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Competition for employment and education, innovation funding, and design opportuni-

ties can all be framed as multi-stage elimination tournaments in which players are knocked

out over successive stages of the event. These contests are often designed to increase player

effort–indeed, much of the theoretical and empirical literature focuses on contests as incen-

tive mechanisms. Yet, tournaments may also serve as selection mechanisms, identifying the

“best” candidates as overall winners. In labor tournaments where employees’ latent talents

are not directly observable, firms may organize contests to reveal their workers’ relative abil-

ities.1 For example, in searching for a CEO, a firm may use a tournament to identify and

promote the highest-ability candidate, not simply the one who puts forth the most effort.

In this paper, we study how the strategies of heterogeneous players in match-pair elimi-

nation tournaments are shaped by past, current, and future competition. More specifically,

we examine how these intertemporal effects influence a tournament’s ability to reveal the

strongest player as the winner. Negative spillover from past stages may make current effort

more costly and depress performance, while the shadow of tough future competition decreases

a player’s expected future payoffs and also may lead to lower current effort. The differential

impact of past and future competition across players in a given match changes the effec-

tiveness of tournaments as a selection mechanism–both negative spillover and tough future

competition increase the probability that a weak candidate wins overall. Our results have

practical implications; whether the contest aims to encourage effort, select a strong winner,

or both, we find evidence suggesting that firms, educators, and other contest designers may

need to consider the role of past and future competition in structuring incentives.

In personnel tournaments, workers risk elimination as they advance through corporate

management levels. In most contexts, retention of the highest quality worker is most desir-

able. For example, GE’s former CEO, Jack Welch, designed an explicit elimination tourna-

ment to select his successor (Konrad 2009).2

Competition between firms may also be knockout events. In 2010, GE announced a three-

stage elimination tournament, the Ecomagination Challenge, to award $200 million to the

firm that developed the best smart grid technologies. More commonly, architectural firms

may compete for large contracts and investment banks may compete for new clients over

several stages of proposals and commitments. Political races also may involve elimination

stages–a candidate must win his party’s primary election to compete in the general election

to hold office. Many sporting events are also structured as elimination tournaments.

1In contrast, Lazear (1986) discusses how performance pay may attract higher quality workers into the

firm when the firm cannot readily observe innate worker ability.
2Lemieux, MacLeod and Parent (2009) discuss the growing importance of performance pay.
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In each of these examples, effort is clearly important; firms want to hire designers, bankers

and innovators who will invest heavily in the activity at hand, voters want their represen-

tatives to work hard on their behalf, and spectators enjoy high action games. However,

selection may also be a prime objective of the contest organizer–a client may desire the

most creative design firm, voters may value the most skilled politician, and a board may

want the smartest executive to lead the company.

We explore elimination tournaments as selection mechanisms with a two-stage match-

pair model. Our analysis yields two main results: First, we identify a shadow effect of

future competition–the weaker the expected competitor in the next stage, the greater the

probability that the stronger player wins in the current match. Second, we find an effort

spillover effect–with negative spillover, effort in earlier stages lowers the probability that

the stronger player wins. We also find that noise around effort and a flatter prize structure

reduce the probability that the stronger player wins. Finally, our analysis of an underdog

advantage broadly rationalizes the conflicting findings in the existing literature.

One particular strength of our model is that its predictions are framed in terms of

outcomes–effort alone is notoriously difficult to measure in the field. We test our theoretical

predictions using the outcomes of high-stakes matches; we exploit the random assignment

of players in professional tennis tournament draws. Examining the effect of changes in the

skill of the expected competitor in the next round, we find evidence of a shadow effect in

all but the last rounds of play. Spillover in tennis tournaments appears to have a negative

impact on the probability of winning, particularly for the stronger player. We also exam-

ine tennis betting markets and find that bookmakers’ prices reflect both spillover from past

competition and the shadow of future opponents.

In early work on knock-out tournaments, Rosen (1986) models a multi-stage contest

where players have Tullock-style contest success functions. Rosen’s main result explains

the skewed compensation distributions found in many firms–extra rewards are required in

late stages of these elimination tournaments to maintain equal levels of effort across stages.

Harbaugh and Klumpp (2005) study a special case of Rosen’s model with a single prize and

where the total supply of effort is fixed across two periods and equal for all players. Because

effort is costless in their model, players exhaust all of their remaining effort in the final

period. As a result, the weaker player always exert more effort than the stronger player in

the first stage–the stronger player conserves his effort in anticipation of stiff competition in

a final stage match against an equally skilled opponent. In this context, “spillover” between

stages disadvantages the low-skill players in the final round.

Searls (1963) compares the statistical properties of single- and double-elimination contests

and predicts that single-elimination events are most likely to select the highest ability player
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as the winner. Groh et al. (2008) describe the optimal seeding of heterogeneous players

according to the contest designer’s objective. Modeling contests as all-pay auctions, they

find that common seeding rules that match weakest to strongest players in the semifinals

maximize the probability that the strongest player wins overall.

Ryvkin (2009) considers the elasticities of a player’s equilibrium effort with respect to

his own ability and the abilities of his opponents across several tournament formats. In

elimination tournaments with weakly heterogeneous players, he finds that the abilities of

opponents in the more distant future have a lower impact on a player’s equilibrium effort

than does the ability of the current opponent. Ryvkin also shows that, when players’ relative

abilities are uniformly distributed, a “balanced” seeding can eliminate the dependence of a

player’s equilibrium effort on his opponents’ abilities.

Our effort spillover prediction relates to previous work on fatigue in dynamic competition.

Ryvkin (2011) presents a winner-take-all model where homogeneous players face a binary

effort decision and effort has no explicit cost–these features are in stark contrast to our

model where player are heterogeneous and effort is a continuous and costly choice variable in

a multi-prize tournament. In his work, fatigue accumulates across stages and players have no

opportunity to refresh their effort resources. Among other results, he finds that equilibrium

effort is decreasing in fatigue. Our contribution complements and extend his theoretical and

experimental fatigue result to a more flexible and descriptive context. Moreover, we consider

explicitly–theoretically and in the field–the interaction between negative spillover from the

past and the shadow of expected future competition.

Sunde (2009) tests the incentive effect of player heterogeneity using data from selected

professional tennis tournaments. He finds that heterogeneity impacts the effort choice of

the stronger player more than it changes the effort of the weaker player in a match. In

his analysis, this means that the weaker player wins fewer games per set and the stronger

player wins more games per set as heterogeneity increases. However, these effects are not

symmetric: for an equal change in rank disparity, the increase in the number of games won

by the stronger player is smaller than the decrease in the number of games lost by the weaker

player. In contrast to Sunde’s work, we study the role of skill heterogeneity across multiple

stages of an event–that is, we examine the incentive impact of ability differences with past,

current, and (expected) future opponents. The effects of player heterogeneity on effort in

one-shot tournaments has been studied both theoretically (e.g. Baik, 1994; Moldovanu and

Sela, 2001; Szymanski and Valletti, 2005; Minor, 2011) and empirically (e.g. Knoeber and

Thurman, 1994; Brown, forthcoming).

The paper is organized as follows: Section 1 presents a two-stage model of an elimination

tournament. We derive several propositions and outline the testable hypotheses. In Section
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2, we describe our data and empirical strategy for testing these predictions. Section 3

describes the results and Section 4 discusses the spillover and shadow effects in the context

of betting markets. We conclude in Section 5 and discuss the implications of our findings

for contest designers.

1 Theory

We study a new theoretical version of knockout tournaments that we describe as “sequentially-

resolved elimination tournaments.” Matches in each stage are staggered across time; within

a stage, players in later matches learn the identity of their potential future opponent from

outcomes of earlier matches. Sequential play is often found in practice; for example, in firm-

level tournaments, simultaneous promotions to division vice-president may be rare. Instead,

the identity of the new appointee is known to other workers still competing for a parallel ex-

ecutive spot–the hopeful workers now know their future opponent for advancement beyond

vice-president. To our knowledge, we are the first to consider such a format theoretically.

We use an additive noise model, as in Lazear and Rosen’s (1981) foundational work on

one-shot labor tournaments, to focus on the dynamics of a multi-stage elimination tourna-

ment. This structure is in contrast with other models of elimination tournaments where all

matches in a given stage occur simultaneously (for example, see Stracke (2011)) and the

contest success function takes on a Tullock form (see Rosen (1986)).3

In the following section, we explore the role of past and future competition on tournament

outcomes. We present a model that is simple enough to clearly inform our empirical tests, yet

rich enough to capture common features of high-stakes, multi-stage tournaments. Namely, we

model an elimination tournament with heterogeneously skilled players competing in sustained

competition–one could imagine professionals of varying abilities competing over months or

years for a prized position within the firm.4 In the main text, we consider these spillover

and shadow effects separately for expositional ease; however, in the appendix, we present an

analysis of the effects operating simultaneously. Combining the effects does not change the

general predictions of the model.

