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Since Schumpeter, economists have argued that technological innovation is a key driver of

economic growth. Models of endogenous growth have rich testable predictions about both

aggregate quantities and the cross-section of firms, linking improvements in the technology

frontier to resource reallocation and subsequent economic growth. However, the predictions

of these models are difficult to test directly, mainly due to the scarcity of directly observable

measures of technological innovation. To assess the importance of technological innovation

for economic growth, an ideal measure should capture the economic value of new inventions,

and be comparable both across industries and across time. This paper aims to fill this gap

by constructing a new measure of the economic importance of each innovation.

We propose a new measure of the private, economic value of new innovations that is based

on stock market reactions to patent grants. We construct this measure combining a novel

dataset of patent grants over the period 1926 to 2010 with stock market data.1 The advantage

of using financial data is that asset prices are forward-looking and hence provide us with an

estimate of the private value to the patent holder that is based on ex-ante information. This

private value need not coincide with the scientific value of the patent – typically assessed

using forward patent citations. For instance, a patent may represent only a minor scientific

advance, yet be very effective in restricting competition, and thus generate large private

rents. These ex-ante private values are useful in studying firm allocation decisions, estimating

the (private) return to R&D spending, and assessing the degree of creative destruction and

reallocation that results following waves of technological progress. Further, the fact that

our measure of ‘quality’ is in terms of dollars implies that our estimates are comparable

across time and across different industries; in contrast, since patenting propensities could

vary, comparing patent counts across industries and time becomes more challenging.

We construct an estimate of the private value of the patent by exploiting movements

in stock prices following the days that patents are issued to the firm. We first document

that trading activity in the stock of the firm that issued a patent increases after the patent

issuance date. Second, we find that returns on patent grant days are more volatile than

on days without any patent grant announcement, suggesting that valuable information is

released to the market. However, even within a narrow window around grant days, stock

prices may move for reasons that are unrelated to patent values. To filter the component of

firm return that is related to the value of the patent from noise, we make several distributional

assumptions. Several robustness checks suggest that our estimates are not overly sensitive to

the particular choice of underlying distributions. The resulting distribution of the estimated

patent values is fat-tailed, consistent with past research describing the nature of radical

innovations (Harhoff, Scherer, and Vopel, 1997). The characteristics of innovating firms and

industries are similar to those discussed in Baumol (2002), Griliches (1990), Scherer (1965)

1Several new studies exploit the same source of patent data (Google Patents) as we do in our paper. For
instance, see Moser and Voena (2012), Moser, Voena, and Waldinger (2012) and Lampe and Moser (2011).
Ours is the first to exploit this data at a large scale and match it to firms with stock price data.
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and Scherer (1983) who describe firms that have conducted radical innovation and have been

responsible for technical change in the U.S.

To illustrate the usefulness of our measure, we use it to examine three important questions

in the literature on innovation and growth. Addressing these issues using existing measures

has proved to be a challenge. First, the relation between the private and the scientific

value of innovation – as measured by patent citations – has been the subject of considerable

debate.2 We examine the relation between our measure and the number of citations that

the patent receives in the future. We find that our patent-level estimates of economic value

are strongly positively related to forward citations; this correlation is robust to a number of

patent- and firm-level controls. Placebo experiments confirm that this relation is unlikely

to be spurious. In terms of economic magnitudes, our results are comparable to Hall et al.

(2005); an additional patent citation is associated with an increase of 0.1% to 3.2% in the

economic value of a patent.

Second, we use our estimate of the market value of innovation to examine the predictions

of models of endogenous growth (e.g. Romer, 1990; Aghion and Howitt, 1992; Grossman and

Helpman, 1991; Klette and Kortum, 2004). Since the value of a firm’s innovative output is

hard to observe, constructing direct empirical tests of these models has proven challenging;

existing approaches rely on indirect inference (see, e.g. Garcia-Macia, Hsieh, and Klenow,

2015). A unifying prediction of Schumpeterian models of growth is that firms grow through

successful innovation – either through acquiring new products or by improving existing

varieties. By contrast, innovation by competing firms has a negative effect – either directly

through business stealing, or indirectly through movements in factor prices. The strength

of these effects depends on the economic value of the new inventions. Our results using

several measures of firm size – the nominal value of output, profits, capital and number

of employees – suggest that both channels are important. Firms that experience a one-

standard deviation increase in their innovation output experience higher growth of 2.5%

to 4.6% over a period of five years. Conversely, firms that fail to innovate in an industry

that experiences a one-standard deviation increase in its innovative output experience lower

growth of 2.7% to 5.1% over the same horizon. In addition to firm growth, we find similar

effects on revenue-based productivity (TFPR). Firms that innovate experience productivity

increases, whereas those that fall behind see productivity declines. By revealing a strong

relation between innovation, firm growth and the reallocation of resources across firms –

2For instance, Hall, Jaffe, and Trajtenberg (2005) and Nicholas (2008) document that firms owning highly
cited patents have higher stock market valuations. Harhoff, Narin, Scherer, and Vopel (1999) and Moser,
Ohmstedt, and Rhode (2011) provide estimates of a positive relation using smaller samples that contain
estimates of economic value. By contrast, Abrams, Akcigit, and Popadak (2013) use a proprietary dataset
that includes estimates of patent values based on licensing fees and show that the relation between private
values and patent citations is non-monotonic. Our approach allows us to revisit this question at a higher
level of granularity than Hall et al. (2005), while using a broader sample than Harhoff et al. (1999), Moser
et al. (2011) and Abrams et al. (2013).
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capital and labor flow to innovating firms and away from their competitors – these findings

support the Schumpeterian view of growth and creative destruction.

Third, we assess the role of technological innovation in accounting for medium-run

fluctuations in aggregate economic growth and TFP. A notable challenge facing real business

cycle models is the scarcity of evidence linking movements in TFP to clearly identifiable

measures of technological change. At the aggregate level, whether technological innovation is

socially valuable in endogenous growth models depends on the degree to which it contributes

to aggregate productivity – as opposed to simply being a force for reallocation and creative

destruction. Our firm-level results, when aggregated using all the firms in our sample, are

strongly suggestive of a net positive effect of innovation. However, these effects are confined

to the sample of public firms that we study. To study the relation between innovation and

growth more broadly at the economy level, we construct an aggregate index of innovation

based on our estimated patent values. This index is motivated by a simple growth model, in

which, under certain assumptions, firm monopoly profits from innovation are approximately

linearly related to aggregate improvements in output and TFP. Our index captures known

periods of high technological progress, namely the 1920s, the 1960s and the 1990s (Field, 2003;

Alexopoulos and Cohen, 2009, 2011; Alexopoulos, 2011). This innovation index is strongly

related to aggregate growth in output and TFP. In particular, a one-standard deviation

increase in our index is associated with a 1.6% to 6.5% increase in output and a 0.6% to 3.5%

increase in measured TFP over a horizon of five years, depending on the specification.

Our measure speaks to the literature that has spent considerable effort in estimating the

value of innovative output. The most popular approach consists of using citation-weighted

patent counts (Hall et al., 2005). We find that our innovation measure contains considerable

information about firm growth in addition to what is contained in patent citations. In

particular, we repeat our firm-level analysis replacing our measure with citation-weighted

patent counts – both for the firm and for its competitors. When doing so, we find a comparable

– though somewhat weaker – relation between the firm’s own innovation output and future

growth. However, we find no similar negative link between the firm’s future growth and

the citation-weighted patenting output of its competitors. We find similar results when we

include both our estimated patent values and citation-weighted patent counts in the same

specification. These findings are consistent with the view that, relative to the patent’s forward

citations, our estimated value of a patent is a better estimate of its private economic value.

Our work is related to the literature in macroeconomics that aims to measure technological

progress. Broadly, there are three main approaches to identifying technology shocks. The

first two approaches measure technology shocks indirectly. One approach is to measure

technological change – either at the aggregate or at the firm level – through TFP (see

e.g. Olley and Pakes, 1996; Basu, Fernald, and Kimball, 2006). However, since these TFP

measures are based on residuals, they could incorporate other forces not directly related

3



to technology, such as resource misallocation (see e.g., Hsieh and Klenow, 2009). In the

second approach, researchers have imposed model-based restrictions to identify technology

shocks either through VARs or through estimation of structural models (see e.g., Gali, 1999;

Smets and Wouters, 2003). The resulting technology series are highly dependent on specific

identification assumptions. Our paper falls into the third category, which constructs direct

measures of technological innovation using micro data (Shea, 1999; Alexopoulos, 2011).3

We are not the first to link firm patenting activity to stock market valuations (see, e.g.

Pakes, 1985; Austin, 1993; Hall et al., 2005; Nicholas, 2008). In particular, Pakes (1985)

examines the relation between patents and the stock market rate of return in a sample of

120 firms during the 1968–1975 period. His estimates imply that, on average, an unexpected

arrival of one patent is associated with an increase in the firm’s market value of $810,000. The

ultimate objective of these papers is to measure the economic value of patents; in contrast,

we use the stock market reaction as a means to an end—to construct appropriate weights for

an innovation measure which we can be employed to study different issues in the literature

on innovation and growth.

Our paper contributes to the literature that studies the determinants of firm growth rates.

Early studies show considerable dispersion in firm growth that is weakly related to size (see,

e.g. Simon and Bonini, 1958). Our paper is related to the growing body of work that explores

the link between innovation and firm growth dynamics (Caballero and Jaffe, 1993; Klette

and Kortum, 2004; Lentz and Mortensen, 2008; Acemoglu, Akcigit, Bloom, and William,

2011; Garcia-Macia et al., 2015). Existing approaches rely on calibration or estimation

of structural models. In contrast, our approach consists of building a direct measure of

technological innovation implied by our model and using that measure to test the model’s

predictions directly. Our paper is also related to work that examines whether technological

innovation leads to positive knowledge spillovers or business stealing. Related to our paper is

the work of Bloom, Schankerman, and Van Reenen (2013), who disentangle the externalities

generated by R&D expenditures on firms competing in the product and technology space.

We contribute to this literature by proposing a measure of patent quality based on asset

prices and assessing reallocation and growth dynamics after bursts of innovative activity.

