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1. Introduction 

The achievement gap between historically underrepresented minority students and non-

minority students is one of the most persistent and vexing problems of the educational system in 

the United States.2 African-American, Latino and Native-American students have substantially 

lower test scores, grades, high school completion rates, college attendance rates, and college 

graduation rates than non-minority students (U.S. Department of Education 2010). In particular, 

less than one-fifth of African-Americans and less than one-eighth of Latinos who are between 25 

and 29 years old have a college degree. The levels of college completion for non-Latino whites 

are two to three times higher. With large returns to college education, these disparities in 

educational attainment have important implications for income and wealth inequality across racial 

and ethnic groups (Altonji and Blank 1999, Card 1999, Jencks and Phillips 1998). 

Many social researchers and public policy makers argue that the college achievement gap 

may be partly explained by the general lack of minority teachers at the post-secondary level. Only 

9.6 percent of all full-time instructional faculty at U.S. colleges are black, Latino or Native 

American (U.S. Department of Education 2010). In contrast, these groups comprise one-third of 

the college-age population and an even higher percentage of children. Many social scientists 

hypothesize that the lack of minority instructors limits the availability of role models, increases 

the likelihood of “stereotype threats” and discrimination against minority students, and limits 

exposure to instructors with similar cultures and languages.  

Using a new administrative dataset with detailed demographic information on instructors 

as well as students from a large and ethnically diverse community college, this study is the first to 

test whether minority instructors have a positive effect on the academic achievement of minority 

students in college, at any level. The need to address the achievement gap in college, especially at 

the community college level, is growing in importance. Community colleges enroll more than 

                                                 
2 In the following we use “underrepresented minority” and “minority” interchangeably. This group includes 
African-Americans, Hispanics, and Native Americans, which is the common definition used for 
"underrepresented minority" in California public higher education. 



 
 

half of all minority students attending public universities and nearly half of all students attending 

public universities. Since community colleges, in addition to providing workforce training, serve 

as an important gateway to 4-year colleges, they can be seen as a crucial part of the post-

secondary educational system in the United States. In some states with large community college 

systems, such as California, nearly half of all students attending a 4-year college previously 

attended a community college (California Community Colleges Chancellor’s Office 2009). With 

recent calls for major expansions in enrollments and provision of 4-year transfer courses, one can 

expect that they will gain further importance.3 The achievement gap is also large in community 

colleges with underrepresented students having lower grades, retention rates, and transfer rates 

(U.S. Department of Education 2010; CCCCO 2010; Sengupta and Jepsen 2006). Policy 

interventions targeting community colleges are therefore likely to have major effects on the 

educational system as a whole. 

Random assignment of students to professors does not occur at community colleges or 4-

year universities with rare exceptions.4 We therefore rely on a different and novel identification 

strategy together with previously used identification strategies to estimate student-instructor 

minority interactions at the classroom level. First, we take advantage of the registration priority 

system at the community college and focus on students with limited class enrollment choices. 

Given the intense competition for classes created by negligible tuition, absence of admissions 

requirements, and desirable location, this system is strictly enforced. As a consequence, students 

with the lowest registration priority status have severely restricted class enrollment choices and 

are thus close to exogenously assigned. We present results from several tests for non-random 

sorting that support this anecdotal evidence. 

                                                 
3 For example, President Obama has proposed an unprecedented funding increase for community colleges 
that aims to boost graduates by 5 million students by 2020. In California, transfers from community 
colleges to the California State University (CSU) system are projected to increase by 25 percent over the 
next decade (California Postsecondary Education Commission 2010). 
4 One exception is the Air Force Academy which provides undergraduate education for officers in the U.S. 
Air Force. 



 
 

Second, we explore the robustness of our results to restricting the variation in instructor 

race and ethnicity across classes in the same term or academic year used to identify our parameter 

of interest. By estimating our model from a sample of courses in which students have no choice 

over instructor's race within a quarter or year we can rule out the possibility of sorting within that 

quarter or year.5 Third, our main results focus on the differential effect between minority and 

non-minority students of being assigned to a minority-instructor in the same classroom. This 

answers the question of whether the minority achievement gap is smaller in classes that are taught 

by minority instructors. As a consequence, the explanatory variable of interest varies both within 

student and within a classroom, allowing us to estimate models that simultaneously include 

student and classroom fixed effects. This eliminates biases coming from student specific 

differences common across courses and classroom specific differences common across 

classmates. It also leads to standardized grade outcomes, since we are only using within-

classroom differences among students facing the same grading standards. Given the sample size – 

we observe over 30,000 students in nearly 21,000 classes – estimation of this model by 

conventional algorithms is computationally infeasible. We thus rely on an algorithm that has been 

applied to the estimation of firm and worker fixed effects with large administrative data, but has 

not been previously applied to the estimation of student and teacher fixed effects.6  

We find that the minority achievement gap is smaller in classes taken with minority 

instructors for several course outcome measures. While underrepresented minority students are 

overall more likely to drop a course, less likely to pass a course, and less likely to have a grade of 

at least a B, these gaps decrease by 2.9 percentage points, 2.8 percentage points, and 3.2 

percentage points respectively when assigned to an underrepresented minority instructor. These 

effects are large, representing roughly half of the achievement gap between non-minority and 

                                                 
5 To be clear, we use the term “course” to refer to a particular offering within a department, such as 
"Principle of Microeconomics: ECON-100," and "class" or "classroom" to refer to a particular offering of a 
course with a specific instructor during a specific quarter, such as "ECON-100-01," Fall 2006. 
6 See for example Abowd, Kramarz, and Margolis (1999) and Abowd, Creecy, and Kramarz (2002). 



 
 

minority students in the data, and equally large whether looking at vocational or academic 

courses.   

Our paper is related to a small, but growing literature that focuses on gender interactions 

between students and instructors on the post-secondary level. These studies tend to conclude that 

female students perform relatively better when matched to female instructors (e.g. Bettinger and 

Long 2005; Hoffmann and Oreopoulos 2009).7 A recent study by Carell, Page, and West (2010) 

takes advantage of the random assignment of students to classrooms at the U.S. Air Force 

Academy and finds that female students perform better in math and science courses with female 

instructors. None of these previous studies, however, examine the impact of instructor’s minority 

status, race, or ethnicity on student outcomes on the post-secondary education level, possibly 

because of data limitations or the lack of racial and ethnic diversity at more selective colleges. 

This might be an important omission in the literature, because the effects of minority faculty on 

minority students may be larger due to the sizeable racial achievement gap and similarities in 

culture, language and economic backgrounds. By sharing these characteristics, minority 

instructors may be able to better communicate subject matter in their courses, elicit class 

participation, provide one-on-one help, and advise minority students. Additionally, the nature and 

extent of racial inequality is very different than gender inequality in education, income and other 

outcomes. 

The rest of this paper proceeds as follows: Section 2 starts by providing some 

institutional background, and then describes and summarizes the data. In the next section we 

introduce our econometric framework. Section 4 presents evidence on student sorting and the 

main results on racial interactions in educational outcomes. The final section concludes. 

 

                                                 
7 A larger literature studies gender interactions at the primary or secondary school level. The findings are 
generally mixed (see for example, Nixon and Robinson 1999, Ehrenberg, Goldhaber, and Brewer 1995, 
Dee 2007, Holmlund and Sund 2005, Carrington and Tymms 2005, 2007, Lahelma 2000, and Lavy and 
Schlosser 2007). Dee (2004, 2005, 2007) and Ehrenberg, Goldhaber and Brewer (1995) find some evidence 
of positive student-teacher interactions by race and gender at the elementary and 8th grade levels. 



 
 

 

 

2. Data  

2.1 Institutional Background 

Our analysis is based on administrative data from De Anza College, a large community 

college which is part of the California Community College system and is located in the San 

Francisco Bay Area.8 De Anza College is a large community college with an average total 

enrollment of 22,000 students per year. It has a larger share of minority students than the 

nationally representative community college, reflecting the diversity of Northern California. De 

Anza College is on the quarter system, and the majority of classes are restricted to 50 or fewer 

students. The tuition at De Anza College is $17 per unit (roughly $850 per year in tuition and 

fees) with a large percentage of students receiving fee waivers because of financial need. Similar 

to all community colleges in California it has open enrollment – anyone with a high school 

diploma or equivalent is automatically admitted. 

 

Registration Priority System 

Open enrollment, very low tuition costs, mandated small class sizes, and its location in 

the San Francisco Bay Area create intense competition for courses at De Anza College. Because 

of the general excess demand for courses, the College has established a strictly enforced 

registration priority system which determines the day on which students are allowed to register 

over an eight-day period. Registration priority is determined by whether the student is new, 

returning or continuing, the number of cumulative units earned at De Anza College, and 

                                                 
8 The California Community College system is the largest higher educational system in the United States. It 
includes 110 colleges and educates 2.9 million students per year. 



 
 

enrollment in special programs.9 It does not depend on past academic performance. Incoming 

students and students who have taken a break away from the college have the lowest priority 

status. Priority status improves for continuing students by cumulative unit blocks. For example, 

continuing students with less than 11 cumulative units register on day 7 and continuing students 

with 11-29.5 cumulative units register on Day 6. 

 A student’s registration priority has a large impact on his or her choice of classes.10 

Conversations with college administrators revealed that students with a low ranking on course-

priority lists have severely limited choices in instructors. As a consequence, for a particular 

course that has multiple class offerings in a quarter, they have little control over to which 

instructor they are matched. We corroborate this anecdotal evidence by performing numerous 

tests for non-random sorting, all of which reject the hypothesis that students systematically sort 

into classes taught by an instructor who shares their race or ethnicity. We thus focus our analysis 

on a sample of students who have the lowest possible standing on class enrollment priority lists. 

To explore the robustness of our results and to exploit the large size of the full dataset, we also 

show results for regressions estimated on the unrestricted sample. 

 

2.2 Data Set and Summary Statistics 

Our data record class grades, course credits, course dropout behaviour, and detailed 

demographic characteristics for all students registered at and all classes offered by De Anza 

College between the Fall quarter of 2002 and the Spring quarter of 2007. We are able to match 

these data to detailed data on demographic characteristics of instructors such as race, ethnicity, 

age, and gender. To our knowledge, this is the first dataset that matches detailed information 

about instructors’ race to student class outcomes on the post-secondary education level. We also 

                                                 
9 We remove students enrolled in special and often minority-student programs, such as SLAM, STARS, 
and SSRC. These students receive special registration priority status even if they are new or returning 
students. 
10 In personal conversations with college administrators we have learned that students often register for 
classes as soon as they are allowed to through the system because of the intense competition for courses. 



 
 

observe students’ registration priority at the beginning of each quarter and an indicator variable 

for whether they are an entering student. One further major advantage of this dataset is that it 

allows us to match students to classes that students enrolled in before their first day of the term, 

regardless of whether they completed the class or not. 

