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Competition for employment and education, innovation funding, and design opportuni-

ties can all be framed as multi-stage elimination tournaments in which players are knocked

out over successive stages of the event. These contests are often designed to increase player

e§ortóindeed, much of the theoretical and empirical literature focuses on contests as incen-

tive mechanisms. Yet, tournaments may also serve as selection mechanisms, identifying the

ìbestî candidates as overall winners. In labor tournaments where employeesí latent talents

are not directly observable, Örms may organize contests to reveal their workersí relative abil-

ities.1 For example, in searching for a CEO, a Örm may use a tournament to identify and

promote the highest-ability candidate, not simply the one who puts forth the most e§ort.

In this paper, we study how the strategies of heterogeneous players in match-pair elimi-

nation tournaments are shaped by past, current, and future competition. More speciÖcally,

we examine how these intertemporal e§ects ináuence a tournamentís ability to reveal the

strongest player as the winner. Negative spillover from past stages may make current ef-

fort more costly and depress performance, while the shadow of tough future competition

decreases a playerís expected future payo§s and also may lead to lower current e§ort. The

di§erential impact of past and future competition across players in a given match changes the

e§ectiveness of tournaments as a selection mechanismóboth negative spillover and tough

future competition increase the probability that a weak candidate wins overall. Our results

have practical implications; whether the contestís objective is to encourage e§ort, select a

strong winner, or both, we Önd evidence suggesting that Örms, educators, and other con-

test designers may need to consider the role of past and future competition in structuring

incentives.

In personnel tournaments, workers risk elimination as they advance through corporate

management levels. In most contexts, retention of the highest quality worker is most desir-

able. For example, GEís former CEO, Jack Welch, designed an explicit elimination tourna-

ment to select his successor (Konrad 2009).2

Competition between Örms may also be knockout events. In 2010, GE announced a three-

stage elimination tournament, the Ecomagination Challenge, to award $200 million to the

Örm that developed the best smart grid technologies. More commonly, architectural Örms

may compete for large contracts and investment banks may compete for new clients over

several stages of proposals and commitments. Political races also may involve elimination

stagesóa candidate must win his partyís primary election to compete in the general election

1In contrast, Lazear (1986) discusses how performance pay may attract higher quality workers into the
Örm when the Örm cannot readily observe innate worker ability.

2Lemieux, MacLeod and Parent (2009) discuss the growing importance of performance pay.
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to hold o¢ce. Many sporting events are also structured as elimination tournaments.

In each of these examples, e§ort is clearly important; Örms want to hire designers, bankers

and innovators who will invest heavily in the activity at hand, voters want their represen-

tatives to work hard on their behalf, and spectators enjoy high action games. However,

selection may also be a prime objective of the contest organizeróa client may desire the

most creative design Örm, voters may value the most skilled politician, and a board may

want the smartest executive to lead the company.

We explore elimination tournaments as selection mechanisms with a two-stage match-

pair model. Our analysis yields two main results: First, we identify a shadow e§ect of

future competitionóthe weaker the expected competitor in the next stage, the greater the

probability that the stronger player wins in the current match. Second, we Önd an e§ort

spillover e§ectówhile negative spillover has adverse e§ects for all players, stronger players

are even more disadvantaged by a given level of spillover, relative to a weaker player.

One particular strength of our model is that its predictions are framed in terms of

outcomesóe§ort alone is notoriously di¢cult to measure in the Öeld. We test our theoretical

predictions using the outcomes of high-stakes matches; we exploit the random assignment

of players in professional tennis tournament draws. Examining the e§ect of changes in the

skill of the expected competitor in the next round, we Önd strong evidence of a shadow

e§ect. Spillover in tennis tournaments appears to have a particularly negative impact on the

stronger player. We also examine tennis betting markets and Önd that bookmakersí prices

reáect both spillover from past competition and the shadow of future opponents.

In early work on knock-out tournaments, Rosen (1986) models a multi-stage contest where

players have Tullock-style (1980) contest success functions. Rosenís main result explains the

skewed compensation distributions found in many Örmsóextra rewards are required in late

stages of these elimination tournaments to maintain equal levels of e§ort across stages.

Harbaugh and Klumpp (2005) study a special case of Rosenís model with a single prize and

where the total supply of e§ort is Öxed across two periods and equal for all players. Because

e§ort is costless in their model, players exhaust all of their remaining e§ort in the Önal

period. As a result, the weaker player always exerts more e§ort than the stronger player in

the Örst stageóthe stronger player conserves his e§ort in anticipation of sti§ competition in

a Önal stage match against an equally skilled opponent. In this context, ìspilloverî between

stages disadvantages the low-skill players in the Önal round.

Searls (1963) compares the statistical properties of single- and double-elimination contests

and predicts that single-elimination events are most likely to select the highest ability player

as the winner. Groh et al. (2008) describe the optimal seeding of heterogeneous players

according to the contest designerís objective. Modeling contests as all-pay auctions, they
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Önd that common seeding rules that match weakest to strongest players in the semiÖnals

maximize the probability that the strongest player wins overall. Hvide and Kristiansen (2003)

study a contest in which competitorsí only choice is over their degree of risk taking. They

Önd that the probability that the stronger player wins can be improved by restricting the

number and quality of competitors. Ryvkin and Ortmann (2008) and Ryvkin (2010) compare

the probability of selection e¢ciency of three tournament formats when the designer receives

only a noisy signal of playersí abilities and contestants do not choose e§ort. In contrast, we

study playersí strategic e§ort decisions in response to past and future competition.

Ryvkin (2009) considers the elasticities of a playerís equilibrium e§ort with respect to

his own ability and the abilities of his opponents across several tournament formats. In

elimination tournaments with weakly heterogeneous players, he Önds that the abilities of

opponents in the more distant future have a lower impact on a playerís equilibrium e§ort

than does the ability of the current opponent. Ryvkin also shows that, when playersí relative

abilities are uniformly distributed, a ìbalancedî seeding can eliminate the dependence of a

playerís equilibrium e§ort on his opponentsí abilities.

Our e§ort spillover prediction relates to previous work on fatigue in dynamic competition.

Ryvkin (2011) presents a winner-take-all model where homogeneous players face a binary

e§ort decision and e§ort has no explicit costóthese features are in stark contrast to our model

where players are heterogeneous and e§ort is a continuous and costly choice variable in a

multi-prize tournament. In his work, fatigue accumulates across stages and players have no

opportunity to refresh their e§ort resources. Among other results, he Önds that equilibrium

e§ort is decreasing in fatigue. Schmitt et al. (2004) study the opposite phenomenon in rent-

seeking contestsópositive spillover. They Önd both theoretical and experimental evidence

that positive spillover leads to more Örst-period expenditure. Our contribution complements

and extend these theoretical and experimental results to the Öeld. Moreover, we consider

simultaneously the impact of spillover from the past and the shadow of expected future

competition.

Sunde (2009) tests the incentive e§ect of player heterogeneity using data from selected

professional tennis tournaments. He Önds that heterogeneity impacts the e§ort choice of the

stronger player more than it changes the e§ort of the weaker player in a match. The e§ects

are not symmetric: for an equal change in rank disparity, the increase in the number of games

won by the stronger player is smaller than the decrease in the number of games lost by the

weaker player. In contrast to Sundeís work, we study the role of skill heterogeneity across

multiple stages of an eventóthat is, we examine the incentive impact of ability di§erences

with past, current, and (expected) future opponents. The e§ects of player heterogeneity

on e§ort in one-shot tournaments has been studied both theoretically (e.g. Baik, 1994;
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Moldovanu and Sela, 2001; Szymanski and Valletti, 2005; Minor, 2011) and empirically (e.g.

Knoeber and Thurman, 1994; Brown, 2011).

The paper is organized as follows: Section 1 presents a two-stage model of an elimination

tournament. We derive several propositions and outline the testable hypotheses. In Section

2, we describe our data and empirical strategy for testing these predictions. Section 3

describes the results from past tournaments and discusses the spillover and shadow e§ects

in the context of betting markets. We conclude in Section 4 and discuss the implications of

our Öndings for contest designers.

1 Theory

We study a new theoretical version of knockout tournaments that we describe as ìsequentially-

resolved elimination tournaments.î Matches in each stage are staggered across time; within

a stage, players in later matches learn the identity of their potential future opponent from

outcomes of earlier matches. Sequential play is often found in practice; for example, in

Örm-level tournaments, simultaneous promotions to division vice-president may be rare. In-

stead, the identity of the new appointee is known to other workers still competing for a

parallel executive spotóthe hopeful workers now know their future opponent for advance-

ment beyond vice-president. To our knowledge, we are the Örst to consider such a format

theoretically. This structure is in contrast with other models of elimination tournaments

where all matches in a given stage occur simultaneously rather than sequentially (for exam-

ple, see Stracke (2011)). We use an additive noise model, as in Lazear and Rosenís (1981)

foundational work on one-shot labor tournaments, to focus on the dynamics of a multi-stage

elimination tournament.3

In the following section, we explore the role of past and future competition on tournament

outcomes. We present a model that is simple enough to clearly inform our empirical tests, yet

rich enough to capture common features of high-stakes, multi-stage tournaments. Namely, we

model an elimination tournament with heterogeneously skilled players competing in sustained

competitionóone could imagine professionals of varying abilities competing over months or

years for a prized position within the Örm.4 In the main text, we consider these spillover

and shadow e§ects separately for expositional ease; however, in the appendix, we present an

analysis of the e§ects operating simultaneously. Combining the e§ects does not change the

general predictions of the model.

3Additive noise models have been used in much of the labor tournaments literature since Lazear and
Rosen (1981); for examples, see Konrad (2009).

