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Competition for employment and education, innovation funding, and design opportuni-

ties can all be framed as multi-stage elimination tournaments in which players are knocked

out over successive stages of the event. These contests are often designed to increase player

e§ortóindeed, much of the theoretical and empirical literature focuses on contests as in-

centive mechanisms. Yet, tournaments may also serve as selection mechanisms, identifying

the ìbestî candidates as overall winners. In labor tournaments where employeesí latent tal-

ents are not directly observable, Örms may organize contests to reveal their workersí relative

abilities.1

In this paper, we study how the strategies of heterogeneous players in match-pair elimi-

nation tournaments are shaped by past, current, and future competition. More speciÖcally,

we examine how these intertemporal e§ects ináuence a tournamentís ability to reveal the

strongest player as the winner. Negative spillover from past stages may make current ef-

fort more costly and may depress performance, and the shadow of tough future competition

decreases a playerís expected future payo§s and may also lead to lower current e§ort. The

di§erential impact of past and future competition across players in a given match changes the

e§ectiveness of tournaments as a selection mechanism. We Önd that both negative spillover

and tough future competition increase the probability that a weak candidate wins.

Our results have practical implications; whether the contestís objective is to encourage

e§ort, select a strong winner, or both, we Önd evidence suggesting that Örms, educators,

and other contest designers may need to consider the role of past and future competition in

structuring incentives.

In personnel tournaments, workers risk elimination as they advance through corporate

management levels. In most contexts, retention of the highest quality worker is most desir-

able. For example, GEís former CEO, Jack Welch, designed an explicit elimination tourna-

ment to select his successor (Konrad 2009). Competition between Örms may also be knockout

events. In 2010, GE announced a three-stage elimination tournament, the Ecomagination

Challenge, to award $200 million to the Örm that developed the best smart grid technologies.

More commonly, architectural Örms may compete for large contracts and investment banks

may compete for new clients over several elimination stages. Political races also may involve

eliminationóa candidate must win his partyís primary election to compete in the general

election to hold o¢ce. Many sporting events are also structured as elimination tournaments.

In each of these examples, e§ort is clearly important; Örms want to hire managers,

designers, bankers and innovators who will invest heavily in the activity at hand, voters

1In contrast, Lazear (1986) discusses how performance pay may attract higher quality workers into the
Örm when the Örm cannot readily observe innate worker ability.

1



want their representatives to work hard on their behalf, and spectators enjoy high action

games. However, selection may also be a prime objective of the contest organizeróa client

may desire the most creative design Örm, voters may value the most skilled politician, and

a board may want the smartest executive to lead the company.

We explore elimination tournaments as selection mechanisms with a two-stage match-pair

model. One particular strength of our model is that its predictions are framed in terms of

outcomes. As a result, they are testableóin contrast with e§ort that is notoriously di¢cult

to measure in the Öeld, tournament wins and losses are readily observable. We test our

theoretical predictions using the outcomes of high-stakes matches; we exploit the random

assignment of players in professional tennis tournament draws. Examining the e§ect of

changes in the skill of the expected competitor in the next round, we Önd strong evidence of

a shadow e§ect. In addition, spillover in tennis tournaments appears to have a particularly

negative impact on the stronger player. We also examine tennis betting markets and Önd

that bookmakersí prices reáect both spillover from past competition and the shadow of future

opponents.

The literature on the type of tournament that we studyósometimes called ìknock-outî

tournamentsóbegins with Rosenís (1986) model of a multi-stage contest where players have

Tullock-style (1980) contest success functions. One signiÖcant di§erence between Rosen

(1986) and our current paper is that we use the contest success function that appeared earlier

in Lazear and Rosen (1981). More importantly, Rosen (1986) is not focused on shadow and

spillover e§ects; instead, his main result explains the skewed compensation distributions

found in many Örms. Harbaugh and Klumpp (2005) study a special case of Rosenís model

with a single prize and introduce a version of spillover. In contrast to our result that e§ort in

the Örst stage has a relatively larger impact on the stronger playerís probability of success,

they model a contest in which low-skill players are disadvantaged in the Önal round. This

result is generated by a set of assumptions that di§ers from those in our model; in particular,

Harbaugh and Klumpp assume that e§ort is costless and therefore completely exhausted in

the Önal stage, and the total supply of e§ort is Öxed and equal for all players. In their set-up,

the stronger player conserves his e§ort in anticipation of sti§ competition in a Önal stage

match against an equally skilled opponent, whereas the weaker player always exerts more

e§ort than the stronger player in the Örst stage. The weaker playerís Örst-stage exertion

ìspills overî into the next stage and further reduces his chance of winning the event.

Our e§ort spillover prediction also relates to previous work on fatigue in dynamic com-

petition. Ryvkin (2011) presents a winner-take-all model where homogeneous players face

a binary e§ort decision and e§ort has no explicit costóthese features are in stark contrast

to our model where players are heterogeneous and e§ort is a continuous and costly choice
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variable in a multi-prize tournament. In his work, fatigue accumulates across stages and

players have no opportunity to refresh their e§ort resources. Among other results, he Önds

that equilibrium e§ort is decreasing in fatigueósimilar to our notion of negative spillover be-

tween tournament stages. Schmitt et al. (2004) study the opposite phenomenonópositive

spilloveróin rent-seeking contests. They Önd both theoretical and experimental evidence

that positive spillover leads to more Örst-period expenditure. Our contribution complements

and extends these theoretical and experimental results to the Öeld. Moreover, we consider

the shadow of expected future competition in addition to the impact of spillover from the

past.

Related to our interest in the e§ect of future competitor, Ryvkin (2009) considers the

elasticities of a playerís equilibrium e§ort with respect to the abilities of his opponents across

several tournament formats. In elimination tournaments with weakly heterogeneous players,

he Önds that the abilities of opponents in the more distant future have a lower impact on

a playerís equilibrium e§ort than does the ability of the current opponent. While Ryvkin

(2009) focuses on playersí e§ort, we are particularly concerned with tournament outcomes.

Several papers have explored the use of tournaments as a selection mechanism. Searls

(1963) compares the statistical properties of single- and double-elimination contests and

predicts that single-elimination eventsóthe type of tournament that we consider in this

paperóare most likely to select the highest ability player as the winner. While our model

allows players to make strategic e§ort decisions in response to past and future competition,

Ryvkin and Ortmann (2008) and Ryvkin (2010) compare the selection e¢ciency of three

tournament formats when contestants do not choose e§ort. In these models, as in the one

that we present in the text below, a playerís success is probabilistic. In contrast, Groh

et al. (2012) model an environment in which heterogenous players choose their level of

e§ort but participate in a perfectly discriminating contest. In an all-pay auction, they

explicitly consider various contest designerís objectives, including selection. They Önd that

common seeding rules that match weakest to strongest players in the semiÖnals maximize the

probability that the strongest player wins overall. Clark and Riis (2001, 2007) also examine

one-stage, perfectly discriminating contests and explore how various prize rules can improve

selection. Modeling a di§erent type of strategic choice, Hvide (2002), Cabral (2003), Hvide

and Kristiansen (2003) study outcomes in contests in which competitors choose their degree

of risk taking.

Of course, a tournamentís ability to select the best is only important when contest design-

ers face a Öeld of heterogeneous competitors. Empirically, Sunde (2009) tests the incentive

e§ect of player heterogeneity in professional tennis tournaments. He Önds that heterogeneity

impacts the e§ort choice of the stronger player more than it changes the e§ort of the weaker
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player in a match; for an equal change in rank disparity, the increase in the number of games

won by the stronger player is smaller than the decrease in the number of games lost by the

weaker player. In addition to the concurrent heterogeneity studied in Sundeís work, we also

examine heterogeneity across multiple stages of an event, exploring the incentive impact

of ability di§erences with past, current, and (expected) future opponents. The e§ects of

player heterogeneity on e§ort in one-shot tournaments has been studied both theoretically

(e.g. Baik 1994; Moldovanu and Sela 2001; Szymanski and Valletti 2005; Minor 2011) and

empirically (e.g. Knoeber and Thurman 1994; Brown 2011).

The paper is organized as follows: Section 1 presents a two-stage model of an elimination

tournament. We derive several propositions and outline the testable hypotheses. In Section

2, we describe our data and empirical strategy for testing these predictions. Section 3

describes the results from past tournaments and discusses the spillover and shadow e§ects

in the context of betting markets. We conclude in Section 4 and discuss the implications of

our Öndings for contest designers.

1 Theory

We study a theory of knockout tournaments in which matches within a given stage are

staggered over time. Players in later matches learn the identity of their potential future

opponent from outcomes of earlier matches. However, players in these earlier events can only

form expectations about their future opponent. This formulation captures both sequential

and simultaneous features of competitionójust as players in simultaneous matches must form

expectations about the outcomes of parallel games, so too must players in early matches of

sequential tournaments form expectations about later matches.

This tournament format is often found in practice. For example, in Örms, simultaneous

promotions to division vice-president may be rare. Instead, the identity of the new appointee

is known to other workers still competing for a parallel executive spotóthe hopeful workers

now know their future opponent for further advancement. This structure is in contrast

with other models of elimination tournaments where all matches in a given stage occur

simultaneously rather than sequentially (for example, see Stracke (2011)) or all participants

compete against each other simultaneously in pools, rather than as pairs (Fu and Lu 2012).

