
NBER WORKING PAPER SERIES

DO HIGH-SCHOOL TEACHERS REALLY MATTER?

C. Kirabo Jackson

Working Paper 17722
http://www.nber.org/papers/w17722

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2012

I would like to thank David Figlio and Jon Guryan for helpful comments. All errors are my own. The
views expressed herein are those of the author and do not necessarily reflect the views of the National
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2012 by C. Kirabo Jackson. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Do High-School Teachers Really Matter?
C. Kirabo Jackson
NBER Working Paper No. 17722
January 2012, Revised May 2012
JEL No. H0,I20,J00

ABSTRACT

Unlike in elementary-schools, high-school teacher effects may be confounded with track-level treatments
that are correlated with individual teachers. I document bias due to track-specific treatments, and show
that traditional tests for the existence of teacher effects suffer from finite sample bias. Using new methods
to account for these biases, I find modest algebra teacher effects and little evidence of English teacher
effects. Unlike in elementary-school, value-added estimates of high-school teachers are weak predictors
of teacher's future performance. The results indicate that teachers might not influence test-scores as
much as previously thought.

C. Kirabo Jackson
Northwestern University
School of Education and Social Policy
2040 Sheridan Road
Evanston, IL 60208
and NBER
kirabo-jackson@northwestern.edu



1 
 

Do High-School Teachers Really Matter? 

By C. KIRABO JACKSON 
MAY 18, 2012 

Northwestern University, IPR, and NBER  
 
Unlike in elementary-schools, high-school teacher effects may be confounded with track-level 
treatments that are correlated with individual teachers. I document bias due to track-specific 
treatments, and show that traditional tests for the existence of teacher effects suffer from finite 
sample bias. Using new methods to account for these biases, I find modest algebra teacher effects 
and little evidence of English teacher effects. Unlike in elementary-school, value-added estimates 
of high-school teachers are weak predictors of teacher's future performance. The results indicate 
that teachers might not influence test-scores as much as previously thought. (JEL I21, J00). 

  

 There is consensus among policy-makers and researchers that teachers are the most 

important component of schools. This conclusion is based almost exclusively on studies of 

elementary-school teachers showing that a one standard deviation increase in teacher quality 

leads to between one-tenth and one-fifth of a standard deviation increase in math and reading 

scores (Rivkin, Hanushek, & Kain, 2005; Rockoff, 2004; Kane & Staiger, 2008). This idea is 

further reinforced by recent findings indicating that effective elementary- and middle-school 

teachers are associated with improved long run outcomes (Chetty, Friedman, & Rockoff, 2011). 

In contrast, evidence on the importance of high-school teachers is sparse.1 

 Because elementary-school students are typically exposed to one teacher and are all in 

the same academic track, while secondary-school students are exposed to several teachers and 

placed into different tracks, methodologies designed for elementary-school teachers may be 

inappropriate for measuring teacher quality in other grades. Specifically, in high-school settings, 

even with random assignment of students to teachers, if different teachers teach in different 

tracks, and students in different tracks are exposed to different treatments, there will be bias due 

to "track treatment effects." These "track treatment effects" may arise due to other teachers (e.g. 

students who take Algebra I with Mr. Smith take physics with Mr. Black who has a direct effect 

on algebra scores), the content of other courses (e.g. students who take Algebra I with Mr. Smith 

                                                 
1 There exist two studies (to my knowledge) on the importance of high-school teachers. Looking only at math 
teachers (Aaronson, Barrow, & Sander, 2007) find that a one standard deviation improvement in math teacher 
quality raises student scores by between 0.15 and 0.4 standard deviations. While not a study of high-school English 
teachers, (Koedel, 2008) finds that one-standard-deviation increase in English-teacher quality corresponds to a 0.10 
standard deviation improvement in test scores. I demonstrate that these two existing studies likely overstate the 
importance of high-school teachers. This is important because few policy-makers make a distinction between 
measuring teacher quality in elementary-school versus high-school. In fact, districts in Florida, Tennessee, New 
York, and California use estimated teacher value-added in personnel decision irrespective of grade level or subject. 
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also take physics which has a direct effect on algebra scores), or track-level treatments (e.g. 

college-bound students take Algebra I with Mr. Smith and are also part of the AVID2 program 

that teaches study-skills that have a direct effect on algebra scores). This source of bias has not 

been addressed in the few existing studies on high-school teachers, so it remains unclear 

whether, and to what extent, high-school teachers really affect student outcomes.  

 In this paper, I aim to (a) demonstrate that the statistical methods used to identify teacher 

quality in elementary-school may be inappropriate for identifying teacher quality at the middle- 

or high-school level, (b) use data on high-school Algebra and English teachers in North Carolina 

to present evidence on the existence of track specific treatments, (c) employ a strategy to 

estimate the effects of algebra and English teachers on test scores in 9th grade that exploits 

detailed course-taking information to remove both selection bias across tracks and omitted 

variables bias due to track specific treatments, (d) present the first analysis of the extent to which 

historically estimated value-added predicts teacher effectiveness in a high-school setting, and (e) 

compare these results to those found for elementary-school teachers. 

 To address the unobserved track-level treatments problem, I estimate a standard value-

added model with the addition of indicator variables for each academic track (the unique 

combination of school, set courses taken, level of courses taken). In such models, comparisons 

are made among students who are both at the same school and in the same academic track. 

Comparing the outcomes of students with different teachers at the same school taking the same 

Algebra or English course and in the same track removes both the influence of any school-by-

track level treatments that could confound comparisons of teachers, and bias due to sorting or 

selection into schools, tracks, and courses. In such models, variation comes from comparing the 

outcomes of students in the same track and school but are exposed to different teachers either 

due to (a) changes in the teachers for a particular course and track over time, or (b) schools 

having multiple teachers for the same course and track in the same year. Because personnel 

changes within schools over time may be correlated with other improvements within schools, I 

estimate models that also include school-by-year fixed effects. The remaining concern is that 

comparisons among students within the same track may be susceptible to selection bias. I argue 

                                                 
2 According to the Advancement Via Individual Determination (AVID) Mission Statement "AVID offers a rigorous 
program of instruction in academic “survival skills” and college level entry skills. The AVID program teaches the 
students how to study, read for content, take notes, and manage time. Students participate in collaborative study 
groups or tutorials led by tutors who use skillful questioning to bring students to a higher level of understanding."  
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that most plausible stories of student selection involve selection to tracks rather than to teachers 

within tracks, and I present several empirical tests that suggest little bias due to student selection. 

 While the focus of the paper is to estimate high-school teacher effects, this paper makes 

two methodological contributions to the broader teacher quality literature: The first 

methodological contribution is to show that, under realistic conditions, the ubiquitous test for the 

existence of teacher effects is biased. It is common practice to use an F-test to determine whether 

there is excess heterogeneity in test scores across teachers beyond that explained by sampling 

variability. I show, via simulation, that with small transitory teacher-by-year level shocks (such 

shocks may arise due to idiosyncratic shocks to teacher health, teacher effort, student health, 

shocks to classroom dynamics, or the proverbial "dog barking outside the exam room") the 

commonly used F-test will yield very small p-values even when there are no real teacher effects. 

This "over rejection", reflects finite sample bias because in most data we observe individual 

teachers for fewer than 30 years.3 In the extreme case, where teachers are observed in only one 

year, one cannot distinguish a transitory teacher-year shock from a teacher effect (i.e., one cannot 

distinguish a good teacher from a lucky teacher). Because this is a finite sample problem, it is not 

solved by common adjustments such as aggregating the data or clustering the standard errors.4 

To address this problem, I present an unbiased test for the existence of teacher effects that does 

not require a large number of teacher-year observations for each teacher, but only requires 

having a large number of teachers observed in more than one year. This test tests whether, on 

average, teacher-by-year effects for the same teacher are correlated across years.   

 The second methodological contribution is to present an approach to estimating the 

variance of the variance of teacher quality effects. While existing studies present estimates of the 

variance of teacher quality effects, they do not present confidence intervals for these estimates. 

As such, it is unclear how much we should trust these estimates. Under certain conditions, the 

                                                 
3 This is not enough years for the average of the teacher-by-year shocks to converge to zero for each teacher. 
Intuitively, with transitory teacher-by-year shocks, the F-test for excess heterogeneity in test scores across teachers 
is not a test for the equality of teacher effects, but is a test of equality of the average transitory teacher-by-year 
effects for each teacher. In the extreme case, where teachers are observed in only one year, one cannot distinguish a 
transitory teacher-year shock from a teacher effect (e.g., one cannot distinguish a good teacher from a lucky 
teacher). While some researchers use the term classroom effect and teacher effect interchangeably, there is clearly a 
distinction between the two. While a teacher effect will certainly contribute to the classroom effect, the converse is 
not true. Because many studies use the F-test to show the existence of teacher effects, the extant literature may 
overstate the degree to which one can be confident that teachers affect student outcomes. 
4 This is a particular instance of the well-established fact that clustered standard errors can be downwardly biased 
when the number of clusters is small (MacKinnon and White 1985; Bertrand, Duflo, and Mullainathan 2004). 
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covariance of teacher-by-year effects for the same teacher across years is a consistent estimate of 

the variance of true teacher quality (Kane & Staiger, 2008). Because a covariance is a sample 

statistic, one can obtain confidence intervals for the variance of true teacher quality.  

