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1 Introduction

Nearly all economic surveys suffer from item nonresponse, i.e., respondents

answer some questions but not others. Statistical agencies that collect data

frequently impute for the missing values before making data available for

secondary analyses. The manner of imputation can strongly impact sec-

ondary analyses of the completed data and, hence, affect public policy (Little

and Rubin (2003)). For example, as noted by Kaplan and Schulhofer-Wohl

(2010), when the Census Bureau reported on its website that interstate mi-

gration declined sharply in 2006, the supposedly sharp decline in labor mobil-

ity prompted concern from then-Assistant Treasury Secretary Alan Krueger

(Fletcher (2010)), and a report from the International Monetary Fund sug-

gested that the observed steep decline in labor mobility was increasing unem-

ployment (Batini, Celasun, Dowling, Estevao, Keim, Sommer, and Tsounta

(2010)). However, Kaplan and Schulhofer-Wohl find that nearly all of the

observed decline in annual interstate migration between 2005 and 2006 is

attributable to a change in the way the Census Bureau imputes for missing

data in the Current Population Survey.

In this paper, we consider the impact of imputations for missing data on

another topic of considerable academic and policy interest: what determines

within-industry differences in total factor productivity? This is currently one

of the most important questions in industrial organization, and its answer has

implications for several other areas of economics, including macroeconomics,
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trade, and labor economics. A large literature has been devoted to investi-

gating within-industry productivity differences, surveyed by Bartelsman and

Doms (2000), and more recently by Syverson (2011). As both reviews em-

phasize, measured within-industry productivity dispersion is large and per-

sistent. Averaging across all U.S. manufacturing industries, Syverson (2004)

finds that plants at the 90th percentile of the productivity distribution are

nearly twice as productive as plants at the 10th percentile. Explanations for

these observed within-industry productivity differences include management

practices, the quality of labor and capital inputs, information technology, re-

search & development, international trade, and regulation (Syverson (2011)).

We add another factor to the list: imputed data. In fact, we show that there

may actually be more within-industry productivity dispersion than the ex-

isting literature suggests.

We investigate the impacts of imputation using the U.S. Census Bureau’s

Census of Manufactures (CMF) and Annual Survey of Manufactures (ASM),

which support much of the empirical research on plant-level productivity.

Although the CMF and ASM represent the best available data for studying

U.S. plant-level total factor productivity, imputations for nonresponse com-

prise a large percentage of the data; in fact, we show that this percentage is

far more than what is reported in the existing literature. The Census Bu-

reau imputes missing values using a combination of mean imputation, ratio

imputation, and conditional mean imputation. Their primary goal is to facil-

itate point estimation of industry aggregates; however, it is not clear if these

4



imputations are appropriate for multivariate analysis of microdata, such as

estimating plant-level total factor productivity. Our investigations suggest

that they may not be. Functions of key variables in the completed data show

evidence of attenuation and under-estimation of variability. Additionally, es-

timates of production function parameters appear to be strongly impacted

by the imputations, as do estimates of the within-industry dispersion of pro-

ductivity.

What can be done about this missing/imputed data problem? One so-

lution, popular among economists, is to drop plants with missing/imputed

values, and only analyze the plants with complete data. Unfortunately, it

is well-known that unless the missingness mechanism is missing completely

at random (MCAR), complete case analysis can lead to biased parameter

estimates (Little and Rubin (2003)). We find that the missing Census data

are not MCAR, probably in part because the Census Bureau makes a greater

effort to collect complete data from larger plants. Hence, complete-cases is

not a trustworthy solution. Further, the impacts of imputations are not mit-

igated by focusing on certain industries or by using statistics that are robust

to outliers. The imputations are pervasive, affecting many industries that

have been studied previously.

As an alternative to these strategies, we create completed datasets via

multiple imputation (Rubin (1987)). Multiple imputation has the potential

to avoid problems that plague strategies like mean imputation, ratio impu-

tation, and conditional mean imputation. First, it draws imputed values
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from models that potentially condition on all variables in the data, which

enables imputations to reflect multivariate relationships. In contrast, mean

imputation fails to preserve any multivariate relationships, and ratio impu-

tation at best preserves selected bivariate relationships used in the ratios.

Conditional mean imputation can condition on all variables in the data and

preserve multivariate relationships. However, like mean imputation and ratio

imputation, conditional mean imputation ignores the stochastic nature of the

data. This can result in under-estimation of variability. In contrast, multiple

imputation can generate appropriately dispersed values. Finally, multiple im-

putation offers secondary analysts the potential for valid variance estimation

in multivariate models, including regressions useful in productivity analysis.

In contrast, single imputation procedures result in under-estimation of un-

certainty, because typically analysts treat the imputations as if they were

genuine values. See Little and Rubin (2003) for further discussion of the

benefits of multiple imputation over mean imputation, ratio imputation, and

conditional mean imputation.

The key to the success of multiple imputation, particularly with large

fractions of missing data, is the validity of the imputation model. Finding

good fitting models is particularly challenging in the Census of Manufactures

and the ASM, as models that seem to work well in one industry may not in

another; for example, conditioning on geographic region (e.g., because of

differences in prices) may be important in some industries, but not others.

Given the large number of industries and variables to be imputed, it is de-
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sirable to have imputation procedures that flexibly fit each variable in each

industry with minimal tuning by the imputer.

Recognizing this, we impute missing items in the CMF and ASM data

using a sequence of classification and regression trees, as recently developed

by Burgette and Reiter (2010). This method automatically handles mixed

categorical and continuous data, works for skewed distributions like those

in the manufacturing data, and fits interactions and non-linear relationships

without parametric assumptions. The resulting multiple imputations lead to

substantially different estimates of plant-level productivity than those based

on the Census Bureau completed datasets, verifying that the method of im-

putation has a strong impact on conclusions about plant-level productiv-

ity. Further, given the documented deficiencies of imputation techniques

like those used by the Census Bureau, the differential results suggest that

improved imputation procedures like the one presented here would benefit

users of the Census of Manufactures and ASM microdata.

2 Background on Plant-level Productivity

Conceptually, total-factor productivity (TFP) is how much output is pro-

duced from a given level of all measurable inputs. Plants with higher TFP

produce more output from the same level of inputs, or the same output

with lower levels of inputs. Syverson (2011) reviews several ways of estimat-

ing plant-level TFP and the measurement issues inherent in each approach.
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Here we take a very common approach: we estimate a production function.

Specifically, for each industry, we assume that the technology of every plant

can be approximated by a 4-factor Cobb-Douglas production function:

lnQi = β0 + βklnKi + βllnLi + βelnEi + βmlnMi + ui (1)

where Qi is the output of plant i, Ki is the capital stock, Li is labor, Ei

is energy, Mi is materials, and ui is an error term. The ui can include

both productivity and measurement error in the dependent variable. We

estimate equation (1) using both cross-sectional data and panel data. For

both types of data we measure labor in production-worker-equivalent hours:

Li = SWi ∗ PHi/WWi, where SW are total salaries and wages, PH are

production worker hours, and WW are production worker wages. When we

use cross-sectional data, our other variables are nominal values. We use the

total value of shipments to measure output, so our measure of productivity

also includes any within-industry differences in prices. Energy is the sum

of the cost of fuels and the cost of purchased electricity. For materials, we

use the total cost of materials less energy costs. We estimate equation (1)

separately for each industry for 2002 and 2007 by OLS and take the estimated

residuals (plus the estimated intercept β̂0) as our estimates of total factor

productivity.

