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1 Introduction

During the recent housing boom, there were large differences in capital gains across houses, even

within the same metro area. Figure 1 illustrates the basic stylized fact for San Diego County,

California. Every dot corresponds to a home that was sold in both year 2000 and year 2005. On

the horizontal axis is the 2000 sales price. On the vertical axis is the annualized real capital gain

between 2000 and 2005. The solid line is the capital gain predicted by a regression of capital gain

on log price. It is clear that capital gains during the boom were much higher on low end homes.

For example, the average house worth $200K in the year 2000 appreciated by 17% (per year) over

the subsequent five years. In contrast, the average house worth $500K in the year 2000 appreciated

by only 12% over the subsequent five years.1
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Figure 1: Repeat sales in San Diego County, CA, during the years 2000-2005. Every dot represents
a residential property that was sold in 2000 and had its next sale in 2005. The horizontal axis shows
the sales price in 2000. The vertical axis shows the real capital gain per year (annualized change in
log price less CPI inflation) between 2000 and 2005.

This paper considers a quantitative model of the housing market in the San Diego metro area

1While Figure 1 only has repeat sales from two particular years, Table 1 below documents the basic stylized fact
in a joint estimation using all repeat sales in San Diego County over the last decade.
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over the boom period. Its key feature is that houses are indivisible and movers are assigned, in

equilibrium, to one of a large number of house types. We use the model to examine the connection

between various changes in the San Diego housing market (or markets —one for each type) with the

cross section of capital gains. In particular, we look at changes in the composition of houses that

were transacted, shifts in the distribution of movers’characteristics, and the availability of cheap

credit.

We find that the model is consistent with the large and uneven price changes apparent in Figure

1. Two changes in the environment are particularly important for this result. First, the availability

of cheap credit has larger effects on housing demand at the low end of the market, thus increasing

relative prices there. Second, the relatively larger number of low quality houses transacted during

the boom led richer marginal investors to drive up prices at the low end. Once these two features

are taken into account, the lifecycle model of housing demand matches not only prices but also key

moments of the joint distribution of house quality, age, wealth and income.

In the model, movers meet houses. Houses differ by quality: there is a continuum of indivisible

houses provide different flows of housing services. Movers differ by age, income, and wealth: their

demand for housing is derived from an intertemporal savings and portfolio choice problem with

transaction costs and collateral constraints. In equilibrium, prices adjust to induce agents with

lower demand for housing services to move into lower quality houses. The distribution of equilibrium

prices thus depends on the (three-dimensional) distribution of movers’characteristics as well as the

distribution of house qualities.

To implement the model quantitatively, we use micro data to measure the distribution of movers’

characteristics and the quality distribution of transacted houses. We do this both for the year 2000

and for the year 2005 —the peak of the boom. We then compute model predictions for equilibrium

prices in both years and derive the cross section of capital gains by quality. We compare those

predictions to a repeat sales model estimated on transaction data. Our numerical solution not only

finds equilibrium prices, but also an equilibrium assignment that we compare to the assignment in

the data. To understand how the model works, we explore model-implied capital gains for different

assumptions on changes in the environment; in particular, we capture cheaper credit by lower

interest rates and downpayment constraints.

Changes in the distribution of mover characteristics as well as credit conditions jointly generate

a housing boom that is very similar to that shown in Figure 1. The only difference is that the

model somewhat overpredicts price increases at the high end of the market. At the same time, we

check that the equilibrium assignment predicted by the model resembles the assignment observed in

the data. In particular, the model matches the fact that house quality rises faster with wealth and

income for younger cohorts of households. The reason is that in a lifecycle model with nontradable

labor income and collateral constraints, younger households choose more levered portfolios and thus
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invest a larger share of cash on hand in housing.

Our exercise fits into a tradition that links asset prices to fundamentals through household

optimality conditions. For housing, this tradition has given rise to the “user cost equation”: the

per-unit price of housing is such that all households choose their optimal level of a divisible housing

asset. With a single per-unit price of housing, capital gains on all houses are the same. In our

model, there is no single user cost equation since there are many types of indivisible houses, with

marginal investors who differ across house types.2 Instead, there is a separate user cost equation

for every house type, each reflecting the borrowing costs, transaction costs, and risk premia of only

those movers who buy that house type. Changes in the environment thus typically give rise to a

nondegenerate cross section of capital gains.

The fact that there is a family of user cost equations is crucial for our results in two ways. First,

it implies that changes in the environment that more strongly affect a subset of movers will more

strongly affect prices of houses which those movers buy. For example, lower minimum downpayment

requirements more strongly affect poor households for whom this constraint is more likely to be

binding. As a result, lower downpayment constraints lead to higher capital gains at the low end of

the market.

Second, higher moments of the quality and mover distributions matter. For example, we show

that the quality distribution of transacted homes in San Diego County at the peak of the boom

had fatter tails than at the beginning of the boom. This implied, in particular, that relatively lower

quality homes had to be assigned to relatively richer households than before the boom. For richer

households to be happy with a low quality home, homes of slightly higher quality had to become

relatively more expensive. The price function thus had to become steeper at the low end of the

market, which contributed to high capital gains in that segment.

Since we measure the quality distribution of transacted homes directly from the data, we do

not take a stand on where the supply of houses comes from. A more elaborate model might add

an explicit supply side, thus incorporating sellers’choice of when to put their house on the market,

the effects of the availability of land to developers (as in Glaeser, Gyourko, and Saks 2005), or

gentrification (as in Guerrieri, Hartley, and Hurst 2013.) At the same time, any model with an

explicit supply side also gives rise to an equilibrium distribution of transacted homes that has to be

priced and assigned to an equilibrium distribution of movers. The assignment and pricing equations

we study thus hold also in equilibrium ofmany larger models with different supply side assumptions.

Our results show what it takes to jointly match prices and mover characteristics, independently of

the supply side. In this sense, our exercise is similar to consumption-based asset pricing, where the

goal is to jointly match consumption and prices, also independently of the supply side.

2In contrast, the user cost equation determines a unique price per unit of housing, so every investor is marginal
with respect to every house.
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This paper is the first to study a quantitative assignment model with a continuum of houses

and a multidimensional distribution of mover characteristics. Assignment models with indivisible

heterogeneous goods and heterogeneous agents have been used in several areas of economics, most

prominently to study labor markets where firms with different characteristics hire workers with

different skill profiles (for an overview, see Sattinger, 1993.) In the context of housing, an early

reference is Kaneko (1982). Caplin and Leahy (2010) characterize comparative statics of competitive

equilibria in a general setting with a finite number of agents and goods. Stein (1995), Ortalo-Magne

and Rady (2006) and Rios-Rull and Sanchez-Marcos (2008) study models with two types of houses

and credit constraints. Määttänen and Terviö (2013) study no trade equilibria of a continuous

assignment model with income heterogeneity but no credit frictions; they use their model to relate

changes in income inequality to house price distributions across US cities.

We provide new evidence on the cross section of capital gains as well as the composition of

trading volume by quality over the recent housing boom. Our results use property level data for

San Diego County and several statistical models of price change. Our finding of a nontrivial cross

section of capital gains is related to existing empirical studies that compare house price dynamics

across price segments within a metro area, for example Poterba (1991), Case and Mayer (1996),

Case and Shiller (2005), and Guerrieri, Hartley, and Hurst (2013).3 Existing studies of volume

emphasize the comovement of volume and price changes over time as "hot" markets with high

prices and high volume turn into "cold" markets with low prices and low volume (for example,

Stein 1995.) Our results show that during the recent boom the relationship between prices and

volume in the cross section was nonmonotonic: volume became relatively higher both for cheap

houses and for expensive houses.

Our quantitative model considers jointly the effect of credit constraints and changes in the

house quality and mover distributions on prices as well as the cross section of household portfolios.

Reduced form evidence has suggested that both credit and changes in distributions can matter for

prices. For example, Poterba (1991) points to the role of demographics, whereas Bayer, Ferreira,

and McMillan (2007) highlight the importance of amenities (such as schools), and Guerrieri, Hartley

and Hurst (2013) relate price changes to gentrification, that is, changes in neighborhood quality.

Empirical studies have also shown that credit constraints matter for house prices at the regional

level. Lamont and Stein (1999) show that house prices react more strongly to shocks in cities where

more households are classified as “borrowing constrained”. Mian and Sufi(2010) show for the recent

US boom that house price appreciation and borrowing were correlated across zip codes. Mian and

Sufi (2009) show that areas with many subprime borrowers saw a lot of borrowing even though

income there declined.
3Interestingly, these studies do not find a common capital gain pattern across all booms —depending on time and

region, low quality houses may appreciate more or less than high quality houses during a boom. This suggests that
it is fruitful to study a single episode in detail, as we do in this paper.
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Our exercise infers the role of cheap credit for house prices from the cross section of capital

gains by quality. This emphasis distinguishes it from existing work with quantitative models of

the boom. Many papers have looked at the role of cheap credit or exuberant expectations for

prices in a homogeneous market (either a given metro area or the US.) They assume that houses

are homogeneous and determine a single equilibrium house price per unit of housing capital. As

a result, equilibrium capital gains on all houses are identical, and the models cannot speak to the

effect of cheap credit on the cross section of capital gains. Recent papers on the role of credit

include Himmelberg, Mayer, and Sinai (2005), Glaeser, Gottlieb, and Gyourko (2010), Kiyotaki,

Michaelides, and Nikolov (2010) and Favilukis, Ludvigson, and Van Nieuwerburgh (2010). The

latter two papers also consider collateral constraints, following Kiyotaki and Moore (1995) and

Lustig and van Nieuwerburgh (2005). Recent papers on the role of expectation formation include
Piazzesi and Schneider (2009), Burnside, Eichenbaum, and Rebelo (2011), and Glaeser, Gottlieb,

and Gyourko (2010).

The paper proceeds as follows. Section 2 presents evidence on prices and transactions by quality

segment in San Diego County. Section 3 presents a simple assignment model to illustrate the main

effects and the empirical strategy. Section 4 introduces the full quantitative model.

2 Facts

In this section we present facts on house prices and the distribution of transacted homes during the

recent boom. We study the San-Diego-Carlsbad-San-Marcos Metropolitan Statistical Area (MSA)

which coincides with San Diego County, California.

2.1 Data

We obtain evidence on house prices and housing market volume from county deeds records. We start

from a database of all deeds written in San Diego County between 1997 and 2008. In principle, deeds

data are publicly available from the county registrar. To obtain the data in electronic form, however,

we take advantage of a proprietary database made available by Trulia.com. We use deeds records to

build a data set of households’market purchases of single-family dwellings. This involves screening

out deeds that reflect other transactions, such as intrafamily transfers, purchases by corporations,

and so on. Our screening procedure together with other steps taken to clean the data is described

in Appendix A.

To learn about mover characteristics, we use several data sources provided by the U.S. Census

Bureau. The 2000 Census contains a count of all housing units in San Diego County. We also

use the 2000 Census 5% survey sample of households that contains detailed information on house
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and household characteristics for a representative sample of about 25,000 households in San Diego

County. We obtain information for 2005 from the American Community Survey (ACS), a represen-

tative sample of about 6,500 households in San Diego Country. A unit of observation in the Census

surveys is a dwelling, together with the household who lives there. The surveys report household

income, the age of the head of the household, housing tenure, as well the age of the dwelling, and a

flag on whether the household moved in recently.4 For owner-occupied dwellings, the census surveys

also report the house value and mortgage payments.

2.2 The cross section of house prices and qualities

In this section we describe how we measure price changes over time conditional on quality as well as

changes over time in the quality distribution. We first outline our approach. We want to understand

systematic patterns in the cross section of capital gains between 2000 and 2005. We establish those

patterns using statistical models that relate capital gain to 2000 price. The simplest such model

is the black regression line in Figure 1. Below we describe a more elaborate model of repeat sales

as well as a model of price changes in narrow geographic areas —the patterns are similar across all

these models.

If there is a one-dimensional quality index that households care about, then house quality at

any point in time is reflected one-for-one in the house price. In other words, the horizontal axis

in Figure 1 can be viewed as measuring quality in the year 2000. The regression line measures

common changes in price experienced by all houses of the same initial quality. More generally, any

statistical model of price changes gives rise to an expected price change that picks common changes

in price by quality.

There are two potential reasons for common changes in price by quality. On the one hand,

there could be common changes in quality itself. For example, quality might increase because the

average house in some quality range is remodeled, or the average neighborhood in some quality

range obtains better amenities.5 On the other hand, there could simply be revaluation of houses

in some quality range while the average quality in that range stays the same. For example, prices

may change because more houses of similar quality become available for purchase. In practice, both

reasons for common changes in price by quality are likely to matter, and our structural model below

thus incorporates both.