 While I find little evidence of bias due to student sorting, I find evidence of bias due to 

omitted track-level treatments. After accounting for biases, a one standard deviation increase in 

Algebra and English teacher quality is associated with a 0.08 and 0.0036 standard deviation 

increases in test scores, respectively. While biased F-tests reject the null of no teacher effects for 

both subjects, unbiased tests fail to reject the null of zero teacher effects for English. Consistent 

with this, a good Algebra teacher (85 percentile) based on previous performance raises current 

scores by 0.035 standard deviations more than an average teacher. In contrast, an English 

teacher's past performance is uninformative of her current performance. The results suggest that 

(a) the properties of high-school and elementary-school teacher value-added are meaningfully 

different, and (b) not all teachers affect student achievement. These findings have important 

implications regarding the use of test-score based measures of quality for high-school teachers.  

 The remainder of the paper is as follows: Section II describes the data, Section III details 

the empirical framework, Section IV lays out the identification strategy, Section V presents the 

main results, robustness checks, and specification checks, and Section VI concludes. 

 

II Data 

 This paper uses data on all public middle- and high-school students in North Carolina 

from 2005 to 2010 from the North Carolina Education Research Data Center.5 The student data 

include demographic data, transcript data for all courses taken, middle-school achievement data, 

end of course scores (high-school) for Algebra I and English I, and codes allowing one to link 

students' end of course test-score data to individual teachers.6 Because English I and Algebra I 

are the two tests that have been the most consistently administered over time, I limit the analysis 

to students who took either the Algebra I course or the English I course. Over 90 percent of all 
                                                 
5 These data have been used by Clotfelter, Ladd, and Vigdor (2010) to look at the effect of high-school teacher 
qualifications on student test scores. They use variation across subjects within the same student to identify the effect 
of teacher characteristics on student outcomes. This methodology does not allow one to identify individual teacher 
effects and does not address the bias due to track specific treatments. 
6 The data link to student to the teacher who administered the test. In most cases this is the students own teacher but 
this is not always the case. I link classrooms in the testing files to classrooms in personnel files (with valid teacher 
identifiers). Classes that match across files on school, subject, year, class size, demographic composition, and 
teacher identifier, are considered perfect matches. See appendix note 1 for details on the matching procedure. 
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9th graders take at least one of these courses so that the resulting sample is representative of 9th 

graders as a whole. To avoid endogeneity bias that would result from teachers having an effect 

on repeating ninth grade, the master data uses the first observation for when a student is in ninth 

grade. Summary statistics are presented in Table 1. 

 The data cover 398,703 ninth grade students in 629 secondary-schools in classes with 

4237 English I teachers, and 3559 Algebra I teachers. Roughly half of the students are male, 52 

percent are white, 27 percent are black, 6.5 percent are Hispanic, and 1.7 percent is Asian. About 

2.8 percent of students have the highest parental education level (i.e. the highest level of 

education of the student's two parents) below high-school, 23.6 with a high-school degree, 4.2 

percent with a junior college or trade school degree, 11 percent with a four year college degree or 

greater (more than half of the data have missing parental education and are coded as such). 

About 11 percent of students are limited English proficient. All test scores are standardized to be 

mean zero with unit variance for each cohort and test.  

Measuring Tracks: 

 Under tracking, different kinds of students (college bound, remedial, honors, etc.) take 

distinct groups of academic courses. In North Carolina, while there are hundreds of courses that 

students can take (these include special topics, physical education, and extracurricular activities) 

there are 10 core academic courses listed in Table 2 that make up over half of all courses taken. 

English I is the most common academic course (which 90 percent of 9th graders take), followed 

by World History, Earth Science, Algebra I, Geometry, Art, Biology I, Intro to Algebra, Basic 

Earth Science, and Spanish I. Because Algebra I and English I are taught at multiple levels 

(advanced, regular, and basic), students in the "high-ability" track will take these courses at the 

advanced level, while those in the "lower ability" tracks will take these courses at the basic level. 

Because the advanced Algebra I class might emphasize different material from the regular class, 

even with random assignment of students to classes, basic comparisons of outcomes of Algebra I 

teachers will confound level of instruction effects with teacher quality. I can avoid this bias 

because the rich data contain information on the level of instruction. 

 I take as my measure of a school-track, the unique combination of the 10 largest 

academic courses, the 3 levels of algebra I, the 3 levels of English I, and the 629 high-schools. 

As such, all students who take the same set of courses in 9th grade, the same level of English I, 

the same level of Algebra I, and attend the same school, are in the same school-track. Students 
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who take the same courses at different schools are in different school-tracks. Students at the 

same school, who take either a different number of courses, or at least one different course, are in 

different school-tracks. In addition, students at the same school who take the same courses but 

took either Algebra I, or English I, at different levels are in different school-tracks. In principle, 

if students chose schools, courses, and course levels randomly, there would be millions of 

school-tracks. However, because many students pursue the same course of study, only 4 percent 

of students are in singleton tracks, over 60 percent are in school-tracks with more than 50 

students, and the average student is in a school-track with 104 other students. Overall, there are 

17,998 school-tracks with more than one student across the 629 high-schools. I present the 

standard deviations of the variables within-schools, and within-tracks-within-schools in Table 1, 

and discuss sorting into these tracks in section III.1.  

  

III Empirical Framework:  

 To motivate the empirical strategy, I lay out a value-added model that includes both 

track-level treatments and transitory teacher-by-year level disturbances. I model the test score 

outcomes Yijy of student i with teacher j in school-track g in year y with [1] below. 

[1]  Yijgy = Aiy-1δ+ Xiyβ + Ijigy·θj +π (P|g) + μjy + εijgy. 

Here,  Aiy-1 is incoming achievement level of student i, Xiy is a matrix of student-level covariates, 

Ijigy is an indicator variable equal to 1 if student i has teacher j in year y and equal to 0 otherwise,  

θj is a teacher fixed effect, (P|g) is a treatment specific to students in school-track g, μjy is a 

random teacher-by-year level error such that E[μjy |J]=0, and εijgy is the idiosyncratic error term 

such that E[εijgy | J, X, A, G]=0.  When track-level treatments are unobserved and one does not 

account for teacher-by-year shocks errors, the OLS estimate of teacher effect  
ˆ

j is given by [2].  

[2]    2 2
  

1

ˆ[ | , , ]   [ | ] ( | ) |
j jT N

jy ijgy
j j gj j ijgy gj j

y j j

e
J X A E g P g J

T N


       



        .  

In [2], σgj is the covariance between teacher j and track g, σ2
j is the variance of Ijigy, Nj is the 

number of students with teacher j, and Tj is the number of years observed for teacher j.    

Potential Bias in Estimated Teacher Effects: 

 Equation [2] highlights that there are four distinct potential sources of bias in estimated 

teacher effects. The first potential source of bias is  2 [ | ]gj j ijgyA E g    . This is due to 
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students selecting to tracks (and therefore teachers) based on unobserved characteristics that also 

affect test scores. For example, if highly motivated students select into the honors track, and Mr. 

Jones teaches students in the honors track, then students in Mr. Jones' class will on average be 

more motivated than students in other teachers' classes. This bias due to student selection has 

been discussed in Rothstein (2009), and Koedel and Betts (2012). The second potential source of 

bias is the last term 1  
jN

i ijgy jE e N . This term represents sampling variability. If each teacher 

is observed with more than 30 students (as is often the case), this terms will be small and will not 

result in substantial bias. These two sources of bias have been discussed in existing studies.

 The first potential source of bias not addressed by the existing literature is the term

 2 ( | )gj jB P g    . This bias is due to certain teachers being systematically associated with 

track-level treatments that directly influence test scores. For example, if Mr. Jones teaches 

algebra to students in the honors track, and honors classes teach students study skills that directly 

affect their algebra outcomes, one might erroneously attribute the benefits to the additional 

training in the honors track to Mr. Jones. This bias will exist even if students are randomly 

assigned to teachers so long as teachers are correlated with track-specific treatments. 

 The remaining potential source of bias is due to the term 1( ) |jT
y jy jC T J , (i.e. the 

mean of the teacher-by-year level disturbances for a given teacher). This bias is due to transitory 

shocks that may be correlated with individual teachers in finite sample. For example, a teacher 

who teaches a class that had a flu outbreak will have lower performance than expected and, 

based on only one year of results, will appear to be less effective than her true ability. While this 

term should be near zero if teachers are observed in many years so that Tj→ ∞, because many 

teachers are rarely observed for more than 5 years, this bias term will be non-trivial and non-zero 

in short panels (i.e. virtually all existing datasets).7  

 Equation [2] reveals four sources of potential bias in estimated teacher value-added, only 

some of which are addressed in the extant literature. Section III.1 presents empirical evidence 

that bias due to sorting to tracks, track specific treatments, and transitory teacher-year shocks are 

likely to be non-trivial in high-school contexts, so that existing studies may overstate the 

                                                 
7 Teacher by year level disturbances have been discussed as a source of noise (Kane and Staiger 2002, 2008). 
However, they have not been treated as a source of bias in the estimates or bias in the statistical inference. 
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importance of high school teachers.8 Section IV presents a strategy to address these biases.  