4In a sports context, our model better reáects the dynamics of an endurance event (e.g. tennis) than
competition requiring a short burst of e§ort (e.g. power lifting).
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Our theory results describe the probability that the stronger player wins in di§erent

stages of the elimination event. These predictions speak directly to our broader research

question of ìselecting the best.î That is, our comparative statics results provide predictions

about when the strongest player is most likely to advance to future rounds of competition

and, ultimately, win the tournament.

1.1 Model Set-Up

Consider a two-stage elimination tournament with four risk-neutral players, where the players

who win in the Örst stage advance to the Önal stage. The overall tournament winner receives

a prize of VW ; while the second-place competitor receives a prize VL. Let VW > VL > 0

and deÖne the prize spread V = VW  VL: For simplicity, we assume no discounting across
stages. Let player iís total cost be a quadratic function5 of his e§ort xi and his cost type ci:6

For simplicity, we denote playerís common cost function as 1
2
x2 and a player iís total cost

as ci 12x
2
i . We assume that cost types, ci, vary across all players and are commonly known

amongst competitors. We will describe players with relatively low costs as being ìstrongerî

than players with relatively high costs.

For ease of exposition, we model heterogeneity through playersí cost types. However,

several alternative models produce identical results: for example, if we instead capture het-

erogeneity across valuations by deÖning a playerís prize value as V
ci
or by allowing the impact

of an additional unit of e§ort on a playerís probability of winning to vary across competitors.

It can also be shown that capturing heterogeneity by varying cost function convexity leads

to similar results.

Recall that matches in the Örst-stage are sequential. Assume that players 3 and 4 compete

Örst. Then, player 1 faces player 2 knowing the outcome of the previous match. Without

loss of generality, we assume that player 3 won his match against player 4.

5Our results hold for more general convex cost functions,  (xi), provided that both playersí e§ort choices

are su¢ciently sensitive to a change in marginal beneÖt. In particular, we require that 00(x1)

00(x2)
< c2

c1
: This

condition on the slope of the marginal cost curve insures that the stronger player is su¢ciently sensitive to a
change in marginal beneÖt induced by a weaker future opponent; this further improves the stronger playerís
probability of winning in the Örst stage. For example, it can be shown that this inequality is satisÖed with
all cost functions of the form cxp where p > 1: A su¢cient but slack condition for the inequality is 000  0:
Note that cost functions of the form cxp with p > 2 fail to satisfy 000  0; but still meet the necessary
condition of 

00(x1)

00(x2)
< c2

c1
. Ederer (2010) discusses models where the results instead depend critically on the

sign of 000:
6One could deÖne a mapping E : RN+ ! R1+ that collapses levels of N e§ort-generating activities to the

real line. The overall cost of e§ort is then strictly increasing in the resultant scalar xi.
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1.1.1 Final Stage of the Tournament

Assume that player 1 won his Örst-stage match. To Önd the equilibrium of the multi-stage

game, we begin by analyzing the strategies of player 1 and his opponent player 3 in the Önal

stage. DeÖne player 1ís expected payo§ function as

1;final = P1 (x1; x3)V 
1

2
c1x

2
1 + VL (1)

where his probability of winning takes the following form:

P1 (x1; x3) =

8
><

>:

1 if x1 + "1 > x3 + "3
1
2
if x1 + "1 = x3 + "3
0 otherwise

(2)

where xi+"i is player iís level of output. Output is a function of both e§ort xi and a random

noise term "i: In deÖnition (2) ; the probability that player 1 wins is increasing in his own

e§ort and decreasing in the e§ort of his opponent.

DeÖne " = "3  "1 and let " be distributed according to some distribution G such that

probability (2) can be written as

P1 (x1; x3) = P1 (x1  x3 > ") = G (x1  x3) (3)

Now, player 1ís payo§ function (1) can be written as

1;final = G (x1  x3)V 
1

2
c1x

2
1 + VL (4)

and his Örst order condition is

@1;final
@x1

= G0 (x1  x3)V  c1x1 = 0 (5)

Following Konrad (2009) and Ederer (2010), we assume that G is distributed uniformly

with the following support7

G  U


1

2
a;
1

2
a



7To ensure that probabilities are well-deÖned, we require two conditions on the primitives:

0 <
V
ac1

V
ac3

+ a
2

a < 1 and 0 <
~V1
ac1


~V2
ac2

+ a
2

a < 1

These conditions ensure that G() 2 (0; 1) for both stages in equilibrium. Depending on the model parame-
ters, one condition will determine the upper bound of G() and the other condition will determine the lower
bound.
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and, therefore,

G0 =
1

a

The assumption that G is uniformly distributed removes the strategic interdependence

of playersí current period e§ort choices (Konrad, 2009). This allows us to isolate the conse-

quences of past e§ort choices and potential future competition on current-stage e§ort. In a

Örm context, this would assume that a workerís optimal e§ort choice is independent of the

identity of his current opponent; of course, in earlier stages, his optimal e§ort depends on his

expectations about future opponentsí identities. In the Appendix, we relax this assumption

of same-stage independence and allow playersí optimal e§ort choices to depend on both their

current and future opponents. We show that the general predictions of the model continue

to hold with more general distributions that allow for same-stage interdependence, including

the normal distribution.

Rewriting the Örst order condition (5) yields:

@1;final
@x1

=
V

a
 c1x1 = 0

which we can rearrange as the following expression:

xi =
V

aci
for i = 1; 3 (6)

Assume for the remainder of the analysis that player 1 is the stronger player (c1 < c3) :

Then, expression (6) implies that player 1 exerts more e§ort in the Önal stage (x1 > x

3) :This

inequality implies that the stronger player is more likely to win in the Önal stage, relatively

to his weaker opponentóthat is, the better player is more likely to be ìselectedî as the

overall tournament winner.

In the Önal round, since both players are guaranteed at least the second prize VL; in-

creasing the Örst prize amounts to increasing the stakes of the contest. As expected, higher

stakes leads to more e§ort from both players, though the stronger player increases his e§ort

more than the weaker player. Also, increasing the noise around e§ort (i.e., increasing a; the

width of the support of G) reduces e§ort, particularly for the stronger player. Finally, as

expected, e§ort choices are increasing in ability.
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1.1.2 First Stage of the Tournament

DeÖne z1 and z2 as the e§orts of players 1 and 2 in the Örst stage. Player 1ís expected payo§

function in the Örst stage is

1;first = P1 (z1; z2) ~V1 
1

2
c1z

2
1 (7)

where ~V1 is his continuation value (i.e., his payo§ in the Önal stage):

~V1 (x1; x3)  1;final = G (x1  x3)V 
1

2
c1x

2
1 + VL

Equation (7) yields the Örst order condition

@1;first
@z1

=
~V1
a
 c1z1 = 0

which we can rearrange, for either player, as the following expression:

zi =
~Vi
aci

for i = 1; 2 (8)

As in the Önal stage, equilibrium e§ort is increasing in ability and the prize (i.e. the

continuation value in the Örst stage). Increasing the noise around e§ort has an adverse e§ect

on Örst stage e§ort.

Recall that, at the start of their match, players 1 and 2 already know the outcome of the

other Örst-stage match between players 3 and 4. Of course, this means that players 3 and

4 did not know exactly the identity of their future opponent. Instead, we assume that they

formed an expectation of their continuation value as follows:

E
h
~Vi

i
= p1ji ~Vi (x


i ; x


1) +


1 p1ji


~Vi (x


i ; x


2) for i = 3; 4

where p1ji is the equilibrium probability that player 1 wins knowing that he will face player

i in the Önal stage.8 Note that player i cannot ináuence this probability p1ji because it is

a function of the realized outcome of the completed match between players 3 and 4. This

simpliÖes our analysis because player iís Örst-stage e§ort zi does not change this probability

8When player 1 is stronger than player 2, ~Vi (xi ; x

1) < E

h
~Vi

i
< ~Vi (x


i ; x


2) for i = 3; 4:
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p1ji: Thus, for players 3 and 4, we can restate the expression of their e§ort (8) as

zi =
E
h
~Vi

i

aci
for i = 3; 4

and the analysis described above for players 1 and 2 applies similarly.

1.2 Shadow of Future Competition

We can use the model to understand the impact of known or expected future competition on

the likelihood that stronger players advance to future stages of the tournamentóof course,

this ináuences the likelihood that a high-skill player is selected as the overall winner.

Consider a decrease in the skill of the future opponent, player 3 (i.e. c3 increases). This

change has the e§ect of increasing the continuation value for both players 1 and 2 in the

Örst stage. Let c1 < c2: Since player 1 has a lower cost of e§ort than player 2, player 1

will increase his Örst-stage e§ort more than player 2 because his return to a change in the

continuation value is greater.

From the Önal-stage Örst order condition, equation (6) ; it follows that x3 decreases as c3
increases. To understand the e§ect of decreasing x3 on the Önal stage payo§ 1;final;we take

the derivative of equation (4)

@1;final
@x3

= G0 (x1  x

3)V = 

V

a
< 0

That is, as the Önal stage opponentís e§ort decreases, the player 1ís Önal stage payo§ in-

creases. A change in the Önal round opponentís skill will have an equal e§ect on player 2:
@1;final
@x3

=
@2;final
@x3

= V
a
:Recall that i;final is the continuation value ~Vi in the Örst stage.

