more patents than female inventors.

In Table 3, we take a first step towards investigating the reasons for higher patenting rates for men among S&E degree holders (panel A), and among non–S&E degree holders (panel B), by showing the distribution of fields of study by gender and the patenting intensity of each field. Columns 1 and 2 show the highest degrees of women with any S&E degree are concentrated in the life sciences: 27% of their highest degrees are in this field,

compared to 14% for men. Consequently, women with S&E degrees are underrepresented in most other S&E fields, with the largest gaps in the relatively large (for men) fields of electrical and mechanical engineering.

The consequences of these different fields of study may be seen in columns 3–6: respondents reporting a highest degree in life sciences report only 0.06 patents on average (column 4), compared with 0.28 in electrical engineering, the most patent–intensive field, and 0.18 in mechanical engineering. Women with S&E degrees are also slightly underrepresented in the other patent–intensive fields of physical sciences and chemical engineering. The disparity between more female and more male fields is higher for commercialized patents (columns 5 and 6), since, as column 7 shows, only 39% of patents granted in life sciences are commercialized, compared to 62% in electrical engineering and mechanical engineering.

The lower panel examines the sample of respondents with no degree in S&E. We follow the NSF's classification of "technology" fields (which include computer programming, as distinct from computer science) as "S&E-related" rather than as S&E. For this sample, the most common S&E-related fields other than technology are science education fields. Women without an S&E degree are underrepresented in technology (compare columns 1 and 2), which not surprisingly is the most patent-intensive of these fields. However, with only 0.04 patents granted per person (column 4), technology is not very patent intensive compared to S&E fields, and it represents only a small fraction of non–S&E degrees. Most technology patents are commercialized (67% in column 7), yet technology's average number of commercialized patents is only half the S&E average of 0.06 (column 6).

In Tables 4 and 5, we similarly examine a set of job characteristics, for those working at the survey date. In Table 4, we consider the sample of respondents with an S&E degree. The first panel shows that men and women are equally likely to have a job closely related to the field of study of highest degree (columns 1 and 2), and that not surprisingly, those working in jobs closely related to science and engineering study have more patents than others (columns 3 and 4). Women are slightly more likely to be working in an unrelated field, which should tend to reduce their patenting. The second panel shows that men are much more likely to work in a job for which a knowledge of science and engineering at at least a bachelor's level is required: 72% of men do so, compared to 59% of women, and there is a sharp divide in patenting between respondents who have jobs requiring such knowledge (0.079 commercialized patents per person) and those who do not (0.009).

The third panel shows similar statistics according to whether respondents reported spending at least 10% of their time on various tasks likely to be related to patenting. Women are slightly underrepresented in basic and applied research, somewhat underrepresented in computer tasks, and very underrepresented in development and design, as well as management. At the same time, there are large patenting disparities between those that do and do not do applied research, development and design (columns 3 and 4).

Table 5 shows statistics for the sample of respondents without an S&E degree. The job characteristics which are most closely associated with patenting and in which women are most underrepresented are design and development, with a similar but much less marked pattern in management. Appendix Tables 1 and 2 show means of other variables used in estimation.

4 Results

We decompose the gender patenting gap before running regressions, focusing on commercialized patents, to establish the determinants of the gender gap among those with S&E degrees, and among those without. Finally, we estimate the probability of commercializing a patent for those who have been granted a patent.

4.1 Decomposition results

Table 6 presents results based on the decomposition of equation (1). The means underlying the decomposition are presented in Appendix Table 3. The first column shows that for commercialized patents, 5.6% of the gender gap is owing to the smaller fraction of women with an S&E degree, 62% is owing to a gender gap among holders of an S&E degree, and 32% is owing to a gender gap among holders of other degrees. This decomposition is heavily influenced by one observation, however: a male with a degree in communications reporting having 70 commercialized patents, an outlier among those without an S&E degree (the next highest tally is 15), and second most prolific patenter in the sample. There does not seem to be an error: the respondent reports that his work is unrelated to the field of his highest degree, that his main task is development, and that his occupation is manager. Nevertheless, we feel more comfortable with the decomposition dropping this observation, and this is reported in column 2. Now the share of the gap within S&E degree holders dominates more clearly at 78%, compared to 7% due to the smaller fraction of women with an S&E degree, and 15% for the within non–S&E component. Columns 3 and 4 shows the decompositions of the probability of any patents and the number of patents per inventor are similar.