Transitory Shocks and Potential Bias in Test for the Existence of Teacher Effects:  

 Most studies on teacher quality estimate value-added models akin to equation [1] and 

report the p-value associated with the F-statistic for the test of the null hypothesis that all of the 

teacher effects, θjs, are equal. Formally, researchers test 0 1 2 3: ... JH         by comparing 

the computed F-statistic associated with this null hypothesis to an F distribution with N-J 

degrees of freedom (N is the number of observations and J is the number of estimated teacher 

effects). The F-statistic is computed as below where ̂ is a J×1 vector of estimated fixed effects, 

̂  is the mean of ˆ
j s, and ĴV is the J×J variance-covariance matrix for the teacher effects. 

[3]  11 [accross-teacher variance]ˆ ˆ ˆ ˆˆ= ( ) ( ) ( )
1 [within-teacher variance]JF V

J
     


. 

The F-statistic is the ratio between the across- and within-teacher variance. If the variance of the 

estimated teacher fixed effects (across teacher variance) is large relative to the variance of the 

within-teacher variability in outcomes, this statistic will be large ─ implying that there is 

something systematic occurring at the teacher level that explains variability in outcomes.   

 With unaccounted for teacher-by-year shocks, the F-test is a biased test for the null 

hypothesis of no teacher effects and will tend to over-reject even when the null is true. One can 

think about this problem by considering the hypothesis that the F-test evaluates. The F-test tests 

for whether the means of the teacher-year-level outcomes for each teacher is the same across all 

teachers. To illustrate the importance of transitory teacher-by-year shocks, let us abstract away 

from any selection bias, track specific treatments, or sampling variability at the student level. In 

this case [2] simplifies to [4] below. 

[4]    1
ˆ[ | , , ]  ( )jT

j j j jy jJ X A T    .  

One can see in [4] that the test of equality of the teacher-level mean outcomes for all teachers is 

                                                 
8 If one makes the common assumption that all errors in estimation are uncorrelated, then the variance of the raw 
estimated teacher effects from [2] is equal to the variance of the true teacher effects, plus the variance of any 
selection effects, plus the variance of any track level treatments, plus the variance of any teacher-year level errors, 
plus the estimation error. Formally, 2 2 2 2 2ˆ( )  A B C DVar           . As such, it is straightforward to show that 

2 2 2 2 2 2ˆ( ) A B C DVar             . It is common practice to estimate the variability of some noise component 

and then subtract this from the overall variance to obtain an estimate of true teacher quality. The downside of this 
approach is that failing to account for all sources of variability will lead one to overstate the importance of teachers. 
I argue that this has been the case for existing studies on high-school teachers. 
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really a test of equality of the teacher effects plus the means of the transitory teacher-by-year 

shocks for each teacher. This test is asymptotically equivalent to testing the equality of teacher 

effects only when each teacher is observed in several years so that 

  [ | ] 0  jy j jyT E J j    . However, if teachers are observed for a few years (as is 

usually the case), one cannot ignore the influence of transitory teacher-by year shocks, and the F-

test will not be an appropriate test for the existence of teacher effects. The intuition for this 

problem is best illustrated by the extreme case where each teacher is observed in only one year. 

In this scenario, if there are large teacher-level mean residuals (due to large transitory teacher-

year shocks), one might interpret this as evidence for the existence of teacher effects. However, 

in this simple case, the F-statistic will be large, not because there are teacher effects, but because 

it cannot distinguish between a good teacher and a lucky teacher. 

 To get a sense of the behavior of the commonly used F-test, I simulate hypothetical data 

with no teacher effects but in which there are teacher-by-year disturbances. I created a dataset 

with 200 teachers, each observed in 5 classrooms of 30 students each, with one classroom per 

year. I ran 1000 replications of a regression of a mean zero unit variance normally distributed 

outcome Y on the set of teacher indicator variables where there are no teacher effects but there 

are normally distributed teacher-year-level effects with varying dispersion. Figure 1 shows the 

distribution of the p-values associated with the F-tests of equality of teacher indicator variables 

across the 1000 replications for teacher-year-level disturbances of different sizes. If the test is 

unbiased, the p-values should follow a uniform distribution centered around 0.5.    

 With no teacher-year errors (SD=0.00) the distribution of p-values is roughly uniform. 

However, with just small teacher-year errors (sd=0.02) the likelihood of a p-value smaller than 

0.1 is about 20 percent (twice as likely as should be if the test were unbiased) and with modest 

teacher-year errors (sd=0.05) the likelihood of a p-value smaller than 0.1 is 84 percent. Given 

that non-persistent components of teacher quality are estimated to be about as large as teacher 

effects themselves (Kane and Staiger 2008), the variance of the teacher-year effects are likely 

closer to 0.15σ. At this level, with no teacher effects, the F-test erroneously rejects the null more 

than 99 percent of the time ─ rendering the extensively used F-test virtually uninformative. 

 The typical fixes for this kind of correlated shock would be to cluster the standard errors 

or aggregate the data to the level of the aggregate shock (Bertrand, Duflo, and Mullainathan 

2004). Unfortunately neither of these solves the problem in this context. It is well documented 
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standard adjustments for clustering are unreliable where the number of clusters is small. In this 

case, each teacher effect is based on only a handful of clusters (and sometimes only 1) so that 

clustering will not solve the problem.9 Also, the- F-test will over-reject on aggregated data 

because aggregation does not deal with the problem that one cannot distinguish between a good 

teacher and a lucky teacher in short panels.10 As such, much of the literature of teacher effects, 

which relies heavily on the F-test, might overstate the importance of teachers. In section IV, I 

present an unbiased test for the existence of teacher effects.  

  

III.1 Evidence of Bias  

Evidence of sorting of students into tracks 

 I present the standard deviations of the student variables within schools, and within tracks 

within schools in Table 1. Comparing the standard deviations within schools to those within 

school-tracks provides some indication of sorting into tracks. If there were no sorting to tracks 

within schools, these two estimated standard deviations would be the same. For all of student 

characteristics, there is greater variation within schools than there is within school-tracks. For 

example, the standard deviation of 8th grade math scores within schools is 0.894 while it is only 

0.583 within school-tracks (a 55% reduction in the variance). Similarly, the standard deviation of 

having no parents with a high-school degree within schools is 0.413 while it is only 0.35 within 

school-tracks (a 27% reduction in the variance). Consistent with these tracks capturing important 

differences between college-bound, remedial, and average students, the standard deviation of the 

number of honors courses taken is 1.132 within schools while it is only 0.575 within school-

tracks (a 74% reduction in the variance). In sum, the figures indicate that students are placed into 

tracks within schools in a manner that decreases dispersion in student characteristics within 

tracks and groups students by ability.11 

Evidence of sorting of teachers into tracks 

 To assess the degree to which track-specific treatments might be correlated with 

                                                 
9 To illustrate this point, Figure A1 shows the mean p-value for different sizes of the teacher-by-year level errors. If 
the tests were unbiased, the p-values should be close to 0.5. Even with small shocks the mean p-values are much 
smaller than 0.5 when one clusters errors to account for dependence within classes or teachers. 
10 Moreover, aggregating the data means that each teacher effect is based on a very small number of observations. 
With a small number of observations per teacher, one cannot assume that each of the estimated effect comes from a 
normal distribution. Because the F-test requires that the each estimated coefficients be normally distributed, and 
asymptotic normality cannot be invoked with a small number of observations, the F-test will not be reliable. 
11 In appendix note A3, I present evidence of modest student sorting to teachers based on prior achievement.   
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particular teachers, I computed the proportion of students in each teacher's class in each year who 

took at least on honors course (among the students' other courses). About 48 percent of all 9th 

grade students who took Algebra I or English I took at least one honors courses as one of their 

other courses. The standard deviation of the proportion of students in a teachers class in a given 

year in at least one honors class among other courses is 0.293 for Algebra I teachers and 0.32 for 

English I teachers. In other words, in both subjects roughly 20 percent of teacher-year 

observations have fewer than 25 percent of students who have taken at least one honors course 

while roughly 20 percent have more than 75 percent of students are in honors classes. Insofar as 

honors classes provide skills that affect Algebra I or English I scores directly, this would 

generate track specific treatment bias.  

 To assess the degree to which this varies systematically across teachers, I regress the 

proportion in at least one honors class among other courses for a given teacher in year t on the 

same proportion for the same teacher in year t-1. If there were no systematic relationship 

between teachers and tracks, the coefficient on the lagged outcome would be zero. The results 

(Table 3) show a strong association between the proportion in at least one honors class among 

other courses for a teacher in year t and year t-1. That is, within the same course, some teachers 

consistently teach students who take more/less honors classes than the average student than 

other teachers. This relationship holds across both subjects, and holds both across and within 

schools. This suggests that bias due to track-specific treatments might be a cause for concern.  