Since the change in the continuation value is the same for both players, the stronger

player will increase his e§ort more than player 2 in the Örst stage:

@z1
@ ~V1

=
1

ac1
>

1

ac2
=
@z2
@ ~V2

This gives us the Örst proposition:

Proposition 1 As the skill of the future competitor in the Önal stage declines (increases),
the stronger player becomes even more (less) likely to win in the Örst stage and thus more

(less) likely to be selected as the overall tournament winner.
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1.3 E§ort Spillover

We can also examine e§ort spillover between stages of the tournament. Spillover can take

either a positive or negative form. Positive spillover might reáect learning (by doing), skill

building or momentum within a Örm. For example, an innovation team whose proposal

advances to a second stage of funding might beneÖt from its Örst-stage experience, both

technical and relational. With positive spillover, second-stage e§ort is less costly than Örst

stage e§ort. In contrast, negative spillover might reáect fatigue or reduced resources in

later stages. For example, architects competing in design competitions might exhaust their

creative resources in early stages and have only limited energy for second-stage proposals.

In this case, second-stage e§ort is more costly than Örst-stage e§ort.9

Consider a scenario where e§ort expended by a player in the Örst stage ináuences his

cost of e§ort in the Önal stage. We can rewrite player 1ís Önal-stage payo§ as

1;final = G (x1  x3)V 
1

2
kc1x

2
1 + VL

where k reáects the change in total cost induced by Örst stage e§ort.

First, consider the case where a playerís marginal cost of e§ort in the Önal stage is

una§ected by previous stage e§ort: k = 1: If previous e§ort appears only as a Öxed cost in

the Önal stage, we would expect no change in Önal-stage e§ort. For example, a design team

that submits an innovative proposal in the Örst stage might require specialized equipment

to complete the building phase in the second stage.

To study a negative spillover e§ect, we let a playerís marginal cost of e§ort in the Önal

stage increase: k > 1. Consider again expression (6) :We see that Önal stage e§ort is strictly

decreasing in the degree of negative spillover. With positive spillover, a playerís marginal

cost of e§ort in the Önal stage decreases: k < 1. Final stage e§ort is increasing in positive

spillover.

Now, equilibrium e§ort is

x1 =
V
kac1

Straightforward calculations show that negative (positive) spillover reduces (increases) a

playerís Önal-stage payo§. Consequently, Örst-stage e§ort decreases (increases) with negative

(positive) spillover.

Thus, negative spillover implies a lower probability of success in the Önal stage, holding

the opponentís e§ort and skill constant. Of course, the opposite is true for positive spillover.

9Di§erent notions of spillover have been explored in the literature in settings where players with exoge-
nous, Öxed resources make e§ort allocation decisions over multiple periods of play. For recent examples, see
Sela and Erez (2011) and Harbaugh and Klumpp (2005).
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Since
@x1
@k

= 
V

k2ac1
< 

V

k2ac3
=
@x3
@k

when both players in a match su§er similar negative spillover, the stronger player is more

adversely a§ected. As a result, he is relatively less likely to win. In fact, in the limit,

G (z1  z2)! 0:5 and G (x1  x3)! 0:5 as the degree of negative spillover k !1:
We present this Önding in the second proposition:

Proposition 2 In any stage, a common proportional increase in e§ective cost type decreases
the probability that the stronger player is selected as the winner.

This proposition suggests that, with negative spillover, weaker players might support

costlier competitive conditionsófor example, a weaker player might advocate for more strin-

gent common standards or more di¢cult tasks. The direction and impact of spillover depends

on the context and, thus, is an empirical question.

Our result that negative spillover levels the playing Öeld in both stages is in contrast to

Harbaugh and Klumppís (2005) Önding that intertemporal tradeo§s level the playing Öeld

for the Örst stage but do the opposite in the Önal stage. Their result is sensitive to the

assumptions that e§ort is costless and that playersí total e§orts are equally constrained.

1.4 Model Predictions

The theory model outlined above provides the following main predictions:10

1. Shadow of Future Competitors: The worse-ranked the expected competitor in the
next stage, the greater the probability that the stronger player is selected as the winner

in the current stage.

2. E§ort Spillover between Stages: In equilibrium, increased negative (positive)
spillover decreases (increases) the probability that the stronger player is selected as

the winner in the Önal stage.

One strength of this particular model is that, while these hypotheses emerge from dif-

ferences in the abilities and e§orts of players, the testable implications can be framed in

10Other predictions follow immediately from our analysis: (a) the noisier the e§ort-to-output relationship,
the lower the probability that the stronger player wins in either stage; (b) a steeper prize structure improves
the stronger playerís probability of success in all stages; and (c) Öxing the competitorsí abilities and given
a su¢ciently large (small) second-place prize, the probability of winning is greater (smaller) for the weaker
player in the Önal stage, relative to the Örst stage. Proofs for these additional results are available from the
authors upon request.
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terms of outcomes. This means that although e§ort is notoriously di¢cult to assess in Öeld

data, we can test the main predictions of the model by observing the identity of tournament

winners. In particular, we can identify readily whether changes in the strength of future

competition or the degree of negative spillover impacts whether the most able competitor

is selected as the tournament winner. In the following sections, we describe our data and

empirical analysis.

2 Data

Professional tennis o§ers an ideal environment in which to test the empirical implications

of the theory.11 Tennis events are single-elimination tournamentsóonly winning players

advance to successive stages until two players meet in the Önal stage to determine the overall

winner. Prizes increase across stages with the largest prize going to the overall winner.

The distribution of prizes is known in advance of all tournaments. The Önancial stakes are

substantial and vary across eventsófor example, the total purse for the 2009 US Open singles

competition was $16 million with a $1.7 million prize for Örst place, while the total purse

for the 2009 SAP Open was $531,000 and the winner received $90,925.

Our empirical analysis exploits the random nature of the initial tournament draw. By

ATP rules, the top 20 to 25% of players in an event (the ìseedsî) are distributed across the

draw: the top two seeds are placed on opposite ends of the draw; the next two seeds are

randomly assigned to interior slots on the draw; the next four seeds are randomly assigned to

other slots; etc. After the seeded players have been assigned, the remaining players are then

randomly placed in matches prior to the start of the event.12 This variation provides the

identiÖcation for our empirical approachówe can observe the same skilled player compete

against a variety of randomly-assigned opponents. For example, in our data, we can observe

the fourth best player in the world play against competitors ranked 50th, 100th, and 250th in

the Örst round of the same tournament over di§erent years.

The structure of tennis tournaments is particularly conducive to studying the shadow

of future competitionóboth players (and the econometrician) know the competitors in the

parallel match. In some cases, players know exactly who they would face in the next round;

in other cases, they can make reasonable predictions about upcoming opponents. Moreover,

player ability is also observable to players and researchersópast performance, as well as

11While tennis tournament organizers may have various objectives beyond selection, it is the structure of
these tournaments that lends itself to our empirical tests. That is, one would expect tournament competitors
to respond to the structure and incentives, not the reason for that contest design

12Note that the seeding is done according to rank within a tournament; the top seed in one event may
have a di§erent skill level than the top seed in another tournament.
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world rankings statistics, are widely available. Figure 1 presents the draw from the 2007

Swiss Indoors tournament in Basel. In the Örst round, Del Potro and Russell knew that

their next opponent would be either Federer or Berrer. Of course, given the ability di§erence

between these possible future opponents, Del Potro and Russell were likely predicting that

their second-round opponent would be Federer.

Data from professional tennis has been used in other research: Walker and Wooders

(2001) used video footage and data from the Önals of 10 Grand Slam events to identify

mixed strategies. Malueg and Yates (2010) study best-of-three contests using four years of

data from professional tennis matches with evenly-skilled opponents. They Önd that the

winner of the Örst set of a match tends to exert more e§ort in the second set than does the

loser and, in the event of a third set, players exert equal e§ort. Forrest and McHale (2007)

use professional tennis bookmaking data and Önd a modest long-shot bias. Gonzalez-Diaz et

al. (2010) use data from US Open tournaments to assess individual playersí abilities to adjust

their performance depending on the importance of the competitive situation. They Önd that

heterogeneity in this ability drives di§erences in playersí long-term success. Using detailed

data from the menís and womenís professional tennis circuits, Gilsdorf and Sukhatme (2008a

and 2008b) Önd that larger marginal prizes increase the probability that the stronger player

wins.

2.1 Professional Tennis Match Data

To test the predictions outlined in the theory, we examine the behavior of professional tennis

players in 615 international tournaments on the ATP World Tour between January 2001

and June 2010. The data include game-level scores and player attributes for menís singles

matches (available at http://www.tennis-data.co.uk). The four ìGrand Slamî eventsóthe

Australian, French, and US Opens, and Wimbledonóare included in the data. All of the

tournaments are multi-round, single-elimination events played over several days.

Tournament draws may include 28, 32, 48, 56, 96 or 128 players. Of the 615 events in the

data, 432 tournaments consist of Öve rounds of playórounds 1 and 2, quarterÖnals, semiÖ-

nals, and the Önal. Six rounds are played in 129 events. Fifty-four tournaments, including

the Grand Slam events, consist of seven rounds of playórounds 1 to 4, quarterÖnals, semi-

Önals, and the Önal. Most ATP events are best-of-three sets, while the Grand Slam events

are best-of-Öve sets.13 Figure 1 is a typical draw for a Öve-round, 32-player tournament. De-

pending on the number of competitors, Örst-round byes may be awarded to the top-ranked

13To win a set, a player must win at least six games and at least two games more than his opponent.
A game is won by the player who wins at least four points and at least two more than his opponent. Set
tie-break rules vary by tournament.
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players.14

World rankings (o¢cially called the South African Airways ATP Rankings) are based on

points that players accumulate over the previous 12 months. The ATP points directly reáect

the pyramid structure of tournaments. More points are awarded to players who advance in

top tournaments; for example, a Grand Slam winners earns the maximum points awarded for

a single event.15 ATP rankings are simply a rank-order of all players by their accumulated

points. In our analysis, we use the ATP rankings to account for playersí skill levels.16

Table 1 presents summary statistics from over 28,000 menís professional tennis matches.

