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1 Introduction

The main goal of this study is to assess the cross–sectoral variation in plant–level

idiosyncratic risk in U.S. manufacturing. Our data consists of a large panel extracted

from the Annual Survey of Manufacturers (ASM), gathered by the US Census Bureau.

We proxy idiosyncratic risk with the portion of the variation in the growth of

Revenue Total Factor Productivity (TFPR) which cannot be forecasted by means

of factors, either known or unknown to the econometrician, that are systematically

related to plant dynamics.

Consistent with previous studies, our manufacturing–wide estimates suggest that

idiosyncratic risk is much larger than aggregate risk. Our measure of the former

accounts for roughly 90% of overall plant–level uncertainty.

The variation in idiosyncratic risk across three–digit industries is substantial. To

gain a flavor of the amount of heterogeneity we uncover, consider that the volatility

of TFPR growth due to idiosyncratic shocks ranges from 4.09% for producers of fur

goods to a whopping 12.39% for manufacturers of computer equipment.

Why does volatility differ so much across sectors? We provide some preliminary

evidence in favor of a particular explanation: volatility is higher in sectors where

creative destruction is more important.

The notion of creative destruction is central to the Schumpeterian paradigm. Ac-

cording to the latter, firms are engaged in a perpetual race to innovate. Creation, i.e.

the success by a laggard in implementing a new process or producing a new good,

displaces the previous market leader, eliminating (destroying) its rent.

Formal models of Schumpeterian competition1 predict a positive cross–sectoral

association between creative destruction, product turnover, and innovation–related

activities. We document that idiosyncratic risk is higher in industries where product

turnover is greater and investment–specific technological progress is faster.

Over the last 25 years or so, a substantial body of research has documented a wide

heterogeneity in the level of total factor productivity across plants. See Bartelsman

and Doms (2000) and Syverson (2011) for a very effective account of this literature.

This paper is about the variation in the growth of productivity, rather than the

level. Using US Census data, Davis and Haltiwanger (1992) and Davis, Haltiwanger,

and Schuh (1996) documented a remarkable extent of within–sector job reallocation

across manufacturing plants, while Davis, Haltiwanger, Jarmin, and Miranda (2006)

1We refer to the economic growth literature that builds on Aghion and Howitt (1992).
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found a very wide variation in the volatility of business growth rates. Work by Bar-

telsman and Dhrymes (1998), Baily, Hulten, and Campbell (1992), Baily, Bartelsman,

and Haltiwanger (2001) and Foster, Haltiwanger, and Krizan (2001) shows that such

heterogeneity is accompanied by a substantial variation in productivity growth.

Our contribution to the literature is twofold. To start with, we strive to asses

the portion of volatility in plant–level productivity growth that is due to merely

idiosyncratic shocks. As indicated above, our proxy for volatility is the fraction of the

variation in TFPR growth which is not accounted for by aggregate and industry-wide

disturbances, or by plant-specific characteristics that are systematically associated

with changes in productivity itself. Furthermore, we illustrate the cross–sectoral

variation in plant–level idiosyncratic shocks. We provide estimates of risk by three–

digit SIC sectors and make a first attempt at identifying the determinants of the

heterogeneity we uncover.

Three other unpublished papers, by Abraham and White (2006), Gourio (2008),

and Bachman and Bayer (2011), share our goal of estimating processes for plant– or

firm–level idiosyncratic shocks. Their data is from the U.S. Census’ LRD, Deutsche

Bundesbank’s USTAN, and Compustat, respectively. Beyond the data source, our

work differs from theirs in the restrictions imposed on the stochastic process and in

the emphasis we place on the cross–sectoral heterogeneity in risk.2

We are not the the first to document the extent of cross–sectoral variation in

volatility. However, data considerations limit the analysis of previous studies to the

variation of sales growth across large firms. See Chun, Kim, Mork, and Yeung (2008),

Castro, Clementi, and MacDonald (2009), and Cuñat and Melitz (2010).3

For our purposes, the conditional volatility of sales growth is short of ideal. Swings

in sales depend not only on idiosyncratic shocks, whose size we are interested in

measuring, but also on the management’s ability to alter the scale and input mix in

order to accommodate them. This implies that residual volatility in sales growth is

likely to be an upward–biased estimate of idiosyncratic risk. Our research confirms

that this is indeed the case.

When we conduct our analysis substituting sales growth for TFPR growth, we find

2Campbell, Lettau, Malkiel, and Xu (2001) are also concerned with assessing idiosyncratic risk.
Their proxy for the latter, however, is quite different. They decomposed the volatility of excess stock
returns in three components: aggregate, industry–wide, and firm–level. This allowed them to obtain
average measures of idiosyncratic risk for the whole economy and for several coarsely defined sectors.
Their methodology delivers reasonable proxies for the risk borne by equity investors, but not for that
faced by other stakeholders, such as the owners of small firms.

3In the cross–country study by Michelacci and Schivardi (2012), the proxy for risk is built following
the methodology of Campbell, Lettau, Malkiel, and Xu (2001).
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that the mean standard deviation of the residuals across all manufacturing plants is

10.07%, larger than above. The range of sectoral estimates is also wider. The ordering

of sectors by volatility, while broadly consistent with that produced by TFPR, is not

quite the same.

Our data has other advantages. Given the sample size, it allows us to work with

a very fine sector classification. Furthermore, the sampling technique ensures that it

is representative of the population of manufacturing plants.

Learning about the magnitude of plant–level idiosyncratic risk is important in light

of the remarkable role that the latter plays in many areas of applied economics. In

Hopenhayn (1992) and Ericson and Pakes (1995), two of the most popular frameworks

for the study of industry dynamics, as well as in theories of financing constraints based

on asymmetric information, such as Clementi and Hopenhayn (2006) and Quadrini

(2003), firms are modeled as risk–neutral agents facing sequences of idiosyncratic

shocks.

Given that firms’ stakeholders have often limited insurance opportunities, assess-

ing firm–level risk is also relevant for the analysis of scenarios where risk aversion

matters. This is the case of entrepreneurship studies such as Quadrini (1999), theo-

ries of economic development such as Castro, Clementi, and MacDonald (2004, 2009),

and models of innovation such as Caggese (2012).