Evidence of transitory teacher-by-year shocks 

 As discussed previously, transitory teacher-by-year level shocks can lead one to overstate 

the variance of teacher effects, misattribute transitory variation to individual teachers, and bias 

statistical tests for the existence of teacher effects. The extent to which this is a problem depends 

on the number of years each teacher is observed in the data and the size of the transitory teacher-

by-year shocks. Aaronson, Barrow, and Sander use 2 years of data, while Koedel uses 1 year of 

data so that exiting studies do have enough observations to ignore any meaningful transitory 

shocks. To gain a sense of the size of any transitory shocks, I first estimate a simple value-added 

model of student achievement with student covariates, school fixed effects, and year fixed 

effects. 12 Then, I estimate the variability of mean residuals within teachers across years, and 

compare this to the within teacher variability one would observe due to sampling variability 

                                                 
12 I estimate   Yijcy = Aiy-1δ+ Xiyβ + θs + θy + εijcy.. 
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alone. If the variance in the within teacher residuals is large relative to what would be expected 

due to sampling variability, it would imply that teacher-by-year level shocks exist and should be 

accounted for. I estimate the standard deviation of the sampling variability from year to year by 

computing the standard deviation of the student level residuals and dividing by the square root of 

the mean number of students in each year for each teacher (Kane and Staiger 2005; Aaronson 

Barrow and Sander 2004). The SD of the student level residuals is 0.54 and 0.58 for English and 

algebra, respectively. The average English teacher has 78 students per year and the average 

Algebra teacher has 58 students per year. As such, the implied mean SD of sampling variability 

for English I and Algebra I is 0.061 and 0.076, respectively. However, the SD of mean residuals 

within teachers across time is 0.277 and 0.30 English and algebra, respectively ─ much larger 

than what can be explained by sampling variability alone. This implies that teacher-by-year 

shocks exist, are sizable, and need to be taken into account.    

   

 IV Empirical Strategy 

 One can see that the variance of the estimated teacher effects̂ from [3] may overstate the 

variance of true persistent teacher quality because (a) this confounds teacher effects and track 

level treatment, and (b) teacher effects are estimated with error due to sampling variation and 

transitory teacher-by-year-level disturbances. I propose strategies to address this. 

Removing bias due to track level treatments and selection 

 One can remove the influence of track-level treatments and selection to tracks by making 

comparison within groups of students in the same track at the same school. In a regression 

context, if one can observe track placement, this is achieved by including Igi, an indicator 

variable equal to 1 if student i is in school-track g and 0 otherwise. This leads to [5] below. 

[5]    Yijcy = Aiy-1δ+ Xiyβ + Iji·θj + Igi θg+ εigjy 

By conditioning on school-tracks, one can obtain consistent estimates of the teacher effects θj as 

long as there is no selection to teachers within a school-track.13  

 Because the main models include school-by-track fixed effects, teacher effects are 

identified by comparing the outcomes of students at the same school in the same track but who 

have different teachers. In these models, identification of teacher effects comes from two sources 

                                                 
13 Note: In expectation, the coefficient on the school-track indicator variable is π(P|g)+E[εiy |g]. This reflects a 
combination of both the unobserved treatment specific and selection to school-track c. 
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of variation; (1) comparisons of teachers at the same school teaching students in the same track 

at different points in time, and (2) comparisons of teachers at the same school teaching students 

in the same track at the same time. To illustrate these sources of variation, consider the simple 

case illustrated in Table 4. There are two tracks A and B in a single school. There are two math 

teachers at the school at all times, but the identities of the teachers change from year to year due 

to staffing changes.  

The first source of variation is due to changes in the identities of Algebra I and English I 

teachers over time due to staffing changes within schools over time. For example, between 2000 

and 2005 teacher 2 is replaced by teacher 3. Because, teachers 2 and 3 both teach in track B (in 

different years) one can estimate the value-added of teacher 2 relative to teacher 3 by comparing 

the outcomes of students in track B with teacher 2 in 2000 with those of students in tracks B with 

teacher 3 in 2005. To account for any mean differences in outcomes between 2000 and 2005 that 

might confound comparisons within tracks over time (such as school-wide changes that may 

coincide with the hiring of new teachers), one can use the change in outcomes between 2000 and 

2005 for teacher 1 (who is in the school in both years) as a basis for comparison. In a regression 

setting this is accomplished with the inclusion of school-by-year fixed effects (Jackson & 

Bruegmann, 2009).  This source of variation is valid as long as students do not select across 

cohorts (e.g. stay back a grade or skip a grade) or schools in response to changes in Algebra I 

and English I teachers. I test for this explicitly in Appendix note 2, and find little evidence of 

selection to teachers on observable student characteristics.  

 The second source of variation comes from having multiple teachers teaching the same 

course in the same track at the same time. In the example above, because both teachers 1 and 2 

taught students in track B in 2000 one can estimate the value-added of teacher 1 relative to that 

of teacher 2 by comparing the outcomes of teachers 1 and 2 among those students in track B in 

2000. This source of variation is robust to student selection to tracks and is valid as long as 

students do not select to individual teachers within tracks. In section V.2, I show that the findings 

are not driven by student selection within tracks. 

 To provide a sense of how much variation there is within tracks during the same year 

versus how much variation there is within tracks across years, I computed the number of teachers 

in each non singleton school-track-year-cell for both Algebra I and English I (Appendix Table 

A1). About 63 and 51 percent of all school-track-year cells include only one teacher in English 
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and algebra, respectively. This implies that for more than half the data, the variation will be 

based on comparing single teachers across time within the same school track. However, 38 and 

49 percent of school-track-year cells have more than one teacher for English and Algebra 

respectively, so that more than one-third of the variation is within tracks-year cells. In section 

V.4 I show that the results are similar when using each source of variation separately so that they 

might both be valid. Moreover, I show that the results are not driven by student selection. 

Removing bias due to transitory teacher-year level shocks 

 While the variance of the estimated teacher effects̂  from [5] will not be biased due to 

track-level treatments, it will still overstate the variance of true teacher quality because of 

sampling variation and transitory shocks. I present two approaches to address this issue. 

 If one is willing to attribute any teacher-level variation in test scores not explained by 

teacher-year shocks or sampling variability to persistent teacher quality (a strong assumption), 

one can compute the variance of the raw teacher effects and subtract the estimated variance of 

the transitory teacher-year level shocks (Kane and Staiger 2005). I estimate the combined 

variance of the teacher-year level shocks and sampling variation with the variance of mean 

residuals from year to year within teachers (i.e. the within-teacher variability in average test 

scores over time). I then divide this by the number of year observations for each teacher to obtain 

an estimate of the variability in the raw teacher effects that can be attributed to transitory 

variability. Because this estimate attributes any variability not explicitly accounted for by 

teacher-year effects or sampling variability to teachers, this approach may overstate the true 

variance of persistent teacher quality. This motivates the approach below. 

 To estimate the variance of teacher quality I follow Kane and Staiger (2008) and Jackson 

(2010).14 Specifically, I estimate equation [5] without teacher indicator variables, and take the 

covariance of mean teacher-by-year level residuals for the same teacher over time as my estimate 

of the variance of the persistent component of teacher quality observed across years. 

Specifically, in the first stage I estimate equation [6] below.   

 [6]    Yigjy = Aiy-1δ+ Xiβ +X*jyπ + Igi θg+ θsy + ε*ijgy 

The key conditioning variable is Igi, an indicator variable denoting the school-track g of student i. 

Aiy-1 is the third order polynomial of incoming math and English achievement of student i. To 

address concerns about dynamic tracking, I include math and reading test scores from both 7th 

                                                 
14 This procedure is also used in (Jackson, 2011) and (Jackson, 2009). 
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and 8th grade (two lags of achievement). Xi is a matrix of additional student covariates including 

parental education, ethnicity, gender, LEP status, number of honors courses taken, and whether 

the students has been designated gifted in English and/or math. I also include the mean incoming 

test scores and characteristics of other students with teacher j in year y Xjy*. To account for 

school-level time effects (such as the hiring of a new school principal) that would affect all 

students in the school, I also include school-by-year fixed effects θsy. The error term includes the 

teacher effect and the teacher-by-year effect so that ε*ijgy =θj + μjy+ εijgy. 

 In the second stage, I compute mean residuals from [6] for each teacher in each year 

1
 1

*  jyn

jy ijgy j jy jgyi
n e e 


    , where njy is the number of students with teacher j in year y. To 

estimate the variance of the persistent teacher quality, I compute the covariance of mean 

residuals for the same teacher in years y and year y-1. If the non-persistent error components for 

each teacher ejgy and μjy are uncorrelated over time (recall that the model includes school-by-year 

fixed effects) and uncorrelated with teacher quality, the covariance of mean residuals for the 

same teacher over time is a consistent measure of the true variance of persistent teacher quality. 

If 1 1 1 1( , ) ( , ) ( ,  ) ( , ) ( , ) ( ,  ) 0j jgy j jgy jgy jgy j jy j jy jy jyCov e Cov e Cov e e Cov Cov Cov                 

then  1 ( * , * ) var( )ijgy ijgy jCov     .  

Testing for Teacher quality Effects 

 Section III shows that the F-test on the estimated teacher effects is not a valid test for the 

existence of persistent teacher quality when there are transitory teacher-by-year-level shocks. 

Instead, I propose a test based on the simple idea that if teacher effects exist, the residuals for a 

teacher in one year should be correlated with residuals from another year for the same teacher. 

One can test this by running a regression of a teacher's mean residuals in year t on her mean 

residuals in year t-1 and then implementing a t-test for the coefficient on the mean lagged 

residuals. Even in the presence of large teacher-by-year disturbances, as long as teacher-by-year 

disturbances are uncorrelated over time, this tests will be an unbiased test for the existence of 

persistent teacher quality effects. This test does not suffer from the finite sample problem of 

testing for equality of all the individual teacher effects because it only requires that one 

parameter be identified (i.e. the correlation between residuals for year t and year t-1) for all 

teachers on average rather than one parameter for each teacher. Identifying the correlation 

between residuals for year t and year t-1 requires only that there be enough teachers observed for 
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more than one year. This new test does not require that each teacher effect be roughly correct (as 

is the case with the F-test), but only that any true teacher effects are persistent over time, and 

transitory shocks be uncorrelated over time for the same teacher. 