On average, matches are decided after approximately 23 games in Öve- and six-round tourna-

ments and 32 games in seven-round tournaments, many of which are decided by best-of-Öve

sets. Match winners are signiÖcantly more skilled than losers (p < 0:01). Tournamentsí

seeding formats generally pair the weakest players against the strongest players in the Örst

round. Consequently, the disparity in rankings decreases as players advance. To consider

the competitive balance of matches across rounds, we also report the rank ratio (worse rank

divided by better rank). Mean rankings ratios remain relatively stable across rounds.

3 Results

In this section, we present empirical tests of the theoretical predictions. We Örst examine

performance data from professional tennis matches, presenting empirical results supporting

both spillover and shadow e§ects. Next, we ask whether shadow and spillover e§ects have

been priced into betting markets. Although this additional analysis is not a direct test

of the theory, it does provide further support for the importance of understanding these

phenomena.

3.1 Spillover and Shadow E§ects in Match Outcomes

Proposition 1 states that weaker future competition will increase the stronger competitorís

probability of success in the current stage. This prediction follows from the observation

that, while weaker future competition will cause both players to increase their e§ort in the

14Byes automatically advance a player to the next round.
15For details of the world ranking system, see the 2011 ATP World Tour Rulebook, available online at

www.atpworldtour.com.
16Klaassen and Magnus (2003) suggest a transformation of rankings to account for di§erences in ability

between high- and low-skilled players. They calculate a playerís ability as R = K+1 log2 (ranking) ;where
K is the total number of rounds in the tournament and ranking is the playerís tournament seed. All of
our analyses are robust to this alternative measure of skill heterogeneityóresults with the Klaassen-Magnus
transformation are qualitatively very similar to the results using ATP rankings and are not reported.
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current period, the current e§ort of the better-ranked player increases even more than the

current e§ort of his worse-ranked opponent. Proposition 2 considers the role of spillover in

e§ort choice. The direction of the spillover e§ect is often an empirical question; however,

one might expect negative spillover in events that require intense e§ort exertion over a short

period of time. In professional tennis, players may face a higher cost of e§ort if exertion in

previous matches induced lasting fatigue.

The following speciÖcation allows us to study the e§ects of shadow and spillover simul-

taneously:

strongwinsmt = 0 + 1Futuremt + 2SPastGamesit (9)

+3WPastGamesit + 4Currentmt + Xt + "mt

where strongwinsmt is a binary indicator of whether the better-ranked player in matchm won

in a stated round of tournament t, Futuremt represents the expected ability of the opponent

in the next round, Currentmt represents the degree of heterogeneity of playersí skills in the

current match, SPastGamesit is the number of games played in all previous rounds of the

tournament by the better-ranked player, WPastGamesit is the number of games played

in all previous rounds of the tournament by the worse-ranked player, Xt is a matrix of

tournament-level controls, and "mt is the error term.17 We estimate all equations using a

linear probability model (OLS) with a robust variance estimator; results are quantitatively

very similar for a probit speciÖcation and are not reported.

In the reported regression, Futuremt is the rank associated with the stronger player in

the parallel match. For example, for the 2007 Swiss Indoors tournament (see Figure 1), the

expected future opponent for the match between Del Potro and Russell would be Federer. For

the Del Potro-Russell match, Currentmt = 71
49
and Futuremt = 1. Note that this construction

of Futuremt is a conservative oneówe are assuming that the future competitor will always

be the better of the two potential opponents in the next round. This means that, on average,

we are understating the continuation value for players in the current round. Consequently,

our coe¢cient estimates on Futuremt will understate the actual shadow e§ect.18 Currentmt
is the ratio of the rank of the worse player and the better player. Results are qualitatively

similar if we instead use an average of future opponentsí rankings.

Tournament-speciÖc Öxed e§ects capture average event-level characteristics and control

for di§erences between tournaments (e.g. media attention). Total purse size for any given

event has not varied substantially across time. For example, the purse for the US Open has

17Current competitors faced di§erent opponents in previous rounds and will have generally played a
di§erent number of previous games.

18We later restrict our sample to matches in which players know their future opponent with certainty.
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grown by an average of 3% each year from 1997 to 2011. Over the same period, the ináation

rate was roughly the same. Therefore, real purse size was relatively stable and the purse

e§ect is captured by tournament dummies. Additionally, because some tournaments have

changed venues over time, we include additional controls for surface and court type.

In the following analysis, we examine separately tournaments with Öve, six or seven

rounds of play. This accounts for both heterogeneity between tournament types and structureó

for example, the quarterÖnal competitor casts a shadow on the second round in a Öve-round

tournament and the fourth round of a seven-round event; and accumulated spillover in a

quarterÖnal match in a Öve-round event may have a considerably di§erent e§ect than in a

seven-round event.

We also report results for regression (9) by tournament round. The round-by-round

analysis overcomes the confounding ináuence of changes in marginal prizes across rounds

within a tournament, while still controlling for the di§erences in prizes for a given round

across events. Moreover, it allows us to cleanly account for playersí past exertion (and the

hypothesized spillover e§ect) without concerns about the autocorrelation of the same playerís

performance and e§ort over several rounds of a single tournament.

Results: Actual Match Outcomes
Table 2 presents results for the main speciÖcation for Öve-, six- and seven-round events.19

For Öve-round events, the coe¢cient on the shadow e§ect (Futuremt) is positive and statis-

tically signiÖcant in the Örst and second rounds (p < 0:01). The weaker the future opponent

(i.e. a larger rank), the greater the probability that the stronger player is selected as the

winner in the current round. For a one standard-deviation increase in future opponentís

rank (decrease in ability), we estimate that the probability that the stronger player wins in

the current round increases by approximately 2 percentage points. Given that the average

probability that the stronger player wins is approximately 64%, on average, the shadow ef-

fect represents a 4% increase in the probability of winning. The estimated e§ects for the

quarterÖnals and semiÖnals are also positive and similar in magnitudes, but are not statisti-

cally signiÖcantóthis may reáect both small sample sizes and limited variation in opponentsí

skills at advanced stages of these tournaments.

For six-round events, the estimates of the shadow e§ect are positive, but is only statisti-

cally signiÖcant in the third-round (p < 0:05). However, for seven-round events, the shadow

e§ect is statistically signiÖcant for the Örst four rounds (p < 0:05). In these high-stake

tournaments, one standard-deviation decline in future opponentís ability is associated with

19Note that the Örst and last columns of Table 2 omit estimates for spillover and shadows, respectivelyó
there is no spillover for players in the Örst round of a tournament and players face no shadow in the Önal
round.
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a 3.5 percentage point increase in the probability that the stronger player wins in the current

round; this implies a 5% improvement in the probability that the strong player wins.

In general, coe¢cient estimates for the two spillover variables take on predicted signsó

more previous games for the stronger player decreases the probability he wins in the current

match, while in general more previous games for the weaker player increases the chance that

the stronger player wins. In longer events, spillover e§ects are smaller in magnitude and

are not statistically signiÖcant in the Önal roundsóplayers typically get more rest days for

these later stage matches. Moreover, the history of the stronger player appears to drive his

current success more than the history of his opponentófrom expression (10) of our model,

we expect the stronger player to be more adversely a§ected than the weaker player for a

given increase in spillover. We predict that more negative spillover will reduce the likelihood

that the stronger player is selected as the winner. Indeed, in the data, the e§ect of previous

games played by the stronger player is often larger than the e§ect of the weaker playerís

previous games.

In Öve-round tournaments, the estimated e§ect of spillover for stronger players ranges

from -0.15 to -0.44% (p < 0:1). On average, a one standard-deviation increase in the number

of previous games is associated with a decline of approximately 1 to 3 percentage point decline

in the probability of winning in the current match for the stronger player; this represents a

1 to 4.5% decline in the probability of winning. In six-round events, the estimates for the

spillover e§ects are statistically signiÖcant in Örst four rounds for the stronger player and

in two rounds for the weaker player. In these events, a one standard-deviation increase in

the number of previous games is associated with a roughly 2 percentage point decline in the

probability of winning in the current match for the stronger player. For seven-round events,

the spillover e§ects for the stronger player are negative and statistically signiÖcant in three

of the six cases.

As expected, the coe¢cients on skill disparity in the current match are all positive and,

with few exceptions, statistically signiÖcant. This suggests that increased heterogeneity

between the players increases the probability that the stronger player wins.

We estimate, but do not report, results for regression (9) using ATP points as a measure

of player skill. Estimates are qualitatively similar to results using ATP rankings.

The Role of Top Seeded Players
As described in section (2), most players are randomly assigned to a position in the

tournament draw. The exceptions are the top two seeded players who are assigned to opposite

ends of the drawóthis prevents the top two seeds frommeeting in the early rounds. Although

we use playersí world rank (and not their tournament-speciÖc seed number) in the empirical

analysis, a robustness check ensures that the results are not sensitive to the fact that top
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playersí positions are not randomly assigned. We replicated the analysis in Table 2 while

excluding matches in which the top two seeded players compete. This restriction excludes

over 10% of the observationsófrom 200 to 1400 observations per round across tournament

types. Overall, the regression results are qualitatively similar to those in Table 2; however,

the pattern of statistical signiÖcance is less pronounced.20

The Order of Match Resolution
In the main analysis, we assume that the shadow was the rank of the stronger of the

players from the parallel matchódue to data limitations, the exact sequence of matches is

not broadly available. However, we construct a dataset of matches for which the sequence

of resolution can be established by identifying parallel matches that were played on di§erent

days. This small subset of the data includes only roughly 10% of all matches. In Table 3, we

report results from regression (9) where the shadow is the rank of the realized winner of the

parallel match. Although statistical signiÖcance is weak, we observe the general pattern of

results that we also identiÖed in Table 2; shadow e§ects tend to be positive and the increased

heterogeneity always improves the probability that the stronger player wins.