Independently of the underlying reason for price changes, we can determine the number of houses

4In the 2005 ACS, the survey asks households whether they moved in the last year. In the 2000 Census, the
survey asks whether they moved in the last two years.

5Importantly, changes in quality will be picked up by the expected price change only if they are common to all
houses of the same initial quality, that is, they are experienced by the average house in the segment. The figure
shows that, in addition, there are also large idiosyncratic shocks to houses or neighborhoods.

7



in the year 2005 that are “similar”to (and thus compete with) houses in some given quality range in

the year 2000. This determination uses a statistical model of price changes together with the cross

section of transaction prices. Consider some initial house quality in the year 2000. A statistical

model of price changes —such as the regression line in Figure 1 —says at what price the average

house of that initial quality trades in 2005. For example, from the regression line we can compute

a predicted 2005 price by adding the predicted capital gain to the 2000 price. Once we know the

predicted 2005 prices for the initial quality range, we can read the number of similar houses off the

cross sectional distribution of 2005 transaction prices.

In our context, we can say more: counting for every initial 2000 quality range the “similar”

houses in 2005 actually delivers the 2005 quality distribution, up to a monotonic transformation of

quality. This is because the predicted 2005 price from a statistical model is strictly increasing in the

initial 2000 price, as we document below using both parametric and nonparametric specifications.

Since price reflects quality in both years, it follows that for a given 2005 quality level, there is a

unique initial 2000 quality level such that the average house of that initial quality resembled the

given house in 2005.6

Of course, we do not know the mapping from initial 2000 quality to average 2005 quality, because

a model of price changes does not distinguish between common changes in quality and revaluation.

Nevertheless, since we know that the mapping is monotonic, we can represent the 2005 quality

distribution, up to a monotonic transformation, by the distribution of “similar” 2005 houses by

2000 quality. In other words, the 2000 price can serve as an ordinal index of quality. Quality

distributions for both 2000 and 2005 can be measured in terms of this index and then used as an

input into the quantitative implementation of our structural model below.

Statistical model of price changes by quality

Consider a loglinear model of price changes at the individual property level. This is the statistical

model we use to produce inputs for the structural model. To capture the cross section of capital

gains by quality, we allow the expected capital gain to depend on the current price. Formally, let pit
denote the price of a house i at date t. We assume that the capital gain on house i between dates t

and t+ 1 is

log pit+1 − log pit = at + bt log pit + εit+1, (1)

where the idiosyncratic shocks εit+1 have mean zero and are such that a law of large numbers holds

in the cross section of houses. For fixed t and t+ 1, the model looks like the regression displayed in

Figure 1.

6In the San Diego housing market, common changes in quality between 2000 and 2005 did thus not upset the
relative ranking of house quality segments: the average house from a high quality range in 2000 was worth more– and
hence of higher quality– than the average house from a low quality range in 2000. This does not mean, of course,
that there were no changes in the ranking of individual houses or neighborhoods– in our statistical model those are
captured by idiosyncratic shocks.
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The model estimated here differs from a simple regression since (1) is assumed to hold for every t

in our sample, so that the coeffi cients can be estimated with data on all repeat sales simultaneously.

We find this approach useful since a regression based only on 2000-2005 repeat sales might suffer

from selection bias —it would be based only on houses that were bought at the beginning of the

boom and sold at the peak.7 In contrast, under our approach the estimated coeffi cient at reflects

any repeat sale that brackets the year t. For example, the coeffi cients for t = 2004, say, reflect

repeat sales in the hot phase of the boom between 2002 and 2005, but also repeat sales between

2003 and 2008.

Equation (1) differs from a typical time series model for returns in that the coeffi cients are time

dependent. It is possible to identify a separate set of coeffi cients for every date because we have

data on many repeat sales. The coeffi cients bt determine whether there is a nontrivial cross section

of expected capital gains. If housing were a homogenous capital good, then it should not be possible

to forecast the capital gain using the initial price level pt, that is, bt = 0. The expected capital gain

on all houses would be the same (and equal to at), much like the expected capital gain is the same

for all shares of a given company. More generally, a nonzero coeffi cient for bt indicates that quality

matters for capital gains. For example bt < 0 means that prices of low quality houses that are

initially cheaper will on average have higher capital gains. In contrast, bt > 0 says that expensive

houses are expected to appreciate more (or depreciate less).

Suppose
(
pit, p

i
t+k

)
is a pair of prices on transactions of the same house that took place in years

t and t+ k, respectively. Equation (1) implies a conditional distribution for the capital gain over k

periods,

log pit+k − log pit = at,t+k + bt,t+k log pit + εit,t+k, (2)

where the coeffi cients at,t+k, bt,t+k are derived by iterating on equation (1). We estimate the para-

meters (at, bt) by GMM; the objective function is the sum of squared prediction errors, weighted

by the inverse of their variance. The GMM estimation uses data from repeat sales between all

pairs of years jointly by imposing the restriction that the multiperiod coeffi cients at,t+k and bt,t+k
are appropriate weighted sums and products of future at and bt coeffi cients between t and t + k,

respectively.

Table 1 reports point estimates based on 70,315 repeat sales in San Diego County that occurred

during 1997-2008. Details of how we screen repeat sales are in Appendix A. The first row in the

table shows the sequence of estimates for the intercept at. For example, the estimated at for the year

1999 is the intercept in the expected capital gain from 1999 to 2000. The intercept is positive for

expected capital gains during the boom phase 2000-2005, and negative during 2006-2008, reflecting

average capital gains during those two phases. The middle row shows the slope coeffi cients bt.

7Below we compare GMM estimation results to regression results based on property level, zip code, and census
tract prices reported in Appendix B. These results also suggest that selection bias is not a problem.
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During the boom phase, the slopes are strongly negative. For example, for the year 2002 we have

bt = −.09, that is, a house worth 10% more in 2002 appreciated by .9% less between 2002 and

2003. During the bust phase, the relationship is reversed: positive bts imply that more expensive

houses depreciated relatively less. The estimated expected capital gains during the boom years are

large: a house price between $100K and $500K corresponds to log pit ∈ (11.5, 13.1), and the resulting

expected capital gain at + bt log pit reaches double digits in many years on all houses in this range.

Table 1: Estimated Coefficients from Repeat Sales Model for San Diego

Year 1999 2000 2001 2002 2003 2004 2005 2006 2007

at 0.76 1.29 1.41 1.30 0.87 0.60 −0.56 −1.09 −3.18
(0.04) (0.04) (0.04) (0.04) (0.05) (0.06) (0.07) (0.10) (0.12)

bt −0.05 −0.093 −0.10 −0.09 −0.05 −0.04 0.04 0.07 0.22
(0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.01) (0.01) (0.01)

σit 8.8 8.3 8.6 8.2 8.0 8.4 9.7 11.4 13.8

Note: This table reports estimates for coeffi cients at, bt and the volatility σ
i
t in equation (1) for the

indicated years. The data for this estimation are the 70,315 repeat sales in San Diego County during

the years 1997-2008. The numbers in brackets are standard errors.

In a second step, we estimate the variances of the residuals (σ2t ) by maximum likelihood, assum-

ing the shocks εit+1 are normally distributed and iid over time as well as in the cross section. This

is to get an idea of the idiosyncratic volatility of housing returns faced by households who buy a

single property. The results are reported in the bottom row of Table 1. Volatility is around 9% on

average, slightly higher than the idiosyncratic volatility of 7% reported by Flavin and Yamashita

(2002).8 Another interesting pattern is that idiosyncratic volatility increased by more than half in

the bust period.

To construct the quality distribution for 2005 below, what matters are the coeffi cients of the

predicted 2005 price given the 2000 price. To ease notation, set t equal to the year minus 2000, so

we are interested in a0,5 = 4.75 and b0,5 = −.322. The predicted log price for 2005

log p̂5 = a0,5 + (1 + b0,5) log p0, (3)

is therefore strictly increasing as a function of the 2000 price. In other words, even though lower

quality houses appreciated more during the boom, there were no segments that became systemati-

cally more valuable than other segments. In Appendix B, we show that this monotonicity is not an
8Table 1A in Flavin and Yamashita (2002) reports a 14% return volatility for individual houses. Their Table 1B

reports a 7% volatility for the Case-Shiller city index for San Francisco, which is comparable to San Diego. The
difference between these two numbers is a 7% idiosyncratic volatility.
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artifact of our loglinear functional form (1). Nonparametric regressions of 2005 log price on 2000

log price reveal only small deviations from linearity, and the predicted price function is also strictly

increasing.

Quality distributions

Let Φ0 denote the cumulative distribution function (cdf) of log transaction prices in the year 2000

(or t = 0). With the 2000 price as the quality index, the cdf of house qualities is G0 (p0) = Φ0 (p0).

This cdf is constructed from all 2000 transactions, not only repeat sales. The repeat sales model

describes price movements of houses that exist both in 2000 and in later years. In particular,

between 2000 and 2005 (that is, t = 0 and t = 5), say, common shocks move the price of the

average house that starts at quality p0 in year 0 to the predicted price (3) in year t = 5. Since the

mapping from year 0 quality p0 to year t price is monotonic (1 + b0,5 > 0), we know that common

changes in quality do not upset the relative ranking of house qualities. Of course, the quality ranking

of individual houses may change because of idiosyncratic shocks —for example, some houses may

depreciate more than others. These shocks average to zero because of the law of large numbers.

We now turn to the quality distribution in 2005. Let Φ5 denote the cdf of all log transaction

prices in t = 5. We know that the average house that starts at quality p0 in year 0 trades at the

price p̂5 in year 5. We define the fraction of houses of quality lower than p0 as

Gt (p0) = Φt (a0,5 + (1 + b0,5) log p0) .

By this definition, the index p0 tracks relative quality across years. If the same set of houses trades

in both years 0 and 5, then the quality distributions G5 and G0 are identical. More generally, G5
can be different from G0 because different sets of houses trade at the two dates. For example, if

more higher quality houses are built and sold in t = 5, then G5 will have more mass at the high

end. Any new construction of houses will thus be included in the distribution G5 provided that

these new houses are sold in period 5.

Figure 2 shows the cumulative distribution functions G for the base year 2000 as well as for t = 5.

The cross sectional distribution of prices Φ are taken from Census and ACS data, respectively. (We

have also constructed distributions directly from our deeds data, with similar results.) The key

difference between the two quality distributions is that there was more mass in the tails in the year

2005 (green line) than in 2000 (blue line.) In other words, the year 2005 saw more transactions of

low and high quality homes compared to the year 2000.

What does the one-dimensional quality index measure?

Our approach treats San Diego County as a common housing market and assumes a one-

dimensional quality index. The index combines all relevant characteristics of the house which

includes features of land, structure, and neighborhood. Above, we have estimated the cross section
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Figure 2: Cumulative distribution function of house qualities in 2000 and 2005

of capital gains by quality from property-level price data. An alternative approach is to look at

median prices in narrow geographic areas such as zipcodes or census tracts. If market prices ap-

proximately reflect a one dimensional quality index, then the two approaches should lead to similar

predictions for the cross section of capital gains. Moreover, adding geographic information should

not markedly improve capital gain forecasts for individual houses.

Appendix B investigates the role of geography by running predictive regressions for annualized

capital gains between 2000 and 2005. First, we consider the cross section of capital gains by area,

with area equal to either zipcode or census tract, defined as the difference in log median price in

the area. We regress the area capital gain from 2000 to 2005 on the 2000 median area price (in

logs). We compare the results to a regression of property capital gain on the initial property price

as considered above. The coeffi cients on the initial area price variables are close (between .06 and

.07) and the R2 is similar (around 60%). The GMM estimate for b0,5 implied by our repeat sales

model above was b0,5 = −.322 = −.064 × 5 and is thus also in the same range on an annualized

basis. Moreover, the predicted capital gains for the median house (log pi2000 = log 247, 000 = 12.42)

are within one percentage point of each other. We conclude that the price patterns we find are not

specific to a repeat sales approach.

Second, we consider predictive regressions for property level capital gains that include not only

the initial property price but also the initial area median price. For both zipcode and census tract,

the coeffi cient on the area price is economically small (less than .015), and in the case of census

tract it is not significant. The coeffi cient on the initial property price is almost unchanged. In both

cases, the R2 increases only marginally by 0.01 percentage points. These results are again consistent
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Figure 3: Left panel : individual transactions in San Diego County; each dot is a house that was
sold in 2005. Color indicates 2005 price ranging from light blue (cheap) to pink (expensive). Grey
lines delineate zip codes. Middle panel : census tracts colored by change (between 2000 and 2005) in
their share of total countywide volume. Warm colors indicate areas where volume increased, with
change in share of volume increasing from red to yellow. Cold colors indicate areas where volume
decreased, with change in share of volume decreasing from green to blue. Grey areas are census
tracts in which the share of total volume changed by less than .05%. Right panel : census tracts
colored by change in the share of census tract volume contributed by houses in the lowest quintile
of the overall county quality distribution. Warm (cold) colors indicate census tracts in which the
composition of volume changed towards more (less) low quality housing. Here grey areas are census
tracts in which the share of total volume changed by less than 5% in absolute value.

with our assumption that house prices reflect a one-dimensional index that aggregates house and

neighborhood characteristics.