The evidence of lack of risk diversification abounds. Herranz, Krasa, and Villamil

(2009) find that 2% of the primary owners of the firms sampled by the 1998 Survey of

Small Business Finance4 invested more than 80% of their personal net worth in their

firms; 8% invested more than 60%, and about 20% invested more than 40%. Clementi

and Cooley (2009) document that in 2006, more than 20% of CEOs of U.S. publicly–

traded concerns5 held more than 1% of their companies’ common stock. About 10%

held more than 5%. Given the large capitalization of such companies, this information

points to limited portfolio diversification for these individuals.

Understanding how idiosyncratic risk varies across industries is a necessary step

towards the quantitative evaluation of a recent breed of multi–sector models, such

as Castro, Clementi, and MacDonald (2009), Cuñat and Melitz (2010), and Caggese

4The SSBF, administered by the Board of Governors of the Federal Reserve System, surveys a
large cross–sectional sample of non–farm, non–financial, non–real estate firms with less than 500
employees.

5The data is from EXECUCOMP, a proprietary database maintained by Standard & Poor’s that
contains information about compensation of up to 9 executives of all companies quoted in organized
exchanges in the U.S.
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(2012). According to the first two, cross–sectoral differences in idiosyncratic risk,

together with cross–country heterogeneity in institutions, rationalize the observed

cross–country variation in relative price of capital goods and investment rate (the

former), and trade specialization (the latter). Caggese (2012) studies the impact of

idiosyncratic risk on entrepreneurial firms’ propensity to innovate.

The remainder of the paper is organized as follows. The data and methodology

are described in Section 2. Our volatility estimates across three–digit industries are

illustrated in Sections 3. In Section 4 we provide evidence in support of the conjecture

that idiosyncratic risk is greater in industries where creative destruction is more im-

portant. In Section 5 we show that, consistent with what found by Castro, Clementi,

and MacDonald (2009) for public firms, plants that produce capital goods are sys-

tematically riskier than their counterparts producing consumption goods. Finally,

Section 6 concludes.

2 Data and Methodology

2.1 Data

We use the Annual Survey of Manufactures (ASM) and the Census of Manufacturers

for the years 1972 through 1997. Our unit of observation is the establishment, defined

as the minimal unit where production takes place. Depending on the year, our data

comprises from 50,000 to 70,000 establishments, distributed among 140 three–digit

SIC manufacturing industries.

The main reasons for choosing the ASM are that (i) it allows us to compute

reliable estimates of plants’ capital stocks, which are needed in order to compute our

indicators of total factor productivity and that (ii) working with a panel rather than

simply a cross–section, we are able to use fixed effects to control for unobserved plant

characteristics.

The ASM allows for a fine level of disaggregation. Our analysis is at the three–

digit SIC sectoral level, which maps into four– and five–digit NAICS. With respect

to Castro, Clementi, and MacDonald (2009) and Comin and Philippon (2005), whose

analysis is based on COMPUSTAT, our results are not subject to the selection bias

emphasized by Davis, Haltiwanger, Jarmin, and Miranda (2006), who document a

behavior of public firms markedly different from that of private firms, absent in COM-

PUSTAT.

The main drawback is that the ASM only covers manufacturing sectors. The
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Census Bureau’s Longitudinal Business Database (LBD) has a broader coverage.

However, since it does not contain information on capital stocks, it is not suited

to computing plant–level TFP.

2.2 Methodology

Our measure of productivity is what in the literature is known as real revenue per

unit input, or Revenue Total Factor Productivity (TFPR). The (log) TFPR for plant

i in sector j at time t is

ln zijt = ln yijt − αk
j ln kijt − αℓ

j ln ℓijt − αm
j lnmijt,

where yijt is real sales, kijt is capital, ℓijt is labor, andmijt is materials. The elasticities

αk
j , α

ℓ
j and αm

j are assumed to be sector–specific. Real sales are the nominal value

of shipments, deflated using the four–digit industry–specific deflator from the NBER

manufacturing productivity database. This is also the approach followed by Foster,

Haltiwanger, and Krizan (2001), Baily, Hulten, and Campbell (1992), and Syverson

(2004a) among others. All details can be found in Appendix A.1.

As effectively pointed out by Foster, Haltiwanger, and Syverson (2008), changes

in the TFPR indicator reflect fluctuations in productive efficiency, as well as plant–

specific shocks to input and output prices. This definition is well suited for our study,

as we are interested in identifying all sources of idiosyncratic uncertainty, including

price variation.

TFPR growth is in part the result of observable changes in the plant’s environ-

ment, such as variations in aggregate demand. It is also affected by managerial choices,

which in turn depend upon aggregate, industry–wide, and plant–specific characteris-

tics.

Our objective is to measure what portion of the volatility of TFPR growth cannot

be accounted for by either of these elements. As pointed out above, this is motivated

by our desire to isolate and measure random disturbances.

We first compute the portion of TFPR growth which cannot be forecasted by

means of factors, either known or unknown to the econometrician, which are system-

atically related to plant dynamics. We consider the following model:

∆ ln zijt = µi + δjt + β1j ln(size)ijt + β2j ln(Ageijt) + εijt. (1)

The dependent variable is the growth rate of TFPR for plant i in sector j, between
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years t and t+1.6 The dummy variable µi is a plant–specific fixed effect that accounts

for unobserved persistent heterogeneity across plants. The variable δjt denotes a full

set of sector–specific year dummies, which control for sector–specific shocks and cross–

sectoral differences in business cycle volatility. We include size and age because both

were shown to be negatively correlated with plant growth.7 Size is measured by

the number of employees, whereas age is the time since the establishment went into

operation.8

The objects of interest are the estimated residuals ε̂ijt, as they capture any varia-

tion in TFPR growth which is not due to systematic factors. We will interpret them

as realizations of plant–specific shocks.

Recall that our main interest lies in characterizing the extent to which the standard

deviation of such shocks varies across sectors. We satisfy our curiosity by fitting a

simple log–linear model to the variance of the residuals. We posit that

ln ε̂2ijt = θj + vijt, (2)

where θj is a sector–specific dummy variable. Letting θ̂j denote its point estimate,
√

exp(θ̂j) is our measure of the conditional standard deviation of TFPR growth for

plants in sector j. In what follows, we will refer to it as volatility of TFPR growth

or, more simply, as volatility.

3 Volatility Estimates

The mean standard deviation of the residual across all manufacturing plants is 8.05%.

Consistent with analyses that employ alternative methodologies,9 this result suggests

that idiosyncratic risk is substantially larger than aggregate risk.