3.2 Shadow and Spillover E§ects in Betting Markets

In this section, we explore whether active markets account for the shadow and spillover

dynamics of multi-stage competition. Indeed, by examining data from professional betting

markets, we Önd compelling evidence that subtle spillover and shadow e§ects have been

incorporated into prices.

The e¢ciency of prediction and betting markets has been studied extensively in the

literature; for examples, see the survey by Vaughan Williams (1999). Prediction markets are

founded on the argument that by aggregating information, competitive markets should result

in prices that reáect all available information (Fama 1970). Therefore, driven by aggregated

information and expectations, prediction market prices may o§er good forecasts of actual

outcomes (Spann and Skeira 2003).

Similarly, betting odds reáect bookmakersí predictions of future outcomes. Betting odds

may change as new public or private information becomes available to the bookmaker and

with changes in the volume of bets that may be driven by individual bettorsí private infor-

mation. As with formal prediction markets, we might expect betting odds to provide good

forecasts. Spann and Skeira (2008) compare forecasts from prediction markets and bet-

ting odds using data for German premier soccer league matches. They Önd that prediction

markets and betting odds provide equally accurate forecasts.

20Results are available from the authors upon request.
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To examine whether betting markets incorporate information about the e§ects of shadow

and spillover, we estimate a regression similar to equation (9) : Now, instead of a binary

indicator of the actual outcome, the dependent variable is the probability that the stronger

player wins the match as implied by betting markets.

Our data include closing odds from professional bookmakers for pre-match betting.21

Woodland and Woodland (1999) note that bookmakers adjust odds based on the volume of

bets, making the odds available as the betting market closes particularly rich in information.

In our analysis, we use the median of the available odds data since the data from no single Örm

covered all matches.22 Overall, there was little variation between odds posted by di§erent

bookmakers for the same match, perhaps because participants in tennis betting markets tend

to be specialists and there is little casual betting (Forrest and McHale 2007).

Table 4 reports the implied probabilities that the stronger player wins across rounds in

Öve-, six- and seven-round tournaments. On average, the stronger player is predicted to win;

the betting market favors the stronger player approximately 70% of the time, with slightly

more favorable predictions in high-stakes, seven-round tournaments. The accuracy of odds

market predictions suggests that information beyond simple rankings are being priced into

the market. Between 2001 and 2010, predictions from the market are correct for 69% of the

25,633 matches for which betting data are available. Given that the stronger player actually

wins in 65% of the matches, one might not be surprised by this accuracy if the market always

predicted that the stronger player wins. However, in 18% of the matches, the betting odds

imply that the weaker player is expected to win. Interestingly, these market predictions are

accurate nearly 63% of the time. That is, these betting markets do almost as well predicting

an upset as they do predicting a win by the stronger player. This is particularly notable

since a naive assessment of the ATP rankings in these matches might suggest that the odds

are still solidly against the weaker playeróon average, the weaker playerís rank is 2.1 times

higher (worse) than his opponent.

Results: Betting Market Predictions
Table 5 reports results for regressions where the dependent variable is the probability

that the stronger player wins as implied by the betting market. Overall, coe¢cient estimates

suggest that the betting predictions incorporate information about playersí past and expected

future competition.

21Data from 11 betting Örms (Bet365, Bet&Win, Centrebet, Expekt, Ladbrokes, Gamebookers, Inter-
wetten, Pinnacles, Sportingbet, Stan James, and Unibet) are included in our main dataset obtained from
www.tennis-data.co.uk. Several betting Örms also o§er in-play betting, but we focus our analysis on pre-
match bets only.

22We calculate the probability odds from the decimal odds in the original data. Probability odds are
1/(decimal odds-1) :
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Coe¢cient estimates for the e§ect of a stronger future opponent are positive and statisti-

cally signiÖcant for 10 of 15 cases in Table 5. The shadow e§ects are positive and statistically

signiÖcant in early rounds of Öve-, six- and seven-round tournaments (p < 0:01). The shadow

e§ects are also positive in the Önal stages of six-round tournaments. It is not surprising that

we do not identify the e§ect of the shadow in late stages of Öve- and seven-round events,

given the compressed distribution of skill at the end of the tournament.

Since betting markets close at the start of the match, playersí past exertion information

is readily available to bookmakers. Indeed, coe¢cient estimates for the stronger and weaker

playersí previous number of games are statistically signiÖcant and take on the expected signs

in 26 of 30 cases (p < 0:01). More previous games played by the stronger player is associated

with a decrease in the expectation of his success, while more previous games played by the

weaker player is associated with an increase in the expectation that the stronger player wins.

Greater heterogeneity in playersí abilities may increase the marketís expectation that the

stronger player winsóthe coe¢cient on rank ratio is positive and statistically signiÖcant in

all rounds (p < 0:01). Overall, we Önd strong evidence that prices in tennis betting markets

reáect both the shadow and spillover e§ects predicted by our model.

Unobserved Player Heterogeneity Across Rounds
One advantage of the betting market data is that we can identify things that might

otherwise be outside of the econometricianís observation. In particular, we can identify

when there is a predicted upsetóthis prediction is based on observations of the bookmaker

and not simply the ranks of the players. For example, if a player has a minor injury or seems

to be in the midst of a short winning streak, his world rank would not reáect this transient

state. However, bookmakers could integrate this information into their predictions about

match outcomes.

We can identify predicted upsets by comparing the implied probability of the betting odds

to the rank-based outcome prediction (i.e. the prediction that the stronger player is more

likely to win). If the betting odds predict that the weaker ranked player has a better than 50%

chance of winning, then there is some unobserved positive shock for him (and/or negative

shock for the stronger player). Deviations from the ranked-based predictions that persist

over multiple rounds suggest a state-dependent component of play. We take a conservative

approach to identify this state-dependence.

There are 2085 predicted upsets in the data, representing roughly 7% of all matches. In

67 cases, a single player was predicted to cause multiple upsets in the same event. Fifty-

seven of these instances involved two upsets in the same tournament; ten cases involved three

predicted upsets. In summary, more than 96% of predicted upsets did not persist beyond a

single round. Overall, we Önd little evidence that match outcomes are driven by unobserved
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state dependence.

4 Conclusion

In this paper, we explore a class of contests that we call ìsequentially-resolved elimination

tournaments.î We present a two-stage, match-pair tournament model that provides two

sharp results: (a) a shadow e§ect of future competitionóthe weaker the expected competitor

in the Önal stage, the greater the probability that the stronger player is selected as the winner

in the Örst match; (b) an e§ort spillover e§ectónegative spillover has a relatively stronger

adverse e§ect on the higher-skilled player.

We test our two main theoretical hypotheses using data from professional tennis matches.

We Önd evidence of a substantial shadow e§ect, where a weaker future competitor increases

the probability that the stronger player wins the current match. We also identify a negative

spillover e§ect in tennis tournamentsómore e§ort exertion in the previous rounds is asso-

ciated with signiÖcantly less success in the current round, particularly for stronger players.

In a second analysis, we use probability odds data from bookmakers to show that betting

markets recognize and price in the spillover and shadow e§ects.

4.1 Discussion

Our Öndings have implications in terms of the structure of elimination tournaments. Tour-

naments are often designed to identify high-ability candidates in environments where the

contest organizer cannot readily observe innate talent. Our results suggest ways by which a

contest designer can improve the likelihood that the strongest candidate succeeds.

Shrouding the skill of a future opponent increases playersí continuation value, relative to

the case where the player faces a stronger rival with certainty. This will elicit more e§ort,

particularly from the stronger player, and improve the probability that the stronger player

will win in the current match. Of course, the opposite is true if the contest designer shrouds

the identity of a weaker future opponent. Overall, a shrouding policy could elicit more e§ort

(and thus improve the likelihood of selecting a strong winner) in a setting where the future

opponent is more likely to be strong, rather than weak. In practice, this shrouding could be

implemented by delaying the announcement of winners from parallel matches.

Limiting negative spillover by allowing competitors opportunities to refresh their re-

sources between stages increases the probability that the stronger type wins. Firms may also

want to encourage positive spillover through learning. For example, in an innovation con-

test, Örms should be given adequate time between stages to raise additional funds and pursue

21



more advanced technology improvements. Similarly, a Örm may wish to institute a ìwork-life

balanceî program that promotes employee wellness, discourages career-related burnout, and

improves the probability that the Örmís labor tournament promotes the strongest workers.

In contrast, if a contest designer is concerned with the unevenness of competition, it can

design a more balanced contest with more negative spillover.

22



References

[1] Baik, K. H. 1994. E§ort Levels in Contests with Two Asymmetric Players. Southern

Economic Journal, 61(2): 3-14.

[2] Brown, Jennifer. Forthcoming. Quitters Never Win: The (Adverse) Incentive E§ects of

Competing with Superstars. Journal of Political Economy.

[3] Ederer, Florian. 2010. Feedback and Motivation in Dynamic Tournaments. Journal of

Economics and Management Strategy, 19(3): 733-769.

[4] Fama, E. F. 1970. E¢cient capital markets: a review of theory and empirical work.

Journal of Finance, 25: 383-417.

[5] Forrest, David, and Ian McHale. 2007. Anyone for Tennis (Betting)? European Journal

of Finance. 13(8): 751-768.