3Shea (1999) constructs direct measures of technology innovation using patents and R&D spending and
finds a weak relationship between TFP and technology shocks. Our contrasting results suggest that this
weak link is likely the result of the implicit assumption in Shea (1999) that all patents are of equal value.
Indeed, Kortum and Lerner (1998) show that there is wide heterogeneity in the economic value of patents.
Furthermore, fluctuations in the number of patents granted are often the result of changes in patent regulation,
or the quantity of resources available to the US patent office (see e.g. Griliches, 1990; Hall and Ziedonis,
2001). As a result, a larger number of patents does not necessarily imply greater technological innovation.
Using R&D spending to measure innovation overcomes some of these issues, but doing so measures innovation
indirectly. The link between inputs and output may vary as the efficiency of the research sector varies over
time or due to other economic forces (see e.g., Kortum, 1993). The measure proposed by Alexopoulos (2011)
based on books published in the field of technology overcomes many of these shortcomings. However, this
measure is only available at the aggregate level, and may not directly capture the economic value of innovation
to the firm. In contrast, our measure is available at the firm level, which allows us to evaluate reallocation
and growth dynamics across firms and sectors.
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Finally, our paper is also related to productivity literature that has documented substantial

dispersion in measured productivity across plants and firms (see e.g., Syverson, 2004). We

contribute to this literature by constructing a direct measure of technological innovation and

showing that it can account for a significant fraction of cross-firm dispersion in measured

TFP in our sample.

1 Construction of the Innovation Measure

Our main objective in this section is to obtain an empirical estimate of the economic

value of the patent, defined as the present value of the monopoly rents associated with that

patent. To estimate this value, we combine information from patent data and firm stock

price movements. We proceed in two steps.

The first empirical challenge is to isolate the information about the value of the patent

contained in stock prices from unrelated news. To do so, we focus on a narrow window

following the date when the market learns that the patent application is successful. The US

Patent Office (USPTO) has consistently publicized successful patent applications throughout

our sample. Focusing on the days around this event allows us to isolate a discrete change

in the information set of the market participants regarding a given patent. However, even

during a small window around the event, stock prices are likely to be contaminated with

other sources of news unrelated to the value of the patent. Therefore, our second step filters

the stock price reaction to the patent issuance from the total stock return over the event

window. Next, we discuss the data used in constructing our measure and describe these two

steps in more detail.

1.1 Description of patent data

We begin by first providing a brief description of the patent data; we relegate the details

to the Online Appendix. We download the entire history of U.S. patent documents (7.8

million patents) from Google Patents using an automation script.4 First, we clean assignee

names by comparing each assignee name to the more common names, and if a given name is

close, according to the Levenshtein distance, to a much more common name, we substitute

the common name for the uncommon name. Having an assignee name for each patent, we

match all patents in the Google data to corporations whose returns are in the CRSP database.

Some of these patents appear in the NBER data set and therefore are already matched to

CRSP firms. Remaining assignee names are matched to CRSP firm names using a name

4Google also makes available for downloading bulk patent data files from the USPTO. The bulk data
does not have all of the additional “meta” information including classification codes and citation information
that Google includes in the individual patent files. Moreover, the quality of the text generated from Optical
Character Recognition (OCR) procedures implemented by Google is better in the individual files than in the
bulk files provided by the USPTO. This is crucial for identifying patent assignees.
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matching algorithm. Visual inspection of the matched names confirms very few mistakes in

the matching. We extract patent citations from the Google data and complement them with

the hand-collected reference data of Nicholas (2008).5

Out of the 6.2 million patents granted in or after 1926, we find the presence of an assignee

in 4,374,524 patents. After matching the names of the assignees to public firms in CRSP, we

obtain a database of 1,928,123 matched patents. Out of these patents, 523,301 (27%) are

not included in the NBER data. Overall, our data provides a matched permco for 44.1%

of all patents with an assignee and 31% of all granted patents. By comparison, the NBER

patent project provides a match for 32% of all patents from 1976–2006, so our matching

technique is comparable, even though we use only data extracted from OCR documents for

the period before the NBER data. Last, another point of comparison is Nicholas (2008), who

uses hand-collected patent data covering 1910 to 1939. From 1926–1929, he matches 9,707

patents, while our database includes 8,858 patents; from 1930–1939 he has 32,778 patents

while our database includes 47,036 matches during this period. After restricting the sample of

patents to those with a unique assignee, those issued while the firm has non-missing market

capitalization in CRSP, and for which we can compute return volatilities, we obtain a final

sample of 1,801,879 patents.

1.2 Identifying information events

The first step in constructing our measure is to isolate the release of information to the

market. The US Patent and Trademark Office (USPTO) issues patents on Tuesdays, unless

there is a federal holiday. The USPTO’s publication, Official Gazette, also published every

Tuesday, lists patents that are issued that day along with the details of the patent. Identifying

additional information events prior to the patent issue day is difficult, since before 2000,

patent application filings were not officially publicized (see, e.g., Austin, 1993). However,

anecdotal evidence suggests that the market often had advance knowledge of which patent

applications were filed, since firms often choose to publicize new products and the associated

patent applications themselves. For now, we assume that the market value of the patent,

denoted by ξ, is perfectly observable to market participants before the patent is granted. We

show how relaxing this assumption affects our measure in Section 1.4 below.

5For the Google data, we extract patent citations from two sources. First, all citations for patents granted
between 1976 and 2011 are contained in text files available for bulk downloading from Google. These citations
are simple to extract and likely to be free of errors, as they are official USPTO data. Second, for patents
granted before 1976, we extract citations from the OCR text generated from the patent files. We search the
text of each patent for any 6- or 7-digit numbers, which could be patent numbers. We then check if these
potential patent numbers are followed closely by the corresponding grant date for that patent; if the correct
date appears, then we can be certain that we have identified a patent citation. Since we require the date to
appear near any potential patent number, it is unlikely that we would incorrectly record a patent citation –
it is far more likely that we would fail to record a citation than record one that isn’t there.
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On the patent issue date, the market learns that the patent application has been successful.

Absent any other news, the firm’s stock market reaction ∆V on the day the patent j is

granted would be given by

∆Vj = (1− πj) ξj, (1)

where, πj is the market’s ex-ante probability assessment that the patent application is

successful and ξj is the dollar value of patent j. The market’s reaction to the patent grant (1)

understates the total impact of the patent on the firm value, since the information about

the probability that a patent will be granted is known to the market before the uncertainty

about patent application is resolved.6

Next, we need to choose the length of the announcement window around the patent

issuance event. To guide our decision, we examine the pattern of trading volume on the

stocks of firms that have been issued a patent. We focus on the ratio of daily volume to

shares outstanding. We compute the ‘abnormal’ share turnover around patent issuance

days, after adjusting for firm-year and calendar day effects. As we see in Figure 1, there

is a moderate and statistically significant increase in share turnover around the day that

the firm is granted a patent – with most of the increase taking place on the first two days

following the announcement.7 In particular, we find that the total abnormal turnover in the

first two days after the announcement increases by 0.2%. This is a significant increase when

compared to the median daily turnover rate of 1.3%. Even though prices can adjust to new

information absent any trading, the fact that stock turnover increases following a patent

grant is consistent with the view that patent issuance conveys important information to the

market.

In sum, we conclude that two days after the patent issuance seems a reasonable window

over which information about successful patent grant is reflected in the stock market. We

thus choose a three-day announcement window, [t, t+ 2], for the remainder of our analysis

when constructing our measure. As robustness, we also extend the window to five days and

obtain quantitatively similar results.

6In addition to the patent issuance date, we examined stock price responses around other event dates,
specifically, application filing and publication dates. We find no significant stock price movements around
application filing dates, consistent with the fact that the USPTO does not publish applications at the time
they are filed. After 2000, the USPTO started publishing applications eighteen months after the filing date.
We find some weak stock price movements around application publication dates. Since publication-day
announcements only occur in the post-2000 period, we do not include the information from these dates since
we did not want the statistical properties of the measures to be different across periods.

7Our estimates imply that trading volume is temporarily lower prior to the patent issuance announcement.
A potential explanation is the presence of increased information asymmetry, with investors worrying about
trading against potentially informed insiders who might know more about an impending patent issuance.
Similar patterns in trading volume have been documented before earnings announcements, see e.g., Lamont
and Frazzini (2007).
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1.3 Some Illustrative Examples

Before turning to our main analysis, we first examine some illustrative case studies to

study the relation between the stock market reaction and important patent grants. For these

examples we performed an extensive search of online and print news sources to confirm that

no other news events are likely to account for the return around the patent dates.

The first example is patent 4,946,778, titled “Single Polypeptide Chain Binding Molecules”,

which was granted to Genex Corporation on August 7, 1990. The firm’s stock price increased by

67 percent (in excess of market returns) in the three days following the patent announcement.

Investors clearly believed the patent was valuable, and news of the patent was reported in

the media. For example, on August 8 Business Wire quoted the biotechnology head of a

Washington-based patent law firm as saying “The claims issued to Genex will dominate the

whole industry. Companies wishing to make, use or sell genetically engineered SCA proteins

will have to negotiate with Genex for the rights to do so.” The patent has subsequently

proved to be important on other dimensions as well. The research that developed the patent,

Bird, Hardman, Jacobson, Johnson, Kaufman, Lee, Lee, Pope, Riordan, and Whitlow (1988),

was published in Science and has since been cited over 1300 times in Google Scholar, while

the patent itself has been subsequently cited by 775 patents. Genex was acquired in 1991 by

another biotechnology firm, Enzon. News reports at the time indicate that the acquisition

was made in particular to give Enzon access to Genex’s protein technology. Another example

from the biotechnology industry is patent 5,585,089, granted to Protein Design Labs on

December 17, 1996. The stock rose by 22 percent in the next two days on especially high

trading volume. On December 20, the New York Times reported that the patent “could

affect as much as a fourth of all biotechnology drugs currently in clinical trials.”

As another illustration, consider the case of patent 6,317,722 granted to Amazon.com on

November 13, 2001 for the “use of electronic shopping carts to generate personal recommen-

dations”. When Amazon filed this patent in September 1998, online commerce was in its

infancy. Amazon alone has grown from a market capitalization of approximately $6 billion

to over $100 billion today. The importance of a patent that staked out a claim on a key

part of encouraging consumers to buy more – the now-pervasive “customers also bought”

suggestions– was not missed by investors: the stock appreciated by 34 percent in the two

days after the announcement, adding $900 million in market capitalization.

Our methodology is potentially helpful in distinguishing between innovations that are

scientifically important and those that have a large impact on firm profits. For example,

consider patent 6,329,919 granted to IBM in 2001 for a “system and method for providing

reservations for restroom use.” This patent describes a system to allow passengers on an

airplane to reserve a spot in the bathroom queue. The patent has subsequently been of

such little value to IBM that the firm has stopped paying the annual renewal fee to the

USPTO, and the patent has now lapsed. Our method would identify this patent as having
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little economic value – the return over the 3-day window is slightly negative, and there is no

change in the trading volume. By contrast, citation counts indicate that this patent presented

a considerable scientific advance – the patent has received 21 citations, which places it in the

top 20% of the patents granted in the same year.

1.4 Estimating the Value of a Patent

The second step in constructing our measure is to isolate the component of firm return

around patent issuance events that is related to the value of the patent. In particular, the

stock price of innovating firms may fluctuate during the announcement window around

patent issuance for reasons unrelated to innovation. Hence, it is important to account for

measurement error in stock returns.