This can be appreciated by comparing our estimate with readily available measures

of aggregate volatility. The average standard deviation of U.S. annual real GDP

growth was 2.52% before the so–called great moderation (i.e. in the period 1950–

1978) and fell to 1.75% in the period 1979–2007.

6In order to treat all plants in the sample symmetrically (whether small or large), we do not
use the ASM sample weights As discussed in Davis, Haltiwanger, and Schuh (1996) (Section A.2),
samples in the ASM panel are rotated every five years. In order to utilize all panel years, we also
include growth rates measured between two different ASM samples, namely for the years 1973-74,
1978-79, 1983-84, 1988-89, and 1993-94. Because only “certainty” plants are continuously observed
across different ASM panels, our sample in these years may over-represent relatively large plants.

7See Hall (1987) and Evans (1987).
8In our regression analysis, we follow Davis, Haltiwanger, and Schuh (1996) in that we use 3

categories of age dummies: Young, Middle-Aged, and Mature.
9See Campbell, Lettau, Malkiel, and Xu (2001) and Bachman and Bayer (2011), for example.
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A more accurate way of assessing the importance of idiosyncratic risk versus aggre-

gate risk is to compare our estimate with a more comprehensive measure of plant–level

uncertainty, which also reflects the portion that may be ascribed to industry–wide and

economy–wide factors. Such measure can be calculated by regressing TFPR growth

on plant fixed effects alone, and then computing the standard deviation of the resid-

uals.

Carrying out this exercise yields an overall volatility estimate of 9.45%. Our

conclusion is that idiosyncratic factors appear to account for about 90% of overall

plant–level uncertainty.
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Figure 1: Histogram of idiosyncratic risk by sector.

Our volatility estimates across three–digit industries are reported in Table 5 and

illustrated in Figure 1. The height of each bin is the fraction of sectors whose estimated

risk falls in the associated interval.

The range of estimates is rather wide. The volatility of TFP growth is lowest in the

Fur Goods sector (237), at 4.09%, and highest in Computer Equipment Manufacturing

(357), at 12.39%.
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3.1 Sales Growth

As a consistency check, we repeated our analysis substituting sales growth for TFPR

growth in equation (1). The mean standard deviation of the residuals across all

manufacturing plants is 10.07%, larger than above. This is likely to be the case

because the scale of production reacts to shocks, no matter their nature, amplifying

their impact on sales.

The range of sectoral estimates is also wider than for TFPR. See Table 5. The

lowest volatility is attained by Newspaper Publishing (SIC 271), with 3.78%, while the

highest pertains to Railroad Equipment (374), with 18.53%. The orderings delivered

by the TFPR and sales measures are fairly consistent, but not quite the same. The

Spearman’s rank–correlation coefficient is 0.71.

Considering sales growth is also interesting because it allows for a direct com-

parison with the estimates recovered for public companies by Castro, Clementi, and

MacDonald (2009). There are two caveats. First and foremost, our data is at the

plant–level, while theirs is at the firm level. Secondly, their sector classification is at

the three–digit NAICS, which is coarser than ours.

For the sectors for which a match is possible, our estimates are sensibly higher. For

Computer and Electronic Product Manufacturing, Castro, Clementi, and MacDonald

(2009) report an estimate of 10.52%, lower than the 15.87% we estimate for SIC 357.

For Machine Manufacturing, they estimate volatility at 8.89%, a figure lower than

our estimates for all sectors producing machinery (SIC 352, 354, 355, 356, and 358).

Similarly, their 4.9% estimate for Food Manufacturing is lower than our estimates for

the three–digit SIC sectors that belong to that industry (SIC 201 through 207 plus

209).

This pattern is consistent with the findings of Davis, Haltiwanger, Jarmin, and

Miranda (2006), who compare the volatility of public Vs. privately held firms, and

with the industrial organization literature that documents the negative correlation

between growth volatility and size.

3.2 Censoring

Since we do not explicitly account for exit selection, one may wonder whether the

cross–sectoral variation in volatility that we uncover were simply the result of cen-

soring. Say that the standard deviation of shocks were the same across industries,

but the fixed cost of operation was different. In a standard model of industry dy-

namics such as Hopenhayn (1992), this would imply heterogeneity in exit thresholds,
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and therefore cross-sectoral differences in measured volatility. The lower the cost,

the lower the threshold, and the higher the measured volatility. The same model,

however, would imply that sectors with higher measured volatility have lower exit

rates.

Using data from the Statistics of US Businesses Database gathered by the US

Census Bureau, we computed exit rates across three–digit SIC industries and plotted

them against our volatility estimates.10 See Figure 2. On average, more volatile indus-

tries tend to display higher exit rates. This finding suggests that the cross–sectoral
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Figure 2: Volatility and Exit Rates.

heterogeneity that we uncover cannot be simply the result of censoring. However,

we cannot rule out that censoring indeed biases our estimates, possibly affecting the

ranking of sectors by volatility.11

One may also wonder to what extent the cross-sectoral heterogeneity in our volatil-

ity estimates can be explained by variation in age and size. This question is motivated

10Exit rates refer to 1997, the only year in which SUSB and our dataset overlap.
11In his study of the ready–mixed concrete industry, Syverson (2004a) finds that markets with

denser construction activity have higher lower-bound productivity levels. This heterogeneity has an
obvious impact on the measures of productivity dispersion across markets.
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by evidence of a systematic relationship between these characteristics and other, alter-

native measures of plant-level volatility. We refer for example to Davis, Haltiwanger,

and Schuh (1996), who document how job reallocation rates decline with both age

and size, and to Davis, Haltiwanger, Jarmin, and Miranda (2006), who highlight the

negative association between age and the volatility of business growth rates.

In the case of sales growth, however, Castro, Clementi, and MacDonald (2009)

find that controlling for age and size in regression (2) has a very limited impact on

their volatility estimates.

4 Creative Destruction and Volatility

Why does volatility differ so much across sectors? In this section, we look for evidence

in favor of a particular explanation: volatility is higher in sectors where the speed

and extent of creative destruction are greater.

Joseph Schumpeter envisioned economic progress as the result of a perpetual race

between innovators. Success by a laggard or an outsider in implementing a new

process or producing a new good, provides them with a competitive advantage and

displaces the previous market leader, eliminating its rent. This, in a nutshell, is the

process of creative destruction.

We conjecture that most of the plant–level volatility that we document reflects

the turnover between market participants which is at the center of Schumpeter’s

paradigm. That is, we argue that a large fraction of the fluctuations in a plant’s

TFPR growth is due to variations in its distance from the technology frontier.