Simulations provide a different way of representing the components of the gender gap. If the share of women in S&E were increased to that of men, patents per woman would rise by a factor of 1.9. This would increase women's share of commercialized patents to 10.0%, rather than 5.5% as currently, increasing the number of commercialized patents by 5.0%.⁵ On the other hand, if female patenting in S&E were instead raised so as to eliminate the within–S&E patenting gap, patents per woman would rise by a factor of 5.3, resulting in women contributing 23.5% of commercialized patents. This would increase the number of commercialized patents by 23.6%.

We can make a crude calculation of the benefit of the additional patents using the results of Furman, Porter and Stern (2002), who find that the elasticity of a country's GDP with respect to its patent stock is 0.113, controlling for capital and labor. Closing the S&E representation gap would therefore increase GDP per capita by $0.113 \times 5.0 = 0.6\%$, and closing the S&E patenting gap would increase GDP per capita by $0.113 \times 23.7 = 2.7\%$.⁶

It is useful in interpreting the regressions that follow to use equation (2) to assess how much of the gender patenting gap in commercialized patents is due to a gap in

⁵ The outlier's patents are included in this calculation.

⁶ The elasticity applies to all patents, rather than to commercialized patents, but the simulations based on patents granted yield similar increases in GDP per capita: a 0.8% increase from increasing women's representation in S&E, and a 2.7% increase from closing the S&E patenting gap.

the probability of having any commercialized patent versus the gap in the number of commercialized patents conditional on having any. For holders of S&E degrees, 66% is attributable to the gap in the probability of patenting, and the figure of 63% for holders of non–S&E degrees (without the outlier) is very similar.

4.2 Probability of patenting

We now estimate the regressions of equation (3) to explain the gender gap in the probability of patenting, the more important component of the patenting gap. In Table 7 panel A, for S&E degree holders, we examine the probability of commercializing a patent, beginning with only the female dummy in column 1: S&E women are 2.3 percentage points less likely to patent than S&E men. Adding dummies for race, ethnicity and nativity in column 2 changes little, but adding 142 dummies for field of study of highest degree and 29 dummies for field of study of bachelor's degree in column 3 reduces the coefficient to 1.5 percentage points, a decrease corresponding to 31% of the original effect in column 1.

The covariates added in columns 4–8 cumulatively explain more of the gap, with education controls explaining 10% of the gap (column 4), but the dummies for how closely related one's work is to one's highest degree, and whether one needs knowledge of a science or engineering bachelor's degree for the job (column 8) having little effect. The effect of the education controls reflects the lower share of women with doctoral degrees. Only when the dummies for whether at least 10% of the respondent's time is spent in specific tasks does the coefficient fall again appreciably: from 1.2 percentage points in column 8 to 0.9 percentage points in column 9, or 13% of the original gap. This is likely to be an underestimate of the contribution of job tasks, since tasks are measured at the survey date, while patents are measured over a five year window. Unreported regressions reveal that while each task control individually reduces the gender gap, those with the strongest effects are design and development. Altogether, the covariates explain 61% of the raw gender gap.

In panel B, we repeat the exercise for the sample of non–S&E degree holders. Women

are 0.32 percentage points less likely to commercialize a patent than men. Only the controls for job tasks in column 8 make much of a difference to the coefficient, reducing it from 0.25 to 0.21 percentage points, or 16% of the raw gender gap. Altogether, the covariates explain only 34% of the raw gap.

4.3 Patents per inventor

We next turn to examining the number of commercialized patents, conditional on any having been commercialized, and present results of estimating equation (4) for the S&E sample in Table 8 panel A. Female inventors commercialize 17 log points fewer patents than men (column 1), and controlling for detailed field of study in column 3 increases the gap to 24 log points. Although this suggests women's choice of field is beneficial to patenting, the effect is outweighed by the opposite effect of field on the more important gap in the probability of patenting at all (Table 7 panel A).

Controls for age and years since highest degree are important for the gap in patents per inventor, reducing the conditional gender gap from 24 log points in column 5 to 18 log points in column 6, or by 29% of the raw gender gap. Job tasks are again important in column 9, accounting for 40% of the raw gender gap. Unreported regressions indicate that design tasks influence the gender gap the most, followed by development and management. Basic research and computer tasks do not affect the gap. The covariates together explain 49% of the raw gender gap.