Given these findings, it makes sense to construct quality distributions from property level data.

This will allow us to accurately capture shifts in quality that happen within narrow geographic areas.

To illustrate this heterogeneity as well as the source of shifts in the quality distribution, Figure 3

shows maps of San Diego County. The left hand panel is a map of 2005 housing transactions in the

western half of the county. County area to the east is omitted because it comprises sparsely inhabited

rural mountain terrain and the Anza-Borrego desert. Each dot in the map is a transaction, with the

colormap reflecting price from light blue (cheap) to pink (expensive). The grey lines delineate zip

codes. There is geographic clustering: in the rich suburbs along the Pacific, most traded houses are

expensive, whereas in the poor areas around downtown most traded houses are cheaper. However,

variation is also apparent within narrow geographic areas, and certainly at the level of delineated

zipcodes.

The middle and right panels of Figure 3 illustrate the shift in the quality distribution from
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2000 to 2005. In particular, the increase in the share of low quality houses in Figure 2 had two

components. First, the share of volume in low quality neighborhoods increased at the expense of

volume in high quality neighborhood. The middle panel colors census tracts by the change (between

2000 and 2005) in their share of total countywide volume. Grey areas are census tracts in which

the share of total volume changed by less than .05% in absolute value. The warm colors (with a

colormap going from red = +.05% to yellow = + 1%) represent census tracts for which the share of

volume increased. In contrast, the cold colors (with a colormap going from blue = −1% to green =
−.05%) indicates census tracts that lost share of volume. Comparing the left and middle panel, a
number of relatively cheaper inland suburbs increased their contribution to overall volume, whereas

most expensive coastal areas lost volume.

Second, the share of low quality volume increased within census tracts, and here the direction is

less clearly tied to overall area quality. The right panel colors census tracts by the change (between

2000 and 2005) in the share of census tract volume that was contributed by houses in the lowest

quintile of the overall county quality distribution. Here grey areas are census tracts in which the

share of total volume changed by less than 5% in absolute value. Warm colors (with a colormap

from red = 5% to yellow = 60%) represent census tracts in which the composition of volume changed

towards more low quality housing. The cold colors (colormap from blue = −60% to green = −5%)
show tracts where the composition changes away from low quality housing. Comparing the left

and right panels, many of the inland neighborhoods that saw an overall increase in volume also

experienced an increase in the share of low quality housing. At the same time, there is less low

quality housing in the downtown area, which did not see unusual volume. Moreover, even some of

the pricey oceanfront zipcodes saw an increase in the share of low quality houses.

2.3 Mover characteristics

Below we model the decisions by movers, so we are interested in the characteristics of movers in San

Diego in 2000 and 2005. Table 2 shows summary statistics on the three dimensions of household

heterogeneity in our model: age, income, and wealth (defined as net worth, including houses and

all other assets). For comparison, we also report statistics for stayer households. The difference in

mover versus stayer characteristics is particularly pronounced in the year 2005, at the peak of the

housing boom. This finding underscores the importance of measuring the characteristics of movers,

which are the households whose optimality conditions we want to evaluate.

Table 2 shows that movers tend to be younger than stayers. In San Diego, roughly 13% of stayer

households are aged 35 years and younger. Among movers, this fraction is almost three times as

large in the year 2000. It further increases to 46% in the year 2005. Table 2 also shows that the

median income of younger households is roughly the same as the median income of older households.
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However, younger households are poorer than older households; older households have about 2.5

times as much wealth as younger households. Finally, movers are somewhat poorer than stayers.

Table 2: Characteristics of San Diego Movers and Stayers
Year 2000 Year 2005

Movers Stayers Movers Stayers

Fraction of households
aged ≤ 35 years 0.34 0.13 0.46 0.14
aged > 35 years 0.66 0.87 0.54 0.86

Median Income (in thousands)
aged ≤ 35 years 74.1 74.8 77.5 86.7
aged > 35 years 82.3 74.4 88.7 78.5

Median Wealth (in thousands)
aged ≤ 35 years 145.0 161.2 222.3 257.0
aged > 35 years 361.4 402.2 603.3 724.7

Note: This table reports summary statistics for stayer and mover households in San Diego County for

the years 2000 and 2005. All dollar numbers are in 2005 dollars, and are thus comparable. The table

has two age bins for household heads: aged 35 and younger, older than 35 years. For age and income,

we use age of the household head and income reported in the 2000 Census and 2005 ACS. For wealth,

we use imputed wealth with data from the Survey of Consumer Finances. The appendix explains the

details.

The reported medians mask substantial heterogeneity within each characteristic. For example,

the top 10 percent richest households tend to receive roughly 20 percent of the total income earned

by their age group, which illustrates the fact that there is income inequality. This inequality is even

more pronounced for total wealth, where the top 10 percent households own 50 percent of the total

wealth in their age group. The amount of inequality stays roughly the same across the two years,

2000 and 2005.

3 Assigning houses to movers

We consider an assignment model of a city. A group of mover households faces an inventory of

available houses. Houses are indivisible and come in different qualities indexed by h ∈ [0, 1]. The

one-dimensional quality index h summarizes various aspects of housing that households care about

(for example square footage, location, views or amenities such as schools.) The inventory of houses
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is described by a strictly increasing cumulative distribution function G (h). A house of quality h

trades in a competitive market at the price p (h).

Every mover household buys exactly one house. Let h∗ (p, i) denote the housing demand function

of household i. It depends on the house price function p as well as on household i’s characteristics.

In equilibrium, the markets for all house types clear. For every h ∈ [0, 1], the number of households

who demand houses of quality less than h must therefore be equal to the number of such houses in

the inventory:

Pr (h∗ (p, i) ≤ h) = G (h) . (4)

The price function p (h) describes a set of house prices at which households are happy to be assigned

to the available inventory of houses.

How hard it is to solve a model like this depends on (i) how housing demand h∗ is derived and (ii)

what the distribution of mover characteristics looks like. Our quantitative model derives housing

demand from an intertemporal optimization program with uncertainty and frictions (borrowing

constraints and transaction costs.) Moreover, households differ by age, wealth, and income so that

the distribution of movers is three-dimensional. Both housing demand and equilibrium prices must

then be determined numerically.

Before introducing the full model, we consider a simpler version. In particular, we assume

that (i) the housing demand is derived from a frictionless, deterministic, one-period optimization

problem and (ii) the distribution of mover characteristics is one-dimensional. While this version is

not suitable for quantitative work, prices and assignments are available in closed form. We use this

model to illustrate how changes in the house quality and mover distributions as well as shocks to a

subpopulation (in the vein of a change in credit conditions for poor households) differentially affect

prices at the high and low end of the quality spectrum. We also clarify how our setup differs from

other models in which houses are priced linearly.

A simple model

Households care about two goods: housing and other (numeraire) consumption. Households

start with wealth w and buy a house of quality h at the price p (h). Households also choose their

consumption of numeraire c. A household maximizes utility

u (c, h) (5)

subject to the budget constraint

c+ p (h) = w.

Let F (w) denote the strictly increasing cumulative distribution function of wealth w defined on

the nonnegative real line. An equilibrium consists of a consumption and house allocation together
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with a price function such that households optimize and markets clear.

The first order condition for the household problem is

p′ (h) =
u2 (c, h)

u1 (c, h)
. (6)

It says that the marginal rate of substitution (MRS) of housing for numeraire consumption equals

the marginal value of a house p′ (h) at the quality level h that the household chooses. Intratemporal

Euler equations that equate MRS and house prices hold in many models of housing. What is special

here is that house value does not need to be linear in quality. The MRS is thus equated to a marginal

house value that may differ across quality levels. In this sense, houses of different quality are priced

by different marginal investors.

Consider an equilibrium such that optimal house quality is unique and strictly increasing in

wealth. The assignment of houses to wealth levels is then given by a strictly increasing function

h∗ : R+0 → [0, 1]. It is convenient to work with its inverse w∗ (h), which gives the wealth level of an

agent who is assigned a house of quality h. The market clearing condition (4) now says that, for all

h,

F (w∗ (h)) = G (h) =⇒ w∗ (h) = F−1 (G (h)) ,

where w∗ is well defined because F is strictly increasing. The assignment of wealth levels to house

qualities depends only on the respective distributions, and is independent of preferences. Of course,

prices will depend on preferences through the Euler equations.

The function w∗ describes a QQ plot commonly used to compare probability distributions. Its

graph is a curve in (h,w)-space that is parametrized by the common cdf value in [0, 1]. The shape

of the graph w∗ is determined by the relative dispersion of house quality and wealth. If the relative

dispersion is similar, the graph of w∗ is close to the 45 degree line. In the special case of identical

quality and wealth distributions, the graph of w∗ is exactly the 45 degree line. If the distribution

of wealth F is more dispersed than the quality distribution G, the graph of w∗ is steeper than the

45 degree line. For example, if all houses are essentially of the same quality, but there is some

dispersion in wealth, then w∗ must be close to a vertical line and is thus very steep. In contrast, if

wealth is less dispersed than quality then w∗ is flatter than the 45 degree line.

To characterize equilibrium prices in closed form, we specialize further and assume separable

log utility, that is, u (c, h) = log c + θ log h. From the Euler equations, the marginal house price at

quality h must be equal to the MRS between housing and wealth spent on other goods:

p′ (h) = θ
w∗ (h)− p (h)

h
. (7)

An agent with wealth w∗ (h) must be indifferent between buying a house of quality h and spending
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w∗ (h)−p (h) on other goods, or instead buying a slightly larger house and spending slightly less on

other goods. An agent who already spends a lot on other goods is willing to pay more for a larger

house (because of diminishing marginal utility of nonhousing consumption.) Therefore, if the house

of quality h is assigned to an agent who spends more on nonhousing consumption per unit of house

quality, then the slope of the house price function must be steeper at the point h.

To obtain closed form solutions for equilibrium prices, we further assume distributions G and F

such that the assignment function is a polynomial of degree n

w∗ (h) =

n∑
i=1

aih
i. (8)

The lowest-quality house must have a zero price since it is purchased by the buyer who has zero

wealth. The unique solution to the ordinary differential equation (7) that satisfies p (0) = 0 is given

by

p (h) =

∫ h

0

(
h̃

h

)θ θw∗
(
h̃
)

h̃
dh̃ =

n∑
i=1

ai
θ

θ + i
hi. (9)

If this solution is strictly increasing, then it is an equilibrium house price function. The price for a

house of quality h is the weighted average of MRS for all agents who buy quality less than h, with

the MRS evaluated at total wealth.

When is the price function linear?

In general, the equilibrium price (9) is a nonlinear function of quality. Higher powers of h matter

for prices if they matter for the assignment (8). Linear pricing emerges in equilibrium, however, for

particular pairs of distributions. Indeed, suppose the distributions F and G are scaled version of

each other, that is, F (w) = G (w/k) for some positive constant k. The assignment function is then

w∗ (h) = kh. Let W̄ =
∫
w dF (w) and H̄ =

∫
h dG (h) = W̄/k denote average wealth and house

quality, respectively. The price function can be written as p (h) = ph with

p =
θ

θ + 1

W̄

H̄
. (10)

It depends on the distributions F and G only through their respective means. More generally, the

segment-specific house price (9) can depend on details of the distributions through the parameters

of the assignment (8).

The emergence of linear pricing as a knife-edge case is not limited to log utility. Indeed, given a

utility function such that housing is a normal good, a cdf F (w) for movers and an average housing

quality H =
∫
h dG (h), we can find a cdf G̃ (h) with mean H such that (i) the assignment can

be represented by an increasing function w∗ (h) = F−1(G̃ (h)) and (ii) the price function is linear
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p (h) = ph, where for all h we have

p =
u2 (c, h)

u1 (c, h)
. (11)

When pricing is linear, the per-unit house price p enters the Euler equations of all households: The

marginal (or, equivalently, the average, per unit) user cost can be read off the Euler equation of

any household —in this sense every household is a marginal investor for every house h ∈ [0, 1]. In

contrast, in the nonlinear pricing case, the marginal user cost at quality h can be read off only one

Euler equation (6), that of the marginal investor with wealth w∗ (h) .

