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1 Introduction

Public procurement is big business. The European Commission estimated in 2002 that

it amounted to 16.3% of the European Union’s GDP (European Commission 2004). This

fraction is typical of many developing and developed countries: for example, the World Bank

assessed the share in South Africa to be 13% of GDP in 2003 (World Bank 2003). In the

United States, highway construction in particular has recently received increased funding

through a 6-month, $19.9 billion extension of the existing surface transportation bill.1

For many procurement activities, cost and outcome uncertainty is unavoidable. In highway

construction, bad weather, unexpected site conditions, poor planning or materials delays

can quickly derail a project. When such shocks arise, the question is how contractors will

adapt their plans. This depends on the incentives provided by the procurement contract. In

cost-plus contracts, where the government pays the contractor’s costs plus a fixed fee, it may

be easy for the parties to agree on an ex-post efficient plan. By contrast, in a fixed-price

contract where there is no cost sharing, the contractor will only adapt if the contract gives

him private incentives to do so, or if the contract is renegotiated. Bajari and Tadelis (2001)

have argued that the cost-plus design is therefore preferable when adaptation is likely to be

necessary, renegotiation is costly, and the cost of specifying a complete contract to cover all

possible contingencies is high.

An important distinction lies between shocks that require a whole new project design (i.e.

for both parties to adapt), and those that require only the contractor to adapt his plans for

executing the old design. In the latter case of one-sided adaptation, project deadlines can in

principle effectively substitute for more detailed contracts, by giving the contractor a private

incentive to re-optimize their plans whatever state of nature arises.

In this paper, we examine whether time incentives are effective for motivating adaptation in

practice. We consider data from state highway construction projects in Minnesota. Several

features make this an attractive case study. First, many highway construction activities are

relatively routine, with well-specified designs that rarely need to be adapted. Second, our

dataset is unusually large and rich, containing day-by-day reports by the project engineers

on weather conditions, delays, and planned and actual work hours. This allows us to identify

unanticipated shocks by looking at how much work was actually required to complete the

project, relative to the initial plans. Finally, highway construction is an area where adap-

1Source: American Highway Users Alliance.
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tation really matters. When contractors overrun their deadline by 10 days, commuters are

inconvenienced by 10 more days of traffic delays. With traffic on a typical state highway

in Minnesota exceeding 10,000 vehicles per day, a 5 minute delay to each motorist over a

10 day period amounts to a welfare loss of $100,000, when we value their time at $12/hr.

It may be more socially efficient for the contractor to adopt 16-hour workdays rather than

continue at the old pace and finish late.

We reach two main conclusions. First, we find that contractors do indeed adapt their work

rates in response to construction shocks in order to meet project deadlines. Consistent with

the model we develop, we show that such adaptation is limited: for shocks that would require

an increase in work rate of an hour per day to meet the deadline, firms tend to increase their

work rate by less than half an hour per day. This is not surprising given the weak penalties

in Minnesota.

Second, we show that higher penalties would in this case be more effective in improving

joint welfare than tighter deadlines. To reach this conclusion, we structurally estimate the

contractor’s time-related costs. Our approach uses the first order condition from our model

that equates the marginal benefit and marginal cost of a change in the work rate. The

marginal benefits of speedier construction depend on whether the contract would finish late

if the work rate was left unchanged, and on the daily penalties for late completion. These

penalties are specified by state regulations, and vary with contract size and year. Given this

exogenous variation in marginal benefits, we can use the first order condition to back out

the marginal costs. We can then infer the counterfactual completion time under different

incentive structures. Combining this with estimates of the externality from traffic delays,

we can compare different policies on welfare grounds.

We find that for an average $1.3 million contract, the change in joint welfare from setting

a 10% tighter construction deadline is less than $7,000. By contrast, switching to penalties

equal to 10% of the traffic delay cost would raise joint welfare by almost $40,000 per contract.

We also examine the fully efficient policy, which is a “lane rental” in which the contractor

must pay the full traffic delay cost for each day of construction. This has far bigger effects

— welfare increases by $400,000 per contract — but is also rather out of sample, and thus

hard to evaluate.

Our work quantifies the natural complementarity between deadlines and penalties: without

high penalties, contractors respond little to tighter deadlines. Because the social costs of
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construction vary so much across highway projects, we also argue for tailored penalties,

rather than the “one-size-fits-all” approach of statewide contract specifications.

To the best of our knowledge, this is the first empirical paper on the relationship between

ex-ante incentives and adaptation in procurement. Early work largely took the form of

theory papers emphasizing the role of asymmetric information and moral hazard (McAfee

and McMillan (1986), Laffont and Tirole (1986), Laffont and Tirole (1987)). More recent

papers focused on analyzing the incentive properties of commonly observed contract forms

and arrangements (see for example Bajari and Tadelis (2001), Levin and Tadelis (2010),

Bajari, McMillan and Tadelis (2009), Martimort and Pouyet (2008) and Maskin and Tirole

(2008)). Issues of adaptation, contractual completeness and renegotiation often arise.

There have been a number of empirical papers analyzing highway procurement in particular

(see for example Porter and Zona (1993), Hong and Shum (2002), Bajari and Ye (2003), Jofre-

Bonet and Pesendorfer (2003), Krasnokutskaya (2009), Krasnokutskaya and Seim (2010),

Li and Zheng (2009), Marion (2007), De Silva, Dunne, Kankanamge and Kosmopoulou

(2008), Gil and Marion (2009)). Some have focused on the bidding process, emphasizing

features such as the potential for collusion, and preferential treatment of local and small

contractors. Others have been concerned with measurement, developing procedures for non-

parametric identification of valuations under dynamics or unobserved heterogeneity. One

closely related empirical paper is Bajari, Houghton and Tadelis (2007), which analyzes how

private information on ex-post materials requirements can lead to ex-ante bidding distortions

under unit bidding. Another is Lewis and Bajari (2011), where we examined the use of

scoring auctions to award contracts based on both time and price.

More broadly, this paper forms part of the empirical literature on high-powered incentives

and their effects on output, which has mainly focused on labor contracts within the firm (see

Chevalier and Ellison (1997), Prendergast (1999), Lazear (2000) and Bandiera, Barankay and

Rasul (2005)). Finally, a recent literature in public economics has focused on “bunching” at

kink points in the tax structure (Saez 2010, Chetty, Friedman, Olsen and Pistaferri 2011).

The discontinuity in penalties at the project deadline generates similar “bunching” in our

analysis — see Figure 4 — though our econometric approach differs.

The paper proceeds as follows. Section 2 presents an overview of the highway procurement

process. Sections 3, 4 and 5 respectively contain the theoretical, descriptive and policy

analysis. Section 6 concludes. All tables are to be found in the appendix.
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2 The Highway Construction Process

Building or repairing a highway is a complex activity. Here, we emphasize key features of

the process in Minnesota that inform our later modeling choices. Figure 1 gives a simple

timeline, starting from when the contract is awarded. At that time, the winning contractor

must post a “contract bond” guaranteeing the completion of the contract according to the

design specification. This bond is typically secured through a third party who will take on

the contractor’s obligations in the event of default.

Once the contract is awarded, the contractor must plan how to structure the various distinct

activities, such as excavation or grading, that make up the construction project. To do

this, they work out how long each activity will take for a standard crew size, and then use

sophisticated software to work out the optimal sequence to complete the activities in by

using the “critical path method” (Clough, Sears and Sears 2005). The key feature of this

technique is that some activities are designated as critical, and must be completed on time

to avoid delay, while others are off the critical path and have some time slack. The critical

activities are called the “project controlling operations” (PCOs).

