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ABSTRACT

The leverage effect refers to the generally negative correlation between an asset return and its changes
of volatility. A natural estimate consists in using the empirical correlation between the daily returns
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1 Introduction

The “leverage effect” refers to the observed tendency of an asset’s volatility to be negatively

correlated with the asset’s returns. Typically, rising asset prices are accompanied by declining

volatility, and vice versa. The term leverage refers to one possible economic interpretation of this

phenomenon, developed in Black (1976) and Christie (1982): as asset prices decline, companies

become mechanically more leveraged since the relative value of their debt rises relative to that

of their equity. As a result, it is natural to expect that their stock becomes riskier, hence

more volatile. While this is only a hypothesis, this explanation is sufficiently prevalent in the

literature that the term “leverage effect” has been adopted to describe the statistical regularity

in question. It has also been documented that the effect is generally asymmetric: other things

equal, declines in stock prices are accompanied by larger increases in volatility than the decline

in volatility that accompanies rising stock markets (see, e.g., Nelson (1991) and Engle and Ng

(1993)). Various discrete-time models with a leverage effect have been estimated by Yu (2005).

The magnitude of the effect however seems too large to be attributable solely to an increase

in financial leverage: Figlewski and Wang (2000) noted among other findings that there is no

apparent effect on volatility when leverage changes because of a change in debt or number of

shares, only when stock prices change, which questions whether the effect is linked to financial

leverage at all. As always, correlation does not imply causality. Alternative economic inter-

pretations have been suggested: an anticipated increase in volatility requires a higher rate of

return from the asset, which can only be produced by a fall in the asset price (see, e.g., French

et al. (1987) and Campbell and Hentschel (1992)). The leverage explanation suggests that a

negative return should make the firm more levered, hence riskier and therefore lead to higher

volatility; the volatility feedback effect is consistent with the same correlation but reverses the

causality: increases in volatility lead to future negative returns.

These different interpretations have been investigated and compared (see Bekaert and Wu

(2000)), although at the daily and lower frequencies the direction of the causality may be difficult

to ascertain since they both appear to be instantaneous at the level of daily data (see Bollerslev

et al. (2006)). Using higher frequency data, namely five-minute absolute returns to construct a

realized volatility proxy over longer horizons, Bollerslev et al. (2006) find a negative correlation

between the volatility and the current and lagged returns, which lasts for several days, low

correlations between the returns and the lagged volatility and strong correlation between the
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high-frequency returns and their absolute values. Their findings support the dual presence of a

prolonged leverage effect at the intradaily level, and an almost instantaneous volatility feedback

effect. Differences between the correlation measured using stock-level data and index-level data

have been investigated by Duffee (1995). Bollerslev et al. (2011) develop a representative agent

model based on recursive preferences in order to generate a volatility process which exhibits

clustering, fractional integration, and has a risk premium and a leverage effect.

Whatever the source(s) or explanation(s) for the presence of the leverage effect correlation,

there is broad agreement in the literature that the effect should be present. So why is there

a puzzle, as suggested by the title of this paper? As we will see, using high frequency data

and standard estimation techniques, the data stubbornly refuse to conform to these otherwise

appealing explanations. We find that, at high frequency and over short horizons, the estimated

correlation ρ between the asset returns and changes in its volatility is close to zero, instead of

the strong negative value that we have come to expect. At longer horizons, or especially using

option-implied volatilities, the effect is present. If we accept that the true correlation is indeed

negative, then this is especially striking since a correlation estimator relies on second moment,

or quadratic (co)variation, quantities and as such should be estimated particularly well at high

frequency, or instantaneously, using standard probability limit results. We call this disconnect

the “leverage effect puzzle,” and the purpose of this paper is to examine the reasons for it.

At first read, this behavior of the estimated correlation at high frequency can be reminiscent

of the Epps Effect. Starting with Epps (1979), it has indeed been recognized that the empirical

correlation between the returns of two assets tends to decrease as the sampling frequency of

observation increases. One essential issue that arises in the context of high frequency estimation

of the correlation coefficient between two assets is the asynchronicity of their trading, since

two assets will generally trade, hence generate high frequency observations, at different times.

Asynchronicity of the observations has been shown to have the potential to generate the Epps

Effect.1

However, the asynchronicity problem is not an issue here since we are focusing on the

estimation of the correlation between an asset’s returns and its (own) volatility. Because the

1As a result, various data synchronization methods have been developed to address this issue: for instance,

Hayashi and Yoshida (2005) have proposed a modification of the realized covariance which corrects for this effect;

see also Large (2007), Griffin and Oomen (2008), Voev and Lunde (2007), Zhang (2011), Barndorff-Nielsen et al.

(2008b), Kinnebrock and Podolskij (2008) and Aı̈t-Sahalia et al. (2010).
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volatility estimator is constructed from the asset returns themselves, the two sets of observations

are by construction synchrone. On the other hand, while asynchronicity is not a concern, one

issue that is germane to the problem we consider in this paper is the fact that one of two variables

entering the correlation calculation is latent, namely the volatility of the asset returns. Relative

to the Epps Effect, this gives rise to a different set of issues, specifically the need to employ

preliminary estimators or proxies for the volatility variable, such as realized volatility (RV) for

example, in order to compute its correlation with asset returns. We will show that the latency

of the volatility variable is partly responsible for the observed puzzle.

One further issue, which is in common at high frequency between the estimation of the

correlation between two asset returns and the estimation of the correlation between an asset’s

return and its volatility, is that of market microstructure noise. When sampled at sufficiently

high frequency, asset prices tend to incorporate noise that reflects the mechanics of the trading

process, such as bid/ask bounces, the different price impact of different types of trades, limited

liquidity, or other types of frictions. To address this issue, we will analyze the effect of using

noise-robust high frequency volatility estimators for the purpose of estimating the leverage

effect.2

Our main results are the following. We provide theoretical results to disentangle the biases

involved in estimating the correlation between the returns and volatilities with a sequence of

progressively more realistic estimators. We proceed incrementally, in such a way that we can

isolate the sources of the bias one by one. Starting with the spot volatility, an ideal but unavail-

able estimator since volatility is unobservable, we will see that the leverage effect parameter ρ is

2In the univariate volatility case, many estimators have been developed to produce consistent estimators

despite the presence of the noise. These include the Two Scales Realized Volatility (TSRV) of Zhang et al.

(2005), Multi-Scale Realized Volatility (MSRV), a modification of TSRV which achieves the best possible rate

of convergence proposed by Zhang (2006), Realized Kernels (RK) by Barndorff-Nielsen et al. (2008a), the

Pre-Averaging volatility estimator (PAV) by Jacod et al. (2009), and the Quasi-Maximum Likelihood Estimator

(QMLE) of Xiu (2010) which extends the parametric Maximum-Likelihood Estimator of Aı̈t-Sahalia et al. (2005)

to the setting of stochastic volatility. Related work include Bandi and Russell (2006), Delattre and Jacod (1997),

Fan andWang (2007), Gatheral and Oomen (2010), Hansen and Lunde (2006), Kalnina and Linton (2008), Li and

Mykland (2007), Aı̈t-Sahalia et al. (2011) and Li et al. (2010). To estimate the correlation between two assets,

or any two variables that are observable, Zhang (2011) proposed a consistent Two Scales Realized Covariance

estimator (TSCV), Barndorff-Nielsen et al. (2008b) a Multivariate Realized Kernel (MRK), Kinnebrock and

Podolskij (2008) a multivariate Pre-Averaging estimator and Aı̈t-Sahalia et al. (2010) a multivariate Quasi-

Maximum Likelihood Estimator.
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already estimated with a bias that is due solely to discretization. The unobservable spot volatil-

ity is frequently estimated by a local time-domain smoothing method which involves integrating

the spot volatility over time, locally. Replacing the spot volatility by the (also unavailable) true

integrated volatility, the bias for estimating ρ is even larger, but remains quantifiable. The in-

cremental bias is due to smoothing. Replacing the true integrated volatility by an estimated

integrated volatility, the bias for estimating ρ becomes so large that, when calibrated on re-

alistic parameter values, the estimated ρ becomes essentially zero, which is indeed what we

find empirically. The incremental bias represents the effect of the estimation error. We then

examine the effect of using noise-robust estimators of the integrated volatility, and compute

the resulting additional bias term, which can of course go in the reverse direction. Based on

the above results, we propose a regression approach to compute bias-corrected estimators of ρ.

We investigate these effects in the context of the Heston stochastic volatility model, which has

the advantage of providing explicit expressions for all these bias terms.

The paper is organized as follows. Section 2 documents the presence of the leverage effect

puzzle. The prototypical model for understanding the puzzle and nonparametric estimators

for spot volatility are described in Section 3. Section 4 presents the main results of the paper,

which unveil the biases of estimating leverage effect parameter in all steps of approximations.

A novel solution to the puzzle is proposed in Section 5, which is convincingly demonstrated

by Monte Carlo simulations in Section 6 and by empirical studies in Section 7 using the high-

frequency data from S&P500 and Microsoft. Section 8 concludes. The appendix contains the

mathematical proofs.

2 Motivation: The Leverage Effect Puzzle

To motivate the theoretical analysis that follows, we start with a straightforward empirical

exercise to illustrate the leverage effect puzzle. A scatter plot of estimated changes of volatilities

and returns provides a simple way to examine graphically the relationship between estimated

changes in volatility and changes in log-prices (i.e., log-returns). Figure 1 shows scatter plots

of the differences of estimated daily volatilities V̂t − V̂t−m against the corresponding returns of

horizon m days for several assets, where V̂t is the integrated daily volatility estimated by the

noise-robust TSRV estimator. If we start with long horizons, as shown in Figure 1, we see that

the effect is present in the data.
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+++ Insert Figure 1 Here +++

In addition to the evidence that comes from long horizons, the effect is even stronger empir-

ically if we use a different measurement altogether of the asset volatility, based on market prices

of derivatives. In the case of the S&P 500 index, we employ VIX, which is the square root of the

par variance swap rate with thirty day to maturity; that is, VIX measures the square-root of

the risk neutral expectation of the S&P 500 variance over the next thirty calendar days. Using

this market-based volatility measure, the leverage effect is indeed very strong as demonstrated

in Figure 2.

+++ Insert Figure 2 Here +++

Yet, starting at the daily horizon, even when using high frequency volatility estimates, we

see in Figure 3 that the scatter plot of D̂t = V̂t−V̂t−1 against daily returns Rt shows no apparent

leverage effect for the different assets considered. As discussed in the Introduction, different

economic explanations provide for different causation between returns and their volatility. To

be robust against the timing differences that different causality explanations would generate, we

next examine scatter plots of different time lags and leads such as {(D̂t−1, Rt)} and {(D̂t, Rt−1)}.
The evidence again reveals no leverage effect. Similar results are obtained if we employ different

time periods and/or different noise-robust volatility estimators such as QMLE or PAV.

