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Our primary goal in this paper is to ascertain whether the absolute and

relative rankings of managed funds are sensitive to the benchmark chosen to

measure normal performance. We employ the standard CAPM benchmarks and a va-

riety of APT benchmarks to investigate this question. We found that there is

little similarity between the absolute and relative mutual fund rankings ob-

tained from alternative benchmarks which suggests the importance of knowing

the appropriate model for risk and expected return in this context. In addi-

tion, the rankings are quite sensitive to the method used to construct the

APT benchmark. One would reach very different conclusions about the funds'

performance using smaller numbers of securities in the analysis or the less

efficient methods for estimating the necessary factor models than one would

arrive at using the maximum likelihood procedures with 750 securities. We

did, however, find the rankings of the funds are not very sensitive to the

exact number of common sources of systematic risk that are assumed to impinge

on security returns. Finally, we found statistically significant measured ab-

normal performance using all the benchmarks. The economic explanation of this

phenomenon appears to be an open question.
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I. Introduction

Thirty years of scientific progress in financial economics has left the central problem of

portfolio performance evaluation largely unresolved. This unhappy state of affairs persists

despite broad agreement on an intuitive level that an actively managed portfolio with

superior performance should exhibit higher returns on average than a passively managed

portolio with the same amount of risk. Unfortunately, two obstacles stand in the way of

implementing this intuitive notion of superior performance to evaluate the track record

of maiiagecl funds. The first difficulty stems from disagreement on the appropriate way

to quantify risk and hence on what constitutes normal performance. The second problem

concerns errors in inference that can arise when portfolio managers can, in fact, outperform

the market.

In order to nieasiire abnormal performance by mutual funds. it is necessary to have

a benchmark for normal performance. Modern portfolio theory purports to provide such

a standard of comparison — that combination of the market portfolio and the riskiess as-

set which is of comparable risk. Not surprisingly, nunierous investigators have employed

the Capital Asset Pricing Model (CAPM) to evaluate the performance of mutual funds.'

Roll(1077,1078). however, has forcefully argued that the use of the CAPM as a bench-

mark in performance evaluation is logically inconsistent under the assumptions of the model

since any measured abnormal performance can only occur when the market proxy is in-

efficient. In tile absence of any systematic evidence of abnormal performance by mutual

funds, Roll's critique would appear to be an academic point. Yet there is plenty of ancillary

empirical evidence indicating the mean-variance inefficiency of the usual indices, including

the anomalies involving dividend yield. firm size, and price/earnings ratios, which leads one

to question the use of the usual CAPM market proxies as an appropriate benchmark.2

' These include Treynor(1065), Treynor and Mazuy(1066), Sharpe(10G6), Jensen(1968.-
1969), Friend, illume, and Crockett( 1070) McDonald( 1073.1074), and Mains(1977).

2 See, for example, Caunistraro(1973), Basu(1977), Litzenberger and Ramaswamy(1979),
Banz(1081), Reinganuin(1081). The direct evidence on the validity of the CAPM is mixed.
Studies examining the Sharpe-Lintuer version of the model such as Black,.Jensen and Sc-
holes(1072), Fama and MacBeth(1073), and Blume and Friend(1973) have rejected the hy-

pothesis that the usual indices are the tangency portfolios associated with the riskless rate.
The evidence on the zero-beta CAPM also has resulted in mixed conclusions concerning
the mean-variance efficiency of these indices as evidenced by the results of Gibbons(1982),
Jobson and Korkie(1982), Shanken(1984), and Stambaugh(1982).
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The apparent inefficiency of the usual market proxies coupled with concern over the

testability of the CAPM (e.g. Roll(1977)) has led researchers to explore alternative the-

ories of asset pricing. One theory which has stimulated much recent research is the Ar-

bitrage Pricing Tlieory(APT) developed by Ross(1976,1977). In that seminal work, Ross

contended that the fundamental idea imbedded in the CAPM is the differentiation be-

tween idiosyncratic risk that can he eliminated in large portfolios through diversification

and systematic risk that is pervasive and cannot be easily avoided.3 He further reasoned

that systematic risk need not be adequately represented by a single common factor such

as the return on the market and instead presumed that there are K common sources of

covariation (risk) affecting security returns. These K factors constitute another potential

benchmark with which to measure normal performance.

Since the theory does not require that these sources of systematic risk be specified

a priori, empirical implementation of the APT usually involves the construction of basis

or reference portfolios to mimic the factors. There are any number of ways to form such

portfolios. There are not only several methods for forming the portfolios but there are

different procedures for estimating the factor models of security returns that underly these

computations. In addition, one has discretion over how many securities to use in the

analysis and how many factors to extract. In principle, each variant provides another

potential benchmark.

Even if there were no question about the appropriate benchmark, it is still difficult

to measure managerial performance when mutual fund managers are superior investors.

This second difficulty arises from problems associated with measuring portfolio risk when

managers act on private information and, as a consequence, continually revise the compo-

sition of their portfolios and the risk level of their funds. After relaxing the assumptions

of the CAPM. Mayers and Rice( 1979) provide sufficient conditions under which the stan-

dard Security Market Line analysis is a valid measure of portfolio performance ability.

Unfortunately, as shown by Dybvig and Ross(1981), their sanguine conclusion rests on

the assumption that managers possess no market timing ability and that any abnormal

performance is due to stock selection. This occurs because uninformed investors, unable

The idea that the important distinction is between diversifiable and nondiversifi-
able is also captured in the single index market model of security returns introduced by
Markowitz(1952) and developed and extended by Sharpe(1963,19C7).
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to observe managers' private information signals or actual portfolio choices, may perceive
implicit changes in expected returns due to market timing as needless additions to vari-

ance when they are forced to draw inferences solely on the basis of the realized returns of

the portfolio. In this case, the usual Security Market Line analysis will detect abnormal

performance but will be unable to distinguish superior from inferior ability.4

Our primary goal in this paper is to ascertain whether the absolute and relative rank-

ings of managed funds are sensitive to the benchmark chosen to measure normal perfor-

mance. An ancillary goal of the paper is to examine the efficacy of Security Market Line

type analysis in the evaluation of mutual fund performance given the shifting composi-

tion of managed portfolios. Not only do we compare and contrast the CAPM and the

APT, but we also examine the different basis portfolio construction methods that have

been suggested in the literature to produce portfolios that are highly correlated with the

common factors underlying the APT. The question of whether comparatively inexpensive

but statistically inefficient basis portfolio formation procedures lead to quantitatively seri-
ous benchmark errors is of special interest. In Lehmann and Modest(1985b) we studied the

different procedures suggested to mimic the factors and frnmd evidence that suggests that

inexpensive basis portfolio procedures sacrifice a significant amount of statistical precision

and seem to do a relatively poor job of mimicking the factors. However, the analysis there
left open the question of whether this statistical evidence would translate into meaningful
economic differences. Mutual fund performance evaluation provides a natural laboratory
for the investigation of these questions.

It is worth emphasizing that previous research would suggest that we should expect few

substantive differences in the performance measures implied by alternative riskadjustment
procedures. For example, Stambaugh(1983) found that the choice of a market proxy made

little difference in CAPM tests. Moreover, Roll(1079) found that three market proxies

provided nearly identical performance measures for randomly selected portfolios and that

these risk adjustment methods produced almost the same rankings as no adjustment at all.

Similarly, Copeland and Mayers(1982) and Chen, Copeland, and Mayers(1983) found that

the choice of a performance benchmark did not affect inferences regarding the Value Line

The problem of measuring the quality of investment ability has also recently beem
addressed by Verrechia(1980), Pileiderer and Bhattacharya(1983), Admati and Ross(1985),and Grinblatt and Titman(1985).
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enigma. It is certainly of independent interest to know whether alternative risk measure-

mcnt procedures yield similar rankings in this context as well.

The application of the APT involves numerous technical and economic questions. The

next sectioii discusses some of the economic and statistical issues associated with the em-

ployment of the APT in benchmark comparisons. In Section III we discuss the ability of

Jensen(10G8.GO)-style Security Market Line regressions5 and Jensen(1072) arid Pfleiderer

and Biiattacharva(183) quadratic regressions to detect abnormal performance and market

timing ability in the APT context. The data is discussed in Section IV. Section V reports

the empirical results. We begin by presenting summary statistics concerning the compar-

ative performance of different APT benchmarks. These statistics contrast the inferences

concerning abnormal mutual fund performance that are arrived at using reference portfo-

lios constructed from different sized cross-sections of securities and alternative estimation

methods. We also consider the dependence of the absolute and relative rankings of the

on the number of factors which are extracted from the data. The focus then shifts to an

examination of the performance of the CAPM and APT benchmarks. In particular, we

examine whether the APT has anything different to say about the performance of mutual

fiuids than the CAPM. Finally, we use quadratic regressions to examine the problems

associated with the shifting composition and risk of managed portfolios. The final section

provides concluding remarks concerning the abnormal performance of mutual funds and

the comparative merits of alternative benchmarks.

II. Implementing The APT

A. The Arbitrage Pricing Theory

The cornerstone of the APT is the statistical assumption that security returns de-

pend on K common factors, whose risk cannot be eliminated in arbitrary well-diversified

portfolios, plus some idiosyncratic risk that (as the number of securities becomes infinite)

can be diversified away in such portfolios. Under the assumption that these factors affect

securities returns linearly, the factor model for returns takes the form:

This question has also been recently (and independently) examined by Connor and
Korajczyk(1984).