In panel B, we examine the gender gap in the number of patents per inventor among those without an S&E degree. We are unable to explain this gender gap, with most covariates only deepening the puzzle. The raw gap is a large 37 log points, statistically significant at the 10% level, while the conditional gap in column 8 is 61 log points, though statistically insignificant. Only job tasks (column 8) make a non-trivial contribution to understanding the raw gap, explaining 27% of it.

The panel B regressions are sensitive to the outlier mentioned above, so in panel C, we present the coefficients from regressions on a sample with the outlier dropped. The raw

gap is smaller, at 21 log points (column 1), statistically significant at the 10% level. Fields of study deepen the puzzle, while doing work requiring science or engineering knowledge (column 7) and job tasks (column 8) appear to explain a lot of the gap, though the estimates are very imprecise.

4.4 Probability of commercializing a granted patent

We have focused on commercialized patents, as these are likely to be those contributing more to economic growth. Table 1 indicated that conditional on being granted any patent, female inventors are less likely to commercialize a patent than male inventors. We examine this conditional probability explicitly in Table 9, by estimating equation (5). For S&E degree holders, in panel A, there is a 9.7 percentage point raw gender gap (column 1), statistically significant at the 10% level, which may be compared with the overall commercialization rate of 77%. 70% of this gap is explained by detailed field of study (column 3); age and years since highest degree explain another 24% (column 6), while other covariates either explain little or increase the puzzle. Together the covariates explain 86% of the gap.

Due to the small sample size of only 202 patents, we are less successful in understanding this outcome for those without an S&E degree (panel B). The raw gender gap is 8.8 percentage points, but it is statistically insignificant. The point estimates indicate that most covariates deepen the puzzle, while job tasks make a large contribution to explaining the raw gap, with an additional contribution of age and years since highest degree. The column 9 point estimate is the same as in column 1.

5 Conclusions

Women are much less likely to be granted a patent than men, and are somewhat less likely to commercialize or license the patents they are granted. Because women with a degree in S&E patent little more than other women, increasing the share of women in S&E would not greatly increase patenting. Only 7% of the gender gap in commercialized patents is owing to women's underrepresentation in S&E, compared to 78% owing to the patenting gap among holders of S&E degrees. Results for all patents granted are similar. The gender patenting gap is economically very significant: closing the gap among S&E degree holders would increase commercialized patents by 24% and GDP per capita by 2.7%.

The most important determinants of the gender gap among S&E degree holders are women's underrepresentation in patent-intensive fields of study, especially electrical and mechanical engineering, and in patent-intensive job tasks, especially development and design. Women's lower share of doctoral degrees plays a minor role, reducing their probability of patenting at all, while women's younger age plays a minor role by reducing the number of patents for those who have any. Hunt (2010) finds that pay and promotion issues cause women to be more likely than men to leave engineering (compared to other fields). As similar patterns are found in other male-dominated fields, she recommends improving women engineers' mentoring and networks, and addressing possible discrimination by managers and co-workers. Such measures might also encourage more women to enter engineering.

It is also useful to note factors found to be unimportant among S&E degree holders. Conditional on age and years since highest degree, current employment status and years since last employment do not affect the gender gap. Though women in the sample are closely attached to the labor force, the effect of actual experience may be larger than captured by these measures anchored on the survey date. Other variables with little effect on the conditional gender gap include the extent to which the respondent's job is related to the field of study of highest degree and whether the respondent's job requires science or engineering knowledge at the level of a bachelor's degree or higher. This is despite a large gender gap in the S&E knowledge requirement variable, and a large unconditional patenting differential between respondents in jobs requiring and not requiring S&E knowledge: these gaps reflect different choices of field of study.

The results highlight the importance of distinguishing between science and engineering in research on the choice of field of study. Stinebrickner and Stinebrickner (2011) study the decision to major in science and math in a liberal arts college where engineering is not an option; Zafar (2008) uses data from a university at which engineering school students must declare their engineering major on entering college, and therefore drops these students. The necessity for potential engineering majors of being well-informed in high school might not be unrelated to the low share of women in engineering. Further research is also required on movements into and out of design and development jobs.

