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Economists since Schumpeter have argued that technological innovation, combined with resource
reallocation, is the engine that sustains long-term economic growth. However, the impact of technical
change on economic growth and business cycle fluctuations remains difficult to quantify. Similarly,
while technology shocks play a central role in macroeconomic real business cycle models, there
is little consensus on whether these shocks represent actual technological improvements, or are
reduced-form representations of other economic forces.! The primary reason for these ambiguities is
the difficulty in measuring technological innovation in the data. This paper aims to fill this gap.

We construct a novel economic measure of innovation that combines information from patent
dataset with stock market data over the period 1926 to 2010.2 Measuring technological innovation
through patents offers important advantages. Patents are a direct measure of innovation that
are available as far back as the eighteenth century. However, the use of patents as a measure of
innovation has one important shortcoming: not all patents are of equal economic value. Thus, an
increase in the number of patents granted need not coincide with greater technological innovation.
Our central idea is to use the stock market reaction around the day the patent is granted to
appropriately weigh each patent. On the day that the patent is granted, market participants learn
the full details of the patent. We use this stock market reaction as a measure of patent quality to
construct measures of innovation at the firm, industry and economy level which allows us to evaluate
the reallocation and growth dynamics within and across industries after bursts of innovative activity.

Our approach to measuring the quality of patents offers distinct advantages over the existing
measures of patent quality. Patent citations contain useful information that can be used to assess the
quality of patents.®> However, patent citations suffer from two major drawbacks. First, measuring
future citations each patent generates requires information over the entire sample. In many economic
applications — such as when exploring the short and medium run response of investment or hiring
decisions to innovation — it may be more desirable to use a measure that depends on the contemporary
assessment of the value of a patent, as is the case with our measure. Second, the patent citation
data is reliably available only in the later part of our sample.? This lack of information creates

problems in assessing the quality of earlier patents, since patents often tend to cite only the most

!See, for instance, Cochrane (1994).

2Several new studies exploit the same source of patent data (Google Patents) as we do in our paper. For instance,
see Moser and Voena (2011), Moser, Voena, and Waldinger (2012) and Lampe and Moser (2011).

3See, for example, Harhoff, Narin, Scherer, and Vopel (1999), Hall, Jaffe, and Trajtenberg (2005) and Moser,
Ohmstedt, and Rhode (2011).

“Moser and Nicholas (2004) and Nicholas (2008) discuss the difficulty in reliably extracting citations data from
patent documents before 1975. Also note that 1947 is the first year citations were officially included on patent
documents.



recent ones.” In contrast, our measure is reliably available over a long time period allowing us
to make meaningful comparisons. Despite these two drawbacks, patent citations do provide an
independent measure of the ez-post value of a patent. Thus, we use patent citations as a validation
of our procedure. We find that the firm’s stock market reaction when the patent is granted is a
strong predictor of the number of citations the patent receives in the future.

Our measure of technological innovation captures known periods of high technological progress as
well as firms driving these waves (e.g., technologically progressive 1960s and early 1970s, see Laitner
and Stolyarov (2003)). In addition, the empirical distribution of firm-level innovation measure is
extremely fat-tailed, since a few large firms contribute disproportionately to the aggregate rate of
innovation in the economy. The identity of these firms varies by decade. This finding is consistent
with past research which describes the nature of radical innovations (Harhoff, Scherer, and Vopel
(1997)). Furthermore, we find that characteristics of innovating firms using our measure match
those of innovators as described by Baumol (2002), Griliches (1990) and Scherer (1983).

Armed with our measure, we examine the relation between innovation and economic growth.
First, we explore the link between firm productivity and innovation. Our innovation measure is
strongly linked to productivity of capital and labor, both at the firm and at the industry level.
Firms and industries that innovate experience a surge in productivity. The innovation activity of
competing firms has a negative effect on firm productivity, but only in the short run. The long run
response of firm productivity to the innovation activity of other firms in the industry is either zero
or positive.

We find several patterns in the data that are consistent with Schumpeter’s notion of “creative
destruction”. Capital and labor are reallocated towards firms that innovate, away from firms that do
not. We find similar patterns of reallocation across industries. An increase in the innovation activity
of other industries is associated with an increase in the cost of labor, resulting in an outflow of
labor if the industry innovates less. The corresponding patterns for capital are similar, but weaker,
consistent with the view that labor has lower specificity than capital (Ramey and Shapiro, 2001).
In addition, we find that an increase in industry innovation is also associated with an increase in
the rate of firm exit.

Our final step is to relate aggregate growth to innovation. To do so, we estimate the impulse
response of aggregate total factor productivity (TFP) and output to our aggregate innovation

measures. Our innovation measure accounts for a substantial fraction of movements in aggregate

SFor instance, the telephone patent by Alexander Graham Bell (patent number 174,465) has only one citation in
the Google Patent database.



TFP. An increase in innovation is associated with an increase in aggregate output, although with a
lag of three to four years. We find similar patterns in the cross-section. Differences in innovation
are strongly related to differences in subsequent growth both at the industry and firm level. These
findings make a strong case for innovation as a source of long-run firm growth, consistent with the
equilibrium model of Klette and Kortum (2004).

Our paper is connected to several strands of the literature. Our work is closely related to the
literature in macroeconomics that tries to measure technological innovation. Broadly, there are three
three main approaches to identify technology shocks. First, researchers have measured technological
change through Solow residuals, after accounting for non-technological effects such as imperfect
competition and varying utilization (e.g., Basu, Fernald, and Kimball (2006)). Second, researchers
have imposed long-run restrictions on vector auto-regressions (VARs) to identify technology shocks.
Both of these approaches measure technology indirectly. The resulting technology series are highly
model-dependent, as they depend on the identification assumptions.

Our approach falls into the third category, which constructs direct measures of technological
innovation using micro data. Shea (1999) constructs direct measures of technology innovation using
patents and R&D spending and finds a weak relationship between TFP and technology shocks.
Our contrasting results suggest that this weak link is likely the result of assuming that all patents
are of equal value. Indeed, Kortum and Lerner (1998) show that there is wide heterogeneity in
the economic value of patents. Furthermore, fluctuations in the number of patents granted are
often the result of changes in patent regulation, or the quantity of resources available to the US
patent office (see e.g. Griliches (1990) and Hall and Ziedonis (2001)). As a result, a larger number
of patents does not necessarily imply greater technological innovation. Using R&D spending to
measure innovation overcomes some of these issues, but doing so measures innovation indirectly.
The link between inputs and output may vary as the efficiency of the research sector varies over
time or due to other economic forces.® The measure proposed by Alexopoulos (2011) based on
books published in the field of technology overcomes many of these shortcomings. However, this
measure is only available at the aggregate level, and does not directly capture the economic value
of innovation. In contrast, our measure is available at the firm level, which allows us to evaluate
reallocation and growth dynamics across firms and sectors.

Our paper is not the first to link firm patenting activity and stock market value (Pakes, 1985;
Austin, 1993; Hall et al., 2005; Nicholas, 2008). In particular, Pakes (1985) examines the relation

SKortum (1993) documents that the patent-to-R&D ratio has shown a secular decline in the US.



between patents and the stock market rate of return in a sample of 120 firms during 1968-1975. His
estimates imply that, on average, an unexpected arrival of one patent is associated with an increase
in the firm’s market value of $810,000. The ultimate objective of these papers is to measure the
economic value of patents; in contrast, we use the stock market reaction as a means to an end—to
construct appropriate weights for an innovation measure which we employ to study reallocation and
growth dynamics.

Our paper is also related to work that examines whether technological innovation leads to
positive knowledge spillovers or business stealing. Closest to our paper is the work of Bloom,
Schankerman, and Reenen (2010), who disentangle the externalities generated by R&D expenditures
on firms competing in the product and technology space. We contribute to this literature by
proposing a measure of patent quality based on stock market reaction and assessing within- as well
as between-industry reallocation and growth dynamics after bursts of innovative activity.

Our work is also related to literature on endogenous growth and creative destruction (see
Acemoglu (2009) for a textbook treatment). Closest to our work are the papers that explore the
impact of innovation on firm productivity and growth (Caballero and Jaffe, 1993; Akcigit and Kerr,
2010; Acemoglu, Akcigit, Bloom, and William, 2011). Finally, our paper is also related to work that
explores the micro-foundations of aggregate economic shocks. In particular, Gabaix (2011) proposes
that if the distribution of firm size is sufficiently fat-tailed, as is the case in the US and in most
of the world, firm-specific shocks can have substantial effects on aggregate quantities due to the
failure of the law of large numbers. Consistent with this view, the empirical distribution of firm-level
innovation measure is fat-tailed, suggesting that the innovative activity of a few large firms can have
a large aggregate impact. However, we find evidence of comovement of our innovation measures
across firms, suggesting that common shocks play an important role as well.

The remainder of the paper is organized as follows. In Section 2 we explain the process of
constructing our dataset. We describe the constriction of our innovation measure in Section 3.
Section 4 studies the response of individual firms and industries on our innovation measure and
documents patterns of reallocation. Section 5 explores the response of aggregate variables on our
innovation measure. Section 6 discusses the connection of our findings with existing models and

concludes.



2 Data

Our measure of innovation relies on using information on patents that a firm creates and the stock
market response to news about these patents. We now discuss our data pertaining to patents and

stock market reaction. We also elaborate on other data that we employ in our analysis.

2.1 Patent Data

Patents in the United States are granted by the United States Patent and Trademark Office
(USPTO). We download the entire history of U.S. patent documents from Google Patents.” Each of
about 7.8 million patent files was downloaded using an automation script.®

To construct our measure of innovation, we match all patents in the Google data to corporations
whose returns are in the CRSP database. Patent regulations require that only an individual, not a
corporation, can be an inventor. However, the inventor can assign the granted property rights to a
corporation or another person. Therefore, when patents are granted they always have an inventor,
and sometimes an “assignee” (one or more corporations or people).

For most patents, Google provides a text version of the patent document, which they created
using OCR, software. We use this text version of the document to extract the names of corporations
to which patents are assigned. However, OCR technology is imperfect, and many of the downloaded
documents include a great deal of garbled text. We therefore make use of a number of text analysis
algorithms to extract relevant information from the documents.

Our sample covers patents granted between 1926 and 2010 matched to firms with returns in
CRSP database. Since we merge our patent data with data on stock returns, we are limited to the

period after 1926, when the CRSP database begins.