Our strategy consists in looking for sector–specific attributes that are likely to

be systematically associated with the speed of turnover. Starting with Aghion and

Howitt (1992), Schumpeter’s idea was formalized in a large number of models. We

turn to this literature for guidance.

In Aghion and Howitt (1992), the producer endowed with the leading technol-

ogy monopolizes the intermediate good market. Technology improves as a result of

purposeful research and development, which in equilibrium is only carried out by

prospective entrants. When it succeeds in obtaining a new and more productive vari-

ety of intermediate good, the innovator enters and displaces the monopolist. It follows

that all the variation in TFPR growth is associated with product turnover.

The positive association between product turnover and plant–level volatility is

not specific to Aghion and Howitt (1992). Rather, it is a robust feature of all of

10



its generalizations in which intermediate goods of different vintages are vertically

differentiated. For example, see Aghion, Harris, Howitt, and Vickers (2001) and

Aghion, Bloom, Bludell, Griffith, and Howitt (2005).

The race can also be among plants that are not directly engaged in R&D, but adopt

components which embed innovations made by others. This is the scenario described

by Copeland and Shapiro (2010), who model the personal computers industry. The

adoption decision, which entails the introduction of a new product, leads to a rise in

sales for the adopter, and to a decline for its competitors.

In Samaniego (2009), the decision that yields a competitive advantage is that of

acquiring the latest vintage of equipment. The faster is investment–specific techno-

logical change, the more frequent is technology adoption by either laggards or new

entrants. In turn, this leads to a more frequent turnover in industry leadership and

more variability in both sales and TFPR growth.

In the next section, we ask whether product turnover is indeed higher in industries

where plants are documented to face a greater volatility of TFPR growth. In Sections

4.2 and 4.3 we will ask whether across sectors our volatility measure is positively

related with the intensity of R&D and the speed of investment–specific technological

change, respectively.

4.1 Product Turnover

The U.S. Bureau of Labor Statistics collects prices on 70,000–80,000 non–housing

goods and services from around 22,000 outlets across various locations. When a

product is discontinued, the agency starts collecting prices of a closely related good

at the same outlet, and records the substitution information. The BLS classifies goods

in narrowly–defined categories known as entry–level items (ELI).

Our proxy for turnover is the average monthly frequency of substitutions, known

as the item substitution rate. It is the fraction of goods in the ELI that are replaced on

average every month. Our data is drawn from Bils and Klenow (2004)’s tabulations,

which in turn are based on information on more than 300 consumer good categories

from 1995 to 1997.12

Using the algorithm developed by Chang and Hong (2006), we were able to match

12The BLS distinguishes between two types of substitutions. Substitutions are comparable when
the replacement does not represent a quality improvement over the previous item. They are non-
comparable, otherwise. Since average and noncomparable average item substitution rates are highly
correlated across good categories, our results did not change much when we used noncomparable item
substitution rates instead.
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each one of 53 three–digit SIC manufacturing sectors with at least one ELI. For 21

sectors, the correspondence is one–to–one. The remaining 32 are matched to 213

items. In such cases, we defined the substitution rate as the average of the associated

ELIs’ rates, weighted by their respective CPI weights.

Two caveats are worth mentioning. To start with, the BLS data focuses on con-

sumer goods. Most investment good sectors are missing. Furthermore, the substi-

tution rate only tells about the frequency of product turnover and does not provide

information about the size of the step, i.e. the extent to which a new product improves

over the pre–existing one.
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Figure 3: Idiosyncratic Risk and Product Substitution Rate.

The scatter plot in Figure 3 shows that our proxy for product turnover is positively

associated with the volatility of TFPR growth. The simple correlation coefficients is

0.571.

Three sectors stand out, as they are characterized by high volatility and re-

markably high substitution rates. They are Computer and Office Equipment (357),

Women’s and Misses’ Outerwear (233), and Girls’ and Children’s Outerwear (236).
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Anecdotal evidence as well as scholarly research13 suggest that SIC 357 epitomizes

the idea of creative destruction. However, product turnover in the other two sectors

is not likely to be driven by technological improvements.

Idiosyncratic risk and turnover are positively associated even when we exclude

SIC 233, 236, and 357. However, the correlation coefficient drops to 0.235.14

The last two columns in Table 1 report the results of regressing TFPR growth

volatility on the average substitution rate and a constant. Column 3 tells us that

on average, a 1% higher substitution rate implies a 0.25% higher volatility of TFPR

growth. Without SIC 233, 236, and 357 (see column 4), the coefficient is marginally

insignificant at the 10% confidence level (its p–value is 0.101).

Table 1: Idiosyncratic Risk and Product Substitution Rate.

Dependent Variable: Sales Growth Volat. TFPR Growth Volat.

(1) (2) (3) (4)

Substitution Rate 0.0031∗∗∗ 0.0034∗∗ 0.0025∗∗∗ 0.0016
(0.0007) (0.0013) (0.0005) (0.0009)

Constant 0.0870∗∗∗ 0.0862∗∗∗ 0.0666∗∗∗ 0.0697∗∗∗

(0.0038) (0.0052) (0.0028) (0.0039)

Observations 53 50 53 50
R2 0.295 0.129 0.326 0.055

Standard errors in parenthesis. ∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

Specifications in columns (2) and (4) exclude SIC 233, 236, and 357.

Many establishments in the ASM are likely to produce more than one product.

Possibly, many more. As long as the correlation between sales from different lines of

business is less than 1, plant–level sales growth volatility will be lower than average

volatility at the level of product line. This may explain why sectors such as Glass

and Glassware (322), Books (273), and Household Furniture (251) are characterized

by a relatively high item substitution rate and low volatility of TFPR growth.

4.2 R&D Intensity

Unfortunately we lack data on research and development expenditure in the ASM.

We measure a sector’s research intensity as the ratio of R&D expenditure to sales

in COMPUSTAT. The latest CENSUS–NSF R&D survey found that most of the

13See Copeland and Shapiro (2010) and citations therein.
14For sales growth volatility, the correlation coefficient is 0.543. Without SIC 233, 236, and 357, it

drops to 0.359.
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research and development activity takes place at large firms. This leads us to think

that the cross–sectoral variation in R&D expenditures in the population is not likely

to differ much from that for large, public firms.

The cross–industry variation in research expenditures that we uncover is substan-

tial. Our measure of research intensity varies from 0.022% for Book Binding (SIC

278) to 7.77% for firms in Drugs (283).
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Figure 4: Idiosyncratic Risk and R&D.