+++ Insert Figure 3 Here +++

There are sound economic rationales to support a prior that a leverage effect is present in

the data, and we do indeed find it in Figures 1 and 2. So why are we unable to detect it on

short horizon based on high frequency volatility estimates that should provide precise volatility

proxies? This is the nature of the “leverage effect puzzle” that we seek to understand. Can it

be the result of employing estimators that are natural at high frequency for the latent volatility

variable, but somehow result in biasing the estimated correlation all the way down to zero?

Why does this happen? The goal of this paper is to understand the sources of the puzzle and

propose a solution.
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3 Data Generating Process and Estimators

In order to study the leverage effect puzzle, we need two ingredients: nonparametric volatility

estimators that are applicable at high frequency, and data generating processes for the log-

returns and their volatility in the form of a stochastic volatility model. Employing a specific

stochastic volatility model has the advantage that the properties of nonparametric estimators

of the correlation between asset returns and their volatility become fully explicit. We can derive

theoretically the asymptotic biases of different nonparametric estimators applied to this model,

and verify their practical relevance via small sample simulation experiments. Put together, these

ingredients lead to a novel solution to the leverage puzzle by introducing a tuning parameter

(represented by m below) that attempts to minimize the estimation bias.

3.1 Stochastic Volatility Model

The specification we employ for this purpose is the stochastic volatility model of Heston (1993)

for the log-price dynamics:

dXt = (µ− νt/2)dt+ σtdBt (1)

dνt = κ(α− νt)dt+ γν
1/2
t dWt, (2)

where νt = σ2
t , B and W are two standard Brownian motions with E(dBtdWt) = ρdt, and the

parameters µ, α, κ, γ and ρ are constants. We assume that the initial variance ν0 > 0 is a

realization from the stationary (invariant) distribution of (2) so that νt is a stationary process.

Under Feller’s condition 2κα > γ2, the process νt stays positive, a condition that is always

assumed in what follows. Note that

ρ = lim
s→0

Corr(νt+s − νt, Xt+s −Xt) (3)

so that the leverage effect is summarized by the parameter ρ under the Heston model (1)-(2).

Throughout the paper, we refer to the correlation (3) between changes in volatility and

changes in asset log-prices, i.e., returns, as the “leverage effect.” Other papers define it as the

correlation between the level of volatility and returns, or the correlation between the level of

absolute returns and returns (see, e.g., Bollerslev et al. (2006).) The latter definition, however,

would not predict that the parameter ρ should be identified as the high frequency limit of

that correlation; while that alternative definition is appropriate at lower frequencies, it yields
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a degenerate high frequency limit since it measures the correlation between two variables that

are of different orders of magnitude in that limit. High frequency data can be employed to

estimate the correlation between volatility levels and returns, but only over longer horizons, as

it is indeed employed in Bollerslev et al. (2006).

We consider a different problem: the nature of the “leverage effect puzzle” we identify lies

in the fact that it is difficult to translate the otherwise straightforward short horizon / high

frequency limit (3) into a meaningful estimate of the parameter ρ.

3.2 Nonparametric Estimation of Volatility and Sampling

Our first statistical task will be to understand why natural approaches to estimate ρ based on

(3) do not yield a good estimator when nonparametric estimates of volatility based on high-

frequency data are employed. With a small time horizon ∆ (e.g., one day or ∆ = 1/252 year),

let

Vt,∆ =

∫ t

t−∆

νsds (4)

denote the integrated volatility from time t − ∆ to t and V̂t,∆ be an estimate of it based on

the discretely observed log-price process Xt, which additionally may be contaminated with the

market microstructure noise. Recall that the quantity of interest is ρ and is based on (3).

However, the spot volatility process νt is not directly observable and has to be estimated by

∆−1V̂t,∆. Thus, corresponding to a given estimator V̂ , a natural and feasible estimator of ρ is

ρ̂ = Corr(V̂t+s,∆ − V̂t,∆, Xt+s −Xt). (5)

With s = ∆, V̂t+s,∆ and V̂t,∆ are estimators of integrated volatilities over consecutive intervals.

This is a natural choice for parameter s: changes of daily estimated integrated volatility are

correlated with changes of daily prices in two consecutive days. However, as to be demonstrated

later, the choice of s = m∆ (changes over multiple days apart) can be more advantageous.

We now specify the different nonparametric estimators of the integrated volatility that will

be used for V̂t,∆. We assume that the log-price process Xt is observed at higher frequency,

corresponding to a time interval δ (e.g., one observation every 10 seconds). In order for the

nonparametric estimate V̂t,∆ to be sufficiently accurate, we need δ ≪ ∆; asymptotically, we

assume that ∆ → 0 and δ → 0 in such a way that ∆/δ → ∞.
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In the absence of microstructure noise, the log prices Xiδ (i = 0, 1, · · · , n) are directly

observable, and the most natural (and asymptotically optimal) estimator of Vt,∆ is the realized

volatility

V̂ RV
t,∆ =

∆/δ−1∑
i=0

(Xt−∆+(i+1)δ −Xt−∆+iδ)
2. (6)

Here, for simplicity of exposition, we assume there is an observation at time t − ∆, and that

the ratio ∆/δ is an integer; otherwise ∆/δ should be replaced by its integer part [∆/δ], without

any asymptotic consequences.

In practice, high frequency observations of log-prices are likely to be contaminated with

market microstructure noise. Instead of observing the log-prices Xt+iδ, we observe the noisy

version

Zt+iδ = Xt+iδ + ϵt+iδ, (7)

where the ϵt+iδ’s are white noise random variables with mean zero and standard deviation

σϵ. With this type of observations, we can use noise-robust methods such as TSRV, PAV,

QMLE or RK to obtain consistent estimates of the integrated volatility. We will first use the

TSRV estimator, as it is relatively simple to analyze. Specifically, letting n = ∆/δ, θTSRV be

a constant, L = [θTSRVn
2/3] the number of grids over which the subsampling is performed and

n̄ = (n− L+ 1)/n, the TSRV estimator is defined as

V̂ TSRV
t,∆ =

1

L

n−L∑
i=0

(Zt−∆+(i+L)δ − Zt−∆+iδ)
2 − n̄

n

n−1∑
i=0

(Zt−∆+(i+1)δ − Zt−∆+iδ)
2. (8)

The TSRV estimator is simple to analyze but is not rate-optimal, converging at rate n1/6

instead of the optimal rate n1/4. Thus, it is expected to incur a slightly larger estimation error.

We therefore consider the rate-efficient pre-averaging volatility estimator (PAV) as proposed by

Jacod et al. (2009) with the weight function chosen as g(x) = x∧ (1− x). More specifically, let

θPAV be a constant, kn = [θPAV
√
n], we consider

V̂ PAV
t,∆ =

12

θPAV
√
n

n−kn+1∑
i=0

(
1

kn

kn−1∑
j=⌊kn/2⌋

Zt−∆+(i+j)δ −
1

kn

⌊kn/2⌋−1∑
j=0

Zt−∆+(i+j)δ)
2

− 6

θ2PAVn

n−1∑
i=0

(Zt−∆+(i+1)δ − Zt−∆+iδ)
2. (9)

A consistent estimator of the variance is provided in Jacod et al. (2009), as well as a consistent

estimator of the integrated quarticity
∫ t
t−∆

σ4
sds (see (21)).

9



4 Biases in Estimation of the Leverage Effect

We now present the first results of the paper, consisting of the biases of estimators of the

leverage effect parameter ρ in four progressively more realistic scenarios, each employing a

different nonparametric volatility estimator. These progressive scenarios help us document

an incremental source for the bias: discretization, smoothing, estimation error and market

microstructure noise.

4.1 True Spot Volatility: Discretization Bias

First, we consider the unrealistic but idealized situation in which the spot volatility process νs

is in fact directly observable. This helps us understand the error in estimating ρ that is due to

discretization alone. Theorem 1 reports the correlation between asset returns and changes of

the instantaneous volatility, from which the bias can easily be computed.

Theorem 1. Changes of the true spot volatility and changes of log-prices have the following

correlation:

Corr(νs+t − νt, Xs+t −Xt) =
ρ
√

1−e−κs

κ√(
s+ e−κs−1

κ

) (
γ2

4κ2
− γρ

κ

)
+ s

. (10)

Let us denote the right hand side of the expression in Theorem 1 as C1(s, κ, γ, α, ρ). From

Theorem 1, the bias due to the discrete approximation can be easily computed, in the form

C1(s, κ, γ, α, ρ) − ρ. In particular, we have the following Proposition expressing the bias as a

function of the integration interval ∆ and the interval length over which changes are evaluated,

m∆, m ≥ 1, under different asymptotic assumptions on the sampling scheme:

Proposition 1. When m∆ → 0, we have

Corr(νt+m∆ − νt, Xt+m∆ −Xt) = ρ− ρ (γ2 − 4γκρ+ 4κ2)

16κ
m∆+ o(m∆). (11)

Since the value ρ is negative, the first order of the bias is positive, which pulls the function

C1(s, κ, γ, α, ρ) towards zero, weakening the leverage effect. Figure 4 shows precisely how

the function C1(m∆, κ, γ, α, ρ) varies with m for two sets of parameter values: (ρ, κ, γ, α) =

(−0.8, 5, 0.5, 0.1) and (ρ, κ, γ, α) = (−0.3, 5, 0.05, 0.04) when ∆ is taken to be 1/252. The former

set of parameters was adapted from those in Aı̈t-Sahalia and Kimmel (2010) and the latter set
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was taken to weaken the leverage effect but to observe the Feller’s condition: 2κα > γ2. As

expected, the smaller the m, the smaller the discretization bias.

+++ Insert Figure 4 Here +++

4.2 True Integrated Volatility: Smoothing Bias

The spot volatilities are latent. They can be (and usually are) estimated by a local average of

integrated volatility, which is basically a smoothing operation, over a small time horizon ∆. How

big are the biases for estimating ρ even in the idealized situation where the integrated volatility is

known precisely? The following theorem gives an analytic expression for the resulting smoothing

bias:

Theorem 2. Changes of the true integrated volatility and changes of log-prices have the fol-

lowing correlation:

Corr(Vt+m∆,∆ − Vt,∆, Xt+m∆ −Xt) = A2/(B2C2) (12)

where

A2 = 2γ(1−∆κ) + 4∆κ2ρ− 2γe−∆κ

+ e−∆κ(m+1)
(
e2∆κ(γ − 4κρ)− 2e∆κ(γ − 2κρ) + γ

)
,

B2 = 2
√
e−∆κ(m+1)

(
2e∆κm − (e∆κ − 1)2

)
+ 2∆κ− 2,

and

C2 =
√
γ2 (∆κm+ e−∆κm − 1) + 4γκρ (−∆κm− e−∆κm + 1) + 4∆κ3m.

While the expressions in Theorem 2 are exact, further insights can be gained when we

consider the resulting asymptotic expansion as ∆ → 0. We focus again on both situations

where m is fixed and m→ ∞ while still m∆ → 0.