[6] Gilsdorf, Keith F., and Vasant Sukhatme. 2008a. Testing Rosenís Sequential Elimination

Tournament Model : Incentives and Player Performance in Professional, Journal of

Sports Economics, 9(3): 287-303.

[7] Gilsdorf, Keith F., and Vasant Sukhatme. 2008b. Tournament incentives and match

outcomes in womenís professional tennis. Applied Economics, 40(18): 2405-2412.

[8] Gonzalez-Diaz, Julio, Olivier Gossner, and Brian W. Rogers. 2010. Performing Best

When It Matters Most: Evidence From Professional Tennis. Working paper.

[9] Groh, C., B. Moldovanu, A. Sela, and U. Sunde. 2008. Optimal seedings in elimination

tournaments. Economic Theory. DOI: 10.1007/s00199-008-0356-6

[10] Harbaugh, Rick, and Tilman Klumpp. 2005. Early Round Upsets and Championship

Blowouts. Economic Inquiry, 43(2): 316-329.

[11] Hvide, Hans K., and Eirik G. Kristiansen. 2003. Risk Taking in Selection Contests.

Games and Economic Behavior, 42:172-179.

[12] Klaassen, Franc J. G. M.and Jan R. Magnus. 2003. Forecasting the winner of a tennis

match. European Journal of Operational Research, 148(2) (July): 257-267.

[13] Knoeber, C. R. and W. N. Thurman. 1994. Testing the Theory of Tournaments: An

Empirical Analysis of Broiler Production. Journal of Labor Economics, 12(2): 155-179.

[14] Konrad, Kai A. 2009. Strategy and Dynamics in Contests. Oxford University Press.

23



[15] Lazear, Edward P. 1986. Salaries and Piece Rates. Journal of Business, 59(3): 405-431.

[16] Lazear, Edward P. and Sherwin Rosen. 1981. Rank-Order Tournaments as Optimum

Labor Contracts. Journal of Political Economy, 89(5) (Oct.): 841-864.

[17] Lemieux, Thomas, W. Bentley MacLeod, and Daniel Parent. 2009. Performance Pay

and Wage Inequality. Quarterly Journal of Economics, 124(1) (Feb.): 1-49.

[18] Malueg, David A., and Andrew J Yates. 2010. Testing Contest Theory: Evidence from

Best-of-Three Tennis Matches. Review of Economics and Statistics, 92(3) (Aug.): 689-

692.

[19] Minor, Dylan B. 2011. Increasing E§ort Through Softening Incentives. Working Paper.

[20] Rosen, Sherwin. 1986. Prizes and Incentives in Elimination Tournaments. The American

Economic Review. 76(4) (Sept): 701-715.

[21] Ryvkin, Dmitry. 2009. Tournaments of Weakly Heterogeneous Players. Journal of Public

Economic Theory 11(5): 819-855.

[22] Ryvkin, Dmitry. 2010. The Selection E¢ciency of Tournaments. European Journal of

Operational Research, 206: 667-675.

[23] Ryvkin, Dmitry, and Andreas Ortmann. 2008. The Predictive Power of Three Prominent

Tournament Formats. Management Science, 54(3) March: 492-504.

[24] Schmitt, Pamela, Robert Shupp, Kurtis Swope, and John Cadigan. 2004. Multi-period

rent-seeking contests with carryover: Theory and experimental evidence. Economics of

Governance, 5: 187-211.

[25] Searls, Donald T. 1963. On the Probability of Winning with Di§erent Tournament

Procedures. Journal of the American Statistical Association, 58(304) (Dec.): 1064-1081.

[26] Sela, Aner, and Eyal Erez. 2011. Dynamic Contests with Resource Constraints. Working

Paper.

[27] Spann, Martin, and Bernd Skiera. 2003. Internet-based virtual stock markets for busi-

ness forecasting. Management Science, 49: 1310ñ1326.

[28] Spann, Martin, and Bernd Skiera. 2008. Sports Forecasting: A Comparison of the Fore-

cast Accuracy of Prediction Markets, Betting Odds and Tipsters. Journal of Forecasting,

28: 55-72.

24



[29] Stracke, Rudi. 2011. Multi-Stage Pairwise Elimination Contests with Heterogeneous

Agents. Working Paper.

[30] Sunde, Uwe. 2009. Heterogeneity and Performance in Tournaments: A Test for Incentive

E§ects Using Professional Tennis Data. Applied Economics, 41(25): 3199-3208.

[31] Tullock, Gordon. 1980. E¢cient rent seeking. In: J. M. Buchanan, R. D. Tollison, and

G. Tullock. (eds.) Toward a theory of the rent-seeking society. College Station: Texas

A&M University Press.

[32] VaughanWilliams, Leighton. 1999. Information E¢ciency in Betting Markets: a Survey.

Bulletin of Economic Research, 51(1) (Jan.): 1-39.

[33] Walker, Mark, and John Wooders. 2001. Minimax Play at Wimbledon. The American

Economic Review, 91(5) (Dec.): 1521-1538.

[34] Woodland, B., and L. Woodland, L. 1999. Expected utility, skewness and the baseball

betting market. Applied Economics, 31: 337-345.

25



5 Appendix

5.1 Combined Shadow and Spillover E§ects

Our main analysis considers separately the e§ects of e§ort spillover and the shadow of future

competition. Here, we present an analysis when both e§ects are at play. Combining the

e§ects does not change the general predictions of the previous analysisóspillover continues

to even the playing Öeld, while weaker future competition does the opposite.

5.1.1 Spillover and Shadow - Final Stage

Our Örst order condition for the Önal stage yields equilibrium e§ort choice

xi =
V

k(zi)aci

where k () reáects the degree of spillover from the previous stage and is a strictly increasing
function of Örst stage e§ort zi. As expected, greater Örst-stage e§ort results in lower e§ort

in the Önal stage. Further, this e§ect is ampliÖed for the stronger type since c1 < c2: The

Önal stage spillover e§ect is therefore

@xi
@k(zi)

=
V
k(zi)2aci

< 0

Therefore, a common level of spillover reduces the disparity between participantsí e§orts in

the Önal stage, since @x1
@k(z1)

<
@x2
@k(z2)

< 0:As a result, the stronger player is less likely to win

in the Önal stage.

5.1.2 Spillover and Shadow - First Stage

Next, we consider e§ort decisions in the Örst stage. We write k (zi) as ki to simplify the

notation in this section and player iís payo§ as

i = Gfirst()

  
V
kiaci

 V
kjacj

+ a
2

a

!
V 

1

2
kici


V

kiaci

2
+ VL

!

1

2
ciz

2
i
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The Örst order condition for the Örst stage is

@i
@zi

=


V
kiaci

 V
kjacj

+a
2

a


V  1

2
kici


V
kiaci

2
+ VL

a

+Gfirst()


V 2

2k2i a
2ci


@ki
@zi

 cizi = 0

which then gives us the following expression for Örst-stage equilibrium e§ort:

zi =


V
kiaci

 V
kjacj

+a
2

a


V  1

2
kici


V
kiaci

2
+ VL

aci| {z }
shadow e§ect

+
Gfirst()


 V 2

2k2i a
2ci


@ki
@zi

ci| {z }
spillover e§ect

(10)

With no spillover, the left term is the shadow e§ect we described in Section (1:2). The

right term reáects spillover.

Recall that @ki
@zi
> 0:Start by setting k = 1 and consider the e§ect of introducing spillover.

Since Gfirst()  1
2
and c1 < c2; the negative spillover e§ect is greater in magnitude for the

stronger player. This increases the chances that the weaker player wins; thus, spillover has

the e§ect of evening the playing Öeld. That is, ceteris paribus, spillover increases the chance

of an upset.

5.2 A General Distribution Case

5.2.1 Final Stage

The model in the body of the paper presents results when the noise in playersí output is

distributed uniformly; recall that, in section (1) ; we deÖne " = "3  "1 and assume that
" is distributed according to G  U


1
2
a; 1

2
a

: In fact, similar results can be derived for

any unimodal and symmetric distribution G () with mean zero. Again assume that the
Örst-stage matches are resolved sequentially; players 1 and 2 know that player 3 won his

parallel match to advance to the Önal stage.

Player 1ís payo§ function for the Önal stage can be written as

1;final = G (x1  x3)V 
1

2
c1 (x1)

2 + VL

and his Örst order condition is

@1;final
@x1

= G0 (x1  x3)V  c1x1 = 0

27



Similarly, player 3ís Örst order condition is

G0 (x3  x1)V  c3x3 = 0

Since G() is symmetric about its mean, it follows that G0 (x1  x3) = G0 (x3  x1). This
implies the following in equilibrium:

c1x

1 = c3x


3

x1
x3

=
c3
c1

(11)

Although changes in the prize spread or the noise around playersí output a§ect equilib-

rium e§ort, the ratio of playersí e§orts is constant. It follows, for example, that an increase

in the prize spread that leads to higher equilibrium e§ort from both competitors will nec-

essarily increase the absolute spread between playersí e§orts. In turn, this increases the

probability that the stronger player wins in the current stage since his probability of win-

ning is G (x1  x3). In contrast, as equilibrium e§ort fallsófor example, from the adverse

e§ects of negative spilloveróthe absolute spread between playersí e§orts decreases. Here,

the probability that the stronger player wins declines with equilibrium e§ort levels.

Since G () can be any unimodal symmetric distribution, the impact of changes in the
variance of G () depends on the exact distribution and its parameters. The top panel of
Figure A1 provides an illustration: consider two normal distributions centered at zero with

standard deviations of 1 and 2, respectively.