We use an additive noise model, as in Lazear and Rosenís (1981) foundational work on one-

shot labor tournaments, to focus on the dynamics of a multi-stage elimination tournament.2

In the following section, we explore the role of past and future competition on tournament

2Additive noise models have been used in much of the labor tournaments literature since Lazear and
Rosen (1981); for examples, see Konrad (2009).
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outcomes. We present a model that is simple enough to clearly inform our empirical tests,

yet rich enough to capture common features of high-stakes, multi-stage tournaments. Specif-

ically, we model an elimination tournament with heterogeneously skilled players competing

in sustained competitionóone could imagine professionals of varying abilities competing

over months or years for a prized position within the Örm.3 For expositional ease, we Örst

present the spillover and shadow e§ects separately in Section 1.2 and 1.3. Then, in Section

1.4, we present an analysis of the e§ects operating simultaneously and also enrich the notion

of cross-round spillover. Combining the e§ects does not change the general predictions of

the model.

Our theory results describe the probability that the stronger player wins in di§erent

stages of the elimination event. These predictions speak directly to our broader research

question of ìselecting the best.î That is, our comparative statics results provide predictions

about when the strongest player is most likely to advance to future rounds of competition

and, ultimately, win the tournament.

1.1 Model Set-Up

Consider a two-stage elimination tournament with four risk-neutral players, where the players

who win in the Örst stage advance to the Önal stage. The overall tournament winner receives

a prize of VW ; while the second-place competitor receives a prize VL. Let VW > VL > 0 and

deÖne the prize spread"V = VW!VL: For simplicity, we assume no discounting across stages.
Let player iís total cost be a quadratic function of his e§ort xi and his cost type ci:4 The

convexity assumption on the cost function is common in the literature on tournaments and

captures the notion that additional units of e§ort are increasingly costly for competitors.5

For simplicity, we denote a playerís cost function as 1
2
x2 and a player iís total cost as

ci
1
2
x2i . We assume that cost types, ci, vary across all players and are commonly known

amongst competitors.6 We will describe players with relatively low costs as being ìstrongerî

than players with relatively high costs.

3In a sports context, our model better reáects the dynamics of an endurance event (e.g. tennis) than
competition requiring short bursts of e§ort (e.g. powerlifting).

4One could deÖne a mapping E : RN+ ! R1+ that collapses levels of N e§ort-generating activities to the
real line. The overall cost of e§ort is then strictly increasing in the resultant scalar xi.

5Our results hold for more general convex cost functions, $ (xi), provided that both playersí e§ort choices

are su¢ciently sensitive to a change in marginal beneÖt. In particular, we require that #00(x"1)

#00(x"2)
< c2

c1
: Versions

of the model with linear and other quasi-convex costs also produce similar results.
6For ease of exposition, we model heterogeneity through playersí cost types. However, several alternative

models produce identical results: for example, we can also capture heterogeneity across valuations by deÖning
a playerís valuation of the prize as V

ci
or allow the impact of an additional unit of e§ort on the probability

of winning to vary across competitors. It can also be shown that capturing heterogeneity by varying cost
function convexity leads to similar results.

5



Recall that matches in the Örst-stage are sequential. Assume that players 3 and 4 compete

Örst. Then, player 1 faces player 2 knowing the outcome of the previous match. Players 3 and

4 will form an expectation of the strength of future competition, knowing only the identity

of two potential opponents. Without loss of generality, we assume that player 3 won his

match against player 4.

1.1.1 Final Stage of the Tournament

Assume that player 1 won his Örst-stage match. To Önd the equilibrium of the multi-stage

game, we begin by analyzing the strategies of player 1 and his opponent player 3 in the Önal

stage. DeÖne player 1ís expected payo§ function as

(1;final = P1 (x1; x3)"V !
1

2
c1x

2
1 + VL (1)

where his probability of winning takes the following form:

P1 (x1; x3) =

8
><

>:

1 if x1 + "1 > x3 + "3
1
2
if x1 + "1 = x3 + "3
0 otherwise

(2)

where xi + "i is player iís level of output and output is a function of both e§ort xi and a

random noise term "i: In deÖnition (2) ; the probability that player 1 wins is increasing in

his own e§ort and decreasing in the e§ort of his opponent.

DeÖne " = "3 ! "1 and let " be distributed according to some distribution G such that

probability (2) can be written as

P1 (x1; x3) = Pr (x1 ! x3 > ") = G (x1 ! x3) (3)

Now, player 1ís payo§ function (1) can be written as

(1;final = G (x1 ! x3)"V !
1

2
c1x

2
1 + VL (4)

and his Örst order condition is

@(1;final
@x1

= G0 (x1 ! x3)"V ! c1x1 = 0 (5)

Following Konrad (2009) and Ederer (2010), we assume that G is distributed uniformly
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with the following support7

G # U
%
!
1

2
a;
1

2
a

&

and, therefore,

G0 =
1

a

The assumption that G is uniformly distributed removes the strategic interdependence

of playersí current period e§ort choices (Konrad 2009).8 This allows us to isolate the conse-

quences of past e§ort choices and potential future competition on current-stage e§ort. In a

Örm context, this would assume that a workerís optimal e§ort choice is independent of the

identity of his current opponent; of course, in earlier stages, his optimal e§ort depends on

his expectations about future opponentsí identities. The results hold broadly if we relax this

assumption of same-stage independence and allow playersí optimal e§ort choices to depend

on both their current and future opponents.9

Rewriting the Örst order condition (5) yields:

@(1;final
@x1

=
"V

a
! c1x1 = 0

which we can rearrange as the following expression:

x"i =
"V

aci
for i = 1; 3 (6)

Assume for the remainder of the analysis that player 1 is the stronger player (c1 < c3) :

Then, expression (6) implies that player 1 exerts more e§ort in the Önal stage (x"1 > x
"
3).

Therefore, the stronger player is more likely to win in the Önal stage, relatively to his weaker

opponentóthat is, the better player is more likely to be ìselectedî as the overall tournament

winner.

In the Önal round, since both players are guaranteed at least the second prize VL; only

the di§erence between Örst and second prize matters to competitors. As expected, a larger

7To ensure that probabilities are well-deÖned, we require that

0 <
%V
ac1

! %V
ac3

+ a
2

a
< 1

This condition ensures that G($) 2 (0; 1):
8Results from Ryvkin (2009) support this simplifying assumption. He shows that, when playersí rel-

ative abilities are uniformly distributed, a ìbalancedî seeding can eliminate the dependence of a playerís
equilibrium e§ort on his opponentís ability.

9A version of the model with more general distributions that allow for same-stage interdependence,
including the normal distribution, is available in an online appendix.
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prize spread leads to more e§ort from both players, though the stronger player increases his

e§ort more than the weaker player. Also, increasing the noise around e§ort (i.e., increasing

a; the width of the support of G) reduces e§ort, particularly for the stronger player.

1.1.2 First Stage of the Tournament

DeÖne z1 and z2 as the e§orts of players 1 and 2 in the Örst stage. Player 1ís expected payo§

function in the Örst stage is

(1;first = P1 (z1; z2) ~V1 !
1

2
c1z

2
1 (7)

where ~V1 is his continuation value (i.e., his payo§ in the Önal stage):

~V1 (x1; x3) & (1;final = G (x1 ! x3)"V !
1

2
c1x

2
1 + VL

Equation (7) yields the Örst order condition

@(1;first
@z1

=
~V1
a
! c1z1 = 0

which we can rearrange, for either player, as the following expression:

z"i =
~Vi
aci

for i = 1; 2 (8)

Fixing a playerís continuation value, his e§ort z"i is decreasing in ci. Since the continuation

value itself is also decreasing in ci; Örst-stage e§ort z"i is increasing in a playerís ability

(decreasing in ci).10

Recall that, at the start of their match, players 1 and 2 already know the outcome of the

other Örst-stage match between players 3 and 4. Of course, this means that players 3 and

4 did not know exactly the identity of their future opponent. Instead, we assume that they

formed an expectation of their continuation value as follows:

E
h
~Vi

i
= p1ji ~Vi (x

"
i ; x

"
1) +

)
1! p1ji

*
~Vi (x

"
i ; x

"
2) for i = 3; 4

10It can be shown, using expression (9) ; that

@ ~Vi
@ci

= !
1

2

+V 2

a2c2i
< 0:
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where p1ji is the equilibrium probability that player 1 wins knowing that he will face player

i in the Önal stage.11 Note that player i cannot ináuence this probability p1ji because it is

a function of the realized outcome of the completed match between players 3 and 4. This

simpliÖes our analysis, since player iís Örst-stage e§ort zi does not change this probability

p1ji: Thus, for players 3 and 4, we can express their e§ort as

z"i =
E
h
~Vi

i

aci
for i = 3; 4

and the analysis described above for players 1 and 2 applies similarly.

1.2 Shadow of Future Competition

We can use the model to understand the impact of known or expected future competition on

the likelihood that stronger players advance to future stages of the tournamentóof course,

this then ináuences the likelihood that a high-skill player is selected as the overall winner.

Consider an increase in the skill of the future opponent. This change has the e§ect of

decreasing the continuation value for both players 1 and 2 in the Örst stage. In the following

analysis, we show that if player 1 has a lower cost of e§ort than player 2, then he will decrease

his Örst-stage e§ort more than player 2.

We can express player iís Örst-stage e§ort as

z"i =
~Vi
aci

=

+
!V
aci

$!V
ac3

+ 1
2
a

a
"V ! 1

2
ci

,
%V
aci

-2
+ VL

.

aci
(9)

To identify the e§ect of a change in the e§ort cost of the future opponent, we take the

derivative
@z"i
@c3

=
"V 2

a3cic23
> 0

Thus, an increase in the skill of the future opponent (i.e. a decrease in c3) decreases a playerís

e§ort in the Örst stage. This is consistent with Ryvkin (2009) who Önds that, in tournaments

with weakly heterogeneous players, e§ort depends negatively on future opponentsí skill levels.