It is well known that if plant managers know the plant’s productivity and

take it into account when choosing inputs, the OLS estimator of the β param-
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eter vector is biased (Marschak and Andrews (1944)). Olley and Pakes (1996)

develop an estimator to address this endogeneity issue using investment as

a proxy. Zero investment–a common feature of plant-level data–causes iden-

tification problems for the Olley-Pakes estimator, so Levinsohn and Petrin

(2003, LP hereafter) develop a similar estimator using intermediate inputs

as a proxy. Wooldridge (2009, WLP hereafter) develops a version of the

LP estimator that is robust to the critique of Ackerberg, Caves, and Frazer

(2006).

Both the WLP and LP estimators require panel data. To create a panel of

plants using only the 2002 and 2007 Censuses, we would need 6-digit NAICS

industry-level price indexes for inputs and outputs to deflate the nominal

values in the Census data to real values. Unfortunately such indexes are

not yet available for 2007. However, we do have industry-level deflators for

2002-2005, and for 2003-2005 we have a sample of plants from the Annual

Survey of Manufactures (ASM). To construct real values, we deflate our nom-

inal measure of output, energy, and materials by the corresponding industry

deflators. We construct real capital stocks from deflated initial book values

and deflated investment expenditures using the perpetual inventory method,

as described in Petrin, White, and Reiter (2011). For our 2002-2005 panel

we estimate production functions using OLS, LP and WLP (2009).
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3 The Impact of Missing Data in the Census

of Manufactures and the Annual Survey of

Manufactures

The quinquennial Censuses of Manufactures and the Annual Survey of Man-

ufactures are available to researchers via the Census Research Data Center

network. The Censuses include roughly 300,000 manufacturing plants in each

year. Plants with fewer than five employees, which account for about a third

of the plants in the census, are not sent a survey form. Hence, most data

for these plants are imputed from administrative records (AR). Following

most researchers who use the Census of Manufactures, we drop all these AR

cases. We also only include tabulated establishments in our sample, since

non-tabulated establishments are known to have data that is of poor qual-

ity in some way. Our final sample size from the Censuses is approximately

200,000 plants in each year. The Annual Survey of Manufactures is an annual

sample of roughly 50,000 to 75,000 plants. Large plants–usually defined as

having more than 250 employees–are included in the sample with certainty,

and smaller plants a sampled with a probability that primarily depends on

the plant’s size.

Over the years, the CMF and the ASM have been plagued by item non-

response, and the Census Bureau has created imputations for this missing

data. However, until the 2002 census, it was difficult for researchers to iden-
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tify which, if any, items for a given plant were imputed due to item nonre-

sponse, because item-level edit/impute flags were not made available. Dunne

(1998) developed several clever ways to identify some of the imputed values,

although the item-level flags that became available in the 2002 Census show

that a much higher percentage of observations are imputed than are identified

by Dunne’s methods (White and Reiter (2008)). The item-level flags avail-

able in the 2002 and 2007 censuses and the 2003-2006 ASMs contain codes

which provide some information about how each item was imputed. How-

ever, in most cases, the definition of the codes is rather vague. We have not

been able to obtain the computer code used to generate these imputations.

Table 1 presents the means and standard deviations of the within-industry

imputation rates for key variables for all 6-digit NAICS industries from the

2002 and 2007 Censuses and the 2003-2006 ASMs. The book values of assets

are collected in the Census years, but not in the ASM in these years, so for

2003-2006 we report imputation rates for total capital expenditures instead

of assets. In identifying these records, we distinguish between edits or analyst

corrections versus imputations.1 It is clear that high percentages of data are

imputed. For example, in both 2002 and 2007, for the average industry about

27% of the data on Total Value of Shipments (TVS) are imputed. For some

other key variables, the mean imputation rate is even higher: for the average

industry 42% of the Total Cost of Materials (CM) data are imputed in both

years, and 37% and 38% of the Cost of Purchased Electricity (EE) data are

1In the appendix we describe in detail how we identify imputed items.
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imputed in 2002 and 2007, respectively. There is also significant variation in

the imputation rates across industries. For these key variables, the standard

deviation of the 6-digit NAICS level industry imputation rates range from

7 percentage points to 14 percentage points in 2002, and from 9 percentage

points to 13 percentage points in 2007. This means, for example, that an

industry that is one standard deviation above the mean in terms of its cost

of materials imputation rate would have roughly 52% of its cost of materials

data imputed in 2007.

With the exception of total value of shipments and production worker

hours, imputation rates tend to be lower in the ASM years than in the

Census years. A higher percentage of the ASM samples are large plants, and

the Census Bureau puts more effort into collecting complete records from

large plants. The means and standard deviations of the industry imputation

rates in the ASM are fairly stable over time.

To get some sense of how the Census Bureau’s imputations might affect

the relationships between key variables, we compute the following ratio for

several input variables X:

RX =
IQR(

Ximp

TV SimpX
)

IQR( Xobs

TV Sobs
)

(2)

where IQR(Z) is the interquartile range of Z, Ximp represents imputed cases

for the variable X, TV SimpX are the corresponding observations for the total

value of shipments (which may be either imputed or observed), Xobs are
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observed cases for the variable X, and TV Sobs are the corresponding TVS

observations. A ratio less than one is evidence that there is less dispersion in

the imputed data than there is in the observed data. We compute these ratios

for several inputs: capital (TAE), production worker hours (PH), the cost of

materials (CM), the cost of electricity (EE), and the cost of fuels (CF). Tables

2 and 3 present the ratio of IQRs for the industries at the 25th, 50th, and

75th percentiles of the industry distributions. The results suggest that the

Census Bureau’s imputations tend to reduce the amount of within-industry

variation in the ratios of key variables, in some cases quite drastically. For

example, in 2002 when the book value of assets (TAE) is imputed, for the

median 6-digit NAICS industry the IQR of the TAE/TV S ratio is only 0.4

percent of the IQR of the TAE/TV S ratio when both variables are observed.

In the ASM years 2003-2006 (table 3), the ratios of IQRs are much higher

than in the 2002 Census. This probably reflects the fact that the ASM

samples include fewer small plants. As a result, compared to the Census

data, a higher percentage of the ASM plants with missing data are similar to

ASM plants with complete data. Thus in the ASM data the Census Bureau’s

imputations are able to do a better job of reproducing the within-industry

dispersion in input-to-TVS ratios that we see in the complete data.

In 2007 the variation in the TAE/TV S ratio when TAE is imputed is

much more similar to the variation in the TAE/TV S ratio in the fully ob-

served data. The item-level edit/impute flags indicate that in the 2007 Cen-

sus, the Bureau changed the way it imputed for capital (TAE) in the majority
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of cases. This may account for the increase in the RTAE ratio in 2007 com-

pared to 2002. However, in both Census years, for most industries, and for all

of these key input variables, when a variable X is imputed, there is much less

variation in the X/TV S ratio than there is when X is observed. Since total

factor productivity essentially measures the relationship between output and

these inputs, it seems likely that estimates of productivity dispersion will be

affected by the Census Bureau’s imputations.

We next directly investigate the impact of imputation on estimates of

plant-level productivity by estimating the model in equation (1) by OLS.2

To do so, we select a few detailed industries: coffee & tea manufacturing

(NAICS 311920), fertilizer manufacturing (32531), flour milling (311211),

ice manufacturing (312113), fluid milk processing (311511), pesticides man-

ufacturing (32532), soy bean processing (311222), and sugar manufacturing

(31131). We select these industries for several reasons. Some of them (fluid

milk, ice, flour, soy beans) are relatively homogenous products, which should

minimize within-industry differences due to product differentiation. For these

industries we would think that the Census Bureau’s relatively simple impu-

tation methods would have a better chance of preserving the relationships

in the data, since the products produced by each plant in an industry are

relatively similar. A relatively high percentage of pesticides shipments are

exports, allowing us to investigate the effect of imputation on the estimated

2Below, we check the robustness of our results using alternative produc-

tion function estimators.
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relationship between productivity and international trade. Most of these in-

dustries are inputs into or use inputs from the agricultural sector, and thus

are of interest to agricultural policymakers. Finally, nearly all of these indus-

tries have been studied in previous research.3 Tables 4 and 5 show the sample

sizes and imputation rates for key variables for each of our selected industries

in, respectively, the 2002 and 2007 Censuses of Manufactures. The imputa-

tion rate for production worker hours increased significantly in 2007 in most

of our selected industries increased significantly in 2007 compared to 2002.