The contractor presents his plan to the project engineer in the pre-construction meeting. It

is considered good practice to choose a plan that allows some contingency time on the side

(around 5% of the time allowed). But a busy contractor may select a plan that allows little or

no margin for error, or alternatively plan to finish early and move onto another project. This

will obviously be affected by the time incentives that are offered. In Minnesota the incentives

are usually simple. The design engineer initially specifies a number of “working days” that

the contractor is allowed to take to complete the contract. A “working day” is a day on

which the contractor could reasonably be expected to work. Usually this means weekdays

(excluding public holidays) with amenable weather conditions. When the contractor works,

a working day is charged. When the contractor could have worked, but didn’t, a working

day is charged and a note is made of the hours of “avoidable delay”. Finally, when work was

not possible, a working day is not charged, and “unavoidable delays” are noted.

Each additional day beyond the number of target working days is charged as a day late.

The penalties for being late are specified in the standard contract specifications, which we

reproduce in Table 1. Each day late incurs a constant penalty which depends only on the

size of the contract. The penalties were last increased in 2005. So the contractor has no

external incentive to finish early, but some incentive to avoid finishing late.
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Award Phase
Bond Posted

Planning Phase
Inputs Hired

Subcontractors Hired
Pre-Construction Meeting

Construction Phase
Construction Shocks
Work Rate Adjusted
Engineer Monitoring

Contract Finishes
Final Payments

-

Figure 1: Construction Process

Once the planning is complete, the construction begins. During the process, the project

engineer conducts random checks on the quality of the materials and monitors whether ev-

erything is completed according to the planned specifications. Productivity shocks, materials

delays or unexpected site conditions may affect the rate at which any activity is completed,

and the contractor must continually check progress against the planned time path. If neces-

sary, the work rate may need to be amended, especially when there is delay on a critical path

activity. At the end of the process, the contractor is paid the amount bid less any damages

assessed for late completion.

3 Model

With this process in mind, we outline a model of adaptation under time incentives. Con-

tractors have private costs that depend on the amount of capital and the size of the work

crew they employ, as well as on the number of hours per day they choose to work. Road

construction inflicts a negative externality on commuters, so the efficient outcome requires

accelerated construction relative to the private optimum. Faster construction in turn re-

quires either increased scale (more capital and labor) or an increased work rate. We assume

that the scale is determined at the start of the project, so that as productivity shocks occur,

the firm can only adapt to those shocks by changing their work rate. We want to know

how time incentives affect such adaptation, and what implications this has for the socially

efficient contract design.

We begin by modeling the production technology using a two-period model. In the first

period, the contractor chooses a level of capital K, representing all the factors of production

that will be fixed over the length of the project (hired equipment, project manager etc).

They also fix the labor L. Following this, a shock θ is realized. This shock is anything that

was unanticipated about the amount of work needed to complete the project. For simplicity,
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we will refer to it as a productivity shock below. Given K, L and θ, the project takes

H(K,L, θ) man-hours to complete.

In the second period, the firm chooses a uniform work rate h (in hours per day).2 This

in turn determines the number of days d = H(K,L, θ)/hL the project will take, since the

number of man-hours of work completed each day is just hL. We impose some economically

motivated restrictions on the total hours H(K,L, θ). Capital substitutes for labor, decreasing

the number of man hours required (HK < 0). Labor has declining marginal product, so that

adding additional labor increases the number of man hours required (HL > 0), though

decreasing the number of days taken for a fixed work rate ( ∂
∂L
d(K,L, θ, h) < 0). Last, a

good productivity shock corresponds to a low θ (Hθ > 0).

The work-rate decision will be influenced by the time incentives laid out in the contract.

We consider time incentives that take the following form: a target completion date dT

and a penalty cD for each day late. These form of incentives are widely used in highway

procurement; other forms of time incentives are called “innovative”. One innovative design

is the “lane rental” contract. In this design, the contractor pays a rental rate for each day of

construction that closes a lane. For construction jobs that require continuous lane closure,

this is a special case with a deadline of dT = 0 and lane rental rate cD.

The contractor is risk-neutral, and pays daily rental rates of r per unit of capital, and an

hourly wage w(h) to each worker. For algebraic simplicity, the wage function w(h) is assumed

to take the linear form w(h) = w + bh, a base wage plus an increment that depends on the

work rate, reflecting overtime, bonuses for night-time work etc. Overall the contractor’s

ex-post private costs for a given set of time incentives are:

C(h,K,L, θ) = H(K,L, θ)w(h)︸ ︷︷ ︸
labor costs

+ rdK︸︷︷︸
capital costs

+ max{d− dT , 0}cD︸ ︷︷ ︸
time penalties

= H(K,L, θ)w(h) + rK
H(K,L, θ)

hL
+ max

{
H(K,L, θ)

hL
− dT , 0

}
cD

(1)

Traffic delay costs are assumed to be linear in the days taken, with the daily cost equal

to a constant cT . Calculating this externality as the product of the delay, the amount of

traffic and the average time value of commuters, linearity is a good approximation if traffic

and delays are constant over time. Realistically, traffic delay costs should vary with traffic

2Provided the wage rate w(h) given below is weakly convex, a uniform work rate will be weakly preferable
to a more complex construction schedule.
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patterns both within and across days, and also with the extent to which construction impedes

commuters (e.g. are commuters still delayed when construction ceases for the day?). Here

we simplify by assuming that the traffic delay costs are independent of the work rate h.

Discussion: We have assumed that the productivity shock is realized before the work rate

decision is made, so that the contractor can choose when the contract will be completed. An

alternative would be to make the contractor decide on his work rate before the productivity

shock is realized, so that the completion time is stochastic. Both of these are imperfect

approximations to a more complex dynamic process. The latter timing assumption is closer

to the standard principal-agent models in the theory literature, where the agent chooses

an effort level that induces a distribution of (contractible) outcomes. The advantage for us

of modeling completion times as deterministic is that we are able to explain why a large

fraction of contracts in our data finish exactly on time — because the contractor chooses to

finish on time! By contrast, the other model would require that contractors plan to finish

on time and that there is a “zero shock” atom, and as we will show, this is not the case.

We have also assumed the contractor is risk-neutral. This assumption is innocuous for most

of the analysis, since we work with the ex-post profit function to see how incentives affect

adaptation. But for the welfare analysis at the end of this section, the ex-ante joint welfare

will vary with the contractor’s risk preferences. We discuss the implications of alternative

models at that time.

Finally, we assume that the quality of the construction is unaffected by the time incentives.

One may worry that the contractor may shirk on quality to save time. This is a version of the

famous multi-tasking problem of Holmstrom and Milgrom (1991). In highway procurement,

this is less of a concern, as the government employs a project engineer to monitor the

construction and ensure that the finished project meets the contract specifications. Low

quality construction is penalized by additional penalties laid out in the contract terms, and

these penalties can be enforced against the contract bond.3

Adaptation: We start the analysis by looking at how the work rate h is chosen, given the

realization of the productivity shock. Taking a first-order condition in h, and dealing with

3Lewis and Bajari (2011) found that there was almost no difference in the quality penalties charged
between highway construction contracts auctioned using scoring auctions (which emphasize cost and time)
and standard auctions (which emphasize only cost).
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Figure 2: Optimal Work Rates. The figure depicts how work rates change with the number

of hours of work required to complete the project. In the left panel, a favorable productivity shock

means that a slow work rate would suffice for on-time completion, but the contractor works faster

to economize on capital costs and will finish early. The middle panel shows a contract where

no productivity shock has occurred, and the contractor works at a rate that leads to on-time

completion. In the right panel, a negative productivity shock implies a fast work rate is necessary

for on-time completion, but the contractor optimally chooses to work slower and will finish late.