To illustrate the unbiasedness of this proposed test, I show the covariance test's 

performance on the same simulated data where the F-test was problematic. Figure 2 shows the 

distribution of the p-values associated with the covariance tests across the 1000 replications for 

teacher-by-year disturbances of different sizes. If the test is unbiased, the p-values should follow 

a uniform distribution centered around 0.5. Irrespective of the size of the teacher-by-year errors, 

the p-values follow a uniform distribution, so that this test is robust to idiosyncratic teacher-by-

year disturbances and will be an unbiased test for the existence of teacher quality effects.  

Deriving confidence bounds for the variance of teacher quality effects 

 As discussed above, the covariance between mean teacher-level residuals in year t and 

year t-1 is an estimate of the variance of true teacher quality. Because a sample covariance is a 

sample statistic, one can use a bootstrap to obtain consistent confidence intervals for the 

estimated covariance ─ and by implication the variance and standard deviation of true teacher 

effects. Such bounding exercises have not been done in the extant literature on teacher quality. 

From a policy perspective, this is important because it allows one to bound the kinds of 

improvements one can expect to see from using estimated value-added in retention and personnel 

decisions. Moreover, this is important because it allows one to determine the extent to which one 

can trust the exact point estimates from any particular study.  

 

V Results 

 In Table 5, I present the estimated variance of effects under five models. Model 1: with 

both school and year fixed effects and lagged individual level achievement; Model 2: with school 

and year fixed effects and the rich set of all individual level covariates; Model 3: with school and 

year fixed effects and all individual level and classroom peer level covariates; Model 4: with 

school-by-track and year fixed effects and all individual level and classroom peer level 

covariates; Model 5: with school-by-track fixed effects, school-by-year fixed effects and all 

individual level and classroom peer level covariates.  

 The estimated variability of raw Algebra teacher effects is similar across models that do 

not include school-track effects. For these three models the standard deviation of the raw teacher 
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fixed effects is about 0.23σ (in student achievement units). These raw estimates are similar in 

magnitude to those in Aaronson Barrow and Sander (2007). In these models, the standard 

deviation of the mean residuals within teachers across years is about 0.35σ ─ indicating that 

there is more variation in teacher performance from year-to-year than there is across teachers. 

Because each teacher estimate is based on an average 3.1 years, this implies that approximately 

0.35/√3.1=0.199σ can be attributed to transitory variation (i.e. due to teacher-by-year shocks and 

sampling variability). After accounting for transitory variability, under the assumption that all 

the remaining variation reflects true teacher quality, the implied standard deviation of teacher 

effects is approximately 0.12σ. In models that include school-track fixed effects and school-by-

year effects (column 5) the standard deviation of the raw teacher fixed effects falls to 0.143σ. 

After adjusting for transitory variation, the implied variance of teacher effects falls to 0.08σ ─ 

suggesting that not accounting for track specific treatments or selection to tracks may lead one to 

overstate the importance of teachers by approximately fifty percent.   

 The results for English teachers reinforce the importance of accounting for potentially 

confounding track level disturbances. In models that do not include school-track fixed effects 

(columns 6,7, and 8), the standard deviation of the raw estimated teacher effects is about 0.16σ, 

and the adjusted estimate is about 0.06σ. In models that include track fixed effects and school-

by-year effects (column 10) the standard deviation of the raw teacher fixed effects falls to 

0.084σ. After adjusting these estimates for transitory variation, the implied standard deviation of 

teacher effects falls to 0.036σ. In fact, column 9 indicates that, in some specifications, after 

including school-track fixed effects, transitory variation can explain all of the variability in mean 

outcomes across English teachers.  

 As one might expect, the potentially biased F-tests of equality of the teacher level 

residuals is rejected for all models. However, the test for covariance of mean teacher-by-year 

level residuals across years for the same teachers supports a different conclusion. For Algebra, in 

models that do not include school-track effects, one can reject that there is zero covariance in the 

teacher by year level residuals for the same teacher over time at the 1 percent level. However, in 

models that do include school-track effects, one cannot reject that there is zero covariance in the 

teacher by year level residuals for the same teacher over time at the 5 percent level, but can at the 

10 percent level. This indicates that selection to tracks or track specific treatments may be 

important sources of covariance in teacher effects across years that should not be attributed to 
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teacher effects. Models that include track fixed effects yield an estimated standard deviation of 

true teacher quality of approximately 0.11σ ─ similar to the adjusted estimates. The confidence 

interval reveals that this point estimate is not precisely estimated. The 95% percent confidence 

interval ranges from 0σ to 0.19σ. That is, the most credible set of estimates are sufficiency noisy 

that going from an average teacher to a teacher at the 85th percentile of the teaching quality 

distribution will increase Algebra test scores by anywhere between 0 and 0.17σ.  

 The results for English teachers differ substantively from those for Algebra teachers. For 

English, one fails to reject that there is zero covariance in the teacher by year level residuals for 

the same teacher over time at the 20 percent level in all models. In fact, for all models the 

estimated covariance is negative ─ which would imply no persistent teacher effects. This is 

consistent with the previous finding that all (or almost all) of the variability in mean teacher level 

residuals for English teachers can be explained by transitory variation. Models that include track 

fixed effects yield a 95% percent confidence interval for the standard deviation of between 0σ to 

0.067σ. That is, while all the evidence suggests no English teacher effects, the estimates are 

sufficiency noisy that one cannot rule out English teacher effects smaller than 0.067σ with 95 

percent confidence. The differences between the covariance-based estimates and the raw 

standard deviations underscore the fact that excess variability in test scores that can be attributed 

to individual teachers is not necessarily indicative of persistent differences in teacher quality.  

 

V.2 Is the Lack of an English Teacher Effect a Statistical Artifact? 

 Because this study is the first to show that English teachers might not affect student test 

scores, it is important to establish that this lack of an effect is real, and is not a result of 

methodology or data limitations. As such, in this section I discuss, and rule-out, three statistical 

explanations for the lack of any English teacher effects.  

Are there test ceiling or test floor effects that reduce the ability to detect English teacher effects? 

 If test scores suffered from ceiling/floor effects, then many students with different latent 

ability would have the same maximum/minimum English score, making it impossible to detect 

teacher effects for students in this ability range. One can assess this by looking for excess density 

of English test scores at the top or bottom of the distribution. I present kernel density plots for 

standardized English and Algebra test scores in appendix Figure A2. Both tests have single 

peaked bell-shaped distributions, and there is no visible evidence of any ceiling or floor effects.   
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Is the lack of an effect for English teachers due to measurement error? 

 Because the linking between teachers and students is not perfect in these data, there is the 

worry that the lack of an English teacher effect is due to certain teachers being linked to the 

wrong students. Such "measurement error" would lead one to understate the extent to which 

teacher effects are persistent over time. This is unlikely to drive the results because I do find 

persistent effects in algebra, which is subject to the same error. However, I test for this 

possibility by restricting the analysis to only those teachers who are perfectly matched15. For the 

subsample of English teachers for whom there is no "measurement error", the estimated 

covariance of mean residuals across years for the same teacher is small and negative ─ so that 

measurement error does not explain the lack of persistent English teacher effects. 

Is this reduction in the variance of teacher effects due to over-controlling? 

 Readers may wonder if part of the reason for no test score effects for English is that there 

is little variation in teacher quality within school-tracks. There are a priori reasons why this is 

unlikely to explain the results. First, the covariance between teacher-year level residuals within 

teachers across time is negative in all models (including those that do not include school-track 

effects). As such, the lack of persistent English teacher effects cannot be attributed to the 

inclusion of school-track effects. Second, the very same procedure that finds no teacher effects 

for English does find teacher effects for Algebra. To shed further light on this issue, I estimate 

teacher value-added based on models without track-by-school fixed effects (model 3 from Table 

7) and then assess the degree to which there is variation across and within tracks in this measure 

of teacher quality. For both algebra and English, approximately two thirds of the variance in 

teacher quality (estimated without school-track effects) occurs within school tracks (Appendix 

Table A1) so that if there is meaningful variation in teacher quality overall, there is also 

meaningful variation in teacher quality within tracks.  

 

V.3 How predictive is estimated value-added of teachers' future performance? 

 To verify that the estimated value-added has predictive power and to gauge the extent to 

which value-added estimates can predict a teachers performance in the future, I estimate teacher 

value-added using data from 2005 through 2007 and then use these estimates to see the effect on 

                                                 
15 These are either the only English I teacher in a school in a given year, or those teachers who are listed in the 
testing files and also have perfectly matching class characteristics.  See appendix Note 1 for details. 
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student test scores of these same teachers in the years 2008 through 2010. Specifically, I estimate 

equation [5] using 2005 through 2007 data, compute Empirical Baye's estimates of teacher value 

added based on mean teacher-level residuals, normalize the Empirical Baye's estimates16 to be 

mean zero unit variance,  and then estimate equation [7] below on the data from 2008 through 

2010 where ˆ
j

z


 is the estimated (pre sample) normalized value added of teacher j.  

[7]   
*

ˆ1  sy   +     
j

ijcy iy iy jy gi g ijgyY A z X X I


             

All variables are defined as before. The results are presented in Table 6.  