Other than production worker hours there is no clear pattern–imputation

rates increased for some variables in some industries and declined for others.

Comparing tables 4 and 5 to the imputation rates for 2002 and 2007 in table

1, most of our selected industries have imputation rates below the mean for

most of these key variables.

For most of our selected industries, we do not have enough observations in

the ASM years 2003-2006 to pass Census Bureau disclosure avoidance rules

or produce reliable estimates. However, for one of our industries–fluid milk

3Foster, Haltiwanger, and Syverson (2008) study productivity dispersion

in coffee, ice, and sugar manufacturing (as well as other industries); Davis,

Grim, and Haltiwanger (2008) study the effect of electricity prices on mea-

sures of electricity productivity dispersion in the ice and coffee manufacturing

industries, among other industries; Roberts, Klimek, and Dunne (2004) study

entry and exit in the fluid milk industry; pesticides manufacturing has been

studied by Ollinger and Fernandez-Cornejo (1995).
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processing–we do have enough observations. For this industry, we construct

a panel. Table 6 presents the imputation rates for key variables for fluid

milk processing plants in the 2003-2006 Annual Surveys of Manufactures.

Interestingly, the imputation rates increased significantly in 2004, remained

high in 2005 and 2006, and dropped back to the 2003 levels in the 2007

Census (see table 5 for the 2007 rates). This pattern may be related to the

fact that the probability sample portion of the ASM panel rotates out in

2003, and a new probability sample begins in 2004.

The first 4 columns of table 7 present OLS estimates of the production

function parameter estimates from equation (1) for selected industries for

2002, based on the fully-observed (non-imputed) data. Table 8 shows the

estimates based on the Census Bureau-completed data, which includes the

fully-observed data as well as the Bureau’s imputations. Since a relatively

large fraction of pesticides shipments are exported, for the pesticides industry

we also include a dummy for whether or not a plant exports some of its

shipments.4 The next-to-last columns of tables 7 and 8 show the ratio of

productivity at the 75th percentile of an industry’s productivity distribution

to productivity at the 25th percentile, and the final columns shows the ratio

of the 90th percentile to the 10th percentile of productivity within each

industry.

Not surprisingly, the industries with the highest imputation rates–coffee

4Previous research has found that exporters tend to be more productive

than non-exporters (see, e.g., Bernard and Jensen (1999)).
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& tea and sugar–exhibit the largest changes in their coefficient estimates. The

point estimate for the exporter dummy switches from positive in the fully-

observed data to negative in the Bureau-completed data, although neither

estimate is statistically significant. The Bureau’s imputations might affect

the sign of the exporter dummy because exporters tend to be larger (and

more productive), and large plants are less likely to have missing data.

The Bureau’s imputations also affect estimates of within-industry TFP

dispersion, although not always in the same direction. For coffee & tea,

ice, and pesticides, the estimated 75-25 ratio is economically significantly

lower in the Bureau-completed data, but for fertilizer and soybeans, the ratio

is lower in the fully-observed data. Comparing the 90-10 TFP ratios, the

Bureau’s imputations sometimes make a quite a difference. For example, the

pesticides manufacturing plant at the 90th percentile of the TFP distribution

in the fully-observed data is 3.2 times as productive as the plant at the 10th

percentile, while in the Bureau-completed data, the 90th percentile plant is

“only” 2.6 times as productive.

Tables 9 and 10 present the production function parameter estimates

for the same industries for 2007. Again, for several industries–especiallly

fertilizer and soybeans–the differences between the results based on the fully-

observed data and the completed data are economically significant. Although

in the 2007 data exporters are more productive than non-exporters in both

samples, the coefficient estimate on the exporter dummy in the Bureau-

completed data is only about two-thirds the estimate based on the fully
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observed data. The Bureau’s imputations also affect estimates of within-

industry productivity dispersion in 2007 using both the 75-25 ratio and the

90-10 ratio.

Table 11 presents the production function parameter estimates from our

fluid milk panel. Column 1 shows OLS estimates of the production func-

tion coefficients, and TFP dispersion in the fully-observed data. For the

coefficients, we pool observations across 2002-2005, but we estimate TFP

dispersion within each year. For the ASM years 2003-2005, we compute the

ASM-sample-weighted productivity distributions. Columns 2 and 3 present

the estimates from the LP and WLP estimators, respectively. Columns 4-6

show the OLS, LP, and WLP estimates based on the Bureau-completed data.

Interestingly, the Bureau’s imputations affect the OLS estimates much

less than the LP and WLP estimates. For example, the WLP estimate of

the energy coefficient falls from an incredible 1.93 in the fully-observed data

to 0.20 in the Bureau-completed data, while the OLS estimates are quite

similar in both samples. The LP and WLP estimators also tend to produce

higher estimates of TFP dispersion than OLS whether we use only the fully-

observed data or the Bureau-completed data. The LP and WLP estimates

of productivity dispersion are also much greater in the fully-observed data

than in the Bureau-completed data. To summarize, the Census Bureau’s

imputations have an important impact on productivity analyses whether we

use OLS or estimators which try to account for the endogeneity of inputs.
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4 Multiple Imputation using Classification and

Regression Trees

Given the documented deficiencies with mean, ratio, and conditional mean

imputation in the statistical literature, the results of the previous section

suggest that one can improve on the imputation strategy being employed by

the Census Bureau for the Census of Manufactures and the ASM. We now

describe our attempt to do so based on multiple imputation via sequential

regression trees. We present only a broad overview of the approach here and

refer the reader to Burgette and Reiter (2010) for details on the method.

Classification and regression trees (CART) seek to approximate the con-

ditional distribution of a univariate outcome from multiple predictors (see

Breiman, Friedman, Olshen, and Stone (1984), Hastie, Tibshirani, and Fried-

man (2009), and Ripley (2009)). The CART algorithm partitions the pre-

dictor space so that subsets of units formed by the partitions have relatively

homogeneous outcomes. The partitions are found by recursive binary splits

of the predictors. The series of splits can be effectively represented by a tree

structure, with leaves corresponding to the subsets of units. The values in

each leaf represent the conditional distribution of the outcome for units in

the data with predictors that satisfy the partitioning criteria that define the

leaf.

The imputation process is done separately for each industry. We begin

the process in any industry by filling in initial guesses at the missing data to
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create completed datasets for the industry; see Burgette and Reiter (2010) for

an explanation of how to obtain initial guesses. Then, we order the variables

in terms of increasing percentages of missing data. For the first variable in

this ordering with missing data, say Y1, we fit the tree of Y1 on all other

variables, say Y−1, so that each leaf contains at least k records; call this tree

Y(1). We use k = 5, which is a default specification in many applications of

CART, to provide sufficient accuracy and reasonably fast running time. We

grow Y(1) by finding the splits that successively minimize the deviance of Y1

in the leaves. We cease splitting any particular leaf when the deviance in

that leaf is less than 0.00001 times the deviance in the marginal distribution

of Y1 or when we cannot ensure at least k records in each child leaf. For any

record with missing data, we trace down the branches of Y(1) until we find

that record’s terminal leaf. Let Lw be the wth terminal leaf in Y(1), and let

Y
(1)
Lw

be the nLw values of Y1 in leaf Lw. For all records whose terminal leaf

is Lw, we generate replacement values of Yij by drawing from Y
(1)
Lw

using the

Bayesian bootstrap (Rubin (1981)). Repeating the Bayesian bootstrap for

each leaf of Y(1) results in an initial set of plausible values.