various boundary issues resulting from the presence of the max operator in the objective

function, we get the following expression for the optimal h∗

h∗ =


√

rK
bL

if H
dT
< rK

bL

H
dT

if H
dT
∈
[
rK
bL
, rK+cD

bL

]√
rK+cD
bL

if H
dT
> rK+cD

bL

(2)

It is easiest to see what’s going on here in a picture. There are three cases, corresponding

to contracts in which the required work rate for on-time completion H(θ)/dT is low (good

productivity draws), those where it is intermediate (average productivity draws), and those

where is it high (poor productivity draws). These cases are depicted in Figure 2 as the left,

middle and right panels, respectively. When the contract is unexpectedly easy to complete,

the contractor could work slowly and still complete on time, avoiding the wage premium

for accelerated work. The countervailing incentive is that this ties up capital over a longer

period, which is costly. Balancing these incentives, the contractor chooses h∗ =
√

rK
bL

, which

is increasing in the rental rate and the capital-labor ratio, and decreasing in the slope of the

wage premium. On the other hand, given a middling draw, the contractor chooses a work

rate that allows on-time completion (h∗ = H/dT ), since accelerating to be early is too costly,
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and slowing down to be late incurs time penalties. Finally, when facing a poor productivity

shock, the contractor chooses a work rate of h∗ =
√

rK+cD
bL

and finishes late. Higher time

penalties imply faster work rates in this case.

So the contractor adapts his work rate in line with the productivity shocks, although the

range of adaptation is bounded. Specifically, for fixed capital and labor, there are a range

of shocks θ for which H
dT
∈
[
rK
bL
, rK+cD

bL

]
, and in that range, the contractor will accelerate or

decelerate work as needed to keep production on time. But no positive productivity shock

could induce a slower work rate than rK
bL

, nor could a sufficiently negative one induce him to

work faster than rK+cD
bL

. To reduce construction time even after bad shocks, one needs high

penalties cD. These increase the maximum work rate of the contractor.

One important caveat to this analysis is that it is short-run, in that we are holding the

capital and labor inputs fixed. If the procurer were to consistently offer more aggressive

time incentives, contractors would learn to use more capital or labor than is standard, in

order to get the jobs done faster. Indeed the evidence presented in Lewis and Bajari (2011)

suggests that when high-powered time incentives are offered, the contractors may be willing

to adopt entirely non-standard work schedules, signing costly rush orders for inputs, using

big work crews, and working 24 hours a day. These long-run changes can only reduce their

costs below the short-run levels. Since we never see such high-powered incentives in the data,

our entire analysis will focus on the short-run.

Welfare Analysis: We now look at how standard contracts and lane rentals compare

in terms of welfare outcomes. For this, it is useful to separate the time incentives from

the contractor’s other costs (capital rental and wages), and look at how much money the

contractor can save by slowing down and completing the contract one day later. Writing

c(d; θ) = H(K,L, θ)
(
w + bH(K,L,θ)

dL

)
+ rKd for the cost of completing in d days for a given

K, L, and taking a first order condition, we get:

−c′(d; θ) =
bH(K,L, θ)2

d2L
− rK (3)

We refer to this as the marginal benefit of delay. It is strictly decreasing in d. The interpre-

tation is that while an extra day of construction is useful to a contractor facing a tight work

schedule (low d), it is not worthwhile when the pace of construction is already rather slow.

In Figure 3 we depict how the time incentives affect the contractor’s choice of completion
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Figure 3: Completion Time in Lane Rentals and Standard Contracts. Both panels

depict the marginal benefit to delay curve −c′(d; θ), drawn for three different productivity shocks.

In the left panel, a lane rental contract imposes a constant cost of delay cD, so the contractor

optimally completes at d∗0, d
∗
1 and d∗2 respectively, in each case equating marginal benefit and cost

of delay. In the right panel, the incentive structure is standard, with damages charged after the

target completion time dT . In all cases the contractor will optimally complete exactly on time.

time. The left panel shows the marginal benefit of delay curves for three different productivity

shocks under a lane rental contract. Here the contractor faces a daily penalty of cD right

from day one, and thus the incentive structure is flat. Profit maximization implies that he

equate the marginal costs and benefits of delay, and so for each shock θi he completes at d∗i .

If the rental rate is set equal to the daily traffic delay costs cT , the contractor internalizes

the negative externality inflicted by the construction, and the social planner’s problem is

identical to that faced by the contractor. Accordingly, the contractor will hire capital and

labor to minimize expected social costs (the sum of private and traffic delay costs), and

efficiently choose the work rate given the realization of the productivity shock. Ex-post,

the input choices may be sub-optimal, as they are not perfectly adapted to the productivity

shock, but this is unavoidable given the timing.

The right panel of Figure 3 shows the same benefit curves under the standard incentive

structure. Before the target date dT , the contractor has no marginal cost of an extra day,

since this is not penalized at all. But after the target, each additional day taken attracts

cD in time penalties, and therefore the marginal costs of delay jump discontinuously from

zero to cD at dT . In the figure this implies that for all three different productivity shocks

the contractor will complete exactly on time. There is no incentive to complete early, as

delay remains valuable; but also no reason to be late, as delay is not sufficiently worthwhile

to offset the time penalties. This implies that completion times should be “sticky” at the

target date: we should see many contracts finishing exactly on time.
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In contrast to the simple lane rental design, the standard contract design will almost certainly

lead to inefficient outcomes. The contractor should efficiently adapt to different productiv-

ity shocks by choosing different completion times, but the wedge in incentives makes this

privately sub-optimal. In addition, there’s little incentive to hire additional capital or labor

at the planning stage to increase the probability of quick completion, since finishing early is

not rewarded. This makes it difficult for the procurer to design a good incentive structure.

On the one hand, setting cD = cT at least ensures efficient adaptation for bad productivity

draws (it sets the right penalty). But it may be preferable to distort short-run incentives

with cD > cT , setting unreasonably high penalties. This increases the ex-ante incentive to

hire additional capital, and thereby gives the contractor ex-post incentives to finish quickly.

This is a second-best solution, creating a short-run distortion to offset a long-run distortion.

This analysis is similar to Weitzman (1974) on regulating a firm with unknown costs of com-

pliance. The twist in this two-period model is that the contractor is also ex-ante uncertain,

and only learns his costs after the incentive structure has been chosen. The lane rental is

essentially a Pigouvian tax, and remains efficient in an ex-ante sense. The standard design

is like a quota, and has the usual problem that the regulator has to set it without knowing

the underlying costs of the contractor. This leads to inefficiency.

Risk Aversion: An alternative way to look at this problem is to use a standard principal-

agent model (Holmstrom and Milgrom 1987). In that model, the contractor is risk-averse,

his “effort” is his work rate, the output is the number of days taken, and the productivity

shock is the source of output uncertainty. The work rate is non-contractible and the shock

unobserved, so that the procurer can contract only on completion time as usual. As we know

from that literature, it is no longer optimal to transfer all the risk to the contractor by using

the efficient lane rental: giving such high-powered incentives in the presence of productivity

shocks increases the variance of the contractor’s payments, lowering their expected utility.

Weaker incentives are to be preferred here.

It is hard to assess how important risk aversion is in describing contractor’s preferences,

although papers on skew bidding suggest that they are at least partially risk averse (Athey

and Levin 2001, Bajari et al. 2007). Since we cannot analyze this case without making

specific functional form assumptions on the contractor’s utility, we assume risk neutrality

throughout the empirical analysis. We also report how different policies affect the standard

deviation of the contractor’s payments, so that the reader can assess the impact on risk.
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4 Descriptive Analysis

The theory outlined above indicates how contractors should adapt to productivity shocks,

and how such adaptation is mediated by the contract design. In the remainder of the

paper, we analyze data from contracts let by the Minnesota Department of Transportation

(Mn/DOT). Our dataset is unusually detailed, as it includes daily reports by the project

engineer on how construction is progressing. This enables us to test the theory, seeing

if contractors adapt their work rate in response to productivity shocks, and exhibit the

“stickiness” in completion times predicted by the model. Having shown that the theory is

largely confirmed, we estimate the contractor’s short-run cost curves and use these to run

some counterfactual simulations of alternative policies, such as lane rentals.