Matching patents to firms

Here, we briefly discuss the steps our matching procedure followed, but provide extensive detail in
the Online Appendix. We search the document for the words “assignee” or “assigned” and extract
the text that immediately follows. This text is either a company name, or the name of an individual

to whom the patent was assigned. We then count the number of times each assignee name appears

"http://www.google.com/patents

8Google also makes available for downloading bulk patent data files from the USPTO. The bulk data does not have
all of the additional “meta” information including classification codes and citation information that Google includes in
the individual patent files. Moreover, the quality of the text generated from Optical Character Recognition (OCR)
procedures implemented by Google is better in the individual files than in the bulk files provided by the USPTO. As
explained below, this is crucial for identifying patent assignees.


http://www.google.com/patents

across all patent documents. We compare each assignee name to more common names, and if a
given name is “close” (in the sense of the Levenshtein distance?) to a much more common name,
we substitute the common name for the uncommon name. For example, one of the most common
names is “General Electric Company”, which is associated with over 43,000 patents. We substitute
this name for the far less common, but quite similar, names “General Electbic Oohpany”, “General
Electbic Cqhpany”, and “Genebal Electbic Compakt”.

At this point, we have an assignee name for each patent. These names must be matched to
a company identifier such as the CRSP permco. This is accomplished in two steps. We begin by
looking only at patents that are also in the NBER database. For each assignee name identified
in the steps above, we count how many different permcos are matched to patents in the NBER
database. For example, all of the patents with an assignee name “General Electric Company” are
matched to one permco in the NBER database. We can therefore safely assume that all of the
patents assigned to the General Electric Company can be matched to that permco, even for patents
not included in the NBER data. Remaining assignee names are matched to CRSP firm names using
a name matching algorithm.!® The algorithm uses a score based on the inverse word frequency
to match assignee names to possible company names. For example, the word “American” is quite
common in company names, and so contributes little to name matching; the word “Bausch” is quite
uncommon, so it is given much more weight. Visual inspection of the matched names confirms very

few mistakes in the matching.

Extracting patent citations

We extract patent citations from three sources. First, all citations for patents granted between 1976
and 2011 are contained in text files available for bulk downloading from Google. These citations
are simple to extract and likely to be free of errors, as they are official USPTO data. Second, for
patents granted before 1976, we extract citations from the OCR text generated from the patent files.
We search the text of each patent for any 6- or 7-digit numbers, which could be patent numbers.
We then check if these potential patent numbers are followed closely by the corresponding grant
date for that patent; if the correct date appears, then we can be certain that we have identified
a patent citation. Since we require the date to appear near any potential patent number, it is

unlikely that we would incorrectly record a patent citation — it is far more likely that we would

9The Levenshtein distance is the number of edits required to make one string match another string, where an edit
is inserting, deleting, or substituting one character.
10The algorithm is based on code written by Jim Bessen, available at http://goo.gl/m4AdZ.
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fail to record a citation than record one that isn’t there. Third, we complement our citation data
with the hand-collected reference data of Nicholas (2008). See the online appendix for a detailed

explanation of this process.

Summary statistics

We now provide some statistics that lend credence to our method for extracting patent information.
Table 1 shows how many patents we match to companies. Of the 6.0 million patents granted in or
after 1926, we find the presence of an assignee in 2.8 million. The matching procedure provides us
with a database of 1.8 million matched patents, of which 435,814 (24%) are not included in the
NBER data. Figure 1 graphs the total number of patents matched by the year the patent was
granted. Patents included in the NBER data, which is the most comprehensive database previously
available, are shown in light shading. Patents unique to our database are presented in dark shading.
Note that the two sets of data appear to fit together fairly smoothly, and that even during the
period covered by the NBER data, our database adds an average of 2,187 patents to the NBER
data.!!

Table 2 provides additional summary statistics. Overall, our data provides a matched permco
for 66% of all patents with an assignee, or 31% of all granted patents. By comparison, the NBER
patent project provides a match for 32% of all patents from 1976-2006, so our matching technique
works quite well, even using only data extracted from OCR documents for the period before the
NBER data. Another point of comparison is Nicholas (2008), who uses hand-collected patent data
covering 1910 to 1939. From 1926-1929, he matches 9,707 patents, while our database includes
8,858 patents; from 1930-1939 he has 32,778 patents while our database includes 47,039 matches
during this period.

2.2 Stock Market and Financial Data

The return data used to assess the stock market response to news about patents are from CRSP
over the period 1926-2010. In several of our analyses we use financial and accounting data that
are from Compustat. The sample in these cases is determined by the availability of Compustat
data (available from 1951 onwards). As is standard, we omit financial firms and utilities from our

analysis. See appendix A for variable definitions.

1We use information on the patent-assignee match in the NBER data to assist with our matching, so the match
during the overlapping period is generally the same, by construction. An exception is for cases where there is apparently
a mistake in the NBER match and our patent-assignee frequency-based matching system corrects an error.



3 Measuring innovation

In this section we explain how we construct our firm, industry and aggregate level measures of
innovation. Our innovation in this paper is to identify the value of a patent from the stock price
reaction around the days that the market learns that a firm has applied for a specific patent, or
that a patent has been granted to the firm.

In order to examine stock market reactions, we need to define what constitutes an information
event. Prior to 2000, patent application filings were not publicized (see e.g. Austin (1993)). In
contrast, information does become widely available when patents are granted. The USPTQO’s
publication, Official Gazette, which is published every Tuesday, lists patents that are granted that
day and reports details of the patent. Subsequent to the American Inventors Protection Act of 1999,
the USPTO also began publishing applications 18 months after filing even if the patents had not yet
been granted. Publication of these applications occurs on Thursday of each week. When application
publication dates are available, we combine the stock market reaction around both information
events to construct our innovation measure.

When constructing our innovation measure, we only use information on patents by publicly-
traded firms. Hence, one worry is that we do not include private companies, several of which might
be responsible for large and more important productivity shocks.'? This omission is likely to bias
our findings toward zero. The magnitude of any bias, however, is likely to be small. First, Bloom
et al. (2010) show that public firms in Compustat account for most of the R&D expenditures in the
United States. Second, Baumol (2002) notes that while several independent and private firms might
provide initial innovation, large publicly traded firms conduct most of the refinements that lead to
large improvements in welfare.

We should stress that while our method identifies the value of a patent, relying on stock market
reaction suffers from two limitations. First, market participants may have advance knowledge of
the patent, either through information leakages, or because the firm has chosen to make its patent
application public. If so, the stock market reaction on the patent grant day or publication date
would underestimate the economic value of the patent. Second, our method only allows us to
measure the private value of the patent. In contrast, the social value of a patent can be higher, or
lower, depending on whether the patent generates research spillovers or steals business from existing

firms. Notably, the challenge of accurately measuring the private and social value of an innovation

2Kortum and Lerner (2000) find that venture capital, which accounts for 3% of total R%D expenditures, is
responsible of 15% of industrial innovations.



is not unique to our paper, but confronts other measures, such as R&D or patent citation counts, as

well.

3.1 Extracting patent value from stock price reaction

We extract information about the value of each patent from stock price reactions using two methods:
a simple measure that ignores measurement error, and a more sophisticated measure that incorporates

the error into the estimation procedure.

A simple measure

To isolate market movements we focus on the firm’s idiosyncratic return, 7, defined as the firm’s
return minus the return on the market portfolio. By using this ‘market-adjusted-return model’
(Campbell, Lo, and MacKinlay, 1997), we avoid the need to estimate the firm’s stock market beta,
therefore removing one source of measurement error. As a robustness check, we construct the
idiosyncratic return as the firm’s stock return minus the return on the beta-matched portfolio
(CRSP: bxret). This has the advantage that it relaxes the assumption that all firms have the same
amount of systematic risk, but is only available for a smaller sample of firms. Unless noted otherwise,
our results are quantitatively similar when using this alternative definition.

Given our measure of idiosyncratic firm return, we construct the idiosyncratic stock price
reaction as the firm’s idiosyncratic return during the announcement window, ré 4> times the market

capitalization of the firm, S;4_1, on the previous day:

!
Ay =rbySia,  ha =) rjadre (1)
t=0

The next step is to choose the length of the announcement window, [. As we show below, trading
volume is higher on the two days following a patent being granted, suggesting that the stock price
movements in days after the announcement are also informative. The downside is that increasing
the announcement window can potentially add noise to our estimates. In the baseline case, we
choose a three-day window (I = 2). As a robustness test, we extend the window to five days (I = 4).
The private value of a patent is generally nonnegative because a firm can always choose not to
implement it. Therefore, when we construct our innovation measure, we restrict attention only to

positive stock price responses:

A;r = max[A;,0]. (2)



Our first measure of innovation A;r is easy to construct, since it involves no estimation of
parameters. The downside, however, is that it ignores the possibility of measurement errors. In
particular, by truncating returns at zero we are introducing an upward bias in our estimate of the
dollar value of innovation. The magnitude of this bias is increasing in the volatility of the firm’s
idiosyncratic return. To ensure that the variation in our measure Aj+ does not result from variation

in the firm volatility, we control for idiosyncratic volatility o¢; throughout.

Adjusting for measurement error

We construct an alternative measure of innovation to explicitly account for measurement error
introduced while constructing the simple measure.'® In other words, we account for that fact that
the stock price of innovating firms may fluctuate for reasons unrelated to innovation during the
announcement window. The idiosyncratic stock return during the announcement day window can
be decomposed as:

Téd =x; + €jdl, (3)

where x denotes the value of the patent (as percentage of market value) and eg; the component of
firm stock return that is unrelated to the patent. Under the assumption that e;q ~ N(0,§;) and =
is distributed according to a Gaussian N (0, v;) truncated at zero, we can construct the conditional
expectation of the value of the patent as a function of the firm’s stock return:
l l P(R;)
E[xjyrjd]:5jrjd+\/5j§j17(b(R')a (4)

J
where ¢ and ® are the standard normal pdf and cdf, respectively, and
l

T Vs
Ri=—\6 %L 5 =—30_ 5
7 J\/g J Uj+§j ( )

In order to operationalize our procedure, we need estimates of v; and &;, preferably at the firm

level. To reduce the number of parameters, we assume that J; = 0, that is, the signal-to-noise
ratio is constant across firms and time. To estimate §, we regress log squared returns on a patent

announcement-day dummy variable, I¢4,

2
In ("’i”d) =ao+ap +bg+vlrqg+ugg, (6)

13We are grateful to John Cochrane for this suggestion.
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controlling for firm-year (as¢) and day-of-the-week (bq) fixed effects. The signal-to-noise estimate is

then: L 0
var\r = N
Cvartrpglla=0) )

o=1
fuar(r;dlffd =1)

We estimate (6) using a three-day (I = 2) and a five-day (I = 4) return announcement window. We
obtain estimates 4 ~ 0.031 in both cases, so we use this as our benchmark value.