We next move to the second variable in the ordering with missing data,

say Y2. We fit the tree of Y2 on all other variables, which we call Y(2), using

the newly completed values of Y1. We run observations down Y(2) to create

plausible values for Y2. The process continues for each Yi in the ordering,

each time using the newly imputed values of Y−i to fit the tree and in locating

leaves. We then cycle through this process ten times to help move the trees

20



away from the initial starting values. The end result is one completed dataset.

We repeat this entire process m times to generate m completed datasets.

In the CMF and ASM data, we delete (make missing) any Census impu-

tations identified by the item-level edit/impute flags, and run the sequential

CART to create m = 20 completed datasets. For each of our industries, the

predictors for each tree include—whenever the variable is not the dependent

variable—the total value of shipments, the total book value of assets, total

salaries and wages, total employment, production worker wages, production

worker hours, the number of production workers, the cost of purchased elec-

tricity, kilowatt hours of electricity, the cost of fuels, and the total cost of

materials. We run the imputation procedure separately for each 5-digit or

6-digit NAICS industry.

For two of our industries we include additional variables in the imputation

model. A significant fraction of pesticides sales are exports, and exporters

tend to be more productive (Bernard and Jensen (1999)). So in the pesticides

industry imputation model we include a binary variable indicating whether

or not the plant exports. For our fluid milk panel, in addition to the common

set of predictors we also include a plant identifier, the year, and total capital

expenditures. Since the book value of assets is not reported in ASM years,

we initialize it for the imputation algorithm by added the plant’s capital

expenditures to its book value from 2002. Note that these are just initial

values to be used by the imputation algorithm. When the imputations are

completed we construct real capital stocks from the plant’s initial book values
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and investment expenditures using the perpetual inventory method.

Table 12 presents the production function parameter estimates and esti-

mates of within-industry TFP dispersion based on datasets completed with

the sequential CART method. The reported point estimates are the means

of the parameter estimates and the means of the measures of TFP dispersion

across the 20 implicates. For the production function parameter estimates,

we compute the standard errors using Rubin (1987)’s combining formulas,

which take into account the fact some of the data are imputed. For the mea-

sures of TFP dispersion we compute the standard deviation of the measures

across the 20 estimates for each industry. For most of our selected industries

the across-implicate standard deviation in the 90-10 ratio of TFP is substan-

tial, indicating that missing data are responsible for a substantial amount of

uncertainty about the degree of within-industry productivity dispersion in

these industries.

Comparing table 12 to table 8, for most industries either the parameter

estimates or the estimates of productivity dispersion–or both–differ substan-

tially from the estimates based on the Census Bureau-completed data. For

every industry, the sequential CART-completed data indicates that there

is more within-industry TFP dispersion than the Bureau-completed data,

and in some cases quite a lot more. For example, in sugar manufactur-

ing the 90-10 TFP ratio based on the CART-completed data is more than

three times the estimate based on the Bureau-completed data, and the 75-25

TFP ratio from the CART-completed data is 60 percentage points higher.
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The sugar industry has a relatively small sample size (83 plants), and the

between-imputation standard deviation is quite high (8.1). However, even for

industries with larger samples and lower between-imputation variances, such

as ice manufacturing, the estimated within-industry TFP dispersion in the

CART-completed data is economically signficantly higher than the estimate

from the Bureau-completed data.

Table 13 presents the same statistics as 12, using the 2007 Census data.

Comparing table 13 to table 10, the results are similar to those from the 2002

data. For every industry, the sequential CART-completed data indicates that

there is more within-industry TFP dispersion than the Bureau-completed

data, and in some cases quite a lot more.

Table 14 presents the means and between-imputation standard deviations

of our estimates of production function parameters for the fluid milk indus-

try in 2002-2005 based on 20 CART-completed panel datasets. Column 1

presents the OLS estimates. Columns 2 and 3 present the LP and WLP

estimates. The first thing to notice is that, just as we saw in table 11, the

LP and WLP estimators are more sensitive to the imputed data than the

OLS estimator–the between-imputation standard deviations of the LP and

WLP estimates tend to be much larger.

Table 15 presents the means and between-imputation standard devia-

tions of the OLS, LP, and WLP estimates of within-industry productivity

dispersion for fluid milk for each year, 2002-2005. Comparing table 15 to ta-

ble 11, the mean OLS estimates of TFP dispersion in the CART-completed
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are slightly larger than the OLS estimates from the Bureau-completed data.

The mean LP estimates of TFP dispersion are sometimes slightly larger than

those from the Bureau-completed data, and sometimes slightly smaller.5 The

mean WLP estimates of TFP dispersion from the CART-completed data are

much higher than the estimates from the Bureau-completed data.

Why are the TFP dispersion estimates from the CART-completed data

often higher than the estimates from the Bureau-completed data? There are

at least two plausible reasons. First, as we saw in table 2, the relationship

between total value of shipments and input variables has less variability in

the Census Bureau’s imputations than it does in the fully observed data.

Since the CART imputations are taking draws from the observed data (con-

ditional on a set of predictors), we might expect to see more variability in the

relationship between output and the input variables in the CART-completed

datasets, and thus more measured TFP dispersion. Second, missingness

in Census of Manufactures and the ASM are not completely at random

(MCAR). In particular, smaller plants are more likely to have missing data.

To the extent that plant size and productivity are correlated, imputation

methods that fail to take this correlation into account will tend to reduce the

amount of measured TFP dispersion.

5For the LP estimator, we could not estimate the capital and energy

output elasticities for 5 of our 20 datasets. The means of these (15) capital

and energy coefficient estimates are substantially higher than the means of

the (20) estimates from the OLS and WLP estimators.
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5 Validity Checks

To check the validity of our imputation models for these analyses, we use

posterior predictive checks (He, Zaslavsky, Harrington, Catalano, and Lan-

drum (2010)). Following Burgette and Reiter (2010), suppose that the n by

k data matrix Y is arranged so that Y = (Yp|Yc), where Yp are the p partially

observed columns of Y and Yc are the remaining k−p columns that are com-

pletely observed. Let Yobs denote the set of observed elements in Y , and let

Ymis denote the set of missing elements. For each industry, we use the CART

method to create 500 pairs of datasets. The first dataset in each pair is a

completed dataset, in which we create imputations for each element of Ymis.

To create the second dataset in each pair, we replace every element of Yp,

including elements that were not imputed in the original data. To do this, we

take draws from the predictive distribution of Yp conditional on Yc using the

tree fitted to create the first dataset in the pair. Let the second datasets in

each pair be called the predicted datasets. We then use OLS to estimate the

production function specified in (1) separately on each dataset. For each of

the 500 pairs of datasets, we compute the differences between the parameter

estimates from the completed dataset and those from the predicted dataset.

Finally, for each parameter θj, we compute a two-sided posterior predictive

p-value:

P =
2

500
min{

500∑
i=1

I(θ̂imp,ij− θ̂pred,ij),
500∑
i=1

I(θ̂pred,ij− θ̂imp,ij)} (3)
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where I(x) equals one if x > 0 and equals zero otherwise. Here, θ̂imp,ij

is the estimate of parameter θj–a regression coefficient or TFP dispersion

measure–from the ith completed dataset, and θ̂pred,ij is the estimate from the

ith predicted dataset. If the predicted data come from the same distribution

as the completed data, we would expect θ̂imp,ij to be higher than θ̂pred,ij for

about half the dataset pairs and lower than θ̂pred,ij in the other half. A

small p-value indicates that the θ̂pred,i consistently differs from θ̂imp,i in one

direction. This would suggest that the imputation model does not adequately

capture the relationships in the production function or the TFP dispersion

in the data, and thus estimates based on the imputed data may be biased.