Proposition 2. The following asymptotic expansions show the incremental bias due to smooth-

ing induced by the local integration of spot volatilities:

Corr(Vt+m∆,∆ − Vt,∆, Xt+m∆ −Xt) =Corr(νt+m∆ − νt, Xt+m∆ −Xt)
(2m− 1)

2
√
m2 −m/3

(13)

+

 O(∆) when ∆ → 0 for any m

o(m∆) when m→ ∞,m∆ → 0
.
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The first expression is true when m is any fixed integer. For the second expression, note

that the asymptote of the correction factor

(2m− 1)

2
√
m2 −m/3

= 1 +O(
1

m
). (14)

Hence, when m is large, unlike what the initial intuition might have suggested, the bias of

estimated ρ based on integrated volatilities is asymptotically the same as that of the estimated

ρ based on spot volatilities.

Figure 4 shows the resulting numerical values (dotted curves) for the same sets of parameters.

They are plotted along with the correlations of the other estimators to facilitate comparisons.

First, as expected, the bias is larger than that when spot volatilities are employed. Figure 4

also reveals an interesting shape of biases of the idealized estimate of spot volatility. When

m is small, the bias is large and so is when m is large. There is an optimal choice of m that

minimizes the bias. For the case ∆ = 1/252, with the chosen parameters as in the left panel

of Figure 4 [(ρ, κ, γ, α) = (−0.8, 5, 0.5, 0.1)], the optimum is m0 = 16 with the optimal value

−0.74, leading to a bias of 0.06. On the other hand, using the natural choice m = 1, the

estimated correlation is about −0.5, meaning that the bias is about 40% of the true value.

4.3 Estimated Integrated Volatility: Shrinkage Bias due to Estima-

tion Error

Theorems 1 and 2 provide a partial solution to the puzzle. If the spot volatility were observable,

the ideal estimate of leverage effect is to use the change of volatility over two consecutive

intervals against the changes of the prices over the same time interval, i.e. m = 1. However,

when the spot volatility has to be estimated, even with the ideally estimated integrated volatility

Vt,∆, the choice of m = 1 is far from being optimal. Indeed the resulting bias is quite large: for

ρ = −0.8, with the same set of parameters as above, the estimated ρ is about −0.5 even when

employing the idealized true integrated volatility Vt,∆. When the sample version of integrated

volatility is used, we should expect that the leverage effect is further masked by estimation

error. This is due to the well-known shrinkage bias of computing correlation when variables

are measured with errors. In fact, we already know that it becomes so large that it masks

completely the leverage effect when m = 1 is used as in Figures 1 and 2. We now derive the

theoretical bias expressions corresponding to this more realistic case.
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The following theorem calculates the bias of using a data driven estimator of the integrated

volatility in the absence of microstructure noise. In other words, we use the realized volatility

estimator. Let n be the number of observations during each interval ∆. Assume for simplicity

that the observation intervals are equally spaced at a distance δ = ∆/n.

Theorem 3. When n∆ → C and m2∆ → Cm for C, Cm ∈ (0,∞), the following expansion

shows the incremental bias due to estimation error induced by the use of RV:

Corr(V̂ RV
t+m∆,∆ − V̂ RV

t,∆ , Xt+m∆ −Xt) = Corr(νt+m∆ − νt, Xt+m∆ −Xt)
(2m− 1)

2
√
m2 −m/3

(15)

×
(
1 +

12ακ+ 6γ2

(3γ2m− γ2)κC − 3
2
γ2κ2CCm

)−1/2

[1 + o(m∆)].

The above theorem documents the bias when there is no market microstructure noise. In-

terestingly, it is decomposed into two factors. The first factor is the smoothing bias and the

second factor is the shrinkage bias due to the estimation errors. The second factor reflects the

cost of estimating the latency of volatility process. The larger the C, the smaller the shrinkage

bias. Similarly, the larger the m, the smaller the shrinkage bias.

To appreciate the bias due to the use of RV, the main term in Theorem 3 as a function

of m is depicted in Figure 4 for the same sets of parameters as mentioned above. The daily

sampling frequency is taken to be n = 390 (one observation per minute) so that C = 390/252.

In particular, the choice of m = 1 corresponds to the natural estimator but it results in a very

large bias.

Even in the absence of market microstructure noise, the estimated correlation based on the

natural estimator

ρ̂RV = Corr(V̂ RV
t+∆,∆ − V̂ RV

t,∆ , Xt+∆ −Xt) (16)

is very close to 0. This provides a mathematical explanation for why the leverage effect cannot

be detected empirically using a natural approach. On the other hand, Theorem 3 also hints at

a solution to the leverage effect puzzle: with an appropriate choice of m, there is hope to make

the leverage effect detectable. For the left panel of Figure 4, if the optimal m = 27 is used, the

estimated correlation is now −0.694, when the true value is −0.8.
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4.4 Estimated Noise-Robust Integrated Volatility: Shrinkage Bias

due to Estimation Error and Noise Correction Error

Under the more realistic case where allowance is made for the presence of market microstructure

noise under (7), the integrated volatility Vt is estimated based on noisy log-returns, using bias-

corrected high-frequency volatility estimators such as TSRV, PAV, QMLE or RK. In this case,

as we will see, detecting the leverage effect based on the natural estimator is even harder. It

may in fact even result in an estimated correlation coefficient with the wrong sign. Again, the

tuning parameter m can help resolve the issue.

We start with TSRV and then consider PAV as well. Other methods can be employed too,

but the computations become increasingly tedious – more so than they already are! Recall the

definition of θTSRV in the TSRV estimator, which determines the constant factor of the large

scale RV.

Theorem 4. When n1/3∆ → CTSRV , σ
2
ϵ/∆ → Cϵ and m2∆ → Cm with CTSRV , Cϵ and

Cm ∈ (0,∞), the following expansion shows the incremental bias due to estimation error and

noise correction induced by the use of TSRV:

Corr(V̂ TSRV
t+m∆,∆ − V̂ TSRV

t,∆ , Zt+m∆ − Zt) = Corr(νt+m∆ − νt, Xt+m∆ −Xt)
(2m− 1)

2
√
m2 −m/3

× (1 + A4 +B4)
−1/2[1 + o(m∆)],

where

A4 =
96θ−2

TSRVC
2
ϵ

CTSRVαγ2(6m− 2− 3κCm)

B4 =
8θTSRV(2ακ+ γ2)

κCTSRVγ2(6m− 2− 3κCm)
.

For the same reasons behind the above theorem, using the parameter m helps resolving

the leverage effect problems. When θTSRV is taken to be 0.5, with m = 1 and the same

set of parameters (ρ, κ, γ, α,∆, n) = (−0.8, 5, 0.5, 0.1, 1/252, 390), the leverage effect is barely

noticeable whereas using m = 73 yields a correlation of −0.483. Even though the bias is large,

the leverage effect is clearly noticeable.

Again, the estimating biases can be decomposed into two factors. The first factor is the

smoothing bias, the same as that in the RV and PAV below. The second factor reflects the

shrinkage biases due to estimation errors and noise correction errors. The rate of convergence
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of TSRV is slower than that of RV. This is reflected in the factor CTSRV which is of order

n1/3∆, rather than C = n∆ in RV. Similarly, since PAV below has a faster rate of convergence

than TSRV, its corresponding shrinkage bias is smaller than TSRV but larger than RV. This is

reflected in CPAV = n1/2∆ in Theorem 5 below.

A parallel result to Theorem 4 for PAV is the following.

Theorem 5. When n1/2∆ → CPAV , σ
2
ϵ/∆ → Cϵ, and m

2∆ → Cm with CPAV , Cϵ and Cm ∈
(0,∞), the following expansion shows the incremental bias due to estimation error and noise

correction induced by the use of PAV:

Corr(V̂ PAV
t+m∆,∆ − V̂ PAV

t,∆ , Zt+m∆ − Zt) =Corr(νt+m∆ − νt, Xt+m∆ −Xt)
(2m− 1)

2
√
m2 −m/3

× (1 + A5 +B5 + C5)
−1/2[1 + o(m∆)],

where

A5 =
24Φ22θPAV(2ακ+ γ2)

ψ2
2CPAV κγ

2(6m− 2− 3κCm)

B5 =
96Φ12Cϵ

θPAVψ2
2CPAV γ

2(6m− 2− 3κCm)

C5 =
48Φ11C

2
ϵ

θ3PAVψ
2
2CPAV αγ

2(6m− 2− 3κCm)
,

where ψ2 =
1
12
,Φ11 =

1
6
,Φ12 =

1
96
,Φ22 =

151
80640

.

Theorem 4 and Theorem 5 are also illustrated in Figure 4 in which the main terms of the

correlations are plotted. Again when m = 1, the correlation is nearly zero, whereas with the

ideal choice of m = 48, the ideal correlation is −0.599, still significantly smaller than the true

one of −0.8.

5 A Solution to the Puzzle: Model-Independent Bias

Corrections

The previous section documented the various biases arising when estimating the leverage effect

parameter ρ in four progressively more realistic scenarios. The message was decidedly gloomy:

even in idealized situations, the bias is large, and attempts to correcting for the latency of the
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volatility, or for the presence of market microstructure noise, do not improve matters. In fact,

they often make matters worse. But, fortunately, they also point towards potential solutions

to the bias problem.

5.1 Back to the Latent Spot Volatility

First, we show that all the additional biases that are introduced by the latency of the spot

volatility can be corrected, and the problem is reduced to the discretization bias left in Theorem

1.

Recall the asymptotic expression given in Theorem 2, which can be inverted to yield:

Corr(νt+m∆−νt, Xt+m∆−Xt) =
2
√
m2 −m/3

(2m− 1)
Corr(Vt+m∆,∆−Vt,∆, Xt+m∆−Xt)+O(∆). (17)

Thus, up to a multiplicative correction factor that is independent of the model’s parameters,

the integrated volatility V can work as well as the spot volatility ν. The effectiveness of this

simple bias correction is demonstrated in Figure 5.

+++ Insert Figure 5 Here +++

In the absence of microstructure noise, using the realized volatility (6), the asymptotic

relative bias in comparison with the use of the true spot volatility is given by Theorem 3. Using

the expressions given there, we can correct the bias due to the estimate of realized volatility back

to that based on the spot volatility. However, such a correction involves unknown parameters

in the Heston model and depends on the parametric assumption. However, the method is

applicable to a wider array of data generating processes. A nonparametric correction consists

in using the following result, demonstrated in the Appendix, in the proof of Theorem 3:

Proposition 3. When n∆ → C and m2∆ → Cm with C and Cm ∈ (0,∞),

Corr(νt+m∆ − νt, Xt+m∆ −Xt) = c3
2
√
m2 −m/3

(2m− 1)
Corr(V̂ RV

t+m∆,∆ − V̂ RV
t,∆ , Xt+m∆ −Xt) + o(m∆),

(18)

where c3 is given by

c3 =

(
1− 4E [σ4

t ] ∆
2

nVar(V̂ RV
t+m∆,∆ − V̂ RV

t,∆ )

)−1/2

. (19)
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Note that in (19), the stationarity of the process of νt is used so that the correction factor

does not depend on t.