First consider region A. When the players are relatively similar in ability and thus choose

similar equilibrium e§orts, reducing the variance means a ìthickeningî of the density. This

provides greater incentives for both players, as the marginal return to e§ort is greater.

Therefore, when players are similar in ability, the probability that the stronger player wins

increases as the variance decreases.

Now consider region B where the ability di§erence between players is substantial and

decreased variance means a ìthinningî of the density. This weakens incentives for both

players, as the marginal return to e§ort is reduced. Therefore, in this region, decreased

variance reduces the probability that the stronger player wins.

5.2.2 First Stage E§ort and Shadow E§ect

Next, we consider playersí e§ort choices in the Örst stage of competition. Here, player 1 faces

a similar payo§ function to his Önal-stage problem, but considers his continuation value eV1
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instead of the prize spread V: This yields the following Örst order condition:

G0 (z1  z2) eV1  c1z1 = 0

To study the impact of the ability of the future competitor on Örst-stage outcomes, we

consider the case where player 3 becomes a weaker opponent (i.e., c3 increases). The following

two conditions are su¢cient for player 1 to weakly increase his e§ort relative to his current

opponentís e§ort choice and thus improve his probability of winning in the Örst stage: (a)

G0 (x1  x3)  G0 (x2  x3) and (b)
@
@c3
eV1  @

@c3
eV2: In the following sections, we describe

when each of these conditions holds.

Condition (a): G0 (x1  x3)  G0 (x2  x3) When noise is distributed uniformly, G0 (x1  x3) =
G0 (x2  x3) and condition (a) is always met. For more general distributions, we must ana-
lyze this condition over several cases. Consider a contest where ";the di§erence in playersí

additive noise terms, is drawn from a normal distribution, illustrated below in the bottom

panel of Figure A1. Since the ordering of playersí e§orts is critical for the analysis, we outline

three cases.

Ordering 1) When x3 < x

2 < x


1 , players 1 and 2 expect to face a future opponent

who is weaker than both of them. For example, in the Ögure below, suppose that x1x3 lies
at C and x2  x3 lies between B and C. Here, we violate condition (a) since G0 (x1  x3) <
G0 (x2  x3) : If player 1 and 2 are similar enough in ability, the current increase in player
1ís e§ort can still be greater despite a smaller change in continuation value since c1 < c2:

That is, player 1 is more sensitive to a change in continuation value so a smaller change in

the value can still yield a greater change in e§ort for player 1.

Ordering 2) When x2 < x1 < x3, the future opponent is always stronger than both

current players. In this case, it is unambiguous that the stronger player has a greater

increase of e§ort since now x1 x3 lies say between A and B and x2 x3 to the left of that.
This means G0 (x1  x3) > G0 (x2  x3) :
Ordering 3) When x2 < x3 < x1; the future opponent is stronger than player 2 but

weaker than player 1: We can now have either x1  x3 > jx2  x3j or x1  x3  jx2  x3j :
The Örst inequality leads to a violation of condition (a), since G0 (x1  x3) < G0 (x2  x3) ; in
contrast, condition (a) is satisÖed for the second inequality. That is, condition (a) is satisÖed

when x1  x3 falls between B and C and x2  x3 falls below A.
Overall, we Önd that the condition is satisÖed whenever the future opponent is su¢ciently

strong. That is, we Önd the shadow e§ect of future competition as long as the future opponent

is su¢ciently more skilled than the weaker player in the current match.
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Assuming that the spreads between playersí abilities are similar across parallel matches,

we will observe most often the case where the expected future opponent is similar in ability

to the stronger current player. In the event that the weaker player does win the parallel

match, the marginal returns to e§ort may be reversed and the current weaker player may

actually increase his e§ort more than his stronger opponent. However, in our empirical

analysis, these less frequent cases simply work against Önding a positive shadow e§ect.

Condition (b): @
@c3
eV1  @

@c3
eV2 To consider the second condition, recall that player 1ís

Önal stage equilibrium payo§ is

1;final = eV1 = G (x1  x3)V 
1

2
c1 (x1)

2 + VL

The following expression describes how Önal stage proÖt changes as a function of player

1ís opponentís cost type c3 :

@1;final
@c3

= G0 (x1  x

3)V


@x1
@c3


@x3
@c3


 c1x1

@x1
@c3

(12)

From equation (11) ;we know that x1 =
x3c3
c1

which implies that @x1
@c3

=
x3
c1
and x3 =

x1c1
c3

which implies that @x

3

@c3
=

x1c1
c23
: Thus, we can rewrite expression (12) as

G0 (x1  x

3)V


x3
c1
+
x1c1
c23


 c1x1

x3
c1

= G0 (x1  x

3)V

x1c1
c23

> 0

Thus, for @
@c3
eV1  @

@c3
eV2; we want to show x1c1  x2c2 . Recall that, in equilibrium,

x1 =
G0(x1  x3)V

c1

Thus, x1c1 = G
0(x1x3)V and x2c2 = G0(x2x3)V: If our Örst condition G0(x1x3) 

G0(x2x3) is met, then x1c1  x2c2 and
@
@c3
eV1  @

@c3
eV2: G0(x1x3)  G0(x2x3) is necessary

and su¢cient for meeting condition (b). In other words, the shadow e§ect is a function of

both the distribution of noise and playersí skill disparity.

5.3 Spillover

In the section (1:3) ; we describe negative spillover as increasing playersí e§ective cost types.

Assume that two players experience the same level of exertion in the Örst stage, leading to
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the same proportional increase in cost types in the Önal stage. The ratio of their e§orts

remains unchanged; however, Önal stage e§orts are lower and thus the absolute spread in

e§orts is smaller and the stronger player is less likely to win the match. Therefore, as we

found in the uniform case, spillover evens the playing Öeld.
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source: ATPworldtour.com

Figure 1 - Example Draw from 2007 Davidoff Swiss Indoors in Basel



Five Round Tournaments
All Rounds 1st Round 2nd Round Quarterfinals Semifinals The Final

# of Matches Played 13288 6807 3456 1729 864 432

Games Per Match 22.4 22.2 22.4 22.5 22.7 23.8
(6.4) (6.1) (6.6) (6.5) (6.6) (7.2)

Rank Ratio 5.8 5.3 6.8 5.6 5.7 6.5
(15.6) (13.7) (21.2) (10.7) (11.8) (14.6)

Rank of Winner 70.3 84.1 62.5 52.7 45.1 37.0
(78.2) (91.2) (60.5) (57.2) (53.2) (42.8)

Rank of Loser 110.1 132.8 104.0 72.3 60.3 53.2
(135.0) (162.6) (109.5) (62.3) (60.0) (60.8)

Six Round Tournaments
All Rounds 1st Round 2nd Round 3rd Round Quarterfinals Semifinals The Final

# of Matches Played 6943 2952 2056 1032 516 258 129

Games Per Match 22.6 22.4 22.8 22.4 22.5 22.9 26.7
(6.4) (6.2) (6.2) (6.7) (6.6) (6.5) (9.3)

Rank Ratio 6.7 4.4 8.5 8.0 9.5 8.4 6.8
(20.5) (12.8) (19.2) (18.9) (48.5) (14.2) (9.6)

Rank of Winner 52.2 73.2 44.0 34.1 26.6 20.8 14.4
(70.2) (83.9) (57.9) (51.8) (39.3) (36.4) (20.9)

Rank of Loser 77.0 98.6 75.6 54.2 40.9 32.5 24.5
(106.4) (133.8) (87.8) (62.4) (59.6) (41.2) (30.9)

Seven Round Tournaments
All Rounds 1st Round 2nd Round 3rd Round 4th Round Quarterfinals Semifinals The Final

# of Matches Played 6314 2913 1725 865 433 216 108 54

Games Per Match 32.0 32.6 31.1 31.7 31.7 32.1 31.9 34.1
(10.8) (10.5) (10.9) (11.1) (11.5) (11.9) (11.2) (11.8)

Rank Ratio 9.1 7.8 10.6 9.9 10.4 8.8 9.0 8.5
(29.1) (37.3) (20.9) (18.8) (20.1) (11.9) (15.5) (10.9)

Rank of Winner 50.8 71.1 42.7 30.7 21.5 13.0 11.5 7.0
(69.7) (75.8) (62.9) (58.4) (57.3) (19.3) (19.9) (18.0)

Rank of Loser 85.4 110.6 82.8 55.7 39.9 29.9 14.5 16.0
(99.3) (118.5) (75.0) (66.7) (58.1) (77.9) (18.7) (20.8)

Table 1 - Summary Statistics for ATP World Tour Events January 2001 to May 2010

Notes: Data contain player and performance information for 615 tournaments. We exclude 212 five-round, 2352 six-round, 
and 1086 seven-round matches in which a player advanced with a bye. Values in parentheses are standard deviations. "Rank 
Ratio" is calculated from players' current ranks: worse rank divided by better rank. 