The linear special case is imposed in macroeconomic models with divisible housing capital. In

these models, there is a production technology that converts different houses into each other which

is linear; the marginal rate of transformation between different houses is thus set equal to one.

Moreover, the cdf G̃ (h) is assumed to adjust so as to ensure linear pricing. As a result, the per unit

price of housing p changes if and only if the marginal rate of substitution of all investors changes.

In our quantitative approach below, we do not take a stance on the production technology or the

house quality distribution G (h). Instead, we measure the cdf G (h) directly from the data — in

other words, we let the data tell us whether the pricing is linear or nonlinear.

Graphical example

Figure 4 illustrates equilibria with separable log utility. The top left panel shows a wealth

density f (w) = F ′ (w). The top right panel shows a uniform house density g (h) = G′ (h). In both

panels, the second and fourth quintile have been shaded for easier comparison. The bottom left

panel shows house prices. The solid line is the house price function p (h). Its nonlinearity reflects

the different shapes of F and G that lead to a nonlinear assignment w∗. The dotted line is the

price function for a comparison economy with the same mean house quality but linear pricing. In

the comparison economy, at least one of the distributions must be different so w∗ is linear. For

example, we could have the uniform house quality distribution G together with a uniform wealth

distribution F̃ . Alternatively, we could have the wealth distribution could be F together with a

house quality distribution G̃ adjusted so quality is a scaled version of wealth. The latter would

emerge in equilibrium in a model with divisible housing.

To understand in more detail how the shape of the price function depends on F and G, consider

first the assignment function w∗ (h) = F−1 (G (h)), plotted in the bottom right panel. It is relatively

steep for low and high house qualities, and relatively flat in between. Locally, the slope of w∗ is

higher at a point h if house quality near that point is less dispersed than wealth. Indeed, if there

are many houses of quality close to h, but few movers have wealth close to w∗ (h), then some houses

close to h must be assigned to movers who are much richer or poorer than w∗ (h), so the function

w∗ is steep around h. The overall effect can be seen in the figure by focusing on relative dispersion

of wealth and house quality within quintiles. The dispersion of house quality is the same in each
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Figure 4: Equilibrium prices and assignment with lognormal wealth density f (w) and uniform
house quality density g (h) . Top left: wealth density f (w). Top right: house quality density g (h).
Bottom left: the equilibrium house price function p (h) in the indivisible model (solid line) and the
divisible model (dotted line). Bottom right: assignment w∗ (h) and house prices. Shaded areas
indicate the quintiles of the distribution.

quintile due to the uniform distribution. The dispersion of wealth is relatively high in the first and

fifth quintile (where w∗ is therefore steep), but relatively low in the second and third quintile (where

w∗ is flatter).

The house price function is determined by the segment-specific Euler equation (7). For a given

quality h, the price function is steeper if the marginal investor spends more on nonhousing con-

sumption per unit of house quality. In particular, for a given p (h), the house price must rise more

if the marginal investor is richer. The house price function thus inherits from the assignment w∗

the property that it steepens for very high and very low qualities. There is less steepening at high

qualities where wealth per unit of quality responds less to w∗. In addition, the house price function

must be consistent with pricing by all marginal investors at qualities less than h. More dispersion

in wealth relative to house quality in lower quintiles thus leads to higher prices in higher quintiles.
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For the very smallest houses, the closed form solution for price (9) analytically illustrates the

role of relative dispersion. First order expansion of p at h = 0 delivers9

p (h) ≈
θ

θ + 1
a1h (12)

In general, the slope of the price function at h = 0 thus depends not only on θ, but also on the

slope of the assignment function w∗ and thus the relative shape of the cdfs near zero For example,

if the densities f and g are defined for positive w and h, respectively, then a1 is the limit, as h goes

to zero, of the density ratio g (h) /f (w∗ (h)). If, say, the house density is higher than the wealth

density near zero then the price function has to slope up steeply. This is because many similar small

houses have to be assigned to movers of different wealth. In contrast, with linear pricing, a1 = 1

and the slope p′ (0) depends only on preferences.

Comparative statics

Figure 5 shows what happens if the house quality distribution has fatter tails: there is more

mass at both the low and high end. The new density —the green line in the top right panel —is

U-shaped and symmetric around one half. The mean house quality is thus the same as under the

original uniform density. While the densities here are stylized, a move from the blue to the green

density qualitatively mimics the move from the 2000 to the 2005 quality distribution displayed in

Figure 2 and studied quantitatively in Section 5 below. The green line in the bottom left panel is the

new price function, p̂ (h) say. Prices change to reflect the new relative shapes of the distributions.

In contrast, if pricing was linear, then prices would not change since the means have not changed.

The bottom right panel shows capital gains by house value. It plots the log house value in the

“blue economy” (log p (h), or the log of the blue line in the bottom left panel) on the horizontal

axis against the capital gain from blue to green (log p̂ (h) − log p (h) or the log difference between

the green and blue lines in the bottom left panel) on the vertical axis. Capital gains are positive

and higher at the low end than at the high end. Indivisibility of housing is crucial for this result —

in a model with divisible housing and hence linear pricing, capital gains would be zero.

To understand the intuition, it is again helpful to consider the relative dispersion of wealth and

quality within quintiles. In the bottom quintile, the dispersion of house qualities has now decreased,

making wealth even more dispersed relative to quality. The assignment w∗ must become steeper in

this region as richer agents must buy lower quality houses. A steeper assignment in turn implies

a steeper house price function.10 Starting from the smallest house, prices rise faster to keep richer

9In particular we have a1 = g (0) /f (0) if the densities are defined at zero, but this is not necessary for a polynomial
w∗.
10For example, for the smallest houses, the increase in the house quality density at zero induces an increase in a1,

to â1 say. The capital gain satisfies

lim
h→0

(log p̂ (h)− p (h)) = log â1
a1
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Figure 5: Changing the distribution of house qualities. Top left: wealth density f (w). Top right:
quality density g (h) under uniform (blue) and beta (green). Bottom left: blue equilibrium price
function p (h) for uniform distribution, green function for beta quality density. Bottom right: capital
gain from blue prices to green prices.

marginal investors indifferent. For higher qualities, for example in the third quintile, the effect is

reversed: as the house distribution is more dispersed than the wealth distribution, poorer marginal

investors imply a flatter price function.

Figure 6 provides an example of a shock to a subpopulation. We assume that all agents with

wealth less than 4 develop a higher taste for housing, as measured by the parameter θ. Over that

range, we choose the increase in θ to be linearly declining in wealth, with a slope small enough

such that the assignment is still monotonic in wealth. The wealth and quality distributions are the

same as before. The bottom panels show prices and capital gains. The Euler equation predicts that

the slope of the price function becomes steeper for low house qualities that poor households buy

and capital gains are higher there. With linear pricing, prices also rise to reflect higher demand for

housing but capital gains must be the same everywhere. It follows that in our model, a shock that
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Figure 6: Changing poor households’preferences for housing.

affects only poor agents has larger effects on prices at the low end than in a model with divisible

housing.

4 A Quantitative Model

For the stylized model in the previous section, housing demand was derived from a frictionless,

deterministic, static optimization problem and households differed only in wealth. In this section,

we describe a more general intertemporal problem for household savings and portfolio choice. This

problem accommodates many features that have been found important in existing studies with

micro data, and thus lends itself better to quantitative analysis. It differs from most existing

models because there is a continuum of (indivisible) assets that agents can invest in.

The problem is solved for a distribution of households that differ in age, income, and cash on

hand (that is, liquid resources). The distribution is chosen to capture the set of movers in San Diego

County in a given year. An equilibrium is defined by equating the distribution of movers’housing
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demand derived from the dynamic problem to the distribution of transacted houses. Appendix D

contains a detailed description of our computations.

4.1 Setup

Households live for at most T periods and die at random. Let Dt denote a death indicator that

equals one if the household dies in period t or earlier. This indicator is independent over time but

has an age-dependent probability. Preferences are defined over streams of housing services s and

other (numeraire) consumption c during lifetime, as well as the amount of numeraire consumption

w left as bequest in the period of death. Conditional on period τ , utility for an agent aged aτ in

period τ is

Eτ

[
τ+T−aτ∑
t=τ

βt
[
(1−Dt) u(ct, st (ht)) + (Dt −Dt−1) vb (wt)

]]
(13)

Households have access to two types of assets. First they can buy houses of different qualities

h ∈ [0, 1] that trade at prices pt (h). Owning a house is the only way to obtain housing services

for consumption. A house of size ht owned at the end of period t produces a period t service flow

st (ht) where the function st is strictly increasing. It may depend on time to accommodate growth.

Households also participate in the credit market. Between period t and t + 1, the household

can either lend at the rate Rt or borrow at the rate Rt + ρt. The spread ρt is strictly positive so

the household never simultaneously borrows and lends.11 We denote net borrowing by bt so bt < 0

represents bond purchases. We assume that a household can only borrow up to a fraction 1− δt of
the value of his house. In other words, the amount bt must satisfy

bt ≤ (1− δt)pt(ht). (14)

The fraction δt is the downpayment requirement on a house.

We introduce three further features that distinguish housing from bonds. First, selling houses

is costly: the seller pays a transaction cost ν that is proportional to the value the house. Second,

every period an owner pays a maintenance cost ψ, also proportional to the value of the house.

Finally, a household can be hit by a moving shock mt ∈ {0, 1}, where mt = 1 means that they must

sell their current house. Formally, the moving shock may be thought of as a shock to the housing

services production function st (·) that permanently leads to zero production unless a new house is
bought. Of course, households may also choose to move when they do not receive a moving shock,

11The spread here accounts for screening costs on the part of lenders. It does not incorporate expected costs of
default since the number of mortgage defaults during the boom period we study was negligible. For an application to
the bust period, it would be important to include these mortgage defaults explicitly in to the model (as in Chatterjee
and Eyigungor 2009, Corbae and Quintin 2010, Campbell and Cocco 2010.)
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for example because their income has increased suffi ciently relative to the size of their current home.

Households receive stochastic income

yt = f (at) y
p
t y

tr
t (15)

every period, where f (at) is a deterministic age profile, y
p
t is a permanent stochastic component,

and ytrt is a transitory component.

Our approach to incorporating the tax system is simple. We assume that income is taxed at a

rate τ . So the aftertax income (1− τ) yt enters cash on hand and the budget constraint. Mortgage

interest can be deducted at the same rate τ . Interest on bond holdings is also taxed at rate τ .

Therefore, the aftertax interest rate (1− τ)Rt enters cash on hand and the budget constraint. We

assume that housing capital gains are sheltered from tax.

To write the budget constraint, it is helpful to define cash on hand net of transaction costs. The

cash wt are the resources available if the household sells:

wt = (1− τ) yt + pt(ht−1)(1− ν)− (1− τ) (Rt−1 + ρt−11{bt−1>0})bt−1 (16)

The budget constraint is then

ct + (1 + ψ)pt(ht) = wt + 1[ht=ht−1&mt=0]νpt(ht−1) + bt (17)

Households can spend resources on numeraire consumption and houses, which also need to be

maintained. If a household does not change houses, resources are larger than wt since the households

does not pay a transaction cost. The household can also borrow additional resources.

Consider a population of movers at date t. A mover comes into the period with cash wt, including

perhaps the proceeds from selling a previous home. Given his age at, current house prices pt as

well as stochastic processes for future income yτ , future house prices pτ , the interest rate Rτ , the

spread ρτ , and the moving shock mτ , the mover maximizes utility (13) subject to the budget and

borrowing constraints. We assume that the only individual-specific variables needed to forecast the

future are age and the permanent component of income ypt . The optimal housing demand at date t

can then be written as h∗t (pt; at, y
p
t , wt).

As in the previous section, the distribution of available houses is summarized by a cdfGt (h). The

distribution of movers is described by the joint distribution of the mover characteristics (at, y
p
t , wt).

An equilibrium for date t is a price function pt and an assignment of movers to houses such that

households optimize and market clear, that is, for all h,

Pr (h∗t (pt; at, y
p
t , wt) ≤ h) ≤ Gt (h) .
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This equation involves the optimality conditions of movers. We do not explore the optimality

conditions of non-movers as well as developers or other sellers. These conditions impose additional

restrictions on equilibrium prices.

The dynamic programming problem for movers does not offer them the option to rent a house in

the future. There are certain states of the world (with extremely low income or cash), in which such

a rental option might be attractive. However, transitions from owning to renting happen rarely in

the data. For example, Bajari, Chan, Krueger, and Miller (2012) estimate this transition probability

to be 5% for all age cohorts. Moreover, our continuous distribution of house qualities includes some

extremely small homes for households who want to downscale. The absence of a rental option will

thus not matter much for our quantitative results below.

4.2 Numbers

We now explain how we quantify the model. In this section, we describe our benchmark specification.