In practice, we can estimate E [σ4
t ] nonparametrically based on the fact that the quarticity

satisfies
n

3

∑n

i=0
(Xt+(i+1)δ −Xt+iδ)

4 →P ∆

∫ t+∆

t

σ4
sds as n→ ∞

for any fixed ∆. Hence a long run average of scaled quarticity can be used to estimate E [σ4
t ].

The variance in (19) can be estimated by its sample version.

For the TSRV estimator, the bias correction admits the same form as (18) with a different

correction.

Proposition 4. When n1/3∆ → CTSRV , σ
2
ϵ/∆ → Cϵ and m

2∆ → Cm for constants CTSRV , Cϵ

and Cm ∈ (0,∞),

Corr(νt+m∆ − νt, Xt+m∆ −Xt) = c4
2
√
m2 −m/3

(2m− 1)
Corr(V̂ TSRV

t+m∆,∆ − V̂ TSRV
t,∆ , Zt+m∆ −Zt) + o(m∆)

where

c4 =

(
1− 48θ−2

TSRVσ
4
ϵ + 8θTSRVE [σ4

t ] ∆
2

3n1/3 Var(V̂ TSRV
t+m∆,∆ − V̂ TSRV

t,∆ )

)−1/2

. (20)

Two unknown quantities are involved and can be estimated nonparametrically here. For σϵ,

since V̂ RV
t,∆ ≈ 2nσ2

ϵ +
∫ t
t−∆

σ2
sds, V̂

TSRV
t,∆ ≈

∫ t
t−∆

σ2
sds for fixed ∆ and big n, we can conclude that

a long run average of (V̂ RV
t,∆ − V̂ TSRV

t,∆ )/2n can be used as a good estimate of σ2
ϵ . This is similar to

the way the average of the subsampled RV estimators is bias-corrected to construct TSRV. For

E [σ4
t ], since market microstructure noise is involved, the situation is a bit more complicated

than before. Consistent noise-robust estimators of
∫ t
t−∆

σ4
sds are proposed in Zhang et al. (2005)
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and Jacod et al. (2009); we can use for instance the estimator called Q̂n
t in the latter paper:

Q̂n
t =

1

3θ2PAV ψ
2
2

n−kn+1∑
i=0

(
1

kn

kn−1∑
j=⌊kn/2⌋

Zt−∆+(i+j)δ −
1

kn

⌊kn/2⌋−1∑
j=0

Zt−∆+(i+j)δ)
4

− δ

θ4PAV ψ
2
2

n−2kn+1∑
i=0

(
(
1

kn

kn−1∑
j=⌊kn/2⌋

Zt−∆+(i+j)δ −
1

kn

⌊kn/2⌋−1∑
j=0

Zt−∆+(i+j)δ)
2×

i+2kn−1∑
j=i+kn

(Zt−∆+(j+1)δ − Zt−∆+jδ)
2
)

+
δ

4θ4PAV ψ
2
2

n−2∑
i=1

(Zt−∆+(i+1)δ − Zt−∆+iδ)
2(Zt−∆+(i+3)δ − Zt−∆+(i+2)δ)

2.

→P

∫ t

t−∆

σ4
t dt,

(21)

where ψ2 =
1
12
, kn = [θPAV

√
n] for an appropriately chosen θPAV. A scaled long run average of

this estimator can be used to estimate E [σ4
t ].

For PAV, we have

Proposition 5. When n1/2∆ → CPAV , σ
2
ϵ/∆ → Cϵ, and m

2∆ → Cm for constants CPAV , Cϵ

and Cm ∈ (0,∞),

Corr(νt+m∆ − νt, Xt+m∆ −Xt) = c5
2
√
m2 −m/3

(2m− 1)
Corr(V̂ PAV

t+m∆,∆ − V̂ PAV
t,∆ , Zt+m∆ − Zt) + o(m∆)

where

c5 =

(
1− 2(A′

5 +B′
5 + C ′

5)

n1/2 Var(V̂ PAV
t+m∆,∆ − V̂ PAV

t,∆ )

)−1/2

, (22)

with

A′
5 =

4Φ22θPAVE [σ4
t ]

ψ2
2

,

B′
5 =

8Φ12E [σ2
t ] σ

2
ϵ

θPAVψ2
2

,

C ′
5 =

4Φ11σ
4
ϵ

θ3PAVψ
2
2

,

where ψ2,Φ11,Φ12,Φ22 are as in Theorem 5.

A more direct way is to use the long run average of the quantity Γnt defined in (3.7) of Jacod

et al. (2009) to estimate A′
5 +B′

5 + C ′
5.
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5.2 Correcting the Discretization Bias From Spot Volatilities

The above results reveal that the biases due to the various estimates are correctable back to the

case where the spot volatility can be viewed as observable. However, Theorem 1 implies that

the estimate of ρ based on νt itself is also biased. If the model were known, then the bias (11)

can be computed and corrected. However, this depends on the Heston model and its unknown

parameters.

A parameter-independent method is as follows. Let ρ̂m = Corr(νt+m∆ − νt, Xt+m∆ − Xt).

Then, by Theorem 1 we see that

ρ̂m = ρ+ bm+ o(m∆). (23)

This suggests that the parameter of interest ρ (as well as the slope b but this is not needed)

can be estimated by running a linear regression of the data {(m, ρ̂m)}. The bias-corrected

estimate of ρ is simply the intercept of that linear regression. The scatter plot of {(m, ρ̂m)} can

also suggest a region of m to run the above simple linear regression (23).

The above discussion suggests a rather general strategy for bias correction. The method does

not depend on the Heston model parameters. First, compute the simple correlation between

estimated changes of volatilities and estimated changes of prices. Second, conduct a preliminary

bias correction according to (17) – (22), depending on which estimated volatilities are used.

Third, run the simple regression equation (17) for the preliminary bias corrected estimated

correlations. Fourth, take the intercept of the simple linear regression as the final estimate.

The method turns out to be very effective in pratice, as we will now see.

6 Monte-Carlo Simulations

In this section, we use simulation studies to reproduce the leverage effect puzzle and its proposed

solution and to verify the practical validity of the results presented in the previous section.

6.1 The data generating process

The true log-price is simulated from the Heston model (1)-(2) with broadly realistic parameter

values: α = 0.1 γ = 0.5, κ = 5, ρ = −0.8 and µ = 0.05 over 252 ∗ 5 trading days in five

years (∆ = 1/252). Each day, the sampling frequency is one minute per sample, giving an
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intra-day number of observations of n = 390. Therefore the total number of observations over

5 years is N = 252 ∗ 390 ∗ 5 = 491, 400. The true price is latent. Instead, the observed data

{Ziδ}491,400i=1 are contaminated with the market microstructure as in (7) with i.i.d N (0, σ2
ϵ ) noise,

and σϵ = 0.0005. (The case when the observation frequency is higher, n = 1560 is also studied.

The results are collected at the end of this section.)

6.2 Vizualizing the leverage effect puzzle

With the latent spot volatility νt and latent price Xt known in simulated data, we can easily

examine the correlation of {(Xt∆ −X(t−1)∆, νt∆ − ν(t−1)∆)} over N observations. As expected,

the leverage effect is strong, with the sample correlation being −0.787 for a given realization.

This is in line with the result of Theorem 1.

Next, consider the more realistic situation that the spot volatility needs to be estimated by

a smoothing method such as a local integrated average Vt,∆ =
∫ t
t−∆

σ2
t dt. A natural estimate is

the average of daily spot volatility V̂t,∆ = n−1
∑n

j=1 σ̂
2
t−∆+j/N . In this ideal situation, σ2

t−∆+j/N

is known, resulting in Vt,∆ = n−1
∑n

j=1 σ
2
t−∆+j/N . The correlation of {(X(t+1)∆−Xt∆, V(t+1)∆,∆−

Vt∆,∆)}1259t=1 is −0.462 for the given realization. This is in line with the result of Theorem 2. The

magnitude of the leverage effect parameter ρ is significantly under-estimated. To appreciate the

effect of the tuning parameter m, the upper panels of Figure 6 plots the correlation {(X(t+m)∆−
Xt∆, ν(t+m)∆,∆ − νt∆,∆)}1260−mt=1 and {(X(t+m)∆ −Xt∆, V(t+m)∆,∆ − Vt∆,∆)}1260−mt=1 against m. To

examine the sampling variabilities, the simulation is conducted 100 times. The averages of the

sample correlations are plotted along with its standard deviation in the figure. The impact of

m can easily be seen and the natural estimate based on Vt∆,∆ with m = 1 is far from optimal.

+++ Insert Figure 6 Here +++

In practice, the integrated volatility is not observable. It has to be estimated using the

discretely observed data. In absence of market microstructure noise, the realized volatility

provides a good estimate of the integrated volatility. Using RV based on the simulated latent

prices Xn
i , we have a sample correlation of −0.25 for the same realization discussed above.

More generally, the correlation of {{(X(t+m)∆ −Xt∆, V̂
RV
(t+m)∆,∆ − V̂ RV

t∆,∆)}1260−mt=1 as a function of

m is depicted in the lower left panel of Figure 6. As above, this is repeated 100 times so that

the average correlations along with their errors at each m are computed.
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For a more realistic situation, the integrated volatility has to be estimated based on the

contaminated log prices Zt in (7). The volatility parameter is now estimated by the correlation

{(Z(t+m)∆−Zt∆, V̂
PAV
(t+m)∆,∆− V̂ PAV

t∆,∆)}1260−mt=1 or {(Z(t+m)∆−Zt∆, V̂
TSRV
(t+m)∆,∆− V̂ TSRV

t∆,∆ )}1260−mt=1 with

a suitable choice of m. The lower middel and right panels of Figure 6 shows the correlation as a

function of m. In particular, when m = 1, the sample correlation is merely −0.113 for PAV and

−0.107 for TSRV for the same simulated path as mentioned above, which would be interpreted

in practice as showing little support for the leverage effect. But we know that this is due to the

statistical bias of the procedure as demonstrated in Theorem 4. Using PAV with m = 26, the

sample correlation is −0.682; and using TSRV with m = 62, the sample correlation is −0.553.

While this is still a biased estimate, the leverage effect is now clearly seen.

The averages of these correlations against m are plotted together in Figure 7. These are in

line with what the theory predicts (see the left panel of Figure 4).