Since we are additionally concerned with tournament outcomes, we next ask: Which

Örst-stage player is more sensitive to the change in the future competition? Let c1 < c2:

Then,
@z"1
@c3

=
"V 2

a3c1c23
>
"V 2

a3c2c23
=
@z"2
@c3

11When player 1 is stronger than player 2, ~Vi (x!i ; x
!
1) < E

h
~Vi

i
< ~Vi (x

!
i ; x

!
2) for i = 3; 4:
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This means that, for a given increase in the talent of the future competitor, player 1

decreases his e§ort even more than player 2. This gives us the Örst proposition:

Proposition 1 As the skill of the future competitor in the Önal stage increases (declines),
the stronger player becomes less (even more) likely to win in the Örst stage and thus less

(even more) likely to be selected as the overall tournament winner.

Figure 1 provides some intuition for the result. Marginal cost and beneÖt are presented

on the vertical axis and e§ort is shown on the horizontal axis. By deÖnition, the marginal

cost of the weaker player lies above the marginal cost of the stronger competitor. In the

model, the marginal beneÖt of e§ort is always larger for the stronger player; however, for

simplicity in the Ögure, we make the conservative assumption that both players enjoy the

same marginal beneÖt of e§ort. When the marginal beneÖt of e§ort is low, the di§erence

between the stronger and weaker playersí e§orts is E§ortGapLow and when the marginal

beneÖt of e§ort is high, the di§erence is E§ortGapHigh:When the future competitor is more

skilled, both of the current players experience a decrease in their marginal beneÖt of e§ort, a

move from MBHigh to MBLow: Since E§ortGapHigh > E§ortGapLow; players facing a more

skilled opponent provide more similar levels of e§ort, and this reduces the probability that

the stronger player wins in the current stage. The reverse is true as the future competitor

becomes less skilled; in this case, the gap between current playersí e§orts increases and this

improves the stronger playerís chance of success.

A limit argument is also illustrative. Consider a current stage with two di§erently-skilled

players, where the winner advances to face some Önal typical opponent. Given his superior

skills, the stronger player is more likely to win in the current stage. Now, consider what

happens when the next round competitor is impossible to beat: Both players in the current

stage will exert almost no e§ort. This hurts the chances of the stronger player, since his

likelihood of winning declines towards 50%. In contrast, the weaker player in the current

stage sees his probability of success improve towards 50%. The prospect of an impossibly

strong future opponent turns the current match into a coin-áip and, as a result, reduces the

chances that the stronger player wins. Similar intuition applies to the case where the future

competitor changes from unbeatable to typical.

1.3 E§ort Spillover

We can also examine e§ort spillover between stages of the tournament. Spillover can take

either a positive or negative form. Positive spillover might reáect learning-by-doing, skill

building or momentum within a Örm. For example, an innovation team whose proposal
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advances to a second stage of funding might beneÖt from its Örst-stage experiences, both

technical and relational. With positive spillover, second-stage e§ort is less costly than Örst

stage e§ort. In contrast, negative spillover might reáect fatigue or reduced resources in

later stages. For example, architects competing in design competitions might exhaust their

creative resources in early stages and have only limited energy for second-stage proposals.

In this case, second-stage e§ort is more costly than Örst-stage e§ort.12

Consider a scenario where e§ort expended by a player in the Örst stage ináuences his

marginal cost of e§ort in the Önal stage.13 We can rewrite player 1ís Önal-stage payo§ as

(1;final = G (x1 ! x3)"V !
1

2
kc1x

2
1 + VL

where k reáects the change in total cost induced by Örst stage e§ort.

To study a negative spillover e§ect, we let a playerís marginal cost of e§ort in the Önal

stage increase (k > 1) and Önal stage e§ort is strictly decreasing in the degree of negative

spillover. With positive spillover, a playerís marginal cost of e§ort in the Önal stage decreases

(k < 1) and Önal stage e§ort is increasing in positive spillover.

Now, equilibrium e§ort is

x"1 =
%V
kac1

Straightforward calculations show that negative (positive) spillover reduces (increases) a

playerís Önal-stage payo§. Consequently, Örst-stage e§ort decreases (increases) with negative

(positive) spillover.

Thus, negative spillover implies a lower probability of success in the Önal stage, holding

the opponentís e§ort and skill constant. Of course, the opposite is true for positive spillover.

Since
@x"1
@k

= !
"V

k2ac1
< !

"V

k2ac3
=
@x"3
@k

when both players in a match su§er similar negative spillover, the stronger player is more

adversely a§ected. As a result, he is relatively less likely to win. In the limit, G (x"1 ! x"3)!
0:5 as the degree of negative spillover k !1:
We summarize this Önding in the second proposition:

Proposition 2 A common proportional increase in e§ective cost type decreases the proba-
bility that the stronger player wins.

12Di§erent notions of spillover have been explored in the literature in settings where players with exoge-
nous, Öxed resources make e§ort allocation decisions over multiple periods of play. For recent examples, see
Harbaugh and Klumpp (2005) and Sela and Erez (2013).

13If previous e§ort appears only as a Öxed cost in the Önal stage, we would expect no change in Önal-stage
e§ort.
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Figure 2 illustrates the spillover e§ect. For both players, negative spillover increases the

marginal cost of e§ort and reduces the levels of e§ort exerted in the competition. How-

ever, a common proportional increase in marginal cost leads to a larger change in e§ort for

the stronger player, relative to the weaker player. Since E§ortGapWithoutSpillover > E§ort-

GapWithNegativeSpillover; players experiencing negative spillover provide more similar levels of

e§ort, and this reduces the probability that the stronger player wins in the current stage.

Again, a limit argument provides further intuition. Consider a current stage with two

players who experience typical levels of negative spillover. Given his superior skills, the

stronger player is more likely to win in the current stage. Now, consider what happens when

spillover increases dramatically. Facing very high costs, both players will exert similarly low

levels of e§ort. This hurts the chances of the stronger player, since his likelihood of winning

declines towards 50%. In contrast, the weaker player in the current stage see his probability

of success improve towards 50%. Thus, negative spillover evens the playing Öeld.

Proposition (2) suggests that, with negative spillover, weaker players might support

costlier competitive conditionsófor example, a weaker player might advocate for more strin-

gent common standards or more di¢cult tasks. Overall, however, the direction and impact

of spillover depends on the context and, thus, is an empirical question.

Our result that negative spillover levels the playing Öeld in both stages is in contrast to

Harbaugh and Klumppís (2005) Önding that intertemporal tradeo§s level the playing Öeld

for the Örst stage, but do the opposite in the Önal stage. Their result is sensitive to the

assumptions that e§ort is costless and that playersí total e§orts are equally constrained.

Spillover need not be modeled as a common proportional increase in marginal cost; in

the next section, we allow the degree of spillover to be a function of Örst stage e§ort and

achieve similar results.

1.4 Combined Shadow and Spillover E§ects

In the text above, we separately present the models of e§ort spillover and the shadow of

future competition; now, we consider these e§ects simultaneously and allow spillover to be

an increasing function of Örst-stage e§ort. Combining the e§ects does not change the general

predictions of the previous analysisóthe prospect of a stronger future competitor and the

presence of negative spillover continue to even the playing Öeld.
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1.4.1 Spillover and Shadow - Final Stage

Under this formulation, our Örst order condition for the Önal stage yields equilibrium e§ort

choice

x"i =
"V

k(zi)aci

where k ($) reáects the degree of spillover from the previous stage and is a strictly increasing
function of Örst stage e§ort zi. As expected, greater Örst-stage e§ort results in lower e§ort

in the Önal stage. Further, this e§ect is ampliÖed for the stronger type since c1 < c2: The

Önal stage spillover e§ect is
@x"i
@k(zi)

=
!"V
k(zi)2aci

< 0

Since @x!1
@k(z1)

<
@x!2
@k(z2)

< 0; a common level of spillover reduces the disparity between partici-

pantsí e§orts in the Önal stage, since @x!1
@k(z1)

<
@x!2
@k(z2)

< 0: As a result, the stronger player is

less likely to win in the Önal stage.

1.4.2 Spillover and Shadow - First Stage

Next, we consider e§ort decisions in the Örst stage. We write k (zi) as ki to simplify the

notation in this section and express player iís payo§ as
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The Örst order condition for the Örst stage is
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which then gives us the following expression for Örst-stage equilibrium e§ort:
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(10)

With no spillover, the left term is the shadow e§ect that we described in Section 1:2.

Again, the stronger player becomes less likely to win in the Örst stage as the skill of the
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future competitor increases.

The right term reáects spillover. Consider the e§ect of introducing spillover. Since

Gfirst($) ( 1
2
and c1 < c2; the negative spillover e§ect is greater in magnitude for the

stronger player. This increases the chances that the weaker player wins; thus, spillover has

the e§ect of evening the playing Öeld. That is, ceteris paribus, spillover increases the chance

of an upset.

1.5 Model Predictions

The theory model outlined above provides the following main predictions:

1. Shadow of Future Competitors: The stronger the expected competitor in the next
stage, the lower the probability that the stronger player wins in the current stage.

Empirically, for a given pair of competitors, we expect that the stronger player is less

likely to win when the winner of the current match will face a stronger future opponent.

2. E§ort Spillover between Stages: Increased negative (positive) spillover decreases
(increases) the probability that the stronger player wins in the Önal stage. Empirically,

for a given pair of competitors experiencing negative spillover, we expect that similar

levels of past exertion will make it less likely that the stronger player wins.

Although not the focus of the current paper, other predictions follow immediately from

our analysis: (a) a steeper prize structure improves the stronger playerís probability of success

in all stages; (b) the noisier the e§ort-to-output relationship, the lower the probability that

the stronger player wins in either stage; and (c) Öxing the competitorsí abilities and given

a su¢ciently large (small) second-place prize, the weaker playerís probability of winning is

greater (smaller) in the Önal stage, relative to the Örst stage. Proofs for these additional

results are available from the authors by request.