4.1 The Data

We obtained data from Mn/DOT on all the highway procurement contracts completed in

Minnesota during the period 1996-2006. The main data source is the project engineer’s own

reports on the progress of each project, which are recorded in a program called FieldOps. We

refer to this as the “diary data”. From these files, we learn how many hours the contractor

worked each day, how many hours of work were initially planned, how many hours of avoid-

able or unavoidable delays were recorded, what the weather conditions were like, and what

the current project controlling operation was. We also see how working days were charged,

and therefore can deduce whether the project finished early or late. A secondary data source

is the bidding abstracts, which detail what the contract is and where it is located, who bid

and what amount they bid, as well as the project engineer’s initial cost estimate.

The full sample includes contracts with missing data or non-standard time incentives, and

projects that do not require lane closure, and therefore are unlikely to significantly impact

commuters. We drop these observations, to end up with a sample of 490 contracts. One

variable that is not in the data and thus needs to be constructed for the welfare analysis

is an estimate of the daily traffic delay cost. We calculated a contract-specific measure

by multiplying the average daily traffic around the construction location by an estimate

of the time value of commuters ($12/hour), and a conservative estimate of the delay that

construction will cause them. Because estimating the delay required detailed manual work

on Google Maps, we constructed these estimates only for a subsample of 99 contracts (the
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delay subsample). More details on both sample selection and the estimation of the traffic

delay costs are available in the data appendix.

We present summary statistics on the contracts in Table 2. A typical contract has value

just over $1.3 million, and is of relatively short duration, on average 40 days. During the

contract, contractors work for 432 hours, an average work rate of 10.15 hours a day. A

substantial number of both avoidable and unavoidable delays are recorded. Contracts are

generally completed on time, although in the event that they are completed late, damages

are assessed in only 24% of cases. This is because the project engineer has discretion over

when to assess penalties. Damages, when assessed, range from $500 to as high as $29,000.

In Table 1, we present detailed summary statistics on completion time. Smaller contracts

are more likely to finish early or on time than larger contracts. In fact, none of the contracts

of size less than $100,000 finish late, perhaps reflecting the fact that the penalties in these

contracts are a larger fraction of the total contract value.

Most of the contracts in our sample involve some resurfacing work (nearly 90%), which will

require lane closure. The next biggest category is the construction of turn lanes and other

work on road shoulders. From this we project an average daily traffic delay cost of around

$15,000, arising from a 10 minute delay to 12,000 commuters.

4.2 Shocks and Adaptation

We use this data to see how contractors adapt to productivity shocks. We construct a

measure of the shock θ by comparing the total hours needed to complete the project H with

the number of hours initially planned HP . As bigger contracts will naturally attract bigger

shocks, we normalize across contracts by dividing through by the number of days allowed:

θ̃ =
H −HP

dT

A histogram of the normalized shocks θ̃ is shown in the left panel of Figure 4. Shocks

are almost symmetric around zero, so that positive and negative shocks are equally likely.

Moreover, the shocks can be quite big: the standard deviation is 4.6 hours of work per day,

compared with an average workday of 9.6 hours. To see how these shocks affect the work

rate, we regress the work rate on the planned work rate, the normalized shock and normalized

penalty, and other covariates. One of these is a dummy for whether the contractor is a big
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firm, defined by having won more than $10 million in contracts over the sample period;

another is a dummy for the contractor being located in Minnesota.

h = α0h
P + α1θ̃ + α2

cD
dT

+ xβ + ε (4)

The first two columns of Table 3 present the results of these OLS regressions. We find

a positive and significant relationship: when a contract requires an extra hour of work

per day to remain on-time, the contractor only works around half an hour more each day.

This implies that the contract will finish late. This is consistent with the theory shown in

Figure 2: there is only partial adjustment for particularly big or small shocks. The coefficient

on time penalties is positive, though statistically insignificant. This may be because the time

incentives only matter for contracts which experience negative productivity shocks. As we’ll

see below, the time incentives do appear to bind on these contracts.

There may be a reverse causality problem here, in that when contractors work at a faster rate

the contract may actually take more hours to complete (diminishing returns). In that case

the shock θ̃ and error ε may be correlated. We address this with instrumental variables (IV)

regression. Specifically, we instrument for the shock with the number of hours of rain and

snow each day. Bad weather can affect the number of hours needed to complete a project,

by adversely impacting site conditions. But it has no effect on the optimal work rate except

through the hours required, since no working days are charged when it is raining or snowing

— in other words, it has no impact on the time incentives. The results reported in the last

two columns of Table 3 are qualitatively similar.

4.3 Time Incentives and Completion Times

Having shown that contractors do adapt to productivity shocks, we now consider how the

incentive structure affects this adaptation. Recall that our theory predicts that the contract

completion time will be “sticky” around the deadline, so that many contracts will be com-

pleted exactly on time. Look at the right panel of Figure 4, which is a histogram of the days

late across contracts. In the figure, a contract exactly on time has been added to the bin

to the left of 0, and so you can see that over 20% of the contracts were completed either

just on time or a day early. This is exactly what the theory predicts: for moderate shocks,

contractors adapt their construction speed to finish on time.
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Figure 4: Shocks and Completion Times. The left panel is a histogram of the “productivity

shock”: the difference between actual hours taken and hours planned, divided by the days allowed.

The histogram in the right panel is of the difference between actual and contractually specified

completion time in standard contracts. The huge spike just before 0 indicates many contracts

are completed exactly on time, as the theory predicts. Both histograms have a normal density

superimposed.

Comparing the left and right panels of the figure, we note that both are well approximated

by a normal density to the left of the deadline. To the right, the completion times histogram

has “missing” mass. This too is an implication of the theory: for sufficiently positive shocks,

the contractor finishes early, but given the symmetric negative shock, the penalties may

prompt them to finish on time, thereby removing mass from after the target date.

To examine this formally requires something more sophisticated than linear regression, as

the mass point at zero implies that the conditional mean days taken is not a linear function

of the covariates. We set up such a model in the policy analysis below. But we can still try

answer a basic question: when incentives are bigger, are contractors late less often?

Table 4 shows the result from a linear regression of an indicator for the contract being late

on time penalties and other covariates (the results from a probit are similar). We find that

contracts with higher penalty rates, relative to days allowed, are significantly less likely

to be late. The effects are quite big: they imply that for an average contract, doubling the

penalties would reduce the probability that the contract is late by 17%. High-value contracts

are more likely to finish late. Rain and snow are significant predictors of late completion,

which makes sense because of their impact on site conditions.

These results together are suggestive of a causal effect of disincentives on adaptation. But

the absence of a clean quasi-experiment means that we cannot rule out other explanations.
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For example, perhaps contractors complete on time because there are non-pecuniary costs

of late completion, such as acquiring a poor reputation. Our understanding of the public

procurement process is that reputation doesn’t play much of a role, because federal procure-

ment regulations give little discretion for selecting contractors on any basis other than cost

or quality. Nonetheless there could be some other explanation for the mass point.

What we would really like to do is use the discontinuity in incentives around the thresholds in

Table 1 to show that the probability of being late falls discontinuously around those points.

Unfortunately, we have far too few observations to make this practical. So in what follows,

we attribute all of the adaptation that we see in the data to the incentive structure (this is

implicit in the first order conditions we develop below). This may lead us to overestimate

the responsiveness of contractors to incentives. We try to get a sense of how reasonable our

results are later in the paper.