4



= E1 + bkkt + t (1)

E[6kt] = E[1tI5kt} = 0

where:

Return on security i between time t-1 and time t for i=1 N

Expected return on security i

kt Value taken by the kth common factor { i.e source of systematic risk } between

time t — 1 and t

sensitivity of the return of security i to the ktl common factor { called the factor

loading } and

the idiosyncratic or residual risk of the return on the th security between time

t— 1 and time t which has zero mean, finite variance and is sufficiently independent

across securities for a law of large numbers to apply.

In these circumstances, Ross(197G,1077) showed that it is possible to form zero net

investment arbitrage portfolios with no systematic risk and negligible idiosyncratic risk as

well. Intuitively, these nearly riskless portfolios should have zero profits in the absence of

taxes and transaction costs. Ross formalized this intuition and proved that if the number of

securities satisfying the return generating process (1) is large, then, to ensure that riskless

arbitrage profits cannot be made, expected returns must satisfy (approximately):

A0 + b1A1 + ... + bkAk (2)

where:

A0 the intercept in the pricing relation and

Ak the risk premium Oli tile kth common factor, k = 1,.. ., K.

If the return on the market was the only common factor, then ) would be the expected

excess return on the market.

The theory has received considerable attention and has been discussed and further

developed in numerous papers including Huberman(1982), Chamberlain and Rothschild.

(1983), Chamberlain(1983), Dybvig(1983). Grinblatt and Titman(1983,1984), Chen and
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Ingersoll(1O83) Connor(1084.1085), and Ingersoll(1984).6 These extensions have been pri-

in;rily devoted to three topics: (a) characterization and weakening of the sufficient con-

ditions for (2) to hold as an approximation in large economies; (b) derivation of sufficient

coiicIitons for (2) to hold as an equality in large econoniies: and (c) computation of explicit

Lomids on the deviations from (2) in finite economies.

For empirical purposes, it is obviously advantageous to be able to assume that equation

(2) provides an exact, rather than an approximate, theory of expected returns. Therefore

we shall presume sufficient structure so that expected returns exactly satisfy:

(3)

where:

E the N x 1 vector of expected returns on the N securities,

the K x 1 vector of risk prenhia on the K factors,

B the N x K matrix of individual security factor loadings: b1, i = 1. . . . . N j =

1 K,

and is as defined above. Sufficient conditions are given in Grinhlatt and Titman(1983),

Coniior(1084). and Ingersoll(1084).. They basically involve the assumptions that investors

are not too risk averse, the idiosyncratic risk of the individual assets is not too substantial,

and the value of any asset as a proportion of total wealth is iiot too large. Limiting necessary

and sufficient conditions are given in Chamberlain and Rothschild(1083). They show that

in large economies where large subsets of security returns follow a factor model, an exact

pricing relationship will hold if and only if (in the limit) there is a risky, well-diversified

portfolio on the mean-variance efficient frontier constructed from the (countably infinite)

subset of returns satisfying the approximate factor structure.

Finally, we differentiate two versions of the APT which involve different interpretations

of . Like the CAPM, the APT has both a riskiess rate and a zero beta formulation.

The riskiess rate version is appropriate when it is possible to form a positive investment

portfolio of risky assets whose return variance goes to zero as the number of assets which

6 For a critique of the theory see Shanken(1982) and Dhrymes.Friend and Gultekin
(1984). For replies to these articles, see Dybvig and Ross(1983), Pfleiderer and Reiss(1983),
and Roll and Ross(1984).
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satisfy an approximate factor structure grows large. In this version of the APT, A0 is the

riskiess rate. The zero beta formulation arises when it is not possible to form a limiting

riskiess portfolio of risky assets. Under this formulation, one of the factors corresponds

to the 7,erO beta return. What makes the zero beta factor different from the other factors

is that. under an appropriate transformation of the factor space, all securities will have

equal sensitivity to it. Hence is zero when the zero beta formulation is appropriate.7 In

what follows, we will use both the riskiess rate and zero beta formulations of the APT to

examine whether conclusions regarding the comparative performance of alternative APT

benchmarks is sensitive to which version of the APT is apposite.8

B. The APT and Estimation of the Factors

To be sure, testing and using this theory would be straightforward if the common fac-

tors 8kt could be easily identified with observable economic or financial data. Unfortunately,

financial theory seenis to be capable of rationalizing a wide variety of potential sources of

systematic risk. -In consecluence, several authors have used the statistical method of factor

analysis in order to ascertain whether (1) is an appropriate model for security returns and

(3) provides an accurate model of expected returns. These studies include Gehr(1975),

Roll and Ross(1980), Gibbons(1983), Reinganum(1981), Hughes(1982), Brown and We-

instein(1983), Chen(1983), Dhrymes, Friend and Gultekin(1984,1985), and Lehmann and

Modest(1985a).9

The first step in obtaining an APT benchmark is to construct portfolios which re-

flect the behavior of the K unobservable common factors. There are a number of different

portfolio formation procedures that can be used to construct these mimicking portfolios.

Four different methods were compared in Lehmann and Modest(1985b): a generalized least

squares (GLS) procedure, a variant of the GLS procedure that produces what we call mini-

Note that the distinction between the two versions of the APT arises from the fea-
sibility of forming riskless portfolios of risky assets and not from constraints on riskiess
borrowing and lending or short sales, a point emphasized by Ingersoll(1984). The zero beta
version of the APT thus differs in a fundamental way from the zero beta version of the
CAPM.

In Lehmann and Modest(1985a) we provide detailed evidence on the merits of the two
versions.

Studies which have investigated factor models of asset returns without reference to
arbitrage pricing theory include King(19G6), Farrell(1974), Feeney and Hester(1967), Fama
and MacBeth(1973), Rosenberg and Marathe(1979), and Arnott(1980).

7



mum idiosyncratic risk portfolios, and two quadratic programming procedures that impose

constraints to produce minimum idiosyncratic risk portfolios with small portfolio weights.

The evidence presented there suggests the superiority of the minimum idiosyncratic risk

procedure and consequently we used that portfolio formation procedure here. The novelty

of the minimum idiosyncratic procedure compared with the more familiar cross-sectioual

regression methods prompts the following detailed examination.

Since the minimum idiosyncratic risk procedure is a variant of the GLS procedure,

it is useful to first consider the statistical intuition underlying generalized least squares

methods. Under the assumption that the returns of the N securities under consideration

are generated by a K factor linear structure as given in (1), we can write the assumed joint

return generating process of the N securities as:

(4)

where the residual risks are assumed to satisfy:

=
(5)

EV1 =

and 1 is a positive definite symmetric matrix. Since the factors are unobservable, the

model is not identified without further a priori restrictions. We therefore assume that the

random factors (a K x 1 vector) and the corresponding elements of the factor loading

matrix. B (N x K), have been normalized so that:'°

(6)
= I

Treating the factor loadings in equation (4) as explanatory variables that are measured

without error and the common factors as parameters to be estimated, one natural way to

proceed is to run an ordinary least squares cross-sectional regression of the excess returns

10 The elements of B are still not uniquely determined since for all orthogonal matrices
T, any matrix B = BT will yield the same return generating process. We assume that
the necessary K(K — 1)/2 constraints required to ensure that T = I have been imposed
arbitrarily. For example, it is conventional in factor analysis to require B'cZB to be a
diagonal matrix.
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of the individual securities, — , on the factor loadings along the lines of the procedure

followed by Fama and MacBeth(1973). The ordinary least squares estimates of the factors

at date t would then he given by:U

OLS = (B'Br'B'k, (7)

Note that the projection niatrix (B'B)'B' can be thought of as the transpose of a (time

invariant) N x K matrix of portfolio weights that can be used in conjunction with the

returns R. at any date t to obtain an estimate of the realization of the K common factors

t• The ordinary least squares estimator is not efficient, however, since it ignores the

information in tile covariance matrix of the residual risks, 12. A more efficient procedure is

the generalized least sciuares estimator of 8 given by: 12

8GLS = (B'12 — E] (8)

This estimator is the niinimum variance linear unbiased estimator of 6 and, in addition,
• • • • CLS -it is consistent as the number of assets tends towards infinity since pl1mN =
follows when liiuIN.{B'12'BJ' = 0.