Note that the modelís main implications are framed in terms of outcomes, allowing us

to readily test these predictions by observing tournament winners. In the following sections,

we describe our data and empirical analysis.

2 Data

Professional tennis o§ers an ideal environment in which to test the empirical implications

of the theory.14 Tennis events are single-elimination tournamentsóonly winning players
14While tennis tournament organizers may have various objectives beyond selection, it is the structure

of these tournaments that lends itself to our empirical tests. One would expect tournament competitors to
respond to the structure and incentives, not the reason for that contest design.
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advance to successive stages until two players meet in the Önal stage to determine the overall

winner. Prizes increase across stages with the largest prize going to the overall winner, and

the distribution of prizes is known in advance for all tournaments. The Önancial stakes

are substantial and vary across eventsófor example, the total purse for the 2009 US Open

singles competition was $16 million with a $1.7 million prize for Örst place, while the total

purse for the 2009 SAP Open was $531,000 and the winner received $90,925.

Our empirical analysis exploits the random nature of the initial tournament draw. By

ATP rules, the top 20 to 25% of players in an event (the ìseedsî) are distributed across the

draw: the top two seeds are placed on opposite ends of the draw; the next two seeds are

randomly assigned to interior slots on the draw; the next four seeds are randomly assigned to

other slots; etc. After the seeded players have been assigned, the remaining players are then

randomly placed in matches prior to the start of the event.15 This variation provides the

identiÖcation for our empirical approachówe can observe the same skilled player compete

against a variety of randomly-assigned opponents. For example, in our data, we can observe

the fourth best player in the world play against competitors ranked 50th, 100th, and 250th in

the Örst round of the same tournament over di§erent years.16

The structure of tennis tournaments is particularly conducive to studying the shadow

of future competitionóboth players (and the econometrician) know the competitors in the

parallel match. In some cases, players know exactly who they would face in the next round;

in other cases, they can make reasonable predictions about upcoming opponents. Measures

of playersí abilities are also observable to competitors and researchersópast performance

data, as well as world rankings statistics, are widely available.

Data from professional tennis has been used in other research: Walker and Wooders

(2001) used video footage and data from the Önals of 10 Grand Slam events to identify

mixed strategies. Malueg and Yates (2010) study best-of-three contests using four years of

data from professional tennis matches with evenly-skilled opponents. They Önd that the

winner of the Örst set of a match tends to exert more e§ort in the second set than does the

loser and, in the event of a third set, players exert equal e§ort. Forrest and McHale (2007)

use professional tennis bookmaking data and Önd a modest long-shot bias. Gonzalez-Diaz et

al. (2012) use data from US Open tournaments to assess individual playersí abilities to adjust

their performance depending on the importance of the competitive situation. They Önd that

heterogeneity in this ability drives di§erences in playersí long-term success. Using detailed

15Note that the seeding is done according to rank within a tournament; the top seed in one event may
have a di§erent ATP ranking than the top seed in another tournament.

16Using simulations, we examined the potential for a mechanical relationship between match outcomes
and our variables of interest due to tournament seeding rules. Results of the simulations suggest that these
rules are not driving our empirical results. Details of the simulation are presented in an online appendix.
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data from the menís and womenís professional tennis circuits, Gilsdorf and Sukhatme (2008a

and 2008b) Önd that larger marginal prizes increase the probability that the stronger player

wins.

2.1 Professional Tennis Match Data

To test the predictions outlined in the theory, we examine the behavior of professional tennis

players in 615 international tournaments on the ATP World Tour between January 2001 and

June 2010. The data, available at http://www.tennis-data.co.uk, include game-level scores

and player ranks for menís singles matches. The four ìGrand Slamî eventsóthe Australian,

French, and US Opens, and Wimbledonóare included in the data. All of the tournaments

are multi-round, single-elimination events played over several days.

Tournament draws may include 28, 32, 48, 56, 96 or 128 players. Of the 615 events

in the data, 432 tournaments consist of Öve rounds of playórounds 1 and 2, quarterÖnals,

semiÖnals, and the Önal. Six rounds are played in 129 events. Fifty-four tournaments,

including the Grand Slam events, consist of seven rounds of play. Most ATP events are

best-of-three sets, while the Grand Slam events are best-of-Öve sets.17 Depending on the

number of competitors, Örst-round byes may be awarded to the top-ranked players.18

World rankings (o¢cially called the South African Airways ATP Rankings) are based on

points that players accumulate over the previous 12 months. ATP points directly reáect the

pyramid structure of tournaments; more points are awarded to players who advance in top

tournaments. For example, a Grand Slam winner earns the maximum points awarded for

a single event.19 ATP rankings are simply a rank-order of all players by their accumulated

points. In our analysis, we use the ATP rankings as a measure of playersí skill levels.

Table 1 presents summary statistics from 25,758 menís professional tennis matches, re-

ported separately for Öve-, six- and seven-round events. The stronger player wins approx-

imately 65% of the matches; on average, betting markets predict this outcome in approxi-

mately the same proportion. On average, matches are decided after approximately 17 games

in Öve- and six-round tournaments and 28 games in seven-round tournaments, many of which

are decided by best-of-Öve sets.

17To win a set, a player must win at least six games and at least two games more than his opponent.
A game is won by the player who wins at least four points and at least two more than his opponent. Set
tie-break rules vary by tournament.

18Byes automatically advance a player to the next round.
19For details of the world ranking system, see the ATP World Tour Rulebook, available online at

www.atpworldtour.com.
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3 Results

In this section, we present empirical tests of the theory predictions. We Örst examine perfor-

mance data from professional tennis matches, reporting empirical evidence of both spillover

and shadow e§ects. Next, we ask whether shadow and spillover e§ects have been priced into

betting markets. Although this additional analysis is not a direct test of the theory, it does

provide further support for the importance of understanding these phenomena.

3.1 Spillover and Shadow E§ects in Match Outcomes

Proposition 1 states that tougher future competition will decrease the stronger competitorís

probability of success in the current stage. This prediction follows from the observation

that while stronger future competition will cause both players to decrease their e§ort in the

current period, the current e§ort of the better-ranked player decreases more than the current

e§ort of his worse-ranked opponent. Proposition 2 considers the role of spillover in e§ort

choice and predicts that negative spillover favors the weaker player. The direction of the

spillover e§ect is often an empirical question; however, one might expect negative spillover in

events that require intense e§ort exertion over a short period of time. In professional tennis,

players may face a higher cost of e§ort if exertion in previous matches induced lasting fatigue.

The following speciÖcation allows us to study the e§ects of shadow and spillover simul-

taneously:

Strongwinsmrs = =0 + =1Futuremrs + =2StrongPastGamesmrs (11)

+=3WeakPastGamesmrs + =4Currentmrs + DXr + FZs + "mrs

where Strongwinsmrs is a binary indicator of whether the better-ranked player in match m

won in round r of tournament s; Futuremrs represents the expected ability of the opponent

in the next round; Currentmrs represents the degree of heterogeneity in playersí skills in

the current match; StrongPastGamesmrs is the number of games played in all previous

rounds of the tournament by the better-ranked player; WeakPastGamesmrs is the number

of games played in all previous rounds of the tournament by the worse-ranked player; Xr is a

matrix of round Öxed e§ects (e.g. Örst, second, quarterÖnal); Zs is a matrix of tournament-

year Öxed e§ects (e.g. 2008 U.S. Open) that capture average event-speciÖc di§erences (e.g.

temperature, purse and media attention), and "mrs is the error term.

We estimate all equations using a linear probability model (OLS) with a robust variance

estimator that is clustered at the tournament-year level to account for correlation in playersí

performances across matches in a given tournament in a given year. Results are very similar
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for a probit speciÖcation and are available from the authors by request.

Futuremrs is the rank of the stronger of the possible opponents in the next round (i.e. the

stronger player in the parallel match).20 Results are qualitatively similar if we instead use an

average of potential future opponentsí ranks or a transformation suggested by Klaassen and

Magnus (2003).21 Currentmrs is the ratio of the ranks of the worse player and the better

player.

We report results for regression (11) by tournament size, separating Öve-, six- and seven-

round events. This accounts for di§erences in tournament structuresófor example, the

quarterÖnal competitor casts a shadow on the second round in a Öve-round tournament and

the fourth round of a seven-round event; and accumulated spillover in a quarterÖnal match

in a Öve-round event may have a considerably di§erent e§ect than in a seven-round event.

3.1.1 Results: Match Outcomes

Table 2 presents results for the main speciÖcation for Öve-, six- and seven-round events.22

The coe¢cient on the shadow (Futuremrs) is positive and statistically signiÖcant in all three

regressions (p < 0:01). This suggests that the stronger (i.e. better ranked) the future

opponent, the lower the probability that the stronger player wins in the current round. For

a one standard-deviation decrease in future opponentís rank (i.e. increase in ability), we

estimate that the probability that the stronger player wins in the current round decreases

by approximately 3.2 to 5.7 percentage points, depending on the tournament size. Given

that the probability that the stronger player wins is approximately 65%, on average, a

one-standard deviation increase in the shadow is associated with a 3 to 8% decline in the

probability of winning.