Our theory results describe the probability that the stronger player wins in different

stages of the elimination event. These predictions speak directly to our broader research

question of “selecting the best.” That is, our comparative statics results provide predictions

about when the strongest player is most likely to advance to future rounds of competition

3Unlike the Tullock model where competitors exert the equal effort in the final stage regardless of their

relative abilities, the additive noise model allows for heterogeneous efforts in all stages.
4In a sports context, our model better reflects the dynamics of an endurance event (e.g. tennis) than

competition requiring a short burst of effort (e.g. power lifting).
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and, ultimately, win the tournament.

1.1 Model Set-Up

Consider a two-stage elimination tournament with four players, where the players who win

in the first stage advance to the final stage. The overall tournament winner receives a prize

of   while the second-place competitor receives a prize . Let     0 and define

the prize spread ∆ =  −  Let player ’s total cost be a function of his effort  and

his cost type 
5 We denote player ’s costs as  (), where 

0 ()  0, 0 (0) = 0 and

00 ()  0 We assume that cost types, , vary across all players and are commonly known

amongst competitors.

For ease of exposition, we model heterogeneity through players’ cost types. However,

several alternative models produce identical results: for example, if we instead capture het-

erogeneity across valuations by defining a player’s prize value as 

or by allowing the impact

of an additional unit of effort on a player’s probability of winning to vary across competitors.

It can also be shown that capturing heterogeneity by varying cost function convexity leads

to similar results.

Recall that matches in the first-stage are sequential. Assume that players 3 and 4 compete

first. Then, player 1 faces player 2 knowing the outcome of the previous match. Without

loss of generality, we assume that player 3 won his match against player 4.

1.1.1 Final Stage

Assume that player 1 won his first-stage match. To find the equilibrium of the multi-stage

game, we begin by analyzing the strategies of player 1 and his opponent player 3 in the final

stage. Define player 1’s expected payoff function as

1 = 1 (1 3)∆ − 1 (1) +  (1)

where his probability of winning takes the following form:

1 (1 3) =

⎧⎪⎨⎪⎩
1 if 1 + 1  3 + 3
1
2
if 1 + 1 = 3 + 3

0 otherwise

(2)

5One could define a mapping  : R+ → R1+ that collapses levels of  effort-generating activities to the

real line. The overall cost of effort is then strictly increasing in the resultant scalar .
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where + is player ’s level of output. Output is a function of both effort  and a random

noise term  In definition (2)  the probability that player 1 wins is increasing in his own

effort and decreasing in the effort of his opponent.

Define  = 3 − 1 and let  be distributed according to some distribution  such that

probability (2) can be written as

1 (1 3) = 1 (1 − 3  ) =  (1 − 3) (3)

Now, player 1’s payoff function (1) can be written as

1 =  (1 − 3)∆ − 1 (1) +  (4)

and his first order condition is

1

1
= 0 (1 − 3)∆ − 1

0 (1) = 0 (5)

Following Konrad (2009) and Ederer (2010), we assume that  is distributed uniformly

with the following support6

 ∼ 

∙
−1
2

1

2


¸
and, therefore,

0 =
1



The assumption that  is uniformly distributed removes the strategic interdependence

of players’ current period effort choices (Konrad, 2009). This allows us to isolate the conse-

quences of past effort choices and potential future competition on current-stage effort. In a

firm context, this would assume that a worker’s optimal effort choice is independent of the

identity of his current opponent; of course, in earlier stages, his optimal effort depends on his

expectations about future opponents’ identities. In the Appendix, we relax this assumption

of same-stage independence and allow players’ optimal effort choices to depend on both their

current and future opponents. We show that the general predictions of the model continue

to hold with more general distributions that allow for same-stage interdependence, including

the normal distribution.

Rewriting the first order condition (5) yields:

1

1
=

∆


− 1

0 (1) = 0

6See the Appendix for conditions on the primitives of the model that assure that  is well-defined.
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which we can rearrange as the following expression:

0 () =
∆


for  = 1 3 (6)

Assume for the remainder of the analysis that player 1 is the stronger player (1  3)  Then,

expression (6) implies player 1 exerts more equilibrium effort in the final stage (∗1  ∗3) This

inequality implies that the stronger player is more likely to win in the final stage, relatively

to his weaker opponent–that is, the better player is more likely to be “selected” as the

overall tournament winner.

In the final round, since both players are guaranteed at least the second prize  in-

creasing the first prize amounts to increasing the stakes of the contest. As expected, higher

stakes leads to more effort from both players, though the stronger player increases his effort

more than the weaker player. Also, increasing the noise around effort (i.e., increasing  the

width of the support of ) reduces equilibrium effort, particularly for the stronger player.

Finally, as expected, effort choices are increasing in ability.

1.1.2 First Stage

Define 1 and 2 as the efforts of players 1 and 2 in the first stage. Player 1’s expected payoff

function in the first stage is

1 = 1 (1 2) ̃1 − 1 (1) (7)

where ̃1 is his continuation value (i.e., his payoff in the final stage):

̃1 = 1 (
∗
1 

∗
3 (3)) 

Equation (7) yields the first order condition

1

1
=

̃1


− 1

0 (1) = 0

which we can rearrange, for either player, as the following expression:

0 () =
̃


for  = 1 2 (8)

As in the final stage, equilibrium effort is increasing in ability and the continuation value.

Increasing the noise around effort has an adverse effect on first stage effort.

Recall that, at the start of their match, players 1 and 2 already know the outcome of the
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other first-stage match between players 3 and 4. Of course, this means that players 3 and

4 did not know exactly the identity of their future opponent. Instead, we assume that they

formed an expectation of their continuation value as follows:

E
h
̃

i
= 1|̃ (

∗
  

∗
1) +

¡
1− 1|

¢
̃ (

∗
  

∗
2) for  = 3 4

where 1| is the equilibrium probability that player 1 wins knowing that he will face player

 in the final stage.7 Note that player  cannot influence this probability 1| because it is

a function of the realized outcome of the completed match between players 3 and 4. This

simplifies our analysis because player ’s first-stage effort  does not change this probability

1| Thus, for players 3 and 4, we can restate the expression of their equilibrium effort (8)

as

0 () =
E
h
̃

i


for  = 3 4

and the analysis described above for players 1 and 2 applies similarly.

1.2 Shadow of Future Competition

We can use the model to understand the impact of known or expected future competition

on the likelihood that strong players advance to future stages of the tournament–of course,

this influences the likelihood that a high-skill player is selected as the overall winner.

Consider a decrease in the skill of the future opponent, player 3 (i.e. 3 increases). This

change has the effect of increasing the continuation value for both players 1 and 2 in the

first stage. Since player 1 has a lower cost of effort than player 2, player 1 will increase his

first-stage effort more than player 2 because his return to a change in the continuation value

is greater.

From the final-stage first order condition, equation (6)  it follows that ∗3 decreases as 3
increases. To understand the effect of decreasing ∗3 on the final stage payoff 1we take

the derivative of equation (4)

∗1
∗3

= 0 (∗1 − ∗3)∆ = −∆


 0

That is, as the final stage opponent’s effort decreases, the player 1’s final stage equilibrium

payoff increases. A change in the final round opponent’s skill will have an equal effect on

player 2:
∗

1

∗3
=

∗
2

∗3
= −∆




7When player 1 is stronger than player 2, ̃ (
∗
  
∗
1)  E

h
̃

i
 ̃ (

∗
  
∗
2) for  = 3 4
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Since the change in the continuation value is the same for players 1 and 2, the stronger

player will increase his effort (∗1) more than player 2 will increase his effort (
∗
2) To see this,

add a term  to represent the (equal) change in the continuation value to equation (8):

0 () =
̃ +



Note that the impact of the increase in the continuation value is larger for player 1 relative

to player 2
³


1

 
2

´
We require that both players’ effort choices are sufficiently sensitive

to a change in marginal benefit–players must be able to scale up their current equilibrium

effort levels in response to increased tournament rewards. Mathematically, this requires that
00(∗1)
00(∗2)

 2
1
 This condition on the slope of the marginal cost curve insures that the stronger

player is sufficiently sensitive to a change in marginal benefit induced by a weaker future

opponent; this further improves the stronger player’s probability of winning in the first stage.