+++ Insert Figure 7 Here +++

6.3 Effectiveness of the Bias Correction Method

We now illustrate the effectiveness of the bias correction method proposed in Section 5. We

simulate sample paths with the same parameters as above. θTSRV and θPAV are both taken to be

0.5. For the linear regression method, we use the set of values ofm as {6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17}. Let us denote the bias corrected estimate of ρ as corNutorho with the correlation

based on the spot volatility as the input. Similarly, corVtorho, corRVtorho, corPAVtorho and

corTSRVtorho are the bias corrected ρ using the linear regression respectively based on the

corrected curves from V , V̂ RV V̂ PAV and V̂ TSRV, using equations (17), (18), (22) and (20). The

true values of Eσ4
t , Eσ

2
t and σϵ are plugged in. Table 1 summarizes the results based on 100

simulations of (T = 5) minute-by-minute (n=390) data over a five-year period.

+++ Insert Table 1 Here +++

The mean of all of these corrected estimates are all close to the true value ρ =-0.8. This

means that these estimates are unbiased. The progressive harder of the problems can easily be

seen from the SD of the estimates. As demonstrated in Figure 8, the TSRV with the available

sample size incurs large estimation errors. This translates into the large error for estimating
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ρ. When the sampling frequency is more frequent than one sample per minute, the estimation

error can be reduced.

In summary, Table 1 provides a stark evidence that the methods in Section 5 solve the

leverage effect puzzle. It also quantifies the extent to which the problem gets progressively

harder.

In practice, the parameters are unknown and hence the correction based directly on the

model parameters as in Table 1 is not feasible. In the following, we demonstrate the effectiveness

of the non-parametric methods as described in section 5.1 to obtain corrections. corRVtorhoE,

corPAVtorhoE and corTSRVtorhoE are the bias corrected ρ using the linear regression based

on the non-parametrically corrected curves from V̂ RV, V̂ PAV and V̂ TSRV respectively. Estimates

are based on the same simulated sample paths as above. The results are collected in Table 2.

+++ Insert Table 2 Here +++

In this section, we used a fixed range of m to run the regression regardless of the method

and realizations. As discussed in Section 5, the data-dependent and estimator-dependent choice

of the range can improve the results further. The scatterplot helps us empirically determine

an appropriate range. To illustrate the point, we randomly select a sample path from the

simulation, and then plot the corrected correlations up to the curve corresponding to Theorem

1: see Figure 8. After that, we identify the range of m values such that the corrected curve is

roughly linear. For this sample path, a range of m = (30, 31, · · · , 70) gives us a corPAVtorhoE

of -0.83, and a range of m = (40, 41, · · · , 80) gives us a corTSRVtorhoE of -0.85. These are

better than the corrections based on a generic choice of m = (6, 7, · · · , 17), which yields an

estimated correlation of -0.71 and -0.90 respectively. This tailor-made method will be used in

the empirical study below in order to improve the estimation.

+++ Insert Figure 8 Here +++

Note that as shown in the upper right panel of Figure 8, occasionally we may obtain extreme

results that the corrected correlation has an absolute value bigger than 1, especially when m

is small. One can truncate these observations back to the correct range as one likes. Indeed,

typically these values won’t affect our final results because we typically choose reasonably big

values of m in the final step of correction using regression.
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Without bias correction, as demonstrated in Section 2, sampling data at higher frequency

does not give us a better assessment of the leverage effect. With the bias correction, we would

expect better results. Table 3 and Figure 9 demonstrate this further by the results with the

sampling frequency of one observation every 15 seconds, from which we see similar results but

with reduced estimation errors.

+++ Insert Table 3 Here +++

+++ Insert Figure 9 Here +++

7 Empirical Evidence on the Leverage Effect at High

Frequency

We now apply our bias corrected methods to examine the presence of the leverage effect using

high-frequency data. We have seen in Section 2 that, due to the latency of the volatility process,

it is nearly impossible to use only returns data and no extraneous volatility proxy to get as nice

a plot as what was shown in Figure 3. Nevertheless, we will demonstrate that the new tool

is able to reveal the presence of a strong leverage effect contained in high-frequency data. We

only focus on the S&P 500 and MSFT returns; we have applied the methods to various data

sets and the conclusions are similar.

7.1 S&P 500 data

Based on the high-frequency returns (1 minute per sample) on S&P 500 futures from January

2004 to December 2007, the naive or natural estimates give the results reported in Table 4.

The leverage effect at the natural choice of m = 1 is nearly 0. Even with the data-optimized

choice of m, the correlation with TSRV is estimated to be around −0.44 and that with the

PAV is around -0.50, much smaller than that computed based on the VIX. The upper panel

of Figure 10 summarizes the sample correlations based on TSRV, PAV and VIX respectively,

versus horizon m.

+++ Insert Table 4 Here +++
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We now apply our bias corrected methods. First, we compute the preliminarily bias-

corrected estimates using both TSRV and PAV for a wide range of choice of m. Their scatter

plots are presented in Figure 10, which are quite curly. We then took the first increasing region

(because the biases are expected to get larger with m after correction so that the slope should

be positive) that appears approximately linear. For TSRV, we take m = (55, 56 · · · , 100) to run

the regression and obtain the intercept of −0.85. This is our bias-corrected estimated leverage

effect parameter implied in the high frequency data. Similarly, for PAV, we selected the range

m = (55, 56, · · · , 85), the bias-corrected correlation based on PAV is estimated as −0.68.

+++ Insert Figure 10 Here +++

7.2 Microsoft

We now use our method to examine how strong the leverage effect for the Microsoft corporation.

The high-frequency returns at sample frequencies of one data point per minute and one per 5

seconds from January 2005 to June 2007 are used for estimating the leverage effect parameter.

Again, we apply both the naive method, the simple sample correlation, and more sophisticated

volatility estimation methods, based on preliminary correction and linear regression. Table

5 summarizes the results. Again, the leverage effects are barely noticeable at both sampling

frequencies for natural choices of m (small values of m).

+++ Insert Table 5 Here +++

For the data sampled at one observation per minute, the preliminary corrections are sum-

marized in the left panel of Figure 11. This helps us determine a region where the linear

regression should be run. Based on regression (taking m = (130, 131, · · · , 170)), the leverage

effect parameter is estimated as −0.72 with TSRV and −0.68 with PAV. Again, we find that

the leverage effect is much stronger than one would obtain without bias-correction.

+++ Insert Figure 11 Here +++

The analysis for the data sampling at 5-second frequency produces similar results. The range

m = (130, 131, · · · , 170) is determined based on preliminary corrections depicted in Figure 12

(left panel). Using this range of estimates to run a simple linear regression yields an estimated

leverage effect parameter. It is −0.76 based on TSRV and −0.78 based on PAV.

+++ Insert Figure 12 Here +++
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8 Conclusions

There are different sources of error when estimating the leverage effect using high-frequency

data, a discretization error due to not observing the full instantaneous stochastic processes, a

smoothing error due to using integrated volatility in place of spot volatilities, an estimation

error due to the need to estimate the integrated volatility using the price process, and a noise

correction error introduced by the need to correct the integrated volatility estimates for the

presence of market microstructure noise.

These errors tend to be large even when the window size is small and lead to significant

bias in the leverage effect estimation. They are also concave as a function of the length of time,

controlled by m, used to compute changes in the variables. We have shown that these errors

can have an adverse effect on the assessment of the leverage effect.

Fortunately, these errors are correctable to the extent where spot volatility is used for a

certain range of m. There is still a substantial discretization bias that remains when using the

spot volatility over a large time horizon, yet a reasonable large choice of m is necessary so that

biases based on integrated volatility becomes correctable. This leads us to further correct the

biases by aggregating the information in various preliminary estimates of the leverage effect

over different values of m. This is achieved by using a simple linear regression technique. The

methods’ effectiveness is demonstrated using both simulated examples and empirical study of

real asset returns data.

In summary, a seemingly natural application of integrated volatility estimators to assess the

leverage effect can lead to severe bias. Perhaps paradoxically, attempts to improve the esti-

mation by employing statistically better volatility estimators (such as noise-robust estimators)

can actually make matters worse as far as the estimation of the leverage effect is concerned.

We show instead that to assess the leverage effect using high-frequency data, it is necessary to

first do a preliminary bias correction and then further aggregate these preliminary estimates

by running a local linear regression.
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Appendix

A Preliminary Results

We first compute some moments that are related to the Heston model. They will be useful for

proofs of Theorems 1–4. Throughout the appendix, we use the notation Eν and Varν to denote

the conditional mean and conditional variance given the latent volatility process {νt}, and Et
denote the conditional expectation given the filtration up to time t. Other similar notations

will be adopted.

A.1 Conditional Moments of Returns,

Rewrite the process as

dXt = (µ− νt/2)dt+ ρν
1/2
t dWt +

√
1− ρ2ν

1/2
t dZt, (24)

where Zt is another Brownian motion process independent of W . Let Yt = γXt − ρνt, which

eliminates the dWt term. Then, it follows that

dYr = [γµ− ρκα+ (ρκ− γ/2)νr] dr +
√

1− ρ2ν1/2r dZr.

Denoting by a = µ− ρκα/γ, b = ρκ/γ − 1/2 and c = ρ/γ, we have from the above expression

that

Xu −Xs =

∫ u

s

{
(a+ bνt) dt+

√
1− ρ2ν

1/2
t dZt

}
+ c(νu − νs). (25)

Hence, conditioning on the process {νt}, Xu −Xs is normally distributed with mean

Eν(Xu −Xs) =

∫ u

s

(a+ bνt)dt+ c(νu − νs) ≡ µν (26)

and variance

Var v(Xu −Xs) = (1− ρ2)

∫ u

s

νt dt ≡ σ2
ν . (27)

Using the moment formulas of the normal distribution, we can easily obtain the first four

moments for the changes of the prices:

Eν(Xu −Xs)
2 = µ2

ν + σ2
ν ,

Eν(Xu −Xs)
3 = µ3

ν + 3µνσ
2
ν ,

Eν(Xu −Xs)
4 = µ4

ν + 3σ4
ν + 6µ2

νσ
2
ν .
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A.2 Cross-Moments of the Feller Process

We now compute the cross-moments of the Feller process {νt}. First of all, it is well known

that

E(νt) = α and Var(νt) =
γ2α

2κ
. (28)

Using again the Ito’s formula, we have

d(eκtνt) = καeκtdt+ γeκtν
1/2
t dWt,

which implies for s > t,

E(νs|νt) = e−κ(s−t)νt + α(1− e−κ(s−t)). (29)

Similarly, by using the Ito’s formula again,

d(eκtνt)
2 = (2κα+ γ2)e2κtνtdt+ 2γe2κtν

3/2
t dWt.

This together with (29) imply that for s > t,

E(ν2s |νt) =e−2κ(s−t)ν2t + e−2κs

∫ s

t

(2κα+ γ2)e2κuE(νu|νt)du

=e−2κ(s−t)ν2t +
2κα+ γ2

κ
(νt − α)(e−κ(s−t) − e−2κ(s−t))

+
2κα2 + γ2α

2κ
(1− e−2κ(s−t)). (30)

Therefore, for r ≤ s,

E(νrνs) = E(νrE(νs|νr))

= E[ν2r e
−κ(s−r) + α(1− e−κ(s−r))νr]

= α2 + γ2αe−κ(s−r)/(2κ). (31)

Using the same technique, we can calculate higher moments and cross-moments. From

d(eκtνt)
3 = 3e2κtν2t (καe

κtdt+ γeκtν
1/2
t dWt) + 3(eκtνt)γ

2e2κtνtdt, (32)

we have

E(eκtνt)
3 = Eν30 + 3

∫ t

0

(κα+ γ2)e3κuEν2udu.
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Using the fact that Eν3t = Eν30 and Eν2u = α2 + γ2α/(2κ), we deduce that

Eν3t = (α+
γ2

κ
)(α2 +

γ2α

2κ
).