5 Policy Analysis

Having found evidence that contractors adjust their work rate in order to meet project

deadlines, we would now like to assess different policy proposals for alleviating the negative

externality caused by construction. Our strategy for doing this is as follows. We estimate the

contractor’s short-run private costs of acceleration by looking at how their behavior changes

as damages vary, using first order conditions motivated directly by our theoretical model.

With these in hand, we consider simple counterfactual policy changes, including accelerated

targets and higher penalties. Of particular interest is a realistic case in which the lane rental

is a constant fraction of the traffic delay cost, which is constrained efficient when the procurer

faces budget constraints.

One important caveat is that our analysis is entirely short-run. What we see in the data

is how contractors adapted to different shocks under different incentive structures, given

whatever capital and labor choices they had already made. This doesn’t tell us how their

input choices might change under a counterfactual policy, and so we are forced to hold

everything constant. Fortunately, the bias can be signed: since long-run costs should be

no more than short-run costs in expectation (since they are solving the same optimization

problem with fewer constraints), we will tend to overestimate contractor acceleration costs,

and therefore underestimate counterfactual welfare gains.
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5.1 Estimation of Contractor Costs

Recall from the theory that the contractor acts to equate the marginal benefit of delay

−c′(d; θ) with the marginal costs of delay, which are determined by the time incentives. We

observe both the number of days taken d, and a measure of the shock θ. We also know the

exact form of the time incentives. What we don’t know is the exact form of the marginal

benefit of delay function. So we specify a simple parametric form for it:

−c′(d; θ) = dT (xβ + ε) + αd+ δθ = dT (xβ + αd̃+ δθ̃ + ε) (5)

where α < 0, δ > 0, d̃ = d/dT , θ̃ = θ/dT , and ε ∼ N(0, σ2).4

This specification is important for what follows and worth discussing. We assume that

the marginal benefits of delay are linear in the days taken d and the shock θ, and that

the intercept is proportional to the contract target date dT . What we have in mind is that

contracts with a longer duration are typically more labor intensive, and so the benefit of delay

in terms of reduced wages scales with the contract length. We also assume that unobservable

benefits are normally distributed. These scale, linearity and normality assumptions, although

restrictive, have the advantage of being simple. We will show that we can fit the data quite

well despite these restrictions. Nonetheless we will have to be careful about out-of-sample

extrapolation that relies solely on these parametric choices.

The idea behind our estimation approach is to use the first order conditions from the theory

model developed in the earlier sections.5 This will allow us to account explicitly for the

discontinuity in incentives as the contractor moves from “early” to “late”, which produces

the mass of on time completions seen in Figure 4. The first order conditions must satisfy:

−c′ (d; θ) = 0 if d < dT

−c′ (d; θ) = cD if d > dT (6)

0 < −c′ (d; θ) < cD if d = dT

These say that firms only complete early when their marginal benefits to delay reach zero;

4This normal error specification has the disadvantage that for sufficiently negative draws of θ̃, the marginal
benefits of delay may be everywhere negative, which is implausible. Fortunately, given the parameter esti-
mates below, this problem occurs only infrequently in the counterfactual simulations.

5A similar econometric approach was taken in Reiss and White (2005).
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only complete late when their marginal benefits to delay equal the cost of delay cD, and

otherwise complete on time. This assumes that firms believe the time penalties will be

charged with certainty. But we see in the data that these penalties are imposed only 25% of

the time. For this reason, we also consider a version of the model where we use a probit to

predict the probability that damages will be charged based on contract characteristics (type

of work, size and duration), and then suppose that contractors believe that damages will be

charged with this probability when making their completion time choice.6

We proceed by maximum likelihood. The conditional log likelihood for each observation,

`i(d̃|x, θ̃) is:

`i(d̃|x, θ̃) =


log
(
φ
(
−xβ−αd̃−δθ̃

σ

))
− log(σ) + log(α) , d̃ < 1

log
(

Φ
(

(cD/d
T )−xβ−αd̃−δθ̃

σ

)
− Φ

(
−xβ−αd̃−δθ̃

σ

))
, d̃ = 1

log
(
φ
(

(cD/d
T )−xβ−αd̃−δθ̃

σ

))
− log(σ) + log(α) , d̃ > 1

(7)

where φ and Φ denote the standard normal pdf and cdf respectively. The likelihood function

is very similar to that of a censored tobit, except that instead of having a mass point on

one side at the point of censoring, we have a mass point at on-time completion, d̃ = 1. We

maximize the log likelihood to get coefficient estimates, and bootstrap to get standard errors.

Identification: It is worth thinking through how the model is identified. After making the

assumption that marginal benefits of delay scale with contract length, we have a considerable

amount of variation in the normalized time penalty cD/d
T . This variation pins down the

slope of the marginal benefit of delay curve, α. Consider for example two similar contracts

that have experienced a similar negative productivity shock, but have different normalized

time penalties. Then the extent to which the contractor speeds up in the case with more

costly time penalties tells us how expensive acceleration is, or conversely how valuable delay

is on the margin. Once the slope is pinned down, the intercept of the delay curve xβ + δθ̃ is

identified by the distribution of time outcomes for a given set of covariates and shocks.

One concern is that the slope is identified solely off outcomes for on-time and late contracts:

for example, we never see how much acceleration there would be if a bonus was awarded

for being early. This implies that the marginal benefit of delay curve is locally identified

6One problem with this specification is that small contracts are never late in the data, and so in estimating
the enforcement probability for these contracts, we are relying entirely on functional form.
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around the targeted days, but to get marginal benefits for d̃ < 1, we are relying on the linear

functional form. With this in mind, most of our counterfactual simulations require only this

local identification.

Results and Model Fit: Our results are in Table 5. We find that marginal benefits of

delay have significant and negative slope, and that they are increasing in the size of the

shock. The latter is consistent with the theory in equation (3): when there is more work to

be done, completing on the same schedule would require a higher work rate, and thus higher

wage costs. It follows that delay is more valuable. We also see that contracts with a higher

planned work rate have significantly higher marginal benefits of delay, which makes sense.

In the third and fourth columns we allow the error standard deviation σ to vary with the

contract size, specifying that σ is a linear function of the log contract value. This is because

in the data smaller contracts have more variable outcomes. For an average contract, which

lasts 40.6 days, our preferred estimate of the marginal benefit of delay — given in the third

column of the table — is 10191−9009d, implying that the average marginal benefit to delay

with on time completion is $1,182. This compares with an average cost of delay of $1,004,

so that for many contracts the time penalties will actually bite.

The fourth column assumes random rather than full enforcement. As we said earlier, we

predict the probability of enforcement using a probit, and then compare the expected time

penalties to the marginal benefits of delay in the first order condition. None of the observables

is a statistically significant predictor of enforcement, although there is some evidence that in

bigger contracts enforcement is more lax. When we account for these differential enforcement

probabilities, we estimate marginal benefits to delay that are about a third as large as before,

because with weak enforcement the only reason to finish on time is that the benefit of delay

is small.

We also report how a one standard deviation productivity shock affects the marginal benefit

of delay. The estimated impact is large: a negative shock of that magnitude raises the delay

benefit by $3,233 in our preferred specification. This is larger than the standard deviation

of the error term, implying that the ex-post shocks explain more of the cost differences than

unobserved factors do.