For example, it can be shown that this inequality is satisfied with all cost functions of the

form  where   1 More generally, a sufficient but slack condition for the inequality is

000 ≤ 08 Note that cost functions of the form  with   2 fail to satisfy 000 ≤ 0 but still
meet the necessary condition of

00(∗1)
00(∗2)

 2
1
.

This analysis gives us the following proposition:

Proposition 1 Assuming that
00(∗1)
00(∗2)

 2
1
, as the skill of the future competitor in the final

stage declines (increases), the stronger player becomes even more (less) likely to win in the

first stage and thus more (less) likely to be selected as the overall tournament winner.

1.3 Effort Spillover

We can also examine effort spillover between stages of the tournament. Spillover can take

either a positive or negative form. Positive spillover might reflect learning (by doing), skill

building or momentum within a firm. For example, an innovation team whose proposal

advances to a second stage of funding might benefit from its first-stage experience, both

technical and relational. With positive spillover, second-stage effort is less costly than first

stage effort. In contrast, negative spillover might reflect fatigue or reduced resources in

later stages. For example, architects competing in design competitions might exhaust their

creative resources in early stages and have only limited energy for second-stage proposals.

In this case, second-stage effort is more costly than first-stage effort.9

8Ederer (2010) discusses models where the results instead depend critically on the sign of 000
9Different notions of spillover have been explored in the literature in settings where players with exoge-

nous, fixed resources make effort allocation decisions over multiple periods of play. For recent examples, see

Sela and Erez (2011) and Harbaugh and Klumpp (2005).
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Consider a scenario where effort expended by a player in the first stage influences his

effort in the final stage. We can rewrite player 1’s final-stage payoff as

1 =  (1 − 3)∆ − 1 (1 1) + 

where the cost function reflects current and past effort.

First, consider the case where a player’s marginal cost of effort in the final stage is

unaffected by previous stage effort:
(11)

11
= 0 If previous effort appears only as a fixed

cost in the final stage, we would expect no change in final-stage effort. For example, a

design team that submits an innovative proposal in the first stage might require specialized

equipment to complete the building phase in the second stage.

To study a negative spillover effect, we let a player’s marginal cost of effort in the final

stage be increasing in first-stage effort:
(11)

11
 0. Consider again expression (6) We

see that final stage equilibrium effort is strictly decreasing in first stage effort because the

marginal cost of final-stage effort is increasing in first-stage effort. With positive spillover, a

player’s marginal cost of effort in the final stage is decreasing in first-stage effort:
(11)

11
 0.

Now, from expression (6), final-stage equilibrium effort is strictly increasing in first-stage

effort.

We can re-write player 1’s marginal cost of effort with spillover as 0 (1 1) = 0 (1 0) 

where   1 for net negative spillover and   1 for net positive spillover. Revisiting

expression (6) we can rewrite marginal cost as

0 (1)  = ∆
1

or 0 (1) = ∆
̃1

(9)

where ̃1 = 1 Straightforward calculations show that
1

1
 0. Therefore, when ̃1  1

final period profit ̃1 is less than when there is no effort spillover. Conversely, when ̃1  1

final period profit ̃1 is greater than when there is no spillover.

The presence of the negative (positive) spillover also reduces (increases) first-stage effort;

in expression (8)  lower (higher) ̃1 leads to lower (higher) effort.

Since negative spillover decreases final-stage equilibrium effort, an increase in first-stage

effort implies a lower probability of success in the final stage, holding the opponent’s effort

and skill constant. Of course, the opposite is true for positive spillover. On net, when both

players in a match suffer negative spillover, the increase in effort costs in the current stage

reduces the probability that the stronger player wins. The direction and impact of spillover

depends on the context and, thus, is an empirical question.

As seen in expressions (9)  an increase in noise  has a similar impact to an increase

in negative spillover. That is, an increase in the noise of the effort-to-output relationship

10



reduces the disparity between players’ efforts, reducing the probability that the stronger

player wins. We collect these findings in the following proposition:

Proposition 2 In any stage, a common proportional increase in effective cost type or an

increase in noise decreases the probability that the stronger player is selected as the winner.

That is, when player ’s effective cost type is ,  (
∗
1 − ∗2)→ 05 and  (∗1 − ∗3)→ 05

as the degree of negative spillover  →∞ or the noise parameter →∞

Proof. From expressions (6) and (8) we can see that as cost types converge to infinity,

effort becomes so costly that no effort is exerted. Thus, the stronger player should fare

worse in events that are proportionally more costly for all players in every round. With

increased noise, a similar logic applies–as the support of  goes to infinity, equilibrium

effort converges to zero–the marginal return to effort declines. In the limit, effort has no

impact on a player’s probability of success and, therefore, no effort is exerted.

This proposition suggests that, with negative spillover, weaker players might support

costlier competitive conditions–for example, a weaker player might advocate for more strin-

gent common standards or more difficult tasks.

Our result that negative spillover levels the playing field in both stages is in contrast to

Harbaugh and Klumpp’s (2005) finding that intertemporal tradeoffs level the playing field

for the first stage but do the opposite effect in the final stage. Their result is sensitive to the

assumptions that effort is costless and that players’ total efforts are equally constrained.

1.4 Prize Effect

We can explore how changes in the prize structure affect equilibrium effort choice and tour-

nament outcomes. In particular, we study the effect of increasing the spread, ∆ between

first and second prize. To simplify our exposition, we assume that participants’ costs are

quadratic and hold constant the skill level of players in each stage.

1.4.1 Prize Effect - Final Stage

From equation (6)  we know that final period effort is

∗ =
∆

2

Since 1  2 increasing ∆ increases the effort of the stronger player more than for the

weaker player. That is, the effort disparity between players increases as the relative stakes

increase.

11



1.4.2 Prize Effect - First stage

From our analysis above, we can write out player ’s continuation value when he faces

quadratic costs and player :

e = Ã ∆
2
− ∆

2
+ 

2



!
∆ − 

µ
∆

2

¶2
+ 

Using equation (8) and our expression for ewe can solve explicitly for first-stage equilibrium
effort:

∗ =

µ
∆
2

− ∆
2

+
2



¶
∆ − 

³
∆
2

´2
+ 

2

The following expression describes the change in equilibrium effort resulting from a change

in ∆ :

∗
∆

:

∆
2

³
1

− 1



´
+ 1

2
− ∆

22

2

=

∆
2

³
1
2


− 1



´
+ 1

2

2

This leads to the following proposition:

Proposition 3 With quadratic costs, for a given prize spread increase, the stronger player

is even more likely to be selected as the winner in either stage.

Proof. See Appendix 6.3.

This proposition suggests that tournaments with steeper prize structures will more often

lead to the success and selection of the most able player.

1.5 Underdog Advantage

Now, we can compare the difference in effort choices between the stronger and weaker player

across stages to determine differences in their probabilities of winning, holding fixed the

skill differential between players. For example, we can compare the outcome of a final-stage

match between players of cost types 1 and 3 with the outcome of a first-stage match between

players of these same cost types.

Assume that a player of cost type 1 is stronger than a player of cost type 3 (1  3)  As

long as the final-stage losing prize  is large enough relative to ∆ then effort disparity
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across stages is ordered: ∗1− ∗3  ∗1 − ∗3. Since effort disparity is greater in the first stage

than in the final stage, expression (3) necessarily means that the stronger player has a greater

probability of winning in the first stage relative to the final stage. That is, when certain

prize conditions are satisfied, the weaker player has a lesser probability of losing against

a stronger player in the final stage relative to his probability of losing against that same

opponent in the first stage of an otherwise identical tournament. The intuition is as follows:

As we increase the losing prize  while holding prize spread ∆ constant, the difference in

first-stage efforts (∗1 − ∗3) increases because the stronger player is more sensitive to changes

in the continuation value. In contrast, the difference in final stage efforts (∗1 − ∗3) remains

the same, since the losing prize does not enter the first order condition for the final stage.

While the contest success functions are not directly comparable, this result broadly cap-

tures conflicting findings in the existing literature: While Rosen (1986) finds that there is

always an “underdog advantage” in his Tullock-style contest with multiple prizes, Harbaugh

and Klumpp (2005) find the opposite is true in winner-take-all contests when the supply of

effort is fixed and unused effort is valueless.10 We find that the presence or absence of the

underdog advantage will depend critically on the relative sizes of the first- and second-prizes.