The unconditional relationship between our risk proxy and research intensity is

illustrated in Figure 4. In Table 2 we report the results of regressing volatility on

R&D intensity and a constant. In the case of TFPR, the coefficient of R&D intensity

is statistically and economically significant. At the mean, a 1% increase in research

intensity implies an increase in volatility of about 30%.

Since Grilliches (1979), the relation between R&D and productivity growth has

been the object of interest for a large number of studies. The results described above

are consistent with recent findings by Doraszelski and Jaumandreu (2011). For a

large sample of Spanish manufacturing firms, they establish that engaging in R&D

introduces uncertainties in the productivity process that would be absent otherwise.
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Table 2: Idiosyncratic Risk and Research Intensity.

Dependent Variable: Sales Growth Volat. TFPR Growth Volat.

R&D Intensity 0.2033 0.2938∗∗∗

(0.1292) (0.0858)

Constant 0.0986∗∗∗ 0.0725∗∗∗

(0.0027) (0.0018)

Observations 109 109
R2 0.0226 0.0988

Standard errors in parenthesis. ∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

4.3 Investment–Specific Technological Change

In a simple two–sector model where investment and consumption goods are produced

competitively, the quality improvement in the investment good equals the negative

of the change in its relative price. Exploiting this restriction, Cummins and Violante

(2002) computed time series of quality improvement – or technological change – for

a variety or equipment goods over the period 1948–2000.

Using detailed data on capital expenditures by two–digit SIC industries provided

by the Bureau of Economic Analysis, Cummins and Violante (2002) also constructed

measures of investment–specific technological change by sector. In this section we ask

whether such measures are systematically related to our proxies for risk.
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Figure 5: Idiosyncratic Risk and Investment–Specific Technological Change.

Given the level of aggregation in the data on technological change, our analysis is

confined to 19 two–digit SIC sectors, listed in Table 6. For each industry, the rate of

technological change is the average of the 1948–1999 annual time–series underlying
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Figure 2 in Cummins and Violante (2002), provided to us by Gianluca Violante. The

risk proxies are weighted averages of the volatility estimates for the three–digit SIC

sectors that belong to the industry. The weights are the values of the average share of

each three-digit sector’s value of shipments in the corresponding two–digit sector.15

The scatter plots in Figure 5 suggest a positive association between the two vari-

ables of interest. Sectors such as SIC 35 (Industrial and Commercial Machinery and

Computer Equipment) and 31 (Leather and Leather Products) display high volatility

and high investment–specific technological change. SIC 34 (Fabricated Metal Prod-

ucts, except Machinery and Transportation Equipment), which ranks last in terms of

technological change, is also among the least uncertain sectors.

Table 3: Idiosyncratic Risk and Investment–Specific Technological Change.

Dependent Variable: Sales Growth Volat. TFP Growth Volat.

ISTC 1.1235∗∗ 0.9370∗∗

(0.5174) (0.3767)

Constant 0.0997∗∗∗ 0.0417∗∗∗

(0.0627) (0.0141)

Observations 18 18
R2 0.228 0.279

Standard errors in parenthesis. ∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

Note: SIC 27 excluded.

The magnitude and statistical significance of the correlation coefficients depends

on an outlier observation, SIC 27 (Printing and Publishing). Given the small number

of data–points, this is not surprising. Unfortunately we were not able to make sense

of the finding that plants mostly engaged in the printing and publishing of books,

periodicals, and newspapers experienced the fastest investment-specific technological

progress.

When we exclude SIC 27, the raw correlation between the volatility of TFPR

growth and investment–specific technological change is 0.53. Both estimates are sig-

nificantly different from zero at the 5% confidence level. When we include the outlier,

the correlation drops to 0.33, not statistically significant at the 10% level.16

Table 3 reports the results of regressing our proxies for idiosyncratic risk on a

constant and the estimated speed of investment–specific technological change. When

15The averages are computed from the NBER manufacturing database, which covers the 1958-1997
period.

16With sales growth, the volatility estimates are 0.58 and 0.13 without and with SIC 27, respectively.
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we drop SIC 27, a 1% increase in ISTC is associated with a 0.93% increase in TFPR

growth. The estimate is significant at the 5% level.

5 Consumption Vs. Investment Goods

Castro, Clementi, and MacDonald (2009) showed that in COMPUSTAT firms pro-

ducing investment goods are significantly riskier than firms producing consumption

goods. Does this pattern also hold across manufacturing plants in the ASM?

We classify industries as either consumption– or investment good–producing, based

on the 1992 BEA’s Use Input–Output Matrix. For every sector, the Use Matrix re-

ports the fractions of its output that reach all other sectors as input, as well as the

portions that meet final demand uses.

For each three–digit SIC industry, we compute the output share whose ultimate

destination is either consumption or investment. We label an industry as “consump-

tion” or “investment” if a sufficiently large share of its production ultimately meets a

demand for consumption or investment, respectively. The outcome of our assignment

procedure is in Table 5. The details of the algorithm are in Appendix A.2.

Figure 6 suggests a clear tendency for investment good sectors to be among the

most volatile, no matter the proxy for risk. The height of each bar reflects the volatility

of one three–digit sector.

Computer equipment is the most volatile sector. Only one investment–good sector

– Wood Buildings (245) – is among the bottom 28 sectors in the ranking.

Formal tests confirm that on average investment–good producing plants are indeed

more volatile. We run the following regression:

ln ε̂2ijt = α+ θC + uijt, (3)

where α is a constant and θC is a dummy variable which takes value 1 if firm i

produces consumption goods and is zero otherwise. The average volatility is 8.49%

in investment good sectors and 7.62% in consumption good industries. We can reject

the hypothesis that the two estimates are equal at the 1% confidence level.17

At business–cycle frequencies, the difference in volatility between aggregate con-

sumption and investment expenditures is mostly driven by the difference in durability

between the two good categories. In fact, expenditures on durable consumption goods

17With sales growth, the mean volatility among investment good–producing plants is 11.18%, while
for consumption good–producing plants it is 9.33%. The difference is also statistically significant.
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Figure 6: Volatility of sales growth per three–digit industry.