We exclude recreational courses, such as cooking, sports and photography, orientation 

courses, and summer courses from our analysis. The remaining sample is referred to the 

“Unrestricted Sample” below. In our main analysis we also exclude courses that have an average 

enrollment per session of less than 15 students to minimize computation without losing 

identification power. To remove concerns about local community residents taking classes for 

recreational purposes and to put an emphasis on the general college-age population, we focus our 

study on students who are at most 35 years old. However, in one specification we explore age-

heterogeneity of our estimated parameters of interest and therefore do not restrict the age in the 

utilized sample at all.  

De Anza College offers many video-delivered or online courses, which would be a 

concern for the analysis if students enrolled in these types of courses never see or interact with 

the instructor. However, these courses are video delivered through online video-streaming, local 

cable TV, or DVD, are combined with compulsory weekly tutorials, and require participation in 

an orientation session that is presented by the instructor. Hence, if role model effects are driving 

our results, inclusion of these courses should not significantly alter our results. We therefore keep 

video-delivered courses in our sample and test the robustness of our estimates when dropping 

them in a later section. 

We consider four outcome variables: an indicator for whether a student drops out of a 

class at any time during the term, an indicator variable for whether the class was passed, a 

numerical grade variable, and an indicator variable for whether the course grade was a B or 



 
 

higher.11 The last variable is interesting because a GPA equivalent to a letter grade of a B is 

commonly used as a threshold for qualification for admission to the University of California. In 

the regression analysis below we standardize the numerical grade variable to have zero mean and 

unit variance within each course. 

The first panel of Table 1 (Unrestricted Sample) provides summary statistics of interest 

for the sample before dropping small courses, small departments, and students who are older than 

35 years.12 This sample consists of 506,280 student-course observations. Only 2.4 percent of the 

student-class observations are for small courses, and 1.2 percent for courses from a small 

academic department. 9.2 percent of the observations are for older students. The median age of 

the students who are at most 35 years old is 21.5 years. Because students who are between 21.5 

and 35 years old comprise less than 50 percent of the student-class observations, it is clear that 

the youngest students take more classes on average. Dropping small courses, small departments, 

and students over age 35 from the sample leaves us with 446,239 student-class observations (our 

main sample). Ten percent of students are entering students, and 29 percent have low registration 

priority status when they enrolled in classes in the data. In terms of types of courses in the main 

sample, we find that only 3 percent of student/class observations are in language courses and 6 

percent are in video-delivered classes. We exclude these later in a sensitivity analysis.  

A further advantage of our data is that we can identify whether courses are used towards 

vocational degrees and whether they are transferable to University of California or California 

State University campuses. On the student-class level, 26 percent are vocational courses, and 70 

percent are for courses that are transferable to 4-year California public universities. The latter 

reflects the reputation of De Anza College of being a more academically oriented community 

college.  

                                                 
11 Students have to drop a class within three weeks to avoid paying for the class and within four weeks to 
avoid getting a record of a grade. 
12 We document these statistics since we present the robustness of our results with respect to our main 
sample restrictions in tables 4 and 5. It is important to keep in mind that we exclude recreational courses, 
orientation courses, and summer courses from all our samples and sub-samples.  



 
 

We find that 26 percent of observations are for students who take a course in a quarter-

year in which it is taught by only one instructor, even if multiple sections are offered. In this case, 

student selection on the minority status of the instructor is ruled out by construction. A less severe 

sample restriction with a similar effect is to include course-term or course-year combinations for 

which different sections are taught by different instructors, all of which share a particular 

minority status. As shown in the table, sixty-one percent of student/class observations have no 

variation in underrepresented minority status within quarters and 52 percent of student/class 

observations have no variation in underrepresented minority status within academic-years.  

Panel B of Table 1 shows differences in average student outcomes across students of 

different races and ethnicities. Sample sizes vary by outcome. Since course grades are available 

only for students who finish a class while we can observe all classes a student enrolled in at the 

beginning of the quarter, the sample size is the largest for the “Dropped Course” outcome. 

Furthermore, some courses only assign a passed/failed outcome, so that the sample size for the 

variable “Passed Course” is larger than the sample sizes for the two remaining measures based on 

letter grades. 

The fact that we observe grade outcomes only for those who do not drop a class generates 

a sample selection problem. We address this issue by computing non-parametric bounds below. 

However, given that students who are induced to not drop a class because it is taught by an 

instructor of the same minority group are likely to be from the lower end of the ability 

distribution, we interpret our point estimates as lower bounds for the true minority interactions 

and focus our analysis on them. This is essentially a monotonicity assumption, and it is testable if 

one has a variable that is highly correlated with unobserved student abilities. We use prior 

academic performance to conduct such a test and find no evidence against this hypothesis.. 

There are important differences in student outcomes across groups. White and Asian 

students have the highest average outcomes. Hispanics, African-American, and Native American, 

Pacific Islander and other non-white students are more likely to drop classes, are less likely to 



 
 

pass classes, receive lower average grades, and are less likely to receive a good grade (B or 

higher). For most outcomes, these differences are large and statistically significant, documenting 

that the largest differences in academic outcomes take place along the underrepresented minority-

non-underrepresented minority margin rather than along less aggregated measures of differences 

in race and ethnicity. Aggregating up these statistics for the underrepresented minority group (not 

shown in the table) yields a dropout rate of 26 percent. The average grade is 2.9 (where 4.0 is 

equivalent to an A), and 66 percent of classes taken by students for letter grades receive a grade 

of B or higher. Of all underrepresented minority students who finish classes, the total pass rate is 

88 percent. These classes include non-letter grades (pass/no pass) as well as letter grades. 

Panel C of table 1 displays the racial composition of the student body. There are 31,961 

students in the panel. White students comprise 28 percent of all students and Asians comprise 51 

percent of students. Hispanic students represent the largest underrepresented minority group with 

14 percent of all students. African-American students comprise 4 percent of students and Native 

American, Pacific Islanders, and other non-white students comprise 3 percent of students. 

Underrepresented minorities comprise 21 percent of the total student body. Half of all students 

are female. 

The racial distribution of the 942 instructors in the sample (reported in Panel D) differs 

substantially from the student distribution. Nearly 70 percent of instructors are white. In contrast, 

only 14 percent of instructors are Asian and 6 percent of instructors are Hispanic. Interestingly, 

the percentage of African-American instructors and Native American, Pacific Islander and other 

non-white instructors are slightly higher than their representation in the student body. The lack of 

minority instructors at De Anza College does not differ from the national pattern for all colleges. 

Roughly 10 percent of all college instructors are from underrepresented minority groups (U.S. 

Department of Education 2010). At De Anza College, 16 percent of instructors are from 

underrepresented minority groups. The lack of minority instructors is perhaps even more 

surprising given the diversity of the workforce in the San Francisco Bay Area. 



 
 

 

3. Statistical Methodology 

3.1 Basic Model 

We now turn to the description of the econometric models of the following four student 

outcomes: a dummy variable for whether a student drops the course at some time during the 

academic term, a dummy variable for whether a student passes the course conditional on finishing 

it, a course grade variable that is normalized to have mean zero and unit standard deviation within 

a course, and a dummy variable for whether the student has a grade above a B-.13 In the following 

we index students by i , instructors by j , and classrooms by c . As noted above, a "classroom" 

or “class” is defined by the specific offering of a course during a year-quarter (e.g. ECON-001-01 

during Fall 2006). We estimate the following two-way fixed effect model of student outcomes 

ijcy  : 

 

(1)  ijccijiijc umin_instmin_study   **1  

 

where min_stud  and min_inst
 
are indicator variables that are equal to one if the student or 

instructor belong to the group of disadvantaged minorities, respectively, and i  and c are 

student and classroom fixed effects. The parameter of interest is 1 , measuring the differential 

effect between minority and non-minority students of being taught by a minority instructor. It 

measures the extent to which minority gaps in the outcome variables depend on whether the 

students are assigned to a minority or a non-minority instructor. This specification allows us to 

                                                 
13 The counterfactual we have in mind when estimating the models below is: How different would the 
grade outcome of a student in a particular course be if she was assigned to an instructor of a different 
minority status than her actual instructor? We thus normalize the grade variable at the course level. 



 
 

include student and classroom fixed effects, and consequently the coefficients on the variables 

min_stud  and min_inst
 
are not identified.  

We also estimate models in which we include a full set of indicator variables for the four 

main ethnic groups in the sample – Whites, African-Americans, Hispanics, and Asians. In this 

case there are 16 racial interactions, 9 of which are identified. 

 Student fixed effects are included to address the concern that individuals with higher 

unobserved academic abilities sort into classes taught by an instructor who shares their 

underrepresented minority status. Classroom fixed effects in turn are necessary to account for the 

possibility that students who are enrolled in the same class are subject to the same shocks, such as 

the grading and testing philosophy of the instructor for that specific class. The inclusion of 

classroom fixed effects avoids the need to rely on data with standardized testing procedures 

across classrooms since within the same classroom students are taking exactly the same tests and 

are subject to exactly the same grading criteria. Since minority-status specific course fixed effects 

are perfectly multi-collinear to classroom fixed effects, we implicitly control for the possibility 

that minority and non-minority students differ systematically in their choices of subjects or 

courses which have different grading standards. Similarly, we also control for potential course-

specific differences in academic achievement between these two groups of students. 

 

3.2 Estimation of Two-Way Fixed Effect Model 

 Estimation of two-way fixed effects models with unbalanced panel data becomes 

computationally infeasible with large data sets. With more than 30,000 students and over 20,000 

classrooms in our data, model parameters cannot be estimated directly by OLS. Since our data set 

is a non-balanced panel, conventional within transformations are not possible, either. We thus 

rely on recent advances in the estimation of firm-and worker fixed effects from administrative 

data. The computational algorithms used to estimate two-way fixed effects models with high-

dimensional sets of dummy variables generally rely on the fact that each individual only 



 
 

contributes to the identification of a subset of the fixed effects.14 In our example, each student 

only contributes to the identification of the classrooms she or he visits at one point. This implies 

that normal equations involve block-diagonal (“sparse”) matrices whose inversion is much less 

difficult than the inversion of non-sparse matrices. In practice, one performs a within-

transformation in a first step to eliminate individual fixed effects, and then solves the remaining 

normal equations using matrix-inversion schemes that exploit the block-diagonal structure of the 

remaining matrices.15 All standard errors are clustered at the classroom-level.16 

 

3.3 Bounds 

Estimation of the econometric models for grade outcomes is possible only for the sample 

of students who complete the course. The propensity to finish a course might be affected by the 

variable of interest – the minority-status interactions between students and instructors within 

classrooms - as well. This creates a potential sample selection problem, formally described by the 

following set of equations:  

(2)  
grade

ijc
grade

c
grade

iji
grade

ijc umin_instmin_studgrade   **1  

(3)  
dropped

ijc
dropped

c
dropped

iji
dropped

ijc umin_instmin_studdropped   **1    

(4)   **1 ijcijcijc gradedroppedgrade  .      