This leads to our fourth proposition:

Proposition 4 1 (
∗
1 

∗
3 (3))  1 (

∗
1  

∗
2 (2)) when 2 = 3 and   ∆ +

2
³

³
∆
2

´´
 With a sufficiently large second place prize relative to the first place prize,

the probability that the weaker player wins in the final stage (and thus is selected as the

overall tournament winner) is greater than the probability that he wins in the first stage,

holding opponent skill constant.

Proof. See Appendix 6.3.

1.6 Model Predictions

The theory model outlined above provides the following main predictions:

1. Shadow of Future Competitors: The worse-ranked the expected competitor in the

next stage, the greater the probability that the stronger player is selected as the winner

in the current stage.

2. Effort Spillover between Stages: In equilibrium, increased negative (positive)

spillover decreases (increases) the probability that the stronger player is selected as

the winner in the final stage.

10Harbaugh and Klumpp’s “underdog disadvantage” is reduced (and, in the limit, eliminated) by the

introduction of a sufficiently large second prize.
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We also explore some additional comparative static results:

Noise in Effort: The noisier the effort-to-output relationship, the lower the probability

that the stronger player wins in either stage.

Prize Spread: A steeper prize structure improves the stronger player’s probability of

success in all stages.

Underdog Advantage in Final Stage: Fixing the competitors’ abilities and given a

sufficiently large (small) second-place prize, the probability of winning is greater (smaller)

for the weaker player in the final stage, relative to the first stage.

One strength of this particular model is that, while these hypotheses emerge from dif-

ferences in the abilities and efforts of players, the testable implications can be framed in

terms of outcomes. This means that although effort is notoriously difficult to assess in field

data, we can test the two main predictions of the model by observing tournament outcomes.

That is, we can identify readily whether changes in the strength of future competition or

the degree of negative spillover impacts whether the most able competitor is selected as the

tournament winner. In the following sections, we describe our data and empirical analysis.

2 Data

Professional tennis offers an ideal environment in which to test the empirical implications

of the theory.11 Tennis events are single-elimination tournaments–only winning players

advance to successive stages until two players meet in the final stage to determine the overall

winner. Prizes increase across stages with the largest prize going to the overall winner.

The distribution of prizes is known in advance of all tournaments. The financial stakes are

substantial and vary across events–for example, the total purse for the 2009 US Open singles

competition was $16 million with a $1.7 million prize for first place, while the total purse

for the 2009 SAP Open was $531,000 and the winner received $90,925.

Our empirical analysis exploits the random nature of the initial tournament draw. By

ATP rules, the top 20 to 25% of players in an event (the “seeds”) are distributed across the

draw: the top two seeds are placed on opposite ends of the draw; the next two seeds are

randomly assigned to interior slots on the draw; the next four seeds are randomly assigned to

other slots; etc. After the seeded players have been assigned, the remaining players are then

randomly placed to matches prior to the start of the event.12 This variation provides the

11While tennis tournament organizers may various objections beyond selection, it is the structure of these

tournaments that lends itself to our empirical tests. That is, one would expect tournament competitors to

respond to the structure and incentives, not the reason for that contest design
12Note that the seeding is done according to rank within a tournament; the top seed in one event may

have a different skill level than the top seed in another tournament.
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identification for our empirical approach–we can observe the same skilled player compete

against a variety of randomly-assigned opponents. For example, in our data, we can observe

the fourth best player in the world play against competitors ranked 50, 100, and 250 in

the first round of similar tournaments in a single year.

The structure of tennis tournaments is particularly conducive to studying the shadow

of future competition–both players (and the econometrician) know the competitors in the

parallel match. In some cases, players know exactly who they would face in the next round;

in other cases, they can make reasonable predictions about upcoming opponents. Moreover,

player ability is also observable to players and researchers–past performance, as well as

world rankings statistics, are widely available. Figure 1 presents the draw from the 2007

Swiss Indoors tournament in Basel. In the first round, Del Potro and Russell knew that

their next opponent would be either Federer or Berrer. Of course, given the ability difference

between these possible future opponents, Del Potro and Russell were likely predicting that

their second-round opponent would be Federer.

Data from professional tennis has been used in other research: Walker and Wooders

(2001) used video footage and data from the finals of 10 Grand Slam events to identify mixed

strategies. Malueg and Yates (2010) study best-of-three contests using four years of data

from professional tennis matches with evenly-skilled opponents. They find that the winner of

the first set of a match tends to exert more effort in the second set than does the loser and, in

the event of a third set, players exert equal effort. Forrest and McHale (2007) use professional

tennis tour and bookmaking data and find a modest long-shot bias. Gonzalez-Diaz et al.

(2010) use data from US Open tournaments to assess individual players’ abilities to adjust

their performance depending on the importance of the competitive situation. They find that

heterogeneity in this ability drives differences in players’ long-term success. Using detailed

data from the men’s and women’s professional tennis circuits, Gilsdorf and Sukhatme (2008a

and 2008b) find that larger marginal prizes increase the probability that the stronger player

wins.

2.1 Professional Tennis Match Data

To test the predictions outlined in the theory, we examine the behavior of professional tennis

players in 615 international tournaments on the ATP World Tour between January 2001

and June 2010. The data include game-level scores and player attributes for men’s singles

matches (available at http://www.tennis-data.co.uk). The four “Grand Slam” events–the

Australian, French, and US Opens, and Wimbledon–are included in the data. All of the

tournaments are multi-round, single-elimination events played over several days.
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Tournament draws may include 28, 32, 48, 56, 96 or 128 players. Of the 615 events in the

data, 433 tournaments consist of five rounds of play–rounds 1 and 2, quarterfinals, semifi-

nals, and the final. Six rounds are played in 128 events. Fifty-four tournaments, including

the Grand Slam events, consist of seven rounds of play–rounds 1 to 4, quarterfinals, semi-

finals, and the final. Most ATP events are best-of-three sets, while the Grand Slam events

are best-of-five sets.13 Figure 1 is a typical draw for a five-round, 32-player tournament. De-

pending on the number of competitors, first-round byes may be awarded to the top-ranked

players.14

World rankings (officially called the South African Airways ATP Rankings) are based on

points that players accumulate over the previous 12 months. The ATP points directly reflect

the pyramid structure of tournaments. More points are awarded to players who advance in

top tournaments; for example, a Grand Slam winners earns the maximum points awarded for

a single event.15 ATP rankings are simply a rank-order of all players by their accumulated

points. In our analysis, we use the ATP rankings to account for players’ skill levels.16

Table 1 presents summary statistics from over 28,000 men’s professional tennis matches.

On average, matches are decided after 23 games; however, players play more games on average

in the final round than in the first or semifinal rounds (p-value 001). Match winners are

significantly more skilled than losers (p-value 001). Tournament winners typically rank

30th in the world, while second-place finishers are 45th in the rankings. Tournaments’

seeding formats generally pair the weakest players against the strongest players in the first

round. Consequently, the disparity in rankings decreases as players advance. To consider

the competitive balance of matches across rounds, we also report the rankings ratio (worse

rank divided by better rank). While mean rankings ratios remain relatively stable across

rounds, the variance appears to decline. The skill-related summary statistics suggest that

while high-skill players do not always win their matches, on average, opponents become

closer in ability as tournaments progress.

13To win a set, a player must win at least six games and at least two games more than his opponent.

A game is won by the player who wins at least four points and at least two more than his opponent. Set

tie-break rules vary by tournament.
14Byes automatically advance a player to the next round.
15For details of the world ranking system, see the 2011 ATP World Tour Rulebook, available online at

www.atpworldtour.com.
16Klaassen and Magnus (2003) suggest a transformation of rankings to account for differences in ability

between high- and low-skilled players. They calculate a player’s ability as  = +1− log2 () where
 is the total number of rounds in the tournament and  is the player’s tournament seed. All of

our analyses are robust to this alternative measure of skill heterogeneity–results with the Klaassen-Magnus

transformation are qualitatively very similar to the results using ATP rankings and are not reported.
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3 Results

In this section, we present empirical tests of the theoretical predictions. We first examine

performance data from professional tennis matches, presenting empirical results supporting

both spillover and shadow effects. We then report additional evidence relating to the model’s

predictions about an underdog advantage. In Section (4), we ask whether shadow and

spillover effects have been priced into betting markets. Although this additional analysis

is not a direct test of the theory, it does provide further support for the importance of

understanding these phenomena.