Next, we estimate the measurement error §;. There is strong evidence that firm-volatility varies
both in the time-series and the cross-section, hence it is important to allow §; to vary both across
firms and time. For every firm f and year ¢ we estimate its idiosyncratic variance, a?t, from daily
returns. This variance is estimated over both announcement and non-announcement days, so it is a
mongrel of both v and ¢. Given the estimate of the daily variance o2, the fraction of trading days

~

that are announcement days, u, and our estimate for the signal-to-noise ratio, J, we recover the

N
measurement error by ¢ = szct (1+1) (1 +pp(14+1) 1%) .

We then construct our second innovation measure as:

Aj = Elxjlrl] x Sja-1. (8)

Our second innovation measure (8) explicitly accounts for the fact that a firm’s idiosyncratic return
may contain information unrelated to the value of a patent. The conditional value of a patent in
equation (4) is an increasing and convex function of the daily firm return, and thus has a similar
shape as our simple innovation measure (2), up to a scale parameter that depends the the signal to

noise ratio.

3.2 Information in stock-price responses

We now provide evidence that the stock market reaction contains valuable information about the
value of a patent. First, we document that trading volume increases around the days that patents
are granted (or their applications are published).'* Second, we document that the stock market
reaction of a patent is correlated with an independent measure of its ezx-post value-the number of

future citations the patent receives.

1 Though prices can adjust to new information absent any trading, the fact that stock turnover increases following
a patent grant or publication is consistent with the view that some information is released to the market, and not all
agents share the same beliefs.

11



Trading volume

We regress a firm’s turnover z (trading volume divided by shares outstanding) on an announcement
day dummy variable I¢4,

xfdJrk:a0+aft+bd+b(k)ffd+ufd, (9)

controlling for firm-year (s, and day of the week by fixed effects. We vary k from —1 to 5.

Table 3 shows the results of estimating equation (9). We find that there is a statistically
significant increase in share turnover around the day that the firm is granted a patent (Panel A)
or its application is publicized (Panel B). Volume increases on the day of the announcement, and
remains temporarily higher for the next couple of days. We find that the total turnover in the first
three days after the announcement increases by 0.21-0.40%. Given that the daily median turnover
rate is 1.29%, this is an economically significant increase in trading volume, consistent with the

view that patent issuance conveys important information to the market.

Patent citations

The next step is to explore whether the stock price reaction around the day of the announcement

carries information about the likelihood of the patent receiving citations in the future. We look at

patent citations because they represent an independent measure of the ex post value of a patent.
We examine whether the firm’s stock price reaction when granted patent j is correlated with

the number of future citations, C, the patent subsequently receives:
Cj:a—l—bAj+’yy+'ylogaj+ej. (10)

We include grant-year (or publication-year) fixed effects () in the regression because older patents
have had more time to accumulate citations. We include the firm’s idiosyncratic volatility o to
control for the truncation-induced bias in our simple measure measure AT. We consider both
three-day (I = 2) and five-day (I = 4) announcement day windows. We cluster the standard errors
by year.

We show the estimation results in Table 5. Our truncated measure A" is informative about the
number of future citations. As we see in Panel A, the coeflicient of patent citations on our innovation
measure is statistically significant across patent length windows. The economic magnitudes are
moderately significant. The median number of citations a patent receives is 5. An increase from

the median to the 90th percentile in terms of stock price reaction around the day the patent is

12



granted (its application is publicized) is associated with 0.3 (0.2) more citations. The magnitudes
are substantially larger when we use our measure adjusted for measurement error, as we see in
Panel B. An increase from the median to the 90th percentile in terms of our innovation measure A
is associated with 1.6-1.8 (0.4-0.5) more citations, measured around the patent grant (publication)
day.'?

Next, we repeat the exercise, replacing A; with its logarithm, In A;. This serves two purposes.
First, it ameliorates the effects of outliers. Second, for our truncated measure A", it explores
whether the positive effect on citations comes from the transition from zero to positive, or does it
also exist if we focus on the positive responses alone. As we see in Panels C and D, the semilog
specification yields estimates that are economically more significant. An increase in A* and A from
the median to the 90th percentile is associated with 1.8-2.1 (0.7) more patent citations, using data
on patent grant (publication) day.

In addition, we perform a number of robustness tests, the results of which are available in the
Online Appendix. First, our findings are quantitatively similar if we estimate equation (10) with a
Poisson or negative binomial regression. Second, the results using our second idiosyncratic return
measure (the firm’s return minus the beta-matched portfolio) are similar, though one-third smaller
in magnitude. Third, we explore what happens if we do not truncate the idiosyncratic dollar return
A;. We find that the simple non-truncated dollar return A; is essentially uncorrelated with future
citations.

The results of this section suggest that the stock price reaction within a few days after the patent
is granted contains important information about the value of the patent. We use this information
to weigh the number of patents when we construct measures of innovation at the firm, industry
or aggregate level. Since the point estimates are a bit higher when we use a three-day versus a
five-day window, we focus on the former throughout the paper. Finally, the stock price reaction
around both the grant as well as the publication date appear to be informative. Thus, in what
follows, we measure the value of each patent as the sum of the values obtained using the grant-day

and publication-day windows.

3.3 Some illustrative case-studies

Before turning to our main results, we provide some illustrative case studies to highlight the success

of our method in identifying valuable patents. For these examples we performed an extensive search

'5Note that small changes in citations generated by a patent (around the median number) can be associated with
large value implications for the firm producing the patent (Hall et al. (2005)).
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of online and print news sources to confirm that no other news events could account for the return
around the patent dates.

The first example is patent 4,946,778, titled “Single Polypeptide Chain Binding Molecules”,
which was granted to Genex Corporation on August 7, 1990. As shown in panel A of Figure 2,
the stock price increased 67% (in excess of market returns) in the three days following the patent
announcement. Investors clearly believed the patent was valuable, and news of the patent was
reported in the media. For example, on August 8 Business Wire quoted the biotechnology head of
a Washington-based patent law firm as saying “The claims issued to Genex will dominate the whole
industry. Companies wishing to make, use or sell genetically engineered SCA proteins will have to
negotiate with Genex for the rights to do so.”

The patent has subsequently proved to be important on other dimensions as well. The research
that developed the patent, Bird, Hardman, Jacobson, Johnson, Kaufman, Lee, Lee, Pope, Riordan,
and Whitlow (1988), was published in Science and has since been cited over 1300 times,'6 while the
patent itself has been cited by 775 patents. Genex was acquired in 1991 by another biotechnology
firm, Enzon. News reports at the time indicate that the acquisition was made in particular to give
Enzon access to Genex’s protein technology.

Another example from the biotechnology industry is patent 5,585,089, which was granted to
Protein Design Labs on December 17, 1996. The stock rose 22% in the next two days on especially
high trading volume (Panel B of Figure 2). On December 20, the New York Times reported that
the patent “could affect as much as a fourth of all biotechnology drugs currently in clinical trials.”

Finally, consider the case of patent 6,317,722 granted to Amazon.com on November 13, 2001
for the “use of electronic shopping carts to generate personal recommendations”. When Amazon
filed this patent in September 1998, online commerce was in its infancy. Amazon alone has grown
from a market capitalization of approximately $6 billion to over $100 billion today. The importance
of a patent that staked out a claim on a key part of encouraging consumers to buy more — the
now-pervasive “customers also bought suggestions” — was not missed by investors: The stock rose
34% in the two days after the announcement, adding $900 million in market capitalization (see
panel C of Figure 2).

Other patents associated with large returns include an ink jet technology granted to Canon in

1982 (panel D of Figure 2), and a digital storage device granted to Sperry Rand in 1959. These

16Google Scholar citation count.
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examples, and a number of others we carefully investigated indicate that our method of identifying

important patents by looking at stock returns appears to work well.

3.4 Construction of innovation measures

We now explain how we use the stock price reaction of innovating firms to construct measures of
innovation at the firm, industry and aggregate level. In addition, we discuss various properties of
our measures, which together, strongly reaffirm that these measures are reasonable indicators of

innovative activity.

Firm-level measures of innovation

In most of our analysis, the unit of observation is a year because of the availability of macroeconomic
data. Hence, we need to construct measures of innovation at annual frequencies. We do so by
summing over the stock price reaction across all patents granted, or its application published, to
firm f in year t,
=D A Y A AjelAf A, (11)
jerZt jle,’t
where ch’t and ijt denote the sets of patents granted and published applications, respectively, to
firm f in year t.
In our firm-level analysis, we scale the dollar value of innovation by the end of year market
capitalization, S, in year t:

Ap =L (12)

Hence, our firm-level innovation measures can be interpreted as the fraction of firm f’s value that
can be attributed to innovation in year ¢. (Replacing market values in the denominator by lagged
market values gives very similar results.)

Table 4 presents some descriptive statistics for our measure. As we see, the distribution of our
firm-level measure is rightly skewed, as roughly two-third of the firms do not innovate. Furthermore,
the distribution of our firm-level measures of innovation AJT and A ¢ has fat tails. In Figure 3 we
plot the log complementary empirical cdf, log(1 — F'(A)), versus the log innovation measure, log A,
for the top 10 percent of the distribution. The relation is close to linear, with a slope coefficient
of approximately —1.9. Hence, the tail behavior of A can be well approximated by a power law.

A simple estimator of a power law exponent (see e.g. Newman (2005)) yields a point estimate of
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—2.75.17 Our findings are consistent with Harhoff et al. (1997), who show that the distribution of
patent citations has fat tails.

In addition to some patents being very valuable, our results indicate that a few large firms are
very important for the aggregate rate of innovation in the economy. The identity of these firms
varies by decade. In the 1930s and 1940s, AT&T and GM are responsible for a large share of
innovative activity. In the 1950s and 1960s, du Pont and Kodak take a leading role. In 1970s and
1980s, a large share of innovation takes place in Exxon, GE, 3M and IBM. Finally, in the 1990s and
2000s, “new economy” firms are responsible for a large share of innovation, namely Sun, Oracle,
Microsoft, Intel, Cisco, Dell, and Apple.

Next, we explore how our firm-level measures of innovation are related to firm characteristics, in

particular Tobin’s @, firm size, K, and R&D spending (normalized by assets):
App=ag +ajlogQi—1 +azlog K1 +azlog RDy_1 + p Apr—1 + us. (13)

We estimate equation 13 using the entire sample of Compustat firms from 1950 to 2010 using a Tobit
model.'® We include industry dummies to account for industry-level time invariant characteristics;
and time dummies to account for changing state of the business cycle as well as changes in patent
law or changes in the efficiency and resources of the USPTO (see e.g. Griliches (1989)) during our
sample period. We cluster the errors by firm.

We show the results in Table 6. We find that firms that are large, have higher Tobin’s (), and have
higher R&D expenditures are more likely to innovate. These findings are similar to those discussed
in Baumol (2002), Griliches (1990), Scherer (1965) and Scherer (1983) on the characteristics of firms

that have conducted radical innovation and have been responsible for technical change in the U.S.