Equations (2) and (3) replicate equation (1) for the grade-outcome and the dropout-variable, while 

equation (4) accounts for the potential selection bias. OLS-estimates of the parameter of interest, 

                                                 
14 The seminal paper in this literature is Abowd, Kramarz and Margolis (1999). Refinements have been 
developed by Abowd, Creezy and Kramarz (2002) and Andrews et al (2008). Cornelissen (2008) has 
written a Stata-routine based on these algorithms. 
15 The literature estimating firm-and worker fixed effects also utilizes the fact that many workers never 
change firms, thus not contributing to identification of any of the firm fixed effects. This can further 
increase the speed of computation. In our example, we cannot apply this method since nearly all students 
take more than one class in the data and thus contribute to the identification of at least some classroom 
fixed effects. 
16 We have also experimented with clustering standard errors at the classroom-minority level instead.  As 
expected, this improves the precision of our estimates slightly. 



 
 

grade
1 , is biased conditionally on individual fixed effects if dropped

1  is significantly different 

from zero. Correcting for sample selection is difficult in our case since any variable affecting 

dropout behavior arguably also affects potential grades. Without exclusion restrictions, 

identification in a standard Heckman-selection model is solely based on the non-linearity of the 

correction term. Furthermore, with the inclusion of classroom- and student fixed effects, 

estimates from reduced-form Probit equations required for a Heckit-procedure are biased. We 

thus estimate non-parametric bounds of grade
1  following Lee (2010).17 In general, OLS-

estimates are biased downward if minority students are less likely to drop the course when the 

instructor belongs to the minority group as well, and if the marginal students induced to stay 

come from the left tail of the grade distribution. It is biased upward if the marginal students come 

from the right tail of the grade distribution. We can therefore estimate an upper (lower) bound of 

grade
1  when applying OLS to a sample without the ( dropped

1 *100)-percent worst (best) minority 

students in classes taught by a minority instructor. 

 We therefore apply the following procedure: In the first step we estimate equation (1) for 

the dropout-variable. This provides us with an estimate of dropped
1 , the “minority gap” in dropout 

behavior when the class is taught by a minority instructor. We then calculate the ( dropped
1 *100) 

percentile (  dropped
11  *100 percentile) of the minority-student grade distribution for every 

class taught by a minority instructor and drop all minority students with a final grade lower 

(higher) than this percentile.  Since we are focusing on selection due to the relative difference 

from having a minority instructor between minority and non-minority students, we do not need to 

trim marginal non-minority students.  In the second step we use this restricted sample to estimate 

the same equation as in the first step, but with final grade replacing the dropout variable as the 

outcome. We also perform this algorithm by running the dropout-regressions course-by-course, 

                                                 
17 See also Krueger and Whitmore (2002) and Hoffmann and Oreopoulos (2009) for a related application. 



 
 

therefore providing us with course-specific estimates of dropped
1 . As Lee (2010) shows, this 

procedure yields the tightest bounds on the parameter of interest if the outcome variable is 

continuous. We thus compute the bounds only for the grade variable, which is our only 

continuous outcome variable, while leaving the results for the discrete outcome “Passed Course” 

uncorrected.18  

 We interpret these bounds results as a robustness check rather than as the main part of our 

analysis. By the logic of role-model effects it is reasonable to assume that it is the lower-

achieving minority students rather than the best students who are at the margin of dropping a 

class and who are induced not to do so because they share the minority status with their 

instructor. We can test this assumption by using a variable that is highly correlated with 

unobserved student traits. Prior academic achievement, which is measured as the student's GPA 

prior to enrollment in each class, is used for this variable.19 We then estimate a version of model 

(1) for the course dropout variable that allows for an interaction between the minority interaction 

and prior GPA. This is effectively a triple interaction and allows the minority effect on course 

dropout behavior to vary across students with different prior GPA’s. Our monotonicity-

assumption is violated if the minority-interaction is stronger for those with a higher prior GPA. 

As presented below in Section 4.4, we do not find evidence of a stronger minority interaction for 

those with a higher prior GPA suggesting that we can interpret our uncorrected estimates as lower 

bounds of minority-interactions. 

 

 

                                                 
18 Strictly speaking, this variable is not continuous, either. For our application, this can be problematic 
because the grade distribution has mass-points at the lower and upper tail. Hence, if we trim the distribution 
at the x%-percentile, we might drop more than x% of the student/grade observations. We solve this 
problem by randomly drawing from the student/grade observations clustered at the mass-points in such a 
way that we are trimming exactly x% of the distribution.  
19 To increase statistical power and to be able to utilize observations for the first year-quarter a student is 
enrolled at the college, we also include the grades obtained in all other courses taken in the same year-
quarter to calculate prior GPA. 



 
 

4. Results 

4.1 Evidence against Sorting 

A potential threat to the validity of our estimated minority interaction effects arises from 

the possibility that students sort into classes in a systematic way. If for example high-ability 

minority students are more likely than non-minority students to sort into classes taught by 

minority instructors, our results might be biased upwards. Although we use several strategies to 

rule out the possibility that our results are being driven by this type of student behaviour, we first 

investigate whether there is evidence of non-random sorting on the rich set of observables 

available in the data. We start by regressing the fraction of underrepresented minority students in 

a classroom on a dummy variable that is equal to one if the instructor is an underrepresented 

minority. The data used in the regressions are aggregated to the classroom-level, and the standard 

errors are clustered at the course-term level.  Results are displayed in table 2. We investigate the 

robustness of the results with respect to the regression specification, the sample, and the type of 

variation in instructor minority status across different class offerings of a course. Column 1 shows 

evidence of racial sorting when estimating a regression model that includes course and year-

quarter fixed effects. This specification controls for the possibility that minority and non-minority 

students differ systematically in their choices of subjects or courses, possibly because of 

differences in cultures and tastes. In the full sample, the fraction of minority students in a class 

taught by a minority instructor is, on average, 0.8 percentage points higher, a small but 

statistically significant effect. These results are robust to the sample of students used. 

Since the regression model in column 1 includes course and time fixed effects, it utilizes 

some variation across classes within the same course taught in different year-quarters (i.e. terms) 

to identify the sorting parameter. In column 2 we modify the regression specification by including 

a set of course-term fixed effects instead, thus only allowing for variation in instructor minority 

status across different class offerings of a course in the same year-quarter. With point estimates 

decreasing and standard errors increasing, the estimates in all but the full sample become at most 



 
 

marginally significant. In columns 3 and 4 we repeat the exercise for a sample that drops course-

time combinations that have variation in instructor minority status across sections. As a 

consequence, the sorting parameter is identified from variation across different classrooms of the 

same course, but taught in different year-quarters. By construction of the resulting sample, 

student sorting across classrooms in the same course-time is absorbed by the fixed effects. Any 

sorting uncovered by the regressions takes place across different year-quarters. The results 

suggest that students do not systematically delay the choice of a particular course to be matched 

to an instructor of the same minority-group who only teaches in subsequent year-quarters. In the 

last column we further restrict the sample to rule out any course-specific variation in instructor 

minority status within an academic year, so that the relationship between instructor and student 

characteristics for a given course is measured across years.  As expected, we find no evidence of 

student sorting, though the standard errors have increased. 

We also calculate minority-specific classroom averages of these variables and regress them 

on a dummy variable that is equal to one if the observation is associated with the 

underrepresented minority student group, a dummy that is equal to one if the class is taught by an 

underrepresented minority instructor, and the interaction between these two dummy variables. 

The interaction measures the extent to which the minority-gap in the outcomes varies across 

classes taught by minority and non-minority instructors. It is thus an estimate of differential 

sorting, the type of sorting that is of concern for our main results. Estimates for the interaction 

term are presented in Appendix Table 1, panels A to D. Each panel is associated with a different 

student background variable, and we follow the structure of Table 2 in exploring the robustness of 

findings. Panel A shows the results with student age as the outcome variable. The interaction 

effect is used to test whether the difference in average student age in a classroom across student 

minority groups depends on the minority status of the instructor. As is evident from Panel A, 

there is virtually no evidence for this type of differential sorting across classrooms. We repeat the 

analysis for the outcomes (in order of the panels) “gender”, “cumulated number of classes before 



 
 

taking the course”, and “GPA prior to enrollment”, corroborating the conclusion drawn from 

Panel A that there is no evidence for differential sorting.  

 

4.2 Main Results 

Estimates of the minority interactions between students and instructors for all four 

outcome variables using the full sample and a sub-sample of students who are low on the 

registration priority list are shown in table 3. We also explore the sensitivity of results with 

respect to the set of fixed effects included in the econometric models. As we move along the 

columns, we increasingly restrict the variation used to identify our parameter of interest. Results 

from our preferred specification described in equation (1) which includes both student and 

classroom fixed effects are displayed in column (6) of the table. The other specifications 

considered in the table include minority-specific time fixed effects and a set of student and 

instructor controls (column 1), a specification that adds minority-specific course fixed effects 

(column 2), a specification with minority-specific course-time fixed effects (column 3), and 

specifications with student or classroom fixed effects (columns 4 and 5, respectively).  

We highlight three main results: First, there is a significant minority interaction effect on 

student dropout behaviour that is robust with respect to the sample used and the set of fixed 

effects included. Our main estimates indicate a reduction of the minority gap in course dropout 

behaviour when taught by a minority instructor by 2 to 3 percentage points.  

Second, when using the remaining three outcome variables, minority interaction effects 

are robust with respect to the set of fixed effects only when relying on the sample of low-priority 

students (below we bound these effects by whether minority instructors cause better or worse 

performing minority students to stay). This is our preferred sample since students included in it 

are severely restricted in their choice of course and instructor. For this group of students, the 

minority gap in the probability of passing a course decreases by up to 4 percentage points, a 

sizable effect. Furthermore, we estimate a robust reduction of the minority gap in grades of 5 



 
 

percent of a standard deviation. However, for this outcome the standard errors are too high to 

yield a definite conclusion. This reflects the trade-off between restricting the sample to students 

who are low on the registration priority list, which lessens concerns about sorting, and using the 

full sample, which provides more precise estimates. We therefore report estimates from both 

samples throughout. We do not find a robust minority-interaction effect on the probability of 

having a good grade, indicating that the grade adjustment takes place mostly at the lower end of 

the grade distribution.  

Third, when including both, student and classroom fixed effects, minority-interaction 

effects are statistically significant for all outcome variables, and they are robust with respect to 

the sample of students utilized in the estimation. One possibility for the large impact of including 

classroom fixed effects on the estimates is that instructors who are assigned to different sections 

of the same course apply different grading and evaluation procedures. Inclusion of classroom 

fixed effects acts as a way of “standardizing” tests and classroom conditions across the student 

observations used to identify the interaction effect. Our results suggest that it stabilizes our 

estimates considerably, although we estimate an additional set of over 20,000 parameters. 