Recall that Et denote the conditional expectation given the filtration up to time t. For s > t,

we deduce from (32) that

Et(e
κsνs)

3 = eκtν3t +

∫ s

t

(3κα+ 3γ2)e3κuEtν
2
udu.

Now, substituting (30) into the above expression, we obtain after some calculation that

Etν
3
s =e

−3κ(s−t)
[
ν3t + 3β1(e

κ(s−t) − 1)ν2t + 1.5β1β2(e
2κ(s−t) − 2eκ(s−t) + 1)νt

+ 0.5αβ1β2
(
3eκ(s−t) − 3e2κ(s−t) + e3κ(s−t) − 1

) ]
, (33)

where β1 = α+ γ2/κ and β2 = 2α+ γ2/κ. For r < s < u, by using conditional expectation and

(29), we have

E(νrνsνu) = Eνrνs[α+ e−κ(u−s)(νs − α)]

= αE(νrνs) + e−κ(u−s)E[νrEr(ν
2
s − ανs)].

Substituting (29)-(31) into the above formula, the resulting expression involves only the first

three moments of νr, which has already been derived. Therefore, after some calculation, it

follows that

E(νrνsνu) = α3 +
γ2α2

2κ

[
e−κ(s−r) + e−κ(u−r) + e−κ(u−s) + γ2κ−1α−1e−κ(u−r)

]
. (34)

The fourth order cross-moment can be derived analogously using what has already been

derived along with the Ito formula:

d(eκtνt)
4 = 4e3κtν3t (καe

κtdt+ γeκtν
1/2
t dWt) + 6(e2κtν2t )γ

2e2κtνtdt.

We omit the detailed derivations, but state the following results:

E(ν4t ) = (α+
3γ2

2κ
)(α+

γ2

κ
)(α2 +

γ2α

2κ
), (35)

and for r < s < u < t,

E(νrνsνuνt) =α
4 +

α3γ2

2κ

[
e−κ(u−r) + e−κ(t−r) + e−κ(s−r) + e−κ(u−s) + e−κ(t−s) + e−κ(t−u)

]
+
α2γ4

2κ2

[
e−κ(t+u−r−s) + e−κ(u−r) + 2e−κ(t−r) + e−κ(s+t−u−r)/2 + e−κ(t−s)

]
+
αγ6

4κ3

[
e−κ(t+u−r−s) + 2e−κ(t−r)

]
. (36)
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B Proofs of the Theorems

B.1 Proof of Theorem 1

Let us first compute the covariance. It follows from (25) that

Cov(νt+s − νt, Xt+s −Xt)

=E(νt+s − νt)

[∫ t+s

t

(a+ bνu)du+ c(νt+s − νt)

]
=b

∫ t+s

t

[E(νuνt+s)− E(νuνt)]du+ cE(νt+s − νt)
2.

Now, using the moment formulas (28) and (31) and some simple calculus, we have

Cov(νt+s − νt, Xt+s −Xt) = αγρ[1− exp(−sκ)]/κ.

By using (28) and (31) again, we easily obtain

Var(νt+s − νs) = γ2α[1− exp(−κs)]/κ. (37)

Hence, it remains to compute Var(Xt+s −Xt). By (26) and (27),

Var(Xt+s −Xt) = Var(µν) + E(σ2
ν) = E(µ2

ν + σ2
ν)− (E(µν))

2

=

∫ t+s

t

∫ t+s

t

E(a+ bνr)(a+ bνu)drdu+ 2bc

∫ t+s

t

Eνr(νt+s − νt)dr

+ c2E(νt+s − νt)
2 + (1− ρ2)αs− (

∫ t+s

t

a+ bE(νr)dr)
2.

Using the moments for νt computed in section A.2, after some calculus, we obtain

Var(Xt+s −Xt) =

(
s+

e−κs − 1

κ

)(
γ2α

4κ2
− γαρ

κ

)
+ αs. (38)

Finally, combinations of the covariance and variance expressions lead to the correlation

formula in Theorem 1.

Expanding the result of Theorem 1 around s = 0, we obtain the Proposition 1.

B.2 Proof of Theorem 2 and Proposition 2

Recall Vt,∆ =
∫ t
t−∆

νsds. Let us compute the variance of the change of the ideally estimated

spot volatility. Note that E(Vt+m∆,∆ − Vt,∆) = 0. Using the stationarity of the process {νt},
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we have

Var(Vt+m∆,∆ − Vt,∆) =E(Vt+m∆,∆ − Vt,∆)
2

=2

∫ t

t−∆

∫ t

t−∆

Eνsνu ds du− 2

∫ t+m∆

t+(m−1)∆

∫ t

t−∆

Eνsνu ds du.

Now, by (31), the above variance is given by

4

∫ t

t−∆

∫ u

t−∆

[
α2 +

γ2α

2κ
e−κ(u−s)

]
ds du− 2

∫ t+m∆

t+(m−1)∆

∫ t

t−∆

[
α2 +

γ2α

2κ
e−κ(u−s)

]
ds du.

Simple calculus leads to

Var(Vt+m∆,∆ − Vt,∆) = αγ2B2
2/4,

where B2 is as given in Theorem 2. Comparing this with the variance of differenced spot

volatilities, we have

Var(Vt+m∆,∆ − Vt,∆)

∆2Var(νt+m∆ − νt)(1− 1/3m)
= 1 +Rv(m,∆), (39)

where Rv(m,∆) is such that

lim sup
m∆→0

|Rv(m,∆)|
∆

<∞.

In particular, Rv(m,∆) = O(∆) for any m as ∆ → 0, and Rv(m,∆) = o(m∆) if m → ∞ and

m∆ → 0.

Next, we compute the covariance. By (26) and the double expectation formula, we have

Cov(Vt+m∆,∆ − Vt,∆, Xt+m∆ −Xt)

=E
[ ∫ t+m∆

t+(m−1)∆

νsds−
∫ t

t−∆

νsds
][ ∫ t+m∆

t

(a+ bνr)dr + c(νt+m∆ − νt)
]

=b

∫ t+m∆

t+(m−1)∆

∫ t+m∆

t

E(νsνr)drds− b

∫ t

t−1

∫ t+m∆

t

E(νsνr)drds

+ c

∫ t+m∆

t+(m−1)∆

Eνs(νt+m∆ − νt)ds− c

∫ t

t−1

Eνs(νt+m∆ − νt)ds.

Using (31), after some calculus, we obtain that

Cov(Vt+m∆,∆ − Vt,∆, Xt+m∆ −Xt) = αγA2/(4κ
3),

where A2 is again as given in Theorem 2. The conclusion of Theorem 2 follows from (38) and

the above results. Comparing this with the covariance based on the spot volatilities, we have

Cov(Vt+m∆,∆ − Vt,∆, Xt+m∆ −Xt)

∆Cov(νt+m∆ − νt, Xt+m∆ −Xt)(1− 1/2m)
= 1 +Rc(m,∆), (40)
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where Rc(m,∆) satisfies lim supm∆→0
|Rc(m,∆)|

∆
<∞.

By (39) and (40) the following asymptotic expressions are easily obtained:

Corr(Vt+m∆,∆ − Vt,∆, Xt+m∆ −Xt) = Corr(νt+m∆ − νt, Xt+m∆ −Xt)
(2m− 1)

2
√
m2 − m

3

(41)

+

 O(∆), when ∆ → 0 for any m

o(m∆), when m→ ∞,m∆ → 0,

which proves the Proposition 2.

B.3 Proof of Theorem 3 and Proposition 3

The calculation is very involved. We separate them into several subsections so that the structure

of computation can be better recognized. Recall that n = ∆/δ. Without loss of generality, we

assume that t = ∆ and rewrite V̂ RV
∆,∆ = V̂ RV

∆ . Note that it is easy to verify that E(V̂ RV
(m+1)∆,∆ −

V̂ RV
∆ ) = 0.

B.3.1 Calculation of E
[
V̂ RV
∆ (X(m+1)∆ −X∆)

]
Note that V̂ RV

∆ and X(m+1)∆ −X∆ involve two different time intervals. By conditioning on the

latent process {νt}, V̂ RV
∆ and X(m+1)∆ −X∆ are independent by (25). Thus,

E
[
V̂ RV
∆ (X(m+1)∆ −X∆)

]
= E

[
EνV̂

RV
∆ Eν(X(m+1)∆ −X∆)

]
.

Using (25)–(27), the above expectation is given by

n−1∑
i=0

E

{[∫ (i+1)δ

iδ

(a+ bνr)dr + cν(i+1)δ − cνiδ

]2
+ (1− ρ2)

∫ (i+1)δ

iδ

νr dr

}

·

{∫ (m+1)∆

∆

(a+ bνr)dr + cν(m+1)∆ − cν∆

}
. (42)

Expanding the first curly bracket into four terms, we have 4 product terms with the second

curly bracket in (42). Denote those four terms by I1, · · · , I4, respectively.
We now deal with each of the four terms. The first term is given by

I1 ≡
n−1∑
i=0

{∫ (m+1)∆

∆

(a+ bνr)dr + cν(m+1)∆ − cν∆

}[∫ (i+1)δ

iδ

(a+ bνr)dr
]2
.
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Expressing the square-term above as the double integral, I1 involves only the third cross

moment of the process {νt}. By using (31) and (34), it follows that

I1 =
n−1∑
i=0

∫ (m+1)∆

∆

∫ (i+1)nδ

iδ

∫ r

iδ

−2
γ4a3

2κ2α2
e−κ(s−u)dudrds

+
n−1∑
i=0

∫ (i+1)δ

iδ

∫ r

iδ

2ca2
γ4

2κ2α

[
e−κ((m+1)∆−u) − e−κ(∆−u)

]
dudr

=− a2γ4(a+ αcκ)

2α2κ2
m∆3

n
+R1,

where R1 satisfies that limn→∞ supm≥1 sup∆≤1
|R1|n
m∆3 = 0. In particular, we have,

I1
m∆2

= O(
∆

n
),

as ∆ → 0 and n→ ∞ or as m→ ∞, m∆ → 0, and n→ ∞.