Aggregate measures of innovation

We construct industry-level and economy-wide measures of innovation by aggregating our firm-level
measures across firms. In particular, we construct dollar measures of innovation, by summing up

the firm-level measures across the set IV; of firms in the economy or at the industry:

A:f] = Z Azj‘t? A?t € [A}_tvaleqft]' (14)
fEN:

1" This estimator assumes that A is i.i.d. across firms and across time. After removing firm and time dummies, the
point estimate of the power law exponent is equal to —3.70 and —3.55 for A" and A respectively.

18Note that information on R&D expenditure is reliably reported in Compustat only from 1975 onwards. As a
result our sample period for regressions that use R&D stock is restricted to 1975-2010.
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Our dollar measure A¥ will be mechanically affected by economic forces that affect the level of stock
prices but are likely to be unrelated to innovation, such as changes in discount rates. Hence, as
before, we scale our dollar measure A” by the total market capitalization

_ A

A, =t
t St7

(15)

where Sy = > FEN, S¢i. Thus, our aggregate measure, Ay, is a value-weighted average of our firm-level
innovation measure, Ay;.

We compare our two measures of aggregate innovation with three aggregate measures proposed
in the literature: the log number of total patents granted; the log stock of R&D capital from the
BEA; and the log number of technology books published from Alexopoulos (2011). Some of these
measures show a secular time trend, so we remove a deterministic time-trend from all measures.

We plot these series in Figure 4. Our measures of innovative activity line up well with the
three major waves of technological innovation in the U.S. First, our measures suggest high values
of technological innovation in the 1930s.'® When we dissect our measures we find that firms that
primarily contribute to technological developments during the thirties are in the automobiles (such
as General Motors) and telecommunication (such as AT&T) sectors. This description fits well with
studies that have examined what sectors and firms led to technological developments and progress
in the 1930s (see Smiley (1994)).

Second, our measures suggest higher innovative activity during 1960s and early 1970s — again a
period commonly recognized as a period of high innovation in the U.S (see Laitner and Stolyarov
(2003)). As has been noted, this was a period that saw development in chemicals, oil and comput-
ing/electronics — the same sectors we find to be contributing the most to our measure with major
innovators being firms such as IBM, GE, 3M, Exxon, Eastman Kodak, du Pont and Xerox.

Third, developments in computing and telecommunication has brought about the latest wave of
technological progress in the 1990s and 2000s, which coincides with the high values of our measure.
In particular, it is argued that this is a period when innovations in telecommunications and computer
networking spawned a vast computer hardware and software industry and revolutionized the way
many industries operate. We find that firms that are main contributors to our measure belong to
these sectors with firms such as Sun Microsystems, Oracle, EMC, Dell, Intel, IBM, AT&T, Cisco,
Microsoft and Apple being the leaders of the pack. We next turn to providing firm level evidence

that lends additional support to validity of our measures.

19Field (2003) refers to this period as the “most technologically progressive decade of the century.”
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Comparing our aggregate innovation series, we also note four important points. First, our two
aggregate innovation series are very similar to each other, suggesting that the truncation bias in AT
is diversified across firms. Second, our measure displays different behavior than the total number
of patents, especially in the beginning and in the end of the sample. The correlation between
log AT (A) and the log number of patents is equal to 0.36 (0.42) in levels and 0.16 (0.11) in first
differences. Third, our two innovation measures capture similar low-frequency movements to R&D
spending and the number of technology books published in the Library of Congress, in particular
the rise in innovative activity during the 1960s and early 1970s. Finally, our innovation measures
displays substantial high-frequency variability relative to either the stock of R&D or the number of
technology books. Some of this variability comes from variation in the number of patents granted,
but a significant part comes from changes in the average response of the stock market on these
patent grant dates. In contrast, the stock of R&D capital and the number of technology books
display mostly low-frequency variation.

We end this section by discussing the drivers of time-series variation in our economy-wide
innovation measure. One possibility, in the spirit of the ‘granularity’ hypothesis of Gabaix (2011), is
that the observed time-series variation in aggregate innovation is the result of disproportionately
large idiosyncratic shocks that fail to be diversified away. This view is consistent with our findings
above that the right tail of our firm-level innovation measure follows a power law. The alternative
hypothesis is that there is an underlying macroeconomic shock that affects the firm-level propensity
to innovate and the distribution of patent outcomes.

To shed some light on this, we decompose the aggregate measure of innovation AY into AY!, the
dollar value of innovation that is contributed by the top 1% of firms; and AY%?, the value that is
contributed by the remaining firms. Indeed, our aggregate innovation measure is dominated by a
few large firms. Focusing on the sample of firms with positive innovation Ajit, the top 1% of firms
in terms of innovation account for an average of 32% of the total dollar value of innovation A}. If
aggregate innovation is determined by large idiosyncratic shocks, we would expect innovations in
A¥! to be uncorrelated with AY?. Instead, we find that the sample correlation between Aln A1
and A ln A" ranges from 75% to 78%, depending on our measure. Thus, the data suggests that a
systematic shock affecting all firms is responsible for a large portion of the time-series variation in

A",
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4 Innovation, productivity and reallocation

Given an economy’s stock of productive inputs, to maximize the economy’s overall level of production,
resources need to be allocated to the most productive firms and industries.2® Here, we explore this
mechanism in more detail on two broad fronts. First, we document the link between innovation and
productivity. Second, we show that, consistent with economic optimization, productive resources
flow into the innovating firm away from firms that do not innovate. In both of these cases we

perform our analysis within as well as across industries.

4.1 Firm-level evidence

We begin by exploring the productivity and reallocation dynamics subsequent to innovative activity
within an industry. In particular, we examine the response of productivity, Tobin’s () and factor
demand to a firm’s own innovation activity, Ay, and also to the innovation output of its competitors.
We construct our measure of innovation of a firm’s competitors, A7y as the average innovative

activity of all firms in the same industry excluding firm f, weighted by market capitalization S:

A=) Zt/ > S (16)

h£fENT, h#fEN,

We define industries using 3-digit SIC codes.?! We explore the effect of innovation of a firm and its

competitors on various firm outcome variables, x, by estimating the regression
Tppr=ao+a1 Ay +as Arpe +0Zp + v +cr + pTpe + Upig (17)

We include lags of the dependent variable, industry ¢; and year v dummies, and a vector of controls
Z. We control for firm idiosyncratic volatility, o s, when using our truncated measure A" because
the magnitude of the truncation bias increases with volatility. We control for firm size, measured as
either physical capital or number of employees, because large firms innovate more. In addition, one
source of concern is that unobservable variables at the firm or industry level jointly drive innovation
outcomes and the outcome variable . Thus, depending on the specification, we control for firm
productivity, profitability, Tobin’s ), and firm and industry stock returns. We present results with

and without these controls, and cluster the standard errors by firm.

20There exists a large literature on the importance of resource allocation for economic growth (see, e.g. Restuccia
and Rogerson (2008); Hsieh and Klenow (2009); Jones (2011); Acemoglu et al. (2011)).
21We obtain quantitatively similar results when we define industries according to their 4-digit SIC.
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We are interested in the estimates of a; and a9, which capture the impact of innovation by the
firm and its competitors. A firm’s innovative output, Ay, is highly skewed so we focus on inter-decile
movements in firm-level innovation to explore the economic magnitude of a;. In addition, the
innovation of other firms can have a positive or a negative effect on a firm’s outcome variables. An
increase in the innovative output of competing firms can have a positive effect on the firm because
of knowledge spill-overs. However, innovation of competitors can also have a negative effect due to
business stealing or an increase in factor prices. We should note that the presence of unobserved
variables (the “reflection problem”) leads to an upward bias in the estimate of externalities, as (e.g.,
see Bloom et al. (2010)). For instance, common productivity shocks could impact many firms in
the same industry — thereby creating a positive correlation between innovative activity of a firm’s

competitors and a firm’s own productivity.

Productivity

First, we examine whether firms that innovate have higher productivity subsequent to innovative
activity. We consider both capital- and labor-productivity (mpk; and mply;), defined as firm output—
total sales plus change in inventories—divided by capital and number of employees, respectively. We
evaluate the relation between subsequent productivity of capital and labor and innovation by a firm
or its competitors by estimating (17) with ¢ = [logmpk ., log mplss]. Depending on whether we
focus on the productivity of capital or labor, we measure firm size as the stock of physical capital or
number of employees respectively.

We report the results in Panel A of Table 7. We find a substantial increase in firm-level
productivity subsequent to an innovation. Our estimates of a; imply that an increase in innovation
by the firm from the 50th to the 90th percentile leads to an 0.6% to 1.5% increase in the productivity
of capital and a 1.7% to 2.1% increase in the productivity of labor. Furthermore, we find some
evidence that the business-stealing effect dominates, as the estimated coeflicient ay are negative and
statistically significant. In particular, a one-standard deviation increase in the amount of innovation
by the firm’s competitors is associated with a 1.5% to 1.9% decline in the productivity of capital
and a 1.5-1.8% decline in the productivity of labor. Our finding that labor productivity increases
following innovation, suggests that during our sample period, innovation is more likely to be labor
augmenting than labor saving on average (see, e.g. Acemoglu (2010)).

Our estimates imply that the business-stealing effect is substantial. However, this finding may

be an artifact of the short-horizon considered in our analysis if the business-stealing effect and
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positive spillovers operate at different frequencies. In particular, positive spillovers may affect firms
with a lag, so in the medium-run, the response of productivity may be different. To explore this
possibility, we estimate a dynamic version of equation (17) with k-year ahead productivity, 14, as
the regressand. We consider horizons of one to five years k = [1..5]. To conserve space, we present
results with only size, lagged productivity and volatility controls. Including additional controls leads
to quantitatively similar findings.

As we see in Figure 5, the negative effect of competitor innovation, Ay, on productivity exists
only in the short run. As we increase the horizon k, the estimated coefficients as(k) increase,
becoming zero or positive after 5 years. In contrast, the positive effect of firm innovation on
productivity increases with the horizon k. After 5 years, the response of productivity of capital
is between 37% to 50% higher than on impact. Labor productivity displays a similar, though
quantitatively stronger response. The positive effect of firm innovation on labor productivity
increases with the horizon by 65 percent.

In summary, our findings are consistent with the view that positive spillovers and business
stealing operate at different horizons. In the short-run, firms that do not innovate when their
competitors do experience a drop in their productivity as they fall behind. However, in the medium
run, the innovation of other competitors has either a zero or a positive effect. This positive effect
can arise because competitor innovations benefits the firm either directly, for instance through

knowledge spillovers, or indirectly, by spurring future firm innovation.