References

- Ashcraft, Catherine and Anthony Breitzman. 2007. "Who Invents IT? An Analysis of Women's Participation in Information Technology Patenting". National Center for Women and Information Technology.
- Ding, Waverly W., Fiona Murray and Toby E. Stuart. 2006. "Gender Differences in Patenting in the Academic Life Sciences". Science, 313 665–667.
- Frietsch, Rainer, Inna Haller, Melanie Funken–Vrohlings, and Hariolf Grupp. 2009. Research Policy, 38 590–599.
- Furman, Jeffrey L., Michael E. Porter and Scott Stern. 2002. "The determinants of national innovative capacity". *Research Policy*, 31 pp. 899–933.
- Hunt, Jennifer. 2010. "Why Do Women Leave Science and Engineering?". NBER Working Paper 15853, March.
- Stephan, Paula, Gurmu Shiferaw, A.J. Sumell and Grant Black. 2010. "Who's Patenting in the University? Evidence from the Survey of Doctorate Recipients". *Economics of Innovation and New Technology*, 19 (5) 481–503.
- Stinebrickner, Todd and Ralph Stinebrickner. 2011. "Math or Science? Using Longitudinal Expectations Data to Examine the Process of Choosing a College Major". University of Western Ontario working paper.
- Thursby, Jerry G. and Marie C. Thursby. 2005. "Gender Patterns of Research and Licensing Activity of Science and Engineering Faculty". Journal of Technology Transfer, 30 343–353.
- U.S. Patent and Trademark Office. 1999. "Buttons Biotech: to 1996 Update Report with supplemental data through 1998". December www.uspto.gov/web/offices/ac/ido/oeip/taf/wom_98.pdf, accessed 13.2011.
- Whittington, Kersten Bunker and Laurel Smith–Doerr. 2005. "Gender and Commercial Science: Women's Patenting in the Life Sciences". Journal of Technology Transfer, 30 355–370.
- Whittington, Kersten Bunker and Laurel Smith–Doerr. 2008. "Women Inventors in Context: Disparities in Patenting Across Academia and Industry". Gender and Society, 22 194–218.
- Zafar, Basit. 2008. "College Major Choice and the Gender Gap". Federal Reserve Bank of New York working paper.

	I	Patents grante	ed	Patents commercialized			
	All	Male	Female	All	Male	Female	
		inventors	inventors		inventors	inventors	
	(1)	(2)	(3)	(4)	(5)	(6)	
Female inventor	0.075	0	1	0.055	0	1	
Commercialized	0.773	0.785	0.617	1	1	1	
S&E degree holder	0.738	0.737	0.761	0.684	0.681	0.730	
Observations	2070	1833	237	1299	1173	126	

Table 1: Statistics on sample of patents

Note: Weighted using survey weights. An observation corresponds to a patent. S&E denotes science and engineering.

	All	S&E degree holders		Non-S&E degree holders	
	(1)	Male (2)	Female (3)	Male (4)	Female (5)
A. Patents granted					
Number	0.032	0.131	0.025	0.023	0.001
Any (%)	1.0	4.4	1.0	0.6	0.1
B. Patents commercialized					
Number	0.019	0.074	0.011	0.017	0.001
Any (%)	0.7	2.9	0.6	0.4	0.1
Observations	88,094	25,568	9607	23,754	29,165

Table 2: Patenting rates by gender among holders of science and engineering degrees

Note: Weighted using survey weights. Samples are drawn from respondents who have ever worked. S&E denotes science and engineering.