Section 5 discusses results based on several alternatives. It is helpful to group the model inputs into

four categories

1. Preferences and Technology

(Parameters fixed throughout all experiments.)

(a) Felicity u, bequest function v, discount factor β

(b) conditional distributions of death and moving shocks

(c) conditional distribution of income

(d) maintenance costs ψ, transaction costs ν

(e) service flow function (relative to trend)

2. Distributions of house qualities and mover characteristics

3. Credit market conditions

(a) current and expected future values for the interest rate R and the spread ρ

(b) current and expected future values for the downpayment constraint δ

4. House price expectations

Our goal is to explain house price changes during the boom. We thus implement the model for

two different trading periods: once before the boom, in the year 2000, and then again at the peak
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of the boom, the year t = 2005. Preferences and technology are held fixed across trading periods.

In contrast, the distributions of house qualities and mover characteristics, credit conditions as well

as expectations about prices and credit conditions change across dates. To select numbers use data

on distributions and market conditions together with survey expectations.

For the pre-boom implementation (labeled t = 2000), distributions are measured using the 2000

Census cross section. Credit market conditions are based on 2000 market data and are expected

to remain unchanged in the future. Moreover, households expect all house prices to grow at trend

together with income, so relative prices remain unchanged. The service flow function is chosen to

match 2000 house prices at these expectations. At the same time, preference parameters are fixed

to match moments of the wealth distribution.

For the peak-of-the-boom implementation (labeled t = 2005), distributions are measured using

the 2005 ACS. For the baseline exercise, we assume that (i) credit market conditions are based on

2005 market data, (ii) interest rates are expected to mean revert, while other borrowing conditions

are expected to remain unchanged and (iii) all house prices grow at trend together with income.

We then compare predictions for 2005 equilibrium house prices with 2005 data. Other exercises

varying (i) − (iii) are described below. In particular, Appendix E considers a scenario in which

households anticipate the Great Recession, expecting tighter credit and lower house prices. We now

describe all elements of the quantitative strategy in detail.

Preferences and technology

The period length for the household problem is three years. Households enter the economy at

age 22 and live at most 23 periods until age 91. Survival probabilities are taken from the 2004 Life

Table (U.S. population) published by the National Center of Health Statistics. Felicity is given by

CRRA utility over a Cobb-Douglas aggregator of housing services and other consumption:

u(c, s) =
[c1−ρ sρ]1−γ

1− γ , (18)

where ρ is the weight on housing services consumption, and γ governs the willingness to substitute

consumption bundles across both time period and states of the world. We work with a Cobb-

Douglas aggregator of the two goods, with ρ = .2. If divisible housing services are sold in a

perfect rental market, the expenditure share on housing services should be constant at 20%. This

magnitude is consistent with evidence on the cross section of renters’expenditure shares (see for

example, Piazzesi, Schneider, and Tuzel 2007.) We also assume γ = 5, which implies an elasticity

of substitution for consumption bundles across periods and states of 1/5.

Utility from bequests takes the form vb (w) = v̄bw1−γ/ (1− γ) with γ = 5. We choose the

constant v̄b as well as the discount factor to match average household wealth as well as average

wealth of households older than 81, both in 2000. The resulting constant v̄b is 0.54 and the discount

27



factor is β = .95.

The moving shocks are computed based on two sources. First, we compute the fraction of

households who move by age, which is about a third per year on average. The fraction is higher for

younger households. To obtain the fraction of movers who move for exogenous reasons, we use the

2002 American Housing Survey which asks households in San Diego about their reasons for moving.

A third of movers provides reasons that are exogenous to our model (e.g., disaster loss (fire, flood

etc.), married, widower, divorced or separated.)

We estimate the deterministic life-cycle component f (at) in equation (15) from the income data

by movers. The permanent component of income is a random walk with drift

ypt = ypt−1 exp (µ+ ηt) , (19)

where µ is a constant growth factor of 2% and ηt is iid normal with mean −σ2/2. The transitory
component ytrt of income is iid. The standard deviation of permanent shocks ηt is 11% and the

standard deviation of the transitory component is 14% per year, consistent with estimates in Cocco,

Gomes, and Maenhout (2005).

We assume that maintenance expenses cover the depreciation of the house. Based on evidence

from the 2002 American Housing Survey, maintenance ψ is roughly 1% of the house value per year.

The transaction costs ν are 6% of the value of the house, which corresponds to real estate fees in

California.

The housing services produced by a house of quality h grow at the same rate µ as income.

Starting from an initial service flow function st (h), households expect

st+1(h) = exp (µ) st(h). (20)

As discussed above, the initial service flow function s0 is backed out so that the model exactly fits

the 2000 price distribution. Constant growth of service flow over time is consistent with evidence

on improvements in the cross section of houses discussed in Appendix C.

Distributions of house qualities and mover characteristics

House quality is expressed in terms of 2000 prices as described in Subsection 2.2; the relevant

2000 and 2005 quality cdfs are shown in Figure 2. The problem of an individual household depends

on characteristics (at, y
p
t , wt). For age and income, we use age of the household head and income

reported in the 2000 Census (for t = 2000) and 2005 ACS (for t = 2005). The Census data does not

contain wealth information. We impute wealth using data from the Survey of Consumer Finances.

The appendix contains the details of this procedure.
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Credit market conditions

Current lending and borrowing rates are set to their corresponding values in the data. For the

lending rates Rt, the data counterpart is the three-year interest rate on Treasury Inflation-Protected

Securities (TIPS), since the model period is three years. We thus set the lending rate to 3% for 2000

and to 1% for 2005. For the spread ρt between borrowing and lending rates, we use the difference

between mortgage and Treasury rates. The spread is thus 2% in 2000 and 1.3% in 2005.

Expectations about future (real) lending rates and spreads are set according to consensus long

range forecasts on nominal interest rates and inflation from Bluechip Surveys. Survey forecasts

suggest a belief in mean reversion for lending rates at the peak of the boom. Indeed, in both 2000

and 2005, long-run forecasts for nominal Treasury rates were about 5.5% and long forecasts for

inflation were about 2.5%, pointing to the same expected real rate of 3%. We thus assume that, in

2000, real rates in 2000 were expected to remain at 3%, whereas in 2005, real rates were expected

to increase from 1% to 3%.

Survey forecasts further suggest a belief that future spreads between lending and borrowing

rates would persist. Indeed, long run consensus forecasts for nominal mortgage rates in 2000 and

2005 were 7.5% and 6.7%, respectively. Together with the nominal Treasury rate forecasts above,

we obtain spread forecasts that are close to the current values of 2% and 1.3%, respectively. We

thus assume that spreads are expected to remain at their respective current values in both 2000

and 2005.

For the current downpayment constraint δt, we use 20% to describe conditions before the housing

boom in 2000, and 5% for the peak of the boom in 2005. These assumptions are in line with recent

evidence that credit became looser, although there is some uncertainty about the magnitude of

the shift. Geanakoplos (2010) shows that average CLTV ratios for securitized subprime and Alt-A

loans among the top 50% leveraged homeowners increased from 86.4% to 97.3%. Lee, Mayer and

Tracy (2012) look at coastal areas of the US; they show average combined loan-to-value ratios at

origination of 94% in 2001 and 96% in 2006 as well as significant increase in the fraction of high

LTV mortgages. Keys, Piskorski, Seru and Vig (2014) show that average CLTV ratios increased

from 83% in 2000 to 95% in 2005. Similar to the case of spread forecasts, households expect the

current downpayment constraints to remain in place in the future.

House price expectations

Under our baseline scenario, households believe that capital gains on houses of quality h are

given by

pt+1 (h) = pt (h) exp (µ+ ut+1 (h)) . (21)

where ut+1 (h) is an idiosyncratic property-level shock that is realized only when the house is sold.

Expected capital gains on all houses are given by the trend growth rate of labor income µ which is

29



the same in both 2000 and 2005. This approach is motivated by two considerations. On the one

hand, it is consistent with evidence that homebuyers during recent housing booms in California did

not anticipate subsequent price declines.12 On the other hand, it implies that return expectations

are not assumed to be special at the peak of the boom, but instead allows us to focus on the role

of credit market conditions.13

We set the volatility of the property-level shock equal to 9% per year over the three year model

period. We have also investigated adding an aggregate risk component that shifts the price function

for all houses. We have found that the results are not very sensitive to adding the modest amounts of

aggregate risk that are commonly measured from regional house prices (e.g., Flavin and Yamashita

2002.) We thus omit aggregate regional risk, and model agents’views about the San Diego market

as a whole only through different scenarios for the conditional mean (as described below).

5 Quantitative Results

In this section we compare pricing by quality segment in our base year 2000 to pricing at the peak of

the boom in 2005. The 2005 environment differs from the base year environment in three respects:

the house quality and mover distributions (in particular, the 2005 house quality distribution has

fatter tails), credit conditions (in particular, interest rates and downpayment constraints are lower

in 2005) and house price growth expectations (in particular, 2005 households expect prices to revert

to 2000 levels). Below we also report on experiments that consider each feature in isolation.

5.1 Prices and service flow in the base year 2000

The first step in our quantitative analysis considers the base year 2000. Here we take as given (i) the

distributions of house quality and mover characteristics, (ii) credit conditions that were prevalent

in the year 2000, and (iii) constant capital gains in price expectations. We then determine a service

flow function s0 (h) such that the model exactly fits the cross section of observed house prices in

the year 2000.

Figure 7 shows the resulting service flow function. It is strictly increasing in house quality. It is

also concave over almost all of the quality range (except for the lowest qualities.). Since our quality

12It is diffi cult to come up with sharp measures of return expectations for houses in San Diego. Case, Quigley and
Shiller (2004) performed mail surveys of homebuyers in Orange and Alameda county during the California boom
years of 1988 and 2002. Their point estimates suggest high capital gains expectations —above 10% per year over 10
years —in both years, although they are rather imprecise.
13In contrast, some recent literature has attributed features of the housing boom to exceptionally high capital gain

expectations, for example because of higher expected growth rates to the local cost of housing (Himmelberg, Mayer
and Sinai, 2005) or extrapolation of past capital gains by a small subset of investors in a search market (Piazzesi
and Schneider, 2009). Such effects are shut down here.
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Figure 7: Service flow as a function of house quality (= 2000 house value)

index is the 2000 house price, the figure says that the price of a house is convex in the amount of

housing services it provides. Some intuition for this result can be obtained from our analysis of the

stylized model in Section 3. In that model, the price function is linear in the service flow if the

distribution of service flow across houses is a scaled version of the wealth distribution. In contrast,

if the dispersion of the wealth distribution relative to the service flow distribution is larger over

a particular quantile range, say the top quintile, than elsewhere, then we would expect the price

function to be steeper over that range.

This logic rationalizes the shape of the backed out service flow function. The key pattern in

the data is that the wealth distribution has a longer upper tail than the house price distribution

and hence, given our convention for the 2000 experiment, than the house quality distribution. For

example, the top 10 percent of households own 50 percent of the total wealth but only 15 percent

of the total housing wealth in their age group. This difference in tail behavior induces a concave

service flow function. Indeed, if the service flow function were linear then rich households in the

upper tail would demand houses in the upper tail, which are not available. For markets to clear,

some rich households must be induced to choose lower quality houses. This requires a steep increase

in the price per unit of service flow at higher house qualities.
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Figure 8: Model results for the year 2005. The left panel shows house prices for 2005. The dashed
45 degree line are 2000 prices. The green line are prices in the data. The blue line are equilibrium
prices in the model. The right panel shows capital gains in the data (green) and the model (blue).
The shaded areas indicate quintiles of the house quality distribution. The house quality on the
horizontal axis is measured in 2005 Dollars.

5.2 Changes in house prices from 2000 to 2005

Figure 8 compares model implied 2005 house prices to those in the data. In both panels, the

horizontal axis measures house quality. The left panel shows the 2005 price as a function of quality.

The green line is the price function in the data, constructed above in equation (3) from the response

of prices to common shocks that affect houses of the same quality. The blue line is the equilibrium

price function from the model. The dashed line indicates 2000 prices. It is linear with slope one

since our quality index is equal to the 2000 price and all prices are reported in 2005 dollars. In both

the data and the model, equilibrium prices of lower quality houses increased more than the prices

of high quality houses from the year 2000 to the year 2005, the peak of the boom.

The right panel shows annualized capital gains between 2000 and 2005. For both the model

and the data, capital gains are computed as one fifth of the log difference between the 2005 price

function and the 2000 price line shown in the left panel. The green line is also equal to the regression

line from Figure 1. Capital gains are monotonically declining in quality: they are higher at the low

end of the quality spectrum than at the high end. The shaded areas indicate quintiles of the 2005

house quality distribution: in particular, the yellow regions correspond to the second and fourth

quintiles.