Coe¢cient estimates for the two spillover variables take on predicted signs and are sta-

tistically signiÖcant in all cases (p < 0:01). More previous games for the stronger player

decreases the probability he wins in the current match, while more previous games for the

weaker player increases the chance that the stronger player wins. A one standard-deviation

increase in the number of previous games for the stronger player is associated with a decline

of approximately 7 to 13 percentage points in his probability of winning in the current

match; this represents a 10 to 20% decline. A one standard-deviation increase in the number

of previous games for the weaker player is associated with a decline of approximately 4 to 7

percentage points in his probability of winning in the current match; this represents a 6 to

20Due to data limitations, the exact sequence of matches is not broadly available.
21Klaassen and Magnus (2003) calculate a playerís ability as R = K + 1 ! log2 (rank) ; where K is the

total number of rounds in the tournament and rank is the playerís tournament seed.
22Note that we set both playersí previous games to zero for the Örst round because they experience no

spillover, and we exclude Önal round observations because those players face no shadow.
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11% decline in the probability that the weaker player wins.

The history of the stronger player appears to drive his current success more than the

history of his opponentócoe¢cient estimates on the number of games played by the stronger

player are larger in magnitude than the coe¢cient estimates for the weaker player, although

the magnitudes are signiÖcantly di§erent only for the seven-round tournament (p < 0:01).

This Önding is not surprising, in light of the theory. Exertion from past rounds increases

the marginal cost of e§ort for both players; however, a common proportional increase in

marginal cost leads to a larger change in e§ort for the stronger player, pushing players to

provide more similar levels of e§ort. This reduces the probability that the stronger player

wins in the current stage.

As expected, the coe¢cient estimates on the skill disparity measure for the current match

are all positive and statistically signiÖcant (p < 0:01). This suggests that increased player

heterogeneity increases the probability that the stronger player wins. On average, a one-

standard deviation increase in the rank ratioóan increase in the disparity between playersí

abilitiesóimproves the probability that the stronger player wins by approximately 4 per-

centage points.

3.1.2 Alternative SpeciÖcations

Tournament Stakes
Shadow and spillover results are robust to di§erent tournament-level controls. Replacing

the tournament Öxed e§ects in our main speciÖcation with more detailed controls for the

court type, surface type and the natural log of the total tournament purse (in 2010 US

dollars) yields shadow and spillover e§ects similar to those presented in Table 2. Results are

presented in Table 3.

Although not the focus of our current paper, this robustness exercise also allows us to

assess whether the stronger player is more likely to win in higher stakes eventsóa prediction

that follows from the theory, if increases in the total purse do not materially change the

shape of the distribution of prizes. In Table 3, the coe¢cient estimates on the total prize are

positive and statistically signiÖcant, consistent with the prediction that larger prizes increase

the probability that the stronger player wins (p < 0:01).

Long Shadow
Motivated by the simple two-stage model in Section 1, the main empirical speciÖcation in

Table 2 considers the impact of the expected opponent in the next round of the tournament.

It is possible, however, that players respond to a ìlongerî shadowóin principle, players could

look at the full tournament roster and adjust their e§ort in response to the overall presence

of a very highly skilled player in the event. For example, these e§ort adjustments could take

19



the form of changes in physically and mentally costly training activities for an upcoming

tournament. To consider this possibility empirically, we expand the main speciÖcation to

include the ATP rank of the most able opponent in the tournament.23

Results are reported in Table 3. In all cases, the coe¢cient estimates for the rank of the

most able opponent in the tournament are positive and statistically signiÖcant (p < 0:01).

That is, the presence of a strong player in the tournamentónot necessarily even in the next

immediate roundsómay lower the probability that the stronger player wins in the current

match. The coe¢cient estimates associated with the more immediate shadow e§ect are

similar to those in the main speciÖcation and remain statistically signiÖcant (p < 0:01).

Both the short and long shadows cast by skilled competitors a§ect the probability that the

stronger player wins in the current round.

3.2 Shadow and Spillover E§ects in Betting Markets

In this section, we explore whether markets account for the shadow and spillover dynamics

of multi-stage competition. Indeed, using data from professional betting markets, we Önd

compelling evidence that subtle spillover and shadow e§ects have been incorporated into

prices.

The e¢ciency of prediction and betting markets has been studied extensively in the

literature; for examples, see the survey by Vaughan Williams (1999). Prediction markets are

founded on the argument that by aggregating information, competitive markets should result

in prices that reáect all available information (Fama 1970). Therefore, driven by aggregated

information and expectations, prediction market prices may o§er good forecasts of actual

outcomes (Spann and Skeira 2003).

Similarly, betting odds reáect bookmakersí predictions of future outcomes. Betting odds

may change as new information becomes available to the bookmaker and with changes in

the volume of bets that may be driven by individual bettorsí private information. As with

formal prediction markets, we might expect betting odds to provide good forecasts. Spann

and Skeira (2008) compare forecasts from prediction markets and betting odds using data

for German premier soccer league matches. They Önd that prediction markets and betting

odds provide equally accurate forecasts.

To examine whether betting markets incorporate information about shadow and spillover

e§ects, we estimate a regression similar to equation (11) : Now, instead of a binary indicator

of the actual outcome, the dependent variable is the probability that the stronger player

wins the match as implied by betting markets.

23For most players, this is the best-ranked player in the tournament; for matches involving the best-ranked
player, the most able opponent is the second best-ranked competitor in the event.
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Our data include closing odds from professional bookmakers for pre-match betting.24

Woodland and Woodland (1999) note that bookmakers adjust odds based on the volume of

bets, making the odds available as the betting market closes particularly rich in information.

In our analysis, we use the median of the available odds data since the data from no single Örm

covered all matches.25 Overall, there was little variation between odds posted by di§erent

bookmakers for the same match, perhaps because participants in tennis betting markets tend

to be specialists and there is little casual betting (Forrest and McHale 2007).

Table 1 reports the implied probabilities that the stronger player wins across rounds in

Öve-, six- and seven-round tournaments. On average, the stronger player is predicted to win;

the betting market favors the stronger player approximately 63% of the time, with slightly

more favorable predictions in high-stakes, seven-round tournaments. The accuracy of odds

market predictions suggests that information beyond simple rankings are being priced into

the market. Between 2001 and 2010, predictions from the market are correct for 69% of the

25,633 matches for which betting data are available. Given that the stronger player actually

wins in 65% of the matches, one might not be surprised by this accuracy if the market always

predicted that the better-ranked player wins. However, in 19% of the matches, the betting

odds imply that the weaker player is expected to win. Interestingly, these market predictions

are accurate nearly 63% of the time. That is, betting markets do almost as well predicting

an upset as they do predicting a win by the stronger player. This is particularly notable

since a naive assessment of the ATP rankings in these matches might suggest that the odds

are still solidly against the weaker player; in predicted upsets, the mean rank of the weaker

player is 98, roughly 1.7 times higher than his opponentís rank of 59.

3.2.1 Results: Betting Market Predictions

Table 4 reports results for regressions where the dependent variable is the probability that

the stronger player wins as implied by the betting market. Overall, coe¢cient estimates

suggest that the betting predictions incorporate information about playersí past, current,

and expected future competition.

Coe¢cient estimates for the e§ect of a stronger future opponent are positive and statisti-

cally signiÖcant for the three regressions (p < 0:01). For a one standard-deviation decrease in

future opponentís rank (increase in ability), we estimate that the implied probability that the

24Data from 11 betting Örms (Bet365, Bet&Win, Centrebet, Expekt, Ladbrokes, Gamebookers, Inter-
wetten, Pinnacles, Sportingbet, Stan James, and Unibet) are included in our main dataset obtained from
www.tennis-data.co.uk. Several betting Örms also o§er in-play betting, but we focus our analysis on pre-
match bets only.

25We calculate the probability odds from the decimal odds in the original data. Probability odds are 1 /
(decimal odds - 1) :
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stronger player wins in the current round decreases by approximately 1.1 to 3.2 percentage

points; this represents a roughly 3% decline in the implied probability of winning.

Since betting markets close at the start of the match, playersí past exertion information

is readily available to bookmakers. Indeed, coe¢cient estimates for the stronger and weaker

playersí number of previous games are statistically signiÖcant and take on the expected

signs all cases (p < 0:01 in 5 of 6 cases; p < 0:1 in 1 of 6). More previous games played

by the stronger player is associated with a decrease in the expectation that he succeeds,

while more previous games played by the weaker player is associated with an increase in

the expectation that the stronger player wins. The magnitudes of these e§ects also align

with predictions from our modelóstronger players are more sensitive to an additional unit

of spillover, compared to the weaker players.

Greater heterogeneity in playersí abilities may increase the marketís expectation that the

stronger player winsóthe coe¢cient on rank ratio is positive and statistically signiÖcant in

all cases (p < 0:01).

Overall, we Önd strong evidence that prices in tennis betting markets reáect the shadow

and spillover e§ects predicted by our model.

3.2.2 Unobserved Player Heterogeneity Across Rounds

One advantage of the betting market data is that we can identify things that might otherwise

be outside of the econometricianís observation. In particular, we can identify when there is

a predicted upsetóthis prediction is based on observations of the bookmaker and not simply

the ranks of the players. For example, if a player has a minor injury or seems to be in

the midst of a short winning streak, his world rank would not reáect this transient state.

However, bookmakers could integrate this information into their predictions about match

outcomes.

We can identify predicted upsets by comparing the implied probability of the betting

odds to the rank-based outcome prediction (i.e. the prediction that the stronger player

is more likely to win). If the betting odds predict that the worse-ranked player has a

better than 50% chance of winning, then there is some unobserved (to us) positive shock

for him (and/or negative shock for the stronger player). Deviations from the ranked-based

predictions that persist over multiple rounds suggest a state-dependent component of play.

We take a conservative approach to identify this state-dependence.

There are 2085 predicted upsets in the data, representing roughly 7% of all matches. In

67 cases, a single player was predicted to cause multiple upsets in the same event. Fifty-

seven of these instances involved two upsets in the same tournament; ten cases involved

three predicted upsets. This means that more than 96% of predicted upsets did not persist
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beyond a single round. Overall, we Önd little evidence that match outcomes are driven by

unobserved state dependence.