Tables 16 17 present the p-values for each production function parameter

and one productivity dispersion estimate for selected industries in 2002 and

2007, respectively. With one or two exceptions, we find no evidence that our

CART imputations are distorting the relationships between the variables in

a way that would lead to biased estimates of production function parameters

or within-industry productivity dispsersion.6 Table 18 presents posterior

predictive p-values for our OLS, LP, and WLP estimates for the fluid milk

panel. Again, we find little evidence of bias from the imputation model.

Although this does not confirm that the CART-based imputations result in

the correct model, it does suggest that for at least this analysis the CART-

based multiple imputation provides reasonable answers.

6The exceptions are the 75-25 TFP ratios for flour in 2002 and 2007,

which have posterior predictive p-values of 0.096 and 0.12, respectively.
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6 Conclusions and Suggestions for Further Re-

search

Much of the literature on U.S. plant-level productivity uses the Census Bu-

reau’s Census of Manufactures or the Annual Survey of Manufactures (ASM).

Even after dropping Administrative Records, a surprisingly large percentage

of the Census and ASM data available to researchers is imputed. Our results

suggest that these imputations have an economically significant effect on es-

timates of within-industry productivity dispersion. Using classification and

regression trees, we provide a new set of imputations that seek to better pre-

serve the joint distribution of key variables in the data and thus provide more

accurate estimates of plant-level productivity dispersion and the relationship

between productivity and other variables. The estimates of within-industry

TFP dispersion using CART-completed data are often significantly higher

than estimates based on the Census Bureau-completed data. These results

suggest that there may be more within-industry productivity dispersion than

the previous literature suggests. The existing literature provides a variety

of explanations for within-industry productivity dispersion, including het-

erogeneity in management practices, the quality of labor and capital inputs,

information technology, research and development, international trade, and

regulation. To the extent that these factors are not part of the Census Bu-

reau’s imputation models (and they almost certainly are not), estimates of

the effects of these factors on productivity dispersion in the Census data are
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probably biased. Researchers using the Census of Manufactures or the ASM

should consider how the Census Bureau’s imputations may affect their esti-

mates and consider alternative methods of imputation that try to preserve

the key relationships in the data.

More broadly, as Kaplan and Schulhofer-Wohl (2010) illustrate, missing

and imputed data can have a direct effect on policy discussions. As an in-

creasing number of researchers conduct policy-relevant research using Census

microdata made available via the expanding Census Research Data Center

Network, this microdata will (hopefully) become increasingly important for

policy debates. As a result it will be increasingly important for policymakers,

researchers, the Census Bureau, and other statistical agencies to understand

how missing and imputed data affect estimates produced from these data.

A Identifying Imputed Data

In this appendix we describe how we identify an element in the data matrix

as imputed or not. As part of its edit and imputation process, the Census

Bureau sets item-level edit/impute flags for each item on the survey. For

most observations, we use the item’s edit/impute flag variables to determine

whether or not an item was imputed. To try to asses the accuracy of the

edit/impute flags are, we also obtained access to the data file for the 2002

Census of Manufactures after only minimal editing at the Census Bureau’s

survey processing center and before the Census Bureau’s main editing and
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imputation processing. We call this the “captured data.” We refer to the

dataset resulting from the Census Bureua’s edits and imputations the “final

data.”7 In the vast majority of cases, if an imputation flag is set, the value for

the item in the final dataset differs from the captured data item. However,

in some cases the captured data is the same as the final data even though an

impute flag is set. Therefore, for 2002 we define an observation as imputed

if it meets the criteria below based on the edit/impute flags and the value

in the final data is different from the value for the same observation in the

captured data. For the 2003-2006 Annual Surveys of Manufactures and the

2007 Census of Manufactures, we do not have access to the captured data,

so we rely solely on the edit/impute flags.

In our CART imputation models, for all industries we include the follow-

ing plant-level variables: total value of shipments (TVS), total cost of mate-

rials and parts (CM), total cost of fuels (CF), cost of purchased electricity

(EE), quantity of purchased electricity (PE), total book value of assets at the

beginning of the year (TAB), total salaries and wages (SW), total employ-

ment (TE), production worker hours (PH), production worker wages (WW),

and the number of production workers (PW). As described in the main text,

we include additional variables in the imputation models for pesticides man-

ufacturing and fluid milk processing. However, these additional variables are

never imputed, so we do not discuss them here.

7The final data is available to researchers with approved projects via the
Census Research Data Centers.
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Each edit/impute flag consists of two or three characters. The first char-

acter is either a blank, indicating that the item was not reported on the

survey form, or an ‘R’, indicating that it was reported. The second and (if

applicable) third characters take one of 22 values. Table A1 list the 22 codes

(including blank) and the names of each code. Table A2 briefly describes

when each code is set. Every variable on the survey forms for the CMF

and ASM has a corresponding edit/impute flag with some combination of

these codes. For example, if total value of shipments (TVS) for a partic-

ular plant is reported on the survey form and not edited or imputed, then

the edit/impute flag for TVS for that plant will be ’R ’, indicating that the

TVS value in the final dataset was reported on the survey form and was not

edited or imputed. The third column of table A1 shows the Census Bureau

categorization of each of these codes as either imputed or non-imputed. For

example, if a data item is corrected by a Census Bureau analyst (code C),

that item is not considered to be imputed.

In general, we define an item as imputed if the second or third character

in its edit/impute flag is in the “imputed” category. We make an exception

to this rule for the capital stock variables. In many cases the edit/impute

flags for capital variables–total book values of assets beginning of year (TAB)

and end of year (TAE)–and capital expenditures (TCE) are set to ‘ K’. The

blank first character means that the item was not reported on the survey

form. The K supposedly means that the sum of a set of detail items do not

balance to a total, so the detail items are changed proportionally to correct
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the imbalance. In the case of capital stock variables, TAB plus TCE should

sum to TAE minus depreciation. However, in 2002 we find that for many

plants the flags indicate that none of these capital variables was reported on

the survey form and all of them were “raked.” Since it is impossible to adjust

to a total that was not reported, we treat these items as imputed.

The Census Bureau uses different imputation methods for different vari-

ables. For example, the “industry average” method is used frequently for the

energy input cost variables (cost of fuels, cost of purchased electricity), but

only rarely for total value of shipments. On the other hand, the “Beta (Cold

Deck Statistical)” method is used frequently to impute for total value of ship-

ments and the total cost of materials. Note that although the edit/impute

flags tell us what general method was used to impute each data element, we

still do not know exactly how each element was imputed. For example, if

the edit/impute flag for a plant’s cost of purchased electricity is set to ‘ V’,

we know that the plant’s electricity costs are set to the industry average by

ratio imputation, but we do not know what the denominator of the ratio is.