Overall, estimates from the full and low-registration priority samples indicate strong 

positive effects of having a minority instructor on dropout behaviour and course performance 

among minority students. The lack of sensitivity of estimates to the sample of low-registration 

priority students who have limited instructor choice provides further evidence that is consistent 

with the lack of racial sorting across course offerings noted above. 

 

4.3 Robustness Checks 

In table 4 we report regression estimates for our preferred model (1) using several subsets 

of our data to explore the robustness of our estimates. The first two rows show results from a 

regression in which the minority interaction effect is allowed to vary by student gender. There is 

no evidence that these effects are gender specific.  



 
 

Although we have presented robust evidence against differential sorting in appendix table 

2, and even though we use an identification strategy that minimizes the possibility of selection 

biases in our estimates in non-experimental data, one may still be concerned that unobserved 

differences in student traits between minority and non-minority students vary across classes based 

on the minority-status of the instructor. We thus experiment with three specifications that restrict 

the variation in instructor minority status within course-time and across classrooms. In the first of 

these specifications we drop course-time combinations with different instructors teaching 

different sections. Hence, we only keep courses that are taught by the same instructor in a term, 

no matter how many sections of the same course are offered simultaneously. In the second 

specification we allow different instructors to be observed in a year-quarter, but we drop 

observations for which some sections are taught by minority instructors and others by non-

minority instructors. Identification of minority student-instructor interactions therefore comes 

only from across quarter variation in instructor ethnicity or race.  In the third of this set of 

regressions we further restrict the sample to exclude variation in instructor minority status within 

an academic year for a given course. In this case, students would have to postpone taking a course 

for an entire academic year to satisfy a potential racial preference in their instructor, which may 

be difficult given the required sequencing of courses within subjects and two-year enrollment 

goals. Other than for the first specification applied to a sample of low-priority students, we obtain 

substantial, robust and often significant estimates of the minority interactions. Insignificance of 

estimates is largely driven by an increase of standard errors, which is to be expected since we are 

using significantly smaller samples. 

Robustness of our estimates with respect to exclusion of language courses or video-

delivered courses is investigated in the next two sets of results. Interactions between students and 

instructors may be different in these types of courses and non-representative of normal effects. 

Our results are robust to either sample restriction. Importantly, and as expected, excluding video-



 
 

delivered online courses strengthens our results somewhat, but most point estimates do not 

change significantly. 

In the last three sets of results we investigate whether our findings may be driven by 

particular institutional features of community colleges. This can be interpreted as an exercise that 

addresses the question about the extent to which our results can be extrapolated to 4-year 

colleges. A first potential concern about external validity comes from the fact that students who 

return to the college after a leave of absence are automatically assigned the lowest possible 

priority status. These may be students with an “unstable” academic career who periodically enroll 

in courses at De Anza College - a sub-group of students that may be particular to the community 

college setting. We therefore estimate our preferred regression model for a sample of students 

who enroll at De Anza College for the first time and thus also automatically qualify for the lowest 

standing on the enrollment priority lists.20 This yields point estimates that are nearly identical to 

those obtained from a sample of all low registration priority students, suggesting that our results 

are not driven by more senior students who are frequently leaving and returning to the college.21 

However, the smaller sample size leads to insignificance of our estimates. 

To explore whether racial and ethnic interactions differ depending on whether courses are 

academically or vocationally oriented, we exploit information in our data about whether each 

course counts towards a vocational degree and whether it can be transferred to the University of 

California and California State University systems. Due to the academic orientation of De Anza 

College, the sample fraction of academic (or non-vocational) courses is 74 percent and the sample 

fraction of transferable courses is 70 percent as documented in table 1. We find that vocational 

courses have significantly smaller minority interaction effects with respect to students’ propensity 

                                                 
20 Whether a student enrolls for the first time is information that is included in the original administrative 
data. This is a major advantage since it avoids the need to generate such a variable, e.g. from assuming that 
the first time a student is observed in the data is the first time the student is enrolled at De Anza College. As 
a consequence, this variable is not left-censored. 
21 Additional evidence is provided by the finding of roughly similar results using the full sample of students 
as displayed in Table 3. 



 
 

to drop a course. For the other outcomes, there are no significant differences in these effects 

between vocational and non-vocational courses. However, the effects estimated for the non-

vocational - and thus predominantly academic – courses are stronger than those found in our main 

specifications in table 3 (and in some cases significantly so). Similarly, we find some evidence 

for a stronger minority effect with respect to the dropout variable in courses that are transferable 

to the UC and CSU systems, but no evidence for any differences when using the other outcomes. 

At the same time, the point estimates are not significantly different from those found in table 3. 

Taken together, these results suggest that minority interaction effects exist in both, more and less 

academically oriented courses, with some evidence that they are stronger in the former. 

 

4.4 Bounds analysis of interaction effects on grades 

Table 5 displays lower and upper bounds of the minority interaction effects when using 

standardized grade outcomes as the dependent variable. We compute these bounds following the 

procedure described in section 3.3 and interpret them as a robustness exercise. When using the 

full sample, estimates are bounded by 3.9 percent and 7.9 percent of a standard deviation in the 

course grade. The estimated lower and upper bounds are all statistically significant at 

conventional levels. When using the sample of low-priority students instead, the sample sizes 

decrease and the bounds widen. They are given by 2.9 percent and 9.3 percent of a standard 

deviation in the course grade. Standard errors increase by a factor 2.5, but the upper bounds are 

statistically significant. Taken together, these results provide further evidence for a robust and 

quite substantial minority interaction effect on grades, in addition to a substantial effect on the 

probability of dropping a class. 

 As argued above, we interpret our uncorrected estimates as representing a lower bound of 

minority interactions, since those who are at the margin of dropping a class and who are induced 

not to do so because they share the minority status with their instructor are more likely from the 

lower part of the student ability distribution. This monotonicity assumption can be tested by 



 
 

estimating a version of model (1) for the course dropout variable that allows for an interaction 

between the minority interaction and prior GPA. It is violated if the minority-interaction is 

stronger for those with a higher prior GPA. The estimated minority-interactions are -0.023 (s.e. 

0.015) and -0.037 (s.e. 0.025) for the full sample and the sample of low registration priority 

students, respectively, while the corresponding triple-interactions with prior GPA are 0.0007 (s.e. 

0.005) and 0.004 (s.e. 0.009) respectively. Since the minority effects are estimated to be negative, 

their positive interactions with prior GPA thus are in accordance with our hypothesis. However, 

these estimates are not significant, suggesting that differential dropout behavior does not depend 

systematically on a student’s academic abilities.  

 For a more flexible specification, we also compute the distribution of prior GPA in the 

sample and estimate the dropout effect using model (1) separately for those student-class 

observations for which prior GPA is below the 25% percentile or above the 75% percentile. The 

estimated minority effect on course dropout behavior for the sample of low registration priority 

students is -0.032 (s.e. 0.026) for the former and -0.019 (s.e. 0.044) for the latter, clarifying that, 

if anything, those at the margin of dropping a course are more likely to come from the lower end 

of the ability distribution.22 

 

4.5 Are Students really reacting to Instructors? 

 Do our estimated minority interaction effects reflect minority students gaining from being 

assigned to minority instructors? Only in this case would a counterfactual policy that increases 

the representation of minority instructors have a skill or human capital effect on minority 

students. In this section we investigate two alternative behavioral mechanisms that can potentially 

generate significant estimates of minority interactions between students and instructors: 

responding to minority status by instructors – knowingly or unknowingly – and peer effects 

                                                 
22 The corresponding estimates for the full sample are -0.031 (s.e. 0.012) and 0.004 (s.e. 0.015).  



 
 

within the class, working through high registration priority students sorting systematically on the 

minority status of the instructor.23   

We start by presenting several pieces of evidence that point toward students adjusting 

their academic behaviour to race of the instructor rather than instructors adjusting to the race of 

the student.24 First, we have documented significant, robust, and sizable minority effects with 

respect to the course dropout behaviour of students. In particular, the minority gap in this 

outcome variable decreases by 2 to 3 percentage points if the class is taught by a minority 

instructor. The decision to drop out of the class is made entirely by the student and must be made 

in the first 4 weeks of a term, well before final grades are assigned by instructors. In other words, 

since an instructor at the college level does not play an active role in determining whether a 

student drops a course before taking a final exam, the significant dropout effect found in our data 

reflects a behavioural adjustment on the student side.  

Our second piece of evidence builds on the logic that race or ethnicity based 

discrimination should not depend on student age. If for example non-minority instructors 

systematically discriminated against minority students, a minority interaction should not vary by 

a student’s age. We thus estimate a version of our model that allows minority effects to depend on 

student age. To rule out the significance of the resulting triple interactions to be driven by varying 

sample sizes of our age groups, we generate a dummy variable that is equal to one if a student is 

above the median age of 21.5 years in our working sample. Since we are estimating the 

heterogeneity of results with respect to age in this specification, we also include students who are 

older than 35 years and who were dropped from the main sample. We generate a second dummy 

                                                 
23 There may be skill (rather than pure grade-deflation) effects of instructor discrimination if the 
discriminated student group perceives or anticipates it and becomes discouraged. 
24 Whether students react to some characteristics of the instructor, or vice versa, has been a long-standing 
question in the literature on gender-interactions in the classroom (see for example Hoffmann and 
Oreopoulos 2009,  and Carrell, Page and West 2011). It cannot be resolved by relying on experimental 
evidence since instructor discrimination may exist in a setting where students are randomly assigned to 
instructors. For a definite test, one needs a setting where final grades are based entirely on exams that are 
not hand-written, are single-blinded, and do not provide any information about a students’ gender 
(ethnicity). 



 
 

variable that is equal to one if a student is older than 35 and interact both age-group dummies 

with our minority effects. The results are shown in the first 3 rows of table 6. The results are quite 

striking: Minority interaction effects are by far the biggest for students who are younger than the 

median aged student. In fact, with one exception where an interaction effect is significant at the 

10 percent level, there are no significant effects for older students. Hence, our results are largely 

driven by the students in our sample who are younger than 21. While these results are 

inconsistent with discrimination affecting all students of a certain minority or non-minority group 

irrespective of age, they might be explained by young students being more susceptible to role-

model effects.  