To understand the relationship between the generalized least squares(GLS) estimator

and the minimuni idiosyncratic risk estimator, it is useful to reformulate the GLS problem

as a portfolio 1)iObleifl following Litzenberger and Raniaswamy(1979) and Rosenberg and

Mararhe(1070). In particular, the GLS estimator can be thought of as the solution of the

following portfolio optimization procedure: choose the N portfolio weights (to mimic

the j' factor) so that they:

minw'Dw1 (9a)

subject to:

= 0

(Ob)
=1 3=Ià

" The covariance matrix of the OLS factor estimates is: (B'B)B'12'B(B'B)'.
12 The covariance matrix of the GLS factor estimates is: (B'12'B).
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where is the kth column of the factor loading matrix B and D is the diagonal matrix

consisting of the variances of the idiosyncratic risk vector It is straightforward to show

that the solution to the portfolio problem posed in (0) is given by (B'D'B)' B'D' which

is equivalent to the GLS estimator given in (8) when the residual covariance matrix 12 is

diagonal. In practice, we rescale the weights so that they sum to one so that these sets

of weights can properly be interpreted as portfolio weights. This is the generalized least

squares version of the portfolio formation procedure adopted by Faina and Madlleth(1073)

and similar in spirit to the GLS estimators used by Black and Scholes(1074).'4

How does measurement error in the factor loadings and idiosyncratic variances affect

the properties of the Fama-Mac Beth portfolios? An examination of equations (9a) and (9b)

reveals three ways that measurement error can effect the construction of the Fama-Mac Beth

reference portfolios: (i) the use of estimated idiosyncratic variances in the calculation of the

sample residual risk of the portfolios [i.e. w'DwJ, (ii) the effect of the requirement that

the portfolio weights be orthogonal to the sample loadings of the common factors not being

mimicked [i.e. wk = 0 Vj k[. and (iii) the repercussions of the stipulation that the

Fama-MacBeth basis portfolios have sample loadings of unity [i.e. w.b1 = 1]. The most

pernicious effect of measurement error on basis portfolio performance is likely to arise froni

the requirement that the sample loadings of the basis portfolios equal one. Why should

this he the case? First, intuition gleaned from the statistical literature suggests that the

performance of these portfolios should not be markedly degraded by the presence of mea-

surement error in the residual variances. This sanguine conclusion follows from experience

in heteroskedastic regression settings that suggests weighted least squares estimation with

weights that are imperfectly correlated with the true weights typicalig achieves much of the

potential gain in efficiency. Second. the requirement that the portfolio weights be orthog-

onal to the sample loadings of the other common factors is essentially costless since this

constraint merely determines a particular sample rotation of the factors. Unfortunately,

the stipulation that the Fama-MacBeth basis portfolios have sample loadings of unity [i.e.

13 Note that since we are ignoring the off-diagonal elements of [2 such as industry ef-
fects, this procedure is actually better characterized as weighted least squares or diagonal
generalized least squares.

14 We will follow common usage and refer to the GLS estimator as a Fama-MacBeth
estimator despite the fact that they actually used ordinary least squares.
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wh1 = 1] is a potential source of difficulty in the presence of measurement error in the

factor loadings.'5

The basic problem is that measurement error in the loadings will reduce the correlation

of the returns on the Fama-Mac Beth portfolios with the underlying common factors.'6 Why

does this occur? The intuition lies in the fact that the Fama-MacBeth procedure will tend

to give greater weight to security returns associated with large sample factor loadings and

will typically dowuweight those with small loading estimates. This is appropriate in the

absence of measurement error since the returns of securities with large factor loadings are

more informative about fluctuations in the common factor. However, large estimated factor

loadings can occur for a combination of two reasons: large true factor loadings or large errors

in the estimation of small true factor loadings. Similarly, small sample factor loadings can

reflect either small true factor loadings or offsetting measurement error in otherwise large

loadings. Thus the Faina-MacBeth weighting procedure is less fitting when large sample

loadings can arise from measurement error as well. In the extreme, measurement error in

factor loadings can be so malignant as to virtually eliminate the information content of

these estimates regarding fluctuations in the common factors.

The minimum idiosyncratic risk procedure employed here mitigates the harmful effects

of measurement error by ignoring the differing information content of individual security

returns regarding fluctuations in the factors that is implicit in the sample factor loading

estimates. In particular, our procedure involves choosing the portfolio weights w1 which

solve:

minw11Dw (Wa)

It is worth noting that the deleterious effects of measurement error on basis portfo-
ho performance do not devolve from the analogous problems in a least squares regression
setting where measurement error in the independent variables leads to biased and incon-
sistent estimates of regression coefficients. In the present setting, there isno particular
benefit associated with an estimator possessing unbiasedness [i.e. E[j = 8j as opposed
to an alternative estimator with E[S] = + ,c8 since the correlation of the estimator
with the common factors is unaffected by affine transformations and the scale of the com-
mon factors is arbitrarily determined by the normalization that E[&] I. As with the
orthogonality constraint, bias in the Fama-Macfleth portfolios taken alone only implicitly
delimits a particular sample rotation of the factors.

16 This is formally shown for the case of a single common factor in Lehmann and Modest-
(1985h).
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subject to:

k°
(lob)

where t is a vector of ones and where is again the kth column of B.'7 These portfolios

are similar to Fama-MacBeth ones in that they minimize the sample idiosyncratic variance

of the basis portfolios subject to the constraint that the weights be orthogonal to the

sample loadings of the factors not being mimicked [i.e. wbk = 0 Vj kJ. The difference

between the two procedures lies in the requirement that the Fama-MacBeth portfolio have

a sample loading of unity on the factor being mimicked while the minimum idiosyncratic

risk portfolios must simply cost a dollar. As a consequence, the minimum idiosyncratic risk

procedure ignores the information in the factor loadings: a bad decision in the absence of

measurement error and a potentially good choice in its presence.18

In Lehrnanu and Modest(1985b) we scrutinized comprehensive evidence regarding the

comparative merits of the two procedures. The basic conclusion reached there was that

the minimum idiosyncratic risk procedure perfornied at least as well (and usually better

than) its competitors.'9 This suggests the sampling error in our factor loadings is suffi-
ciently serious so as to render the minimum idiosyncratic risk procedure more effective in

actual practice. As a consequence, we employ this method of portfolio formation in this

investigation.

Finally, a note is in order regarding the excess return portfolios that are appropriate

when the riskless rate version of the APT is correct. For each basis portfolio formation

method, we constructed minimum idiosyncratic risk portfolios using that method which had

weights orthogonal to B and which cost a dollar. The details are discussed in Lehmann

and Modest(1985b). As noted there, the Fama-Macfleth and minimum idiosyncratic risk

17 This estimator can be computed as follows. Let B = . . . ) and suppose we
are interested in mimicking the Jt/L factor. The minimum idiosyncratic risk estimator is

where B* = (12 . . . .. .) and t is a vector of ones in the jilL
colunin.

18 J Lehmarm and Modest(1985b) we show that the correlation of the Fama-MacBeth
basis portfolios with the common factors exceeds the correlation of the minimum idiosyn-
cratic risk portfolios with the factors in the absence of measurement error, but that the
ordering may be reersed in the presence of measurement error.

19 In addition to the two methods discussed here, we also considered two quadratic pro-
gramming procedures which constrained the basis portfolios to have small weights.
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procedures provide identical excess return portfolios up to a factor of proportionality. As

a consequence, the remarks in this subsection are not relevant for our constructed excess

return portfolios which are used under the assumption that the riskless rate version of the

APT is true, but are relevant in analyzing the results that presume the zero beta version

of the APT is appropriate.°

C. Estimation Methods

Four different methods for estimating the factor loadings and idiosyncratic variances

underlying the APT are described in this section. Two of the methods are statistically

efficient hut computationally costly versions of maximuni likelihood factor analysis. We

also examine an instrumental variables estimator and the method of principal components.

As the number of securities grows large, all four methods provide consistent estimates of

the factors and, as the number of observations grows large, consistent estimates of the

factor loadings and idiosyncratic variances as well.2' However, it is obviously of greater

than academic interest to know whether the comparatively inefficient methods provide

performance comparable to that produced by the computationally burdensome efficient

estimation methods with the data available to us. This could occur because of the large

cross-sections of security returns that we employ or because of good small sample properties

of the comparatively inefficient estimation methods.

The primary assiuiiption of the APT is that security returns are generated by a K

factor linear structure as given by equation (4):

(4)

Given the structure in (4) in conjunction with the assumptions in (5) and (6) about the

covariance matrices of the residual risks and the factors, the covariance matrix of security

returns, , can be written as:

E=BB'+fl (11)

Theoretically, the APT places no restrictions on 2 other than the requirement that the

20 If we employed measured riskless rates (i.e. one month Treasury bill returns) instead
of the excess return portfolios, the differences between the procedures would again be of
considerable concern. In this circumstance, we would employ the minimum idiosyncratic
risk procedure.

21 Given sufficient assumptions on ft
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off-diagonal elements are sufficiently sparse so that the residual risks are diversifiable (in the

limit) and, hence, security retirns satisfy an approximate factor structure.22 Unfortunately,

it is not possible to estimate the factor loadings and the elements of l when security returns

possess only an approximate factor structure. One popular way to proceed is to assume

that security returns satisfy an exact statistical factor structure in that residual risks are

uncorrelated across firms. With this additional assumption, the residual covariance matrix

is equal to a diagonal matrix D, and one can proceed with estimation using the fact that

the covariance matrix of security returns E can be written as:

E=BB'+D (12)

Obviously, efficient estimation requires a priori specification of the joint distribution

of security returns and the factors. Under the assumption of joint normality, the sample

covariance matrix of security returns is distributed as Wishart, and the log likelihood

function of E conditional on the sample covariance matrix is given by:

£(ES) = -NT ln(2) - lnjE - 1 - -
(13)

-NT T T= lu(22r) — In IEI — —trace(SE')
2 2 2

Maximization of the log likelihood firnction (13) subject to the covariance restriction

given by (12). provides efficient estimates of the factor loadings and idiosyncratic variances

underlying the presumed statistical factor analysis model of security returns. Under the null

hypothesis that the APT is true, however, there is additional information in the theoretical

restriction given in equation (3) that expected security returns are spanned by their factor

loadings and the factor risk premia which can, in principle, lead to more efficient estimates

of B and D. Imposition of this additional constraint involves taking the log likelihood

function (13) and substituting in the APT mean restriction:

(14)

22 The formal requirement is that as N —÷ oo the eigenvalues of I remain bounded.
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The log likelihood function is then given by:

—NT T£(EIS) =
2

ln(2r) — — in E
1

T (15)
— t — [o + B]YE'(R — k.Ao + B])

which can be rewritten as:

£(EJS) =
NT

ln(27r) — 1njE
T (16)

— — + ( — [tAo + B])]'E1[( ) + ( — [&o+ i)1

This can be simplified to:

£(EjS) = _NT1fl(2,) — — !trace(SE1)
2 2 2

(17)
• — -(— \o — BA)'E'(— .A0 — B.)