Similarly, a flag set to ‘ B’ (“Cold Deck Statistical”) means that the item

was imputed using a regression model based on historical data. However,

we do not know what sample was used for this regression or even what ex-

planatory variables are in the regression model. One of the advantages of our

imputations versus the Census Bureau’s imputations is transparency–in the

main text of this article we provide a detailed description of our imputation

method, including all the variables in our imputation models.
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Table 1: Imputation Rates for Key Variables At 6-digit NAICS Industry

Level, 2002 and 2007 Censuses of Manufactures and 2003-2006 Annual Sur-

veys of Manufactures

Book Value

Total of Assets/ Production Cost of

Value of Capital Worker Purchased Cost of Cost of

year Statistic Shipments Expenditures Hours Electricity Fuels Materials

2002 Mean 0.27 0.31 0.19 0.38 0.37 0.42

s.d. 0.09 0.10 0.07 0.14 0.14 0.10

2003 mean 0.27 0.31 0.28 0.30 0.26 0.35

s.d. 0.12 0.13 0.13 0.13 0.11 0.13

2004 mean 0.25 0.27 0.26 0.30 0.26 0.33

s.d. 0.11 0.11 0.11 0.13 0.11 0.12

2005 mean 0.23 0.26 0.25 0.29 0.24 0.32

s.d. 0.10 0.12 0.10 0.12 0.10 0.11

2006 mean 0.25 0.29 0.34 0.32 0.27 0.34

s.d. 0.11 0.11 0.14 0.12 0.11 0.11

2007 Mean 0.27 0.32 0.31 0.37 0.35 0.42

s.d. 0.09 0.10 0.13 0.13 0.12 0.10

The table shows the means and standard deviations of 6-digit NAICS industry-level

imputation rates. The imputation rate is the percentage of tabulated non-Administrative

Records cases that are imputed (not just edited) by the Census Bureau.
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Table 2: Distribution of Ratios of Within-Industry Interquartile Ranges of

Ratios of Key Variables in Imputed Data vs. Fully Observed Data, 2002 and

2007 Censuses of Manufactures

Book Production Cost of

Value of Worker Purchased Cost of Cost of

percentile Assets Hours Electricity Fuels Materials

2002

25th 0.002 0.159 0.062 0.088 0.036

50th 0.004 0.293 0.112 0.174 0.208

75th 0.018 0.522 0.219 0.356 0.456

2007

25th 0.216 0.353 0.088 0.152 0.089

50th 0.369 0.486 0.179 0.370 0.262

75th 0.565 0.704 0.326 0.782 0.478

The table shows the 25th, 50th and 75th percentiles of the within-industry

interquartile range (IQR) of the ratio Ximp/TV SimpX divided by the IQR

of Xobs/TV Sobs, where Ximp represents imputed cases for the variable X,

TV SimpX are the total value of shipments for the same plants, and

Xobs/TV Sobs is the ratio when both are observed.
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Table 3: Distribution of Ratios of Within-Industry Interquartile Ranges of

Ratios of Key Variables in Imputed Data vs. Fully Observed Data, 2003-2006

Annual Surveys of Manufactures

Total Production Cost of

Capital Worker Purchased Cost of Cost of

percentile Expenditures Hours Electricity Fuels Materials

2003

25th 0.580 d 0.471 0.402 0.445

50th 1.042 0.844 0.687 0.637 0.651

75th 1.561 1.158 1.015 1.013 0.916

2004

25th 0.444 0.559 0.348 0.296 0.343

50th 0.715 0.807 0.584 0.518 0.522

75th 1.189 1.135 0.904 0.833 0.745

2005

25th 0.326 0.516 0.431 0.423 0.378

50th d 0.759 0.654 0.875 0.556

75th 1.104 1.063 0.980 1.415 0.795

2006

25th 0.249 0.453 0.412 0.553 d

50th 0.512 0.655 0.660 0.960 0.528

75th 1.021 1.009 0.980 1.633 0.793

See notes for table 2

d=suppressed to avoid disclosure of confidential data.
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Table 4: Imputation Rates for Key Variables, 2002 Census of Manufactures,

Selected Industries

Total Book Production Cost of

Sample Value of Value of Worker Electricity Cost of Cost of

industry Size Shipments Assets Hours Purchased Fuels Materials

coffee & tea 154 0.44 0.43 0.23 0.44 0.39 0.56

fertilizer 504 0.26 0.32 0.21 0.29 0.28 0.40

flour 240 0.10 0.18 0.06 0.18 0.17 0.28

fluid milk 396 0.19 0.19 0.10 0.18 0.17 0.31

ice 256 0.28 0.48 0.17 0.26 0.25 0.31

pesticides 141 0.24 0.34 0.18 0.31 0.32 0.37

soy beans 94 0.13 0.15 d 0.14 0.14 0.35

sugar 83 0.41 0.39 d 0.35 0.33 0.49

The table shows imputation rates for each 5- or 6-digit NAICS industry.

The imputation rate is the percentage of tabulated non-Administrative

Records cases that are imputed (not just edited) by the Census Bureau.

d=suppressed to avoid disclosure of confidential information.
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Table 5: Imputation Rates for Key Variables, 2007 Census of Manufactures,

Selected Industries

Total Book Production Cost of

Sample Value of Value of Worker Electricity Cost of Cost of

industry Size Shipments Assets Hours Purchased Fuels Materials

coffee & tea 186 0.31 0.38 0.35 0.45 0.43 0.55

fertilizer 472 0.29 0.38 0.35 0.39 0.36 0.46

flour 210 0.22 0.20 0.18 0.21 0.20 0.31

fluid milk 362 0.13 0.18 0.17 0.20 0.20 0.32

ice 295 0.23 0.23 0.21 0.25 0.24 0.31

pesticides 196 0.24 0.30 0.27 0.40 0.39 0.48

soy beans 89 0.13 0.25 0.17 0.33 0.33 0.38

sugar 73 0.41 0.42 0.27 0.41 0.38 0.45

The table shows imputation rates for each 5- or 6-digit NAICS industry.

The imputation rate is the percentage of tabulated non-Administrative

Records cases that are imputed (not just edited) by the Census Bureau.
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Table 6: Imputation Rates for Key Variables, 2003-2006 Annual Surveys of

Manufactures, Fluid Milk Processing

Total Total Production Cost of

Sample Value of Capital Worker Electricity Cost of Cost of

year Size Shipments Expenditures Hours Purchased Fuels Materials

2003 240 0.16 0.15 0.15 0.17 0.13 0.22

2004 262 0.31 0.26 0.27 0.28 0.24 0.32

2005 264 0.25 0.22 0.18 0.26 0.23 0.33

2006 266 0.26 0.26 0.29 0.27 0.24 0.31

Note: book values of assets are not reported in the 2002-2006 Annual Surveys of Manufactures.

Also see notes for table 4.
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Table 7: OLS Estimates of Production Function Parameters and Produc-

tivity Dispersion, Selected Industries, 2002 Census of Manufactures, Fully-

Observed Data Only

Production Function Parameters TFP ratios

75-25 90-10

Capital Labor Energy Materials Exports TFP TFP

industry βk βl βe βm Dummy ratio ratio

coffee & tea 0.04 0.05 0.10* 0.78*** 1.34 1.77

fertilizer 0.01 0.26*** 0.12*** 0.60*** 1.47 2.08

flour 0.06** 0.22*** 0.04 0.68*** 1.22 1.60

fluid milk 0.04* 0.16*** 0.19*** 0.61*** 1.28 1.71

ice 0.08** 0.40*** 0.19*** 0.32*** 1.50 2.39

pesticides 0.11 0.14 0.03 0.67*** 0.07 1.96 3.21

soybeans 0.17** 0.05 0.07 0.71*** 1.28 1.78

sugar 0.13* 0.48*** 0.01 0.40*** 1.31 1.74

* = significant at the 10% level; ** = significant at the 5% level;