Using the same argument, the second term can be calculated as follows:

I2 ≡ 2c
n−1∑
i=0

{∫ (m+1)∆

∆

(a+ bνr)dr + cν(m+1)∆ − cν∆

}[∫ (i+1)δ

iδ

(a+ bνr)dr
]
(ν(i+1)δ − νiδ)

=
n−1∑
i=0

[ ∫ (m+1)∆

∆

∫ (i+1)δ

iδ

2ca2
γ4

2κ2α

[
e−κ(s−r) − e−κ(s−iδ)

]
drds

+

∫ (i+1)δ

iδ

2ac2
γ4

2κ2

[
e−κ((m+1)−iδ) − e−κ((m+1)∆−r) − e−κ(∆−iδ) + e−κ(∆−r)

]
dr,

where the cross moment function of the process {νt} is used. We have

I2 =
acγ4(a+ αcκ)

2ακ

m∆3

n
+R2,

where R2 satisfies that limn→∞ supm≥1 sup∆≤1
|R2|n
m∆3 = 0. Hence,

I2
m∆2

= O(
∆

n
),

as ∆ → 0 and n→ ∞ or as m→ ∞, m∆ → 0, and n→ ∞.

Similarly, we can calculate the third term and the fourth term based on the cross moments

of the process {νt}. They are given by

I3 =− c2γ4
(
e∆κ − 1

)
e−∆κ(m+1)

(
e∆κm − 1

)
(a+ αcκ)/(2κ3),

I4 =γ
2
(
ρ2 − 1

) (
e∆κ − 1

)
e−∆κ(m+1)

(
e∆κm − 1

)
(a+ αcκ)/(2κ3).
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B.3.2 Calculation of EV̂ RV
(m+1)∆,∆(X(m+1)∆ −X∆) and covariance

By the definition of V̂ RV
(m+1)∆,∆, it follows that

EV̂ RV
(m+1)∆,∆(X(m+1)∆ −X∆) = E

n−1∑
i=0

[Xm∆+(i+1)δ −Xm∆+iδ]
2

×
{
(Xm∆+iδ −X∆) + (Xm∆+(i+1)δ −Xm∆+iδ) + (X(m+1)∆ −Xm∆+(i+1)δ)

}
.

Let J1, J2 and J3 be respectively the product of the first, second and third term in the curly

bracket with that in square bracket. Each of these terms can be treated similarly as those in

Section B.3.1. That is, by conditioning on the process {νt}, they can be reduced to the calcu-

lation of the cross moments of {νt}, by using the conditional moments in section A.1. After

tedious calculations involving the cross moments discussed in section A.2, we can obtain asymp-

totic expressions for J1, J2 and J3. Using these together with what we get for I1, · · · , I4, we can
easily obtain an asymptotic expression of Cov(V̂ RV

(m+1)∆,∆ − V̂ RV
∆ , X(m+1)∆ − X∆). Comparing

this asymptotic expression with what we have obtained in Theorem 2, we conclude that

m−1∆−2 Cov(V̂ RV
(m+1)∆,∆ − V̂ RV

∆ , X(m+1)∆ −X∆)

=m−1∆−2 Cov(V(m+1)∆,∆ − V∆,∆, X(m+1)∆ −X∆) +O(
1

n
) as n→ ∞ (43)

=m−1∆−2 Cov(V(m+1)∆,∆ − V∆,∆, X(m+1)∆ −X∆) + o(m∆),

as ∆ → 0, n∆ → C and m∆ → 0.

B.3.3 Calculation of the variance of changes of estimated RV

Let Yi = X(i+1)δ −Xiδ. Then,

E(V̂ RV
∆ )2 =

n−1∑
i=0

EY 4
i + 2

n−1∑
i=1

i−1∑
j=1

EY 2
i Y

2
j . (44)

By using the expression at the end of Section A, we have

EY 4
i =E

(∫ (i+1)δ

iδ

(a+ bνr)dr + cν(i+1)δ − cνiδ

)4

+ 3E

(
(1− ρ2)

∫ (i+1)δ

iδ

νr dr

)2

+ 6(1− ρ2)E

∫ (i+1)δ

iδ

νr dr ·

(∫ (i+1)δ

iδ

(a+ bνr)dr + cν(i+1)δ − cνiδ

)2

.
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By conditioning on the process {νt}, Y 2
i and Y 2

j are conditionally independent for j < i.

Appealing to (26) and (27), we have that for j < i

EY 2
i Y

2
j =E


(∫ (i+1)δ

iδ

(a+ bνr)dr + cν(i+1)δ − cνiδ

)2

+ (1− ρ2)

∫ (i+1)δ

iδ

νr dr


·

(∫ (j+1)δ

jδ

(a+ bνr)dr + cν(j+1)δ − cνjδ

)2

+ (1− ρ2)

∫ (j+1)δ

jδ

νr dr

 .

Both terms above only involve the cross moments of the process {νt}. After tedious calculations,
we can show that

E
(
V̂ RV
∆

)2
= (α2 +

αγ2

2κ
)∆2 − αγ2

6
∆3 +

α (3ρ4 − 6ρ2 + 4) (2ακ+ γ2)

κ

∆2

n
+ o(

∆

n
), (45)

when ∆ → 0 and n∆ → C. This is the same for E
(
V̂ RV
(m+1)∆,∆

)2
.

By conditioning on the process {νt}, using the conditional independence, we have

EV̂ RV
∆ V̂ RV

(m+1)∆,∆

=
n−1∑
i=0

n−1∑
j=0

E

(∫ (i+1)δ

iδ

(a+ bνr)dr + cν(i+1)δ − cνiδ

)2

+ (1− ρ2)

∫ (i+1)δ

iδ

νr dr


·

(∫ (j+1)δ

jδ

(a+ bνm∆+r)dr + cνm∆+(j+1)δ − cνm∆+jδ

)2

+ (1− ρ2)

∫ (j+1)δ

jδ

νm∆+r dr

 .
Again, tedious calculations involving the cross moments of the process {νt} yield

EV̂ RV
∆ V̂ RV

(m+1)∆,∆ =
α (2ακ+ γ2)

κ
∆2 − αγ2m∆3 + o(∆3), (46)

as ∆ → 0 and n∆ → C. Combination of (45) and (46) results in

Var(V̂ RV
(m+1)∆,∆ − V̂ RV

∆ ) =E(V̂ RV
∆ )2 + E(V̂ RV

(m+1)∆,∆)
2 − 2E(V̂ RV

∆ V̂ RV
(m+1)∆,∆)

=2

[
(α2 +

αγ2

2κ
)∆2 − αγ2

6
∆3 +

α (2ακ+ γ2)

κ

∆2

n

]
− 2

[
α (2ακ+ γ2)

κ
∆2 − αγ2m∆3

]
+ o(∆3). (47)

as ∆ → 0 and n∆ → C. Comparing this with the variance expression obtained in the proof of

Theorem 2, we have

Var(V̂ RV
(m+1)∆,∆ − V̂ RV

∆ ) = Var(Vt+m∆,∆ − Vt,∆) +
2α (2ακ+ γ2)

κ

∆2

n
+ o(∆3),
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Or, equivalently,

m−1∆−3 Var(V̂ RV
(m+1)∆,∆ − V̂ RV

∆ )

=m−1∆−3

(
Var(Vt+m∆,∆ − Vt,∆) +

4Eσ4
t∆

2

n

)
+ o(

1

m
) (48)

=m−1∆−3 Var(Vt+m∆,∆ − Vt,∆) +
2α (2ακ+ γ2)

κCm
+ o(m∆), (49)

when m2∆ → Cm.

B.3.4 Adjustment to Leverage Parameter

Further from (37) and (39), we have

m−1∆−3Var(Vt+m∆,∆ − Vt,∆) = γ2α− γ2α

3m
− 1

2
αγ2κm∆+ o(m∆), (50)

and (48) becomes

m−1∆−3Var(V̂ RV
(m+1)∆,∆ − V̂ RV

∆ ) (51)

=m−1∆−3Var(Vt+m∆,∆ − Vt,∆)(1 +
6 (2ακ+ γ2)

(3γ2m− γ2)κC − 3
2
γ2κ2CCm

) + o(m∆). (52)

By using (43), (51) and (41), we can easily obtain the following relationship:

Corr(V̂ RV
(m+1)∆,∆ − V̂ RV

∆ , X(m+1)∆ −X∆)

=Corr(V(m+1)∆ − V∆, X(m+1)∆ −X∆)) ·
1√

1 + 12ακ+6γ2

(3γ2m−γ2)κC− 3
2
γ2κ2CCm

[1 + o(m∆)]

=Corr(νm+t − νt, Xm+t −Xt) ·
1− 1/2m√

(1 + 12ακ+6γ2

(3γ2m−γ2)κC− 3
2
γ2κ2CCm

)(1− 1
3m

)
[1 + o(m∆)],

as ∆ → 0, n∆ → C and m2∆ → Cm.

Proposition 3 follows from (41), (43) and (48).

B.4 Proof of Theorem 4 and Theorem 5

Under the assumptions that n1/3∆ → CTSRV and σ2
ϵ/∆ → Cϵ, we have

m−1∆−2 Cov(V̂ TSRV
(m+1)∆,∆ − V̂ TSRV

∆ , Z(m+1)∆ − Z∆)

=m−1∆−2 Cov(V(m+1)∆,∆ − V∆,∆, X(m+1)∆ −X∆) + o(m∆) (53)

35



and

m−1∆−3 Var(V̂ TSRV
(m+1)∆,∆ − V̂ TSRV

∆ )

=m−1∆−3

(
Var(Vt+m∆,∆ − Vt,∆) +

16θ−2
TSRVσ

4
ϵ

n1/3
+

8θTSRVEσ
4
t∆

2

3n1/3

)
+ o(m∆) (54)

=m−1∆−3 Var(Vt+m∆,∆ − Vt,∆) +
16θ−2

TSRVC
2
ϵ

mCTSRV
+

8θTSRVEσ
4
t

3mCTSRV
+ o(m∆)

=m−1∆−3 Var(Vt+m∆,∆ − Vt,∆)[1 + A4 +B4 + o(m∆)], (55)

where A4 =
96θ−2

TSRVC
2
ϵ

CTSRV αγ2(6m−2−3κCm)
, B4 =

8θTSRV(2ακ+γ2)
κCTSRV γ2(6m−2−3κCm)

, by (50).