Maximization of (17) yields what we refer to below as restricted maximum likelihood esti-

mates. This restricted maximum likelihood procedure involves maximizing the unrestricted

log likelihood function (13) plus an additional term involving the weighted average of the

deviations of the sample mean security returns from the product of the factor loadings and

the corresponding risk prenna.

The unrestricted maximum likelihood estimates of the relevant parameters may be ob-

tained by setting the derivatives of (13) equal to zero and iteratively solving the first order

conditions with respect to B and D. The corresponding restricted maximum likelihood

estimates may be obtained by setting the derivatives of (17) equal to zero and iteratively

solving the first order conditions with respect to B, D, ,\, and ,o. While this is a conceptu-

ally simple exercise, it is computationally infeasible to obtain these estimates by iteratively

solving the first order conditions when the number of securities being analyzed is sub-

stantial. We therefore employed a significantly cheaper alternative: the EM algorithm of

Dempster, Laird, and Rubin(1977). In Lehmann and Modest(1985a) we discuss the actual

estimation procedure. Its primary virtue is that its memory requirements and computa-

tional costs are less burdensome than the standard procedures for performing maximum

likelihood analysis, such as those described in Lawley and Maxwell(1971).
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The maximum likelihood procedures described above provide efficient estimates of the

factor loadings and idiosyncratic variances used as inputs in (10) to coustnict portfolios

that mimic the common factors. The principal drawback of these procedures is that they

are moderately expensive in terms of the real computer time it takes for each rim to be

completed. Given the relatively high cost of these efficient procedures, several authors have

proposed the use of less costly procedures with the hope that the loss in efficiency is only

small. Chamberlain and Rothschuld(1983) and Connor and Korajczyk(1084), for instance,

have recently suggested the use of principal components as an inexpensive alternative to

maximum likelihood factor analysis. The connection between principal components and

the statistical factor analysis model is, as Chamberlain and Rothschuld(1983) showed, that

as the number of securities being analyzed tends toward infinity, the first K eigenvectors

obtained from the cigenvalue decomposition of the covariance matrix of security returns will

converge to the factor loadings underlying security returns. Connor and Korajczyk(1084)

showed that this holds for the sample covariance matrix as well. The primary disadvantage

of priiicipal components is that it ignores information contained in the sample idiosyncratic

variances which potentially might lead to more efficient estimates of the factor loadings in a

finite sample.23 Nonetheless, since the one time extraction of eigenvalues and eigenvectors

does not require iteration over first order conditions like the nonlinear maximum likelihood

procedures, it can be cheaper and therefore a potentially attractive alternative.24

We employed the singular value decomposition algorithm included in the NAG Sub.

routine Library to obtain the required eigenvalues and eigenvectors. Each column of the K

eigenvectors was multiplied by the square root of the corresponding eigeuvalue in order to

scale the factors to have unit variance. Estimates of the idiosyncratic variances were then

obtained using equation (12) to solve for D given the the estimated factor loadings B (the

23 This can be seen by noting that principal components is equivalent to maximum likeli-
hood factor analysis when the idiosyncratic variances are assumed to be identical, i.e. when:
D 2I. Thus the relationship between principal components and maximum likelihood is
similar to the relationship between ordinary least squares and generalized least squares.

24 Principal components is cheaper in that one eigenvalue decomposition provides the
eigenvectors (and hence the factor loadings) needed for a factor model with anywhere
between 1 and N factors whereas this would require N different maximum likelihood runs.
However, unrestricted maximum likelihood factor analysis of 750 securities with 5 factors
using the EM algorithm, for instance, would on average be less costly than principal
components although significantly more expensive than one instrumental variables run
with 5 factors on 750 securities.
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transformed eigenvectors), and the sample covariance matrix S.

Another relatively inexpensive alternative to maximum likelihood factor analysis is in-

strumental variables factor analysis along the lines suggested by Madansky(1064) and Hag-

glund(1082). Ixstrumental variables estimators have recently been employed by Chen( 1083)

and Madansky and Marsh(1985). The central idea of these instrumental variables estima-

tors is to substitute consistent estimates of the factors for the factors themselves in equa-

tion (4) and theii estimate the factor loadings B by ordinary least squares.2' Chen(1083)

used portfolios formed by mathematical programming based on maximum likelihood factor

analysis of 180 securities as the required consistent estimates of the factors. We employ

a simpler instrumental variables procedure, which is described in detail in Lehrnann and

Modest(1085b) that does not require pieliminary maximum likelihood factor analysis.

III. On The Detection of Abnormal Performance

The ability to construct benchmark portfolios along the lines of (10) which are poten-

tially free of the biases which have been attributed to the CAPM benchmarks suggests

their use in performance evaluation. However, the putative freedom from benchmark error

of the reference portfolios need not imply that their use in the usual strategies for assessing

mutual fund performance will lead to correct inferences. As is obvious from the discussion in

Mayers and Rice(1979), Verrechia(1D80), Dybvig and Ross(1981), Adxnati and Ross(1085),

Pifriderer and Bhattacharya(1083), and Griublatt and Titman(1085), benchmark error is

not the only difficulty plaguing performance evaluation. Nontrivial problems of inference

arise when mutual fund managers have some ability to predict benchmark returns.

If a portfolio manager has substantive market timing ability, the manager's portfolio

choices will be correlated with the subsequent benchmark returns. Hence, measured covari-

ation between the mutual fund returns and benchmark returns will convolve two influences
— the manager's market timing ability and the chosen level of risk, 0niy in special circum-

stances will it be possible to sort out these effects. Since measured covariation need not

25 The application of instnunental variables methods to factor analysis models typically
involves the assumption that the idiosyncratic disturbances are independent (as in the sta-
tistical factor analysis model). The procedures, however, will provide consistent estimates
even when the idiosyncratic disturbances are correlated so long as the disturbances are
sufficiently independent for a law of large numbers to apply as the number of securities
tends toward infinity.
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only reflect the (con.tant) risk level chosen by the manager, it cannot be used to naively

form a combination of reference portfolios which are of comparable risk to the mutual fund.

Thus it will not be possible to rate managerial investment performance with these tools in

the presence of market timing ability.

The problem is considerably simplified if our goal is merely the detection of abnormal

performance and not the measurement of its degree. Excess returns regressions of the

form employed by Jensen(1OGS.1OGO) will, apart from sampling error. successfully detect

abnormal performance even if managers possess market timing ability. Hence we will limit

our attention to this more modest goal and defer for the present the quantification of

managers investment skills.

Suppose that the uninformed investors perceive that the APT is exactly true so that

returns on N individual securities satisfy:

(18)

where R is a K x I vector of reference portfolios and B is the N x K matrix of factor

loadings. Here we let R and mt denote raw returns when the zero beta version of the APT

is appropriate and we presume that they represent excess returns when the riskiess rate

formulation is correct. We assume that the reference portfolios H are perfectly correlated

with the coj-ruxion factors and that B is measured without error as well. Consider the return

on a n1utual fund portfolio:

pt = il
(10)

= [wj(t)bR?lt + W(8)E1]

where ci() is the weight of security i in the mutual fund portfolio at date t, b is a 1 x K

row vector of B and is a vector of signals received by the mutual fund manager that are

used for predicting R and . It is convenient to rewrite (19) as:

= §ptmt + (20)



where:

— + (3)'

=w(8)E
(21)

=

In (21), $ is the target or average of the fund, and () is the time t deviation from

,9 selected by the manager (assumed to average zero over the sample). Note that if the

manager possesses stock selection ability, pt will not have a zero mean.

What happens if, as uninformed investors, we nm the regression of on R, ?
Letting E*[XJYI denote the minimum variance linear estimator of X given Y (i.e. the

regression function), we obtain:

E*{RptlRmt] = + mt (22)

where:

= [ — COV{XRmt,Rt}'E'flm ÷E{4R}]
= [j9 --

= (23)

Em = E[{Rmt - Rm}{&nt

= E[Rmtl

and x is used as shorthand notation for x(s)' and Cov{xRmt,Rmt} is a 1 x K vector of

the covariances between xR and the K elements of Rmt. The coefficient c is the usual

Jensen performance measure.

In the absence of the ability to pick stocks [i.e. = 0 ] and to time the market

i.e. E{XRmt} = Cov{xmt, R} = 0 for all j=1....K], the regression equation (22) will

indicate no abnormal performance since, in this instance:

E*[RptI} = (24)
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If the mutual fund manager possesses stock selection ability but no market timing ability,
the regression will indicate superior performance since

E*[RptiRmtl = p + (25)

where > 0 under mild restrictions. This is merely a restatement of the Mayers and

Rice (1979) proposition, as simplified and extended by Dybvig and Ross(1981), that the
Jensen measure will correctly indicate superior performance whenmanagers possess security
selection ability but are unable to time the market. Finally, ifportfolio managers possess
market timing ability as well, the Jensen measure may be positive or negative depending
on the terms in brackets on the first line of (23). Hence, the Jensen measure will indicate

abnormal performance but cannot be used to rank managers.