Overall, the figure shows that the model fits the 2005 price distribution well. For all but the

highest quality quantile, capital gains are within one percentage point of the data. For the highest

quality houses, the model overpredicts capital gains, although the discrepancy remains below 2
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percentage points over the entire range. Changes in the distributions of movers and house qualities,

as well as in credit market conditions can thus jointly account for the cross section of capital gains

over the boom.

5.3 Properties of the assignment

To understand how the model works, we now consider the assignment of movers to houses. In

the stylized model of Section 3, cash on hand was the only dimension of heterogeneity and the

assignment could be represented as a line in the plane. In the model considered here, movers differ

not only in cash (asset wealth plus income), but also in income and age. Age matters for housing

demand if movers’savings and portfolio choice depends on their planning horizon. Income matters

(other than through its effect on cash) because it helps forecast future income and thus human

wealth.

Figure 9 provides a first impression for how all three dimensions of heterogeneity affect the

equilibrium assignment. In both panels, the horizontal axis measures house quality, the vertical

axis measures cash and every dot is a mover household in the 2005 ACS. The panels differ only in

the color of the dots, which illustrate a second dimension of heterogeneity. In the top panel, color

represents age, whereas in the bottom panel color represents the ratio of income to cash.

The cloud of points extends from southwest to northeast: not surprisingly, the model assigns

houses of higher quality to households with more cash. If cash were the only relevant dimension of

heterogeneity, all dots would be on a line, as for the stylized model of Section 3 (for example, in

the bottom left panel of Figure 4). Since the cloud looks very different from this benchmark, we

can conclude that cash is not the only dimension that matters in the assignment. Indeed, the figure

displays many pairs of movers such that one mover has twice the house quality but the same cash

level as the other mover. At the same time, houses of the same quality are frequently bought by

pairs of movers such that one has more than twice as much cash as the other.

In the top panel of Figure 9, light blue dots represent the youngest households. For a given

quality range, most young households have little cash and thus cluster at the bottom of the cloud.

In contrast, pink and violet dots representing the older households scatter towards the top of the

cloud — those households have more cash. Comparison of similarly colored dots shows that the

assigned quality is more sensitive to cash for younger households. Indeed, for the cloud of light blue

dots, the orientation from southwest to northeast is less pronounced than for the cloud of pink and

violet dots. Put differently, young households increase house quality more quickly with cash than

older households.

In the bottom panel of Figure 9, light blue dots correspond to a higher ratio of income to cash.

The light blue dots at the bottom of the cloud represent households with income-cash ratios close
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Figure 9: Equilibrium assignment. Both panels are scatter plots of 2005 San Diego ACS observations
and their equilibrium assignments. The horizontal axis measures house quality. The vertical axis
measures cash (wealth plus income.) The top panel shades dots according to age. The age coloring
is indicated on the right bar. The bottom panel shades dots accoring to income-to-cash ratios.
The coloring of income/cash is indicated on the right bar. The size of the dots correspond to their
sampling weights.

to one. Those households have virtually no funds other than their current income. In contrast,

the pink dots at the top of the cloud represent households with cash worth several times income.

Comparison of the colored clouds shows that the assigned quality is more sensitive to cash when

the ratio of income to cash is larger. Put differently, households increase house quality more quickly

with cash if a larger share of their cash comes out of current income.

The key principle underlying the assignment rule is that households with relatively more human

capital optimally hold more housing in their portfolios. To see where it comes from, consider a

frictionless portfolio choice problem with two risky assets, housing and human capital. If markets

are complete, the solution to such a problem removes exposure to idiosyncratic endowment risk by

shorting claims to labor income. If markets are incomplete and claims on labor income cannot be

34



traded, it still makes sense to remove exposure to endowment risk by shorting a tradable portfolio

that mimics labor income. In our model, this mimicking portfolio essentially consists of bonds.

At the same time, the collateral constraint implies that shorting bonds requires borrowing against

housing.

Optimal portfolio choice thus suggests that households who have more human wealth relative to

total wealth buy houses of higher quality. The facts shown in both panels follow directly. On the

one hand, labor income is persistent and hence serves a proxy for human wealth, holding fixed age.

House quality should thus increase more quickly with cash if the share of labor income in cash is

higher. On the other hand, younger households have a longer working life ahead of them and thus

larger human wealth, holding fixed labor income. House quality should thus increase more quickly

with cash for younger households.

Assignment by age and wealth —comparing model and data

We now investigate whether the data are consistent with the assignment predicted by the model.

Table 3 compares the assignment of house quality by cash, income and age in the data and the

model. Panels A and B contain numbers for the years 2000 and 2005, respectively. In both panels,

the columns labeled I, II, III and IV correspond to four house quality bins: houses worth less than

$150K, between $150-200K, $200-400K, and above $400K, all expressed in terms of prices in the

base year 2000. For each quality bin, the rows of the table report key moments of the distribution

of movers who buy houses in that bin, namely, median income and cash for young (≤ 35 years) and
older movers as well as the top and bottom deciles the cash distribution for the bin.

Higher quality houses are bought by richer households, whether "rich" is measured by income

or cash. Over the quality range covered by the first three bins, both measures of wealth actually

grow roughly linearly in quality once we condition on broad age groups. Indeed, the first three bins

are approximately equally spaced at 75K, 175K and 300K. At the same time, for both young (≤ 35

years) and old (≥ 35 years) households, income and cash increase by similar amounts between bins

I and II and between bins II and III. In contrast, there is typically a sharp increase between bin III

and bin IV —the top bin that has no upper bound.

The model also predicts that income and cash increase with quality, and that the relationship

is close to linear over the first three bins. As a measure of “slope”over that range, consider the

average increase from moving up one bin from bin I or bin II. For median income, this slope measure

is essentially independent of age: in the data for the year 2000 (2005) it is 19K (20K) for the young

and 23K (23K) for the old. The model exhibits the same pattern: slopes for the year 2000 (2005)

are 31K (32K) for the young and 31K (40K) for the old. The model is also close to the level of

median income for bin II and thus captures the linear relationship quite well.

In contrast to the case of income, the relationship between quality and median cash strongly
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depends on age, both for the data and —as expected from Figure 9 —for the model. Indeed, in the

data for the year 2000 (2005), the slope is 58K (55K) for the young, but 113K (208K) for the old,

a substantial steepening. The model predicts slopes for the year 2000 (2005) of 65K (102K) for the

young as well as steeper slopes of 118K (165K) for the old. In addition, the model is again close

to the data for bin II. As a result, it also captures the fact that the old have substantially higher

levels of cash than the young in all bins.

The dispersion of the cash distributions can be described by the ratio of the bottom decile to

the top decile. In the data, this ratio is smallest for bin IV and largest for bin II in both years.

Moreover, it decreases for bins I and II between 2000 and 2005, as those low quality bins become

more dispersed during the boom. The same patterns are predicted by the model. Quantitatively,

the average ratio in 2000 (2005) for the data is 10% (11%) whereas for the model it is 22% (22%).

Standard errors of data moments are reported in Table 3 in parentheses. They are computed

without taking into account sampling uncertainty and thus overstate our confidence in the estimated

moments.14 In other words, a check on whether the model predictions fall within two standard error

bounds of the estimates is "too tough" on the model. Nevertheless, the model is within two standard

error bounds for five medians in Panel A and seven medians in Panel B, out of the sixteen total

medians. We conclude that the model performs reasonably well in matching the cross-sectional

assignment of quality by measures of wealth.

Optimal portfolios and changes in credit conditions

As discussed above, the model captures key features of the assignment function in the data

because younger agents who have more human wealth choose more housing in equilibrium. To

illustrate the magnitudes of heterogeneity in portfolios and how it has changed over time, Table

4 reports the ratio of housing wealth to cash by age. This ratio is highest for households under

35 and remains relatively high for households between 35 and 50. Moreover, it increased substan-

tially between 2000 and 2005 for households younger than 50, whereas it changed little for older

households.

The model matches closely the level and change in the housing weights of households younger

than 50. The change in credit conditions across years is critical for this result. Indeed, when we

recompute the model with the same distributions of mover characteristics and houses, but with the

interest rate and downpayment constraints set to their 2000 values, the housing weight falls to 74%

for households younger than 35 and to 48% for households between 35 and 50. In other words, we

14Addressing sampling uncertainty via replication weights provided by the Census would have two effects for our
exercise. On the one hand, errors around data medians would increase. On the other hand, we would also obtain
standard errors around medians predicted by the model. This is because computation of the equilibrium of the
takes the distribution of mover characteristics as an input. Each set of replication weights would thus lead to a
different mover distribution and hence a different set of model predictions. This second effect makes a more accurate
treatment of uncertainty computationally very costly in our context and is therefore omitted.
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are almost back to the 2000 numbers (61% and 43%, respectively).

Table 3: Assignment Of House Qualities in Data and Model

Data Model

House quality bins I II III IV I II III IV

Panel A: Year 2000

Median Income (in thousands)
aged ≤ 35 years 48.5 68.7 88.1 128.5 38.3 67.6 100.3 206.3

(1.8) (2.5) (4.0) (7.1)
aged > 35 years 44.0 63.4 90.3 152.3 33.4 67.4 95.9 182.2

(2.2) (2.3) (4.5) (8.5)

Median Cash (wealth plus income, in thousands)
aged ≤ 35 years 112.0 169.7 284.6 646.8 93.2 158.5 361.9 1,551.4

(5.4) (7.8) (15.3) (39.7)
aged > 35 years 172.3 284.8 496.4 1,141.8 122.9 241.1 547.1 1,721.0

(9.2) (15.4) (27.6) (71.5)

Percentiles of the Cash Distribution (in thousands)
bottom 10% 60.2 94.9 146.0 310.9 59.6 114.5 221.0 763.0
top 10% 471.1 721.8 1,443.9 3,941.9 205.6 362.5 1,007.1 4,378.9

Panel B: Year 2005

Median Income (in thousands)
aged ≤ 35 years 61.3 73.6 101.9 132.5 51.0 82.0 115.7 137.4

(4.0) (3.5) (8.1) (7.1)
aged > 35 years 45.9 78.5 91.7 144.7 35.7 76.4 96.8 244.6

(4.3) (4.9) (5.7) (12.5)

Median Cash (wealth plus income, in thousands)
aged ≤ 35 years 203.4 258.5 421.3 735.2 136.7 238.6 526.0 1,689.8

(18.0) (22.5) (43.8) (76.4)
aged > 35 years 251.6 459.7 712.2 1,645.6 196.3 360.6 749.3 2,601.8

(29.5) (45.2) (70.9) (187.7)

Percentiles of the Cash Distribution (in thousands)
bottom 10% 79.1 125.3 180.4 391.3 67.0 146.5 314.9 1,093.0
top 10% 714.4 1,099.0 1,733.7 5,582.6 324.8 553.8 1,244.4 6,262.4

Note: This table reports moments of the assignment of house quality to income and cash (wealth plus
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current income) in the data and in the benchmark model. Panel A contains results for the year 2000,

while Panel B reports results for the year 2005. Across both panels, house quality is measured in four

bins. Bin I contains houses worth less than $150K in the 2000 base year. Bin II contains houses worth

between $150-200K. Bin III contains houses worth $200-400K. Bin IV contains houses above $400K. All

dollar amounts are reported in 2005 Dollars. The medians are computed for the households who bought

a house in the indicated bin. The row "aged ≤ 35 years" ("aged > 35 years") reports the medians of

households aged 35 years or younger (above 35 years). The row "bottom 10%" ("top 10%") reports

the 10th (90th) percentile of the cash distribution. The left columns show the assignment in the data

computed from the 2000 Census and the 2005 American Community Survey. The right columns show

the assignment in our benchmark model.

Table 4: Housing Wealth relative to Cash (Wealth Plus Income)

Age

below 35 35-50 years 50-65 years above 65

Panel A: Year 2000

Data 0.632 0.459 0.369 0.317
Model 0.613 0.435 0.385 0.403

Panel B: Year 2005

Data 0.968 0.677 0.317 0.387
Model 0.959 0.627 0.423 0.522

5.4 Understanding the cross section of capital gains

Figure 10 presents results for two hypothetical scenarios in order to illustrate the different forces

shaping the cross section of capital gains. For both exercises, we start from the 2000 distributions

of houses and mover characteristics as well as 2000 credit conditions. The left hand panel changes

only the distribution of houses to its shape in 2005. It is thus analogous to the experiment reported

in Figure 5 for our simple illustrative model. The results are qualitatively similar to that earlier

experiment: a shift towards more low quality houses increases capital gains at the low end. It is

clear however, that the distributional shift by itself would not be suffi cient to explain the cross

section of capital gains quantitatively. In particular, gains for the top quintile of houses are close

to zero.15

The right hand panel of Figure 10 changes only credit conditions, again starting from the 2000

15The exercise shifts only the distribution of houses, leaving mover characteristics unchanged. An exercise that
shifts only the distribution of mover characteristics has very small effects on equilibrium capital gains and is not
reported here.
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environment. It is thus similar in spirit to the experiment reported in Figure 6. The analogy is

not as clean as for a distributional change, however, because downpayment constraints and interest

rates have partly offsetting effects on households. On the one hand, lower downpayment constraints

are more relevant for poor households who are close to their collateral constraint. They account

for the sharp increase in capital gains at the low end. On the other hand, a given percentage drop

in interest rates has strong effects on present values computed with the lending rate which is lower

already in 2000. This effect helps prop up capital gains also at the higher end.