 For a third piece of evidence, we investigate whether there are minority-interactions with 

respect to the probability of a student taking another course in the same subject in the following 

quarter.25 This variable cannot be directly “manipulated” by the instructor and measures a 

“motivation” effect on the side of the student.26 More specifically, it answers the question of 

whether students are more likely to enroll in a same-subject course if she was taught by an 

instructor who shares her minority status, possibly due to a role-model effect that encourages her 

to do so. Results are shown in Appendix Table 2. In Panel A, we use observations only for which 

the student has taken exactly one course in a quarter in a certain subject. This avoids the need to 

aggregate up to the student-subject-time level and allows us to use the same regression 

specification used in table 3. In panel B we relax this restriction, but we need to aggregate up to 

the student-subject-time level and exclude classroom fixed effects. As shown in Panel A, the 

minority gap in the probability of continuing a subject in the following quarter is significantly 

                                                 
25 We do not examine the probability of taking a same-subject course in any following quarters, rather than 
the quarter directly afterward, because we cannot rule out that the results from such a specification would 
be driven by effects that accumulate over time.  
26 Another possibility is to use subsequent grades in same-subject courses to directly measure a skill effect, 
following Hoffmann and Oreopoulos (2009) and Carrell, Page and West (2010) in their analysis of gender 
interactions. However, in community colleges, predetermined curricula that force students to take a 
specified sequence of same-subject courses are uncommon. Furthermore, students who are low on the 
registration priority list in one quarter may move up in the ranking in the subsequent quarter, introducing 
the potential for substantial endogeneity biases. 



 
 

affected by the minority status of the instructor. These results are quite robust across 

specifications and the group of students used and corroborate our hypothesis that minority 

interactions are, at least to some extent, driven by the student reacting to the instructor.  

 While there is evidence that our estimated minority effects are not entirely driven by 

discrimination on the instructor side, they may be generated by peer effects that take place in the 

classroom. Such peer effects could exist if high-ability minority students who do not have a low 

standing on course enrollment priority lists were more likely to be enrolled in classes taught by 

minority instructors than high-ability non-minority students, and if these additional high-ability 

students positively affect the academic achievement of only the low registration priority minority-

students. However, results from the sorting analysis as shown in appendix table 1 do not support 

the hypothesis that high registration priority students (denoted in the table by “Continuing 

Students, not Low Priority”) systematically sort across classrooms. Hence, there is no evidence 

for the assumption that low registration priority students are subject to different peers depending 

on the minority status of the instructor.  

 Although our sorting analysis utilizes past academic achievement which is likely to be 

highly correlated with unobserved skills, it is worthwhile to employ a second test for peer effects. 

In a first step we calculate for each class in the sample the fraction of minority students within the 

group of those who do not have a low standing on registration priority lists. We next create two 

dummy variables, one of which is equal to one if the fraction is below the 25%-quantile of its 

distribution, and one if which is equal to one if the fraction is above the 75%-quantile of its 

distribution. To compute these shares, we use the respective numbers of students at the beginning 

of the term when using “dropout” as an outcome variable and the corresponding numbers at the 

end of the term for the other outcome variables. We then allow the minority effect to vary across 

classes that have a low, high, and intermediate share of minority students in the sub-population of 

high registration priority students. Results are shown in the second part of table 6. The precision 

of our estimates decreases considerably. However, the estimated minority effects for the baseline 



 
 

group – classes with an intermediate share of minority students among those who do not have a 

low standing on registration priority lists – are very close to those found from our main 

specification in table 3. However, the interaction terms are insignificant in all but one 

specification, and often have the opposite sign of what is predicted by peer effects models. Taken 

together, we conclude that our results are unlikely to be driven by differential peer effects across 

classrooms. 

 

4.6 Race and Ethnicity Interactions 

In table 7 we break down our minority interaction estimates by different ethnicities and 

race. We focus on four major racial/ethnic groups, whites, African-Americans, Hispanics, and 

Asians. While student fixed effects absorb the interaction for one of the student groups – in our 

case “whites” - the classroom fixed effects absorb the interaction for one of the instructor groups 

– again “whites”. Thus, only 9 of the 16 race and ethnicity interactions are identified and all 

estimated interaction effects are relative to outcomes for white students with alternative instructor 

types. We present the P-value from F-tests for two hypotheses of major interest, namely for the 

presence of an own-race interaction and for the presence of any race interaction. We find strong 

and robust evidence for own-race interactions. The positive interaction estimates are not overly 

sensitive to whether we use the full sample or limit the sample to low-registration priority 

students. We find positive interactions for all major racial groups with African-American students 

experiencing particularly large and robust relative gains from being taught by a same-race 

instructor. This is particularly noteworthy given that African-American students and instructors 

account for only 4 percent and 6 percent of the sample, respectively. It is noteworthy, however, 

that Hispanic students also experience positive interactions with Hispanic instructors. 

 

 

 



 
 

5. Conclusion 

In this paper, we estimate for the first time the importance of racial interactions between 

instructors and students at the college level to explain academic performance and dropout 

behavior. Our identification strategy takes advantage of the severely restricted class enrollment 

options among low-registration priority students at a very popular and class-rationed community 

college. Remaining concerns about the validity of our estimates are addressed by estimating two-

way fixed effect models for a very large number of both students and classrooms, and by 

exploring the robustness of results when restricting the variation in instructor minority status 

within course-time and across classrooms. We find that minority students perform relatively 

better in classes when instructors are of the same race or ethnicity. African-Americans, Hispanics, 

and Native Americans are 2.9 percentage points more likely to pass classes with instructors of 

similar background and 2.8 percentage points more likely to pass classes with underrepresented 

instructors. These effects represent roughly half of the total gaps in classroom outcomes between 

white and underrepresented minority students at the college. The effects are particularly large for 

African-Americans. The class dropout rate relative to whites is 6 percentage points lower for 

Black students when taught by a Black instructor. Conditional on completing the class, the 

relative fraction attaining a B-average or greater is 13 percentage points higher. 

We estimate relative grade score effects ranging from 4 to 8 percent of a standard 

deviation from being assigned an instructor of similar minority status.  Taken together with the 

large class dropout interaction effects, these impacts are notably larger than those found for 

gender interactions between students and instructors at all levels of schooling.  They are likely 

due to students behaving differently based on minority status of instructors rather than the other 

way around.  We find dropout effects before receiving a grade, effects for younger students but 

not older, and effects on subsequent course choices – all evidence pointing more to students 

reacting to instructors than the reverse.   



 
 

Our results suggest that the academic achievement gap between white and 

underrepresented minority college students would decrease by hiring more underrepresented 

minority instructors. However, the desirability of this policy is complicated by the finding that 

students appear to react positively when matched to instructors of a similar race or ethnicity but 

negatively when not.  Hiring more instructors of one type may also lead to greater student sorting 

and changes to classroom composition, which may also impact academic achievement. A more 

detailed understanding of heterogeneous effects from instructor assignment, therefore, is needed 

before drawing recommendations for improving overall outcomes. The topic is ripe for further 

research, especially in light of the recent debates and legislative changes over affirmative action. 
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PANEL A: Student-Class Level

Mean Std. Dev.
Total Number of 

Observations

Unrestricted Sample

Small Course 0.024 0.02

Small Department 0.012 0.01

Student younger than 21.5 years 0.536 0.25

Student between 21.5 and 35 years 0.372 0.23

Students older than 35 years 0.092 0.08

Main Sample

Age of Student 22.2 4.14 446,205

Entering Student 0.10 0.30

Low Registration Priority Student 0.29 0.46

Language Course 0.03 0.16

Video-Delivered Course 0.06 0.24

Vocational Course 0.26 0.44

Course transferable to UC or CSU Systems 0.70 0.46

Course is taught by one instructor within quarter 0.26 0.44

Course has no variation in instructor 
underrepresented-minority status within quarter

0.61 0.24

Course has no variation in instructor 
underrepresented-minority status within academic 
Year

0.52 0.25

Age of instructor 52.52 10.8 446,235

Instructor teaches part-time 0.41 0.49 446,239

PANEL B: Student Outcome -, Student-Class Level, by Race/Ethnicity, Main Sample

White Asian Hispanic
African 

American

Nat. American, Pacific 

Isl., other non-White

Dropped Course 0.24 0.26 0.28 0.30 0.28
Total Nr of Obs: 444,239 (0.43) (0.44) (0.45) (0.46) (0.45)

Passed Course 0.89 0.89 0.84 0.82 0.86
Total Nr of Obs: 319,641 (0.31) (0.32) (0.37) (0.39) (0.35)

Grade 2.90 2.91 2.58 2.51 2.71
Total Nr of Obs: 277,889 (1.14) (1.14) (1.19) (1.21) (1.19)

Good Grade (B or higher) 0.68 0.68 0.57 0.53 0.61
Total Nr of Obs: 277,889 (0.47) (0.47) (0.50) (0.50) (0.49)

TABLE 1 - DESCRIPTIVE STATISTICS

506,280

446,239

Student Race/Ethnicity



PANEL C: Student Level

Mean S.D. Sample Size

Main Sample

Female Student 0.50 0.50 31,894

Underrepresented Minority Student 0.21 0.41

White Student 0.28 0.20

Asian Student 0.51 0.25

Hispanic Student 0.14 0.12

African-American Student 0.04 0.04

Native American, Pacific Islanders, Other non-
White Student 0.03 0.03

PANEL D: Instructor Level

Mean S.D. Sample Size

Main Sample

Female Instructor 0.49 0.50

Underrepresented Minority Instructor 0.16 0.36

White Instructor 0.70 0.21

Asian Instructor 0.14 0.12

Hispanic Instructor 0.06 0.06

African-American Instructor 0.06 0.05

Native American, Pacific Islanders, Other non-
White Instructor 0.04 0.03

NOTES: Courses are defined to be "small" if their average enrollment per session falls below the 2-percentile of the course enrollment distribution. 
Departments are defined to be "small" if the total number of students in the sample associated with a department is smaller than the 1-percentile of the 
departmental size distribution. In our main analysis we focus on students who are at most 35 years old. The median age of the resulting sub-sample is 
21.5 years. This motivates the choice of student-age groups listed in Panel A of this table. Students and instructors belong to the group of 
"Underrepresented Minorities" if their race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-
Whites.

942

31,961



OUTCOME - FRACTION OF UNDERREPRESENTED MINORITY STUDENTS WITHIN CLASSROOM

All Students 0.008 *** 0.008 ** 0.016 ** 0.009 0.031
(0.003) (0.004) (0.008) (0.012) (0.023)

All Low Registration Priority Students 0.009 ** 0.007 0.026 * 0.024 0.041
(0.004) (0.006) (0.015) (0.026) (0.042)

0.015 ** 0.013 0.088 ** 0.011 0.181
(0.008) (0.011) (0.044) (0.097) (0.111)

0.009 0.008 0.030 0.062 -0.025
(0.008) (0.010) (0.030) (0.057) (0.056)

0.008 ** 0.009 * 0.007 0.001 0.015
(0.003) (0.005) (0.008) (0.013) (0.018)

FIXED EFFECTS:
Course and Year No No Yes No Yes
Course and Year-Quarter Yes No No No No
Course-Year No No No Yes No
Course-Year-Quarter No Yes No No No

Continuing Students, Not Low 
Registration Priority

Continuing Students, Low Registration 
Priority

Entering Students (==> Low Registration 
Priority)

NOTES: This table displays results from regressing the fraction of underrepresented minority students within a classroom on an indicator equal 
to one if the instructor belongs to an underrepresented minority group, and a set of fixed effects. We only report the estimated coefficient on the 
former. Each cell is associated with a different regression. A classroom is defined by a section of a course offering during a particular academic 
year-quarter. Students and instructors belong to the group of "Underrepresented Minorities" if their race/ethnicity is reported to be Hispanic, 
African-American, or Native American, Pacific Islanders, or other non-Whites. Rows are defined by the subsample of students we consider. 
Low registration priority students are those students who have the lowest standing on class enrollment lists. Columns explore sensitivity of 
results with respect to different sets of fixed effects and different sources of variation used to identify the parameters. When using courses 
without variation in teacher underrepresented minority status in the same academic year, only one of the specifications can be estimated.        
*** Significant on 1%-level; ** Significant on 5%-level; * Significant on 10%-level. Standard errors are clustered on the level of the fixed effect.