These results are useful in that the simple Jensen measure can, ignoring sampling
variation, detect both normal and abnormal performance. Unfortunately, it is not capable
of indicating whether managerial ability is of the market timing or stock selection variety.

Yet there is a hint in (22) and (23) of the possibility of detecting thepresence of market

timing ability due to the terms involving COY{ZRmt, R,.} and E{XRmt}. These terms

suggest that perhaps a quadratic regression could detect market timing ability when returns

unconditionally follow the APT (18).

The quadratic regression framework originally was examined by Treynor and Mazuy
(lOGO). Its possibilities as a framework for separating market timing and stock selection

ability were studied by Jensen(1072), an analysis which was corrected and extended in

Pfieiderer and Bhattacharya(1983). Its possibilities are seen by considering (for the sake of
notational simplicity) the one factor version of (20):

= I9ptR?r&t + pt (26)

and studying the quadratic regression:

E*[RptRmt,QtI = + (27)
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The regression slope coefficients are given by:

/ IRmtlV' -
I Var I Coy R t, I

1* 1p2 I! p2
2p \. . t)/ \ rnt,

/ —

— ( c flo;+Cov(xt,R;)
—

3m (74m) /9p3rn + cov(,)
(2S)

O4 Cov(t,R)= +—.--.---.
o 4m 0 —a Cov(t, R)

-Yip+
o Y2p

where '73m and 4m are the skewness arid kurtosis of respectively, and fl is the target

of the mutual fund. Similarly, the intercept of the quadratic regression is:

= rp+$p1in+Cov(tRme)—bpm —b;k
(20)= + Cov(t, Rmt) lipRm —

In tile absence of market timing ability, Cov{xt. R} and Cov{t, R} are both zero so

that the coefficient on Rmt will be the target beta of the fund and that on will be zero.

So long as the market timing information and preferences of the manager and the distri-

bution of Rmt are such that the appropriate combinafion of Cov{, Cov{zt, R},
a3,, and 74m are non-zero, then will be non-zero, indicating the presence of market

tiiiung ability.

This is a remarkable result in that it makes no assumptions about the return generating

process beyond stationarity, linearity and the validity of the APT benchmark. Without

assuming anything beyond finite third and fourth order moments, the quadratic term

will be zero in the absence of timing ability. So long as tile inforniation and the preferences

of tile fund manager are such that portfolio returns are skewed to the right, as conceived

of, for example, in the first example of Dybvig and Ross(1981), will be non-zero and,

hence, will indicate the presence of timing ability. The basis idea is quite simple: market

timers should make money when the market rises or falls dramatically, that is, when the

squared return on the market is large.

Of course, without further restriction on distributions and preferences, it will not, in

general, be possible to measure the magnitudes of market timing and security selection
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ability. As is obvious froni equation (28) above, if there is no co-skewness between the

fluctuations in the fund beta and the return on the factor (i.e. Cov{x, R} is zero), it

will he possible to estimate the target beta of the fund and Cov{xt, but it will not be

possible to separate the two sources of abnormal performance. This can he accomplished

by placing sufficient structure on the problem so that measurement of Cov{z, R} leads

to estimation of Cov{zt, Rmt}, which permits the estimation of using equation (20). For

example, Pfleiderer and Bhattacharya( 1083) assume the joint normality of Rmt, . and

and the linearity of ; in • Still, the potential capability to detect the presence of market

timing ability with the simple quadratic regression procedures represents a promising ad-

vance, although its actual usefulness is, of course, an empirical question that we will begin

to examine below.

IV. The Data

In implementing the CAPM toohtain risk-adjusted excess returns, we use the stan-

dard benchmarks: the CRSP equally-weighted and value-weighted indices of NYSE stocks

taken from the CRSP monthly index file. The construction of reference portfolios for the

APT benchmarks, however, is not so straightforward. Some of the computational as-

pects and potential virtues of efficient estimation procedures were detailed in the preceding

sections. Here we discuss some of the data analytic alternatives facing investigators.

One choice facing researchers is the appropriate frequency of observation for estimat-

ing the factor models of securit.y returns underlying the APT. Many choices are readily

available since the CRSP daily return file provides returns on all NYSE and AMEX

stocks since July 1962, and minimal computational skill stands between us and weekly,

monthly or other intermediate frequency data. The primary advantage of daily data is the

potential increase in precision of the estimated variances and covariances, the inputs to

the factor analysis model, that comes with sampling the data more often. The two main

disadvantages of daily data are the persistent incidence of non-trading and thin trading

which bias the estimates of second-order moments and the biases in mean returns associ-

ated with bid-ask spreads that are studied in Blume and Stambaugh(1983) and Roll(1983).

Following Roll and Ross(1980), we opted for the putative benefits of a large sample and

used daily data to estimate the factor models, although the optimal observation frequency
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is an empirical question worthy of detailed investigation and one which we are currently

examining (Lehmann and Modest(1985c)). Portfolio weights constructed from daily data

based on the minimum idiosyncratic risk procedure outlined above were then multiplied by

monthly security returns to construct monthly returns on our basis portfolios.26

Our mutual fund data base consists of the returns on one hundred and thirty (130) mu-

tual funds over the fifteen year period January 1968-December 1982. We are grateful to Roy

Henriksson for graciously supplying us with the vast majority of this data. The monthly

returns are calculated from the end of month bid prices and monthly dividends obtained

from Standard and Poor's Over-the-Counter Daily Stock Price Record, Weisenberger's In-

vestment Companies annual compendium, and Moody's Annual Dividend Record. It is

worth emphasizing that the Over-the-Counter Daily Stock Price Record omits a significant

fraction of the dividends paid and reliance must be made on the other two sources to obtain

accurate dividend information. The sample was chosen to include a variety of funds with

differing risk postures. No municipal bond fund or option fund, however, was included. It

should also be pointed out that the Henriksson sample was chosen so that the funds sur-

vived over the January 1068-June 1080 period. This raises the potential for some problems

due to a possible survivorship bias, although the results below show no evidence of such

a bias. Due to our concern that •the risk levels of the funds were not constant over the

fifteen year period, we restricted our attention to examining the behavior of the funds over

three five-year subperio ds: January 1068-December 1972, January 1073-December 1077,

and January 1978-December 1982.

The CRSP daily file contains 1359, 1346 and 1281 securities which were continuously

listed and had no missing observations during the three five-year periods covered by our

mutual fund data. We confined our attention to these firms in order to have the same

number of observations for each security and ignored any potential selection bias associ-

ated with this choice. Computational considerations required the analysis of no more than

750 scurities simultaneously. We have carried out runs using as many as one thousand

26 Another alternative would have been to multiply the portfolio weights times daily se-
curity returns and then aggregate these daily returns to obtain monthly portfolio returns.
In Lehmann and Modest(1985b), we examined both reference portfolio formation proce-
dures and found little difference between the two approaches. Concern over bid-ask spread
bias in this procedure, which calls for daily rebalancing, led us to opt for the buy-and-hold
strategy.
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securities. However, the larger number of securities yielded a minimal improvement over

the performance of reference portfolios based on 750 securities and proved to be dispro-

portionately expensive iii terms of the computational time. The CRSP daily file lists

securities in alphabetical order by most recent name. To guard against any biases induced

by the natural progression of letters (General Electric, General Motors, etc.), we randomly

reordered the firms. The number of daily observations in these samples was 1234, 1263, and

12G4 rcspcctively. The usual sample covariance matrix of these security returns provided

the basic input to our subsequent analysis.

V Empirical Results

In this section we provide evidence on the comparative performance of different bench-

marks for evaluating mutual fund performance. In particular, do the absolute and relative

rankings of the funds hinge on which benchmark is chosen to evaluate normal performance?

Tables 1 — 6 provide evidence on the performance of alternative APT benchmarks. The

tables summarize and contrast the behavior of the intercepts from simple Jensen-style re-
gressions of mutual fund returns on the APT basis portfolios as given by equation (22).

The basic questions here are whether the less efficient (and less costly) basis portfolio
formation procedures lead to different conclusions than the more efficient procedures and

whether the conclusions about performance are sensitive to the number of factors assumed

to irnderly security returns or the number of securities included in the analysis. Tables 7

and 8 provide the corresponding information comparing APT and CAPM benchmarks in

order to highlight the contrasts across asset pricing models. Table 9 summarizes the infor-

mation from quadratic regressions along the lines of equation (27) using both APT and

CAPM benchmarks in order to shed some light on one possible cause of the anomalous

behavior of the intercepts from the Jensen-style mutual fund regressions.27

The first eight tables provide careful scnitiny of the similarities and differences in the

intercepts across performance benchmarks. The tables come in pairs (i.e. the eight tables

consist of four sets of two tables each), each of which contrasts the behavior of different

benchmarks in a particular dimension. The first of the two tables summarize the central

27 In the current version of the paper we only include the results from the quadratic
regressions using the five factor APT benchmark.
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tendencies of the intercepts from each benchmark across the 130 mutual funds. The second

table in each pair provides two measures describing the relationships among the intercepts
from the different benchmarks.

The first table in each pair provides four summary measures describing the typical be-

havior of the intercepts for each benchmark over our three sample periods. The first three

statistics are the mean intercept, the mean absolute intercept, and the average absolute
t-statistic.28 These t-statistics are simply the estimated intercepts divided by the usual
ordinary least squares standard errors where the standard errors are calculated under the

assumption that the residuals in (22) are independent and have common variance over time.