The appendix presents a number of other exercises that explore the sensitivity of the results to

our assumptions. First, we consider what happens when households in 2005 are able to perfectly

foresee future house prices and credit conditions. This means that households in 2005 anticipate

that after one model period (three years) house prices, downpayment constraints and mortgage

spreads revert to their 2000 levels. The results show that if households had perfectly foreseen

conditions during the housing bust of the Great Recession, the house price boom would have been

substantially smaller. However, the boom would have generated the same cross sectional patterns

in capital gains, with capital gains being roughly 10% per year for low quality houses and 0% at

the upper end of the quality distribution.

We also investigate the role of our assumption that the service flow function remains the same

over time, up to a growth factor. Formally, we compute a new service flow function that exactly

matches 2005 observed house prices. This computation also uses (i) 2005 distributions for house

qualities and mover characteristics, (ii) 2005 credit conditions, and (iii) constant capital gain ex-

pectations. The new service flow function is steeper for qualities below 400K, which makes the price

function less steep in that region compared to the benchmark in Figure 8. We also show that even

if differential home improvement is allowed, credit conditions play an important role in explaining

the cross section of capital gains.

6 Conclusion

The extraordinary housing boom experienced by the United States in the early 2000s has generated

an active literature trying to understand its roots. Financial innovation, changes in relative housing

supply, shifts in the income distribution and exuberant expectations have all been discussed as

candidate explanations. An exciting feature of this research is that it employs detailed cross sectional

data to compare implications of different hypotheses. A natural starting point for the analysis of

cross sectional data is a model of a homogenous housing market. Comparative static predictions

from such a model are easily compared to data on house prices and trading across geographical

areas, for example.

The approach taken by this paper is slightly different: we view a narrow geographical area as a
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Figure 10: Equilibrium capital gains 2000-2005 in the data (green line) and the model (solid blue
line) together with two hypothetical scenarios (dotted blue line in the two graphs). Both scenarios
start with model inputs from the year 2000 and compute equilibrium prices for the year 2005. The
left panel adds a 2005 house quality distribution. The right panel adds 2005 credit conditions.

set of quite diverse but nevertheless interconnected housing markets. From this perspective, we can

learn about candidate explanations for the boom by assessing their simultaneous effect on the entire

distribution of capital gains. For example, if cheap credit matters, then we should see stronger price

increases at the low end, as would be true if markets were fully segmented. However, within a metro

area, stronger demand by low quality buyers is likely to “spill over”to medium qualities and from

there in turn to high qualities. Using a model that allows for spillover effects thus provides a more

complete assessment of what a given candidate explanation entails.

Quantitative assignment models should help understand housing market dynamics in other con-

texts. One interesting episode is the bust that immediately followed the boom studied in this paper.

As Table 1 showed, higher capital gains at the low end during the boom were reversed by higher

capital losses during the bust. It is natural to ask to what extent more stringent credit conditions —

especially for low income borrowers —interacted with changes in the income and house distribution

during the recession. Even more recently, the dramatic recovery of the housing market in the San

Francisco Bay Area was concentrated in the high end market segments of Silicon Valley, begging

the question of how a sectoral shock to the IT sector is transmitted to the entire cross section of

markets.
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Appendix for online publication

A San Diego County Transactions Data

In this appendix we describe our selection of sales and repeat sales. We begin by describing our

sample of sales which not only forms the basis for selecting repeat sales but is also used to illustrate

the shift in distributions in Section 2. Our goal is to compile a dataset of households’market

purchases of single-family dwellings. We start from a record of all deeds in San Diego County,

1999-2008 and then screen out deeds according to three criteria.

First, we look at qualitative information in the deed record on what the deed is used for. We

drop deed types that are not typically used in arms length transfers of homes to households in

California. In particular, we keep only grant deeds, condo deeds, corporate deeds and individual

deeds. The most important types eliminated are intrafamily deeds and deeds used in foreclosures.

Even for the types of deeds we keep, the deed record sometimes indicates that the transaction is

not “arms length”or that the sale is only for a share of a house —we drop those cases as well.

Second, we drop some deeds based on characteristics of the house or the buyer. We use only

deeds for which a geocode allows us to precisely identify latitude and longitude. We eliminate deeds

that transfer multiple parcels (as identified by APN number.) Information about property use allow

us to eliminate second homes and trailers. To further zero in on household buyers, we eliminate

deeds where the buyer is not a couple or a single person (thus dropping transaction where the buyer

is a corporation, a trust or the beneficiary of a trust.)

Third, we drop some deeds based on the recorded price or transaction dates. We drop deeds

with prices below $15,000 or with loan-to-value ratios (first plus second mortgage) above 120%. We

also consolidate deeds that have the same sales price for the same contract date. We drop deeds

that have the same contract date but different prices.

Our repeat sales sample is used to estimate our statistical model of price changes in Section 2.2.

A repeat sale is a pair of consecutive sales of the same property within the above sales sample. Since

we are interested in long term price changes, we want to avoid undue influence of house flipping on

our estimates. We thus drop all pairs of sales that are less than 180 days apart. To guard against

outliers, we drop repeat sales with annualized capital gains or losses above 50%.

B Robustness of facts on capital gains

Table B.1 reports additional results for the repeat sales model that incorporate zip code and census

tract level information. Regression (i) reports the basic regression of capital gains on the own
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initial 2000 price pit in logs from Figure 1. The regression has a slope coeffi cient of −0.060 with a

standard error 0.0014 and an R2 of 57.1%. Regression (ii) adds the initial zip code median (again,

in logs) pzipt as regressor. The point estimate of the coeffi cient on the initial own price is basically

unchanged (−0.057 versus −0.060); the difference is not statistically significant. The estimated

coeffi cient on the zip-code median is statistically significant, but −0.011 is economically small. The

added explanatory power of the zip code median is tiny, the R2 goes from 57.1% to 57.5%. The

regression (iii) on the zip-code median alone (iii) gives an R2 of 20.6%. Regressions (iv) and (v)

are analogous to (ii) and (iii), but they use census tract rather than zipcode as the geographical

area. The results are quite similar. Regression (v) uses only the census-tract medians with an R2

of 28.5%.

Table B.1 Geographic Patterns in Repeat Sales Model

const. log pi2000 log pzip2000 log pcensus2000 R2

(i) log pi2005 − log pi2000 0.899 −0.060 0.571

(0.018) (0.002)

(ii) log pi2005 − log pi2000 1.000 −0.057 −0.011 0.575

(0.035) (0.002) (0.003)

(iii) log pi2005 − log pi2000 1.016 −0.069 0.206

(0.048) (0.004)

(iv) log pi2005 − log pi2000 0.879 −0.062 0.004 0.572

(0.024) (0.002) (0.003)

(v) log pi2005 − log pi2000 0.837 −0.056 0.285

(0.031) (0.003)

(vi) log pzip2005 − log pzip2000 1.014 −0.070 0.672

(0.068) (0.006)

(vii) log pcensus2005 − log pcensus2000 1.038 −0.071 0.606

(0.034) (0.003)

Note: This table reports results from regressions of the capital gain from 2000 to 2005 in the price series indicated on

the left-hand side on the regressors indicated on the headers of the columns. These cross sectional regressions involve
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individual house prices pit from houses that were repeat sales in the two years 2000 and 2005, zip code medians pzipt ,

and census tract medians pcensust in San Diego County.

Regression (vi) runs the capital gains in the zip-code medians on the initial zip-code medians.

The results are comparable to row (i) with a slope coeffi cient of −0.070, a somewhat higher standard

error of 0.0055, and a higher R2 of 67.2%. Regression (vii) does the same exercise for census tracts,

again with similar slope as row (i) .

Figure 11 plots the repeat sales observations from Figure 1 with the 2005 log price on the y-axis.

The black line is the predicted value from a linear regression of 2005 log prices on 2000 log prices.

The green line is the predicted value from a nonparametric regression, using a Nadaraya-Watson

estimator with a Gaussian kernel and a bandwidth of 0.15. The nonparametric regression line is

strictly increasing in the initial 2000 price. This monotonicity property implies that the relative

ranking of houses by quality according to the nonparametric regression is the same as the relative

ranking according to the linear regression.

The nonparametric regression line is close to linear for a large range of house values, with the

largest deviation at the low end. This deviation does not matter for our approach, because we use

the pricing model only to derive an ordinal index. The absolute amount of service flow due to a

house of a certain ordinal quality is backed out using the structural model. Section 5.1 uses 2000

house prices to back out a service flow function for that year and assumes a constant rate between

2000 and 2005 to derive the 2005 service flow function. Section E uses 2000 house prices and 2005

house prices to back out service flow functions for the two years, respectively.

C Details on quantitative implementation

This appendix provides details on the calculations of home improvements, house quality and wealth

reported in the text.

Improvements

The 2002 American Housing Survey contains data on home improvements in San Diego County.

Table C.1 shows the means and medians of annual improvement expenses in San Diego as a percent

of house values. We find that San Diego homeowners spend an amount equal to roughly 1% of

their house value on improvements each year. The mean percentage spent on improvements is

2% for homes in the lowest bin, worth less than $50,000. However, this higher mean is estimated

imprecisely. A test that the mean improvement percentage in the lowest bin and homes in the next

bin (worth between $50,000 and $100,000) are identical cannot be rejected at the 10% level. A joint

test whether mean improvements across all bins are equal can also not be rejected. We also test

whether the data are drawn from populations that have the same median and cannot reject.
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Figure 11: Repeat sales in San Diego County, CA, during the years 2000-2005.

Table C.1: Home Improvements in San Diego

House Value (in thousands)

<50 50-100 100-150 150-200 200-300 300-500 500-1,000 >1,000

Improvements (in percent)

mean 2.11 1.05 0.73 0.75 0.95 0.96 0.8 1.1

(0.54) (0.32) (0.11) (0.09) (0.13) (0.12) (0.13) (0.30)

median 0 0.07 0.08 0.10 0.14 0.19 0.13 0.13

Note: This table contains the estimated means of home improvement measured as percent of house

value. These statistics are computed for observations within the house price bins indicated on the top

of the table. The data are the San Diego County observations of the 2002 American Housing Survey

on ‘rac’which measures the cost of replacements/additions to the unit. The ‘rac’amount is divided by

two, because the survey asks about expenses within the last two years. Standard errors (in brackets)

are computed using Jacknife replications.
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Census house values

The Census data does not contain actual prices but rather price ranges, including a top range

for houses worth more than one million dollars. The topcoded range contains 9.6% of houses in

2005 and 1.8% of houses in 2000. To obtain cross sectional distributions of houses sold in a given

year, we fit splines through the bounds of the Census house binds. Let pc a vector that contains

those bounds, as well as a lower bound of zero and an upper bound. We can obtain a continuous

distribution for every upper bound by fitting a shape-preserving cubic spline through (pc, G0 (pc)).

We choose the upper bound such that the median house value in the topcoded range equals the

median in that range in our transaction data. To prepare the imputation of wealth (described

below) we set a household’s housing wealth to the midpoint of its bin, and we use the median of

the topcoded range for the top bin.

Imputation of wealth

For age and income, we use age of the household head and income reported in the 2000 Census

(for t = 2000) and 2005 ACS (for t = 2005). We are thus given age and income, as well as a survey

weight, for every survey household. However, Census data do not contain wealth. We construct a

conditional distribution of wealth using data from the Survey of Consumer Finances (SCF). We use

the 1998 and 2004 SCF to build the conditional distributions for 2000 and 2005, respectively.

We use a chained equations approach to perform imputations. The estimation is in two steps. In

the first step, we use SCF data to run regressions of log net worth on log housing wealth, a dummy

for whether the household has a mortgage and if yes, the log mortgage value, and log income for

each age decade separately. In the second step, we use a regression switching approach described in

Schenker and Taylor (1996), and implemented in the Stata commands ’mi’or ’ice’. The procedure

draws simulated regression coeffi cients from the posterior distribution of the coeffi cients estimated

using the SCF data. Using these simulated coeffi cients and the observed covariates in the census

data, a predicted value for log networth is calculated for each census household. The imputed log

networth for each census household is then randomly drawn from a set of SCF households whose

actual log networth is close to the predicted log networth of the missing observation.