The model fits quite well, although there are some problems caused by assuming a normal

distribution for the error term. We examine fit in a number of ways, using our preferred

19



0
1

2
3

4
5

D
e

n
s
it
y

.5 1 1.5 2 2.5 3
Days Taken / Days Allowed

Observed Data Simulated Density

Figure 5: Model Fit The figure shows a histogram of the normalized completion times d̃ in the

data, along with a kernel density estimate of completion times simulated from the structural model.

specification, the full enforcement model of column 3. In Figure 5, we show a histogram

of the normalized completion time against a kernel density plot of the completion times

simulated from the structural model. This is intended as an informal sanity check on the

shape of the distribution.7 The model does a good job of capturing the incentives to be on

time, but slightly under-predicts the probability that a contract will finish just early or just

late, as it needs a large variance term to explain the contracts that finish very late.

A more rigorous test is to compare some sample and predicted moments. We do this in

Table 6. The strengths and weaknesses of the model are quite clear. We do a good job on

predicting how long the contract will take, even conditional on contract size. But the model

over-predicts the fraction of contracts that will be late, and under-predicts how late they will

be conditional on being late. This is probably a consequence of the thin tails of the normal

error distribution. The model does a better job of fitting outcomes for big contracts, which

is important for the counterfactuals because these contracts are typically the ones with the

largest time delay costs to commuters.

Finally, we construct a simulated R2 measure for the number of days taken d, by constructing

the total sum of squares TSS =
∑n

i=1(di−Ê[di])
2, residual sum of squares RSS =

∑n
i=1(di−

Ê[di|x, dT , cD, θ])2 and defining R2 = 1 − RSS
TSS

as usual. The model does very well on this

measure, explaining 87% of the variance in completion times. For comparison, a simple OLS

regression with the same set of covariates (x, dT , θ, cD) only achieves an R2 of 66%. This is

7This is informal because we are comparing multiple simulated outcomes for each contract to a single
outcome for each contract in the data.
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encouraging, as it shows that the structural model actually fits better than a simple reduced

form, which need not be the case.

5.2 Counterfactuals

Now that we have contractor costs, we consider four counterfactual policy changes. First,

we consider tightening the deadline to 90% of the current target, without changing the time

penalties. This would be a relatively simple policy to implement. The second policy is more

contract specific: changing the penalties to 10% of the traffic delay cost of the contract. This

policy is almost neutral with respect to average penalties: the existing average daily penalty

on a contract in the sub-sample is $1,230, while under this counterfactual policy it would

be $1,520. The third policy is a “lane rental contract”, where the contractor pays a penalty

each day from the beginning of the contract. This penalty is set equal to 10% of the traffic

delay cost. Finally, the last policy is the (risk-neutral) welfare maximizing policy of a lane

rental with penalty equal to the full traffic delay costs.

The last two policies belong to a class of constrained efficient policies that maximize welfare

subject to the constraint that the total costs to the contractors not exceed a certain amount.

All members of this class use lane rentals with penalties equal to a fraction of the traffic delay

cost, where the fraction depends on the cost constraint. This class is of interest because

Mn/DOT faces a budget constraint of its own, and any costs it imposes on contractors

through stronger time incentives will be passed-through, possibly at a rate higher than one.

For the simulations, we use the parameter estimates from our preferred specification, given

in column 3 of Table 5. This assumes that contractors expect full enforcement. If we instead

used the partial enforcement estimates for our simulations, the estimated marginal benefit of

delay would be lower, and therefore in our simulations contractors would be more responsive

to more aggressive policies. Assuming full enforcement thus leads to conservative estimates

of the welfare gains from such policies.

We simulate both productivity shocks and new error draws in our counterfactuals. We do

this to see how these policies fare when each contract is exposed to a full range of shocks.

The procedure for obtaining the counterfactual estimates is as follows. First, we calculate the

mean counterfactual completion times for each contract by simulating the above draws, and

then compute the mean optimal completion time under the new incentives. This allows us to

calculate the commuter gain from shorter construction, the additional private costs incurred
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by the contractor in accelerating the contract, and the penalties paid by the contractor. In

all cases, these are measured relative to a baseline with no penalties for late completion. We

also calculate a welfare gain, defined as the difference between the gain to commuters and

the increased costs incurred by contractors. We then average over 10,000 simulations and

across contracts.

The results are in Table 7. We find that neither of the small tweaks to existing policies has a

big impact on completion times. For example, a tighter deadline implies that the contracts

will on average be completed less than half a day sooner. And for many of the contracts 10%

of the traffic delay cost is smaller than the current penalties. As a result, the days taken

actually increases marginally with the new penalties, although it falls with the introduction

of a tighter deadline or a lane rental.

Nonetheless, these more tailored penalties are effective: we see a welfare increase relative

to the current policy of around $51,000 per contract, or about 2.7% of the contract value.

This is due to the large heterogeneity in traffic delay costs, which imply that a “one-size-

fits-all” penalty regime does a poor job of aligning social and private costs. It is therefore

not surprising that in the final column we see large gains to even the 10% lane rental policy,

which aligns incentives not only when the contract is running late, but also when things

are going well. The gains relative to the current policy are nearly $200,000 per contract, or

about 11% of the contract value. The projected gains from the fully efficient lane rental are

substantially bigger.

One concern is that the subsample of contracts for which we have estimated traffic delay costs

is not representative of our full sample. To address this, we use propensity score re-weighting.

First, we use a probit to estimate the probability that a contract is in the subsample given

contract size, duration and type of contract. Second, we weight the relevant counterfactual

statistics for each observation in the subsample by the inverse of the estimated probability

of inclusion. If the unobservables have the same distribution across the full sample and

subsample, this will correct for selection. Looking at the bottom panel of Table 7 we see

that the results are similar in percentage terms, though smaller in magnitude. For example,

the welfare gain from increasing the penalty is predicted to be $39,000 per contract, or 2.9%.

We also report the standard deviation of the penalties paid by contractors, across produc-

tivity and error draws. While the mean penalty is just a transfer from the contractor to

the procurer and doesn’t enter welfare calculations even under risk aversion, the standard

22



deviation is a measure of the riskiness of the contract, and matters. We find that these are

in general pretty comparable across the first four policies, although they sharply increase in

the case of the fully efficient lane rental. To put the magnitude into context, the $47,000

standard deviation in payments from the full lane rental means that if the contractor has a

markup of 10% on the average $1.3 million contract, nearly a third of their profit could be

wiped out by a one standard deviation negative shock. This might be a barrier to entry for

small firms.

Discussion: How reasonable are our estimates? To get a sense of this, we compare our

results with those in Lewis and Bajari (2011). That paper examines what happened when

the California Department of Transportation offered stronger time incentives through the

use of scoring auctions. When the time incentives offered were equivalent to a lane rental

of roughly $14,000 per day on much bigger contracts (nearly $22M on average), contractors

completed in approximately 60% of the allotted time. Our most ambitious counterfactual —

the efficient lane rental — predicts that lane rentals of similar magnitude (around $15,000

per day) applied to much smaller contracts $1.8M in our delay subsample) would have bigger

effects (43% completion time). This doesn’t seem entirely unreasonable, which is re-assuring.

Our first conclusion is that using a standardized set of time penalties, as Mn/DOT does, is

far from optimal. As we showed, by setting contract-specific penalties —without changing

deadlines or the average penalty — there could be a welfare gain of 1.9% of contract value.

For our full sample, this amounts to $15.2 million. So our first conclusion is that tailored

incentives would have a substantial quantitative impact on total welfare.

There is also broad heterogeneity in the ex-post marginal benefits of delay across contractors,

both because of ex-ante asymmetries in their production functions, and ex-post productivity

shocks. Because of this, contractors would sometimes be willing to finish early if incentivized

to do so. The efficient lane rentals give such an incentive, and therefore produce much higher

welfare gains — for our sample, a projected gain of $199.5 million. Our second conclusion

then is that time incentives really should be structured to provide a constant incentive for

accelerated construction.