Unfortunately, these t-statistics may lack the appropriate statistical justification in the con-

text of mutual fiuid performance evaluation: as long as managers vary the composition of

their Portfolios in attempts to outperform the market, mutual fund returns will be likely to

have non-stationary variances even if the return generatingprocess of individual securities

is stationary and, hence, the resulting heteroskedasticity biases the associated t-statistics.29

To guard against this possibility, we also present adjusted t-statistics using estimated stan-

dard errors that are consistent in the presence of arbitrary forms of het.eroskedasticity,

rather than the usual least squares standard errors. These adjusted standard errors have

been proposed and examined in work by Hansen(1982), White(1980) and Hsieh(1083).3°

Of course, these usual summary statistics merely serve to characterize the typical be-

havior of these 3ample intercepts and cannot be used to draw inferences about the typical
behavior of the true intercepts without further assumptions that facilitate statistical in-

ference. Unfortunately, we are unable to construct the usual joint F-te8t of whether the

intercepts are significantly different from zero since the number of funds (130) is greater

than the number of time series degrees of freedom (GO) and hence the sample covariance

matrix of the residuals from equation (20) is singular. One strategy to employ in the face

of this difficulty is to examine the individual t-statistics to see if any of them are sufficiently

28 In parentheses below the sample averages we also present the sample standard devia-
tions of the intercepts and the t-statistics across funds.

29 In a slightly different context, the problems associated with heteroskedasticity in the
evaluation of mutual fund performance are discussed in more detail by Breen, Jagannathan.
and Ofe(1984).

30 An analysis of their small sample properties using Monte Carlo simulations is presented
in Hsieh(1983).
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large that it would surely lead to an F-statistic greater than the appropriate critical value.

This is the intuition behind the application of the Bonferroni inequality to this problem as

discussed by Miller(IOGG) and employed in Fama(1084). Briefly, the Bonferroni inequality

states that if we examine N possibly dependent t-statistics at the critical value associated

with a/N. then we are sure that we have at most a joint test at the significance level a.

Of course. the inherent conservatism in reducing the significance level to a/N means that

we will often fail to reject the null hypothesis when it is false. This does not appear to be

a problem in this application, however, as in each period there are a number of t-values

greater than four which is high enough to violate the Bonferroni bound at the one per cent

level.

The second table in each pair describes the degree of association among the inter-

cepts computed from different performance benchmarks.3' We employ two measures to

characterize these relationships: simple (i.e. Pearson product moment) correlations and

Spearman rank correlations.32 The simple correlations are well-known statistics which

have a variety of conventional interpretations. For example, the squared simple correlation

l)etWeen intercepts from two different benchmarks is a (biased) estimate of the percentage

of the variation in the intercepts from one benchmark that can be explained by variation in
uplained variationthe intercepts from a second procedure (i.e. ii — _____ — ---—----.—-- ----------j from a sim-total variation

pie cross-sectional regression of the intercepts from one benchmark on those of

another). One difficulty in interpreting simple correlations is that they are very sensitive

to outlying observations—-a small number of large positively related outliers may cause a

' It is argued by some that ranking funds on the basis of estimated alphas is inappropri-
ate since differences may merely reflect, for instance, diversity in leverage and that a more
appropriate measure is the Treynor-Black appraisal ratio: the estimated intercept divided
by the idiosyncratic variation. Since the goal here is simply to see whether rankings depend
on which henchiiiark is chosen, the quuestion of which ranking scheme is more appropriate
is irrelevant. To the extent that the conventional wisdom is correct and alternative risk
adjustment procedures lead to similar inferences, the rankings should he the sanie across
benchmarks regardless of the particular ranking scheme chosen. Since the intercepts are
economic quantities which are of considerable interest in their own right, we provide the ev-
idence in this form. Moreover, we suspect that we would obtain similar results if we worked
with the Treynor-Black appraisal ratio or. equivalently, the t-statistics of the intercepts.

32 Unfortunately, we cannot report standard errors and confidence intervals for our es-
timated rank and simple correlations due to the likely presence of correlation among the
intercepts across funds. As a consequence, the correlations cannot he subjected to formal
statistical tests without further assumptions.
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sample correlation to he large and positive even when there is a strong negative relationship

between the bulk of the observations. This can occur because, in the presence of outliers,

the total variation in intercepts across funds is likely to be relatively large compared to the

unexplained variation in intercepts since the hulk of the total variation will be explained by

the similar behavior of the outliers. Since the intercepts from different benchmarks typically

are of similar magnitude for the funds with very large positive and negative alphas. the

sensitivity of simple correlations to extreme observations is a potentially serious problem.

Consequently, we also report Spearman rank correlations, which provide estimates of the

degree of association among intercepts which have little sensitivity to outlying observations.

Not surprisingly, rank correlations measure the degree of association of the ranks of

the intercepts (i.e. the firni with the largest alpha is ranked one, that with the second

largest alpha is ranked two, etc.) across the different benchmarks. Their insensitivity to

outlying observations follows from measuring the magnitude of an intercept by its rank: the

difference in the size of the largest alpha and the tenth largest alpha can be enormous, but

the difference in ranks is only nine. The use of rank correlations has another justification in

this context. Since one purpose of mutual fund performance evaluation is to provide ordinal

rankings of funds, rank correlations summarize differences in the inferences produced by

alternative benchmarks in an apt way.

Since rank correlations are less widely employed among financial ecOnomists than sim-

ple correlations, one natural question concerns the interpretation of the magnitudes of sam-

ple rank correlations. One answer to this question in the present setting can he obtained

by examining the formula for the Spearman rank correlation:

rank1 6l(yia_k)2jk —

(N(N2 — 1))
(30)

— 6 Average Squared Difference of Ranks-
(N2-1)

where g is the rank of the 1th firm using the th benchmark. Obviously, the sample variance

of the difference in ranksZS of the intercepts is the key variable (the remaining numbers

simply transform the sample variance of the difference in ranks into an approximately

The average squared deviation of the sample difference in ranks equals the sample
variance since the average difference in ranks must equal zero.
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unbiased estimate of the simple correlation). With 130 funds, if the typical difference in

ranks is one (i.e. finc1s with ranks 1 and 2 by one method are ranked 2 and 1 by the other

method, funds with ranks 3 and 4 switch places, etc.), the sample variance of the difference

in ranks will he one as well and the rank correlation would equal 0.9906. Similarly, if

the typical difference in the ranks of intercepts between two methods was two and the

corresponding sample variance of these differences is four, the rank correlation would equal

0.0086. Other rank correlations associated with different typical rank differences areeasy
to compute—a typical rank difference of five ranks leads to a rank correlation of 0.9911, a

ten rank difference implies a 0.0645 rank correlation, fifteen implies 0.9201, twenty implies

0.8580. twenty-five implies 0.7781, thirty implies 0.6805, thirty-five implies 0.5651, forty

implies 0.4310. forty-five implies 0.2810, and fifty implies 0.1124. Clearly, rank correlations

of 0.5 to 0.8 are associated with very large typical deviations in the ranks of intercepts

across benchmarks.

The first thing one notices in the Jensen-type regressions reported in the Tables is

the persistent incidence of negative intercepts especially with the APT benchmarks. Con-

sider, for instance, the average estimated aiphas from the regressions run in excess return

form using tile unrestricted maximum likelihood estimation procedure presented in Table 1

(which we simply refer to as maximum likelihood in the tables). The average excess return

of the funds was —4.76% on an annual basis for the first five year period (—.406% per
month), —6.14% annually for the second period (—.527% per month), and —1.50% per year

for the third period(—.126% per month).34 Inspection of the individual alphas of the funds

verifies that the intercepts are almost uniformly negative and that the mean is not being

pulled down by a few funds with exceptionally poor performance. This can also be seen by

noting tile relatively small difference between the absolute values of the average intercepts

and tile sample means of the absolute values of tile intercepts. In the first two five year
periods the average values of the adjusted and unadjusted t-statistics are sufficiently large

to suggest that many of the intercepts are significantly different from zero. In short, our

Since the conclusions one would reach about the performance of alternative APT
benchmarks turns out to be independent of whether the regressions are run in raw or
excess return form, we limit om discussion in the text to the results from regressions run
in excess return form. We emphasize these results due to evidence presented in Lehmann
and Modest( 1085a) that suggests the preferability of this form of the APT.
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APT benchmarks suggest the presence of widespread abnormal performance by mutual

funds across our sample periods, a finding which we further discuss below.

With these preliminary observations in hand, Tables 1 and 2 examine the impact
of alternative methods of estimating the factor model for security returns underlying the

APT. Four different estimation methods were compared using samples of 750 securities:

two maximum likelihood procedures, an instrumental variables estimator and the method

of principal components. These procedures were discussed in Section II.B. The maximum

likelihood procedures differ in that the restricted maximum likelihood method also uses

the information in the sample means as outlined in equation (15a) while conventional

maximum likelihood factor analysis ignores this information. Tables 1 and 2compare these

APT benchmarks assuming there are five common sources of systematic risk.35 For each

estimation method, statistics are presented for regressions run in raw return form, which

corresponds to the zero-beta version of the APT, and for regressions run in excess return

form corresponding to the riskless rate version of the APT.

Examination of Table 1 reveals that there is some variation in the mean intercept

across estimation methods, although the differences in most cases are not terribly large.