By repeating this second step multiple times (i.e. drawing multiple sets of simulated coeffi cients),

we can generate multiple imputed observations for each original census observation. We choose to

create three different imputations, following the recommended quantity for this kind of procedure.

A survey weight for each new household is obtained by dividing the original survey weight by three.
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D Computation

This section describes the computational methods used to solve the quantitative model in Section 4.

We need to (i) solve a household problem with a continuum of housing assets with different service

flows and prices and (ii) solve for the equilibrium objects (service flow for 2000, and price for

2005) given the three-dimensional distribution of household characteristics and the one-dimensional

distribution of house qualities.

Both the price and service flow functions are defined on the interval of available house qual-

ities [h, h]. Both functions are parametrized as shape-preserving cubic splines, defined by a set

{hi, si, pi}Ii=1, where hi ∈ [h, h] are the break points, pi ∈ [0,∞) is the price pi at hi and si is

the service flow at hi. We impose strict monotonicity on both functions, that is, hj > hi implies

pj > pi and sj > si. Denote the approximating price and service flow functions by p̂(h) and ŝ(h),

respectively. The intertemporal household problem is tractable even with a continuum of assets be-

cause agents expect permanent shocks to not alter relative prices across houses. The price function

expected in the future equals the cumulative permanent innovation to house prices plus the price

function p̂(h).

To accurately capture the covariation in the three mover characteristics (age, income and wealth),

we use the distribution derived from the Census and SCF using the imputation procedure in Ap-

pendix C. For every survey household i at date t, we have a tuple (ait, yit,wit) as well as a survey

weight. We solve the household problem for every survey household i and obtain his preferred house

quality. We then use the survey weights to construct a cumulative distribution function for house

quality. In equilibrium, this cdf must be equal to the house quality cdf from the data, shown in

Figure 2. The equilibrium object (price or service flow) is found by minimizing a distance between

those cdfs.

Household problem

The solution to the household problem is calculated using finite-horizon dynamic programming.

Value and policy functions are approximated by discretizing the state space on a fine grid. Consider

the optimization problem faced by a household of age a, with cash w as defined in equation (16),

income y, and house of quality h. Each period, the household receives an exogenous mobility shock:

m = 1 indicates that the household must move and m = 0 otherwise. The vector of state variables

at time t is

xt = [at, yt, wt,mt, ht].

The value function at time t is denoted v(xt). Income is a separate state variable even though the

only shocks to income are permanent. This is because house prices are hit by shocks other than

income shocks —the common approach of working with the wealth/income ratio and house/income

ratio as state variables does not apply.
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It is helpful to separate the household’s moving decision from the other choices he makes condi-

tional on moving or staying. Consider first a household who is moving within the period. He decides

how to allocate cash on hand (which could come from a prior sale of a house) to consumption, hous-

ing or bonds, subject to the budget and collateral constraints. Denote the "mover value function"

for this problem by vm; it depends on the state as well as the approximating price and service flow

functions. Consider next a household who is staying in a house of quality h. He decides how to

allocate cash on hand to consumption or bonds, again subject to budget and collateral constraints.

A stayer household is thus allowed to change his mortgage — this assumption is appropriate for

the boom period where refinancing and home equity loans were common. Denote the stayer value

function by vs.

A homeowner who lives in a house of quality h and who does not have to move (m = 0) has the

option of either selling the house and incurring the transaction cost for selling, or staying in the

same house. The selling household faces the same optimization problem as a moving household, with

cash adjusted for the sales transaction costs. The optimization problem of the staying household is

characterized by the stayer value function we defined above. Thus the value function of the owner

household v0 is the maximum of both options

vo (a, y, w, h; p̂, ŝ) = max {vs (a, y, w, h; p̂, ŝ) , vm (a, y, w, h; p̂, ŝ)} .

The beginning-of-period value function v takes into account both forced moves (m = 1) and

endogenous moves:

v(x) = mvm(a, y, w; p̂, ŝ) + (1−m) vo (a, y, w, h; p̂, ŝ)

We specify separate approximating functions for vm(·), vo(·), as well as the housing policy function
hm(a, y, w; p̂, ŝ) associated with vm(·). Since the downpayment constraint may induce kinks in

the cash dimension w, we perform a discrete approximation of both functions separately for each

age. In particular, for each age a, we specify a two-dimensional grid in (y, w)-space for the mover

function vm(·), and a three-dimensional grid in (h, y, w)-space for the stayer function vs(·). We then
maximize the value function at each grid point by searching over the set of all feasible choices at

that point. To capture the effect of the downpayment constraint as precisely as possible, the grid

in the cash dimension has a higher density of points for low levels of cash.

Specifically, we use 25 grid points each for cash and income dimensions, and 175 grid points for

the housing dimension of the owner value function. For income and cash, 15 equally spaced points

are used to cover the interval between $0 and $600K, and the remaining 10 points are equally

spaced between $600K and the upper bounds of the grids. The upper bounds are set to the 98th

percentile of the respective distribution in the data. Policy functions are linearly extrapolated for

those observations above the upper bounds.
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The discrete choice of moving in combination with the transaction cost of selling introduces a

“region of inaction” for the owner households. In absence of the transaction cost, the mover and

owner value functions would be identical, since we have defined cash to include the sales price of the

house,. Thus, without selling frictions, there is a unique optimal house quality choice hm(a, y, w; p̂, ŝ)

for each level of cash and income. In the presence of transaction costs, however, the homeowner

may decide to stay in a house of quality different from the frictionless optimum hm(a, y, w; p̂, ŝ).

This is the case if the endowed house h is not too far from hm(a, y, w; p̂, ŝ) given the size of the

transaction cost. More precisely, for a given level of transaction cost ν, there exists an interval[
h(a, y, w; p̂, ŝ, ν), h(a, y, w; p̂, ŝ, ν)

]
around the optimal mover choice hm(a, y, w; p̂, ŝ), such that —if

the endowed quality h is located within this interval —the owner will optimally stay in the current

house. Intuitively, if the endowed quality h is close to the frictionless optimum, then saving the

transaction cost outweighs the benefit of adjusting the consumption bundle over housing and other

goods.

We use this structure of the problem to effi ciently compute the owner function vo (a, y, w, h; p̂, ŝ) .

We first solve the mover problem by searching over all feasible choices for each combination of

age a, income y and cash w to obtain hm(a, y, w; p̂, ŝ). We then find the bounds of the inaction

interval
[
h(a, y, w; p̂, ŝ, ν), h(a, y, w; p̂, ŝ, ν)

]
for each combination of age a, income y, and cash w.

We do this by checking for different house quality levels whether a household with characteristics

(a, y, w) who is endowed with quality h would prefer to stay in house h instead of selling the current

house and buying the mover optimum hm(a, y, w; p̂, ŝ). We start this search at the mover optimum

hm(a, y, w; p̂, ŝ), and then search on a fine grid upwards and downwards from this point in the house

quality space. In either direction, once we have a found a house quality level at which selling and

moving is preferred over staying, we know that we have found the bound of the inaction region.

This procedure minimizes the number of optimization problems we need to solve to compute the

owner value function.

Figure 12 plots the policy function for a young mover (aged 28 years). Since age a is fixed, the

policy function depends on the income-cash ratio y/w and cash w. Higher y/w ratios mean a larger

share of human wealth out of total wealth. Movers with higher y/w ratios choose a riskier portfolio

with more housing. Housing demand is also increasing in cash w. In a dynamic programming

problem with collateral constraints and linear pricing, we expect the policy function to be convex

in the constrained region and then to become linear for higher income-cash ratios and cash levels.

Figure 12 shows more curvature throughout the state space, because the price of house quality is

nonlinear.

Older movers have policy functions that look qualitatively similar to Figure 12. The older movers

choose lower house qualities, especially at low income-cash levels and overall cash levels. Moreover,

their policy function reaches the unconstrained region sooner, i.e. at lower values of the two state
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Figure 12: Policy function for young mover

variables.

Market clearing

Given a sample of movers with characteristics {ait, yit,wit}i as well as approximating price and
service flow function p̂ and ŝ, we calculate the model-implied optimal house qualities as

ĥit = hm (ait, yit, wit; p̂, ŝ) .

We thus obtain a sample of optimal house quality choices {ĥit}i. We then use the survey weights for
the movers to compute an empirical cdf of house quality. We smooth this cdf using a cubic spline.

We call the resulting cdf Ĝdem(h; p̂, ŝ) the demand cdf as it represents optimal housing demands at

the given price and service flow functions.

In equilibrium, the demand cdf must equal the quality cdf from the data. The latter is also

given as a cubic spline, Ĝ say, as explained in Appendix C. To get a measure of distance between

the demand cdf and the data quality cdf, we define a set of test quantiles {gj}NGj=1, gj ∈ (0, 1) and

compute
NG∑
j=1

{
Ĝ(
[
Ĝdem

]−1
(gj; p̂, ŝ))− gj

}2
. (D-1)

For our exercises we need to find the equilibrium object (price or service flow), taking as given
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Figure 13: Errors in market clearing conditions

the respective other function (service or price). In each case, our algorithm chooses the spline

coeffi cients of the equilibrium function to minimize the distance (D-1). For the reported results we

use 7 break points and the test quantiles are the nine deciles between 10% and 90% as well as the

5-th and 95-th percentiles.

Figure 13 shows that the errors are within one percentage point at every test quantile. The

errors labeled "service" are for the results in Figure 15. The "2005 model" errors are for the results

in Figure 8. The "only house density" and "only credit conditions" errors are for the two models

in Figure 10, respectively. The "const. exp. cap gains" errors are for Figure 14.
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E Sensitivity to assumptions on expectations and service
flow

This appendix checks the sensitivity of our results with respect to our assumptions on expectations

and the service flow function. Our model assumes that households expect favorable credit market

conditions (in particular, low downpayments and spreads) to remain in place and house prices to

grow at trend. While such expectations are consistent with survey evidence for the peak of the boom

in 2005, they were of course disappointed during the Great Recession. To examine the sensitivity

of our results to expectations of future market conditions, we thus consider a "perfect foresight"

scenario designed to capture recent developments in housing and financial markets.

The perfect foresight scenario retains 2005 mover and house distributions. However, households

now expect that, after three years (or one model period), (i) downpayment constraints and mortgage

spreads to return to their 2000 benchmarks after three years, (ii) house prices return to 2000 prices

plus trend after three years, (iii) the volatility of idiosyncratic shocks to housing returns increases

to 11.8% from 9%. Households also expect that (iv) interest rates remain permanently low at 1%.

Figure 14 displays equilibrium capital gains under perfect foresight.

The results show that if households had perfectly foreseen conditions of the housing bust in

the Great Recession, the house price boom would have been substantially smaller. However, the

boom would have generated the same cross sectional patterns in capital gains: for low quality

houses, 2000-5 capital gains rise above 10% per year, about 40% of the total observed gain. This

happens even though capital gain expectations under perfect foresight are actually worse for low

quality houses. For low quality buyers, current favorable credit conditions thus outweigh pessimistic

expectations of future market developments.

Our model also assumes that the service flow function remains the same over time, up to a

growth factor. To check the importance of credit conditions under alternative assumptions on this

function, we compute a new service flow function that exactly matches 2005 observed house prices.

This computation also uses (i) 2005 distributions for house qualities and mover characteristics,

(ii) 2005 credit conditions, and (iii) constant capital gain expectations. The left panel of Figure

15 compares the benchmark (blue) and the service flow function that exactly matches 2005 house

prices (green.) The new service flow function grows faster for qualities below 400K, which helps

match 2005 prices. The right panel of Figure 15 shows the resulting capital gains. By definition,

the model-implied capital gains are identical to those in the data.

To again isolate the importance of credit conditions, we now recompute the model with the new

service flow function but under 2000 credit conditions. The result is the dashed line in the right

panel of Figure 15. It can be compared to the right hand panel in Figure 10 which also displays

a change in credit conditions alone. In both cases cheaper credit increases capital gains by similar
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Figure 14: Model Results for 2005 under perfect foresight scenario. The green line represents capital
gains in the data, while the dotted blue line shows the model counterpart.

Figure 15: The left panel plots two service flow functions. The blue line matches 2000 house prices
as in the benchmark. The green line is a new service flow function that matches 2005 house prices.
The right panel shows capital gains under the new service flow function, which are identical to the
data. The dashed line computes equilibrium prices with the new service flow function and 2000
credit conditions.

magnitudes.
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