3.1 Spillover and Shadow Effects

Proposition 1 states that weaker future competition will increase the stronger competitor’s

probability of success in the current stage, thus increasing the probability that the tourna-

ment selects the best player as the winner. This prediction follows from the observation

that, while weaker future competition will cause both players to increase their effort in the

current period, the current effort of the better-ranked player increases even more than the

current effort of his worse-ranked opponent. Proposition 2 considers the role of spillover in

effort choice. The direction of the spillover effect is often an empirical question; however,

one might expect negative spillover in events that require intense effort exertion over a short

period of time. In professional tennis, players may face a higher cost of effort if their total

exertion in previous matches induced lasting fatigue.

The following specification allows us to study the effects of shadow and spillover simul-

taneously:

 = 0 + 1 + 2 (10)

+ 3 + 4 +  + 

where  is a binary indicator of whether the better-ranked player in match 

won in a stated round of tournament ,  represents the expected ability of the

opponent in the next round,  represents the heterogeneity of players’ skills in the

current match,  is the number of games played in all previous rounds of the

tournament by the better-ranked player, is the number of games played in all

previous rounds of the tournament by the worse-ranked player,  is a matrix of tournament-

level controls, and  is the error term. We estimate all equations using OLS with a robust

variance estimator; results are quantitatively very similar for a probit specification and are

not reported.
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In the reported regression,  is the ratio of the rank of the worse player and

the better player.  is the rank associated with the stronger player in the parallel

match. For example, for the 2007 Swiss Indoors tournament (see Figure 1), the expected

future opponent for the match between Del Potro and Russell would be Federer. For the

Del Potro-Russell match,  =
71
49
and  = 1. Note that this construction of

 is a conservative one–we are assuming that the future competitor will always be

the better of the two potential opponents in the next round. This means that, on average,

we are understating the continuation value for players in the current round. Consequently,

our coefficient estimates on  will understate the actual shadow effect.
17 Results are

qualitatively similar if we instead use an average of future opponents’ rankings.

Tournament-specific fixed effects capture average event-level characteristics and control

for differences between tournaments (e.g. media attention). Total purse size for any given

event has not varied substantially across time. For example, the purse for the US Open has

grown by an average of 3% each year from 1997 to 2011. Over the same period, the inflation

rate was roughly the same. Therefore, real purse size was relatively stable and the purse

effect is captured by tournament dummies. Additionally, because some tournaments have

changed venues over time, we include additional controls for surface and court type.

Results: Table 2

Table 2 reports the estimated coefficients for regression (10) by tournament round.18 The

round-by-round analysis overcomes the confounding influence of changes in marginal prizes

across rounds within a tournament, while still controlling for the differences in prizes for

a given round across events. Moreover, it allows us to cleanly account for players’ past

exertion (and the hypothesized spillover effect) without concerns about the autocorrelation

of the same player’s performance and effort over a single tournament.

In all rounds before the semifinals, the coefficient on the shadow effect () is

positive and statistically significant (p-values  005). That is, the weaker the future oppo-

nent (i.e. a larger rank), the greater the probability that the stronger player is selected as

the winner in the current round. The estimated effects for the quarterfinals and semifinals

are also positive, although not statistically significant at conventional levels–this may re-

17While our data do not report start and end times for all matches, we can determine the order of play in

some tournaments (e.g. 1,730 out of 10,812 first-round matches). Restricting our sample to only those data,

we find that, in general, the coefficient on  is larger when the parallel match has been resolved

relative to case where the winner of the parallel match has not been determined. This difference conforms

to our theory prediction; however, the coefficients are not statistically different from each other with these

much smaller samples.
18Note that the first and last columns of Table 2 omit estimates for spillover and shadows, respectively–

there is no spillover for players in the first round of a tournament and players face no shadow in the final

round.
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flect both small sample sizes and limited variation in opponents’ skills at advanced stages

of these tournaments. The magnitude of the coefficients may also be interpreted–we in-

clude mean and standard deviation values of future opponent rank in the table. For a one

standard-deviation increase in future opponent’s rank (decrease in ability), we estimate that

the probability that the stronger player wins in the current round increases by 2.0 to 5.7

percentage points. Given that the average probability that the stronger player wins is ap-

proximately 65%, on average, the shadow effect represents a 5% increase in the probability

of winning.

Coefficient estimates for the two spillover variables take on predicted signs and, in gen-

eral, are statistically significant–more previous games for the stronger player decreases the

probability he wins in the current match, while in general more previous games for the weaker

player increases the chance that the stronger player wins. The magnitudes of the coefficients

suggest that, on average, a one standard-deviation increase in the number of previous games

is associated with a 10 and 4 percentage point decline in the probability of winning in the

current match for the stronger and weaker player, respectively. For the stronger player in

an average match, this represents a 15% decline in the probability of winning; for weaker

players, this reflects a 11% decline in success.

The history of the stronger player appears to drive his current success more than the

history of his opponent–from expression (11) of our model, we expect the stronger player

to be more adversely affected than the weaker player for a given increase in spillover. That

is, we predict that more negative spillover will reduce the likelihood that the stronger player

is selected as the winner. Indeed, in the data, the effect of previous games played by the

stronger player is often larger than the effect of the weaker player’s previous games. T-tests

comparing the magnitude of the spillover estimates ( : 3 = −4) reject equality in the
2nd round, 4th round, quarter- and semi-finals (p-values  005). We cannot reject the null

of equal effects in the final round, perhaps because players tend to be relatively well-matched

in terms of ability.

Comparing across rounds, the effects of spillover from both stronger and weaker players’

histories are smaller in the final periods of tournaments relative to early rounds. This may

be because many events provides additional rest periods for players between the later rounds

of play, while early-round schedules often have players competing on consecutive days.

As expected, the coefficient on skill disparity in the current match is also positive and

statistically significant (p-value  001), indicating that increased heterogeneity between the

players increases the probability that the stronger player wins.

We estimate, but do not report, results for regression (10) using ATP points as a measure

of player skill. Estimates are qualitatively similar to results using ATP rankings.
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3.2 Underdog Advantage

Rosen (1986) predicts that the weaker competitor’s likelihood of success should always be

higher in the final round relative to the probability that he wins earlier in an elimination

tournament. Our proposition 4 provides a critical caveat, requiring that the second-place

prize be sufficiently large relative to the gap between first and second-place prizes in order

to induce an underdog advantage.

In the ATP match data, the weaker competitor (underdog) wins 34.1% of the matches

in final rounds and 32.6% of matches in earlier rounds. However, this difference is not

statistically significant at conventional levels. For robustness, we also ran a comparison

while controlling for player skill and tournament-level heterogeneities. Again, we failed to

find statistically-significant differences between the weaker players’ probability of winning in

final and non-final rounds. Although not conclusive, our analysis suggests that the losing

prizes may not be sufficiently large (relative to the winning prizes) to induce an underdog

advantage in the final round.

4 Betting Markets, Spillover and Shadows

While spillover and shadow effects have been relatively understudied in the literature, in

this section, we explore whether active markets already recognize these dynamics of multi-

stage competition. Indeed, by examining data from professional betting markets, we find

compelling evidence that subtle spillover and shadow effects have been incorporated into

prices.

The efficiency of prediction and betting markets has been studied extensively in the

literature; for examples, see the survey by Vaughn Williams (1999). Prediction markets are

founded on the argument that by aggregating information, competitive markets should result

in prices that reflect all available information (Fama 1970). Therefore, driven by aggregated

information and expectations, prediction market prices may offer good forecasts of actual

outcomes (Spann and Skeira 2003).

Similarly, betting odds reflect bookmakers’ predictions of future outcomes. Betting odds

may change as new public or private information becomes available to the bookmaker and

with changes in the volume of bets that may be driven by individual bettors’ private infor-

mation. As with formal prediction markets, we might expect betting odds to provide good

forecasts.

Spann and Skeira (2008) compare forecasts from prediction markets and betting odds

using data for German premier soccer league matches. They find that prediction markets
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and betting odds provide equally accurate forecasts. This result seems reasonable, since

betting companies with inaccurate and inefficient odds should not survive.

To examine whether betting markets incorporate information about the effects of shadow

and spillover, we estimate a regression similar to equation (10)  Now, instead of a binary

indicator of the actual outcome, the dependent variable is the probability that the stronger

player wins the match as implied by betting markets.

Our data include closing odds from professional bookmakers for pre-match betting.19

Woodland and Woodland (1999) note that bookmakers adjust odds based on the volume of

bets, making the odds available as the betting market closes particularly rich in information.