 Column 2 shows that a one standard deviation increase in estimated pre-sample value-

added (going from a median teacher to a teacher at the 85th percentile) raises algebra test scores 

by 0.0238σ. This effect is statistically significant at the 1 percent level. The magnitude of this 

effect is noteworthy. A very similar exercise for elementary-school teachers in North Carolina 

finds that a 1 standard deviation increase in estimated pre-sample value-added raises math scores 

by 0.17σ (Jackson & Bruegmann, 2009). This indicates that value-added estimates in high-

school have about 14 percent of the the out of smaple predictive power than those at elemnetary 

school. To ensure that the lack of predictive power is not due to "over controlling", I estimate the 

same model where the first stage value-added estimates do not account for track effects (not 

shown). Value added estimates that do not account for school track fixed effects have less the out 

of sample predictive power─ suggesting that the differences in out-of-sample predictability are 

not driven by differences in methodology.  

 Looking to English teachers, the estimates in specification 7 show that a one standard 

deviation increase in estimated pre-sample value-added raises English test scores by 0.0124σ. 

This effect is statistically significant at the 1 percent level.  The small magnitude of this effect is 

notable because this is about 14 percent of the size of out-of-sample predictive ability of 

estimated value-added for teachers at the elementary-school level. 

 It is important to note that if there is systematic selection to teachers within tracks based 

on unobservable student characteristics, then one might find that teachers with high estimated 

value-added in the past also have higher value-added in the current sample (even if there are no 

real teacher effects). In such a scenario, having high value-added in the pre-sample might 

indicate that certain teachers always teach those students who over-perform relative to observed 
                                                 
16 See appendix note 3 for a detailed description of how the Empirical Baye's estimates are formed from the raw 
teacher-level residuals. 
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characteristics rather than reflecting the real casual effect of the teacher. As such, it is important 

to obtain estimates of the out of sample predictive power of teacher value added that are robust 

to student sorting within school-tracks. 

 

V.4 Are These Out of Sample Effects Driven by Student Sorting Within Tracks? 

 To test for student selection to teachers within school-track-years, I exploit the statistical 

fact that any selection within school-track-years will be eliminated by aggregating the treatment 

to the school-track-year level (leaving only variation across years within school-tracks). If the 

out of sample estimates obtained using variation in estimated teacher quality within school-track 

years is similar to that obtained using variation across school-track years, it would indicate that 

the estimates are not driven by selection to teachers within tracks. To test for this I estimate 

equation [8] and [9] below separately on the data from 2008 through 2010 where ˆ
j

z


 is the 

normalized estimated (pre sample) value added of teacher j, ˆ
j

z


is the mean normalized estimated 

teacher value added in school-track g in year y, and gy  is a school-track-year fixed effect. 

[8]   
*

ˆ1 1  gy sy   +     *
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
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[9]   
*
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j
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

             

In [8] because the model includes school-by-track-by-year effects and teacher quality is defined 

at the student level, the variation all comes from comparing students in the same school-track in 

the same year but who have different teachers ─ i.e. the variation that might be subject to 

selection bias. In contrast, by defining the treatment at the school-track-year level in [9], one is 

no longer comparing students within the same school-track-year, but only comparing students in 

the same school-track across different cohorts where selection is unlikely. Conditional on track-

school fixed effects, all the variation in this aggregate teacher quality measure in [9] occurs due 

to changes in the identities of teachers in the track over time. If there is no sorting in unobserved 

dimensions, ψ1 from [8] should be equal to ψ2 from [9]. However, if all of the estimated effects 

are driven by sorting within school-track-years, there should be no effect on average associated 

with changes in mean teacher value-added in the track so that ψ2 from [9] will be equal to 0.  

 The results of this test are presented in Table 6. For Algebra, using only variation within 

school-track years (column 3) yields a point estimate of 0.024, and using changes in aggregate 



22 
 

track level mean teacher quality (using only variation across years) yields a point estimate of 

0.0386 (column 4). This pattern is robust to including school by year effects ─ suggesting that 

the estimated algebra teacher effects are real and are not driven by selection to teachers within 

tracks. For English however, the point estimates within school-track years is 0.0138 (column 8) 

while those for models that are robust to selection are close to zero and not statistically 

significant (columns 9 and 10). This suggests that the small English effects estimated using 

within school-track-year variation might have been due to some mild selection on 

unobservables.17 Taken at face value, the point estimate of 0.00034 indicates that policies that 

select high English value-added teachers will not yield meaningfully improved test scores. 

 

VI Conclusions 

 Despite mounting evidence that elementary-school teachers have large effects on student 

test scores, much less is known about the effect of high-school teachers. I argue that in a high-

school setting, even with random assignment to teachers, if different teachers teach in different 

tracks and students in different tracks are exposed to different treatments, there will be bias due 

to "track treatment effects". This additional source of bias creates new challenges to identifying 

teacher effects in high-school. I also demonstrate that the common practice of using the F-test on 

teacher indicator variables to test for the existence of teacher effects is problematic in the 

presence of teacher-by-year level disturbances, and I present a new unbiased test. 

 I present an identification strategy that allows for the credible identification of high-

school teacher effects. Using methods that account for "track treatment effects" yield estimated 

teacher effects that are considerably smaller than those obtained when track treatment effects are 

not accounted for. I find that a one standard deviation increase in algebra teacher quality is 

associated with increased student achievement of about 0.08 standard deviations. However, there 

is little evidence of any persistent English teacher quality effects on English test scores. I also 

show how using the F-test to test for the existence of English teacher effects leads to the wrong 

conclusion, and may have affected inferences in existing studies.  

 While the results indicate that there are real persistent Algebra teacher effects, the 

magnitude of the effects in this study are smaller than those found in other studies ─ indicating 

that accounting for transitory teach-by-year shocks and track specific treatments is important. 

                                                 
17 In appendix note 2, I present weak evidence of selection on observables for English but not for Algebra teachers. 
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Also, this is the first study to show that English teachers do not affect test scores ─ underscoring 

the importance of not generalizing teacher effects obtained in elementary school across all grade 

levels and subjects. It is important to note that the lack of any test score effects for English 

teachers does not necessarily mean that high-school English do not matter. It is possible that 

English teachers have meaningful effects on important non-cognitive outcomes that are not well-

captured by test scores such as self-esteem, motivation, and aspirations.  

 I also investigate the extent to which estimated value-added predict a teacher's future 

performance. After accounting for biases due to student sorting, the results suggest that the scope 

for using value-added in personnel decisions in high-school might be limited. With a normal 

distribution, removing the bottom 5 percent of teachers increases average teacher quality by 0.1 

standard deviations in value-added. The out of sample estimates suggests that this would raise 

student achievement by 0.0345*0.1=0.00345σ in Algebra (and no effect in English). A more 

aggressive policy of removing the lowest 30 percent of teachers would increase average teacher 

quality by 0.5 standard deviations and would raise student achievement by 0.0345*0.5=0.017σ 

(1.7 percent of one standard deviation) in Algebra (with no effect on English performance). 

These calculations suggest that, even with large changes to the teacher quality distribution, one 

cannot expect very large improvements in student achievement associated with retaining the 

highest value-added teachers. This is because the ability for value-added to predict teacher 

performance out of sample is about 7 times smaller in high-school than in elementary school.   

 In sum, the results indicate that one should avoid the temptation to use studies based on 

elementary-school teachers to make inferences about teachers in general. The findings 

underscore the importance of using empirical methodologies that are appropriate to the specific 

high-school context. From a policy perspective, this paper demonstrates that the potential gains 

of using value-added in personnel decision in high-school may be small. In addition, because 

English teachers are found to have no effect on test-scores, using test-score based measures of 

quality in the hiring and firing of high-school English teachers may be misguided.  
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Figure 1: F-tests without clustering (based on simulated data with no teacher effects)  

  
 
Figure 2: Covariance Test (based on simulated data with no teacher effects) 
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Table 1: Summary Statistics of Student Data 

Variable Mean 
Std. 
Dev. 