To remove market movements, we focus on the firm’s idiosyncratic return defined as the

firm’s return minus the return on the market portfolio.8 We decompose the idiosyncratic

stock return R for a given firm around the time that its patent j is issued as

Rj = vj + εj, (2)

where vj denotes the value of patent j – as a fraction of the firm’s market capitalization –

and εj denotes the component of the firm’s stock return that is unrelated to the patent.

We construct our estimate ξ of the economic value of patent j as the product of the

estimate of the stock return due to the value of the patent times the market capitalization

M of the firm that is issued patent j on the day prior to the announcement of the patent

issuance:

ξj = (1− π̄)−1
1

Nj

E[vj|rj] Mj. (3)

If multiple patents Nj are issued to the same firm on the same day as patent j, we assign

each patent a fraction 1/Nj of the total value. Since the unconditional probability π̄ of a

successful patent application is approximately 56% in the 1991-2001 period (see, e.g. Carley,

Hegde, and Marco, 2014), we account for this understatement by multiplying our estimates

of patent values by 1/0.44 = 2.27.9

8By using this ‘market-adjusted-return model’ (Campbell, Lo, and MacKinlay, 1997), we avoid the need to
estimate the firm’s stock market beta, therefore removing one source of measurement error. As a robustness
check, we construct the idiosyncratic return as the firm’s stock return minus the return on the beta-matched
portfolio (CRSP: bxret). This has the advantage that it relaxes the assumption that all firms have the same
amount of systematic risk, but is only available for a smaller sample of firms. Our results are quantitatively
similar when using this alternative definition.

9In principle, the ex-ante probability of a successful patent grant πj could vary with the private value of a
patent ξ. This possibility will induce measurement error in the estimated patent values. Aggregating patent
values within a firm (or year) will partly ameliorate this concern, as long as the joint distribution of π and ξ
is stable within firm-years. However, this need not be the case. Carley et al. (2014) use proprietary data

9



To implement (3), we need to make assumptions about the distributions of v and ε. We

allow both distributions to vary across firms f and across time t. Since the market value of

the patent v is a positive random variable, we assume that v is distributed according to a

normal distribution truncated at zero, vj ∼ N+(0, σ2
vft).

10 Further, we assume that the noise

term is normally distributed, εj ∼ N (0, σ2
εft). Given our assumptions, the filtered value of

vj as a function of the idiosyncratic stock return R is equal to

E[vj|Rj] = δftRj +
√
δft σεft

φ
(
−
√
δft

Rj

σεft

)
1− Φ

(
−
√
δft

Rj

σεft

) , (4)

where φ and Φ are the standard normal pdf and cdf, respectively, and δ is the signal-to-noise

ratio,

δft =
σ2
vft

σ2
vft + σ2

εft

. (5)

The conditional expectation in (4) is an increasing and convex function of the idiosyncratic

firm return R. The exact shape of this function depends on the distributional assumptions

for v and ε.11

To proceed further, we need to estimate the parameters σεft and σvft. If we allow both

variances to arbitrarily vary across firms and across time, the number of parameters becomes

quite large and thus infeasible to estimate. We therefore specify that the signal-to-noise ratio

is constant across firms and time, δft = δ. This assumption implies that σ2
εft and σ2

vft are

allowed to vary across firms and time, but in constant proportions to each other. To estimate

from USPTO and document that the point estimates of the acceptance rates varied between 50% and 60% in
the 1991-2001 period. This possibility implies that our firm and aggregate level innovation measures should
be interpreted with caution. Obtaining an estimate of the ex-ante probability π at the firm-year level over
the horizon of our sample is challenging because data on patent applications – required to construct π – are
publicly available only post-2000. In addition, even during post-2000 period, this data contains unreliable
information on assignee names that is required to match the patents to firms. We return to this issue in
Section 3.2 below.

10We are grateful to John Cochrane for this suggestion.
11We experimented with different distributional assumptions for v and ε. We relegate the details to the

Online Appendix. We, (i) allowed for a non-zero mean for the truncated normal; (ii) we modeled v as an
exponential distribution; and (iii) we modeled v and ε as following a truncated Cauchy and a standard
Cauchy distribution, respectively. The resulting estimates of patent values were quite similar: in the first
case, allowing for a non-zero mean had mostly a scaling effect on our estimates: the correlation of filtered
returns (4) was in excess of 99%. To obtain a more meaningful difference we would have to allow for the
unconditional mean of vj to vary across firm-years. This is difficult to do since daily data on stock returns
are not very informative about the mean of the value of the patent. In cases (ii) and (iii) the correlation
between the filtered returns under these additional distributional assumptions ranges from 84% to 89%. In
an earlier version of the paper, we also approximated (4) with a piecewise linear function, max(0, R); the
correlation between this approximation and our filtered returns (4) was approximately equal to 48%. In the
Online Appendix, we repeat the main parts of the analysis in the paper using measures constructed under
these alternative distributional assumptions. The results are comparable, as we can see in Online Appendix
Tables (A.7) and (A.8).
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δ, we compute the increase in the volatility of firm returns around patent announcement days.

Specifically, we regress the log squared returns on a patent issue-day dummy variable, Ifd,

log (Rfd)
2 = γIfd + c Zfd + ufd, (6)

where Rfd refers to the 3-day idiosyncratic return of firm f , starting on day d. In this

estimation, we restrict the sample to firms that have been granted at least one patent. We

include controls Z for day-of-week and firm interacted with year fixed effects to account

for seasonal fluctuations in volatility and the fact that firm volatility is time-varying. The

signal-to-noise estimate can be recovered from the estimated value of γ using δ̂ = 1− e−γ̂.
Our estimate γ̂ = 0.0146 implies δ̂ ≈ 0.0145, so we use this as our benchmark value.12 The

last step in estimating (4), involves estimating the variance of the measurement error σ2
εft.

We do so non-parametrically using the sum of squared market-adjusted returns, and we allow

the estimate to vary at an annual frequency (see, e.g. Andersen and Terasvirta, 2009).13

Last, one important caveat is that our estimation of δ implicitly assumes that the market

does not revise its beliefs about the value of the patent at the time the patent is issued. This

assumption is valid post-2000, under the view that market has the same expertise as the

USPTO in evaluating the patent given the same information set. Specifically, subsequent

to the American Inventors Protection Act, which became effective on November 30, 2000,

the USPTO began publishing patent applications 18 months after the filing date, even if the

patents had not yet been granted. Hence, for these applications, the market should have had

full knowledge of the value of the patent at the time of the patent grant. However, prior

to 2000, patent applications were only disclosed to the public at the time the patents were

granted to firms. Hence, it is possible that during the period prior to 2000, the market did

not know the full value of the patent prior to the patent being granted. If this were the case,

then the increase in stock market volatility following a patent grant likely overestimates δ,

since it also includes movements in stock prices that are related to revisions of the patent

value.14

12We also experimented with allowing γ to vary by firm size; except for the smallest firms, the estimates of
γ were statistically similar across firm size quintiles.

13In particular, we first estimate the conditional volatility of firm f at year t using the realized mean
idiosyncratic squared returns, σ2

ft. This second moment is estimated over both announcement and non-

announcement days, so it is a mongrel of both σ2
vft and σ2

εft. Given our estimate of σ2
ft, the fraction of trading

days that are announcement days, dft, and our estimate γ̂, we recover the variance of the measurement error

through σ2
εft = 3σ2

ft

(
1 + 3 dft (eγ̂ − 1)

)−1
.

14Specifically, if the market also updates its beliefs about ξ, the change in the stock price at the grant date
would be equal to

∆Vjt = (1− πj) ξj + π (ξj − ξ̂j),

where ξ̂ is the prior belief about the market value of the patent. Assuming the forecast error ξj − ξ̂j is
uncorrelated with the value of the patent, equation (2) still applies. However, we can no longer use (6) to
estimate δ.
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To examine the importance of this issue, we exploit the change in information disclosure

policy by the American Inventors Protection Act (AIPA) that applied to all patents filed

after November 30th 2000. For the patents that were filed after November 30th 2000 – and

whose publication date occurred 18 months after the application date, but before the grant

date – the market had full knowledge of their quality at the time these patents were granted.

By contrast, for the patents filed before November 30th, it is possible that on the grant day

the stock market reaction indeed contains news about the market value of the patent, ξ. To

assess if this possibility impacts our estimation, we compare estimates of the signal-to-noise

ratio using (6) across the two sets of patents: patents that were filed just before the act, that

is in the month of November 2000; and patents that were filed immediately after the act,

that is in December 2000. Using stock price reactions around the grant dates of these patents

we find that the point estimate of γ is 0.03 larger for the patents filed in December 2000

relative to the patents filed in November 2000. However, the difference is not statistically

significant (p-value is 0.31). We interpret this evidence as suggesting that the information

content around the application publication date may be small and as a result we do not alter

the estimation of the signal-to-noise ratio δ.15

1.5 Descriptive Statistics

In Table 1 we report the sample distribution of ξ along with other variables: the number

of forward citations, the idiosyncratic firm returns Rf , and filtered patent values obtained

from (4). As is well known, the distribution of patent citations is highly skewed, with

approximately 16% of patents receiving zero citations. In addition, the distribution of firm

returns Rf is right skewed, and positive roughly 55 percent of the time. In addition, the

estimated value of patents – both in absolute terms ξ as well as relative to the firm market

capitalization (4) – is also highly skewed.

Our procedure delivers a median value of a patent equal to $3.2 million in 1982 dollars.

Given the scarcity of data on the value of innovations, the plausibility of this number is

difficult to assess. One point of comparison is Giuri et al. (2007) who conduct a survey of

inventors for a sample of 7,752 European patents. The inventors were asked to estimate the

minimum price at which the owner of the patent, whether the firm, other organizations, or

the inventor himself, would have sold the patent rights on the day on which the patent was

granted. Giuri et al. (2007) report that about 68% of all the patents in their sample have a

(minimum) value of less than 1 million Euros.

Given those estimates, the average level of patent values seems a bit high. However,

we should note that our estimates are based on a sample of public firms; these firms may

15Nevertheless, we do investigate the robustness of our results to different values of δ. As noted above,
in the presence of information about the patent quality that is also revealed on grant date, our estimate of
the signal-to-noise ratio δ underestimates the amount of noise. We thus repeat our empirical analysis using
smaller estimates of δ. Our findings are economically similar and are available upon request.
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attach higher valuations to individual patents compared to the inventors of the sample in

Giuri et al. (2007). In addition, the distributional assumptions we made in equation (4)

likely also play a role. In particular, the mean of the distribution of vj is closely tied to the

second moment of vj.
16 Further, we have scaled our estimated patent values by the average

acceptance probability π̄ in the 1991-2001 subsample. If the ex-ante acceptance probability is

correlated with patent values, this will bias the estimate of the average patent value upwards.