4 Conclusion

In this paper, we present a two-stage, match-pair tournament model that provides two sharp

results: (a) a shadow e§ect of future competitionóthe tougher the expected competitor in

the Önal stage, the lower the probability that the stronger player is selected as the winner

in the Örst match; (b) an e§ort spillover e§ectónegative spillover has a stronger adverse

e§ect on the higher-skilled player, relative to its impact on the weaker playerís probability

of success.

We test our two main theoretical hypotheses using data from professional tennis matches.

We Önd evidence of a substantial shadow e§ect and also identify a negative spillover e§ect

in tennis tournaments. In a second analysis, we use probability odds data from bookmakers

to show that betting markets recognize and price in these spillover and shadow e§ects.

4.1 Implications for the Firm

Our Öndings have implications in terms of the structure of elimination tournaments. Tour-

naments are often designed to identify high-ability candidates in environments where the

contest organizer cannot readily observe innate talent. In a Örm context, our results suggest

ways by which a manager can improve the likelihood of promoting the strongest candidate.

Shrouding the skill of a strong future opponent increases playersí continuation values,

relative to the case where the player faces a stronger rival with certainty. This will elicit

more e§ort, particularly from the stronger player, and improve the probability that the

stronger player will win in the current match. Of course, the opposite is true if the contest

designer shrouds the identity of a weaker future opponent. Overall, a shrouding policy could

elicit more e§ort (and thus improve the likelihood of selecting a strong winner) in a setting

where the future opponent is more likely to be strong, rather than weak. In promotion

contests within the Örm, a manager who suspects his workers will face a particularly high-

skilled competitor should be discouraged from posting explicit information about the skill and

identity of this future threat. In practice, a credible shrouding policy could be implemented

by always delaying the announcement of winners from parallel competitions.

Limiting negative spillover by allowing competitors opportunities to refresh their re-

sources between stages may also increase the probability that the stronger type wins. For

example, in an innovation contest, Örms should be given adequate time between stages to
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raise additional funds and pursue more advanced technology improvements. Similarly, a

Örm may wish to institute a ìwork-life balanceî program that promotes employee wellness,

discourages career-related burnout, and improves the probability that the Örmís labor tour-

nament promotes the strongest workers.

In addition, Örms may want to encourage positive spillover through learning. For exam-

ple, managers could analyze and provide constructive feedback about workersí performances,

allowing them to better accumulate skills over stages of the promotion tournament.
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Figure 1:  Effect of the shadow on effort

Figure 2: Effect of spillover on effort
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Five round 
tournaments

Six round 
tournaments

Seven round 
tournaments

# of tournaments 432 129 54

# of matches played
Total* 12,758 6,767 6,233

1st round 6,749 2,923 2,903
2nd round 3,435 2,043 1,716
3rd round - 1,029 858
4th  round - - 432

Quarterfinal 1,718 516 216
Semifinal 856 256 108

Means 
64.2% 62.9% 68.9%
(47.9) (48.3) (46.3)

62.7% 62.4% 67.3%
(18.6) (18.6) (21.1)

Expected future 48.35 25.88 29.21
opponent rank (41.7) (26.1) (29.9)

Stronger player's 15.85 14.29 25.43
previous games (20.9) (21.3) (37.2)

Weaker player's 16.52 20.75 29.96
previous games (21.4) (24.0) (39.4)

Current rank ratio 5.79 6.71 9.09
(worse / better rank) (15.7) (20.7) (29.3)

Table 1 - Summary statistics

% of matches in which 
stronger player wins 

Betting market prediction  
(%) that stronger player wins

Notes: Values in parentheses are standard deviations. * Matches from the final 
round of all tournaments are excluded from the counts, means and standard 
deviation. "Expected future opponent rank" is the rank of the stronger player in 
the parallel match. "Stronger player's previous games"  is the number of games 
played in all previous rounds of the tournament by the better-ranked player. 
"Weaker player's previous games"  is the number of games played in all previous 
rounds of the tournament by the worse-ranked player. The number of previous 
games for the stronger and weaker players is set to zero for the first round of all 
tournaments. "Current rank ratio" is rank of the worse-ranked player divided by 
the rank of the better-ranked player.



Dependent variable:

Five round 
tournaments

Six round 
tournaments

Seven round 
tournaments

Expected future 0.0762*** 0.0844*** 0.1737***
opponent rank (0.0113) (0.0292) (0.0224)

Stronger player's -0.3342*** -0.3641*** -0.3510***
previous games (0.0800) (0.0752) (0.0615)

Weaker player's 0.1998** 0.2926*** 0.1885***
previous games (0.0774) (0.0790) (0.0491)

Current rank ratio 0.2747*** 0.1818*** 0.1323***
(worse / better rank) (0.0457) (0.0650) (0.0438)

Fixed effects
Round X X X

Tournament-Year X X X

R-squared 0.05 0.05 0.06
# of observations 12,758 6,767 6,233

Table 2 - Actual match outcomes

Stronger player wins in current match 
(0% or 100%)

Notes: Values in parentheses are robust standard errors, clustered by 
tournament-year (e.g. 2008 U.S Open). Matches from the final round of all 
tournaments are excluded. "Expected future opponent rank" is the rank of 
the stronger player in the parallel match. "Stronger player's previous 
games"  is the number of games played in all previous rounds of the 
tournament by the better-ranked player. "Weaker player's previous games"  
is the number of games played in all previous rounds of the tournament by 
the worse-ranked player. The number of previous games for the stronger 
and weaker players is set to zero for the first round of all tournaments. 
"Current rank ratio" is rank of the worse-ranked player divided by the rank 
of the better-ranked player.
* p < 0.10, ** p < 0.05, *** p < 0.01



Dependent variable:

Five round 
tournaments

Six round 
tournaments

Seven round 
tournaments

Five round 
tournaments

Six round 
tournaments

Seven round 
tournaments

Expected future 0.0586*** 0.0727*** 0.1703*** 0.0663*** 0.0780*** 0.1724***
opponent rank (0.0107) (0.0265) (0.0220) (0.0110) (0.0293) (0.0222)

Stronger player's -0.3023*** -0.3776*** -0.2883*** -0.2885*** -0.3407*** -0.3177***
previous games (0.0742) (0.0637) (0.0529) (0.0787) (0.0750) (0.0612)

Weaker player's 0.1551** 0.2474*** 0.1793*** 0.2113*** 0.3149*** 0.1796***
previous games (0.0747) (0.0764) (0.0488) (0.0766) (0.0779) (0.0486)

Current rank ratio 0.2972*** 0.1857*** 0.1331*** 0.1720*** 0.1351** 0.0790** 
(worse / better rank) (0.0438) (0.0678) (0.0433) (0.0347) (0.0582) (0.0319)

ln(Total Purse in 2010 USD)4.5795*** 5.0128*** 11.3372***
(1.3409) (1.2389) (1.7053)

Rank of best player 2.4543*** 3.9033*** 20.2632***
(0.2281) (0.8130) (1.7109)

Fixed effects
Indoor/Outdoor controls X X X

Surface Type controls X X X
Round X X X X X X

Tournament-Year X X X

R-squared 0.02 0.02 0.04 0.07 0.06 0.07
# of observations 12,549 6,767 6,233 12,758 6,767 6,233

Tournament stakes Long shadow

Stronger player wins in current match  (0% or 100%)
Table 3 - Alternative specifications

Notes: Values in parentheses are robust standard errors, clustered by tournament-year (e.g. 2008 U.S Open). Matches from the final round of all 
tournaments are excluded. "Expected future opponent rank" is the rank of the stronger player in the parallel match. "Stronger player's previous 
games"  is the number of games played in all previous rounds of the tournament by the better-ranked player. "Weaker player's previous games"  is 
the number of games played in all previous rounds of the tournament by the worse-ranked player. The number of previous games for the stronger 
and weaker players is set to zero for the first round of all tournaments. "Current rank ratio" is rank of the worse-ranked player divided by the rank 
of the better-ranked player. "Rank of the best player" generally equals the rank of the best  player in the tournament; for matches involving the 
best-ranked player, this variable equals is the rank of the second best competitor in the event.
* p < 0.10, ** p < 0.05, *** p < 0.01



Dependent variable:

Five round 
tournaments

Six round 
tournaments

Seven round 
tournaments

Expected future 0.0314*** 0.0422*** 0.1065***
opponent rank (0.0048) (0.0116) (0.0122)

Stronger player's -0.1341*** -0.2103*** -0.2224***
previous games (0.0256) (0.0308) (0.0280)

Weaker player's 0.0520* 0.1196*** 0.1076***
previous games (0.0276) (0.0305) (0.0244)

Current rank ratio 0.2311*** 0.1568*** 0.1258***
(worse / better rank) (0.0332) (0.0522) (0.0402)

Fixed effects
Round X X X

Tournament-Year X X X

R-squared 0.10 0.10 0.12
# of observations 12,634 6,711 6,148

Table 4 - Betting market data

Implied probability that the stronger player wins
 in current period (%)

Notes: Values in parentheses are robust standard errors, clustered by 
tournament-year (e.g. 2008 U.S Open). Matches from the final round of all 
tournaments are excluded. "Expected future opponent rank" is the rank of 
the stronger player in the parallel match. "Stronger player's previous 
games"  is the number of games played in all previous rounds of the 
tournament by the better-ranked player. "Weaker player's previous games"  
is the number of games played in all previous rounds of the tournament by 
the worse-ranked player. The number of previous games for the stronger 
and weaker players is set to zero for the first round of all tournaments. 
"Current rank ratio" is rank of the worse-ranked player divided by the rank 
of the better-ranked player.
* p < 0.10, ** p < 0.05, *** p < 0.01
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A General Distribution Case
The model in the body of the paper presents results when the noise in playersí output is

distributed uniformly; recall that, in Section 1 of the main paper, we deÖne " = "3 ! "1 and
assume that " is distributed according to G " U

!
!1
2
a; 1

2
a
"
: Similar results can be derived

for any unimodal and symmetric distribution G (#) with mean zero. Again assume that the
Örst-stage matches are resolved sequentially; players 1 and 2 know that player 3 won his

parallel match to advance to the Önal stage.