Std. Dev. 
within 
school-
tracks   

Std. Dev. 
within 
schools 

English I z-Score (9th grade) -0.037 (1.001) (0.766) (0.937)
Algebra I z-Score (9th grade) -0.052 (0.995) (0.699) (0.955)
Male 0.509 (0.500) (0.470) (0.498)
Black 0.270 (0.444) (0.362) (0.396)
Asian 0.017 (0.13) (0.123) (0.128)
Hispanic 0.065 (0.246) (0.228) (0.24)
White 0.527 (0.499) (0.404) (0.443)
Math z-score 8th grade -0.025 (0.949) (0.593) (0.894)
Reading z-score 8th grade -0.022 (0.948) (0.613) (0.908)
Math z-score 7th grade -0.023 (0.951) (0.673) (0.902)
Reading z-score 7th grade -0.014 (0.933) (0.676) (0.900)
Parental education: Less than High-school 0.028 (0.425) (0.35) (0.413)
Parental education: High-school Graduate 0.236 (0.161) (0.135) (0.161)
Parental education: Junior College graduate 0.042 (0.201) (0.190) (0.200)
Parental education: Four-year college graduate 0.108 (0.310) (0.273) (0.303)
Parental education: Graduate school graduate 0.023 (0.150) (0.139) (0.148)
Parental education: Missing 0.527 (0.499) (0.384) (0.481)
Limited English Proficient 0.111 (0.163) (0.146) (0.161)
Number of honors courses taken 0.775 (1.274) (0.575) (1.132)
Gifted in reading 0.017 (0.131) (0.118) (0.129)
Gifted in math 0.017 (0.130) (0.118) (0.128)
Honors student 0.386 (0.487) (0.274) (0.451)

Observations 398703 
 
 
 
 
Table 2: Most common academic courses 

Academic course rank Course Name Course code % of 9th graders taking % of all courses taken 
1 English I* 1021 90 0.11 
2 World History 4024 84 0.11 
3 Earth Science 3038 63 0.09 
4 Algebra I* 2023 51 0.06 
5 Geometry 2030 20 0.03 
6 Art I 5415 16 0.03 
7 Biology I 3020 15 0.02 
8 Intro to Algebra 2018 14 0.02 
9 Basic Earth Science 3040 13 0.01 

10 Spanish I 1051 13 0.02 
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Table 3: Distribution and persistence of honors students among teachers 

1 2   3 4
Algebra I   English I 

Proportion of students in 
at least one Honors class 

among other courses 

Proportion of students in 
at least one Honors class 

among other courses 
Lag of the proportion in at least one Honors class 
among other courses 

0.454 0.225 0.585 0.449
[0.014]*** [0.016]*** [0.014]*** [0.017]*** 

Year Fixed Effects Y Y Y Y
School Fixed Effects N Y N Y

SD of mean outcome at teacher year level 0.293 0.32
SD of mean outcome at teacher level 0.304 0.32

Observations 12987 10855
Standard errors in brackets 
* significant at 10%; ** significant at 5%; *** significant at 1% 
Data are at the teacher by year level and the main outcome of interest is the proportion of students in a 
teachers class in a given year that is taking at least one other class at the honors level. 

 
 

 

 
Table 4: Illustration of the Variation at a Hypothetical School 

  Track A Track B
Alg I (regular) Alg I (regular) 
Eng I (regular) Eng I (regular) 

Natural Sciences Biology  
US History World History 

    Geometry 
Year

Math Teacher 1 2000 X X
Math Teacher 2 2000 X 

Math Teacher 1 2005 X X 
Math Teacher 2* 2005 - - 
Math Teacher 3 2005   X 
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Table 5: Variability of Teacher Effects  

1 2 3 4 5   6 7 8 9 10 

School 
Effects+ 
lagged 

test 
scores  

School 
Effects + 
student 

covariates 

School 
Effects + 
student 

covariates 
+ Peer 

covariates 

Track-by-
School 

Effects + 
student 

covariates 
+Peer 

covariates 

Track-by-
School 

Effects + 
student 

covariates 
+ Peer 

covariates 
+ school-
by-year 
effects 

School 
Effects+ 
lagged 

test scores 

School 
Effects + 
student 

covariates 

School 
Effects + 
student 

covariates 
+ Peer 

covariates 

Track-by-
School 

Effects + 
student 

covariates 
+Peer 

covariates 

Track-by-
School 

Effects + 
student 

covariates 
+ Peer 

covariates 
+ school-
by-year 
effects 

Algebra I English I
SD of raw mean teacher level residuals 0.232 0.231 0.230 0.153 0.134   0.159 0.158 0.154 0.101 0.084 
F-test: Prob(all teacher level means equal) 0.000 0.000 0.000 0 0   0 0 0 0 0 

SD of teacher year effects (within teachers) 0.351 0.350 0.346 0.217 0.183 0.28 0.279 0.273 0.192 0.140 
Average number of years per teacher 3.10 3.10 3.10 3 2.9 3.6 3.6 3.6 3.5 3.4 
SD of mean of transitory variability  0.199 0.199 0.197 0.125 0.107 0.147 0.147 0.144 0.103 0.076 
Implied true SD of persistent teacher 0.119 0.117 0.119 0.087 0.080   0.061 0.058 0.055 0 0.036 

Cov(t,t-1) 0.13324 0.13335 0.12356 0.01360 0.01025 -0.0059 -0.0061 -0.01057 -0.01271 -0.00124 
t:test: Prob[cov(t,t-1)]>0 0 0 0 0.08 0.054 0.53 0.55 0.42 0.51 0.67 

Bootstrap 95% Lower Bound: cov(t,t-1)  0.05915 0.05420 0.04656 -0.00919 -0.00445 -0.02665 -0.02511 -0.03161 -0.02318 -0.00674 
Bootstrap 95% Upper Bound: cov(t,t-1)  0.20541 0.20452 0.18803 0.03638 0.02885 0.01775 0.03137 0.01723 0.00343 0.00453 

Lower (sigma) 0.243 0.233 0.216 0.000 0.000   0 0 0 0 0
Implied (sigma) 0.365 0.365 0.352 0.117 0.101 0 0 0 0 0 
Upper (sigma) 0.453 0.452 0.434 0.191 0.170   0.133 0.177 0.131 0.059 0.067 
Student covariates include 8th grade and 7th grade math scores (and their third order polynomials) , 8th grade and 7th grade math scores (and their third order polynomials), 
parental education, ethnicity, gender, LEP status, number of honors courses taken, and whether the students has been designated gifted in English and/or math. Peer covariates are 
the classroom level and school means of all the student level covariates.
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Table 6:  Out of sample predictions 

Algebra Teacher Standardized Score (2008-2010) Algebra Teacher Standardized Score (2008-2010) 

Using both variation within 
track-school-year cells and 

variation within track school 
cells across years 

Using only 
variation 

within track-
school-year 

cells 

Using variation within 
track school cells across 

years   

Using both variation within 
track-school-year cells and 

variation within track school 
cells across years 

Using only 
variation 

within track-
school-year 

cells 

Using variation within 
track school cells 

across years 

1 2 3 4 5   6 7 8 9 10 

Standardized Teacher Effect (2005-7) 0.03521 0.02381 0.02426 0.01027 0.01246 0.01385 

[0.00632]*** [0.00677]*** [0.00717]*** [0.00392]*** [0.00330]*** [0.00353]*** 

Mean Standardized Teacher Effect (2005-7) 0.03861 0.0345 0.00431 0.00034 

[0.00886]*** [0.0190]* [0.00399] [0.00725] 

School Effects Y - - - - Y - - - - 

Track-School-Effects N Y - Y Y N Y - Y Y 

School-Year-Effects N Y - N N N Y - N N 

School-Track-Year Effects N N Y N N N N Y N N 

Student and peer covariates Y Y Y Y Y Y Y Y Y Y 

Observations 48195 45874 47508 67036 64447   104648 99854 102864 129024 123624 

Robust standard errors in brackets           

* significant at 10%; ** significant at 5%; *** significant at 1% 
Student covariates include 8th grade and 7th grade math scores (and their third order polynomials) , 8th grade and 7th grade math scores (and their third order 
polynomials), parental education, ethnicity, gender, LEP status, number of honors courses taken, and whether the students has been designated gifted in English and/or 
math. Peer covariates are the classroom level and school means of all the student level covariates. 
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Appendix 

Figure A1: F-tests with clustering (no classroom effects and no teacher effects) 

 
The size of the transitory teacher-by-year level shock is indicated on the X-axis. 

 
 
Figure A2:  Density of Test Score Outcomes 

 
 
 

0
.1

.2
.3

.4
.5

0 10 20 30
sd

Cluster at class level

0
.1

.2
.3

.4
.5

0 10 20 30
sd

No clustering

0
.1

.2
.3

.4
.5

0 10 20 30
sd

Cluster at teacher level

The Mean is dashed black and the standard deviation in solid grey

by size of classroom effect
Mean and SD of P-value of F-test by cluster level

0
.1

.2
.3

.4
.5

-4 -2 0 2 4
x

English I Score Algebra I Score

Kernel Density of Normalized English and Algebra Scores 



32 
 

 
 
 
Table A1: Distribution of Number of Teachers in Each School-Track Year Cell 

Percent

Number of Teachers in Track-Year-School Cell English Algebra
1 63.37 51.07
2 18.89 26.53
3 9.12 11
4 5.6 6.38
5 3.03 3.25
6 0 1.77

Note:  This is after removing singleton tracks. 

 
 
 
 
 
Table A2: Dispersion of Teacher effects (estimated without track fixed effects) across and 
within tracks 

Math Teacher Effects English Teacher Effects 

SD raw 
SD within 

Tracks 
SD of track 

Means 
% of Variance 
Within Tracks SD raw 

SD 
within 
Tracks 

SD of 
track 

Means 

% of 
Variance 
Within 
Tracks 

Algebra scores 0.3572 0.2886 0.2101 0.65 0.0022 0.0018 0.0012 0.67 

English Scores 0.0776 0.0643 0.0433 0.69 0.0405 0.0324 0.0242 0.64 

Note: The estimated teacher effects are based on a value-added model that does not include school-track effects, but does 
include school fixed effects, year fixed effects, and all student and peer covariates.  
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Appendix Note 1:  Matching Teachers to Students 

 

The teacher ID in the testing file corresponds to the teacher who administered the exam, 
who is not always the teacher that taught the class (although in many cases it will be). To obtain 
high quality student-teacher links, I link classrooms in the End of Course (EOC) testing data with 
classrooms in the Student Activity Report (SAR) files (in which teacher links are correct). The 
NCERDC data contains The End of Course (EOC) files with test score level observations for a 
certain subject in a certain year. Each observation contains various student characteristics, 
including, ethnicity, gender, and grade level. It also contains the class period, course type, 
subject code, test date, school code, and a teacher ID code. Following Mansfield (2011) I group 
students into classrooms based in the unique combination of class period, course type, subject 
code, test date, school code, and the teacher ID code. I then compute classroom level totals for 
the student characteristics (class size, grade level totals, and race-by-gender cell totals). The 
Student Activity Report (SAR) files contain classroom level observations for each year. Each 
observation contains a teacher ID code (the actual teacher), school code, subject code, academic 
level, and section number. It also contains the class size, the number of students in each grade 
level in the classroom, and the number of students in each race-gender cell.  