Last, another possibility that could inflate the estimated patent values is that a patent grant

may sometimes provide information about the likelihood of future patents being granted.

In sum, even if the average valuation is too high, cross-sectional differences in value across

patents can still be meaningful. Thus, we next explore whether our measure correlates with

the other commonly used measure of patent quality, forward citations.

2 Patent Market Values and Citations

The relation between the private and the scientific value of innovation has been the subject

of considerable debate. The innovation literature has argued that forward patent citations

are a good indicator of the ‘quality’ of the innovation. Hall et al. (2005) and Nicholas (2008)

have argued that forward citations are also correlated with the private value of patents based

on a regression of a firms Tobin’s Q on its stock of citation-weighted patents. Harhoff et al.

(1999) and Moser et al. (2011) provide estimates of a positive relation using smaller samples

that contain estimates of economic value. However, the relation between patent citations and

the private value of a patent can be theoretically ambiguous. Abrams et al. (2013) cast doubt

on these earlier findings by proposing a model of defensive patenting. Using a proprietary

dataset that includes estimates of patent values based on licensing revenues, they document

an inverse-U relation between citations and patent values.

Armed with our measure, we re-examine the relation between citations and the market

value of innovation using the number of citations that the patent receives in the future. Our

measure allows us to study this question at a more granular level than Hall et al. (2005),

while using a broader sample than Abrams et al. (2013). We relate the total number of

citations C a patent j receives in the future to the estimated value of the patent, ξj,

log ξj = a+ b log (1 + Cj) + c Zj + uj. (7)

To control for omitted factors that may influence citations and the measured patent valuations,

we include a vector of controls Z that includes: grant-year fixed effects, because older patents

have had more time to accumulate citations; the firm’s log market capitalization logMj

16For instance, allowing the mean of the distribution of vj (before truncation) to vary from zero resulted in
somewhat smaller magnitudes for patent values (median of 1.8 million). However, doing so has only a scaling
effect on our estimate of patent values.
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(measured on the day prior to the patent grant), as larger firms may produce more influential

patents; the firm’s log idiosyncratic volatility log σft, since it mechanically affects our measure

while at the same time fast-growing firms have more volatile returns and could produce

higher quality patents; technology class-year fixed effects, since citation numbers may vary

across different technologies over time; and firm fixed effects to control for the presence of

unobservable firm effects. Last, we also estimate a specification with firm effects interacted

with year, to account for the possibility that these unobservable firm effects may vary over

time. We cluster the standard errors by grant year to account for potential serial correlation

in citations across patents granted in a given year.

We present the results in Table 2. Consistent with the findings of Harhoff et al. (1999)

and Hall et al. (2005), we find a strong and positive association between forward citations

and market values. Figure 2 summarizes the univariate relation between citations and patent

market values. To plot it we group the patent data into 100 quantiles based on their patent

citations, scaled by the mean number of citations to patents in the same year cohort. We

then plot the average number of cohort-adjusted patent citations in each quantile versus the

mean of the estimated patent value in each quantile, also scaled by the mean estimate of

all patents in the same year cohort. We see that this relation is monotonically increasing,

and mostly log-linear, with the possible exception of patents with very few citations.17 This

pattern is somewhat at odds with the findings of Abrams et al. (2013), who document an

inverse-U relation between citations and value of patents. We conjecture that this discrepancy

may be due to differences in our sample relative to that used in Abrams et al. (2013).

The economic magnitudes implied by our estimates are comparable to those obtained

by the existing literature. One additional forward citation, around the median number of

citations, is associated with a 0.1% to 3.2% increase in the value of that patent, depending on

the controls included. For comparison, Hall et al. (2005) find that, relative to the median, if

all the firm’s patents were to have one additional cite, this increase would be associated with

an increase in the value of the firm by approximately 3%. A further point of comparison is

Harhoff et al. (1999), who study the relation between survey-based estimates of patent values

and citations for a sample of 962 patents. Their estimates imply that a single citation around

the median is associated with, on average, more than $1 million of economic value. Evaluated

at the mean of the distribution of ξj , our estimates imply that one additional citation around

the median number of citations in our sample is associated with approximately 15 to 500

thousand US dollars (in 1982 prices).

In sum, our innovation measure ξ is economically meaningfully related to future citations.

This fact, combined with the previously documented links regarding patent citations and

17As Table 1 shows, a quarter of patents in our sample receive either zero or one citation in the future.
The discreteness of citation counts makes it difficult to differentiate among these patents. In contrast, our
measure indicates some variation in quality among these less-cited patents. The non-linearity at the bottom
end of the citations distribution partly reflects this fact. Further, citations occur with a lag, implying that
this discreteness problem will be accentuated for more recent patents.
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market value, can be interpreted as a test of external validity for our measure. Along these

lines, we performed a series of placebo experiments to illustrate that the relation between

value of a particular patent and the number of citations received by that patent in the future

is not spurious. In each placebo experiment, we randomly generate a different issue date for

each patent within the same year the patent is granted to the firm. We repeat this exercise

500 times and then reconstruct our measure using the placebo grant dates. In Figure 3,

we plot the distribution of the estimated coefficients and t-statistics corresponding to the

specification in column (5) of Table 2. Based on the distribution of coefficients and t statistics

across the placebo experiments, centered at zero, relative to the effects we find in Table 2, we

conclude that our results are unlikely to be spurious.

Importantly, we want to reiterate that our innovation measure ξ and forward patent

citations likely measure different aspects of quality. By construction, our procedure aims

to measure the private economic value of a patent. Patent citations are more reflective of

the scientific value of the innovation. For instance, one patent may represent only a minor

scientific advance – and thus receive few citations – but be particularly successful at restricting

competition and thus generate sizeable private benefits. With that distinction in mind, we

show in the next section that our measure also contains information about future firm growth

that is distinct from that included in patent citations.

3 Innovation and Firm Growth

Models of endogenous growth have rich testable predictions about the cross-section of

firms, linking improvements in the technology frontier to resource reallocation and subsequent

economic growth (Romer, 1990; Aghion and Howitt, 1992; Grossman and Helpman, 1991;

Klette and Kortum, 2004). Since the value of a firm’s innovative output is hard to observe,

constructing direct empirical tests of these models has proven challenging. Here, we use our

estimate of the value of innovation to examine the predictions of these models. We will also

contrast the dynamics of reallocation and growth using our measure with the citations based

measure that is available in the literature.

3.1 Firm-level measures of innovation

We merge our patent data with the CRSP/Compustat merged database. We restrict the

sample to firm-year observations with non-missing values for book assets and SIC classification

codes. We also omit firms in industries that never patent in our sample. In addition, we omit

financial firms (SIC codes 6000 to 6799) and utilities (SIC codes 4900 to 4949), leaving us

with 158,739 firm-year observations that include 15,787 firms in the 1950 to 2010 period. Out

of these firms, only one third (5,801 firms) file at least one patent. To minimize the impact

of outliers, we winsorize all variables at the 1% level using yearly breakpoints.
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We first measure the total dollar value of innovation produced by a given firm f in year t,

based on stock market (sm), by simply summing up all the values of patents j that were

granted to that firm,

Θsm
f,t =

∑
j∈Pf,t

ξj, (8)

where Pf,t denotes the set of patents issued to firm f in year t. A highly popular measure of

the output of innovation produced by a firm is its citation-weighted (cw) patents. We thus

constrict an analogous measure using this metric,

Θcw
f,t =

∑
j∈Pf,t

(
1 +

Cj
C̄j

)
(9)

where C̄j is the average number of forward citations received by the patents that were granted

in the same year as patent j. This scaling is used to adjust for citation truncation lags (Hall

et al. (2005)). Both (8) and (9) are essentially weighted patent counts; if firm f files no

patents in year t, both variables are equal zero.

Large firms tend to file more patents. As a result, Θsm
f,t and Θcw

f,t are strongly increasing in

firm size (see Online Appendix Table A.3). In our analysis, we need to ensure that fluctuations

in size are not driving the variation in innovative output. We therefore scale the two measures

above by firm size. We use book assets as our baseline case,

θmf,t =
Θm
f,t

Bft

, (10)

for m ∈ {sm, cw}, where Bft is book assets of firm f in year t. We note that our inferences in

the analysis that follows are not sensitive to using book assets for normalization since we also

control for various measures of firm size in all our specifications. As we discuss below, the

results using our measure are similar if we scale by the firm’s market capitalization instead.

Table 3 presents summary statistics related to the two measures of innovation, θsmf,t and

θcwf,t. Innovative activity is highly skewed across firms – as captured by both our measure

and citation-weighted patents. This is consistent with the prior literature that has noted

that most firms do not patent and that there is large dispersion in the number of citations

across patents. Examining the next rows of Table 3, we note that there is substantial

heterogeneity in firm growth rates of output, profits as well as capital and labor. Further,

there is substantial heterogeneity in mean innovation outcomes across industries (see Online

Appendix, Table A.5). The most innovative industries are Drugs, Automobiles and Chemicals

while least innovative ones are Food, Tobacco and Apparel/Retail. These patterns match

those of innovators as described by Baumol (2002), Griliches (1990) and Scherer (1983). In

addition, there is some interesting time series variation in the distribution of innovation

outcomes across firms (see Online Appendix, Table A.4). In particular, we see an increase
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in dispersion of innovative output, with an increase in both the mass of firms that do not

patent as well, as an increase in the value of innovative output at the extreme end.

3.2 Firm Innovation, Growth and Productivity

We now examine the relation between innovation and firm growth and productivity.

Endogenous growth models imply that firm growth is related to innovation, typically measured

by the number of product varieties or the quality of goods the firm is producing (Romer,

1990; Aghion and Howitt, 1992; Grossman and Helpman, 1991; Klette and Kortum, 2004). In

a majority of these models, innovation by other firms has a negative impact on firm growth,

either directly through business stealing or indirectly through changes in factor prices. We

refer to the latter effect as creative destruction.

Methodology

To examine creative destruction, we need to compute a measure of innovation by competing

firms. We define the set of competing firms as all firms in the same industry – defined at the

SIC3 level– excluding firm f . We denote this set by I \ f . We then measure innovation by

competitors of firm f as the weighted average of the innovative output of its competitors,

θiI\f,t =

∑
f ′∈I\f Θi

f ′,t∑
f ′∈I\f Bf ′t

. (11)

We compute (11) for both the market based measure (sm) as well as for citation-weighted

patent counts (cw).