There are some important limitations of the above analysis. In some cases we are relying

on the functional form of the parametric model. This is particularly true of the lane rental

policy, where the marginal benefits of delay prior to the contract deadline are inferred based

on the slope α of that function, which in turn was identified from late contracts. If the slope

23



is not constant (e.g. marginal benefits are decreasing) we may underestimate the benefits to

delay, and hence overestimate the effectiveness of the policy. To address these concerns we

have mainly focused on small counterfactual policy changes, so that if the function is locally

linear around d̃ = 1, our estimates will be approximately correct.

We also ignore the fact that under the new contract regime, contractors may be selected for on

the basis of their ability to complete quickly, and therefore the winning bidders may actually

have lower marginal costs than those we estimated earlier (although they may have higher

fixed costs). Moreover, they may make different decisions with respect to the hiring of labor

and rental of capital than they currently do, enabling them to complete quicker without

incurring the high costs we project when we hold labor and capital decisions fixed. This

suggests we may underestimate the welfare gains from more high-powered time incentives.

But with these incentives comes an increased need for monitoring the contractors. This

may be costly, since Mn/DOT would have to employ additional personnel on site. At least

for the small changes considered here, this seems unlikely to be necessary. Finally, we do

not account for general equilibrium effects due to the bidding up of input prices, or for the

potential deadweight loss incurred in raising the funds for this accelerated procurement.

6 Conclusion

Blunt instruments can sometimes be effective tools. Time incentives are a relatively blunt

instrument: instead of contracting on all the events that may require a contractor to adapt

his plans, the contract simply specifies a deadline and penalties. What this paper has shown

is that these incentives are sufficient to motivate adaptation, at least when the design needn’t

be amended.

Nonetheless, even blunt instruments need to be designed with care. As the paper has shown,

thoughtful deadlines are meaningless without appropriate penalties. In regulating the ex-

ternality from highway construction, penalties that are proportional to the traffic delay cost

perform much better than a “one-size-fits-all” statewide policy.

This paper has focused on highway contracts, because they are cases where the design is

close to fully specified and adaptation is generally one-sided. This leaves room for interesting

empirical research on cases where the design itself may need adaptation in the face of a shock,

such as in military procurement or less routine construction.
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7 Appendix

Table 1: Damage Specifications and Time Outcomes

Damages per day ($) Time Outcomes
Contract Value ($) 1995-2004 2005- # Obs # Late
Below 25K 75 150 1 0
25K-50K 125 300 6 0
50K-100K 250 300 22 0
100K-500K 500 600 145 36
500K-1M 750 1000 102 38
1M-2M 1250 1500 118 50
2M-5M 1750 2000 73 34
5M-10M 2500 3000 23 15

Damage specifications are taken from the Mn/DOT standard specifications for construction contracts. These
were last amended in 2005. Time outcomes are based on the diary data.
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Table 2: Summary Statistics: Mn/DOT Highway Construction Contracts, 1996-2006

Mean Std. Dev. Min Max
Contract Value (thousands) 1336.1 1551.7 15.84 9549.7
Days Allowed 40.61 30.05 10 198
Days Taken 43.48 37.40 5.900 271
Planned Hours 391.7 313.1 80 1946.0
Hours Worked 462.5 453.6 29 3290
Avoidable Delays (hours) 70.03 100.2 0 808
Unavoidable Delays (hours) 99.10 142.9 0 1099
Work Rate (hours/day) 10.18 3.470 1.840 24
Contract late? 0.353 0.478 0 1
Penalty applied if late? 0.243 0.430 0 1
Damages (if applied) 6097.8 6036.6 500 27000
Types of Work (not mutually exclusive)
Beautification 0.0306 0.172 0 1
Bridge Repair 0.104 0.306 0 1
Construction 0.0776 0.268 0 1
Resurfacing 0.898 0.303 0 1
Shoulders / Turn Lanes 0.192 0.394 0 1
Traffic Signals 0.137 0.344 0 1
Delay Subsample
Daily Traffic 11688.1 15960.0 380 100000
Projected delay (mins) 9.727 7.115 0 20
Daily Traffic Delay Cost 15164.7 20492.6 0 124000
Number of contracts 490

Summary statistics for selected highway construction contracts let by the Minnesota Department of Trans-
portation between 1996 and 2006. The sample includes all working day contracts for which we have diary
data (20 percent of all contracts). The omitted type of work category is ”other”. ”Unavoidable” delays are
those that were outside of the contractor’s control; ”avoidable” delays are those that were preventable in the
judgement of the project engineer. ”Beautification” work includes landscaping, painting and minor repairs.
The delay subsample consists of 99 contracts for which we collected more detailed data on detour options,
and projected a daily cost to commuters from traffic delays.
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Table 3: Shocks and Work Rate Adaptation

Work Rate
OLS IV

(1) (2) (3) (4)
Shock 0.560*** 0.533*** 0.404*** 0.271***

(0.049) (0.057) (0.103) (0.102)
Planned Work Rate 0.777*** 0.777*** 0.647*** 0.545***

(0.066) (0.077) (0.104) (0.114)
Time Penalty / Days Allowed 0.012* 0.018* 0.017** 0.007

(0.007) (0.010) (0.008) (0.011)
Contract Value / (Days Allowed * 1000) 0.010 0.040***

(0.009) (0.013)
Big Firm 0.239 -0.010

(0.214) (0.250)
In-State Contractor 0.159 0.073

(0.328) (0.323)
N 490 490 490 490
First-stage F-statistic - - 29.48 20.94
District/Work/Year FE no yes no yes

The dependent variable is the work rate in hours per day. The shock variable is the difference between
actual and planned hours, divided by the days allowed. Big Firm is a dummy variable indicating that the
contracting firm won more than $10 million of contracts over the sample period. The first two columns report
results from an OLS regression, while the last two report results from an IV regression where the contract
shock is instrumented for by the hours of rain and hours of snow per day. Columns (2) and (4) include
year, type of work and district fixed effects. Standard errors are robust. Significance levels are denoted by
asterisks (* p < 0.1, ** p < 0.05, *** p < 0.01). The F-statistic reported for the IV regressions is from an
F-test of the joint significance of the instruments.
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Table 4: Determinants of Late Contract Completion

Indicator for Contract Late
(1) (2) (3) (4)

Time Penalty / Days Allowed -0.004** -0.007*** -0.007*** -0.006***
(0.002) (0.002) (0.002) (0.002)

Contract Value / (Days Allowed * 1000) 0.006*** 0.006*** 0.006*** 0.005***
(0.001) (0.001) (0.001) (0.001)

Big Firm -0.054 -0.026
(0.045) (0.045)

In-State Contractor 0.100 0.080
(0.061) (0.058)

Hours of rain per day 0.553***
(0.148)

Hours of snow per day 1.509*
(0.772)

N 490 490 490 490
R2 0.04 0.16 0.16 0.21
District/Work/Year FE no yes yes yes

The dependent variable is the probability that the contract is completed late. All columns are OLS regres-
sions, and standard errors are robust. Significance levels are denoted by asterisks (* p < 0.1, ** p < 0.05,
*** p < 0.01). Big Firm is a dummy variable indicating a firm that won more than $10M in total contract
value in the sample. Marginal effects from a probit specification are very similar.
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Table 5: Estimates of Marginal Benefit of Delay

Days Taken / Days Allowed
Full Enforcement Random Enforcement

Raw Coefficients
Log Contract Size (β1) -4.49 -2.59 -2.08 -0.81

( 3.85) ( 3.50) ( 4.55) ( 1.41)
Planned Work Rate (β2) 8.29*** 6.87*** 6.76*** 2.08***