Compared with- the average intercept using the unrestricted maximum likelihood procedure,

the mean alpha from the restricted maximum likelihood procedure was 28 basis pointsper
annum lower in the first five year period, 2 basis points higher in the second period and 5

basis points per year higher in the third period. Again using the average intercepts from

the unrestricted maximum likelihood procedure as a standard of comparison, the average

intercepts using the instrumental variables estimation procedure were 35 basis points higher,

16 basis points lower, and 63 basis points higher in periods one through three respectively.

The corresponding numbers using the principal components procedure were +208 basis

points. +20 basis points, and +11 basis points.

Table 2 presents additional information on the absolute and relative rankings across

estimation methods in the form of simple and Spearman rank correlation coefficients be-

tween the intercepts using the different estimation methods. As is evident from the Table,

the intercepts from the unrestricted and restricted maximum likelihood procedures are al-

Tables Al and A2 in the Appendix present the corresponding results when there are
assumed to be ten common sources of covariation.
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ways highly correlated. The lowest simple correlation between the intercepts in the three

periods is .9093. which occurs in the first five year period. For all three periods, the rank

correlation is .0000. The degree of similarity between the absolute and relative rankings

using the unrestricted maximum likelihood procedure and the less efficient instrumental

variables and principal components procedures is not nearly so strong. To he sure, the

lowest simple correlation between the intercepts from the unrestricted maximum likelihood

procedure and the instnunental variables procedure is .0557, occurring in the third five

year period. Similarly, the lowest simple correlation between the unrestricted maximum

likelihood procedure and the principal components procedure is .0267 in the first fiveyear
period. While even the lowest simple correlations are quite high, the same cannot be said

for the rank correlations. The rank correlations between the unrestricted maximum likeli-

hood procedure and the instriuuental variables procedure are .0402, .5162. and .5044 in the

three five year periods. The corresponding rank correlations with the principal components

procedure are .5544, .5379. and .0608. Note that the difference in the magnitudes of the

simple and rank correlations is likely to he a reflection of the outlier problem and that the

rank correlations on the order of 0.5 suggest considerable differences in the relative rankings

of mutual funds by the efficient and the inefficient estimation methods. In short, while the

absolute rankings of the fiuids appear to be relatively insensitive to the estimation method.

the relative rankings can he greatly influenced by this choice.

Given the factor loadings and the idiosyncratic variances, the efficiency of the minimum

idiosyncratic risk estimator of the basis portfolios increases with the number of securities

used in the cross-section. This gain in efficiency, however, is not without cost: namely

the increased computational time involved in performing the factor analysis on the greater
number of securities. Statistical evidence in Lehmann and Modest(1985b) suggests this

gain can be quite substantial. In order to study whether the number of securities used

in estimation has an economically significant impact on the performance of the reference

portfolios as benchmarks, we performed unrestricted maximum likelihood factor analysis

on the first 30, 250, and 750 securities in our randomly sampled data file. Tables 3 and 4

present the evidence on the impact of the number of securities used in estimating the APT

on inferences regarding mutual fund performance. The tables report results based on a

five factor model for security returns which was estimated using the unrestricted maximum
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likelihood procedure with 30, 250, and 750 securities.36 The results in Table 3 indicate

substantial variation in the mean aiphas depending on the number of securities used in

the estimation. Previous authors, such as Roll and Ross(1980), have based their inferences

concerning the APT on maximum likelihood estimation of factor models involving thirty

to sixty securities. As is evident, this leads to very different conclusions about the ab-

solute and relative performance of the fn.nds than would be reached from performing the

analysis with a much larger number of securities. The difference between the mean aiphas

using 30 securities and those based on 750 securities is, on an annual basis, +390 basis

points, +133 basis points and +233 basis points for the three five year periods respectively.

The corresponding differences with the mean intercepts from runs using 250 securities are

+138, —90 and +43 basis points. Table 4, as did Table 2 above, presents the simple and

rank correlations of the intercepts from the three periods when 30, 250. and 750 securities

were used in estimating the factor loadings and idiosyncratic variances of the APT. While

the correlations are moderately high, they are nowhere near unity. The simple correlations

between the intercepts using 30 and 750 securities range from .6513 to .0785, while the cor-

responding numbers for the rank correlations range from .7314 to .8705. The corresponding

range of correlations between the intercepts based on estimation with 250 and 750 securities

are .6687 to .9508 for the simple correlations, and .8153 to .9106 for the rank correlations.

In short, Tables 1 — 4 suggest that using inefficient estimation procedures due either to an

inefficient method or a small number of securities can lead to substantially different conclu-

sions than one would reach with more efficient procedures. Thus the dissimilarities in the

relative rankings of the funds found here suggest that the statistical differences documented

in Lehmann and Modest(1985b) between efficient and inefficient estimation methods can

lead to substantively different economic conclusions regarding the performance of mutual

funds.

In our final comparison of APT benchmarks, we examined how sensitive the absolute

and relative rankings of the funds are to the presumed number of common factors affecting

security returns. In particular, we contrast the performance of basis portfolios constructed

under the alternative assumptions that there are five, ten, and fifteen common factors using

36 Tables A3 and A4 in the Appendix present the corresponding numbers from a ten
factor model of security returns.
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the estimated factor loadings and idiosyncratic variances from maximum likelihood factor

analysis of 750 securities. Tables 5 and 6 present evidence on whether the number of corn-

mon factors assumed to be generating security returns has a large impact on the inferences

one would make about the absolute and relative rankings of funds. As is readily apparent,

the number of common factors assumed to impinge on security returns has far less impact

on the rankings of the funds than does the choice of estimation method or number of se-

curities used in estimation. The difference between the mean intercepts from estimating

five factors relative to ten factors is (on an annual basis) —2 basis points, +88 basis points,

and —230 basis points in the three five year periods respectively. The corresponding differ-

ences between the mean intercepts using ten and fifteen factors are +11, —32 and —1 basis

point(s) respectively. Except for the difference between the mean intercepts using five and

ten factors in the third and, perhaps, the second five year period, these differences are all

quite small. The same picture arises from an examination of the correlations in Table 6.

The simple correlations between the intercepts from the five and ten factor models range
from .0850 to .0055 and the rank correlations range from .9577 to .9643. The corresponding

correlations between the ten and fifteen factor intercepts are also very high with the simple

correlations ranging from .9737 to .0004 and the rank correlations ranging from .9785 and

.9831. Thus the choice of the number of factors does not appear to be an important one

in evaluating the performance of mutual funds. Evidence presented in Lèhmann and Mod-

est(1085a) suggests that a ten factor model might he marginally preferable to a five factor

model but that there is no apparent advantage to going to fifteen factors. The evidence

presented here reinforces the observation that there is no meaningful economic difference

in assuming there are ten common sources of systematic risk as opposed to fifteen common

factors.

Having compared alternative APT benchmarks, the natural question to ask is whether

the APT has anything different to say about performance evaluation than the CAPM.

Tables 7 and 8 present summary statistics and correlations that attempt to shed light

on this question. As a point of reference we also present summary statistics based on

no risk adjustment as well. The difference between the mean intercepts using the APT

benchmark and the mean intercepts using either of the CAPM benchmarks is striking.

While the aiphas from the APT benchmarks are markedly negative in all three periods, the
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CAPM aiphas are much less negative. A comparison of the average t-statistics suggests

that the CAPM aiphas are not nearly as statistically significant as the APT aiphas. The

means of the CAPM alphas using the value-weighted index are (on an annual basis) 353,

567, and 294 basis points higher in the three five year periods than the mean value of

tile APT aiphas using the unrestricted maximum likelihood estimation procedure with

750 securities to construct the APT benchmark. The corresponding difference between

the CAPM aiphas using the equally weighted index are +483, +584, and —167 basis

points. These sharp differences are further indicated by the relatively low simple and rank

correlations between the intercepts. The simple correlation between the APT intercepts

and the CAPM intercepts using the value weighted index are .7896, .6545, and .4959.

The corresponding rank correlations are .7238, .7076, and .8378. The simple and rank

correlations between the intercepts using tile equally weighted CAPM benchmark and the

APT benchmark are .6055. .9804, .9003. and .7797. .4860, .7773, respectively. Thus in fact

we see that the conclusions one would reach would be dramatically affected by the choice

between an APT benchmark and a CAPM benchmark.

An examination of Table 8 also indicates interesting differences among the two dif-

ferent CAPM benchmarks. For instance, tile simple correlations between the intercepts

constructed using the CRSP value-weighted and equally weigilted indices is .9599, .7200,

and .4076 in tile three periods respectively. The corresponding rank correlations are .5530,

.1836. and .6690. It thus appears, unlike the results in Stambaugh(1982), that inferences re-

garding the relative performance of mutual funds is quite sensitive to the particular market

proxy chosen.

What accounts for the sharply negative intercepts? We offer two potential expla-

nations. Tile first possibility is that there is error in our constructed benchmarks. For

example. in Lchmann and Modest(1985a), we found that the APT could explain the em-

pirical anomalies involving dividend yield and own variance but could not account for size

related anomalies. In particular, we found that the regression of the value weighted CRSP

index on our basis portfolios yielded significant negative intercepts in each of the five year

periods covered by the mutual fund data. The predominantly negative intercepts from the

mutual fund regressions could follow from this phenomenon to the extent that funds hold

a large part of their portfolios in stocks with large market capitalizations, although it is

33



worth noting that the intercepts from the value weighted regressions were not as large and

negative as the mean intercept from the mutual fund regressions. The second explanation

involves true or spurious market timing by mutual fimd managers. As discussed above in

Section III. if the risk of a mutual fund is constant over the sample period, then the fund's

alpha is, in principle, an accurate measure of the fund's stock selection ability. However if

the funcl' risk level is not constant, possibly due to shifts associated with market timing

attempts or because of the option nature of levered securities, then the alpha is no longer a

nicasure of the funds performance ability since the estimated intercept may be arbitrarily

positive or negative depending on the covariance between changes in the funds risk posture

and the returns on the factors.37

We ran quadratic regressions of the mutual funds' returns on the factors and the factors

squared. as outlined in equation (27) for tile single factor case, to examine whether real

or artificial market timing accounts for the incidence of persistently negative intercepts.