	Highes	t degree	Paten	ts granted	Pate	nts commer	cialized
	Men	Women	Any	Number	Any	Number	As %
	(%)	(%)	(%)		(%)		patents
							granted
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
A. S&E degree holders							
Computer Science	11.0	12.7	1.9	0.04	1.3	0.03	64.4
Mathematics	5.2	8.5	1.2	0.02	0.8	0.01	65.2
Life Sciences	14.2	26.5	2.2	0.06	1.1	0.02	39.3
Physical sciences	8.5	7.4	6.5	0.22	3.7	0.10	45.3
Civil engineering/ architecture	5.5	1.6	1.1	0.03	0.7	0.02	62.4
Electrical engineering	11.3	3.5	8.1	0.28	5.7	0.18	62.3
Chemical engineering	3.5	2.3	6.4	0.20	4.6	0.12	59.4
Mechanical/industrial engineering	13.8	4.0	6.2	0.18	4.2	0.11	61.7
S&E-related fields	10.1	15.0	1.2	0.03	0.7	0.01	42.6
Social sciences	1.8	2.7	2.1	0.03	1.5	0.02	71.9
Other non-S&E	15.2	15.9	2.1	0.06	1.5	0.03	56.0
All	100.0	100.0	3.4	0.10	2.2	0.06	55.4
Observations	24,575	10,600		35,	175		
B. Non S&E degree ho	lders						
Technology	2.2	0.3	2.5	0.04	1.9	0.03	67.2
Other S&E-related	7.7	14.3	0.3	0.01	0.2	0.00	61.9
Social science	13.8	13.1	0.3	0.01	0.2	0.00	19.4
Other non-S&E	76.2	72.4	0.3	0.01	0.2	0.01	83.2
All	100.0	100.0	0.3	0.01	0.2	0.01	70.5
Observations	23,754	29,165		52,	919		

Table 3: Respondent fields of study and associated patenting statistics

Note: Weighted using survey weights. Samples are drawn from respondents who have ever worked. Column 7 is based on the ratio of columns 6 and 4. S&E denotes science and engineering.

	Men	Women	Patents	Patents
	(%)	(%)	granted	commercialized
	(1)	(2)	(3)	(4)
How related is job to high degree?				
Closely related	59.6	59.3	0.133	0.073
Somewhat related	26.7	23.9	0.076	0.041
Unrelated	13.6	16.8	0.024	0.018
	100.0	100.0		
Need S&E bachelor's knowledge?				
Yes	72.1	58.6	0.141	0.079
No	27.9	41.4	0.018	0.009
	100.0	100.0		
At least 10% time in job spent on:				
Basic research?				
Yes	23.2	20.7	0.181	0.085
No	76.8	79.3	0.079	0.049
Applied research?				
Yes	35.6	30.4	0.227	0.121
No	64.4	69.6	0.038	0.024
Development?				
Yes	36.5	25.5	0.241	0.145
No	63.5	74.5	0.032	0.013
Design?				
Yes	38.1	20.0	0.209	0.127
No	61.9	80.0	0.049	0.022
Computer tasks?				
Yes	43.3	38.7	0.108	0.067
No	56.7	61.3	0.098	0.049
Management tasks?				
Yes	66.3	45.1	0.126	0.070
No	33.7	54.9	0.062	0.034

Table 4: Job characteristics for workers with S&E degrees

Note: Weighted with survey weights. 31,404 observations on respondents with an S&E degree who were working at the survey date. The job tasks questions are in answer to "Which of the following work activities occupied at least 10% of your time during a <u>typical</u> work week on this [principal] job?": Basic research – study directed towards gaining scientific knowledge primarily for its own sake; Applied research – study directed toward gaining scientific knowledge to meet a recognized need; Development – using knowledge gained from research for the production of materials, devices; Design of equipment, processes, structures, models; Computer applications, programming, systems development; Managing or supervising people or projects. S&E denotes science and engineering.

	Men	Women	Patents granted	Patents commercialized
	(1)	(2)	(3)	(4)
Need S&E bachelor's knowledge?				
Yes	18.0	14.3	0.015	0.010
No	82.0	85.7	0.012	0.009
At least 10% time in job spent on:				
Basic research?				
Yes	15.8	13.1	0.008	0.004
No	84.2	86.9	0.013	0.010
Applied research?				
Yes	20.0	19.0	0.016	0.010
No	80.0	81.0	0.012	0.009
Development?				
Yes	23.8	20.2	0.043	0.037
No	76.2	79.8	0.004	0.001
Design?				
Yes	18.0	11.1	0.066	0.057
No	82.0	88.9	0.003	0.001
Computer tasks?				
Yes	29.7	26.8	0.011	0.007
No	70.3	73.2	0.013	0.010
Management tasks?				
Yes	65.3	53.1	0.017	0.015
No	34.7	47.9	0.006	0.001

Table 5: Job characteristics for workers with no S&E degree

Note: Weighted with survey weights. 45,508 observations on respondents without an S&E degree who were working at the survey date. See Table 4 for the exact questions about job tasks. S&E denotes science and engineering.