We assess the relation between the innovative activity of the firm and its competitors and

its future growth and productivity. In particular, as dependent variables, X, we iteratively

use (a) profits, (b) nominal value of output, (c) capital stock, (d) number of employees and

(e) revenue-based productivity (TFPR). We estimate the following specification.

logXf,t+τ − logXf,t = aτ θf,t + bτ θI\f,t + c Zft + uft+τ . (12)

We explore horizons τ of 1 to 5 years. In addition to Xft, the vector Z includes the log

value of the capital stock and the log number of employees to alleviate our concern that firm

size may introduce some mechanical correlation between the dependent variable and our

innovation measure. For instance, large firms tend to innovate more, yet have been shown to

grow slower (see e.g., Evans, 1987). Controlling for other measures of size (i.e. book assets)

yields similar results. We control for firm idiosyncratic volatility σft because it may have a

mechanical effect on our innovation measure and is likely correlated with firms’ future growth

opportunities (Myers and Majluf, 1984). Last, we include industry and time dummies to

account for unobservable factors at the industry and year level. We cluster standard errors by
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both firm and year. To facilitate the comparison between our measure and patent citations,

we normalize both variables to unit standard deviation.

Estimation Results

We focus on the estimates of a and b, which capture the direct impact of firm innovation

on growth and the degree of creative destruction, respectively. Panels (a) to (d) of Table 4

examine firm growth, as measured by the growth rate of (a) profits, (b) nominal output,

(c) capital and (d) number of employees. Consistent with models of innovation, we see that

future firm growth is strongly related to the firm’s own innovative output. The magnitudes

are substantial; over a five-year horizon, a one standard deviation increase in firm’s innovation

is associated with a 4.6% increase in profits, a 3.2% increase in output, a 3.8% increase in

capital investment, and a 2.5% increase in employment.

Our estimates of b suggest that innovation is associated with a substantial degree of

creative destruction. In particular, a one standard deviation increase in innovation by

firm’s competitors is associated with a decline of 3.8% in profits, 5.1% in output, 3.8%

in capital investment and 2.7% in employment, over the same five-year horizon. Relative

to existing studies that study externalities associated with firm innovation (e.g. Bernstein

and Nadiri, 1989; Bloom et al., 2013) our estimates imply a substantially higher degree of

creative destruction. We conjecture that this difference is likely due to the fact that θsm – by

construction – measures the private value of innovation – as opposed to its social value, which

may include research-related externalities. We revisit this issue below when we compare our

results to those using citation-weighted patent counts.

Panel (e) of Table 4 examines the relation between innovation and (revenue-based) firm

productivity. We see that a one standard deviation increase in firm’s innovation is associated

with a 2.4% increase in firm’s revenue-based productivity. Conversely, a one standard deviation

increase in innovation by firm’s competitors is followed by a 1.7% drop in productivity over

five years. The negative effect of competitor innovation on revenue-based productivity is most

likely due to its negative effect on firm-level prices, possibly due to business-stealing effects.18

Overall, our measure of innovation activity is related to firm growth and productivity,

providing direct support for models of endogenous growth. In addition, these results contribute

to the discussion on the determinants of growth rates and productivity differences across

firms. Understanding why these differences exist – and persist over time – and relating them

to specific aspects of firms’ economic activity remains a significant challenge.19 A direct

18For instance, if the firm is producing a portfolio of patented and non-patented goods, and having a patent
allows the firm to act as a monopolist and charge a higher markup, the loss of a good to a rival firm could
imply that the firm’s average markup – across all goods it produces – falls. In this case, we would see a drop
in TFPR.

19See, for example Syverson (2011); Haltiwanger (2012). While some of the measured differences likely
reflect imperfections in the measurement in productivity, they also reflect, to a large degree, real differences
in firms’ ability to generate revenue for given capital and labor inputs.
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measure of the firm’s innovative output allows us to quantify the strength of this relation.

In this respect, our approach is similar to Bloom and Van Reenen (2007) who document

that differences in their measure of management quality across firms account for a significant

fraction of dispersion in TFP across firms.20

Comparison to citation-based measures

We next compare the results above to those obtained using a more traditional measure

of innovative output, citation-weighted patents. Table 5 reports estimates of (12) using

the citation-based measure θcw. Examining the response of future growth and productivity

to own innovation, we again see a strong positive association. Comparing these estimates

of a to those of Table 4, we note that they are smaller in magnitude, typically less than

half. Specifically, a one standard deviation change in firm’s innovation, as measured using

citations-weighted patents, is associated with a 2.5% increase in profits, 1.9% increase in

output, 1.5% increase in capital investment, 1.5% increase in employment and a 1% increase

in productivity. These smaller magnitudes are not surprising, since firm investment decisions

are related to the private value of innovation, which may be imperfectly reflected in the

number of citations to the patent.

More importantly, the results in Table 5 reveal no evidence for creative destruction. The

estimated coefficients b are either positive or not statistically different from zero. The stronger

pattern of creative destruction associated with θsm is consistent with our conjecture above

that our measure is more highly correlated with the private value of a patent relative to patent

citations. Citations on the other hand are more likely to be correlated with the scientific

value of a patent and thus more accurately measure the impact of research externalities.

Last, we explore whether our measure and patent citations contain independent information

about future firm growth. That is, we re-estimate (12) including both θsmf and θcwf , as well as

θsmI\f and θcwI\f . We report the estimation results in Table 6. We see that the relation between

θsm and future firm growth and productivity is comparable to those in Table 4. By contrast,

the relation between the citation-based measure and own firm growth is in many cases not

statistically different from zero. By design, our measure and citation-weighted patent counts

should contain independent information regarding externalities. Examining the right panel

of Table 6 we note a strong negative effect of competitor innovation on firm growth and

productivity measured using value-weighted patent counts (θsm) and a positive effect when

innovation output is measured using citation-weighted patent counts (θcw).

20A direct comparison between our results and Bloom and Van Reenen (2007) is difficult because their
management quality measure is a stock measure, while our innovation measure is a flow measure. Specifically,
(Bloom and Van Reenen, 2007) find that spanning the interquartile range of the management score distribution,
for example, corresponds to a productivity change of between 3.2 and 7.5 percent, which is between 10 and
23 percent of the interquartile range of TFP in their sample.
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In sum, these findings allow us to draw two conclusions. First, there is additional

information about the quality of innovation in our measure than what is captured in citations.

This additional information is most likely related to private values of a patent. Depending on

the intended application, one measure may be more useful than the other.21 Second, using

our estimate of the private value of innovation, we document substantial patterns of creative

destruction relative to those previously documented.

Robustness and Caveats

The estimated value of innovative output θsmf,t contains information on the firm’s market

valuation in the numerator, but not in the denominator. Hence, one potential concern is that

fluctuations in θsmf,t simply reflect fluctuations in the market valuation of firm f rather than

the value of the innovative output of firm in year t. To address this concern, we replace the

book value of assets in the denominator of θsmf,t with the firm’s stock market capitalization at

the end of year t. We find that doing so leads to similar results, although they are smaller in

magnitude by about one-third (see Table A.9 in the Online Appendix). Second, market values

are measured at a point in time, while citations are measured throughout the entire sample.

As a robustness check, we verify that results are similar when we only measure citations

within the first few years after the patent is granted (see Table A.10 in the Online Appendix).

A third caveat is that the relation between innovation and firm growth we document is based

on correlations and cannot be interpreted causally. For instance, fast-growing firms may

invest more in R&D and thus also innovate more, but innovation may be unrelated to firm

growth. We found that including controls for R&D spending did little to alter the magnitude

of the estimated coefficients a and b (Table A.11 in the Online Appendix). Fourth, it is

possible that our measure simply captures fluctuation in investor attention; if investors pay

attention to fast growing firms, this could explain our results. We found that controlling for

three proxies for investor attention – the number of times the firm is mentioned in the Wall

Street Journal, the number of analyst coverage, and the fraction of institutional ownership –

did little to affect the economic and statistical significance of our results (Table A.12 in the

Online Appendix).

More generally, we measure the private value of innovative output with substantial

measurement error. In particular, as we can see from equation (1), this measurement error

depends on the ex-ante likelihood of the patent being granted.22 We cannot rule out the

possibility that this measurement error covaries with unobservable factors that also determine

firm growth. To partly alleviate these concerns, we use the R&D price variable constructed

21We could extend our methodology to estimate the value of a patent including its effect on competing
firms, using the competitors’ stock market reaction. This measure could be closer to the ‘social value’ of
innovation. We leave this task for future research.

22Estimating the ex-ante likelihood of a patent grant requires information on patent applications. As noted
earlier, such data is only available post-2001. However, as of 2015, there is no reliable publicly available
assignee information in these patent applications.
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by Bloom et al. (2013) as an instrument. This R&D price is constructed at an annual level for

each firm using state-level R&D tax credits. This price varies across firms because different

states have different levels of R&D tax credits and corporation tax, which will differentially

affect firms depending on their cross-state distribution of R&D activity. In addition, we

construct an R&D price for competing firms in a similar manner to equation (11), that is,

equal to the average R&D price of firms competing with firm f . We then use the firm and

competitor R&D price to instrument for θf and θI\f when estimating equation (12). The

first-stage regression reveals a strong, negative, relation between the firm- and competitor

R&D price and firm and competitor innovation outcomes, respectively. Importantly, the

second-stage estimates are qualitatively similar to our baseline results, thought the magnitudes

are stronger (see Table A.13 in the Online Appendix).

4 Aggregate Effects of Innovation

Here, we assess the role of technological innovation in accounting for medium-run fluc-

tuations in aggregate economic growth and TFP. A notable challenge facing real business

cycle models is the scarcity of evidence linking movements in TFP to clearly identifiable

measures of technological change. At the aggregate level, whether technological innovation is

socially valuable in endogenous growth models depends on the degree to which it contributes

to aggregate productivity – as opposed to simply being a force for reallocation and creative

destruction. If the creative destruction effects dominate, an increase in aggregate innovation

activity would lead to resource reallocation across firms but only minor increases in output.

We tackle this question in two ways. First, the results in the previous section illustrate that

an increase in a firm’s innovative output is associated with higher growth and productivity;

by contrast, innovation by competing firms has the opposite effect. In Section 4.1, we use

firm-level estimates of Section 3.2 to examine the net impact of innovation on aggregate

output and productivity. Second, in Section 4.2, we propose an aggregate index of innovation

activity – that is based on a simple model of innovation – and relate the index to aggregate

output and productivity.