Tobin’s

Next, we explore the effect of innovation on the market value of the firm. In particular, the firm’s
Tobin’s @) should respond positively to a firm’s innovation output. The response of ) to the
innovation of the firm’s competitors will depend on whether the business-stealing or positive spillover
effects dominate in terms of market value. We estimate equation (17) with xy = [log Q] and
present the results in Panel B of Table 7.

We find that Tobin’s ) responds positively to a firm’s own innovation activity. Our estimates of
a1 imply that an increase in innovation by the firm from the 50th to the 90th percentile leads to an
1.5% to 1.6% increase in the firm’s Tobin’s Q. These magnitudes are in line with those reported
in Hall et al. (2005). In addition, we find some evidence of positive spillovers. A one standard
deviation increase in the innovation activity of other firms in the industry is associated with a 0.5%

to 0.7% increase in Tobin’s Q. However, we must be careful when interpreting this as evidence of
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positive spillovers, given the fact that the coefficient ao is likely to be biased upwards due to the
previously-noted reflection problem.

Our findings here confirm that a firm’s innovative activity has an unambiguous positive effect on
the firm’s productivity and valuation. Our results regarding the net effect of competitor innovation

on firm value are less conclusive — an issue we plan to revisit in future work.

Reallocation

In this section we explore the reallocation dynamics subsequent to innovation by a firm. In particular,
we explore how our innovation measures are related to reallocation of physical capital and labor.
We focus on the firm’s investment and hiring rate. In addition, since adjusting a firm’s capital and
labor input often involves upfront costs, we explore the allocation of financial resources. We focus
on the net financial inflows to the firm, defined as new issuance of equity and debt minus payouts
to stock- and bond-holders.

We estimate equation (17), using firm investment, i, net hiring rate, h, and financial inflows, e,
as outcome variables x ¢, = [if, hft, ep]. As before, our main estimates of interest are a; and ag,
which capture the change in factor inputs and financial inflows following innovation by the firm and
its competitors, respectively.

We first examine how physical capital gets reallocated subsequent to innovation by a firm or by
its competitors. Table 8 shows that subsequent to an innovation by a firm, there is a substantial
increase in its investment rate. In particular, our estimates imply that an increase in innovation by
the firm from the 50th to the 90th percentile leads to an increase in the firm’s investment rate by
0.5% to 1%. This increase is statistically but also economically significant given that the median
firm investment rate is 12% in our sample. Furthermore, we find evidence that physical capital flows
from firms that do not innovate to firms that do. If the firm does not innovate but is competitors
do, then its investment rate is substantially lower. A one-standard deviation increase in the level of
innovation by the firm’s competitors leads to a drop in the firm’s investment rate by 0.6-1.6%.

Next, we examine reallocation of labor subsequent to innovation by a firm. Table 9 shows that
subsequent to an innovation by a firm, there is a substantial increase in its employment using either
innovation measure. As before, the economic magnitudes are significant. Our estimates imply that
an increase in innovation by the firm from the 50th to the 90th percentile leads to increase in
employment of the firm by 0.2% to 0.5%, compared to the median firm-level hiring rate of 2.7%. In

addition, labor declines when a firm does not innovate but its competitors in the same industry do.
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A one-standard deviation increase in the average innovation of the firm’s competitors leads to a
reduction of 0.7% to 1.4% in the firm’s hiring rate. Our finding that innovating firms increase their
labor demand suggests that innovation is more likely to be labor augmenting, and is consistent with
the findings of Lentz and Mortensen (2008) for Danish firms.

Last, we examine the reallocation of financial capital subsequent to innovation by a firm and
present the results in Table 10. Following to an innovation by a firm, there is a substantial increase
in its financial capital inflows. Our estimates imply that an increase in innovation by the firm from
the 50th to the 90th percentile leads to an increase of capital inflows to book assets of 0.5% to
0.9%, compared to the median level of zero capital flows. We also find that firms are more likely
increase payout and decrease new issuance when the firm does not innovate but is competitors do.
In particular, a one-standard deviation increase in the average innovation of the firm’s competitors
leads to a reduction of 0.8% to 1.6% in net financial capital flows to the firm. This negative effect
suggests that firms that fail to innovate in an industry where other firms do, have few investment
opportunities. As a result, these firms increase payout to investors.

In summary, our results in this section suggest that, consistent with economic optimization,
resources are reallocated to innovating firms and away from firms that fail to innovate when their
competitors do. In addition, we find that relative to their median value, new hiring exhibits a
quantitatively stronger response than capital, both in terms of inflow and outflow. This increased
reallocation response of labor relative to firm capital within industries is consistent with the view

that capital is more firm-specific than labor.

4.2 Industry-level evidence

So far we have focused on the dynamics of productivity and reallocation within an industry. We now
conduct a similar exercise examining the response of productivity and reallocation of inputs at the
sector level. To do so, we use the KLEMS industry-level output data provided by Dale Jorgenson.
The advantage of this dataset is that it contains information on the quantity and price of capital
and labor inputs at the industry level, which allows us to explore the response of factor prices, in
addition to quantities, in response to innovation.

We focus on three outcome variables. First, we document the dynamic response of capital and
labor productivity, defined as the ratio of the quantity of output to the quantity of capital and labor
services, respectively. Second, we focus on the reallocation of inputs, namely the growth rate in the

quantity of capital and labor services. Third, we focus on the rate of establishment exit. Last, we
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examine the responses of factor prices, in particular the price of capital and labor services used in
industry I, scaled by the consumption deflator.

We estimate specifications similar to (17), but at the industry level:
Trp1 =ao+ a1 A+ a2 Ay + b Ze + e + prre + unegr (18)

Here, Aj is our measure of innovation at the firm-level, and A is the average level of innovation
in the economy, excluding industry I constructed in a manner similar to (16). Depending on the
specification, we include a vector of controls, Z, which includes stock return and, in the case of our
truncated measure AT, volatility, as well as lagged values of the dependent variable and time effects
~¢. In the presence of time dummies =, the interpretation of the coefficient as is unclear, so we only

include one of the two. We cluster the standard errors by industry.

Productivity

First, we explore the dynamic response of industry productivity to its own innovation Ay and the
innovation of the other industries Ap;;. We are interested in the coefficients a1 and as, which
measure the response of productivity to an industry and economy-wide (excluding the given industry)
innovation shock respectively. The coefficient a; is informative as to whether innovation creates net
value or is a zero-sum game that merely affects the distribution of rents within an industry.

We estimate (18) with k-period ahead productivity as the regressand, « f141 = [log mpk ¢yx, log mpl 4]
We consider horizons of one to five years k = [1..5]. We plot the results in Figure 6. We show results
with only lagged productivity and volatility controls, but results are similar if we also control for
stock returns.

We find that both labor and capital productivity increase in response to own industry innovation.
A one-standard deviation A; shock is associated with a 2.5% increase in the productivity of capital
and labor, after a period of 5 years. By contrast, capital and labor productivity show no statistically

significant response to the innovation activity of other industries.

Reallocation and Creative Destruction

Next, we examine the response of capital and labor to an industry innovation shock, as well as to
the innovation of other industries. We estimate equation (18) with the outcome variable equal to

the growth rate in the quantity of capital and labor services zj; = [ift, hy]. As before, the main
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estimates of interest in this specification are a; and ao, which capture the change in the quantity
or price of factor inputs in response to innovation in the industry and the rest of the economy
respectively. We show our results in Panel A of Table 11.

We find that an increase in the amount of industry innovation increases the quantity of capital
and labor services in the industry, though in some specifications the effect is not statistically different
from zero. As before, we find that the response of labor is greater than the response of capital. An
increase in industry innovation is associated with a 0.2% to 0.4% increase in capital services and a
0.3% to 0.7% increase in labor services. These magnitudes are economically significant, given that
the median growth in capital and labor services equals 3.1% and 0.7% respectively.

Our results suggest that increases in economy-wide innovation lead to cross-industry reallocation
of labor and capital. In particular, a one standard deviation increase in economy-wide reallocation
is associated with a 0.5% to 1.0% drop in the growth of capital services and a 1.4% to 2.2% drop in
the growth of labor services.

We also examine patterns of firm exit at the industry level. If industry innovation spurs creative
destruction, we expect to find a positive relation between the rate of firm exit and the level of
industry innovation. In contrast, innovation in other industries should have less of an effect on the
decision of firms to exit the industry. We estimate specifications similar to (18), but we replace the
outcome variable with the rate of firm exit and examine the response of this variable to own industry
innovation Ay and innovation of other industries Ary;. We obtain information on establishment
exit rates at the industry level from the US Census tables on Business Dynamics Statistics (BDS).
Table 12 presents the results.

Industry innovation is accompanied by an increase in creative destruction. The estimated
coeflicient ay is positive and statistically significant across specifications. Innovation accounts for an
economically significant fraction of the variation in firm exit rates. A one standard deviation increase
in industry innovation is associated with an increase in the firm exit rate by 0.2% to 0.4%, while
the unconditional volatility of exit rates is equal to 2.1%. In contrast, economy-wide innovation

Ajsr has no statistically significant effect on firm exit.

Factor prices

Last, we estimate equation (18) with the outcome variable equal to the growth rate of the price of
capital and labor services xj; = [pr, Wy, using the KLEMS data by Dale Jorgenson. We show our
results in Panel B of Table 11.
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Our point estimates suggest that the price of capital and labor increase following an increase
in economy-wide innovation. The response of the price of labor is highly statistically significant,
consistent with the increased mobility of labor. An increase in innovating activity in other industries
increases the outside option of workers, leading to an increase in the equilibrium wage. In contrast,
the response of the price of capital to economy-wide innovation is mostly not statistically different
from zero, even though the point estimates are similar. This lack of statistical significance is
consistent with the view that capital has higher specificity than labor (see e.g. (Hamermesh and
Pfann, 1996; Hall, 2002)).

In contrast, we find no statistically significant response of the price of capital or labor services
on the industry’s own innovation shock. This finding is somewhat puzzling, especially since industry

innovation raises the productivity of both capital and labor.

4.3 Innovation and long-run growth

The results of the previous two sections imply that innovation is followed by increased productivity
of capital and labor, as well as reallocation of resources towards innovating firms. These findings
suggest that own innovation should be followed by increased output growth, both at the firm as
well as at the industry level. The response of output to innovation by other firms or industries is
more ambiguous. It depends whether productivity increases in the long run, as well as whether the
patterns of reallocation we document are reversed in the long run. To answer these questions, we

estimate specifications at firm and industry level similar to (17) and (18)

log Yftrk = ao + a1 Aft + as A]ft + bet + p1log Yt + P2 log Yf—1 + €tk (19)

logyreak = ap+ a1 Aps + ag Ayt + 0 Ze + prlogyre + p2log yre—1 + epppe. (20)

We again examine horizons of k = 1 to k = 5 years. We control for volatility (in the case of
our truncated measure A1). In the firm-level regression (19), we also include controls for firm
size (capital), and industry and time fixed effects. We cluster the standard errors by firm or
industry, respectively. We plot the estimated coefficients a;(k) and as(k) in Figure 7, along with
90% confidence intervals.