	Number	of patents	Probability of any	Number of patents
		0 1 .1	patent	any patent
	Full sample (1)	(2)	out one male no (3)	n-S&E outlier (4)
Between S&E, non-S&E degree holders	5.6	7.1	9.4	11.0
Within S&E degree holders	62.1	78.4	71.7	74.1
Within non-S&E degree holders	32.4	14.5	18.9	15.0
Total	100.0	100.0	100.0	100.0

Table 6: Decomposition of the gender gap in number of commercialized patents (%)

Note: S&E denotes science and engineering.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. S&E degree holders					, ,				· · ·
Female	-0.0230***	-0.0224***	-0.0152***	-0.0130***	-0.0131***	-0.0129***	-0.0126***	-0.0120***	-0.0089***
Female	(0.0014)	(0.0014)	(0.0015)	(0.0015)	(0.0015)	(0.0015)	(0.0016)	(0.0015)	(0.0015)
R^2	0.01	0.01	0.03	0.04	0.04	0.04	0.04	0.04	0.05
B. Non S&E degree holders									
Female	-0.0032***	-0.0031***	-0.0029***	-0.0028***		-0.0028***	-0.0027***	-0.0025***	-0.0021***
Female	(0.0005)	(0.0005)	(0.0005)	(0.0005)		(0.0005)	(0.0005)	(0.0005)	(0.0005)
\mathbb{R}^2	0.00	0.00	0.01	0.01		0.01	0.01	0.01	0.01
Race, ethnicity, immigrant		Yes							
Fields of study			Yes						
Highest degree				Yes	Yes	Yes	Yes	Yes	Yes
Level of S&E degree					Panel A				
Potential experience						Yes	Yes	Yes	Yes
Labor force status							Yes	Yes	Yes
Need S&E knowledge,								Yes	Yes
Job tasks									Yes

Table 7: Probability of commercializing or licensing a patent

Note: Coefficients from least squares regressions weighted with survey weights; robust standard errors. The panel A sample has 35,175 observations, the panel B sample 52,919. Race and ethnicity controls are dummies for Asian, black non-Hispanic, Hispanic any race and mixed race non-Hispanic. Immigrant controls are dummies for born abroad non-citizen, born abroad as U.S. citizen, born in U.S. territories. Fields of study controls are 142 (83 in panel B) dummies for field of study of highest degree, and 29 (14 in panel B) dummies for field of study of bachelor's degree. Highest degree controls are dummies for master's, doctoral and professional degrees. Level of S&E degree comprises four dummies for bachelor's, master's, doctoral and minor degrees in science or engineering. Potential experience is controlled with six age dummies and five dummies for years since highest degree. Labor force status comprises a dummy for employed, the number of years since last employment interacted with employment, and dummies for fulltime master's student, fulltime doctoral student, and other student. Need S&E knowledge is a dummy for whether the respondent reported that bachelor's degree level knowledge of science or engineering was necessary for the job. Study/job relatedness controls are two dummies for the current job is closely or fairly closely related to the field of study of highest degree. Jobs tasks are dummies for whether the respondent spends more than 10% of work time on basic research, applied research, development, design, computer tasks or management. Job covariates are interacted with an employment dummy. S&E denotes science and engineering.

*** p<0.01, ** p<0.05, * p<0.1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. S&E degree holders			••	• •	• •	• •	• •		
Female	-0.174**	-0.177**	-0.239**	-0.228**	-0.236**	-0.185**	-0.167^{*}	-0.165*	-0.095
	(0.078)	(0.079)	(0.083)	(0.084)	(0.086)	(0.089)	(0.088)	(0.088)	(0.090)
\mathbb{R}^2	0.01	0.03	0.13	0.13	0.14	0.18	0.19	0.20	0.24
B. Non S&E degree holders									
Female	-0.365*	-0.388^{*}	-0.376*	-0.382^{*}		-0.592^{*}	-0.635	-0.710	-0.611
	(0.196)	(0.209)	(0.191)	(0.201)		(0.346)	(0.415)	(0.496)	(0.486)
\mathbb{R}^2	0.02	0.04	0.70	0.70		0.81	0.83	0.83	0.84
C. Non S&E degree holders	, outlier drop	oped							
Female	-0.205*	-0.224*	-0.376*	-0.382*		-0.387	-0.370	-0.290	-0.120
1 emaie	(0.120)	(0.130)	(0.192)	(0.202)		(0.245)	(0.276)	(0.304)	(0.336)
\mathbb{R}^2	0.02	0.04	0.46	0.46		0.68	0.69	0.70	0.75
Race, ethnicity, immigrant		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fields of study			Yes	Yes	Yes	Yes	Yes	Yes	Yes
Highest degree				Yes	Yes	Yes	Yes	Yes	Yes
Level of S&E degree					Panel A	Panel A	Panel A	Panel A	Panel A
Potential experience						Yes	Yes	Yes	Yes
Labor force status							Yes	Yes	Yes
Need S&E knowledge,								Yes	Yes
study/job relatedness								1 68	168
Job tasks									Yes