In our analysis, we use the median of the available odds data since the data from no single firm

covered all matches.20 Overall, there was little variation between odds posted by different

bookmakers for the same match, perhaps because participants in tennis betting markets tend

to be specialists and there is little casual betting (Forrest and McHale 2007). 21

The accuracy of odds market predictions suggests that information beyond simple rank-

ings are being priced in the market. Between 2001 and 2010, predictions from the market

are correct for 69% of the 25,633 matches for which betting data are available. Given that

the stronger player actually wins in 65% of matches, one might not be surprised by this

accuracy if the market always predicted that the stronger player wins. However, in 18% of

the matches, the betting odds imply that the weaker player is expected to win. Interest-

ingly, these market predictions are accurate nearly 63% of the time. That is, these betting

markets do almost as well predicting an upset as they do predicting a win by the stronger

player. This is particularly notable since a naive assessment of the ATP rankings in these

matches might suggest that the odds are still solidly against the weaker player–on average,

the weaker player’s rank is 2.1 times higher (worse) than his opponent.

Results: Table 3

Table 3 reports results for round-level regressions where the dependent variable is the

probability that the stronger player wins as implied by the betting market. Overall, coeffi-

cient estimates suggest that the betting predictions incorporate information about players’

past and expected future competition.

19Data from 11 betting firms (Bet365, Bet&Win, Centrebet, Expekt, Ladbrokes, Gamebookers, Inter-

wetten, Pinnacles, Sportingbet, Stan James, and Unibet) are included in our main dataset obtained from

www.tennis-data.co.uk. Several betting firms also offer in-play betting, but we focus our analysis on pre-

match bets only.
20We calculate the probability odds from the decimal odds in the original data. Probability odds are

1/(decimal odds-1) 
21A positive long-shot bias–where the market undervalues the true favorite and overvalues the long-

shot–has been documented in tennis odds by Forrest and McHale (2007). However, the authors find this

small bias is consistent over a broad range of match-ups. In contrast to some markets, they do not find any

range with a negative long-shot bias.
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Coefficient estimates for the effect of a stronger future opponent are positive and statis-

tically significant for all rounds except for the shadow of the final round on the semifinals

(p-values range from  001 to 01). It is not surprising that we do not identify the effect

of the shadow of the final on the semifinal, given the compressed distribution of skill at the

end of the tournament.

Since the betting market closes only at the start of the match (and after the end of

earlier rounds), players’ past exertion information is readily available. Indeed, coefficient

estimates for the stronger and weaker players’ previous number of games are statistically

significant (p-values  001) and take on the expected signs. More previous games played by

the stronger player is associated with a decrease in expectations of his success, while more

previous games played by the weaker player is associated with an increase in expectations

that the stronger player wins. As in Section 3.1 and as predicted by theory, the magnitude

of these coefficients suggests that stronger players are more adversely affected by a given

level of spillover relative to weaker players.

Greater heterogeneity in players’ abilities may increase the market’s expectation that the

stronger player wins–the coefficient on rank ratio is positive and statistically significant in

all rounds (p-values  001).

Overall, we find strong evidence that prices in tennis betting markets reflect both the

shadow and spillover effects predicted by our model. Interestingly, we again find no evidence

of an underdog advantage–higher predicted odds for the weaker player in the final relative

to earlier rounds–in the betting data.

5 Conclusion

In this paper, we explore a class of contests we call “sequentially-resolved elimination tour-

naments.” We present a two-stage, match-pair tournament model that provides two sharp

results: (a) a shadow effect of future competition–the weaker the expected competitor in

the final stage, the greater the probability that the stronger player is selected as the winner

in the first match; (b) an effort spillover effect–increased negative (positive) spillover de-

creases (increases) the probability that the stronger player wins in the final stage. We also

identify a noise effect, whereby increasing noise around effort reduces the probability that

the stronger player wins in either stage, and a prize spread effect, whereby increasing stakes

improves the stronger player’s probability of success in both stages. We provide an analysis

of the underdog advantage suggesting that its presence depends on the distribution of prizes.

We test our two main theoretical hypotheses using data from professional tennis matches.

We find evidence of a substantial shadow effect, where a weaker future competitor increases
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the probability that the stronger player wins the current match. We also identify a negative

spillover effect in tennis tournaments–more effort exertion in the previous rounds is asso-

ciated with significantly less success in the current round. We do not find support for an

underdog advantage in the final tournament stage, suggesting that the prize conditions for

this hypothesized phenomenon may not be satisfied in the data. Unfortunately, these data

do not allow us to test our secondary theoretical results–in tennis, the plausible measures

of noisiness (best-of-three vs. best-of-five matches) and the steepness of the prize distrib-

ution are highly correlated and thus the effects cannot be identified cleanly. However, our

theoretical model provides clear noise- and prize-related predictions.

In a supplemental analysis, we use probability odds data from bookmakers to show that

betting markets recognize and price in the spillover and shadow effects.

5.1 Discussion

Our findings have implications in terms of the structure of elimination tournaments. Tour-

naments are often designed to identify high-ability candidates in environments where the

contest organizer cannot readily observe innate talent. Our results suggest ways by which a

contest designer can improve the likelihood that the strongest candidate succeeds. Limiting

negative spillover by allowing competitors opportunities to refresh their resources between

stages increases the probability that the stronger type wins. Firms may also want to encour-

age positive spillover through learning. For example, in an innovation contest, firms should

be given adequate time between stages to raise additional funds and pursue more advanced

technology improvements. Similarly, a firm may wish to institute a “work-life balance” pro-

gram that promotes employee wellness, discourages career-related burnout, and improves the

probability that the firm’s labor tournament promotes the strongest workers.

Contest organizers may also wish to avoid “noisy” competition where the effort-to-output

technology is less precise; for example, a larger panel of decision-makers in innovation, design

or personnel tournaments may yield more discriminating selection.

Higher powered prizes also enhance selection across stages–large prize spreads, as well

as small loser prizes, will reduce the chance of selecting the lower-ability candidate.

In contrast, if a contest designer is concerned with the unevenness of competition, it

can design a more balanced contest with more negative spillover, noisier effort-to-output

activities, and a flatter prize structure.
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6 Appendix

6.1 Conditions for  (·)
To ensure that probabilities are well-defined, we require two conditions on the primitives:

0 


∆
1


−

∆
3


+
2


 1 and 0 



̃1
1


−

̃2
2


+
2


 1

where  ≡ [0 (·)]−1  These conditions ensure that(·) ∈ (0 1) for both stages in equilibrium.
Depending on the model parameters, one condition will determine the upper bound of (·)
and the other condition will determine the lower bound.

6.2 Combined Shadow and Spillover Effects

Our main analysis considers separately the effects of effort spillover and the shadow of future

competition. Here, we present an analysis when both effects are at play. Combining the

effects does not change the general predictions of the previous analysis–spillover continues

to even the playing field, while weaker future competition does the opposite.

6.2.1 Spillover and Shadow - Final Stage

We begin with the final stage and fix players’ abilities across the stages. For illustration

purposes and computational ease, we again assume quadratic costs. Our first order condition

for the final stage yields equilibrium effort choice

∗ =
∆

2()

where  (·) reflects the degree of spillover from the previous stage and is an increasing func-
tion of first stage effort . As expected, greater first-stage effort results in lower equilibrium

effort in the final stage. Further, this effect is amplified for the stronger type since 1  2

The final stage spillover effect is therefore

∗
()

=
−∆

2()2
 0

Therefore, a given level of spillover (1 = 2 = ) reduces the disparity between participants’

efforts in the final stage, since
∗1

(1)


∗2
(2)

 0
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6.2.2 Spillover and Shadow - First Stage

Next, we consider effort decisions in the first stage and write player ’s payoff as22

 = (·)
ÃÃ

∆
2

− ∆
2

+ 
2



!
∆ − 

µ
∆

2

¶2
+ 

!
− 

2


The first order condition for the first stage is




=

µ
∆

2
− ∆
2

+
2



¶
∆ − 

³
∆
2

´2
+ 



+(·)
µ−∆ 2

22
2


+

µ
∆ 2

42
2


¶¶



− 2 = 0

which then gives us the following expression for first-stage equilibrium effort:

∗ =

µ
∆

2
− ∆
2

+
2



¶
∆ − 

³
∆
2

´2
+ 

2| {z }
shadow effect

+
(·)

³
−∆ 2

22
2


+
³

∆ 2

42
2


´´



2| {z }
spillover effect

(11)

With no spillover ( = 1)  the left term is precisely the shadow effect we described in

Section (12). The right term reflects spillover. When  = 1 this spillover term is greater

for the stronger player and, thus, the stronger player reduces his effort more than the lesser

player (since (·) ≥ 1
2
and 1  2). Since the stronger player exerts more equilibrium

effort in the first stage, he will necessarily suffer more spillover in the final stage (assuming

players face a common  () function). Thus, spillover has the effect of evening the playing

field in both stages. That is, ceteris paribus, spillover increases the chance of an upset.