Player 1ís payo§ function for the Önal stage can be written as

'1;final = G (x1 ! x3)%V !
1

2
c1 (x1)

2 + VL

and his Örst order condition is

@'1;final
@x1

= G0 (x1 ! x3)%V ! c1x1 = 0

Similarly, player 3ís Örst order condition is

G0 (x3 ! x1)%V ! c3x3 = 0

Since G(#) is symmetric about its mean, it follows that G0 (x1 ! x3) = G0 (x3 ! x1). This
implies the following in equilibrium:

x"1
x"3
=
c3
c1

(1)

Although changes in the prize spread or the noise around playersí output a§ect equilib-

rium e§ort, the ratio of playersí e§orts is constant. It follows, for example, that an increase

in the prize spread that leads to higher equilibrium e§ort from both competitors will nec-

essarily increase the absolute spread between playersí e§orts. In turn, this increases the

probability that the stronger player wins in the current stage since his probability of win-

ning is G (x1 ! x3). In contrast, as equilibrium e§ort fallsófor example, from the adverse

e§ects of negative spilloveróthe absolute spread between playersí e§orts decreases. Here,

the probability that the stronger player wins declines with equilibrium e§ort levels.

Since G (#) can be any unimodal symmetric distribution, the impact of changes in the
variance of G (#) depends on the exact distribution and its parameters. The top panel of
Figure A1 provides an illustration of two PDFs of G (#) ; both normal distributions centered

1



at zero with standard deviations of 1 and 2, respectively.

First consider region A. When the players are relatively similar in ability and thus choose

similar equilibrium e§orts, reducing the variance means a ìthickeningî of the density. This

provides greater incentives for both players, as the marginal return to e§ort is greater.

Therefore, when players are similar in ability, the probability that the stronger player wins

increases as the variance decreases.

Now consider region B in which the ability di§erence between players is substantial and

decreased variance means a ìthinningî of the density. This weakens incentives for both

players, as the marginal return to e§ort is reduced. Therefore, in this region, decreased

variance reduces the probability that the stronger player wins.

Shadow E§ect

To study the impact of a change in the ability of the future competitor on Örst-stage

outcomes, we consider the case where player 3 becomes a stronger opponent (i.e., c3 de-

creases). Two inequalities are su¢cient for player 1 to weakly decrease his e§ort relative to

his current opponentís e§ort and thus reduce his probability of winning in the Örst stage:

(a) G0 (x"1 ! x"3) $ G0 (x"2 ! x"3) and (b) G
00
(x"1 ! x"3) $ G

00
(x"2 ! x"3) :

When noise is distributed uniformly, both of these weak inequalities hold. For more

general distributions, we must analyze these inequalities over several cases. Consider a

contest where "; the di§erence in playersí additive noise terms, is drawn from a normal

distribution, illustrated in the bottom panel of Appendix Figure A1. Since the ordering of

playersí e§orts is critical for the analysis, we outline three cases.

Inequality (a): G0 (x"1 ! x"3) $ G0 (x"2 ! x"3)
Ordering 1) When x"3 < x

"
2 < x

"
1 , players 1 and 2 expect to face a future opponent who

is weaker than both of them. For example, in the bottom panel of Figure A1, suppose that

x"1!x"3 lies at E and x"2!x"3 lies between D and E. Here, we violate inequality (a). However,
if player 1 and 2 are su¢ciently similar in ability, the increase in player 1ís e§ort can still be

greater despite a smaller change in his continuation value since c1 < c2:

Ordering 2)When x"2 < x
"
1 < x

"
3, the future opponent is always stronger than both current

players. In this case, it is unambiguous that the stronger player has a greater increase of

e§ort. For example, when x"1 ! x"3 lies between C and D and x"2 ! x"3 is to the left of that,
we Önd that G0 (x1 ! x3) > G0 (x2 ! x3) :
Ordering 3) When x"2 < x"3 < x"1; the future opponent is stronger than player 2, but

weaker than player 1. When x"1 ! x"3 > jx"2 ! x"3j, inequality (a) is violated. However, when
x"1! x"3 & jx"2 ! x"3j ; inequality (a) is satisÖed. In Figure A1, inequality (a) is satisÖed when
x"1 ! x"3 falls between D and E and x"2 ! x"3 falls below C.

2



Inequality (b): G
00
(x"1 ! x"3) $ G

00
(x"2 ! x"3)

To analyze the impact of a change in the future opponent, we focus on the continuation

value in the Örst stage.
1
Recall that

'i;final = eVi = G (xi ! x3)%V !
1

2
ci (xi)

2 + VL

so that

@ eVi
@c3

= !
@x"3
@c3

G0 (x"i ! x
"
3)%V > 0

where, using the implicit function theorem,

@x3
@c3

jFOC;i =
x"3

G00 (x"3 ! x"i )%V ! c3
< 0:

Thus, the magnitude of
@x"3
@c3

depends on G
00
(#); the slope of G0

(#). The denominator of
this expression is the SOC and, therefore, is negative.

Again, we consider the three cases.

Ordering 1) When x"3 < x
"
2 < x

"
1; it is ambiguous whether the inequality holds. When

player 3 is worse than both 1 and 2; x"3 ! x"1 and x"3 ! x"2 both lie on the left-hand-side of
the PDF. Although both slopes are always positive, there are cases where G

00
(x"3 ! x"2) <

G
00
(x"3 ! x"1) and other cases where G

00
(x"3 ! x"2) > G

00
(x"3 ! x"1) :

Ordering 2)When x"2 < x
"
1 < x

"
3, it is likely that the inequality holds. For this case, x

"
3!x"1

and x"3!x"2 both lie on the right-hand side of the PDF. The inequality holds unambiguously
in regions in which the PDF is concave in its argument for both x"3 ! x"1 and x"3 ! x"2: For
the normal distribution in the lower panel of Figure A1, this occurs when both x"3 ! x"1 and
x"3 ! x"2 lie to the right of the peak and left of the ináection point. When the di§erences
both fall to the right of the ináection point, the inequality does not hold. When x"3!x"1 and
x"3 ! x"2 fall on di§erent sides of the ináection point, the result is ambiguous. In short, as
long as x"3 is su¢ciently similar to x

"
1; the inequality holds.

Ordering 3) When x"2 < x"3 < x"1; the inequality is always satisÖed. Since x
"
3 ! x"1 and

x"3!x"2 are located on the left- and right-hand sides of the PDF, respectively, G
00
(x"3 ! x"1) > 0

and G
00
(x"3 ! x"2) < 0.

In summary, the intersection of both inequalities requires that the future opponent player

3 be not too much less skilled than player 1. Assuming that the spreads between playersí

abilities are similar across parallel matches, we will observe most often the case where the

expected future opponent is more similar in ability to the stronger current player (relative to

1
Note that G0 (z1 ! z2) = G0 (z2 ! z1) in the FOCs.

3



the weaker current player). Therefore, the shadow e§ect is expected in the typical scenarios

in which player 3 is either slightly better than both 1 and 2; or worse than player 1 but more

similar in skill to player 1 than player 2. For cases in which player 3 is either much worse

or much better than the current players, the presence of a shadow e§ect is possible but not

assured by the theory. Empirically, the presence of such ambiguous cases should reduce our

ability to identify any shadow e§ect in the data.

Spillover

In Section 1 of the main paper, we describe negative spillover as increasing playersí

e§ective cost types. Assume that two players experience the same level of exertion in the

Örst stage, leading to the same proportional increase in cost types in the Önal stage. The

ratio of their e§orts remains unchanged; however, Önal stage e§orts are lower and thus the

absolute spread in e§orts is smaller, and the stronger player is less likely to win the match.

Therefore, as we found in the uniform case, spillover evens the playing Öeld.

Simulation
In Section 2 of the main paper, we brieáy describe the seeding rules used to structure

professional tournaments. One concern might be that these seeding rules introduce a me-

chanical relationship in the dataówhile seeded and unseeded players are randomly matched

in the Örst round, the identity of potential opponents in the future rounds can be constrained

by the initial draw. To understand the roles of ATPís seeding protocol, we undertook several

simulation exercises and conclude that mechanical relationships are not driving our empirical

results.

Simulation Algorithm

The Örst step of the simulation generates an initial draw for a 32-player tournament using

ATP seeding rules. Recall that a 32-player event includes eight seeded players, 24 unseeded

players and Öve rounds of play (1st, 2nd, quarterÖnal, semiÖnal and Önal rounds). In the Örst

round, eight matches include one seeded player and one unseeded player, and eight matches

include two unseeded players.

For a visual description of the seeding task, imagine the draw as a list of 16 pairs of

players arranged vertically; these are the 16 matches of the Örst round. For this size of

tournament, the top eight players are seeded according to their rank. In the draw, Seed

1 and Seed 2 are positioned in the very top and very bottom positions, respectively. This

positioning ensures that they cannot face each other until the Önal round. Seed 3 and Seed 4

are randomly assigned to the two most-interior positions, ensuring that they too cannot face

each other until the Önal round and cannot face Seed 1 or Seed 2 until the Önal round. Seeds

4



5, 6, 7 and 8 are then randomly assigned to other open matches, positioned in such a way

that no seeded players can face another until the quarterÖnal round. Finally, the remaining

24 players are randomly assigned to the open positions in the draw.