Under tile joint null hypothesis that the risk of the funds is constant and that the returns

of the individual securities are generated by a K factor linear structure, one should not be

able to reject the joint hypothesis that the coefficients on the quadratic terms are zero.38 If

the residuals from the qiadratic regression are homoskedastic. then the appropriate joint

test is a standard F-test. However, if the residuals are heteroskedastic, then the usual F-

statistic is not appropriate since it fails to possess an F distribution in these circumstances

and, hence, can lead to incorrect inferences regarding the null hypothesis. Asymptotically,

an appropriate test can he conducted using the procedures proposed by Hansen(1982),

Whjte(1980) and Hsieh(1983) to construct heteroskedastic-consistent covariance matrices

along tile lines of the adjusted t-statistics discussed above. This test has the shortcoming

that its small sample distribution is not known and reliance must be made on the fact that

the test statistic is asymptotically distributed as chi-squared.

In Table 9 we present summary statistics for tests that the risk levels of the funds

See Jagannathan and Korajczyk(1084) for a discussion of the problems associated
with the artificial market timing caused by the holding of levered securities. See Pfieiderer
and Bhattacharya(1083) and Grinblatt and Titman(1985) for a discussion of the spurious
market timing that can arise when managers revise their portfolios more frequently than
we observe returns.
38 This assunies, of course, that we know K and that we have basis portfolios which are

highly correlated with the factors.
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are constant under the assumption that there are five common factors affecting security

returns. For each sample period, we provide evidence on the fraction of the funds for which

we could reject the hypothesis that the quadratic terms were zero at the 1%, 5%, 10%, and

15% significance levels. We present results from both the F-tests, which are valid under

the assumption that the residuals are homoskedastic, and the Chi-squared tests which are

asymptotically valid under arbitrary forms of heteroskedasticity. An examination of Table 0

reveals that the Chi-squared tests lead, under the assumption of independence, to a greater

number of rejections of the null hypothesis of constant risk levels in all three periods than

would have been expected a priori. The F-tests on the other hand lead to apprcximately the

number of rejections that would have been expected, except in the second five year period.

For instance, in the first five year period, the Qhi-square test rejects the null hypothesis

that the quadratic terms are zero for 14.6% of the firms at the 1% significance level, 23.8%

at the 5% level, 35.4% at the 10% level, and 42.3% at the 15% significance level. The F-test,

however, leads to rejection of the null for only 2.3% of the firms at the 1% level, 5.4% at

the 5% level, 13.1% at the 10% level, and 20.0% at the 15% significance level. It is difficult

to know what to make of these differences as the F-test is only valid under the assumption

of homoskedasticity, an assumption which seems to he of dubious validity in this context,

and the small sample properties of the Chi-squared test are unknown.9 We are currently

examining the relationship between the intercepts and these test statistics on an individual

fund basis to see if this will shed any light on the prevalence of negative aiphas.

VI. Conclusion

In Lehmann and Modest(1985b), we provided a comprehensive statistical examina-

tioii of the merits of different basis portfolio formation strategies. Two of the conclusions

which emerged from that study were: (1) that comparatively efficient estimation methods

such as maximum likelihood and restricted maximum likelihood factor analysis significantly

One natural way to confront this problem is to carry out a direct test of the ho-
moskedasticity. Monte Carlo evidence presented in Hsieh(1083), however, suggests that
direct tests of heteroskedasticity have little power to discriminate between homoskedastic-
ity and heteroskedasticity. Hsieh suggests that even in small samples there is little harm
(and potentially a significant gain) to always using the heteroskedastic-consistent stan-
dard errors. Unfortunately, this does not speak to the problem here which is the rate of
convergence of the test statistic to its asymptotic distribution.
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outperform the less efficient instrumental variables and principal components procedures

and (2) increasing the the number of securities used to construct the reference portfolios

seems to dramatically improve their ability to mimic the common factors. That paper left

open. however, the question of whether the use of comparatively inefficient portfolio for-

mation procedures would have a significant quantitative impact on inferences in particular

applications such as the evaluation of managed portfolios.

In this paper we have examined the performance of 130 mutual fimds over the pe-

riod January 1068-December 1982 in an attempt find out whether inferences about the

performance of these funds are sensitive to the benchuxiark chosen to measure normal per-

formance. In this regard, we studied the behavior of the intercepts from Jensen-style mutual

fund regressions which used different risk measurement procedures. As a consequence, we

examined alternative APT and CAPM benchmarks. In particular, we addressed the

cluestion of whether the absolute and relative rankings of the funds depend on the chosen

benchmark.

Three conclusions emerged from this comparison. First. absolute and relative mutual

fund rankings are quite sensitive to the method used to construct the APT benchmark. One

would reach very different conclusions about the funds' performance using smaller numbers

of securities in the analysis or the less efficient estimation methods than one would arrive

at using the maximum likelihood procedures with 750 securities. Second, the rankings of

the funds are not very sensitive to the exact number of common sources of systematic risk

that are assumed to impinge on security returns. There were virtually no differences in the

rankings between the ten and fifteen factor models and only small differences with the five

factor benchmark. Third. there is little similarity between the rankings using the standard

CAPM benchmarks and the APT benchmarks which suggests the importance of knowing

the appropriate model for risk and expected return in this context. We are currently

engaged in research along these hues (Lehmann and Modest(1985a)). Moreover, to the

extent that the CAPM is the proper theory of expected returns, the results presented

here suggest that the choice of the appropriate market proxy is an important one.

In short, the one firm conclusion that can be reached from our analysis is that the choice

of what constitutes normal performance is important for evaluating the performance of

managed portfolios. It is also worth stressing that these findings are in no way compromised
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by the potential problems associated with the shifting risk levels of managed funds. These

problems oniy affect the interpretation of the intercepts from the Jensen-style regressions.

If the choice of a benchmark were an unimportant one, different benchmarks should have

yielded similar results—the overwhelming fact is that they did not.

These findings stand in sharp contrast to much of the conventional wisdom in the

literature. We conjecture that many investigators would not have expected substantive

differences in the APT benchmarks produced by efficient and inefficient estimation meth-

ods in our large cross-sections. Conversely, some scholars would doubtless have predicted

large differences in the inferences produced by APT benchmarks with different numbers

of factors. Finally, previous evidence suggests alternative risk adjustment procedures lead

to similar inferences in settings other than the present one. Our comprehensive examina-

tion of mutual fund performance suggests that each of these intuitions is unreliable in this

context.

Along with the three conclusions which have emerged from our analysis, one puzzle

has also arisen: the persistent incidence of large and negative alphas. While theoretically

it is possible that this negative abnormal performance can be attributed to real or artificial

market timing or to a value weighted bias in our constructed benchmarks, the preliminary

evidence is not conclusive. We are thus still actively engaged in efforts to explain this

phenomenon.
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TABLE 7: STATISTICS OF INTERCEPTS ACROSS BENCHMARKS

APT: Number of factors: 5
Estimation method: Maximum Likelihood
Number of Securities Used in Estimation: 750
Number of funds: 130
(standard deviations in parentheses)

APT CAPN
Value Equally No Risk

Sample Period Statistic Weighted Weighted Adjustment
Raw Excess Excess Excess Excess
Returns Returns Returns Returns Returns

M -.00313 —.00406 -.00117 -.00012 0.00545ean
(.00431) (.00346) (.00365) (.00352) (.00339)

Mean Absolute
0.00394 0.00447 0.00260 0.00234 0.00576January 1968- Intercept

December 1972
Average Absolute 1.55 1.98 0.99 0.81 1.03

t—statjstic (1.20). (1.12) (.81) (.71) (.58)

Average Absolute 1.53 2.05 1.01 0.83 1.04
t-Adjusted (1.22) (1.15) (.82) (.72) (.58)

Mean
- .00299
(.00361)

- .00527
(.00338)

-.00066

(.00378)

- .00053
(.00410)

0.00111

(.00402)

January
December

1973-
1977

Mean Absolute

Intercept

Average Absolute
t-statistic

.00379

1.70

(1.13)

0.00555

2.60

(1.32)

0.00302

1.31

(.87)

0.00569

1.52

(.82)

0.00318

0.53
(.53)

Average Absolute
t-Adjusted

Mean

1.82

(1.21)

- .00074
(.00269)

2.78

(1.44)

- .00126
(.00248)

1.31

(.86)

0.00116

(.00332)

1.58

(.86)

- .00266
(.00273)

0.54

(.53)

0.01363
(.00401)

January
December

1978-
1982

Mean Absolute

Intercept

Average Absolute
t—statistic

0.00210

0.89

(.75)

0.00212

0.94

(.79)

0.00245

0.91

(.69)

0.00329

1.14

(.69)

0.01363

2.11

(.45)

Average Absolute
t—Adjusted

0.96

(.81)

1.02

(.86)

0.94

(.71)

1.18

(.71)

2.12
(.45)
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