We find that both firm and industry output displays a statistically significant response to an
own-innovation shock. A firm that experiences an innovation shock from the median to the 90th

percentile experiences a 1.5% increase in output over a period of 5 years. The response of output is
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quantitatively more significant at the industry level. A one standard deviation shock to industry
innovation is associated with a 5.0% output growth over a period of 5 years. Furthermore, a positive
innovation by other firms, or industries, is associated with a decline in output. Output falls by 2.5%
to 3.5% at the firm level, and by 3.5% to 6.8% at the industry level following innovation by other
firms or industries respectively.

In summary, innovation is associated with substantial increases in output. The results of this
section can also be summarized by examining the relation between industry innovation in the first
half of the sample (1960-1982) and subsequent output growth in the second half of the sample
(1983-2006). In Figure 8 we plot the industry innovation measure A; averaged over the first half
of the sample (1960-1982) on the X axis and the corresponding output growth of the industry in
the second half of the sample (1983-2006) on the Y axis. The correlation between the two series
is 41% with a robust t-statistic of 2.6. Industries which experienced high technological innovation
in the first half of the sample were also the ones whose growth rate was subsequently higher in
the second half of the sample. For example, industries such as Electrical Machinery, Automotive
and Communication, which are in the highest quartile of innovation during the first half of the
sample, had an annualized growth rate of more than 4% over the second part of the sample. Similar

correlation is found for low-innovative industries such as Textile and Utilities.?2

5 Innovation and Aggregate Dynamics

Our results in the previous section suggest that innovation is an important determinant of industry-
level productivity and growth, especially in the medium term. In this section, we analyze the effect

of innovation at the level of the U.S. economy.

220ne source of concern with our analysis could be that the relation between innovation and output growth is driven
by spurious omitted variables. To alleviate these concerns we generate exogenous changes in R&D activity across
industries by employing the Bloom et al. (2010) instrument for firm level R&D activity. As discussed in Bloom et al.
(2010), the firm level tax price of R&D can be decomposed into a component that is relatively exogenous since it is
based on solely on federal rules. In unreported tests we use the Bloom et al. (2010) firm level R&D instrument and
construct its industry counterpart by taking the average of this tax price across firms in a given industry. We find
qualitatively similar results to those reported in the table when we instrument the endogenous innovation variables

(A).
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5.1 Total Factor Productivity and Output
Impulse Responses

In this section, we examine the extent to which our innovation measures account for medium-run
fluctuations in aggregate productivity and output. We start by exploring the relation between
measures of innovation and quantities of interest using VARs and VECMs. Then, we explore whether
our results are sensitive to the details of the specification or the construction of our innovation
measures. We focus on aggregate productivity and output, with productivity measured using
utilization-adjusted TFP from Basu et al. (2006) and output measured as the real per capita gross
domestic product. Our aggregate innovation measures A" and A are constructed according to (14)
and (15).

We estimate bivariate VARs of the form Z = [log X, log A]’, where X is our variable of interest
and A is our measure of innovation. We include a deterministic trend, following Alexopoulos
(2011). When exploring the responses to our truncated innovation measure A", we also include
the cross-sectional average of idiosyncratic volatility & to ensure that our innovation measure does
not pick up movements in firm-level volatility. In addition, we also compute responses using a
vector-error-correction model (VECM). We select the number of cointegrating relations using the
Johansen test, which suggests the presence of one cointegrating relation in all systems. We select
the number of lags using the Akaike-Information Criterion, which advocates a lag length of one to
two years for each of the systems. We compute standard errors by a bootstrap simulation of 500
samples. We plot the impulse-response functions in Figures 9 and 10, along with 90% confidence
intervals. We compute impulse responses by ordering the innovation shock A last, so the technology
shock affects the variables of interest only with a lag.

We find that TFP increases by 0.8% to 2% over 8 years following a one-standard deviation
increase in innovation output. The forecast error variance attributed to our innovation measures
ranges from 17% to 70% at the 8-year horizon, depending on the specification. Our findings are
comparable to the results in Alexopoulos (2011), but in contrast to Shea (1999) who uses only
information on patents and finds a negative relation.

Aggregate output displays a mild U-shaped response. In the first two years, the response of
output to a one-standard deviation shock is negative at 0.5% to 0.8% and statistically significant.
However, in the long-run output increases by a substantial amount: a one-standard deviation
innovation shock results to a net 1.5% to 4% increase in aggregate output after 8 years. The share

of 8-year forecast-error variance attributed to our innovation measures ranges from 7% to 16%.
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Last, we explore whether our measure of innovation contains incremental information to stock
prices. Following Beaudry and Portier (2006), we include the level of the stock market in our VAR,
scaled by the consumption deflator and population.?® Doing so, also helps us evaluate the extent to
which our results are driven by variation in the denominator of A (the stock market capitalization).
We order the level of stock prices second, so now Z; = [log(X}),log(M;),log o¢,1og(As)]". Our results
are qualitatively similar in terms of statistical significance, but the economic magnitudes are smaller.
Productivity and output increase by 0.8 and 2.6% respectively at the peak following a one-standard
deviation innovation shock. However, the innovation shock subsumes to a large extent the ability of
the stock market to predict TFP and output. The response of output to a one-standard deviation
shock in log M is in most cases not statistically significant beyond the one-year horizon. Furthermore,
the innovation shock accounts for a greater fraction of the variance of productivity (2.6% to 18.9%)
and output (4.0% to 15.7%) relative to the the stock market shock (1.0% to 8.3% and 1.0% to
13.0%, respectively).

Comparison to Patents or R&D expenses

We explore whether our measure of innovation contributes relative to other commonly employed
measures of technological innovation: the stock of R&D capital, and the log number of patents.
We estimate two bivariate VARs for productivity, output and consumption, with the log number
of patents or R&D capital series ordered last. We show the results in Figure 11. The number of
patents has some ability to predict an increase in TFP, but the results are quantitatively weaker.
A one-standard deviation shock to the log number of patents is associated with a 0.4% increase
in TFP, and the patent shock accounts for 13.1% of the forecast error variance. The response of
productivity to the stock of R&D capital is not statistically different from zero.

Furthermore, a simple patent count has essentially no ability to predict business cycle variables.
The impulse responses of output and consumption are not statistically significant. Using the stock
of R&D capital, we obtain qualitatively similar though quantitatively weaker impulse responses.
Output drops in the short run by 0.4%. At the eight-year horizon output displays a statistically
significant increase of 0.3%. The shock to the R&D capital accounts for 1.7% of the variance forecast

error decompositions of output.

2*We depart from Beaudry and Portier (2006) in that we include the level of the CRSP value-weighted rather the
level of the S&P 500 index, since the former includes all stocks traded on the three major exchanges.
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Granger causality

If our measure of innovation indeed represents a fundamental shock, then it should not be predictable
by output or productivity. In addition, we explore whether our measure of innovation is predictable
by other measures of technological growth in the literature, for instance the book-based measures of
Alexopoulos (2011) and the stock of R&D capital.

The top panel of Table 13 shows that output and TFP do not Granger-cause either of our
measures of innovation. In addition, the middle panel of Table 13 shows that our measures of
innovation are distinct from the measures of Alexopoulos (2011), in that neither causes the other. Our
measure is somewhat correlated with the number of patents at 32-43%, but not with R&D spending
(less than 10%). The bottom panel of Table 13 shows that our measure is not Granger-caused by
either the number of patents or R&D spending.

5.2 Consumption

Next, we analyze the impulse response of aggregate consumption to our innovation measures. The
response of consumption is informative about whether our innovation measure is an example of an
embodied or disembodied shock. If technological innovation is a free factor of production, in that it
costlessly affects all firms in the manner of a disembodied shock, we expect that consumption should
increase immediately. Agents anticipating an increase in future consumption would like to increase
their consumption today. In contrast, if innovation is not free, because for instance it is embodied
in new vintages of capital or due to adoption costs, then consumption may only increase in the long
run. In the short run, agents will divert resources away from consumption towards adopting new
innovations.

We analyze the response of real per capita consumption of non-durables and services using VARs
and VECMs, as in Secion 5.1. We plot the impulse-response functions in Figure 12, along with 90%
confidence intervals. We find that consumption displays a U-shaped response to innovation. In the
first two years consumption displays a statistically significant drop of 0.5% to 0.7%. Subsequently,
consumption increases, leading to a 0.2% to 0.5% net increase after 8 years. However, the increase
in consumption is not consistently statistically significant across specifications. The innovation
shock accounts for 6% to 8% of the forecast-error variance of consumption growth after 8 years.

The short-run drop in consumption is consistent with the delayed response of output in Section 5.1.

Innovation affects output with a lag, so the positive response of consumption is necessarily delayed.
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However, our finding that consumption drops in the short run, whereas output does not, suggests

that the presence of significant adoption costs.

5.3 Innovation and Tobin’s @)

We conclude our analysis by examining the relationship between our measures of innovation and
Tobin’s ) at the aggregate level. The theoretical relation between innovation and Tobin’s @ is
ambiguous. If innovation represents an increase in TFP that costlessly affects all firms, then standard
models will imply that Tobin’s @ should rise (see, e.g. Hayashi (1982)). However, it is also possible
that innovation renders part of the capital stock obsolete (see e.g. Laitner and Stolyarov (2003))
or a reduction in profits for incumbent firms (e.g. Greenwood and Jovanovic (1999); Hobijn and
Jovanovic (2001)). In these cases the relationship between innovation and Tobin’s @ is less clear.

We estimate the contemporaneous response of Tobin’s () to our innovation measures
AlogQ: =a+bAlog As + ¢ Zy + e, (21)

where the vector of controls includes lagged values of @), our innovation measure A and in the case of
our truncated measure AT changes in the cross-sectional average of idiosyncratic volatility, Alogo.
We show the results in Panel A of Table 14. We find that our innovation measure is negatively
correlated with Tobin’s (). This negative correlation is statistically and economically significant. A
one standard deviation increase in innovation is associated with a 8.1% to 12% contemporaneous
drop in aggregate Tobin’s (). Our findings echo the stylized facts reported in Greenwood and
Jovanovic (1999), Hobijn and Jovanovic (2001) and Laitner and Stolyarov (2003), who argue that
Tobin’s @ was too low in the 1960s and 1970s, despite the technological advances taking place.
One source of concern with this analysis is that our aggregate innovation measure A may be
mechanically negatively related to  due to our choice of scaling by the market capitalization
of all firms S. As a robustness test, we scale our aggregate innovation measure by the market
capitalization of innovating firms, Sy = ZfeNt Sft X 1a;,>0. On average, only about a third of
firms innovate in our sample. Thus, this alternative normalization ameliorates somewhat the concern
that this finding is mechanical. However, as we show in Panel B of Table 14, we obtain similar

results using this alternative normalization.