More speciÖcally, we use the following ATP rules to restrict the (otherwise) random

assignment of players. Call the ith seeded player Si.

' In the Örst round, all seeded players face an unseeded player.

' Seeded players cannot face each other until the quarterÖnal round.

' S1 and S2 cannot face each other until the Önal round.

' S3 and S4 cannot face each other until the Önal round.

' S5, S6, S7 and S8 cannot face each other until the semiÖnal round.

' Neither S1 nor S2 can face S3 or S4 before the semiÖnal round.

' None of S1, S2, S3 and S4 can face S5, S6, S7, or S8 until the quarterÖnal.

' After the top eight players are assigned to the draw, all open positions are randomly
Ölled by unseeded players.

' Any seeded player who wins in the Örst round must face an unseeded player in the
second round.

We generate two versions of the 32-player draw and, for each version, simulate 1,000

tournaments to create the simulation dataset.

Simulation Version 1

In the Örst simulation, we use playersí tournament rank (i.e. values 1 to 32) as a measure

of player skill and make match outcomes probabilistic.

We use the following rule to determine the winner of each match. The stronger player

wins if:

61:7 + 0:379

$
Rankweak
Rankstrong

%
> x (2)

where Rankstrong and Rankweak are the ranks of the stronger and weaker players in the

match, respectively, and x is a random draw from a uniform distribution with support 0 to

100. Otherwise, the weaker player wins. The parameters used in expression (2) are obtained

from the main ATP dataset for the Örst round of Öve-round events. We estimate
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Strongwinsmt = 90 + 91

$
Rankweak
Rankstrong

%

m

+ "

where Strongwinsmt is a binary indicator of whether the better-ranked player in match

m won in a stated round of a tournament and Rankstrong and Rankweak are the ranks of

the stronger and weaker players in the match, respectively. This estimation yields two

coe¢cients: 90 = 61:7 and 91 = 0:379: These coe¢cients are used in expression (2) to

construct the probabilities associated with playersí success in the simulated matches.

With our simulated draws and results, we can estimate the following regression using a

linear probability model:

strongwinsm = ;0 + ;1Futurem + "

where strongwinsm is a binary indicator of whether the better-ranked player in match m

won in a stated round of a tournament and Futurem represents the ability of the stronger

opponent in the next round, as determined by the initial simulated draw. Note that it is

not necessary to include tournament Öxed e§ects because the tournaments are identical in

all respects except draws and outcomes.

Concerned with a potential mechanical shadow e§ect caused by tournament seeding,

we focus our attention on the magnitude and statistical signiÖcance of ;1: We adapt the

simulation procedure to generate second and quarterÖnal data, advancing players according

to the simulated outcomes.

Simulation Version 2

The second simulation is identical to the Örst with one exception: While the Örst version

used playersí ranks within the tournament, the second version uses simulated world ranks

as the measure of playersí skills.

We use the following algorithm to simulate playersí world ranks: First, for each tour-

nament, we randomly assign unique world ranks between 1 and 50 for eight players and

between 50 and 170 for twenty-four players. We then use playersí world ranks to identify

the top eight players as tournament seeds. Match outcomes in this version are determined

by the following rule:

61:7 + 0:379

$
WorldRankweak
WorldRankstrong

%
> x (3)

where WorldRankstrong and WorldRankweak are the world ranks of the stronger and weaker

players in the match, respectively, and x is a random draw from a uniform distribution with

support 0 to 100. Otherwise, the weaker player wins. The remainder of the simulation
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proceeds as in version 1.

Simulation Results

With the simulation data, we can test whether there is a mechanical relationship between

the expected ability of the opponent in the next round and the stronger playerís success in

the current round. SpeciÖcally, we regress an indicator of whether the stronger player wins

on the skill measure of the stronger player in the parallel match, as determined by the initial

simulated draw.

Results, presented in Appendix Table A1, show that when we include all Örst rounds

matches, there is a small, positive and statistically signiÖcant relationship between the in-

dicator that the stronger player wins and the skill of the expected future opponent. This

suggests that we could be overestimating the magnitude of the shadow e§ect in the Örst

round. However, this relationship does not appear in later rounds, relieving concerns of a

pervasive mechanical e§ect. In fact, some estimates of this relationship are negative in later

rounds, although not statistically di§erent from zero.

One solution that we propose is to drop matches that include the top two seeds of the

tournament, at least in the Örst roundórecall that the top two seeds are the only players

who are not randomly assigned to a position in the draw. The results from regressions using

simulation data are reassuring. Without the top two seeds, we now do not observe any

statistically signiÖcant relationship between the indicator that the stronger player wins and

the skill of the expected future opponent in any round. That is, we do not observe any

mechanical relationship that could be driving our empirical results.

ATP Data Results Excluding the Top Two Seeds

In light of the simulation results, we estimated the main speciÖcation using the ATP

dataset and excluding matches with the top two seeded players; results are presented in

Appendix Table A2 for the match outcomes and Appendix Table A3 for the implied proba-

bilities in the betting market. Coe¢cient estimates in these speciÖcations are very similar in

magnitude to those in the main speciÖcation and are identical to the main results in terms

the pattern of statistical signiÖcance. That is, the shadow e§ect survives dropping the top

seeded players from the analysis and the observed e§ect does not appear to be driven by the

ATPís seeding protocol.
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Round Ability measure Shadow effect All players
Excluding top 

two seeds

Coefficient estimate 0.117 0.041
Standard error 0.052 0.057
p-value 0.024 0.473
# of observations 16,000 14,000

Coefficient estimate 0.077 0.024
Standard error 0.017 0.039
p-value 0.000 0.537
# of observations 16,000 14,000

Coefficient estimate 0.002 0.039
Standard error 0.084 0.090
p-value 0.977 0.665
# of observations 8,000 6,668

Coefficient estimate -0.007 -0.009
Standard error 0.018 0.020
p-value 0.711 0.633
# of observations 8,000 6,654

Coefficient estimate 0.070 0.062
Standard error 0.124 0.137
p-value 0.575 0.648
# of observations 4,000 3,080

Coefficient estimate -0.018 -0.017
Standard error 0.027 0.030
p-value 0.492 0.579
# of observations 4,000 3,045

Table A1: Simulation results

Notes: Estimates are obtained from regressions of an indicator of whether the stronger player wins on 
the skill measure of the stronger player in the parallel match, as determined by an initial simulated 
draw. Each simulation run includes 1,000 32-player tournaments.  

Simulated world rank

Rank in tournament

Simulated world rankThird

Third

Second

First Rank in tournament

First Simulated world rank

Second Rank in tournament



Dependent variable:

Five round 
tournaments

Six round 
tournaments

Seven round 
tournaments

Expected future 0.0631*** 0.0673** 0.1659***
opponent rank (0.0125) (0.0297) (0.0238)

Stronger player's -0.3863*** -0.3252*** -0.4355***
previous games (0.0934) (0.0829) (0.0728)

Weaker player's 0.2054** 0.2678*** 0.1886***
previous games (0.0947) (0.0928) (0.0538)

Current rank ratio 0.2425*** 0.1653*** 0.1281***
(worse / better rank) (0.0419) (0.0630) (0.0423)

Fixed effects
Round X X X

Tournament-Year X X X

R-squared 0.06 0.06 0.07
# of observations 10,339 5,781 5,706

Table A2 - Actual match outcomes excluding top two seeds

Stronger player wins in current match 
(0% or 100%)

Notes: Values in parentheses are robust standard errors, clustered by 
tournament-year (e.g. 2008 U.S Open). Matches from the final round of all 
tournaments are excluded. "Expected future opponent rank" is the rank of 
the stronger player in the parallel match. "Stronger player's previous 
games"  is the number of games played in all previous rounds of the 
tournament by the better-ranked player. "Weaker player's previous games"  
is the number of games played in all previous rounds of the tournament by 
the worse-ranked player. The number of previous games for the stronger 
and weaker players is set to zero for the first round of all tournaments. 
"Current rank ratio" is rank of the worse-ranked player divided by the rank 
of the better-ranked player.
* p < 0.10, ** p < 0.05, *** p < 0.01



Dependent variable:

Five round 
tournaments

Six round 
tournaments

Seven round 
tournaments

Expected future 0.0266*** 0.0331*** 0.1040***
opponent rank (0.0054) (0.0120) (0.0122)

Stronger player's -0.1904*** -0.2219*** -0.2535***
previous games (0.0352) (0.0357) (0.0332)

Weaker player's 0.0809** 0.1101*** 0.1202***
previous games (0.0386) (0.0372) (0.0270)

Current rank ratio 0.2077*** 0.1432*** 0.1222***
(worse / better rank) (0.0303) (0.0492) (0.0392)

Fixed effects
Round X X X

Tournament-Year X X X

R-squared 0.10 0.11 0.12
# of observations 9,898 5,621 5,571

Table A3 - Betting market data excluding top two seeds

Implied probability that the stronger player wins
 in current period (%)

Notes: Values in parentheses are robust standard errors, clustered by 
tournament-year (e.g. 2008 U.S Open). Matches from the final round of all 
tournaments are excluded. "Expected future opponent rank" is the rank of 
the stronger player in the parallel match. "Stronger player's previous 
games"  is the number of games played in all previous rounds of the 
tournament by the better-ranked player. "Weaker player's previous games"  
is the number of games played in all previous rounds of the tournament by 
the worse-ranked player. The number of previous games for the stronger 
and weaker players is set to zero for the first round of all tournaments. 
"Current rank ratio" is rank of the worse-ranked player divided by the rank 
of the better-ranked player.
* p < 0.10, ** p < 0.05, *** p < 0.01