6.3 Proofs

Proposition 3: With quadratic costs, for a given prize spread increase, the stronger player

is even more likely to be selected as the winner in either stage.

Proof. Let player 1 be the stronger player and player 2 be the weaker player so that 1  2

The result for the final stage effort follows immediately from equation (6)  To compare the

effect of changing the prize spread ∆ on players’ first stage equilibrium efforts, we consider

22We write  () as  to simplify the notation in this section.
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the following expression:

∗1
∆

− ∗2
∆

=

∆
2

³
1
2

1
− 1

2

´
+ 1

2

21
−
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2

³
1
2

2
− 1

1

´
+ 1

2

22

=
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23

µ 1
2

21
− 1

12

¶
+

1

41
− ∆

23

µ 1
2

22
− 1

12

¶
− 1

42


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23

µ 1
2

21
−

1
2

22

¶
 0

The final inequality is always met, since 1  2 by assumption. Therefore, the stronger

player increases his effort more than the weaker player for a given increase in ∆ Conse-

quently, this increased effort disparity increases the probability that the stronger player wins

in the either stage.

Proposition 4: 1 (
∗
1 

∗
3 (3))  1 (

∗
1  

∗
2 (2)) when 2 = 3 and   ∆ +

2
³

³
∆
2

´´
With a sufficiently large second place prize relative to the first place prize, the

probability that the weaker player wins in the final stage (and thus is selected as the overall

tournament winner) is greater than the probability that he wins in the first stage, holding

opponent skill constant.

Proof. Proposition 4 identifies an underdog advantage in the final stage–that is, the weaker

player has a greater probability of winning in the final stage over the first stage. This occurs

when    where

 =

³
∆
1

´
− 

³
∆
3

´
+ 

2



 =

³

̃1
1

´
− 

³
̃2
2

´
+ 

2



in other words,



Ã
̃1

1

!
− 

Ã
̃2

2

!
 

µ
∆

1

¶
− 

µ
∆

2

¶
(12)

Assume that the skill level of player 1’s opponents in the first and final stages are equal,

2 = 3

We must show that ̃2  ∆ This will prove the inequality in expression (12) since the

difference in the pairs of  functions is increasing in that stage’s prize and we know that
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̃1  ̃2

̃2  ∆

(1− (·))∆ − 2 (2) +   ∆

   (·)∆ + 2 (2)

   (·)∆ + 2

µ


µ
∆

2

¶¶
The final inequality provides a sufficient condition for an underdog advantage. Note that

when we fix ∆ the value of the RHS of the inequality is also fixed. Then, holding ∆

fixed we can find some   0 that satisfies the inequality. However, recall that  must

be less than 1; yet,  is increasing in  To see that some values satisfy  ≤ 1,
we allow the prize levels to converge:  →   In this case, as ∆ → 0 the RHS of the

inequality approaches 0 and the inequality is then easily satisfied since   0

For a simple example, set: 1 = 07; 2 = 1;  = 01; ∆ = 1;  = 15 With quadratic

costs, our inequality fails–i.e., the weaker player is even less likely to win in the final stage.

However, with  = 05, the weaker player is more likely to win in the final stage. Thus,

given a large enough second-place prize relative to the first-place prize, the weaker player is

more likely to win against the same opponent in the final stage.

6.4 A General Distribution Case

6.4.1 Final Stage

The model in the body of the paper presents results when the noise in players’ output is

distributed uniformly; recall that, in section (1)  we define  = 3 − 1 and assume that

 is distributed according to  ∼ 
£−1

2
 1

2

¤
 In fact, similar results can be derived for

any unimodal and symmetric distribution  (•) with mean zero. For illustrative purposes,
let players face quadratic costs.23 Again assume that the first-stage matches are resolved

sequentially; players 1 and 2 know that player 3 won his parallel match to advance to the

final stage.

Player 1’s payoff function for the final stage can be written as

1 =  (1 − 3)∆ − 1 (1)
2
+ 

23More generally, players can face any cost function of the form .
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and his first order condition is

1

1
= 0 (1 − 3)∆ − 211 = 0

Similarly, player 3’s first order condition is

0 (3 − 1)∆ − 233 = 0

Since (·) is symmetric about its mean, it follows that 0 (1 − 3) = 0 (3 − 1). This

implies the following in equilibrium:

12
∗
1 = 32

∗
3

∗1
∗3
=

3

1
(13)

Although changes in the prize spread or the noise around players’ output affect equilib-

rium effort, the ratio of players’ efforts is constant. It follows, for example, that an increase

in the prize spread that leads to higher equilibrium effort from both competitors will nec-

essarily increase the absolute spread between players’ efforts. In turn, this increases the

probability that the stronger player wins in the current stage since his probability of win-

ning is  (1 − 3). In contrast, as equilibrium effort falls–for example, from the adverse

effects of negative spillover–the absolute spread between players’ efforts decreases. Here,

the probability that the stronger player wins declines with equilibrium effort levels.

Since  (•) can be any unimodal symmetric distribution, the impact of changes in the
variance of  (•) depends on the exact distribution and its parameters. The top panel of
Figure A1 provides an illustration: consider two normal distributions centered at zero with

standard deviations of 1 and 2, respectively.

First consider region A. When the players are relatively similar in ability and thus choose

similar equilibrium efforts, reducing the variance means a “thickening” of the density. This

provides greater incentives for both players, as the marginal return to effort is greater.

Therefore, when players are similar in ability, the probability that the stronger player wins

increases as the variance decreases.

Now consider region B where the ability difference between players is substantial and

decreased variance means a “thinning” of the density. This weakens incentives for both

players, as the marginal return to effort is reduced. Therefore, in this region, decreased

variance reduces the probability that the stronger player wins.
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6.4.2 First Stage Effort and Shadow Effect

Next, we consider players’ effort choices in the first stage of competition. Here, player 1 faces

a similar payoff function to his final-stage problem, but considers his continuation value e1
instead of the prize spread ∆ This yields the following first order condition:

0 (1 − 2) e1 − 121 = 0

To study the impact of the ability of the future competitor on first-stage outcomes, we

consider the case where the player 3 becomes a weaker opponent (i.e., 3 increases). The

following two conditions are sufficient for player 1 to weakly increase his effort relative to

his current opponent’s effort choice and thus improve his probability of winning in the first

stage: (a) 0 (∗1 − ∗3) ≥ 0 (∗2 − ∗3) and (b)

3
e1 ≥ 

3
e2 In the following sections, we

describe when each of these conditions holds.

Condition (a): 0 (∗1 − ∗3) ≥ 0 (∗2 − ∗3) When noise is distributed uniformly,0 (1 − 3) =

0 (2 − 3) and condition (a) is always met. For more general distributions, we must ana-

lyze this condition over several cases. Consider a contest where the difference in players’

additive noise terms, is drawn from a normal distribution, illustrated below in the bottom

panel of Figure A1. Since the ordering of players’ efforts is critical for the analysis, we outline

three cases.

Ordering 1) When ∗3  ∗2  ∗1 , players 1 and 2 expect to face a future opponent

who is weaker than both of them. For example, in the figure below, suppose that ∗1−∗3 lies
at C and ∗2 − ∗3 lies between B and C. Here, we violate condition (a) since 

0 (1 − 3) 

0 (2 − 3)  If player 1 and 2 are similar enough in ability, the current increase in player

1’s effort can still be greater despite a smaller change in continuation value since 1  2

That is, player 1 is more sensitive to a change in continuation value so a smaller change in

the value can still yield a greater change in effort for player 1.

Ordering 2) When ∗2  ∗1  ∗3, the future opponent is always stronger than both

current players. In this case, it is unambiguous that the stronger player has a greater

increase of effort since now ∗1− ∗3 lies say between A and B and 
∗
2− ∗3 to the left of that.

This means 0 (1 − 3)  0 (2 − 3) 

Ordering 3) When ∗2  ∗3  ∗1 the future opponent is stronger than player 2 but

weaker than player 1 We can now have either ∗1 − ∗3  |∗2 − ∗3| or ∗1 − ∗3 ≤ |∗2 − ∗3| 
The first inequality leads to a violation of condition (a), since 0 (1 − 3)  0 (2 − 3) ; in

contrast, condition (a) is satisfied for the second inequality. That is, condition (a) is satisfied

when ∗1 − ∗3 falls between B and C and ∗2 − ∗3 falls below A.
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Overall, we find that the condition is satisfied whenever the future opponent is sufficiently

strong. That is, we find the shadow effect of future competition as long as the future opponent

is sufficiently more skilled than the weaker player in the current match.