TABLE 2 - SORTING REGRESSIONS

LEVEL OF VARIATION IN INSTRUCTOR UNDERREPRESENTED-MINORITY STATUS ACROSS 
CLASSROOMS OF SAME COURSE

UNRESTRICTED
NO VARIATION IN SAME 

YEAR-QUARTER
NO VARIATION 
IN SAME YEAR



(1) (2) (3) (4) (5) (6)

OUTCOME: STUDENT DROPPED COURSE
Number of Observations: 444,239

All Students -0.004 -0.020 *** -0.021 *** -0.018 *** -0.013 *** -0.020 ***
(0.006) (0.006) (0.007) (0.006) (0.005) (0.005)

-0.006 -0.025 *** -0.030 *** -0.021 * -0.020 ** -0.029 ***
(0.009) (0.010) (0.011) (0.011) (0.010) (0.011)

OUTCOME: STUDENT PASSED COURSE, CONDITIONAL ON FINISHING THE COURSE
Number of Observations: 319,641

All Students 0.002 0.003 0.001 0.004 0.003 0.012 ***
(0.005) (0.006) (0.007) (0.006) (0.005) (0.005)

0.018 * 0.036 *** 0.040 *** 0.037 *** 0.014 0.028 **
(0.010) (0.011) (0.013) (0.012) (0.010) (0.012)

OUTCOME: STANDARDIZED STUDENT COURSE GRADE, CONDITIONAL ON FINISHING THE COURSE
Number of Observations: 277,889

All Students 0.013 -0.018 -0.007 -0.006 0.010 0.054 ***
(0.017) (0.019) (0.020) (0.016) (0.015) (0.013)

0.052 * 0.056 * 0.056 0.023 0.017 0.050
(0.030) (0.033) (0.037) (0.034) (0.031) (0.033)

OUTCOME: GOOD GRADE (B OR HIGHER), CONDITIONAL ON FINISHING THE COURSE
Number of Observations: 277,889

All Students -0.002 -0.007 -0.005 0.004 0.006 0.024 ***
(0.008) (0.009) (0.009) (0.008) (0.007) (0.006)

0.000 0.006 0.000 0.015 0.003 0.032 **
(0.014) (0.015) (0.017) (0.016) (0.014) (0.016)

FIXED EFFECTS:

Year-Quarter-Minority Yes Yes No No No No
Course-Minority No Yes No Yes No No
Course-Minority-Year-Quarter No No Yes No No No
Student No No No Yes No Yes
Classroom No No No No Yes Yes

CONTROLS:

Instructor Controls Yes Yes Yes Yes No No
Student Controls Yes Yes Yes No Yes No

NOTES: This table displays results from our main outcome regressions. We report the coefficient of the interaction between student's 
and instructor's underrepresented minority status. Each cell is associated with a different regression. A classroom is defined by a 
section of a course offering during a particular academic year-quarter. Students and instructors belong to the group of 
"Underrepresented Minorities" if their race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, 
or other non-Whites. We consider 4 student outcomes: In panel A an indicator variation equal to one if the student drops the course; in 
panel B an indicator variable equal to one if the student passes the course; in panel C the student's standardized course grades; in 
panel D an indicator variable equal to one if the student has a grade of at least B. We explore the sensitivity with respect to the 
regression specification, i.e. the set of fixed effects and controls included in the regressions. Student controls include age and gender; 
instructor controls include age, gender, and a part-time indicator. We also compute the regression coefficients for a sample of all 
students and a sample of students with a low standing on class enrollment lists.  *** Significant on 1%-level; ** Significant on 5%-level; 
* Significant on 10%-level. Standard errors are clustered by classroom.

TABLE 3 - ESTIMATED ROLE OF INSTRUCTOR MINORITY STATUS FOR STUDENT OUTCOMES

All Low Registration Priority 
Students

All Low Registration Priority 
Students

All Low Registration Priority 
Students

All Low Registration Priority 
Students



Male vs. Female Students

Minority Interaction -0.021 *** 0.012 * 0.029 * 0.021 ** -0.019 0.038 ** 0.021 0.031
(0.007) (0.007) (0.018) (0.009) (0.015) (0.018) (0.047) (0.023)

Minority Interaction*Female Students 0.002 -0.001 0.044 ** 0.005 -0.019 -0.019 0.054 0.003
(0.009) (0.009) (0.024) (0.012) (0.019) (0.022) (0.060) (0.029)

Course-Quarters that are taught by one Instructor

Minority Interaction 0.001 0.008 0.035 0.022 0.048 -0.024 -0.250 -0.025
(0.012) (0.010) (0.039) (0.018) (0.035) (0.046) (0.226) (0.087)

Course-Quarters without Variation in Instructor Underrepresented Minority Status

Minority Interaction -0.014 0.023 *** 0.097 *** 0.045 *** -0.010 0.041 0.073 0.042
(0.010) (0.008) (0.028) (0.013) (0.024) (0.028) (0.111) (0.048)

Course-Years without Variation in Instructor Underrepresented Minority Status

Minority Interaction -0.021 * 0.012 0.065 * 0.042 *** -0.007 0.059 0.089 0.067
(0.013) (0.010) (0.036) (0.016) (0.033) (0.041) (0.175) (0.074)

Excluding Language Courses

Minority Interaction -0.018 *** 0.008 0.039 *** 0.019 *** -0.027 ** 0.022 * 0.021 0.025
(0.005) (0.005) (0.013) (0.006) (0.011) (0.013) (0.034) (0.017)

Excluding Video-Delivered Courses

Minority Interaction -0.015 *** 0.012 *** 0.052 *** 0.025 *** -0.024 ** 0.030 ** 0.055 * 0.033 **
(0.005) (0.005) (0.013) (0.006) (0.011) (0.013) (0.034) (0.017)

Entering Students (==> Low Registration Priority)

Minority Interaction - - - - -0.027 0.029 0.050 0.038
(0.025) (0.029) (0.090) (0.048)

Vocational vs. Non-Vocational Courses

Minority Interaction -0.025 *** 0.011 * 0.055 *** 0.021 *** -0.034 *** 0.031 ** 0.071 ** 0.041 **
(0.006) (0.006) (0.014) (0.007) (0.012) (0.014) (0.036) (0.018)

Minority Interaction*Vocational Course 0.025 ** 0.006 -0.001 0.013 0.044 * -0.020 -0.138 -0.060
(0.011) (0.010) (0.031) (0.015) (0.026) (0.028) (0.094) (0.041)

Courses that are Transferable to UC and CSU Systems

Minority Interaction -0.004 0.015 ** 0.026 0.023 ** -0.017 0.038 ** 0.057 0.046 *
(0.008) (0.007) (0.023) (0.011) (0.016) (0.018) (0.060) (0.028)

Minority Interaction*Transferable Course -0.025 *** -0.005 0.038 0.001 -0.020 -0.017 -0.010 -0.019
(0.010) (0.009) (0.027) (0.013) (0.021) (0.023) (0.068) (0.033)

NOTES: This table explores the heterogeneity of our results across different student groups and types of courses considered. We report the coefficient of the interaction between student's and 
instructor's underrepresented minority status - referred to as "Minority Interaction". In cases where we allow minority effects to vary across student groups we also report the interaction between the main 
variable of interest and indicator variables that are equal to one if a student belongs to a certain subgroup. We only report results for our preferred specification, including student and classroom fixed 
effects. A classroom is defined by a section of a course offering during a particular academic year-quarter. Students and instructors belong to the group of "Underrepresented Minorities" if their 
race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-Whites. We consider 4 student outcomes: an indicator variation equal to one if the student 
drops the course; an indicator variable equal to one if the student passes the course; standardized course grades; and an indicator variable equal to one if the student has a grade of at least B. We also 
compute the regression coefficients for a sample of all students and a sample of students with a low standing on class enrollment lists.  *** Significant on 1%-level; ** Significant on 5%-level; * Significant 
on 10%-level. Standard errors are clustered by classroom.

Yes
Yes
Yes

TABLE 4 - ESTIMATED ROLE OF INSTRUCTOR MINORITY STATUS FOR STUDENT OUTCOMES: ROBUSTNESS

FIXED EFFECTS:

Student
Classroom

ALL STUDENTS LOW REGISTRATION PRIORITY STUDENTS

Yes

Good Grade 
(B or higher)

Good Grade 
(B or higher)

Grade 
(Standar-

dized)

Passed 
Course

Dropped 
Course

Grade 
(Standar-

dized)

Passed 
Course

Dropped 
Course



Lower Bound 0.039 *** 0.029 0.042 *** 0.033
(0.013) (0.034) (0.013) (0.033)

Uncorrected Estimate 0.054 *** 0.050 0.054 *** 0.050
(0.013) (0.033) (0.013) (0.033)

Upper Bound 0.079 *** 0.093 *** 0.072 *** 0.063 *
(0.013) (0.033) (0.013) (0.034)

Student FE
Classroom FE

Yes Yes
YesYes

NOTES: This table shows uncorrected and sample-selection corrected estimates for the minority interaction when 
grade is used as the outcome variable. We first estimate the minority interaction in dropout regressions (not shown in 
table). The estimate provides us with the x-percentage difference of the propensity to drop the course between 
minority and non-minority students when the class is taught by a minority instructor. We then calculate the x-percent 
and (100-x)-percent quantiles of the minority grade distribution in classes taught by minority instructors. To compute 
the upper bound on the interaction we drop minority students with grades below the x-percent quantile. To compute 
the lower bound we drop the students with grades above the (100-x) quantile. We report the coefficient of the 
minority interaction with standardized grade as outcome variable. We compute the regression coefficients for a 
sample of all students and a sample of low registration priority students.  The first two columns report results when 
the trimming procedure relies on estimate of the minority interaction in dropout regressions that use the full sample; 
the last two columns report results when the trimming procedure relies on an estimate of the minority interaction in 
dropout regressions we run for each course separately; in the latter case we need to replace student fixed effects by 
student controls to achieve identification.  A classroom is defined by a section of a course offering during a particular 
academic year-quarter. Students and instructors belong to the group of "Underrepresented Minorities" if their 
race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-
Whites. *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 10%-level. Standard errors are 
clustered by classroom.