*** = significant at the 1% level.
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Table 8: OLS Estimates of Production Function Parameters and Produc-

tivity Dispersion, Selected Industries, 2002 Census of Manufactures, Census

Bureau-Completed Data

Production Function Parameters TFP ratios

75-25 90-10

Capital Labor Energy Materials Exports TFP TFP

industry βk βl βe βm Dummy ratio ratio

coffee & tea 0.10*** 0.12*** 0.16*** 0.64*** 1.22 1.73

fertilizer 0.03*** 0.29*** 0.12*** 0.55*** 1.57 2.11

flour 0.07*** 0.23*** 0.07*** 0.66*** 1.22 1.68

fluid milk 0.05*** 0.13*** 0.23*** 0.60*** 1.25 1.74

ice 0.11*** 0.34*** 0.21*** 0.32*** 1.30 1.91

pesticides 0.19*** 0.08 0.02 0.65*** -0.03 1.55 2.64

soybeans 0.17*** 0.05 0.10*** 0.73*** 1.36 1.90

sugar 0.15*** 0.26*** 0.07* 0.48*** 1.30 1.68

Census Bureau-completed data include both fully observed cases and

cases for which some variables are observed and other variables are

imputed by the Census Bureau. * = significant at the 10% level;

** = significant at the 5% level; *** = significant at the 1% level.
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Table 9: OLS Estimates of Production Function Parameters and Produc-

tivity Dispersion, Selected Industries, 2007 Census of Manufactures, Fully

Observed Data Only

Production Function Parameters TFP ratios

75-25 90-10

Capital Labor Energy Materials Exports TFP TFP

industry βk βl βe βm Dummy ratio ratio

coffee & tea 0.08* 0.30 0.04*** 0.61*** 1.68 2.39

fertilizer 0.04 0.22*** 0.11*** 0.60*** 1.52 2.27

flour 0.02 0.13*** 0.11*** 0.72*** 1.20 1.42

fluid milk 0.05* 0.15*** 0.05 0.70*** 1.28 1.82

ice 0.04 0.34*** 0.32*** 0.38*** 1.56 2.17

pesticides 0.23*** 0.25*** -0.03 0.49*** 0.32** 1.74 3.56

soy beans 0.15*** 0.11* -0.08** 0.85*** 1.28 1.61

sugar 0.13** 0.21* 0.05 0.60*** 1.33 1.89

* = significant at the 10% level; ** = significant at the 5% level;

*** = significant at the 1% level.
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Table 10: OLS Estimates of Production Function Parameters and Produc-

tivity Dispersion, Selected Industries, 2007 Census of Manufactures, Census

Bureau-Completed Data

Production Function Parameters TFP ratios

75-25 90-10

Capital Labor Energy Materials Exports TFP TFP

industry βk βl βe βm Dummy ratio ratio

coffee & tea 0.14*** 0.29*** -0.02 0.62*** 1.36 2.08

fertilizer 0.05*** 0.21*** 0.13*** 0.58*** 1.40 2.15

flour 0.05*** 0.11*** 0.08*** 0.75*** 1.20 1.59

fluid milk 0.04** 0.18*** 0.12*** 0.66*** 1.30 1.77

ice 0.05** 0.31*** 0.30*** 0.39*** 1.40 2.13

pesticides 0.09*** 0.15*** 0.15*** 0.54*** 0.22*** 1.69 3.10

soy beans 0.04 0.11*** 0.06** 0.84*** 1.25 1.84

sugar 0.15*** 0.19*** 0.08** 0.52*** 1.37 1.83

Census Bureau-completed data include both fully observed cases and

cases for which some variables are observed and other variables are

imputed by the Census Bureau.* = significant at the 10% level;

** = significant at the 5% level; *** = significant at the 1% level.
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Table 11: Production Function Parameters and Productivity Dispersion,

Fluid Milk Processing, 2002-2005

(a) Fully Observed (b) Bureau-Completed

Data Data

OLS LP WLP OLS LP WLP

(1) (2) (3) (4) (5) (6)

Production Function Parameters

Capital 0.01 0.00 -0.06 0.07 0.21 0.21

Labor 0.16 0.15 0.06 0.16 0.16 0.15

Energy 0.21 1.00 1.93 0.20 0.54 0.20

Materials 0.61 0.61 0.69 0.57 0.57 0.59

75-25 log TFP differences (weighted distributions)

2002 0.24 0.73 1.59 0.21 0.60 0.32

2003 0.20 0.66 1.35 0.22 0.48 0.30

2004 0.27 0.62 1.53 0.24 0.62 0.35

2005 0.24 0.75 1.54 0.23 0.64 0.37

90-10 log TFP differences (weighted distributions)

2002 0.52 1.93 3.98 0.51 1.36 0.67

2003 0.52 1.65 3.45 0.53 1.06 0.64

2004 0.56 1.85 3.57 0.53 1.45 0.71

2005 0.54 1.49 3.04 0.55 1.59 0.69

Census Bureau-completed data include both fully observed cases and

cases for which some variables are observed and other variables are

imputed by the Census Bureau.
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Table 12: OLS Estimates of Production Function Parameters and Produc-

tivity, Selected Industries, 2002 Census, CART-completed Data

Production Function Parameters TFP ratios

75-25, 90-10,

Sample Capital Labor Energy Materials Exporter mean mean

industry Size βk βl βe βm Dummy (s.d.) (s.d.)

coffee & tea 154 0.06 0.09 0.12* 0.73*** 1.51 2.24

(0.07) (0.17)

fertilizer 504 0.05 0.29*** 0.10*** 0.54*** 1.52 2.28

(0.05) (0.10)

flour 240 0.06* 0.19*** 0.08* 0.65*** 1.27 1.76

(0.03) (0.07)

fluid milk 396 0.06** 0.15*** 0.19*** 0.61*** 1.32 1.79

(0.02) (0.05)

ice 256 0.08** 0.39*** 0.24*** 0.25*** 1.53 2.33

(0.03) (0.12)

pesticides 141 0.09 0.15** 0.07 0.63*** 0.04 2.00 3.65

(0.15) (0.29)

soybeans 94 0.14 0.07 0.12 0.67*** 1.58 2.34

(0.11) (0.51)

sugar 83 0.14 0.22 0.14 0.52*** 1.90 5.36

(0.54) (8.10)

Means (standard deviations) across 20 CART-completed datasets of production

function parameters and total factor productivity (TFP) dispersion. Standard

errors of the estimates from each of the 20 implicates are combined using

Rubin’s (1987) combining formulas.
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Table 13: OLS Estimates of Production Function Parameters and Produc-

tivity Dispersion, Selected Industries, 2007 Census, CART-completed Data

Production Function Parameters TFP ratios

75-25, 90-10,

Sample Capital Labor Energy Materials Exporter mean mean

industry Size βk βl βe βm Dummy (s.d.) (s.d.)

coffee & tea 186 0.08* 0.29*** 0.09* 0.56*** 1.78 3.06

(0.13) (0.90)

fertilizer 472 0.07*** 0.19*** 0.13*** 0.56*** 1.54 2.41

(0.04) (0.22)

flour 210 0.06* 0.12*** 0.12** 0.69*** 1.27 1.70

(0.03) (0.07)

fluid milk 362 0.07* 0.18*** 0.11*** 0.61** 1.36 1.99

(0.05) (0.11)

ice 295 0.07** 0.34*** 0.34*** 0.29*** 1.59 2.35

(0.03) (0.08)

pesticides 196 0.10** 0.17** 0.15** 0.50*** 0.13 2.07 4.36

(0.04) (0.43)

soy beans 89 0.07 0.09 0.03 0.83*** 1.48 1.95

(0.04) (0.12)

sugar 73 0.14* 0.17 0.15 0.45*** 1.69 3.14

(0.14) (0.52)

See notes for table 12
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Table 14: Production Function Parameters, Fluid Milk Processing, 2002-

2005, CART-completed Data

OLS LP WLP

(1) (2) (3)

Production Function Parameters

Capital 0.05 0.09 0.02

(0.01) (0.27) (0.58)

Labor 0.14 0.13 0.08

(0.01) (0.01) (0.15)

Energy 0.20 0.46 0.19

(0.02) (0.07) (1.55)

Materials 0.60 0.60 0.78

(0.03) (0.03) (0.25)

Between-imputation standard deviations are in parentheses.