31



6 Conclusion

We explore the role of technological innovation as a source of economic growth by constructing
direct measures of innovation at the firm level. We combine patent data for US firms from 1926 to
2010 with the stock market response to news about patents to identify the economic importance of
each innovation. Our measures allow us to uniquely identify the reallocation and growth dynamics
within- and across industry after bursts of innovative activity.

We document a strong link between innovation and productivity at the firm and industry level.
Furthermore, we find evidence suggesting that innovation is accompanied by “creative destruction”
in the form of resource reallocation, both within and between sectors. Resources flow to innovating
firms and sectors, away from firms and sectors that do not. There are stronger patterns of reallocation
for labor than for capital, consistent with the view that capital is more specific than labor (Ramey
and Shapiro, 2001).

Technological innovation has a significant impact on aggregate variables in the medium run.
Our innovation measure is strongly related to aggregate movements in TFP. In addition, aggregate
output shows a delayed positive response, consistent with the presence of short-term adoption costs.
A positive shock to innovation has a U-shaped effect on consumption growth: consumption is lower
in the short-run but increases in the long-run. This is consistent with a reallocation of resources
away from consumption in the short-run towards the implementation of innovation. Finally, we find
that an increase in innovative activity leads to a fall in aggregate Tobin’s @), consistent with the
models of Greenwood and Jovanovic (1999) and Laitner and Stolyarov (2003).

Our empirical findings link medium-run macroeconomic fluctuations to a direct measure techno-
logical innovation, consistent with the idea of medium-term cycles of Comin and Gertler (2006).
Furthermore, our findings make a strong case for innovation as a source of long-run firm growth,

consistent with the equilibrium model of Klette and Kortum (2004).
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Appendix A: Data

Business-cycle data

Productivity is utilization-adjusted TFP from Basu et al. (2006). Populations is from the U.S. Census Bureau
(http://www.census.gov/popest /national /national.html). Output and consumption are from the Bureau of
Economic Analysis. Output is gross domestic product (NIPA Table Table 1.1.5) divided by the consumption
price index (St Louis Fed, CPIAUCNS). Consumption is consumption of non-durables plus services, deflated
by the price index of non-nudrables and services respectively (NIPA Tables 1.1.5, 2.3.4). To get hours worked,
we merge series CEU0500000007 and EEU00500005 from the BLS, times total private employment(BLS,
CEU0500000001) divided by population.

Firm-level data

We define the investment rate as capital expenditures (Compustat: capx) divided by lagged gross property,
plant and equipment (ppegt); labor hiring as the percentage change in the number of employees (emp);
financial capital inflows as debt issuance plus equity issuance minus payout (Compustat sstk + dltis -
prstke-dv-dltr) normalized by assets (at); return on assets as operating income (ib) plus depreciation divided
by lagged lagged gross property, plant and equipment; Tobin’s Q as the sum of the market value of common
equity (CRSP December market capitalization), the book value of debt (dltt), the book value of preferred
stock (pstkrv), minus the book value of inventories (invt) and deferred taxes (txdb), divided by gross property,
plant and equipment (ppegt); productivity of capital as sales (sale) plus change in inventories (invt) over
gross property, plant and equipment (ppegt); productivity of labor as sales (sale) plus change in inventories
(invt) over number of employees (emp).

Other Data

The industry-level data is from the KLEMS dataset of Dale Jorgenson. We use industry value added (constant
prices) as measure of industry output. The aggregate Tobin’s Q is computed using NIPA and FRB Flow of
Funds Data as in Laitner and Stolyarov (2003). Finally, the time series information on R&D expenditure
spending in the US is obtained from the NSF website.
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Tables

Table 1: Number of patents

Data step Number of patents
Total downloaded patents 7,797,506
Granted in 1926 or later 5,988,864
Identified as having an assignee 4,386,506
Matched to CRSP 1,840,636
Of which:

Present in NBER data 1,404,822
New to this paper 435,814

The table provides details on patents in our sample. We begin with all patents downloaded from Google Patents, and
restrict the sample to post-1926. Not all patents have assignees, and among those that do, not all are companies in
CRSP. We are able to match 1,840,636 patents to CRSP firms, of which 435,814 (24%) are new to this study. Further
details are reported in Table 2 and Figure 1.
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Table 3: Stock turnover around patent announcement days

Event l=—1 [=0 1[I=1 =2 1[1=3 =4
A. Patent grant -0.396 0.046 0.082  0.074 0.006 -0.377
(-8.93) (2.55) (5.23) (4.51) (0.23) (-9.12)
B. Patent publication 0.094 0.182 0.283 -0.136 0.015 0.147
(1.65) (3.72) (4.33) (-2.04) (0.27) (2.92)

Table shows the output of the regression of stock return turnover (z;+; = vols/shrout:) on a dummy variable taking
the value 1 if a patent was granted to the firm on day ¢ (Panel A), or the USPTO publicized the grant application of
the firm on day ¢t (Panel B). We include firm-year and day-of-week fixed effects. We cluster standard errors by year

and report t-statistics in parenthesis. We restrict the sample to firms that have been granted at least one patent.
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Table 4: Descriptive statistics on firm-level innovation variables

statistic A?til flft_l
Mean 0.055 0.044
St. Dev. 0.169 0.129
Percentiles

50 0.000  0.000
75 0.014 0.024
90 0.172  0.129
95 0.339  0.250

Table presents descriptive statistics for our firm-level innovation measures A" and A.
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Table 5: Number of future citations and announcement day return

(1) (2) 3) (4) (5) (6) (7) (8)
grant publication grant publication
l=2 l=4 | I=2 1=4 =2  1=4 | I=2 1=4 |
A: Dollar returns B: Dollar returns
truncated at zero adj for measurement error
Af 1.117 0.865 0.377 0.267 | A; 14.002 9.902 2.771 1.933
(6.53) (6.28) (2.35) (2.42) (6.74) (6.77) (1.68)  (1.66)
Obs. 1842345 1842345 | 416282 416282 | Obs. 1828616 1828616 | 415254 415254
R? 0.096 0.096 0.079 0.079 | R? 0.100 0.099 0.079 0.079
C: Log dollar returns D: Log dollar returns
adj for measurement error
log A; 0.704 0.695 0.252 0.256 | log A; 0.939 0.941 0.297 0.297
(7.11) (6.99) (3.01) (2.93) (7.80) (7.82) (2.76)  (2.74)
Obs. 894697 894697 | 202194 202194 | Obs. 1828616 1828616 | 415254 415254
R? 0.099 0.101 0.083 0.082 | R? 0.102 0.102 0.084 0.084

Table shows output of a regressions of number of future citations /N; on the dollar return A; following the day the
patent is issued to the firm (columns 1-3) or the details of the patent are disclosed by the USPTO (columns 1-3).
We construct the dollar return A; as the return of the firm minus the return of the market portfolio rs4, times the
firm’s market capitalization on the day before the announcement in 1982 USb dollars Sfq—1. We report results for
announcement day d returns only (columns 1 and 4); returns from day d to d + 2 (columns 2 and 5); and returns from
day d — 1 to d + 4 (columns 3 and 6). Panel A shows results for dollar returns; Panel B shows results for dollar results
truncated at zero; and Panel C shows results for log dollar returns. We control for announcement-year fixed effects
and log firm idiosyncratic volatility (logos:). We cluster standard errors by announcement year and report t-statistics

in parenthesis.
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Table 6: Which firms innovate?

At A
Ay (1) (2) (3) (4) (5) (6) (7) (8)
In K;_ 0.099  0.106 0.116 0.066 | 0.062  0.067 0.076  0.035
(42.86)  (43.71) (46.79) (39.40) | (39.55) (40.40) (43.12) (34.17)
InQy_1 0.052  0.042  0.029 0.035  0.028  0.020
(19.80)  (15.04) (17.79) (19.82)  (14.96) (20.11)
In RDy_, 0.103  0.057 0.068  0.030
(28.53)  (25.24) (28.38)  (23.07)
Afia 0.665 0.742
(68.24) (88.33)
Observations | 141695 141695 65234 65058 | 141695 141695 65234 65058
pseudo R2 0.476  0.490  0.469 0.653 | 0.644  0.671  0.739  1.242

Table shows Tobit regressions of firm-level innovation Ay on firm characteristics and lagged competitor innovation
Ar¢—1. Firm characteristics are log firm size (Ky, gross PPE), log Tobin’s @ and log R&D expenditures to book

assets In RD. All specifications include year (T) and industry (I) fixed effects. Standard errors are clustered by firm.
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Table 7: Firm-level productivity and Tobin’s )

A. Productivity

mpksr1, mpleyq Capital Labor Gt+1 B. Tobin’s Q
(1) (2) (3) (4) (5) (6)
Al -0.066  -0.049 | -0.057 -0.046 | A}, 0.031  0.030
(-6.68)  (-5.03) | (-6.35)  (-5.12) (2.69)  (2.62)
Af 0.060  0.091 | 0.108 0.128 | A}, 0.095  0.098
(5.77)  (8.64) | (11.71) (13.73) (7.13)  (7.33)
R? 0.844  0.847 | 0.847  0.850 | R? 0.684  0.686
Ar -0.087  -0.049 | -0.084 -0.056 | Ap 0.039  0.048
(-6.27)  (-3.56) | (-6.72)  (-6.47) (2.62)  (3.16)
Ap 0.053  0.102 | 0.132 0.163 | Ap, 0.128  0.114
(3.70)  (7.02) | (10.41) (12.58) (7.08)  (6.32)
R? 0.844  0.847 | 0.847  0.850 | R? 0.684  0.686
Observations 125678 125678 | 120020 120020 | Observations 123540 123540
Fixed Effects LT LT LT LT Fixed Effects LT LT
Controls Controls
(Size, mpk or mpl) Y Y Y Y (Size) Y Y
(Ryf, Rr, q, 0) - Y - Y (R, Ry, y/k, 0) - Y

Table shows output of the regression: z 11 = ao+a1 Apr+az2 Are+b Zp+yi+cr+pxpe+uie, where Xypy = [yﬁ, yft, Gt

is log productivity of capital, labor and Tobin’s . Depending on the specification, the vector Z of controls includes

lagged values of log Tobin’s @, firm stock return (R), firm volatility (o, in the case of our truncated measure A"

only), industry c; or time ; fixed effects. We control for lagged firm size (log capital (Columns 1-2,5-6) or number

of employees (Columns 3-4)) and productivity throughout. Standard errors are clustered by firm. All variables are

winsorized by year at the 1% level.
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Table 8: Firm-level reallocation: Investment

i1 (1) (2) (3) (4) ()
A}, -0.046  -0.046 -0.040 -0.031 -0.027
(-10.35)  (-10.45) (-12.10)  (-9.78)  (-8.49)
Al 0.039  0.047  0.042  0.040  0.031
(9.13)  (11.02)  (13.29) (12.79) (10.14)
R? 0.085  0.093  0.221  0.260  0.273
Ap -0.070 0.059  -0.042 -0.036
(-12.27) (-13.52)  (-9.92)  (-8.50)
Ap 0.040 0.034  0.041  0.039
(7.10) (8.23)  (9.96)  (9.66)
R? 0.085 0215 0257  0.273
Observations | 126727 126727 126727 126727 126727
Fixed Effects | LT LT LT LT LT
(Size - K) Y Y Y Y Y
(o) - Y Y Y Y
(it-1) - - Y Y Y
(R;, Rr, Q) - - - Y Y
(MPK,E/K) - - - - Y

Table shows output of the regression:
it =ao+ a1 Asr—1 + a2 Are—1 + B Zpi—1 + pic—1 + Uit.