TABLE 5 - UPPER AND LOWER BOUNDS FOR ESTIMATED ROLE OF INSTRUCTOR MINORITY 
STATUS FOR STUDENT GRADE

TRUNCATION BY OVERALL  
DROPOUT BEHAVIOUR

TRUNCATION BY COURSE-
SPECIFIC DROPOUT BEHAVIOUR

Low 
Registration 

Priority 
Students

All             
Students

Low 
Registration 

Priority 
Students

All             
Students



Different Age Groups of Students

Minority Interaction*Student younger than 21.5 years -0.018 *** 0.007 0.039 ** 0.017 ** -0.028 ** 0.039 *** 0.077 * 0.042 **
(0.007) (0.007) (0.016) (0.008) (0.013) (0.016) (0.041) (0.020)

Minority Interaction*Student between 21.5 and 35 years -0.001 0.011 0.038 0.015 0.011 -0.022 -0.067 -0.023
(0.009) (0.009) (0.023) (0.011) (0.020) (0.022) (0.070) (0.033)

Minority Interaction*Student older than 35 years -0.017 -0.005 -0.050 -0.020 -0.033 -0.061 * -0.125 -0.046
(0.016) (0.013) (0.044) (0.020) (0.034) (0.036) (0.135) (0.057)

Different Class-Level Fractions of Minority Students who do not  have a low standing on Course Enrolment Lists

Minority Interaction*Fraction smaller than 25% - - - - -0.002 0.001 -0.094 -0.029
(0.030) (0.031) (0.095) (0.048)

Minority Interaction*Fraction between 25% and 75% - - - - -0.045 *** 0.016 0.054 0.036
(0.016) (0.017) (0.047) (0.024)

Minority Interaction*Fraction larger than 75% - - - - 0.038 * 0.024 0.002 -0.005
(0.022) (0.025) (0.065) (0.032)

TABLE 6 - ESTIMATED ROLE OF INSTRUCTOR MINORITY STATUS FOR STUDENT OUTCOMES: ARE STUDENTS REALLY REACTING TO THE INSTRUCTOR?

ALL STUDENTS LOW REGISTRATION PRIORITY STUDENTS

Dropped 
Course

Passed 
Course

Grade 
(Standar-

dized)

Good Grade 
(B or higher)

Dropped 
Course

Passed 
Course

Grade 
(Standar-

dized)

NOTES: This table investigates if our estimated minority effects are really driven by students reacting to the instructor. The two alternative hypotheses we consider are (a) instructor-driven discrimination and 
(b) peer effects. We report the coefficient of the interaction between student's and instructor's underrepresented minority status - referred to as "Minority Interaction". We also report the interaction between the 
main variable of interest and indicator variables that are equal to one if a student belongs to a certain subgroup. We only report results for our preferred specification, including student and classroom fixed 
effects. A classroom is defined by a section of a course offering during a particular academic year-quarter. Students and instructors belong to the group of "Underrepresented Minorities" if their race/ethnicity is 
reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-Whites. We consider 4 student outcomes: an indicator variation equal to one if the student drops the course; an 
indicator variable equal to one if the student passes the course; standardized course grades; and an indicator variable equal to one if the student has a grade of at least B. We also compute the regression 
coefficients for a sample of all students and a sample of students with a low standing on class enrollment lists.  *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 10%-level. Standard 
errors are clustered by classroom.

Good Grade 
(B or higher)

FIXED EFFECTS:

Student Yes Yes
Classroom Yes Yes



White
African-

American
Hispanic Asian White

African-
American

Hispanic Asian

OUTCOME:STUDENT DROPPED COURSE
Number of Observations:

Student Race/Ethnicity

White

African-American -0.078 *** -0.018 0.011 -0.083 *** -0.018 0.092 ***
(0.016) (0.017) (0.015) (0.034) (0.038) (0.030)

Hispanic -0.019 * -0.025 *** 0.022 *** -0.007 -0.042 * 0.050 ***
(0.011) (0.010) (0.009) (0.023) (0.022) (0.019)

Asian -0.016 ** -0.011 -0.014 ** 0.008 -0.003 -0.003
(0.008) (0.008) (0.006) (0.017) (0.018) (0.014)

F-test: Own-Race/Ethnicity Effect (P-value)
F-test: Race/Ethnicity-Effect (P-value)

OUTCOME: STUDENT PASSED COURSE, CONDITIONAL ON FINISHING THE COURSE
Number of Observations:

White

African-American 0.067 *** -0.013 -0.009 0.094 *** 0.038 -0.010
(0.015) (0.016) (0.014) (0.034) (0.046) (0.032)

Hispanic 0.020 ** 0.009 -0.026 *** 0.066 *** 0.023 -0.008
(0.010) (0.009) (0.008) (0.025) (0.025) (0.020)

Asian 0.007 0.000 0.004 0.010 0.017 0.015
(0.007) (0.006) (0.005) (0.018) (0.017) (0.014)

F-test: Own-Race/Ethnicity Effect (P-value)
F-test: Race/Ethnicity-Effect (P-value)

OUTCOME: STANDARDIZED STUDENT COURSE GRADE, CONDITIONAL ON FINISHING THE COURSE
Number of Observations:

White

African-American 0.190 *** 0.015 0.012 0.157 0.068 0.045
(0.040) (0.046) (0.033) (0.107) (0.154) (0.085)

Hispanic 0.071 *** 0.096 *** -0.026 0.105 0.089 -0.040
(0.027) (0.027) (0.020) (0.068) (0.075) (0.057)

Asian 0.054 *** 0.011 0.049 *** 0.067 0.074 0.021
(0.020) (0.019) (0.014) (0.054) (0.052) (0.040)

F-test: Own-Race/Ethnicity Effect (P-value)
F-test: Race/Ethnicity-Effect (P-value)

OUTCOME: GOOD GRADE (B OR HIGHER), CONDITIONAL ON FINISHING THE COURSE
Number of Observations:

White

African-American 0.090 *** 0.025 0.007 0.129 *** 0.044 0.025
(0.020) (0.021) (0.017) (0.047) (0.072) (0.042)

Hispanic 0.029 ** 0.039 *** 0.001 0.063 * 0.013 -0.010
(0.014) (0.013) (0.011) (0.033) (0.037) (0.029)

Asian 0.009 0.006 0.028 *** 0.035 0.003 0.006
(0.010) (0.009) (0.007) (0.026) (0.025) (0.020)

F-test: Own-Race/Ethnicity Effect (P-value)
F-test: Race/Ethnicity-Effect (P-value)

Fixed Effects:
Student FE
Classroom FE

NOT IDENTIFIED NOT IDENTIFIED

NOT 
IDENTIFI

ED

All Students All Low Registration Priority Students
Instructor Race/Ethnicity Instructor Race/Ethnicity

418,283 122,887

NOT 
IDENTIFIE

D

NOT IDENTIFIED

NOT 
IDENTIFI

ED

NOT 
IDENTIFIE

D

0.000
0.000

0.023
0.000

89,031300,503

NOT IDENTIFIED

NOTES: This table displays results from outcome regressions in which we allow for interactions between all observed student and instructor races/ethnicities. We report 
the full set of 9 identified interactions for each regression. Same-Race/Ethnicity interactions are shown in red. We only show results for our preferred specification that 
includes student and classroom fixed effects. P-values for a F-test of the existence of same-race/ethnicity interactions and for the existence of any race/ethnicity-
interactions are also listed. A classroom is defined by a section of a course offering during a particular academic year-quarter. We consider 4 student outcomes: an 
indicator variation equal to one if the student drops the course; an indicator variable equal to one if the student passes the course;standardized course grades; and an 
indicator variable equal to one if the student has a grade of at least B. We also compute the regression coefficients for a sample of all students and a sample of 
students with a low standing on class enrollment lists.  *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 10%-level. Standard errors are clustered 
by classroom.

TABLE 7 - ESTIMATED ROLE OF INSTRUCTOR RACE/ETHNICITY FOR STUDENT OUTCOMES, USING A SAMPLE WITH 4 RACE/ETHNICITY-
GROUPS ONLY

Yes
Yes

NOT IDENTIFIED

Yes
Yes

0.051
0.366

NOT IDENTIFIED

NOT 
IDENTIFI

ED

0.000
0.000

70,871

0.025

NOT IDENTIFIED

NOT 
IDENTIFIE

D

0.291

0.000
0.000 0.041

260,707 70,925

NOT IDENTIFIED

NOT 
IDENTIFIE

D

0.587

NOT 
IDENTIFI

ED

0.000
0.000

260,466



PANEL A: OUTCOME - STUDENT AGE

All Students -0.004 0.046 -0.205 0.091 -0.093
(0.079) (0.112) (0.168) (0.302) (0.374)

All Low Registration Priority Students 0.052 0.083 -0.419 0.541 -0.814
(0.123) (0.174) (0.328) (0.651) (0.685)

0.061 0.037 0.266 2.058 0.101
(0.161) (0.233) (0.690) (1.801) (1.189)

-0.042 -0.050 -1.067 ** -1.849 * -0.828
(0.160) (0.214) (0.475) (1.093) (1.001)

-0.032 0.011 -0.099 -0.069 0.162
(0.082) (0.118) (0.195) (0.373) (0.399)

FIXED EFFECTS  (BY UNDERREPRESENTED MINORITY STATUS):
Course and Year No No Yes No Yes
Course and Year-Quarter Yes No No No No
Course-Year No No No Yes No
Course-Year-Quarter No Yes No No No

APPENDIX TABLE 1 - SORTING REGRESSIONS

LEVEL OF VARIATION IN INSTRUCTOR UNDERREPRESENTED-MINORITY STATUS ACROSS CLASSROOMS OF SAME 
COURSE

UNRESTRICTED
NO VARIATION IN SAME YEAR-

QUARTER
NO VARIATION IN 

SAME YEAR

Entering Students (==> Low 
Registration Priority)

Continuing Students, Low Registration 
Priority

Continuing Students, Not Low 
Registration Priority

NOTES: This table displays results from regressions of the minority-specific average student age in a classroom on an indicator equal to one if the average is associated with 
minority students, an indicator if the class is taught by a minority instructor, the interaction between these two variables, and a set of fixed effects. We only report the coefficient on 
the interaction term, to be interpreted as the extent to which minority students sort into classrooms taught by minority instructors. Each cell is associated with a different regression. 
A classroom is defined by a section of a course offering during a particular academic year-quarter. Students and instructors belong to the group of "Underrepresented Minorities" if 
their race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-Whites. Rows are defined by the subsample of students we 
consider. Low registration priority students are those students who have the lowest standing on class enrolment lists. Columns explore sensitivity of results with respect to different 
sets of fixed effects and different sources of variation used to identify the parameters. When using courses without variation in instructor underrepresented minority status in the 
same academic year, only one of the specifications can be estimated. *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 10%-level. Standard errors are 
clustered on the level of the fixed effect.