Assuming that the spreads between players’ abilities are similar across parallel matches,

we will observe most often the case where the expect future opponent is similar in ability to

the stronger current player. In the event that the weaker player does win the parallel match,

the marginal returns to effort may be reversed and the current weaker player may actually

increase his effort more than his stronger opponent. However, in our empirical analysis, these

less frequent cases simply work against finding a positive shadow effect.

Condition (b): 
3
e1 ≥ 

3
e2 To consider the second condition, recall that player 1’s

final stage equilibrium payoff is

1 = e1 =  (1 − 3)∆ − 1 (1)
2
+ 

The following expression describes how final stage profit changes as a function of player

1’s opponent’s cost type 3 :

1

3
= 0 (∗1 − ∗3)∆

µ
∗1
3
− ∗3

3

¶
− 12

∗
1

∗1
3

(14)

From equation (13) we know that ∗1 =
∗33
1
which implies that

∗1
3

=
∗3
1
and ∗3 =

∗11
3

which implies that
∗3
3
=

−∗11
23

 Thus, we can rewrite expression (14) as

0 (∗1 − ∗3)∆

µ
∗3
1
+

∗11
23

¶
− 12

∗
1

∗3
1

= 0 (∗1 − ∗3)∆
∗11
23

 0

Thus, for 
3
e1 ≥ 

3
e2 we want to show ∗11 ≥ ∗22 . Recall that, in equilibrium,

∗1 =
0(∗1 − ∗3)∆

21

Thus, ∗11 =
0(∗1−∗3)∆

2
and ∗22 =

0(∗2−∗3)∆

2
 If our first condition 0(∗1 − ∗3) ≥

0(∗2 − ∗3) is met, then ∗11 ≥ ∗22 and

3
e1 ≥ 

3
e2 That is, 0(∗1 − ∗3) ≥ 0(∗2 − ∗3)

is necessary and sufficient for meeting condition (b). In other words, the shadow effect is a

function of both the distribution of noise and players’ skill disparity.
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6.5 Spillover

In the section (13)  we describe negative spillover as increasing players’ effective cost types.

Assume that two players experience the same level of exertion in the first stage, leading to

the same proportional increase in cost types in the final stage. The ratio of their efforts

remains unchanged; however, final stage efforts are lower and thus the absolute spread in

efforts is smaller and the stronger player is less likely to win the match. Therefore, as we

found in the uniform case, spillover evens the playing field.

6.6 Underdog Advantage

An underdog advantage still exists with a more general noise distribution when the second

prize is sufficiently large relative to the prize spread. This can be shown by holding ∆ fixed

while increasing . Both players’ continuation values increase equally in the first stage;

however, to maintain the ratio of equilibrium efforts, the stronger player must increase his

effort more than the weaker player. Final stage efforts are unaffected by changes in  since

the second prize does not enter into players’ final stage first order conditions. Hence, with a

sufficiently large , the weaker player is more likely to win in the final stage relative to his

chances in the first stage.
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source: ATPworldtour.com

Figure 1 - Example Draw from 2007 Davidoff Swiss Indoors in Basel



All Rounds 1st Round 2nd Round 3rd Round 4th Round Quarterfinals Semifinals The Final
# of Matches Played 28370 14497 7237 1897 433 2461 1230 615

Average # of games played 23.1 21.6 24.6 26.7 31.7 23.3 23.5 25.3
(10.4) (11.4) (8.6) (10.1) (11.5) (7.7) (7.6) (8.7)

Average Rank of Winner 58.6 71.7 52.5 32.5 21.5 43.8 37.0 29.7
(73.2) (83.4) (61.1) (55.0) (57.3) (53.4) (49.6) (39.2)

Average Rank of Loser 95.5 119.7 90.9 54.9 39.9 62.0 50.5 43.9
(121.0) (147.7) (97.0) (64.4) (58.1) (65.3) (56.3) (55.2)

Average Rank Ratio 6.8 5.7 8.2 8.9 10.4 6.7 6.6 6.7
(Worse / Better by Rank) (20.9) (21.5) (20.6) (18.9) (20.1) (24.3) (12.8) (13.4)

Table 1 - Summary Statistics for ATP World Tour Events January 2001 to May 2010

Note:  Data contain player and performance information for 615 tournaments. Values in parentheses are standard deviations. 



Dependent Variable: Stronger Player Wins in Current Period (0 or 1)

Expected Future 0.079% *** 0.084% *** 0.071% *** 0.165% ** 0.150% *** 0.421% *** 0.057% 0.077%
Opponent Rank (0.0001) (0.0003) (0.0002) (0.0008) (0.0006) (0.0015) (0.0004) (0.0006)

Stronger Player's -0.350% *** -0.435% *** -0.442% *** -0.513% *** -0.581% * -0.310% *** -0.158% *** -0.132% **
Previous Games (0.0009) (0.0008) (0.0013) (0.0011) (0.0031) (0.0008) (0.0004) (0.0007)

Weaker Player's 0.219% ** 0.175% * 0.110% 0.094% 0.163% 0.139% * 0.062% * 0.087% *
Previous Games (0.0009) (0.0009) (0.0011) (0.0010) (0.0021) (0.0008) (0.0004) (0.0005)

Current Rank Ratio 0.161% *** 0.281% *** 0.194% *** 0.340% *** 0.265% *** 0.338% *** 0.089% ** 0.543% *** 0.363%
(Worse / Better Rank) (0.0005) (0.0004) (0.0003) (0.0006) (0.0005) (0.0008) (0.0004) (0.0012) (0.0032)

# of observations 12575 3759 4891 858 1461 432 2450 1220 615

Table 2 - Combined Spillover and Shadow Effects

The Final 
(no shadow)

2nd on 1st 
Round

3rd on 2nd 
Round 

Qfinals on 2nd 
Round

4th on 3rd 
Round

Qfinals on 3rd 
Round Qfinals on 4th Sfinals on 

Qfinals
Final on 
Sfinals

Notes: "Expected Future Opponent Rank" is the rank of the stronger player in the parallel event. That is, it is the rank of the stronger of the potential 
opponents in the next round. Values in parentheses are robust standard errors.  ***, ** and * denote statistical significance at p-values of 1%, 5% 
and 10%, respectively. Regressions include tournament-level fixed effects. 



Dependent Variable: Implied Probability the Stronger Player Wins (%)

Expected Future 0.083% *** 0.095% *** 0.041% *** 0.075% *** 0.075% *** 0.054% 0.021% * 0.020%
Opponent Rank (0.0001) (0.0001) (0.0001) (0.0003) (0.0002) (0.0006) (0.0001) (0.0002)

Stronger Player's -0.312% *** -0.340% *** -0.363% *** -0.369% *** -0.508% *** -0.291% *** -0.102% *** -0.094% ***
Previous Games (0.0003) (0.0003) (0.0004) (0.0003) (0.0011) (0.0003) (0.0001) (0.0002)

Weaker Player's 0.116% *** 0.114% *** 0.084% *** 0.091% *** 0.116% 0.069% *** 0.036% *** 0.053% ***
Previous Games (0.0003) (0.0003) (0.0004) (0.0003) (0.0008) (0.0002) (0.0001) (0.0002)

Current Rank Ratio 0.147% *** 0.249% *** 0.178% *** 0.318% *** 0.248% *** 0.329% *** 0.117% 0.415% *** 0.338% ***
(Worse / Better Rank) (0.0005) (0.0004) (0.0002) (0.0006) (0.0005) (0.0007) (0.0007) (0.0009) (0.0009)

# of observations 11983 3617 4586 834 1414 425 2339 1169 591

The Final (no 
shadow)

Table 3 - Predicting Betting Probability Odds by Spillovers and Shadows (Rankings)

2nd on 1st 
Round

3rd on 2nd 
Round 

Qfinals on 
2nd Round

4th on 3rd 
Round

Qfinals on 3rd 
Round Qfinals on 4th Sfinals on 

Qfinals
Final on 
Sfinals

Notes: "Expected Future Opponent Rank" is the rank of the stronger player in the parallel event. That is, it is the rank of the stronger of the potential 
opponents in the next round. Values in parentheses are robust standard errors.  ***, ** and * denote statistical significance at p-values of 1%, 5% 
and 10%, respectively. Regressions include tournament-level fixed effects. 



Figure A1:  Example Densities of Joint Noise  - Normal Distribution

Panel 2: Normal Distribution of Joint Noise

Panel 1: Return to Effort as a Function of Different "Noise Levels"
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