Under the assumptions that n1/2∆ → CPAV and σ2
ϵ/∆ → Cϵ, with the constants ψ2, Φ11,

Φ12, Φ22 as specified in Theorem 5, we have

m−1∆−2Cov(V̂ PAV
(m+1)∆,∆ − V̂ PAV

∆ , Z(m+1)∆ − Z∆)

=m−1∆−2Cov(V(m+1)∆,∆ − V∆,∆, X(m+1)∆ −X∆) + o(m∆), (56)

and

m−1∆−3 Var(V̂ PAV
(m+1)∆,∆ − V̂ PAV

∆ )

=m−1∆−3

(
Var(Vt+m∆,∆ − Vt,∆) +

8Φ22θPAVEσ
4
t∆

2

ψ2
2n

1/2
+

16Φ12Eσ
2
t σ

2
ϵ∆

θPAVψ2
2n

1/2
+

8Φ11σ
4
ϵ

θ2PAVψ
2
2n

1/2

)
+ o(m∆)

(57)

=m−1∆−3 Var(Vt+m∆,∆ − Vt,∆) +
8Φ22θPAVEσ

4
t

mψ2
2CPAV

+
16Φ12Eσ

2
tCϵ

mθPAVψ2
2CPAV

+
8Φ11C

2
ϵ

mθ2PAVψ
2
2CPAV

+ o(m∆)

=m−1∆−3 Var(Vt+m∆,∆ − Vt,∆)[1 + A5 +B5 + C5 + o(m∆)], (58)

where A5 =
24Φ22θPAV(2ακ+γ2)

ψ2
2CPAV κγ2(6m−2−3κCm)

, B5 =
96Φ12Cϵ

θPAVψ
2
2CPAV γ2(6m−2−3κCm)

and

C5 =
48Φ11C2

ϵ

θ2PAVψ
2
2CPAV αγ2(6m−2−3κCm)

.

Similar as in section B.3.4, Theorem 4 follows by (53) and (55), and Theorem 5 by (56) and

(58). Proposition 4 follows by (53) and (54), and Proposition 5 by (56) and (57).
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Table 1: Performance of the bias correction method based on asymptotic formulas and linear

regression. The 100 estimates of ρ are summarized by its minimum, first quartile, median, third

quartile, maximum, mean and SD.

Min. 1st Qu. Median 3rd Qu. Max. Mean SD

corNutorho -0.8555 -0.8172 -0.8005 -0.7808 -0.7511 -0.7999 0.026

corVtorho -0.8827 -0.8238 -0.8019 -0.7814 -0.7415 -0.8041 0.031

corRVtorho -0.9282 -0.8323 -0.7993 -0.7709 -0.7075 -0.8007 0.043

corPAVtorho -1.0330 -0.8320 -0.7921 -0.7174 -0.6138 -0.7794 0.079

corTSRVtorho -1.0760 -0.8351 -0.7776 -0.7020 -0.4765 -0.7744 0.117

Table 2: Performance of the bias correction method based on nonparametrically estimated

asymptotic quantities and linear regression. The 100 estimates of ρ are summarized by its

minimum, first quartile, median, third quartile, maximum, mean and SD.

Min. 1st Qu. Median 3rd Qu. Max. Mean SD

corRVtorhoE -0.8916 -0.8250 -0.8007 -0.7779 -0.7312 -0.8029 0.034

corPAVtorhoE -0.9530 -0.8380 -0.7941 -0.7513 -0.6545 -0.7941 0.062

corTSRVtorhoE -1.9230 -0.9647 -0.8241 -0.7452 -0.5587 -0.8742 0.211
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Table 3: The results based on the sample frequency n = 1560, one observation per 15 seconds.

They show the performance of the bias correction method based on asymptotic formulas and lin-

ear regression (“corNutorho”, “corVtorho”, “corRVtorho”, “corPAVtorho”, “corTSRVtorho”);

and that of bias correction method based nonparametrically estimated asymptotic quantities

and linear regression (“corRVtorhoE”, “corPAVtorhoE”, “corTSRVtorhoE”). The 100 esti-

mates of ρ are summarized by its minimum, first quartile, median, third quartile, maximum,

mean and SD. The range for regression is m = (6, 7, · · · , 17)).

Min. 1st Qu. Median 3rd Qu. Max. Mean SD

corNutorho -0.8527 -0.8141 -0.8023 -0.7812 -0.7316 -0.7988 0.024

corVtorho -0.8727 -0.8253 -0.8099 -0.7869 -0.7223 -0.8053 0.029

corRVtorho -0.8777 -0.8285 -0.8104 -0.7875 -0.6944 -0.8051 0.033

corPAVtorho -0.8968 -0.8313 -0.7989 -0.7558 -0.6119 -0.7942 0.058

corTSRVtorho -0.9921 -0.8709 -0.7953 -0.7313 -0.5364 -0.7999 0.094

corRVtorhoE -0.8745 -0.8270 -0.8093 -0.7872 -0.7067 -0.8056 0.030

corPAtorhoE -0.8962 -0.8287 -0.7973 -0.7682 -0.6743 -0.7970 0.045

corTSRVtorhoE -1.7800 -0.9657 -0.8850 -0.8184 -0.6027 -0.9147 0.175

Table 4: The sample correlation between the returns of S&P500 (2004-2007) and its estimated

changes of volatilities, using TSRV, PAV and VIX (squared).

m 1 2 5 21 63 126 252

TSRV -0.196 -0.257 -0.333 -0.434 -0.309 -0.267 -0.122

PAV -0.255 -0.318 -0.403 -0.494 -0.368 -0.317 -0.152

VIX(sq) -0.784 -0.774 -0.761 -0.792 -0.614 -0.469 -0.114
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Table 5: The sample correlation between the returns of Microsoft and its estimated changes of

volatilities, using TSRV and PAV with sampling frequencies at one per minute and one per 5

seconds.

m 1 2 5 10 21 63 126 252

One observation per minute

TSRV 0.087 0.049 0.016 -0.027 -0.120 -0.290 -0.363 -0.221

PAV 0.030 -0.002 -0.017 -0.039 -0.169 -0.339 -0.405 -0.280

One observation per 5 seconds

TSRV -0.006 -0.034 -0.047 -0.069 -0.207 -0.364 -0.362 -0.345

PAV -0.051 -0.074 -0.102 -0.115 -0.257 -0.412 -0.400 -0.404
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Figure 1: Scatter plots of differences of estimated daily volatility V̂t − V̂t−m versus returns

over relatively long time span m for S&P 500 futures 2004-2007 data and Microsoft data from

January 2005 to June 2007. Daily volatilities are estimated using TSRV based on high frequency

minute-by-minute observations, and returns are calculated based on daily closing prices. From

left to right: S&P 500 futures when time horizon m is taken to be 5 days (a week), S&P 500

futures when time horizon m is taken to be 21 days (a month), MSFT when time horizon m is

taken to be 63 days (three months), MSFT when time horizon m is taken to be 126 days (six

months). Solid red lines are the least squares regression lines.
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Figure 2: Changes of squared volatility indices versus returns. Using the volatility indices as

the proxy of volatility, the leverage effect can clearly be seen. Left panel: S&P 500 data from

January 03, 2004 to December 05, 2007, in which the VIX is used as a proxy of the volatility;

Right panel: Dow Jones Industrial Average data from January 03, 2005 to March 30, 2007 in

which the CBOE DJIA Volatility Index (VXD) is used as the volatility measure.
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Figure 3: Upper: Scatter plots of the changes of estimated daily volatilities versus daily re-

turns. Daily volatilities are estimated using TSRV based on high frequency minute-by-minute

observations, and returns are calculated based on daily closing prices. From left to right: S&P

500 futures 2004-2007 data, E-mini S&P 500 2004-2007 data, Dow Jones futures January 2005

– March 2007 data, Microsoft January 2005 – June 2007 data. Lower: Scatter plots of differ-

ences of estimated daily volatility versus daily returns with leads and lags for S&P 500 futures

2004-2007 data (left two) and Microsoft data from January 2005 to June 2007 (right two).
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Figure 4: The theoretical estimated leverage effect parameter ρ as a function of the tuning

parameter m when ∆ is taken to be 1/252; using the spot volatility (Cor_nu), ideally estimated

spot volatility (Cor_V), realized volatility estimator (Cor_RV), pre-averaging volatility estimator,

(Cor_PAV) and two-time scale volatility estimator (Cor_TSRV) respectively. They correspond

respectively to the function C1(m∆, κ, γ, α, ρ) in Theorem 1, A2/(B2C2) in Theorem 2, and the

main terms in Theorems 3, 4 and 5 respectively. Two sets of parameters are used. Left panel:

(ρ, κ, γ, α) = (−0.8, 5, 0.5, 0.1); right panel: (ρ, κ, γ, α) = (−0.3, 5, 0.05, 0.04).
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Figure 5: The effectiveness of multiplicative correction of smoothing bias, based on the main

term in (17). After correction, the estimate of ρ is approximately the same as that based on

the observable spot volatility. Left panel: (ρ, κ, γ, α,∆) = (−0.8, 5, 0.5, 0.1, 1/252); right panel:

(ρ, κ, γ, α,∆) = (−0.3, 5, 0.05, 0.04, 1/252).
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Figure 6: Sample correlation between the log-returns and the changes of spot volatility (upper

left), the changes of integrated volatility (upper right), the differences of realized volatility

(lower left), the differences of PAV (lower middle), and the differences of TSRV (lower right)

over a period of m days. The results are based on 100 simulations. The solid curve is the

average over 100 simulations. The dots are one standard deviations away from the averages.

Parameters: (ρ, κ, γ, α, σϵ,∆, n) = (−0.8, 5, 0.5, 0.1, 0.0005, 1/252, 390).
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Figure 7: The average sample correlations between the changes of log-prices over a period of m

days and the difference of the spot volatility ν, the difference of the integrated volatility V , the

difference of the RV estimates, and the difference of the TSRV estimates over the same period.

Comparing this with the left panel of Figure 4, we see how the simulation results are in line

with the theory. Parameters: (ρ, κ, γ, α, σϵ,∆, n) = (−0.8, 5, 0.5, 0.1, 0.0005, 1/252, 390)
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Figure 8: The scatter plot of preliminary bias corrected estimates of the leverage effect param-

eter ρ against m for one simulated realization. Left panel is based on the PAV and the right

panel is based on TSRV. The bottom panel is the zoommed version of the plots on the top

panel, in which the first linearly increasing interval is depicted. The estimates in this range are

further aggregated by using a simple linear regression to obtain a final estimate of the leverage

effect.
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Figure 9: The same as Figure 7 except that the data are sampled at every 15 seconds (n=1560).
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Figure 10: Upper: The raw sample correlations based on VIX (squared), PAV and TSRV, for

different horizons m based on the minute-by-minute data of S&P500 returns in the time period

2004-2007. Lower: the scatter plots of preliminary bias corrected estimates of the leverage

effect parameter ρ against m for the same data set. The middle plots are the zoomed versions

of the plots on the left, in which the first linearly increasing interval is depicted. The plots

on the right show how estimates in the range are further aggregated by using a simple linear

regression to obtain a final estimate of the leverage effect.
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Figure 11: The scatter plots of preliminary bias corrected estimates of the leverage effect

parameter ρ against m based on the minute-by-minute data of Microsoft returns in the time

period Jan/2005-Jun/2007. Upper panel is based on the PAV and the lower panel is based on

TSRV. The middle are the zoomed versions of the plots on the left, in which the first linearly

increasing interval is depicted. The plots on the right show how estimates in the range are

further aggregated by using a simple linear regression to obtain a final estimate of the leverage

effect.
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Figure 12: The same as in Figure 11 except that the data are sampled at the frequency of one

observation per 5 seconds.
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