Table 4: Idiosyncratic Risk and Durability

Dependent Variable: Sales Growth TFPR Growth

Non-Durable Cons. Dummy –0.3963∗∗∗ –0.1331∗∗∗

(0.024) (0.0242)

Durable Cons. Dummy –0.1621∗∗∗ –0.1463∗∗∗

(0.0372) (0.0365)

Constant –4.3835∗∗∗ –4.9361∗∗∗

(0.0137) (0.0148)

Observations 446,837 428,888

Standard errors in parenthesis. ∗∗∗Significant at 1%. ∗∗Significant at 5%. ∗Significant at 10%.

are almost as volatile as investment expenditures. Does a similar pattern emerge at

the plant level?

To test whether volatility co–varies systematically with durability, we run the

regression

ln ε̂2ijt = α+ θD + θND + uijt, (4)
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where θD and θND are dummy variables that equal 1 if the firm produces durable or

non–durable consumption goods, respectively.

We classify consumption goods as durable if they have a service life of 3 years

or more, and nondurable otherwise. The service life data is from Bils and Klenow

(1998). We drop sectors for which they do not provide information. The details of

the assignment procedure are in Appendix A.3. The regression’s results are reported

in Table 4.

We find no appreciable difference in TFPR growth volatility between establish-

ments producing durable and non–durable consumption goods.18

Estimated risk in sectors producing durable consumption goods is statistically and

economically lower than in investment good sectors. The bottom line is that we found

no evidence in support of the claim that durability is the reason why investment–good

producing plants bear a greater idiosyncratic risk than plants producing consumption

goods.

6 Conclusion

In the recent but fast growing theoretical literature on establishment dynamics, het-

erogeneity in outcomes is often driven by idiosyncratic shocks. This paper makes

some progress towards understanding the magnitude and cross–sectoral variation of

such disturbances.

Using a large panel representative of the entire US manufacturing sector, we found

that idiosyncratic risk accounts for about 90% of the overall uncertainty faced by

plants. We also showed that risk varies greatly across three–digit sectors, ranging

from 4.09% for producers of fur goods to 12.4% for producers of computer equipment.

We propose that the heterogeneity in idiosyncratic risk is driven by the differ-

ential extent to which creative destruction shapes competition across sectors. For-

mal models of Schumpeterian competition imply a positive correlation between the

speed of technological progress, product turnover, and volatility in plant–level out-

comes. We provide evidence in support of these predictions. In particular, our proxy

for idiosyncratic risk is positively associated with measures of product turnover and

investment–specific technological change.

We acknowledge that our evidence is not conclusive. Other factors are likely to

contribute to the heterogeneity that we document. Syverson (2004b) outlines a variety

18Plants producing nondurable consumption goods have a sales growth volatility of 9.17%, lower
than estimated for the consumption sector as a whole.
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of sectoral characteristics that may be related to measures of within–sector dispersion

in productivity levels. In most models of firm dynamics, many of those characteristics

would also impact the dispersion productivity growth rates. For sure, this is the case

for the parameters that drive entry and exit.

20



A Data and Measurement

A.1 Variable Definitions

Real Sales or Output. We use the total value of shipments (TVS) deflated by the

four–digit industry-specific shipments deflator from the NBER manufacturing produc-

tivity database. Although it is possible to adjust total shipments for the change in

inventories, we follow Baily, Bartelsman, and Haltiwanger (2001) in imputing invento-

ries for some plants (in particular, the smaller ones). To avoid potential measurement

issues associated with this imputation, we focus on gross shipments.

Capital. We follow Dunne, Haltiwanger, and Troske (1997) closely in construct-

ing capital stocks. The approach is based on the perpetual inventory method. We

define the initial capital stock as the book value of structures plus equipment, de-

flated by the BEA’s two–digit industry capital deflator. In turn, book value is the

average of beginning-of-year and end-of-year assets. The investment series are from

the ASM, deflated with the investment deflators from the NBER manufacturing pro-

ductivity database (Bartelsman and Gray, 1996). Two–digit depreciation rates are

also obtained from the BEA.

Labor input. The labor input is measured as the total hours of production and

nonproduction workers. Since the latter are not actually collected, we follow Baily,

Hulten, and Campbell (1992) in assuming that the share of production worker hours

in total hours equals the share of production workers wage payments in the total wage

bill.

Materials. The costs of materials are deflated by the material deflators from the

NBER manufacturing productivity database.

Factor Elasticities. We use four–digit industry–level revenue shares as factor

elasticities. This procedure implicitly assumes that all plants in each narrowly defined

industry operate the same production technology, a common assumption in the liter-

ature on plant–level productivity. In calculating labor’s share of total costs, we follow

Bils and Chang (2000) and adjust each four–digit industry’s wage and salary payments

by a factor that captures all the remaining labor payments, such as fringe benefits and

employer Federal Insurance Contribution Act (FICA) payments. This factor is based

on information from the National Income and Product Accounts (NIPA), and corre-

sponds to one plus the ratio of the additional labor payments to wages and salaries

at the two–digit industry level. We apply the same adjustment factor to all plants

within the same two–digit industry.
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ASM sample weights. For all plant–level regressions, we use the ASM sample

weights, which render the ASM a representative sample of the population of manu-

facturing plants (Davis, Haltiwanger, and Schuh, 1996).

A.2 Definition of Consumption and Investment Categories

To assign sectors to the consumption and investment categories, we rely on the Bureau

of Economic Analysis’ (BEA) 1992 Benchmark Input–Output Use Summary Table

(before redefinitions) for six–digit transactions. The 1992 Use Table is based on the

1987 SIC system, and thus compatible with the ASM.

The Use Table gives the fraction of output that each three–digit sector supplies

to every other three–digit industry, as well as directly to final demand uses. The final

demand uses correspond to NIPA categories. For each three–digit industry j, we de-

fine its final demand for consumption C(j) as the sum of personal, federal, and state

consumption expenditures. The final demand for investment I(j) is defined analo-

gously. We exclude imports, exports, and inventory changes from our definitions,

since they are not broken down into consumption and investment. Let C and I de-

note the vectors of all the industries’ final consumption and investment expenditures,

respectively.

From the Use Table, we also compute the (square) matrix A of unit input–output

coefficients. This matrix can be easily constructed from the original Use Input–Output

Matrix by normalizing each row by the total commodity column. We can then define

the vectors of all the industries’ total consumption and total investment output by

YC = AYC + C ⇔ YC = (I −A)−1 C

and

YI = AYI + I ⇔ YI = (I −A)−1 I,

respectively. This means that each industry’s consumption goods output also includes

all the intermediate goods whose ultimate destination is final consumption. Similarly,

for investment.