Here i; refers to capital expenditures (Compustat item capx) minus sale of property, plant and equipment (Compustat
item sppe) over lagged capital stock (Compustat ppegt). Depending on the specification, we control for lagged values of
log Tobin’s @, firm size (log capital), sales-to-capital (Y/K), profitability (E/A), firm stock return (R), firm volatility
(o, in the case of our truncated measure A" only), industry (I) or time (T) fixed effects, and lagged values of the

dependent variable . Standard errors are clustered by firm. All variables are winsorized by year at the 1% level.
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Table 9: Firm-level reallocation: Labor hiring

Ahiy1 (1) (2) (3) (4) ()
Al -0.045 -0.046 -0.046 -0.033  -0.024
(-7.35)  (-7.60) (-7.93)  (-5.92)  (-4.30)
Af 0.008 0016 0024 002 0017
(1.37)  (2.80)  (441)  (3.61)  (3.05)
R? 0.039  0.044 0.053  0.086  0.090
Ap -0.062 -0.063 -0.040 -0.029
(-7.65) (-8.18) (-5.22) (-3.74)
Aft -0.008 0.014 0.020 0.017
(-0.97) (1.83)  (2.71)  (2.25)
R? 0.039 0.053 0.086 0.090
Observations | 119760 119760 119760 119760 119760
Fixed Effects | LT LT LT LT LT
(Size - H) Y Y Y Y Y
(0) - Y Y % Y
(Ane_1) - - Y % Y
(Rf, R, Q) - - - Y Y
(MPL,ROA) | - . . ; Y

Table shows output of the regression:
Ang =ao+ a1 Apr—1+ a2 Are—1 + B Zpr—1 + pir—1 + wse.

Here Any refers to log employment growth (Compustat item emp). Depending on the specification, we control for
lagged values of firm size (log no. of employees), sales-to-employees (Y/N), earnings to assets (ROA), firm stock
return (R), firm volatility (o, in the case of our truncated measure A" only), industry (I) or time (T) fixed effects,
and lagged values of the dependent variable. Standard errors are clustered by firm. All variables are winsorized by

year at the 1% level.
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Table 10: Firm-level reallocation: Financial inflows

erent nm @ ® @ 6
Al -0.007  -0.006  -0.008 -0.001  -0.009
(-1.28)  (-1.22) (-1.84)  (-0.32)  (-2.08)
Af, 0.043 0037 0034 0025 0014
(6.80)  (5.90)  (6.30)  (4.56)  (2.81)
R? 0.114 0.117 0.155 0.184 0.219
Ap -0.017 -0.017  -0.005 -0.018
(-2.32) (-2.68) (-0.82)  (-2.86)
Aft 0.052 0.046 0.048 0.022
(6.03) (6.25)  (6.28)  (3.09)
R? 0.114 0.154 0.182 0.219
Observations | 126727 126727 126727 126727 126727
Fixed Effects | LT LT LT LT LT
(Size - K) Y Y Y Y Y
() - Y Y Y Y
(Afingi-1) - - Y Y Y
(Rf, R, Q) - - - Y Y
(ROA) - - - - Y

Table shows output of the regression:
finge = a0+ a1 Apr—1 + a2 Are—1 + B Zpi—1 + pie—1 + Uit

Here fing, refers to the ratio of total financial inflows, defined as debt issuance plus equity issuance minus payout
(Compustat sstk + dltis - prstke-dv-dltr), over book assets. Depending on the specification, we control for lagged
values of firm size (log capital), log Tobin’s @, earnings to book assets (ROA), firm stock return (R), firm volatility
(o, in the case of our truncated measure A" only), industry (I) or time (T) fixed effects, and lagged values of the

dependent variable. Standard errors are clustered by firm. All variables are winsorized by year at the 1% level.
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Table 11: Industry reallocation

Ty Quantity of capital services, growth Quantity of labor services
Al 0.018  0.015 0.026 0.022 0.024  0.032 0.031 0.039
(2.02) (1.78) (3.11) (2.49) (142) (1.88) (1.82) (2.3H)
Al -0.112  -0.069 -0.274  -0.207
(-7.21) (-3.72) (-7.56)  (-4.60)
R? 0.037  0.098  0.165 0.184 0.051 0.080 0.164 0.186
Ap 0.023  0.015 0.032 0.027 0.021 0.036  0.029 0.043
(1.99) (1.39) (2.83) (2.24) (0.94) (1.73) (1.34) (2.09)
Apre -0.153  -0.126 -0.263  -0.239
(-8.77) (-4.31) (-6.35)  (-5.49)
R? 0.048 0.094 0.164 0.184 0.033 0.072  0.163 0.183
T4 Price of capital services Price of labor services
AT, -0.026  -0.019 -0.038  -0.031 0.005 0.008  0.005 0.005
(-0.96) (-0.70) (-1.39) (-1.10) | (0.78) (1.19) (0.74) (0.75)
Al 0.022  0.088 0.099 0.123
(0.36) (1.24) (7.00)  (7.03)
R? 0.006  0.030  0.145 0.166 0.082 0.091  0.357 0.361
Ap -0.048  -0.029 -0.063  -0.043 0.007  0.009 0.007 0.009
(-1.38) (-0.85) (-1.84) (-1.24) | (0.74) (0.89) (0.71) (0.94)
Apre 0.110  0.146 0.114  0.118
(1.36)  (1.79) (6.30) (6.43)
R? 0.007  0.031 0.146 0.166 0.079 0.081  0.357 0.360
Observations 1395 1395 1395 1395 1395 1395 1395 1395
Controls
(R,0) - Y - Y - Y - Y
Time Effects - - Y Y - - Y Y

Table reports results from a regression of the quantity [k, h] and price [p, w] of capital and labor services on the amount
of innovation at the industry level [A;] and on the amount of innovation of all other industries [Aar7]. We control for
time effects (T), industry stock return R, industry volatility o’ (in the case of our truncated measure A" only) and
one lag of the dependent variable. Data is from Dale Jorgenson’s 35-sector KLEM, described in Jorgenson and Stiroh
(2000). Sample is 1960-2005 and covers 31 industries after excluding the finance, utilities and government enterprises
sector. We report t-statistics in parenthesis, with errors clustered by industry.
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Table 12: Innovation and Firm Exit

T4l Rate of establishment exit
At 0.882 0.881  1.057 0.746
(3.48) (3.45) (2.49) (1.8H)
Al -2.740  -2.778
(-1.52) (-1.49)
R? 0.502 0.502  0.732  0.763
Ap 1.313 1.322 2227 2171
(2.14)  (2.20) (3.31) (2.94)
Ay 4691 -4.745
(-1.32) (-1.38)
R? 0.509 0.510 0.732 0.735
Observations 231 231 231 231
Controls
(R,0) - Y - Y
Time Effects - - Y Y

Table reports results from a regression of the rate of establishment exit on the amount of innovation at the industry
level [A;] and on the amount of innovation of all other industries [Aasr]. We include industry fixed effects throughout.
Depending on the specification, we include time effects (T), industry stock return R!, and industry volatility o (in
the case of our truncated measure A" only). Data is from the tables of Business Dynamics Statistics at the US
Census, and cover 7 industries, after dropping the finance sector and utilities, over the period 1977 to 2009. Industries
correspond to the one-digit SIC code level. We report t-statistics in parenthesis, with standard errors clustered by
year.
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Table 13: Granger causality tests

Variable Variable does A does
not Granger | not Granger
cause A cause variable
A A A A
Output and productivity
Productivity 0.246 0.634 | 0.006 0.001
Output 0.523 0.121 | 0.068 0.848
Technology measures of Alexopoulos (2011)
Bowkers technology books 0.236 0.224 | 0.131 0.704
Library of Congress new technology books 0.111 0.005 | 0.615 0.647
Computer software and hardware books 0.386 0.477 | 0.579 0.245
Computer software, hardware, and network books | 0.383 0.484 | 0.626  0.245
Telecommunications books 0.501 0.962 | 0.237 0.054
Other technology measures
R&D Spending 0.672 0.988 | 0.448 0.456

Table features p-values of Granger causality tests, based on a 3-variable VAR [X4, 04, A;] with a deterministic trend.
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Table 14: Innovation and Tobin’s Q

Alog Q A. Benchmark Measure B. Alt. Normalization
Alog Aj' -0.182  -0.256 -0.218 | -0.199 -0.194 -0.143
(-4.88) (-6.14) (-3.91) | (-5.09) (-4.89) (-2.66)
R? 0.253  0.373  0.387 | 0.266  0.297  0.305
Alog At -0.185  -0.223 -0.196  -0.188
(-3.87)  (-4.17) (-3.83) (-3.67)
R? 0.188  0.266 0.186  0.223
Observations 58 58 58 58 58 58
(log A, 1) . Y oy
(log Q:—1) - Y Y
(Alog oy) - - Y

Table shows output of a regression of changes in log Tobin’s @ at the firm (Panel A) or aggregate level (B) on our
measure of innovation, controlling for changes in volatility (in the case of our truncated measure A" only) and lagged
value of @) and innovation measures. Sample is 1952-2008. Results in Panel A use data from Compustat, include
time-fixed effects and standard errors clustered at the firm level. Results in Panel B use data from the flow of funds,

and standard errors are computed using the Newey-West estimator.
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