Dependent Variable: Stronger Player Wins in Current Period (0% or 100%)

Five Round Events 2nd on 1st 
Round

Qfinals on 2nd 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

The Final (no 
shadow)

Expected Future 0.0546*** 0.0828*** 0.0522 0.0652
Opponent Rank (0.0130) (0.0255) (0.0471) (0.0654)

Stronger Player's -0.4404*** -0.2255* -0.1562* -0.2639** 
Previous Games (0.1184) (0.1231) (0.0874) (0.1169)

Weaker Player's 0.0654 0.1399 0.1421 0.1613
Previous Games (0.1278) (0.1250) (0.0932) (0.1217)

Current Rank Ratio 0.3427*** 0.2071*** 0.2964** 0.6044*** 0.2049
(Worse / Better Rank) (0.0704) (0.0503) (0.1195) (0.1718) (0.3072)

# of observations 6749 3435 1718 856 432

Six Round Events 2nd on 1st 
Round

3rd on 2nd 
Round

Qfinals on 3rd 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

The Final 
(no shadow)

Expected Future 0.0531 0.0771 0.1363** 0.0686 0.2351
Opponent Rank (0.0351) (0.0486) (0.0683) (0.1175) (0.2472)

Stronger Player's -0.2141* -0.3893*** -0.5252*** -0.2452*** -0.0329
Previous Games (0.1227) (0.1301) (0.1532) (0.0790) (0.1276)

Weaker Player's 0.3198** 0.1317 0.3091** 0.1085 0.0452
Previous Games (0.1551) (0.1345) (0.1523) (0.0715) (0.0983)

Current Rank Ratio 0.2730*** 0.3001*** 0.2632*** 0.0478*** 0.6464*** 1.0254*  
(Worse / Better Rank) (0.0767) (0.0795) (0.0827) (0.0166) (0.1817) (0.5269)

# of observations 2923 2043 1029 516 256 129

Seven Round Events 2nd on 1st 
Round

3rd on 2nd 
Round

4th on 3rd 
Round

Qfinals on 4th 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

The Final 
(no shadow)

Expected Future 0.1737*** 0.1124** 0.1646** 0.4485*** 0.0865 0.0900
Opponent Rank (0.0256) (0.0507) (0.0754) (0.1435) (0.2946) (0.7264)

Stronger Player's -0.5882*** -0.4423*** -0.2482 -0.2216 -0.1301** -0.1048
Previous Games (0.1463) (0.1324) (0.1582) (0.1551) (0.0631) (0.1178)

Weaker Player's 0.1676 0.1100 0.1289 -0.0670 0.0367 0.0469
Previous Games (0.1186) (0.1088) (0.1127) (0.1653) (0.0547) (0.0777)

Current Rank Ratio 0.0859*** 0.2601*** 0.3397*** 0.3365*** 0.3309 0.0132 1.2632** 
(Worse / Better Rank) (0.0327) (0.0446) (0.0641) (0.0846) (0.3138) (0.3482) (0.5448)

# of observations 2903 1716 858 432 216 108 54

Table 2 - Combined Spillover and Shadow Effects

Notes: Values in parentheses are robust standard errors.  All regressions include tournament-level fixed effects. 
* p < 0.10, ** p < 0.05, *** p < 0.01



Dependent Variable: Stronger Player Wins in Current Period (0% or 100%)

Five Round Events 2nd on 1st 
Round

Qfinals on 2nd 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

Expected Future 0.0205 0.0854 0.2633 -0.3530
Opponent Rank (0.0219) (0.1132) (0.2847) (0.3230)

Stronger Player's -0.8412** -0.4769 -0.2094
Previous Games (0.3337) (0.6800) (0.5140)

Weaker Player's 0.7356 0.2783 -0.2250
Previous Games (0.4567) (0.7626) (0.6243)

Current Rank Ratio 0.3981*** 0.3906*** 1.1498 1.5529
(Worse / Better Rank) (0.0854) (0.1170) (1.0486) (1.6900)

# of observations 1354 295 81 51

Six Round Events 2nd on 1st 
Round

3rd on 2nd 
Round

Qfinals on 3rd 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

Expected Future 0.0569 -0.2871 0.2784 0.1969 0.6962
Opponent Rank (0.1343) (0.2370) (0.2031) (0.8733) (0.5444)

Stronger Player's -0.5328 -0.4109 0.4002 -0.2637
Previous Games (0.4715) (1.0078) (1.3651) (0.2699)

Weaker Player's -0.4236 -0.6504 -0.3203 0.1490
Previous Games (0.4493) (0.6811) (1.4190) (0.2014)

Current Rank Ratio 0.2956** 0.7810*** 1.6846 3.5665** 2.7432
(Worse / Better Rank) (0.1239) (0.2372) (1.0301) (1.4181) (2.3072)

# of observations 272 182 37 16 21

Seven Round Events 2nd on 1st 
Round

3rd on 2nd 
Round

4th on 3rd 
Round

Qfinals on 4th 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

Expected Future -0.0208 0.0249 0.4790*** 0.3028 -0.7066 0.5434
Opponent Rank (0.1139) (0.2993) (0.1716) (0.8503) (1.4330) (1.5524)

Stronger Player's -0.4036 -0.4226** 0.3360 1.0251 -0.0228
Previous Games (0.8967) (0.1739) (0.9408) (0.6770) (0.2540)

Weaker Player's 1.7178*** 0.1162 0.1488 -0.9154** 0.0686
Previous Games (0.5741) (0.1356) (0.6737) (0.3499) (0.1885)

Current Rank Ratio 0.3201** 0.1206 0.1476 0.9886 1.7385** 1.4565
(Worse / Better Rank) (0.1496) (0.1325) (0.1043) (1.1174) (0.7285) (2.4105)

# of observations 97 105 68 36 37 17

Table 3 - Combined Spillover and Shadow Effects (only matches with previous resolution)

Notes: Values in parentheses are robust standard errors.  All regressions include tournament-level fixed effects. 
* p < 0.10, ** p < 0.05, *** p < 0.01



Implied Probability that the Stronger Player Wins (%)

All Rounds 1st Round 2nd Round 3rd Round 4th Round Quarterfinals Semifinals The Final

Five Round Tournaments 68.1 67.6 69.6 67.6 66.8 67.3
(14.8) (15.5) (14.4) (13.7) (13.4) (13.3)

Six Round Tournaments 67.3 64.3 70.0 68.5 69.0 69.4 69.8
(15.5) (15.5) (15.1) (15.0) (15.4) (15.9) (15.3)

Seven Round Tournaments 71.4 68.9 74.5 72.0 71.7 73.8 74.1 72.2
(17.7) (19.1) (16.0) (16.7) (16.8) (14.5) (15.4) (16.1)

Table 4 - Summary Statistics for Betting Market Data

Notes: Data contain betting market information for 593 tournaments. Values in parentheses are standard deviations. 



Dependent Variable: Implied Probability that the Stronger Player Wins in Current Period (%)

Five Round Events 2nd on 1st 
Round

Qfinals on 2nd 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

The Final (no 
shadow)

Expected Future 0.0550*** 0.0419*** 0.0027 0.0176
Opponent Rank (0.0059) (0.0076) (0.0129) (0.0172)

Stronger Player's -0.3223*** -0.1913*** -0.1356*** -0.1336***
Previous Games (0.0346) (0.0327) (0.0215) (0.0295)

Weaker Player's 0.0967*** 0.0797** 0.0549** 0.0840***
Previous Games (0.0363) (0.0317) (0.0229) (0.0294)

Current Rank Ratio 0.3207*** 0.1781*** 0.5149*** 0.3909*** 0.2813***
(Worse / Better Rank) (0.0644) (0.0361) (0.0603) (0.1278) (0.0871)

# of observations 6367 3348 1677 827 415

Six Round Events 2nd on 1st 
Round

3rd on 2nd 
Round

Qfinals on 3rd 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

The Final 
(no shadow)

Expected Future 0.0742*** 0.0802*** 0.0741*** 0.0879** 0.1833**
Opponent Rank (0.0124) (0.0157) (0.0208) (0.0365) (0.0715)

Stronger Player's -0.3119*** -0.3448*** -0.4260*** -0.1285*** -0.1228***
Previous Games (0.0386) (0.0381) (0.0472) (0.0267) (0.0359)

Weaker Player's 0.1477*** 0.0869** 0.0971** 0.0679*** 0.0592** 
Previous Games (0.0477) (0.0367) (0.0438) (0.0202) (0.0254)

Current Rank Ratio 0.2898*** 0.2365*** 0.2590*** 0.0513** 0.4787*** 0.6922***
(Worse / Better Rank) (0.0897) (0.0626) (0.0716) (0.0256) (0.0796) (0.1118)

# of observations 2825 1996 1006 506 253 125

Seven Round Events 2nd on 1st 
Round

3rd on 2nd 
Round

4th on 3rd 
Round

Qfinals on 4th 
Round

Sfinals on 
Qfinals

Final on 
Sfinals

The Final 
(no shadow)

Expected Future 0.1766*** 0.1090*** 0.0763*** 0.0983 -0.0158 -0.2772
Opponent Rank (0.0114) (0.0170) (0.0289) (0.0620) (0.0888) (0.2888)

Stronger Player's -0.3656*** -0.3593*** -0.2512*** -0.2810*** -0.0821*** -0.0402
Previous Games (0.0493) (0.0427) (0.0656) (0.0438) (0.0152) (0.0304)

Weaker Player's 0.1063*** 0.0831** 0.0788** 0.0190 0.0041 0.0303
Previous Games (0.0375) (0.0348) (0.0364) (0.0510) (0.0134) (0.0325)

Current Rank Ratio 0.0714*** 0.2615*** 0.3206*** 0.3192*** 0.3802*** 0.3747*** 0.4984***
(Worse / Better Rank) (0.0262) (0.0292) (0.0644) (0.0691) (0.1140) (0.0785) (0.1601)

# of observations 2791 1706 847 431 214 106 53

Table 5 - Betting Market and Combined Spillover and Shadow Effects

Notes: Values in parentheses are robust standard errors.  All regressions include tournament-level fixed effects. 
* p < 0.10, ** p < 0.05, *** p < 0.01



Figure A1:  Example Densities of Joint Noise  - Normal Distribution

Panel 2: Normal Distribution of Joint Noise

Panel 1: Return to Effort as a Function of Different "Noise Levels"
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