To match students to the teacher who taught them, unique classrooms of students in the 
EOC data are matched to the appropriate classroom in the SAR data. To ensure the highest 
quality matches, I use the following algorithm: 
 

(1) Students in schools with only one Algebra I or English I teacher are automatically linked 
to the teacher ID from the SAR files. These are perfectly matched. Matched classes are 
set aside. 

(2) Classes that match exactly on all classroom characteristics and the teacher ID are deemed 
matches. These are deemed perfectly matched. Matched classes are set aside.  

(3) Compute a score for each potential match (the sum of the squared difference between 
each observed classroom characteristics for classrooms in the same school in the same 
year in the same subject, and infinity otherwise) in the SAR file and the EOC data. Find 
the best match in the SAR file for each EOC classroom. If the best match also matches in 
the teacher ID, a match is made. These are deemed imperfectly matched. Matched classes 
are set aside.  

(4) Find the best match (based on the score) in the SAR file for each EOC classroom. If the 
SAR classroom is also the best match in the EOC classroom for the SAR class, a match is 
made. These are deemed imperfectly matched. Matched classes are set aside.  

(5) Repeat step 4 until no more high quality matches can be made.  
 
 
This procedure leads to a matching of approximately 60 percent of classrooms. All results are 
similar when using cases when the matching is exact so that error due to the fuzzy matching 
algorithm does not generate any of the empirical findings. 
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Appendix Note 2 

 To provide evidence of bias due to sorting on observables, I determine if teacher value-
added is correlated with observable student characteristics. I estimate teacher value-added using 
data from 2005 through 200718, while computing predicted outcomes for students in 2008 
through 2010. The predicted outcomes are fitted values from a linear regression of the outcomes 
on all observable student characteristics.19 I then  run a regression of standardized normalized 
teacher effects from 2005-2007 data on predicted outcomes from 2008-2010 (with school and 
year fixed effects) to see if students who are likely to have better outcomes (based on observed 
characteristics) tend to be assigned to teachers who had better or worse than average value-added 
historically. With positive assortative matching the coefficient on teacher value-added would be 
positive and with negative assortative matching it will be negative. If there is little systematic 
sorting of students to teachers the coefficient on pre-sample teacher value-added will be zero. 
 I present the results in the top panel of Table A3. In models with school and year effects, 
in the second stage only the point estimates are very small, and none is statistically significant at 
the 5 percent level. This is evidence of minimal bias due to sorting into tracks. While the results 
thus far suggest that there is little selection to tracks, the main specification used is based on 
variation within tracks. As such, it is important to show that there is no selection to teachers 
within tracks. I implement this additional test by augmenting the test described in IV.1 to include 
track-by-school fixed effects in the second stage as opposed to only school fixed effects. These 
estimates are presented in the lower panel of Table A3. For Algebra the point estimates are very 
small, and none of the coefficients is statistically significant at the 5 percent level. In contrast, 
while the estimate is not statistically significant for English teachers on predicted English scores, 
the point estimates is sufficiently large (0.074) that selection to English teachers within tracks 
might be a concern.  
 

Table A3: Further Evidence of no Selection Bias due to Sorting 

Dependent Variable Predicted Algebra Score Predicted English Score 

Math Teacher English Teacher   Math Teacher English Teacher 
R2 of Prediction 0.359 0.359 0.616 0.616 

Estimated VA 0.000622 0.0155 -0.00128 0.00659 Model 1 
[0.00669] [0.0895] [0.00589] [0.104] 

Estimated VA -0.00708 0.015 0.00134 0.0741 Model 2 
  [0.00377] [0.107]   [0.00398] [0.0688]   
Model 1: School and year fixed effects 
Model 2: School-by-Track fixed effects and year fixed effects 
Robust standard errors in brackets clustered at the teacher level. 
** p<0.01, * p<0.05 

                                                 
18 I compute Empirical Bays estimates following Kane and Stagier 2008. See appendix note 1. 
19 As discussed in Jackson (2010), this is a more efficient and straightforward test of the hypothesis that there may 
be meaningful selection on observables that estimating the effect of the treatment on each individual covariate. This 
is because (a) the predicted outcomes are a weighted average of all the observed covariates where each covariate is 
weighted in its importance in determined the outcome, (b) with several covariates selection individual covariates 
may working different directions making interpretation difficult and also, (c) with multiple covariates some point 
estimates may be statistically significantly different from zero by random chance. 
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Appendix Note 3 Evidence of student sorting to teachers 

 The evidence thus far indicates that is sorting of student and teachers to tracks. However, 
one may wonder about student sorting to teachers directly. To asses this, following Aaronson, 
Barrow, and Sander (2007), I calculate mean within-teacher-year student test-score dispersion 
(i.e. the average across all teacher-years of the standard deviation of test scores computed for 
each teacher in a given year) observed in the data and compare that to the mean within-teacher 
student test score dispersion for other counterfactual assignments. Table A4 displays the actual 
within teacher-year test score dispersion, what one would observe with full student sorting to 
teachers within schools, and random student assignment to teachers within schools.20 The actual 
within-teacher-year test score dispersion is between 88 and 100 percent of what one would 
observe under random assignment of students to classrooms within schools. However, in a 
Monte Carlo simulation of mean test score dispersion under random assignment within schools, 
none of the 500 replications yielded dispersion levels as low as that observed ─ suggesting that 
there is some systematic sorting of student to teachers based on incoming achievement.  
 

Table A4: Test for Sorting into Tracks by Prior Achievement  

Math Reading 
Average teacher-year level 
SD of variable 8th grade 7th grade growth   8th grade 7th grade growth 

Actual  0.5750 0.5737 0.4990 0.6910 0.6676 0.5678 
Full sorting within schools 0.1530 0.1683 0.1434 0.1720 0.1788 0.1502 
Full sorting across schools 0.0012 0.0012 0.0012 0.0017 0.0010 0.0014 
Random assignment within 0.6514 0.6360 0.4978 0.7445 0.7138 0.5645 
Random assignment across 0.7411 0.7117 0.5106   0.7946 0.7593 0.5698 
This table displays the average within-teacher-year standard deviation (i.e. the average across all teacher-years of 
the standard deviation of test scores computed for each teachers classroom in a given year) of 8th grade scores, 7th 
grade scores, and test-score growth between 7th to 8th grade for both math and reading. I present the actual within 
teacher-year test score dispersion, what one would observe with full student sorting (of the variable) within 
schools, full student sorting across all classroom and schools, random student assignment within schools and 
finally random student assignment across all classrooms and schools.

 

 

 
 
 
 
 
 
 

                                                 
20 For the interested reader, I also present the test score dispersion with full student sorting across all classroom and 
schools and random student assignment across all classrooms and schools. 
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Appendix Note 3:  Empirical Bayes Estimates  
 
 While teacher effects that come directly from [3] should yield consistent estimates of 
teacher value added, a more efficient estimate is the Empirical Bayes (EB) estimate that shrinks 
noisy value added estimates towards the mean of the value added distribution (in this case zero). 
Where ju is random estimation error ˆ

j j ju   , and (0, ( ))j N Var  , so that the total 

variance of the estimated effects is ˆ( ) ( ) ( )j jVar Var Var u   . With estimation error 
2 2 2ˆ ˆ[ | ] ( / ( ))

jj j u jE          . The empirical analog of this conditional expectation is an EB 

estimate. This approach accounts for the fact that teachers with larger classes will tend to have 
more precise estimates and there are classroom-level disturbances so that teachers with multiple 
classrooms will have more precise value added estimates.  
 To construct an estimate of the estimation error for each teacher, I first estimate the 
variance of the year-to year variation within teachers over time (we will call this 2

jyc ). This is an 

estimate of the variability of transitory teacher by year shocks and sampling variability. Then to 
account for the fact that teachers observed in more years will have more reliable estimates I  
estimate 2

ju  (the estimation variance of the raw value added estimate ) with  2 /
jyc jC  where Cj 

is the number of years observed for teacher j. I take as my estimate of 2
  the implied standard 

deviation of teacher effect from Table 7. Using the covariance of mean residuals across years for 
the same teacher as an estimate of 2

  yields almost identical estimated for Algebra teachers.  

However, because the estimated covariance is negative for English teachers, one can only use the 
adjusted implied variance. To obtain an EB estimate for each teacher, I multiply the raw teacher 
effect ˆ

j  by an estimate of its reliability. Specifically, I compute 2 2 2ˆ ˆ ˆ/ ( )
j

EB
j j u        .The 

shrinkage factor 2 2 2ˆ ˆ/ ( )
ju    is the ratio of signal variance to total variance and is a measure 

of how reliable an estimate ˆ
j  is for j .  

 
 