( 1.95) ( 1.76) ( 1.83) ( 0.58)
Big Firm (β3) 2.23 1.56 1.03 -0.73

( 9.55) ( 6.79) ( 7.61) ( 2.96)
In-State Contractor (β4) 0.26 -2.90 -5.06 -3.32

( 6.08) ( 6.24) ( 6.62) ( 2.01)
Shock (δ) 13.00*** 12.14*** 12.15*** 3.65***

( 1.85) ( 1.69) ( 1.70) ( 0.54)
Slope (α) -238.75*** -221.89*** -221.84*** -68.69***

( 42.02) ( 38.95) ( 39.26) ( 11.89)
Std. Deviation of Error (σ) 78.57*** 70.23*** 70.18*** 21.63***

( 10.23) ( 8.80) ( 8.81) ( 2.66)
Estimated Benefit Function for an Average Contract

Intercept 11037.23 10184.37 10191.13 3122.82
( 1827.26) ( 1707.88) ( 1736.87) ( 529.21)

Slope -9695.28 -9010.46 -9008.54 -2789.39
( 1706.28) ( 1581.77) ( 1594.24) ( 483.03)

Std. Deviation of Productivity Shock 3458.23 3230.15 3232.69 971.72
( 492.17) ( 449.11) ( 452.71) ( 142.86)

Std. Deviation of Error 3190.40 2851.97 2859.30 881.02
( 415.28) ( 357.39) ( 422.18) ( 124.39)

District FEs no yes yes yes

Maximum likelihood estimates of the marginal benefit of delay function. The top panel has the raw co-
efficients; the bottom panel shows the implied function for an average contract. An average contract has
value $1.3M, should be completed in 40 days and has a penalty of $1K per day. In the third and fourth
columns, the standard deviation of the error term is specified as a linear function of the log contract size.
The first three columns are from a model that assumes full enforcement of the time penalties; the last column
assumes random enforcement, with the probability of enforcement estimated as a function of the contract
characteristics. Big Firm is a dummy variable indicating a firm that won more than $10M in total contract
value in the sample. The standard deviation of the productivity shock indicates the effect of a 1 standard
deviation increase in the required hours of work per day on the marginal benefit of delay for an average
contract. District fixed effects are included where indicated. Standard errors are bootstrapped. Asterisks in
the top panel denote significance levels (* p < 0.1, ** p < 0.05, *** p < 0.01).
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Table 6: Sample and Simulated Moments

Data Simulations
Mean Mean Std. Error 95% L.B. 95% U.B.

Days Taken / Days Allowed 1.04 1.03 0.01 1.01 1.05
Days Taken / Days Allowed if value >$1M 1.10 1.11 0.02 1.07 1.14
Days Taken / Days Allowed if value <$1M 1.00 0.97 0.01 0.94 1.00
Fraction of Contracts Late 0.37 0.45 0.02 0.42 0.48
Fraction Late if value >$1M 0.50 0.54 0.02 0.50 0.58
Fraction Late if value <$1M 0.28 0.39 0.02 0.34 0.43
Days Taken / Days Allowed if late 1.33 1.26 0.02 1.22 1.30
Days Taken / Days Allowed if late & value >$1M 1.30 1.30 0.03 1.25 1.35
Days Taken / Days Allowed if late & value <$1M 1.36 1.23 0.03 1.18 1.29

Structural Model OLS
Simulated R2 for days taken 0.87 0.66

Comparison of observed and simulated moments. The first column contains moments observed in the data; the second
column contains moments simulated using the maximum likelihood estimates of the model parameters. Columns 3—5
respectively contain the bootstrapped standard errors, and lower and upper bounds of a 95% confidence interval for these
moments. The bottom part of the table shows a simulated R2 for days taken, computed from the total sum of squares
and residual sum of squares, where the residuals are the difference between the observed and mean simulated outcome.
The OLS comparison uses OLS to predict the days taken, using all the covariates from the structural model (including a
constant).
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Table 7: Counterfactual Welfare Estimates under Alternative Policies

Current 10% Tighter New Penalties Lane Rental Lane Rental
Policy Deadline (10% Delay Cost) (10% Delay Cost) (100% Delay Cost)

Subsample with Delay Data

Days Taken 46.84 46.33 46.91 43.57 20.02
(45.52,48.26) (45.03,47.80) (45.63,48.28) (42.04,45.42) (17.48,23.63)

Commuter Gain ($K) 64.73 73.92 118.57 274.16 790.88
(45.09,85.00) (52.17,97.01) (88.19,148.23) (195.84,347.80) (726.19,844.13)

Acc. Cost ($K) 2.58 2.96 4.71 13.23 184.31
(1.81,3.38) (2.11,3.87) (3.61,5.78) (9.68,16.34) (168.08,207.04)

Penalties Paid ($K) 13.06 17.19 8.95 62.82 111.49
(10.54,16.06) (14.56,20.34) (7.03,11.74) (56.77,69.76) (85.59,157.57)

Std. Dev. Penalties ($K) 15.95 17.93 12.72 26.50 67.69
(13.01,18.68) (14.99,20.61) (10.19,15.82) (22.33,29.93) (55.25,90.63)

Net Gain ($K) 62.16 70.96 113.85 260.93 606.57
(43.26,81.62) (50.08,93.12) (84.44,142.62) (186.14,331.48) (525.23,666.29)

Reweighted to match full sample

Days Taken / Allowed 41.51 41.07 41.58 38.67 19.56
(40.57,42.62) (40.13,42.25) (40.64,42.66) (37.52,40.09) (17.70,22.18)

Commuter Gain ($K) 45.60 52.29 86.08 201.11 583.68
(31.62,60.57) (36.84,68.60) (63.47,107.13) (142.66,256.50) (538.10,618.51)

Acc. Cost ($K) 1.85 2.14 3.44 9.76 132.55
(1.29,2.44) (1.52,2.81) (2.68,4.19) (7.08,12.15) (119.83,151.84)

Penalties Paid ($K) 9.64 12.75 6.22 46.30 80.48
(7.76,11.64) (10.90,14.87) (4.94,7.96) (42.06,51.43) (64.69,110.23)

Std. Dev. Penalties ($K) 12.05 13.62 9.21 19.96 47.05
(9.94,13.96) (11.46,15.51) (7.42,11.20) (16.71,22.34) (38.83,62.56)

Net Gain ($K) 43.75 50.15 82.63 191.35 451.13
(30.34,58.14) (35.32,65.78) (60.77,102.83) (135.58,244.35) (392.99,494.23)

Counterfactual welfare results under different policies. The top panel of results is estimated using the data subsample for which
we have social cost measures; the second panel imputes counterfactual results for the full sample by reweighting the counterfactual
moments for each contract by the inverse of the probability of appearing in the subsample. This probability is estimated by a
probit, conditioning on the observables used elsewhere in the paper. The first column is simulated outcomes under the current
policy. In the second column, the contract deadline is accelerated by 10%. In the third, the daily penalties for late completion are
set equal to 10% of the traffic delay cost. In the fourth and fifth columns, a lane rental policy is simulated, with rental rates equal
to 10% and 100% of the traffic delay cost respectively. All statistics are calculated relative to a scenario where no time incentives
are used. For example, “Commuter Gain” for any contract is the average number of days saved by using time incentives times
the traffic delay cost. “Acceleration Cost” is the estimated additional cost to the winning contractor of accelerating construction
relative to a no time incentives scenario. “Penalties” refers to any penalties the contractor pays, “Std. Dev Penalties” is the
standard deviation of those penalties across simulated draws of productivity and cost shocks (averaged over contracts), while
“Net Gain” is the difference between commuter gain and contractor acceleration costs. In all cases, mean results are averaged
across simulations and contracts. 95% confidence intervals are given in parentheses, and are generated by bootstrapping the
regressions and taking the 2.5th and 97.5th percentiles of the simulated results based on the bootstrapped coefficients.
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