4.1 Aggregating coefficients

As a first step in assessing the net impact of innovation, we examine what our empirical

estimates in Section 3.2 imply about the net effect of innovation within our sample of

publicly traded firms. To do so, we need to compare the relative magnitudes of the estimated

coefficients a and b in equation (12). However, since the equation is expressed in terms of

growth rates, we cannot determine the sign and the magnitude of the net effect by simply

comparing the two coefficients a and b.
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We thus proceed as follows. We first compute the portion of the dollar change in the

size X of firm f between time t and t+ τ that is associated with its own innovation and the

innovation by other firms in the same industry as

X̂f,t+τ − X̂ ′f,t+τ =
[
exp

(
âτ θft + b̂τ θI\ft + ĉτ Zft

)
− exp

(
ĉτ Zft

)]
Xf,t, (13)

where we have made explicit the dependence of the estimated regression coefficients on the

horizon, τ . Here, we use the notation X ′ to refer to the counterfactual level of X in the

case in which our measure is uniformly equal to zero. Second, we aggregate these estimates

across all firms in the sample to obtain the average component of aggregate growth related

to innovation,

Ĝτ =
1

T

T∑
t=1

1

τ

∑
f

(
X̂f,t+τ − X̂ ′f,t+τ

)
∑

f Xf,t

 , (14)

In equation (14), the numerator and denominator sum across all firms that survive to time τ .

The sample mean of Ĝt,t+τ can be interpreted as the annual aggregate growth rate between

periods t and t+ τ that is related to firm innovation, subject to two caveats: i) we omit some

general equilibrium effects due to the presence of time dummies in equation (12) and ii) our

estimate aggregates outcomes within our sample of public firms.

Similarly, we can define an index of creative destruction in a manner analogous of excess

reallocation (using the definition of Davis, Haltiwanger, and Schuh, 1998), as

D̂τ =
1

T

T∑
t=1

[
1

τ

∑
f |X̂f,t+τ − X̂ ′f,t+τ |∑

f Xft

− |Ĝt,t+τ |

]
(15)

Equation (15) measures the degree of cross-sectional volatility in growth rates that is related

to innovation. To assess the magnitudes of (14) and (15) we can compare them to their

realized counterparts,

Gτ =
1

T

T∑
t=1

[
1

τ

∑
f [Xf,t+τ −Xf,t]∑

f Xf,t

]
(16)

and

Dτ =
1

T

T∑
t=1

[
1

τ

∑
f |Xf,t+τ −Xf,t|∑

f Xft

− |Gt,t+τ |

]
. (17)

When comparing our aggregate estimate of reallocation (15) to its realized counterpart (17),

note that D̂τ is based on predicted values, hence it is unlikely to capture a substantial fraction

of fluctuations in realized firm growth rates, since these are hard to predict.

Our estimates imply that the contribution of innovation to aggregate growth is positive

and substantial. To conserve space, we only report the highest value across horizons τ . Our

estimate of Ĝτ implies that our estimate of innovation can account for an average net growth
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rate of up to 0.8% in firm profits, 0.1% in firm output, 0.7% in capital and 0.1% in the

number of employees. Comparing these estimates to the mean aggregate growth rate for the

corresponding variables G within our sample of public firms, we find that innovation can

account for a fraction of 5% to 23% of net economic growth.

The degree of creative destruction implied by our estimates is also substantial. Our

estimates of D̂ imply that innovation can account for a mean cross-sectional dispersion of

0.5% in firm profits, dispersion of 0.5% in sales growth rates, 0.3% in growth rates of capital

and 0.3% in the change in the number of employees. Comparing these magnitudes to the

realized dispersion in firm growth rates, D, we find them to be approximately 6% to 19%

of their realized counterparts. Our estimates thus suggest that differences in innovative

outcomes can account for a substantial fraction of ex-post differences in firm growth rates.23

In sum, our analysis suggests that, in the aggregate, innovation is associated with significant

resource reallocation and growth. While this firm level analysis has several appealing features,

its findings should be interpreted with caution for at least two reasons. First, our estimates

are based on comparing outcomes within a sample of public firms. They omit any effect

of innovation by these public firms on private firms in the industry. Second, our empirical

specification (12) include time fixed effects to control for unobserved changes in the economic

environment that are unrelated to innovation. However, these time effects could also absorb

some of the general equilibrium effects of innovation by firms in our sample. We next explore

an alternative approach that constructs an aggregate index of innovation that is motivated

by an economic model.

4.2 Aggregate Index of Innovation

Here, we construct an economy-wide index of innovation output. To aggregate our firm-

level innovation measures to a composite, we need to make particular assumptions about how

firm monopoly profits relate to aggregate improvements in TFP. In Appendix A, we provide

a simple model of innovation – based on Atkeson and Burstein (2011) – that delivers an

approximately linear relation between the two.24 After discussing the descriptive properties of

23We can also similarly aggregate the firm level coefficients we obtained in Section 3.2 using the citation-
based measure. We would expect the relation between aggregate innovation and growth to be greater when
using citation-weighted patent counts for two reasons. First, citations may include research externalities
that need not be captured by our measure. Second, since citations are an imperfect estimate of private
value, they underestimate the effect of creative destruction. Both of these effects should in theory imply that
citation-weighted patent counts will overestimate the relation between innovation and growth relative to what
would be obtained using our measure. However, the empirical evidence is mixed. We find that, when using
citation-weighted patent counts, innovation can account for an average net growth rate of up to 0.4% in
firm profits, 0.2% in firm output, 0.2% in capital and 0.4% in the number of employees. These estimates are
comparable in magnitude to those obtained using our baseline measure. Importantly, the degree of creative
destruction implied by the citation-weighted patent measure is essentially zero.

24Alternative models of innovation may result in different functional relations between firm profits and
aggregate productivity improvements, particularly quality-ladder models with endogenous markups. These
models would therefore generate alternative innovation indices. We leave this for future work.
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the index, we examine its correlation with measures of aggregate productivity and economic

growth.

Methodology

We construct an economy-wide index of innovation as

χ̂t = Y −1t

∑
f∈Ft

Θsm
ft . (18)

Equation (18) is equal to the sum of the value of all patents granted in year t to the firms in

our sample, scaled by aggregate output Y . The construction of the index (18) is motivated

by a simple model of innovation, described in Appendix A. In the model, the index (18) is

approximately proportional to the productivity (and output) gains from improvements in the

aggregate technology frontier.

A potential concern with the index (18) is that its fluctuations may capture movements in

‘discount rates’, or more generally, fluctuations in the level of stock prices that are unrelated

to fundamentals. To address this concern, we also construct an alternative index, in which

instead of output Y we scale by the total market capitalization of the firms in our sample in

year t. In the model, the level of the stock market is a constant multiple of output, hence

these two indices coincide. In the data, the correlation between the two indices is 0.89 in

levels and 0.75 in first differences.

We plot the two innovation indices in panels (a) and (b) of Figure 4. We see that

both indices line up well with the three major waves of technological innovation in the U.S.

First, both indices suggest high values of technological innovation in the 1930s, consistent

with the evidence compiled in Field (2003), and Alexopoulos and Cohen (2009, 2011).25

When we dissect the composition of the index we find that firms that primarily contribute

to technological developments during the thirties are in the automobiles (such as General

Motors) and telecommunication (such as AT&T) sectors. This description is consistent

with studies that have examined which sectors and firms led to technological developments

and progress in the 1930s (Smiley, 1994). Second, our measure suggests higher innovative

activity during 1960s and early 1970s – a period commonly recognized as a period of high

innovation in the U.S (see, e.g. Laitner and Stolyarov, 2003). Indeed, this was a period that

saw development in chemicals, oil and computing/electronics – the same sectors we find to be

contributing the most to our measure with major innovators being firms such as IBM, GE,

3M, Exxon, Eastman Kodak, du Pont and Xerox. Third, developments in computing and

telecommunication have brought about the latest wave of technological progress in the 1990s

25Notably, our series peaks slightly earlier in the 1930s than Alexopoulos and Cohen (2011). This seems
reasonable since our measure is based on patents as opposed to commercialization dates that their measure
captures.
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and 2000s, which coincides with the high values of our measure. In particular, it is argued

that this is a period when innovations in telecommunications and computer networking

spawned a vast computer hardware and software industry and revolutionized the way many

industries operate. We find that firms that are main contributors to our measure belong to

these sectors with firms such as Sun Microsystems, Oracle, EMC, Dell, Intel, IBM, AT&T,

Cisco, Microsoft and Apple being the leaders of the pack.

For comparison, we also plot the number of patents per capita in panel (c). We see that

our indices display different behavior than the total number of patents, especially in the

beginning and towards the end of the sample.26 In particular, post-1980, there is a rapid

acceleration to the number of patents granted. Even though a fraction of this increase likely

reflects an acceleration in the pace of technological innovation, an increase in patent grants

can also arise due to changes in the legal environment (Henry and Turner, 2006).

To isolate the fluctuations in our index that are independent from changes in the number

of patents granted, in panel (d) we plot the average value per patent – that is, we plot the

numerator of (18) scaled by the total number of patents granted to firms in our sample in

each year. Comparing panel (d) to panels (a) and (b), we can immediately see that most of

the low-frequency fluctuation in our indices is driven by fluctuations in the average value of

patents.27

Further, our economy-wide innovation measure allows us to shed some light to the puzzle

raised by Kortum (1993), among others, regarding the secular increase in the ratio of R&D to

patents. Indeed, as we see in panel (e), the ratio of R&D expenditures, deflated by the BEA

R&D deflator, to the total number of patents granted in the US exhibits a secular increase.

Kortum (1993) examines three of the potential explanations using a structural model, namely

(i) a decline in the productivity in the research sector; (ii) an increase in the value of patents

due to market expansion; and (iii) a decline in the patenting rate due to increased costs of

patenting. Consistent with the conclusions in Kortum (1993), we find support for the second

explanation. In particular, we construct a ratio of average value per patent at time t as

the total estimated value of all granted patents in year t, granted to the set of firms in our

sample, divided by the total number of patents granted to these firms in year t. As we see in

panel (f), the ratio of costs to benefits – the difference between the series in panel (e) and

the series in panel (d) – has shown a markedly slower decline.

Naturally, our time-series index comes with several caveats. First, part of the time-series

fluctuation in our innovation index may be due to changes in the likelihood of patent approval

– or more generally, the joint distribution of πj and ξj . Along these lines, the degree of market

efficiency may have changed over time. Last, the composition of patenting firms likely has

26The correlation between χ̂t and the log number of patents is equal to 60-75% in levels and 14-18% in
first differences, depending on whether we scale χ̂t by output or aggregate stock market capitalization.

27In results that appear in an earlier version of this paper, we show that our index is also related to the
index of Alexopoulos and Cohen (2009).
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changed over the decades. Next we examine whether, despite all these caveats, our index

contains meaningful information about economic growth.