For each three–digit industry j, we compute the share of output destined to con-

sumption, YC(j)/ (YC(j) + YI(j)). We then assign all industries with a share greater

than or equal to 60% to the consumption good sector, and those with a share lower

than or equal to 40% to the investment good sector. We do not assign a consump-

tion/investment good classification to the remaining industries (these industries do

not receive a good classification in the last column of Table 5).

22



We also discard industries whose primary role is supplying intermediate inputs to

other industries. That is, we drop three–digit industries which contribute less than

1% of their total output directly to final consumption and investment expenditures.

A.3 Definition of Durable and Nondurable Consumption Categories

When splitting consumption sectors between durable and nondurable, we follow Bils

and Klenow (1998). Table 2 of their study reports the service life of 57 consump-

tion good items (those in the Consumer Expenditure Surveys that closely match

four–digit SIC sectors). Their estimates are either based upon life expectancy tables

from insurance adjusters, or upon the Bureau of Economic Analysis publication Fixed

Reproducible Tangible Wealth, 1925–1989.

We classify goods as either durable on nondurable, depending on whether their

expected lives are longer or shorter than 3 years. We classify each three–digit sector

as producing durables or nondurables, according to the weighted average of its four–

digit sub–sectors’ expected lives. Finally, we do not assign a durable/nondurable

consumption classification to three–digit sectors that are not considered in Bils and

Klenow (1998) (these sectors with no service life information are labeled as “Other

Consumption” in last column of Table 5).

B Tables

Table 5: Volatility Estimates

SIC TFP Rank Sales Rank Good
Growth Growth Classification

357 Computer Equipment 0.12395 1 0.15876 2 Investment
333 Primary Nonferrous Metals 0.11988 2 0.13311 10
241 Logging 0.11737 3 0.14143 4
287 Agricultural Chemicals 0.11162 4 0.13484 8 Other Consumption
233 Women’s Outerwear 0.10947 5 0.13566 7 Other Consumption
281 Industrial Inorganic Chems 0.10638 6 0.11076 40 Other Consumption
236 Girls’ Outerwear 0.10478 7 0.12010 25 Nondurable Consumption
348 Small Arms & Ammo 0.10458 8 0.12910 14 Durable Consumption
214 Tobacco Stemming 0.09972 9 0.15666 3 Other Consumption
232 Men’s Clothing 0.09891 10 0.12381 17 Nondurable Consumption
283 Drugs 0.09825 11 0.10269 65 Nondurable Consumption
207 Fats & Oils 0.09674 12 0.12118 21 Nondurable Consumption
365 Household Audio-Video Eq 0.09520 13 0.12339 18 Durable Consumption
385 Ophthalmic Goods 0.09457 14 0.09895 76 Durable Consumption
366 Communication Equipment 0.09439 15 0.11918 26 Investment
375 Motorcycles, Bicycles 0.09396 16 0.12012 24 Durable Consumption
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Table 5: (continued)

SIC TFP Rank Sales Rank Good
Growth Growth Classification

376 Guided Missiles, Space Vcl 0.09389 17 0.12031 23
339 Misc Primary Metal Prods 0.09377 18 0.10594 52
234 Women’s Underwear 0.09287 19 0.10716 49 Nondurable Consumption
238 Misc. Apparel 0.09271 20 0.12047 22 Other Consumption
209 Misc. Food 0.09245 21 0.10673 50 Nondurable Consumption
381 Navigation Equipment 0.09154 22 0.11408 35 Investment
367 Elect Components & Acess 0.09137 23 0.11702 29
231 Men’s Suits & Coats 0.09100 24 0.11826 27 Durable Consumption
328 Stone Products 0.09065 25 0.10721 48 Investment
374 Railroad Equipment 0.09023 26 0.18537 1 Investment
319 Other Leather Goods 0.08991 27 0.10306 61 Other Consumption
316 Luggage 0.08945 28 0.11053 42 Durable Consumption
242 Sawmills & Planing Mills 0.08666 29 0.11679 30
277 Greeting Cards 0.08657 30 0.08253 112 Other Consumption
295 Asphalt Paving & Roofing 0.08653 31 0.13896 5
286 Organic Chemicals 0.08541 32 0.09712 81 Other Consumption
384 Medical Instr & Supplies 0.08487 33 0.08983 101
354 Metalworking Machinery 0.08463 34 0.10524 56 Investment
359 Industrial Machinery 0.08442 35 0.10275 63
353 Construction & Mining 0.08360 36 0.13379 9 Investment
324 Cement, Hydraulic 0.08350 37 0.08890 103 Investment
274 Misc. Publishing 0.08340 38 0.07167 126 Durable Consumption
302 Rubber Footwear 0.08337 39 0.13218 12 Other Consumption
394 Dolls, Toys, & Games 0.08337 40 0.11467 33 Durable Consumption
355 Special Industry Machinery 0.08322 41 0.11449 34 Investment
289 Misc. Chemicals 0.08320 42 0.10044 68 Other Consumption
347 Metal Services 0.08300 43 0.10466 57
279 Services for Printing 0.08247 44 0.08157 114 Other Consumption
317 Handbags 0.08220 45 0.12864 15 Other Consumption
329 Misc Nonmetal Mineral Prod 0.08183 46 0.09619 75
325 Clay Products 0.08172 47 0.09898 75 Investment
225 Knitting Mills 0.08169 48 0.12179 19 Nondurable Consumption
391 Jewelry & Silverware 0.08127 49 0.10831 44 Durable Consumption
235 Hats & Caps 0.08120 50 0.10723 47 Other Consumption
213 Chewing Tobacco 0.08065 51 0.07677 118 Nondurable Consumption
382 Measuring Instruments 0.08039 52 0.09520 86 Investment
315 Leather Gloves 0.08004 53 0.10528 54 Other Consumption
387 Watches, Clocks 0.07968 54 0.11230 37 Durable Consumption
327 Concrete & Plaster 0.07967 55 0.11510 32 Investment
203 Canned Fruits & Vegtbls 0.07838 56 0.10232 66 Nondurable Consumption
352 Farm Machinery 0.07832 57 0.12404 16 Investment
326 Pottery & Related Prods 0.07798 58 0.09079 99
314 Footwear 0.07772 59 0.12151 20 Nondurable Consumption
208 Beverages 0.07738 60 0.09384 91 Nondurable Consumption
344 Metal Products 0.07699 61 0.11675 31 Investment
259 Misc. Furniture 0.07670 62 0.10632 51 Investment
226 Dyeing Textiles 0.07652 63 0.11155 39 Other Consumption
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Table 5: (continued)