PANEL B: OUTCOME - STUDENT GENDER

All Students 0.009 0.014 -0.003 0.015 0.018
(0.008) (0.011) (0.019) (0.032) (0.048)

All Low Registration Priority Students 0.018 0.013 -0.008 0.010 0.020
(0.011) (0.017) (0.031) (0.052) (0.066)

0.006 -0.012 0.066 -0.127 0.209
(0.022) (0.034) (0.061) (0.152) (0.129)

0.026 0.024 -0.041 -0.091 0.041
(0.018) (0.026) (0.050) (0.095) (0.126)

0.006 0.012 0.002 0.019 0.008
(0.009) (0.013) (0.023) (0.040) (0.061)

FIXED EFFECTS  (BY MINORITY STATUS):
Course and Year No No Yes No Yes
Course and Year-Quarter Yes No No No No
Course-Year No No No Yes No
Course-Year-Quarter No Yes No No No

Entering Students (==> Low 
Registration Priority)

Continuing Students, Low Registration 
Priority

LEVEL OF VARIATION IN INSTRUCTOR UNDERREPRESENTED-MINORITY STATUS ACROSS CLASSROOMS OF SAME 
COURSE

UNRESTRICTED
NO VARIATION IN SAME YEAR-

QUARTER
NO VARIATION IN 

SAME YEAR

Continuing Students, Not Low 
Registration Priority

NOTES: This table displays results from regressions of the minority-specific fraction of female students in a classroom on an indicator equal to one if the group fraction is 
associated with minority students, an indicator if the class is taught by a minority instructor, the interaction between these two variables, and a set of fixed effects. We only report the 
coefficient on the interaction term, to be interpreted as the extent to which minority students sort into classrooms taught by minority instructors. Each cell is associated with a 
different regression. A classroom is defined by a section of a course offering during a particular academic year-quarter. Students and instructors belong to the group of 
"Underrepresented Minorities" if their race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-Whites. Rows are defined by 
the subsample of students we consider. Low registration priority students are those students who have the lowest standing on class enrolment lists. Columns explore sensitivity of 
results with respect to different sets of fixed effects and different sources of variation used to identify the parameters. When using courses without variation in instructor 
underrepresented minority status in the same academic year, only one of the specifications can be estimated. *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 
10%-level. Standard errors are clustered on the level of the fixed effect.



PANEL C: OUTCOME - CUMULATED COURSES PRIOR TO ENROLMENT

All Students -0.016 0.077 -0.156 -0.012 -0.281
(0.094) (0.126) (0.306) (0.512) (0.600)

All Low Registration Priority Students -0.126 -0.073 -0.118 -0.682 0.724
(0.080) (0.101) (0.270) (0.511) (0.601)

-0.025 -0.070 0.035 0.129 -0.245
(0.057) (0.081) (0.268) (0.511) (0.337)

0.014 -0.024 0.364  ** 0.367 0.147
(0.055) (0.076) (0.187) (0.443) (0.394)

-0.073 0.034 -0.136 0.203 -0.812
(0.093) (0.122) (0.327) (0.589) (0.636)

FIXED EFFECTS  (BY MINORITY STATUS):
Course and Year No No Yes No Yes
Course and Year-Quarter Yes No No No No
Course-Year No No No Yes No
Course-Year-Quarter No Yes No No No

Entering Students (==> Low 
Registration Priority)

UNRESTRICTED
NO VARIATION IN SAME YEAR-

QUARTER
NO VARIATION IN 

SAME YEAR

LEVEL OF VARIATION IN INSTRUCTOR UNDERREPRESENTED-MINORITY STATUS ACROSS CLASSROOMS OF SAME 
COURSE

Continuing Students, Low Registration 
Priority

Continuing Students, Not Low 
Registration Priority

NOTES: This table displays results from regressions of the minority-specific average number of courses taken prior to enrolment in a classroom on an indicator equal to one if the 
group average is associated with minority students, an indicator if the class is taught by a minority instructor, the interaction between these two variables, and a set of fixed effects. 
We only report the coefficient on the interaction term, to be interpreted as the extent to which minority students sort into classrooms taught by minority instructors. Each cell is 
associated with a different regression. A classroom is defined by a section of a course offering during a particular academic year-quarter. Students and instructors belong to the 
group of "Underrepresented Minorities" if their race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-Whites. Rows are 
defined by the subsample of students we consider. Low registration priority students are those students who have the lowest standing on class enrolment lists. Columns explore 
sensitivity of results with respect to different sets of fixed effects and different sources of variation used to identify the parameters. When using courses without variation in instructor 
underrepresented minority status in the same academic year, only one of the specifications can be estimated. *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 
10%-level. Standard errors are clustered on the level of the fixed effect.



PANEL D: OUTCOME - GPA PRIOR TO ENROLMENT

All Students 0.013 0.017 -0.015 0.030 -0.042
(0.015) (0.020) (0.037) (0.061) (0.089)

All Low Registration Priority Students 0.025 0.026 0.000 0.071 0.017
(0.030) (0.042) (0.080) (0.142) (0.155)

0.008 -0.003 0.201 0.586 0.084
(0.067) (0.106) (0.217) (0.498) (0.526)

0.039 0.062 -0.072 -0.213 0.116
(0.051) (0.073) (0.138) (0.342) (0.202)

0.007 0.013 -0.036 0.015 -0.088
(0.015) (0.021) (0.037) (0.059) (0.101)

FIXED EFFECTS  (BY MINORITY STATUS):
Course and Year No No Yes No Yes
Course and Year-Quarter Yes No No No No
Course-Year No No No Yes No
Course-Year-Quarter No Yes No No No

NOTES: This table displays results from regressions of the minority-specific average cumulated GPA prior to enrolment in a classroom on an indicator equal to one if the group 
average is associated with minority students, an indicator if the class is taught by a minority instructor, the interaction between these two variables, and a set of fixed effects. We 
only report the coefficient on the interaction term, to be interpreted as the extent to which minority students sort into classrooms taught by minority instructors. Each cell is 
associated with a different regression. A classroom is defined by a section of a course offering during a particular academic year-quarter. Students and instructors belong to the 
group of "Underrepresented Minorities" if their race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific Islanders, or other non-Whites. Rows are 
defined by the subsample of students we consider. Low registration priority students are those students who have the lowest standing on class enrolment lists. Columns explore 
sensitivity of results with respect to different sets of fixed effects and different sources of variation used to identify the parameters. When using courses without variation in instructor 
minority status in the same academic year, only one of the specifications can be estimated. *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 10%-level. 
Standard errors are clustered on the level of the fixed effect.

Entering Students (==> Low 
Registration Priority)

Continuing Students, Low Registration 
Priority

Continuing Students, Not Low 
Registration Priority

NO VARIATION IN SAME YEAR-
QUARTER

NO VARIATION IN 
SAME YEAR

LEVEL OF VARIATION IN INSTRUCTOR UNDERREPRESENTED-MINORITY STATUS ACROSS CLASSROOMS OF SAME 
COURSE

UNRESTRICTED



(1) (2) (3) (4) (5) (6)

NO FURTHER RESTRICTIONS
Number of Observations: 261,736

All Students 0.022 *** 0.020 *** 0.017 ** 0.015 ** 0.007 0.011 *
(0.008) (0.007) (0.007) (0.008) (0.006) (0.006)

0.014 0.033 *** 0.026 ** 0.018 0.022 * 0.031 **
(0.015) (0.012) (0.013) (0.015) (0.012) (0.016)

STUDENT TAKES SUBJECT-COURSE FOR THE FIRST TIME
Number of Observations: 162,514

All Students 0.024 ** 0.022 *** 0.015 * 0.022 *** 0.011 0.015 *
(0.010) (0.008) (0.009) (0.009) (0.007) (0.008)

0.007 0.026 ** 0.016 0.029 * 0.022 * 0.045 *
(0.016) (0.013) (0.015) (0.017) (0.013) (0.019)

FIXED EFFECTS:

Year-Quarter-Minority Yes Yes No No No No
Course-Minority No Yes No Yes No No
Course-Minority-Year-Quarter No No Yes No No No
Student No No No Yes No Yes
Classroom No No No No Yes Yes

CONTROLS:

Instructor Controls Yes Yes Yes Yes No No
Student Controls Yes Yes Yes No Yes No

APPENDIX TABLE 2 - ESTIMATED ROLE OF INSTRUCTOR MINORITY STATUS FOR THE PROPENSITY OF 
STUDENTS TO ENROL IN A SAME-SUBJECT COURSE IN THE FOLLOWING QUARTER

PANEL A:  INDIVIDUAL-LEVEL OUTCOMES, ONLY SUBJECT-TIME COMBINATIONS WITH ONE SUBJECT-COURSE

All Low Registration Priority 
Students

All Low Registration Priority 
Students



(1) (2) (3) (4)

NO FURTHER RESTRICTIONS
Number of Observations: 287,215

All Students 0.008 0.006 0.008 0.001
(0.009) (0.007) (0.007) (0.008)

-0.015 0.012 0.019 0.008
(0.015) (0.012) (0.012) (0.019)

STUDENT TAKES SUBJECT-COURSE FOR THE FIRST TIME
Number of Observations: 175,866

All Students 0.010 0.007 0.009 0.012
(0.010) (0.008) (0.008) (0.008)

-0.021 0.011 0.016 0.025 *
(0.018) (0.013) (0.013) (0.015)

FIXED EFFECTS:

Year-Quarter-Minority Yes Yes No No
Subject-Minority No Yes No Yes
Subject-Minority-Year-Quarter No No Yes No
Student No No No Yes

CONTROLS:

Instructor Controls Yes Yes Yes Yes
Student Controls Yes Yes Yes No

All Low Registration Priority 
Students

NOTES: This table displays results from regressions of an indicator variable for whether a student takes a course in the same subject in 
the subsequent quarter. We report the coefficient of the interaction between student's and instructor's underrepresented minority status. 
Each cell is associated with a different regression. In the first panel we use observations for which the student has taken only one 
course in the same subject during a semester. In the second panel we aggregate up the data to the student-subject-time level. A 
classroom is defined by a section of a course offering during a particular academic year-quarter. Students and instructors belong to the 
group of "Underrepresented Minorities" if their race/ethnicity is reported to be Hispanic, African-American, or Native American, Pacific 
Islanders, or other non-Whites. We explore the sensitivity with respect to the regression specification, i.e. the set of fixed effects and 
controls included in the regressions. Student controls include age and gender; instructor controls include age, gender, and a part-time 
indicator. We also compute the regression coefficients for a sample of all students and a sample of students with a low standing on 
course enrollment lists.  *** Significant on 1%-level; ** Significant on 5%-level; * Significant on 10%-level. Standard errors are clustered 
by classroom in Panel A and by subject-time in Panel B.

PANEL B: DATA AGGREGATED TO INDIVIDUAL-SUBJECT-TIME LEVEL

All Low Registration Priority 
Students