Innovation and aggregate growth

Here, we examine the extent to which our economy-wide innovation measures account

for short- and medium-run fluctuations in aggregate output growth and productivity. We

measure output as the per capita gross domestic product deflated by the consumer price

index, and productivity as the utilization-adjusted TFP from Basu et al. (2006). To study

the relation between our innovation index and aggregate growth, we estimate the following

specification

xt+τ − xt = a0 + aτ log χ̂t +
L∑
l=0

cl xt−l + ut+τ . (19)

Here, x is our variable of interest – log aggregate output or log TFP – and χ is our index

of innovation. We examine horizons of one to five years. We select the number of lags L

using the BIC criterion, which advocates a lag length of one to three years depending on the

specification. We compute standard errors using Newey-West with a maximum lag length

equal to τ + 4.

In the first row of Figure 5, we plot the response of aggregate output and total factor

productivity to a unit standard deviation shock in our baseline innovation index (18). We see

that, over a period of five years, a one-standard deviation increase in our index is followed by

approximately a 6.5% increase in output growth and a 3.4% increase in aggregate productivity.

The results using the alternative scaling – total market capitalization of firms in our sample

as opposed to aggregate output – are comparable, though somewhat smaller in magnitude.

As we see in the second row of Figure 5, the response of output and productivity to a unit

standard deviation change in the alternative index scaled by market capitalization is 5.5%

and 2.1% over five years, respectively.28

In sum, we find that waves of innovation are followed by an acceleration in aggregate

output and productivity growth. These results are consistent with the estimates obtained

from aggregating the coefficients from the firm-level analysis in Section 4.1. However, they

are in contrast to Shea (1999) who finds only a weak relation between patents and measured

TFP. Taken together, these findings suggest that our innovation index contains additional

information about aggregate growth relative to what is included in simple patent counts.

Further, the fact that the response of productivity and output are similar regardless of our

choice of scaling variable – aggregate output or market capitalization – suggests that this

predictability is not driven by information that is contained in the level of the stock market.

28In addition to (19), we also estimated impulse responses using bivariate VARs. The results are similar
though the magnitudes are somewhat weaker: a one-standard deviation increase in our index is followed by
approximately a 1.7-2.2% increase in output growth and a 0.6-1% increase in aggregate productivity. See
Online Appendix Table A.3 for more details.
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5 Conclusion

Using patent data for US firms from 1926 to 2010, we propose a new measure of the

economic importance of each innovation that exploits the stock market response to news about

patents. Our patent-level estimates of private economic value are strongly positively related to

the scientific value of these patents – as measured by the number of forward citations that the

patent receives in the future. Consistent with the predictions of Schumpeterian growth models,

innovation using our measure is associated with substantial growth, reallocation and creative

destruction. Our measure contains significant information in addition to citation-weighted

patent counts; the relation between our measure and firm growth is substantially stronger.

Aggregating our measure suggests that technological innovation accounts for significant

medium-run fluctuations in aggregate economic growth and TFP.

In conclusion, three issues are worth reiterating. First, the main idea behind our in-

novation measure – that the private value of a patent can be extracted using stock price

reaction around its grant – is quite general. Hence, we expect our measures of technological

innovation and those constructed based on a similar idea around other events, such as drug

approvals, to be useful beyond just the settings considered in the paper. Second, our empirical

findings should be interpreted as providing support for the general Schumpeterian hypothesis

that technological innovation is a significant driver of both economic growth and creative

destruction. These predictions emerge in a wide variety of models that have been explored in

the literature (e.g., (e.g. Romer, 1990; Aghion and Howitt, 1992; Grossman and Helpman,

1991; Klette and Kortum, 2004)) and are not tied to the specific model used in the paper.

Third, our innovation measure provides information that is complementary to the information

contained in patent citations. By construction, our approach is geared towards measuring

the private value of innovation; by contrast, patent citations are likely a better measure of

the scientific value of the patent.

A A Model of Innovation

Here, we briefly present a simple model of innovation that is based on Atkeson and
Burstein (2011).

Setup

There is a competitive representative firm producing a single consumption good (the
numeraire) from a variety of intermediate goods according, to the production function

Yt =

[∫ Ht

0

θ
1/ρ
j (qj,t)

(ρ−1)/ρ dj

]ρ/(ρ−1)
. (A.1)
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The parameter ρ > 1 governs the elasticity of substitution between goods; θj indexes the
quality of good j; and qj,t denotes the quantity of good j produced at time t. The non-
decreasing process Ht represents the current measure of intermediate goods, which evolves
according to

Ht = Ht−1 +Nt,

where N is a positive random variable described below. Importantly, new goods created at
time t draw their quality θ from a distribution ft(θ) that is allowed to vary over time. Denote
the mean of that distribution at time t by θ̄t =

∫
θft(θ)dθ. To have a balanced growth path,

we assume that θ̄tNt = χtXt−1, where

Xt ≡
∫ Ht

0

θj dj, (A.2)

and χt > 0 is an i.i.d. random variable. These assumptions imply that

Xt = Xt−1 (1 + χt) (A.3)

Each good is produced according to a linear production technology,

qj,t = lj,t. (A.4)

In the model, all goods are patented. The firm that owns the patent for good j acts like a
monopolist.

Last, consumers have log utility over consumption,

U(Ct) = logCt, (A.5)

and discount the future using a subjective discount factor β. Households inelastically supply
a unit of labor services at the equilibrium wage w.

Equilibrium

Using standard arguments, it is straightforward to show that the inverse demand for good
j is given by

pj,t =

[
qj,t
Yt

]−1/ρ
θ
1/ρ
j . (A.6)

Using (A.6), total profits from producing good j equal

Πj,t ≡ pj,t qj,t − wt qj,t = q
1−1/ρ
j,t (Yt θj)

1/ρ − wt qj,t. (A.7)

Maximizing the above expression with respect to quantity produced (q) yields

qj,t = Yt θj

[
wt

1− 1/ρ

]−ρ
= θjX

−1
t , (A.8)
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where the last equality follows from clearing the labor market – requiring that∫ Ht

0

qj,t dj = 1. (A.9)

Using (A.1), we get that aggregate output – and consumption – are given by

Yt = X
1/(ρ−1)
t , (A.10)

while the equilibrium wage is given by

wt =
ρ− 1

ρ
Yt, (A.11)

while flow profits from owning a patent to good j are

Πj,t =
1

ρ
θj Y

2−ρ
t . (A.12)

Next, we examine the market value of a patent. The market value of a patent for good
j is equal to the present value of the monopoly profits associated with good j, using the
household’s stochastic discount factor,

ξj,t ≡ Et

[
∞∑
s=t

βs−t
U ′(Cs)

U ′(Ct)
Πj,s

]
= θj YtX

−1
t B (A.13)

where

B =
1

ρ
Et

[
∞∑
s=t

βs−t
(
Xt

Xs

)]
. (A.14)

is a constant.

Using (A.13), we add up the value of all new patents at time t, and divide by output,

χ̂t = Y −1t

∫ Ht

Ht−1

ξj,t dj = BX−1t

∫ Ht

Ht−1

θj dj

∝ Xt −Xt−1

Xt

=
χt

1 + χt
. (A.15)

The key result of the model is that, to a first-order approximation (small χt), the aggregate
index χ̂t is proportional to the growth rate in aggregate output and productivity χt.

Last, rather than dividing by aggregate output, we could also have divided by the value
of the stock market, which is equal to

Mt = Et

[
∞∑
s=t

βs−t
U ′(Cs)

U ′(Ct)
(Ys − ws)

]
=

1

ρ (1− β)
Yt. (A.16)

Since the stock market is proportional to aggregate output, similar results obtain.
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Tables and Figures

Table 1: Estimates of Patent Value: Descriptive Statistics

Moment C C/C̄ Rf E[v|Rf ] ξ

(%) (%)

Mean 10.26 1.18 0.07 0.32 10.36

Std. Dev. 20.13 1.98 3.92 0.20 32.04

Percentiles

p1 0 0 -9.93 0.11 0.01

p5 0 0 -5.15 0.14 0.04

p10 0 0 -3.55 0.16 0.11

p25 1 0.20 -1.67 0.20 0.73

p50 5 0.62 -0.09 0.27 3.22

p75 11 1.38 1.62 0.37 9.09

p90 24 2.78 3.82 0.53 22.09

p95 38 4.06 5.73 0.68 38.20

p99 90 8.84 11.49 1.07 121.39

The table reports the distribution of the following variables across the patents in our sample: the number

of future citations till the end of our sample period C; the number of citations scaled by the mean number

of cites to patents issued in the same year C̄; the market-adjusted firm returns Rf on the 3-day window

following the patent issue date; the filtered component of returns E[v|Rf ] related to the value of innovation –

using equation (4); and the filtered dollar value of innovation ξ using equation (3) deflated to 1982 (million)

dollars using the CPI. Patents are always issued on Tuesdays, hence the 3-day return is computed as the

cumulative market adjusted return between Tuesday and Thursday. Market adjusted returns are computed

as the difference between the firm return (CRSP holding period return) minus the return of the CRSP

value-weighted index. We restrict attention to the patents for which we have non-missing data on three

day announcement return, market capitalization and return volatilities – inputs needed to compute our Θ̂

measure. The sample contains 1,801,879 patents.
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Table 2: Forward Citations and Patent Market Values

(1) (2) (3) (4) (5)

log(1 + Cj) 0.174 0.099 0.054 0.013 0.004

(9.99) (9.43) (10.28) (14.05) (5.23)

N 1,801,301 1,801,301 1,801,301 1,801,301 1,801,301

R2 0.205 0.707 0.790 0.925 0.952

Controls

Firm Size - Y Y Y Y

Volatility - - Y Y -

Fixed Effects CxT CxT CxT CxT CxT

F FxT

Table presents the results from estimating equation (7) relating the estimated patent value to the forward

citations to the patent. The dollar value of a patent is constructed using equation (3). For details on our

baseline empirical procedure see Section 1.4. We include grant-year fixed effects throughout. Depending

on the specification we also include: USPTO 3-digit technology classification classes interacted with grant

year fixed effects, CxT ; our estimate of the firm’s idiosyncratic volatility; firm size, measured as market

capitalization on the day prior to the patent issue date; firm fixed effects, F ; firm interacted with grant

year fixed effects, FxT . We cluster the standard errors by the patent grant year, and report t-statistics in

parenthesis. The sample contains 1,801,301 (out of 1,801,879) patents for which we have information on

technology class. All variables are winsorized at the 1% level using annual breakpoints.
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Table 3: Descriptive Statistics: Firm Innovation and Growth

Mean SD p10 p25 p50 p75 p90

Innovation Output, SM-weighted (θsmf , %) 3.1 12.1 0.0 0.0 0.0 0.6 7.1

Innovation Output, C-weighted (θcwf , %) 3.8 12.8 0.0 0.0 0.0 0.6 9.4

Profits, growth rate (%) 5.9 42.5 -28.9 -7.6 5.4 19.4 41.5

Output, growth rate (%) 5.0 38.8 -24.9 -6.8 4.7 16.8 35.5

Capital stock, growth rate (%) 9.9 34.8 -9.0 -0.2 6.6 17.3 36.4

Employment, growth rate (%) 3.9 35.0 -20.5 -5.6 2.5 13.4 30.8

TFPR, log (%) -31.8 40.3 -75.2 -49.9 -30.2 -11.2 11.8

The Table presents descriptive statistics for the firm’s innovative output (θf , defined in equation (10)) which

weigh patents using their stock-market reaction (SM, see equation (8)) and citations (CW, see equation (9)).