See notes for table 12.
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Table 15: Productivity Dispersion, Fluid Milk Processing, 2002-2005, CART-

completed Data

OLS LP WLP

(1) (2) (3)

75-25 log TFP differences (weighted distributions)

2002 0.25 0.6 0.73

(0.02) (0.30 (0.93)

2003 0.25 0.55 0.73

(0.03) (0.21) (1.00)

2004 0.28 0.62 0.74

(0.02) (0.31) (0.96)

2005 0.28 0.59 0.76

(0.02) (0.29) (0.97)

90-10 log TFP differences (weighted distributions)

2002 0.57 1.22 1.52

(0.03) (0.60) (1.89)

2003 0.55 1.12 1.47

(0.05) (0.50) (1.87)

2004 0.56 1.25 1.49

(0.03) (0.63) (1.81)

2005 0.63 1.30 1.75

(0.07) (0.62) (2.45)

Between-imputation standard deviations are in parentheses.

See notes for table 12. 51



Table 16: Posterior Predictive P-Values for Estimates of Output Elasticities

and Productivity Dispersion, Selected Industries, 2002 Census of Manufac-

tures, CART-completed Data vs. CART-predicted Data.

75-25

Capital Labor Energy Materials TFP

industry βk βl βe βm ratio

coffee & tea 0.932 0.736 0.936 0.972 0.424

fertilizer 0.392 0.208 0.276 0.368 0.564

flour 0.804 0.408 0.768 0.852 0.096

fluid milk 0.848 0.288 0.384 0.460 0.244

ice 0.836 0.668 0.780 0.576 0.388

pesticides 0.744 0.668 0.808 0.860 0.868

soy beans 0.892 0.620 0.944 0.940 0.768

sugar 0.944 0.548 0.740 0.664 0.752

Note: The p-values indicate whether or not the estimates

from the CART-completed datasets consistently deviate from the

estimates from the CART-predicted datasets, based on 500 pairs of

completed datasets and predicted datasets for each industry.
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Table 17: Posterior Predictive P-Values for Estimates of Output Elasticities

and Productivity Dispersion, Selected Industries, 2007 Census of Manufac-

tures, CART-completed Data vs. CART-predicted Data.

75-25

Capital Labor Energy Materials TFP

industry βk βl βe βm ratio

coffee & tea 0.696 0.204 0.500 0.976 0.384

fertilizer 0.736 0.748 0.500 0.716 0.408

flour 0.972 0.540 0.944 0.892 0.128

fluid milk 0.708 0.340 0.928 0.724 0.612

ice 0.316 0.460 0.852 0.380 0.236

pesticides 0.980 0.576 0.980 0.628 0.676

soy beans 0.840 0.492 0.920 0.980 0.512

sugar 0.928 0.988 0.820 0.828 0.364

See notes for table 16
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Table 18: Posterior Predictive P-Values for Estimates of Output Elastici-

ties and Productivity Dispersion, Fluid Milk Processing, 2002-2005, CART-

completed Data vs. CART-predicted Data

OLS LP WLP

(1) (2) (3)

Output Elasticities

Capital 0.680 0.955 0.925

Labor 0.535 0.490 0.905

Energy 0.225 0.195 0.870

Materials 0.325 0.310 0.895

75-25 TFP Ratios

2002 0.605 0.475 0.525

2003 0.455 0.405 0.555

2004 0.610 0.380 0.530

2005 0.905 0.345 0.500

90-10 TFP Ratios

2002 0.290 0.475 0.510

2003 0.340 0.475 0.520

2004 0.440 0.370 0.515

2005 0.725 0.240 0.495

See notes for table 16
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Table A1: Edit/Impute Flags in the 2002 and 2007 Census of Manufactures

and the 2003-2006 Annual Survey of Manufactures

Code Name Category

(blank) Flag Not Set Non-imputed

A Administrative Records Data Imputed

B Beta (Cold Deck Statistical) Imputed

C Analyst Corrected Non-imputed

D Donor Model Record Imputed

E Endpoints of Limits (Upper/Lower) Imputed

G Goldplated Non-imputed

H Historic Values Imputed

J Subject Matter Rule Imputed

K Raked Non-imputed

L Logical Imputed

M Midpoints of Limits Imputed

N Rounded Non-imputed

O Override Edit with Reported Data Non-imputed

P Prior Year Administrative Records Data Imputed

S Direct Substitution Imputed

T Trim and Adjust Algorithm Imputed

U Unable to Impute Non-imputed

V Industry Average Imputed

W Warm Deck Statistical Imputed

X Unusable Non-imputed

Z Acceptable Zero Non-imputed

Source: Grim (2011).
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Table A2: Definitions of Edit/Impute Flags

Edit/Impute Action Occurs when...

Administrative (A) the item is imputed by direct substitution of corresponding

administrative data (for the same establishment/record).

Cold Deck Statistical (B) the item is imputed from a statistical

(regression/beta) model based on historic data.

Analyst Corrected (C) the reported value fails an edit, and an analyst directly

corrects the (reported or imputed) value.

Model (Donor) Record (D) the item is imputed using hot deck methods.

High/Low (E) the item is imputed by direct substitution of value

near (high or low) endpoints of imputation range.

Goldplated (G) the reported value for the item is ”protected” from any

changes by the edit. The value of a goldplated item is not

changed by the editing system, even if the item fails one or

more edits. In general, the goldplate flag is set by an analyst.

Historic (H) the item is imputed by ratio imputation using

historic data for the same establishment (for

example, prior year data imputation in Manufacturing)

Subject Matter Rule (J) the item is imputed using a subject matter defined

rule (e.g. y=1/2x).
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Table A2: Definitions of Edit/Impute Flags (continued)

Edit/Impute Action Occurs when...

Raked (K) the sum of a set of detail items do not balance to the total.

The details are then changed proportionally to correct the

imbalance. This preserves the basic distribution of the

details.

Logical (L) the item’s imputation value is defined by an additive

mathematical relationship (e.g., obtaining a missing

detail item by subtraction).

Midpoint (M) the item is imputed by direct substitution of

midpoint of imputation range.

Rounded (N) the reported value is replaced by its original value divided

by 1000.

Restore Reported Data (O) the reported value fails an edit. Either an analyst

interactively restores the originally reported value of an edit

(set by the interactive update system) or the ratio module

later “imputes” originally reported data for an item which

was imputed in the previous edit pass.

Prior Year Administrative (P) the item is imputed by ratio imputation using

corresponding administrative data from prior year

(for same establishment).

Direct Substitution (S) the item is imputed by direct substitution of another

item’s value (from within the same questionnaire.)
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Table A2: Definitions of Edit/Impute Flags (continued)

Edit/Impute Action Occurs when...

Trim-and-Adjusted (T) the item was imputed using the Trim-and Adjust

balancing algorithm (balance module default).

Unable to Impute (U) the reported item is blank or fails an edit, and the system

cannot successfully substitute a statistically reasonable

value for the original data.

Industry Average (V) the item is imputed by ratio imputation using an

industry average.

Warm Deck Statistical (W) the item is imputed from a statistical

(regression/beta) model based on current data.

Unusable (X) the sum of a set of detail items cannot be balanced to the

total because none of the scripted solutions achieved a

balance.

Acceptable Zero (Z) the reported value for an item is zero, and the item has

passed a presence (zero/blank) test. This often occurs with

part time reporters (e.g., births, deaths, idles). The zero

value will not be changed, even if it fails one or more edits.

Source: Grim (2011).
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