SIC TFP Rank Sales Rank Good
Growth Growth Classification

369 Electrical Equipment 0.07637 64 0.10743 45 Other Consumption
284 Detergents & Cosmetics 0.07635 65 0.09316 93 Nondurable Consumption
249 Misc. Wood Products 0.07621 66 0.10526 55 Other Consumption
239 Misc. Textiles 0.07578 67 0.10541 53 Other Consumption
321 Flat Glass 0.07555 68 0.09015 100 Other Consumption
351 Engines & Turbines 0.07548 69 0.11222 38
311 Leather Finishing 0.07547 70 0.11066 41 Other Consumption
396 Buttons & Needles 0.07537 71 0.11319 36 Other Consumption
223 Wool Fabric 0.07520 72 0.09795 78 Other Consumption
206 Sugar 0.07500 73 0.09798 77 Nondurable Consumption
334 Secondary Nonferrous Mat 0.07495 74 0.13830 6
362 Electrical Apparatus 0.07462 75 0.09969 70 Investment
363 Households Appliances 0.07423 76 0.10724 46 Durable Consumption
254 Shelving & Lockers 0.07390 77 0.10374 59 Investment
229 Misc. Textile Goods 0.07291 78 0.09926 73 Other Consumption
272 Periodicals: Publishing 0.07291 79 0.07673 119 Nondurable Consumption
261 Pulp Mills 0.07279 80 0.07413 122 Other Consumption
356 General Industry Machinery 0.07220 81 0.09665 83 Investment
282 Plastic Materials 0.07219 82 0.09113 98 Other Consumption
204 Grain Mill Products 0.07213 83 0.09375 92 Nondurable Consumption
361 Electr. Distrib. Equipment 0.07199 84 0.09918 74 Investment
305 Packing Devices 0.07169 85 0.08365 111 Other Consumption
349 Misc Fabricated Metal Prod 0.07097 86 0.09626 84
221 Cotton Fabric 0.07074 87 0.10063 67 Other Consumption
252 Office Furniture 0.07019 88 0.09415 89 Investment
336 Nonferrous Foundries 0.07006 89 0.09791 79
379 Misc. Transportation 0.06957 90 0.13299 11 Durable Consumption
332 Iron & Steel Foundries 0.06956 91 0.10944 43
244 Wood Containers 0.06894 92 0.09968 71 Other Consumption
364 Elec Lighting and Wiring 0.06883 93 0.09294 95
331 Blast Furnace & Steel Prd 0.06877 94 0.09671 82
345 Screw Machine Prods, Bolts 0.06857 95 0.08529 109
299 Misch. Petroleum 0.06841 96 0.09132 96 Nondurable Consumption
308 Misc. Plastic Prods 0.06815 97 0.09511 87 Other Consumption
335 Nonferrous Rolling & Draw 0.06788 98 0.10349 60
323 Glass Products 0.06740 99 0.09988 69 Other Consumption
395 Pens & Pencils 0.06620 100 0.08148 115 Other Consumption
224 Narrow Fabric 0.06589 101 0.08507 110 Other Consumption
358 Refrigeration Machinery 0.06565 102 0.09309 94 Investment
243 Millwork 0.06554 103 0.10280 62 Investment
341 Metal Cans 0.06542 104 0.09936 72 Other Consumption
343 Heating Equipment 0.06487 105 0.09128 97 Investment
342 Cutlery 0.06443 106 0.08111 116 Other Consumption
273 Books 0.06419 107 0.07374 123 Durable Consumption
285 Paints 0.06403 108 0.08834 107
393 Musical Instruments 0.06352 109 0.08243 113 Durable Consumption
306 Rubber Products 0.06351 110 0.08877 105 Other Consumption
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Table 5: (continued)

SIC TFP Rank Sales Rank Good
Growth Growth Classification

263 Paperboard Mills 0.06347 111 0.06706 130 Other Consumption
346 Metal Forging 0.06303 112 0.09790 80 Other Consumption
227 Carpets & Rugs 0.06267 113 0.10379 58 Durable Consumption
278 Bookbinding 0.06266 114 0.07535 120 Other Consumption
212 Cigars 0.06254 115 0.09491 88 Nondurable Consumption
275 Commercial Printing 0.06162 116 0.07514 121 Other Consumption
228 Yarn & Thread Mills 0.06134 117 0.10274 64 Other Consumption
301 Tires 0.06074 118 0.08837 106 Nondurable Consumption
205 Bakery Products 0.06070 119 0.06991 127 Nondurable Consumption
253 Public Bldg Furniture 0.05956 120 0.09389 90
322 Glass & Glasware 0.05942 121 0.07177 125 Durable Consumption
313 Shoe Cut Stock 0.05930 122 0.11712 28 Other Consumption
262 Paper Mills 0.05839 123 0.06812 129 Other Consumption
222 Silk Fabric 0.05795 124 0.08886 104 Other Consumption
267 Converted Paper Prods 0.05732 125 0.07314 124 Other Consumption
251 Household Furniture 0.05710 126 0.08932 102 Durable Consumption
202 Dairy Products 0.05650 127 0.07950 117 Nondurable Consumption
291 Petroleum Refining 0.05521 128 0.08590 108 Nondurable Consumption
276 Business Forms 0.05176 129 0.06022 132 Other Consumption
245 Wood Buildings 0.05076 130 0.13110 13 Investment
271 Newspapers: Publishing 0.05047 131 0.03780 133 Nondurable Consumption
265 Paperboard Containers 0.04087 132 0.06024 131 Other Consumption
237 Fur Goods 0.04087 133 0.06940 128 Other Consumption
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Table 6: 1987 SIC

SIC Description

20 Food and Kindred Products
21 Tobacco Products
22 Textile Mill Products
23 Apparel
24 Lumber and Wood Products
25 Furniture
26 Paper Products
27 Printing and Publishing
28 Chemicals
29 Petroleum Refining
30 Rubber and Miscellaneous Plastics Products
31 Leather and Leather Products
32 Stone, Clay, Glass, and Concrete Products
33 Primary Metal Industries
34 Fabricated Metal Products, except Machinery and Transportation Equipment
35 Industrial and Commercial Machinery and Computer Equipment
36 Electronic and Other Electrical Equipment, except Computer Equipment
38 Instruments and Related Products
39 Miscellaneous Manufacturing Industries
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