Table 8: Determinants of number of commercialized patents, conditional on holding a commercialized patent

Note: The dependent variable is the log of the number of licensed or commercialized patents. Coefficients from least squares regressions weighted with survey weights; robust standard errors. Each coefficient is from a different regression. The sample size in panel A is 1166 observations, in panel B is 133, in panel C is 132. In panel A, 85 fields of study of highest degree and 28 fields of study of bachelor's degree are represented in the sample; in panel B 46 fields of study of highest degree and 14 fields of study of bachelor's degree are represented in the source the covariates are described in the notes to Table 7. S&E denotes science and engineering. *** p < 0.01, ** p < 0.05, * p < 0.1

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
A. S&E degree holders									
E	-0.097*	-0.092*	-0.024	-0.031	-0.031	-0.008	-0.004	-0.005	-0.014
Female	(0.049)	(0.050)	(0.047)	(0.047)	(0.047)	(0.046)	(0.046)	(0.046)	(0.047)
R^2	0.01	0.01	0.12	0.13	0.13	0.16	0.16	0.17	0.18
B. Non S&E degree holders									
Female	-0.088	-0.070	-0.184	-0.191		-0.195	-0.155	-0.192	-0.084
гепае	(0.151)	(0.156)	(0.149)	(0.168)		(0.170)	(0.196)	(0.191)	(0.129)
\mathbb{R}^2	0.00	0.07	0.51	0.54		0.65	0.66	0.69	0.74
Race, ethnicity, immigrant		Yes							
Fields of study			Yes						
Highest degree				Yes	Yes	Yes	Yes	Yes	Yes
Level of S&E degree					Panel A				
Potential experience						Yes	Yes	Yes	Yes
Labor force status							Yes	Yes	Yes
Need S&E knowledge,								Yes	Yes
study/job relatedness								1 65	1 65
Job tasks									Yes

Table 9: Probability of commercializing a patent, conditional on having been granted a patent

Note: Coefficients from least squares regressions weighted with survey weights; robust standard errors. The sample comprises respondents with a science or engineering degree who had been granted one or more patents. Panel A 1868 observations, panel B 202. In panel A, 84 fields of study of highest degree and 29 fields of study of bachelor's degree are represented in the sample; in panel B, 55 fields of study of highest degree and 14 fields of study of bachelor's degree are represented in the sample; otherwise the covariates are described in the notes to Table 7. S&E denotes science and engineering.

*** p<0.01, ** p<0.05, * p<0.1

	S&E deg	ree holders	Non-S&E d	egree holders
	Men	Women	Men	Women
Asian, non-Hispanic	0.12	0.14	0.04	0.05
Black, non-Hispanic	0.04	0.07	0.06	0.08
Hispanic, any race	0.04	0.05	0.04	0.04
Mixed race, non-Hispanic	0.01	0.01	0.01	0.01
Foreign born	0.20	0.21	0.08	0.09
American born abroad	0.01	0.01	0.01	0.01
Born U.S. territories	0.00	0.00	0.00	0.00
Bachelor's highest degree	0.55	0.56	0.68	0.67
Master's highest degree	0.29	0.29	0.22	0.28
Doctorate highest degree	0.08	0.06	0.03	0.02
Professional highest degree	0.08	0.09	0.07	0.03
College minor in S&E?	0.18	0.22		
Bachelor's in S&E?	0.89	0.83		
Master's in S&E?	0.22	0.18		
Doctorate in S&E?	0.07	0.05		
Age	44.8	41.8	45.1	43.7
-	(10.0)	(9.7)	(10.1)	(10.0)
Years since highest degree	17.5	14.8	18.3	16.4
	(10.3)	(9.8)	(10.2)	(10.0)
Student MA full time	0.01	0.01	0.01	0.01
Student PhD full time	0.01	0.01	0.00	0.00
Other student	0.05	0.01	0.04	0.06
Employed	0.91	0.82	0.91	0.80
Years since last worked \times	0.24	0.91	0.26	1.03
not employed	(1.47)	(3.37)	(1.60)	(3.51)
Observations	25,568	9607	23,754	29,165