In addition, we report the growth rate in firm gross profits (COMPUSTAT: sale minus COMPUSTAT:

cogs, deflated by the CPI); firm output (COMPUSTAT: sale plus change in inventories COMPUSTAT: invt,

deflated by the CPI); firm capital stock (COMPUTAT: ppegt, deflated by the NIPA price of equipment);

firm employment (COMPUSTAT: emp); and firm TFPR, constructed using the methodology of Olley and

Pakes (1996) applied on Compustat data using the procedure in Imrohoroglu and Tuzel (2013). All variables

are winsorized at the 1% level using annual breakpoints.
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Table 4: Innovation and Firm Growth

a. Profits

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.018 0.029 0.036 0.042 0.046 -0.016 -0.030 -0.032 -0.035 -0.038

[3.54] [4.43] [3.69] [3.76] [3.55] [-3.00] [-5.09] [-7.28] [-6.01] [-5.85]

b. Output

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.009 0.015 0.021 0.026 0.032 -0.015 -0.032 -0.041 -0.046 -0.051

[3.10] [3.39] [3.15] [2.91] [3.39] [-3.58] [-7.47] [-8.97] [-8.23] [-7.81]

c. Capital

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.010 0.020 0.028 0.033 0.038 0.000 -0.009 -0.019 -0.028 -0.038

[8.24] [6.89] [6.07] [4.66] [4.33] [-0.07] [-1.63] [-2.53] [-3.37] [-4.45]

d. Labor

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.007 0.013 0.019 0.023 0.025 -0.008 -0.019 -0.024 -0.026 -0.027

[5.28] [4.51] [4.24] [3.86] [3.38] [-2.00] [-4.81] [-5.32] [-4.96] [-4.56]

e. TFPR

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.013 0.017 0.019 0.023 0.024 -0.002 -0.006 -0.010 -0.015 -0.017

[2.34] [2.29] [2.78] [3.50] [4.31] [-1.23] [-2.64] [-3.55] [-4.77] [-4.35]

Table reports point estimates of equation (12) for firm profits, output, capital, employment and TFPR. See
notes to Table 3 for variable definitions. We relate firm growth and productivity to innovation by the firm
(θSMf , defined in equation (10); see also (8)) and the innovation by the firm’s competitors (θSMI\f , the average

innovation of other firms in the same SIC3 industry, see equation (11)). Controls include one lag of the
dependent variable, log values of firm capital, employment, and the firm’s idiosyncratic volatility, and industry
(I) and time (T) fixed effects. All variables are winsorized at the 1% level using annual breakpoints. Standard
errors are clustered by firm and year. All right-hand side variables are scaled to unit standard deviation.
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Table 5: Innovation and Firm Growth (using citation-weighted patents)

a. Profits

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.006 0.011 0.016 0.020 0.025 -0.003 -0.003 -0.002 0.001 0.001

[5.00] [5.97] [5.58] [5.59] [5.81] [-1.82] [-1.30] [-1.18] [-0.38] [-0.36]

b. Output

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.002 0.005 0.011 0.015 0.019 0.001 0.002 0.002 0.002 0.002

[1.36] [2.00] [3.58] [3.88] [4.42] [0.16] [0.36] [0.17] [0.14] [0.15]

c. Capital

Firm Competitors

1 2 3 4 5 1 2 3 4 5

-0.003 0.000 0.004 0.010 0.015 0.002 0.003 0.003 0.003 0.004

[-2.46] [-0.06] [1.63] [3.04] [3.51] [1.63] [1.18] [0.89] [0.63] [0.79]

d. Labor

Firm Competitors

1 2 3 4 5 1 2 3 4 5

-0.001 0.002 0.007 0.012 0.015 0.005 0.007 0.009 0.011 0.013

[-0.92] [0.92] [2.74] [3.73] [3.82] [2.82] [2.58] [2.79] [2.56] [2.54]

e. TFPR

Firm Competitors

1 2 3 4 5 1 2 3 4 5

0.005 0.008 0.008 0.009 0.010 -0.001 -0.001 0.001 0.002 0.003

[3.66] [4.22] [4.08] [3.97] [4.00] [-0.83] [-0.39] [0.22] [0.76] [0.98]

Table reports point estimates of equation (12) for firm profits, output, capital, employment and TFPR.
See notes to Table 3 for variable definitions. We relate firm growth and productivity to innovation by the
firm (weighted using citations, θCWf , defined in equation (10); see also (9)) and the innovation by the firm’s

competitors (θCWI\f , the average innovation of other firms in the same SIC3 industry, see equation (11)).
Controls include one lag of the dependent variable, log values of firm capital, employment, and the firm’s
idiosyncratic volatility, and industry (I) and time (T) fixed effects. All variables are winsorized at the 1%
level using annual breakpoints. Standard errors are clustered by firm and year. All right-hand side variables
are scaled to unit standard deviation.
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Table 6: Innovation and Firm Growth (both measures)

a. Profits

Firm Competitors

1 2 3 4 5 1 2 3 4 5

SM 0.017 0.027 0.033 0.038 0.041 -0.015 -0.029 -0.031 -0.034 -0.036

[3.29] [4.11] [3.41] [3.53] [3.36] [-2.98] [-5.04] [-7.05] [-5.74] [-5.54]

CW 0.002 0.006 0.010 0.014 0.019 -0.002 -0.001 0.000 0.003 0.003

[1.02] [1.97] [2.25] [2.73] [3.27] [-0.92] [-0.29] [-0.10] [0.57] [0.45]

b. Output

Firm Competitors

1 2 3 4 5 1 2 3 4 5

SM 0.009 0.015 0.019 0.023 0.028 -0.015 -0.032 -0.041 -0.045 -0.051

[2.94] [3.14] [2.91] [2.71] [3.20] [-3.70] [-7.73] [-8.87] [-8.00] [-7.53]

CW -0.001 0.000 0.005 0.008 0.012 0.002 0.004 0.004 0.004 0.005

[-0.52] [-0.09] [1.45] [1.92] [2.45] [0.79] [1.19] [1.08] [0.99] [0.94]

c. Capital

Firm Competitors

1 2 3 4 5 1 2 3 4 5

SM 0.013 0.023 0.029 0.033 0.038 -0.001 -0.010 -0.019 -0.028 -0.038

[9.07] [6.61] [5.91] [4.58] [4.27] [-0.22] [-1.75] [-2.61] [-3.40] [-4.44]

CW -0.007 -0.008 -0.005 0.000 0.003 0.003 0.005 0.006 0.006 0.008

[-4.84] [-3.56] [-1.90] [-0.02] [0.68] [2.47] [2.17] [1.87] [1.54] [1.67]

d. Labor

Firm Competitors

1 2 3 4 5 1 2 3 4 5

SM 0.008 0.014 0.018 0.022 0.023 -0.009 -0.020 -0.024 -0.026 -0.027

[6.42] [4.40] [4.05] [3.69] [3.24] [-0.22] [-1.75] [-2.61] [-3.40] [-4.44]

CW -0.004 -0.003 0.001 0.005 0.008 0.006 0.009 0.012 0.014 0.016

[-2.68] [-1.26] [0.48] [1.39] [1.76] [3.35] [3.32] [3.51] [3.18] [3.06]

e. TFPR

Firm Competitors

1 2 3 4 5 1 2 3 4 5

SM 0.013 0.016 0.019 0.022 0.023 -0.002 -0.006 -0.010 -0.015 -0.017

[2.21] [2.16] [2.66] [3.35] [4.14] [-1.17] [-2.51] [-3.50] [-4.69] [-4.31]

CW 0.001 0.003 0.002 0.002 0.002 0.000 0.001 0.003 0.004 0.005

[0.98] [1.87] [1.17] [0.99] [0.94] [0.37] [0.49] [1.08] [1.79] [1.98]

Table relates firm growth and productivity to innovative output – equation (12) in the paper – using both
the stock-market (SM) and the citation-weighted measure (CW). See notes to Tables 3, 4, and 5 for variable
definitions and more details on the specification. All right-hand side variables are scaled to unit standard
deviation. 39



Figure 1: Share turnover during patent issuance weeks
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Figure plots the share turnover around patent issuance days. Share turnover h is the ratio of daily volume
(CRSP: vol) to shares outstanding (CRSP: shrout). The median daily share turnover is 1.29%. We report the
coefficient estimates bl, l = −1 . . . 3, (and 90% confidence intervals) from the following specification:

hfd = a0 +
∑
l

bl Ifd+l + cZfd + εfd,

where the indicator variable I takes the value one if firm f is issued a patent on day d; the vector of controls
Zfd includes firm-year and calendar day fixed effects. Standard errors are clustered by year.
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Figure 2: Forward citations and patent market value
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Figure plots the cross-sectional relation between forward patent citations and the estimated market value of
patents. We group the patent data into 100 quantiles based on their cohort adjusted citations (1 + C/C̄).
The horizontal axis plots the log of average cohort adjusted patent citations in each quantile. The vertical
axis plots the logarithm of the average patent value in each quantile (scaled by the average value of patents
granted in the same year). Patent values are constructed according to equation (3) in the main text.
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Figure 3: Relation between stock market reaction and number of citations across placebo experiments

A. Coefficient (%) B. t-statistic
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Figure plots distribution of estimated coefficients b̂ (panel A) and t-statistics (panel B), from estimating
equation (7) – corresponding to the specification of column (5) in Table 2 – across 500 placebo experiments.
In each placebo experiment, we randomly generate a different issue date for each patent within the same year
the patent is granted to the firm. We then reconstruct our measure using these placebo grant dates. The
solid line on the right corresponds to the estimated coefficient (and t statistic) using the real data – column
(5) in Table 2.
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Figure 5: Innovation and Aggregate Growth
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Figure shows the estimated response of output per capita and productivity to innovation using equation (19)
in the main text. Dotted lines represent 90% confidence intervals using Newey-West standard errors with
maximum lag length equal to two plus the horizon. Productivity is utilization-adjusted TFP from Basu et al.
(2006). Output is gross domestic product (NIPA Table 1.1.5) divided by the consumption price index (St
Louis Fed, CPIAUCNS). Output per capita is computed using population from the U.S. Census Bureau.
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