Appendix Table 1: Weighted means of full samples

Note: Weighted using survey weights. Standard deviations in parentheses. Samples are drawn from respondents who have ever worked. S&E denotes science and engineering.

	S&E deg	ree holders	Non-S	S&E degree h	olders
	Men	Women	Men (a)	Men (b)	Women
Patents commercialized	2.6	1.8	4.7	1.9	1.2
	(3.5)	(1.5)	(13.8)	(2.1)	(0.4)
Patents granted	3.5	2.7	5.0	2.2	1.5
	(5.0)	(3.2)	(13.9)	(2.9)	(0.6)
Asian, non-Hispanic	0.14	0.20	0.07	0.07	0.00
Black, non-Hispanic	0.01	0.01	0.02	0.03	0.05
Hispanic, any race	0.01	0.06	0.03	0.03	0.01
Mixed race, non-Hispanic	0.01	0.05	0.02	0.02	0.11
Foreign born	0.24	0.30	0.12	0.13	0.07
American born abroad	0.02	0.01	0.02	0.02	0.00
Born U.S. territories	0.00	0.00	0.00	0.00	0.00
Bachelor's highest degree	0.42	0.30	0.77	0.76	0.59
Master's highest degree	0.32	0.43	0.17	0.17	0.23
Doctorate highest degree	0.24	0.26	0.04	0.04	0.10
Professional highest degree	0.03	0.01	0.03	0.03	0.09
College minor in S&E?	0.78	0.23			
Bachelor's in S&E?	0.96	0.87			
Master's in S&E?	0.37	0.48			
Doctorate in S&E?	0.23	0.24			
Age	45.5	43.5	44.9	44.9	43.4
	(9.01)	(9.4)	(8.3)	(8.4)	(9.6)
Years since highest degree	17.6	15.1	19.6	19.6	14.2
	(9.6)	(9.4)	(8.6)	(8.7)	(9.1)
Student MA full time	0.00	0.00	0.02	0.02	0.01
Student PhD full time	0.00	0.01	0.00	0.00	0.00
Other student	0.03	0.05	0.04	0.05	0.12
Employed	0.92	0.88	0.98	0.98	0.72
Years since last worked $ imes$	0.13	0.24	0.01	0.01	0.18
not employed	(0.73)	(0.92)	(0.12)	(0.13)	(0.63)
Observations	1059	107	114	113	19

Appendix Table 2: Weighted means of samples of inventors of commercialized patents

Note: Weighted using survey weights. Standard deviations in parentheses. Samples are for respondents who hold commercialized patents. A high outlier in terms of number of commercialized patents has been dropped from the fourth column of numbers: Men (b). S&E denotes science and engineering.

	-	All	S&E d	legree	Non-S&I	E degree
	Men	Women	Men	Women	Men	Women
A. Full samples						
\overline{N} Number of patents	0.036	0.002	0.074	0.011	0.017	0.001
P Probability of patenting	0.012	0.001	0.029	0.006	0.004	0.001
\widetilde{N} Number of patents any patent	3.01	1.62	2.58	1.82	4.68	1.24
P ^s Probability of S&E degree	0.331	0.142	1	1	0	0
B. Dropping one male non S&E						
outlier						
\overline{N} Number of patents	0.029				0.007	
P Probability of patenting	0.012				0.003	
\widetilde{N} Number of patents any patent	2.43				1.86	
P ^s Probability of S&E degree	0.331				0	

Appendix Table 3: Means used for decomposition of Table 6

Note: Mean weighted with survey weights. "Patents" refers to patents commercialized or licensed. The number of observations is different in each cell, and is one smaller in each cell in panel B compared to the corresponding cell in panel A. S&E denotes science and engineering.