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l. Introduction

We investigate the determinants of regional development using a newly constructed database
of 1569 sub-national regions from 110 countries covering 74 percent of the world’s surface and 96
percent of its GDP. We consider a variety of fundamental determinants of economic development,
such as geography, natural resource endowments, institutions, human capital, and culture, by looking
within countries. We combine this analysis with an examination of labor productivity and wages in
several thousand establishments covered by the World Bank Enterprise Survey, for which we have both
establishment-specific and regional data. Throughout the analysis, human capital measured using
education emerges as the most consistently important determinant of both regional income and
productivity of regional establishments. The combination of regional and establishment-level data
enables us to investigate some of the key channels through which human capital operates, including

education of workers, education of entrepreneurs/managers, and externalities.

To organize this discussion, we present a new framework describing the channels through which
human capital influences productivity, which combines three features. First, and most importantly,
human capital of workers enters as an input into the neoclassical production function, but the human
capital of the entrepreneur/manager influences firm-level productivity independently. The distinction
between entrepreneurs/managers and workers has been shown empirically to be critical in accounting
for productivity and size of firms in developing countries (Bloom and von Reenen 2007, 2010; La Porta
and Shleifer 2008; Syverson 2011). In the models of allocation of talent between work and
entrepreneurship such as Lucas (1978), Baumol (1990), and Murphy, Shleifer, and Vishny (1991), returns
to entrepreneurial schooling may appear as profits rather than wages. By modeling this allocation, we

trace these two separate contributions of human capital to productivity.



Second, our approach allows for human capital externalities, emphasized in the regional context
by Jacobs (1969), and in the growth context by Lucas (1988, 2008). These externalities result from
people in a given location spontaneously interacting with and learning from each other, so knowledge is
transmitted across people without being paid for. Because our framework incorporates both the
allocation of talent between entrepreneurship and work as in Lucas (1978), and human capital
externalities as in Lucas (1988), we call it the Lucas-Lucas model>.  Human capital externalities have
been shown to be important in a variety of development and regional contexts (Rauch 1993, Glaeser,
Scheinkman and Shleifer 1995, Angrist and Acemoglu 2000, Glaeser and Mare 2001, Moretti 2004,
Iranzo and Peri 2009), although Ciccone and Peri (2006) and Caselli (2005) find them to be unimportant.
By decomposing human capital effects into those of worker education, entrepreneurial/managerial

education, and externalities using a unified framework, we try to disentangle different mechanisms.

Third, because we are looking at the regions, we need to consider the mobility of firms, workers,
and entrepreneurs across regions, which is presumably less expensive than that across countries. To
this end, our model follows the standard urban economics approach (e.g., Roback 1982, Glaeser and
Gottlieb 2009) of labor mobility across regions with scarce resources, such as land and housing, limiting
universal migration into the most productive regions. This aspect of the model allows us to consider
jointly the education coefficients in regional and establishment level regressions. A key benefit of our

model of the three channels of influence of education is to reconcile regional and firm-level evidence.

To begin, we use regional data to examine the determinants of regional income in a
specification with country fixed effects. The approach follows development accounting, as in Hall and

Jones (1999), Caselli (2005), and Hsieh and Klenow (2010). Among the determinants of regional

% We do not consider the role of human capital in shaping the adoption of new technologies. Starting with Nelson
and Phelps (1966), economists have argued that human capital accelerates the adoption of new technologies.
Strictly speaking, this is an externality across rather than within countries. For recent models of these effects, see
Benhabib and Spiegel (1994), Klenow and Rodriguez-Clare (2005), Caselli and Coleman (2006), the most persuasive
supporting empirical evidence is Ciccone and Papaioannou (2009).
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productivity, we consider geography, as measured by temperature (Dell, Jones, and Olken 2009),
distance to the ocean (Bloom and Sachs 1998), and natural resources endowments. We also consider
institutions, which have been found by King and Levine (1993), DeLong and Shleifer (1993), Hall and
Jones (1999), and Acemoglu et al. (2001) to be significant determinants of development. We also look
at culture, measured by trust, for which we have data at the regional level and which may matter at the
national level (Knack and Keefer 1997), as well as ethnic heterogeneity (Easterly and Levine 1997,
Alesina et al. 2003). Last, we consider the effect of average education in the region on its level of
development. A substantial cross-country literature points to a large role of education. Barro (1991)
and Mankiw, Romer, and Weil (1992) are two early empirical studies; de La Fuente and Domenech
(2006) and Cohen and Soto (2007) are recent confirmations. Across countries, the effects of education

and institutions are difficult to disentangle empirically (Glaeser et al 2004).

We find that favorable geography, such as lower average temperature and proximity to the
ocean, as well as higher natural resource endowments, are associated with higher per capita income in
regions within countries. We do not find that culture, as measured by ethnic heterogeneity or trust,
explains regional differences. Nor do we find that institutions as measured by survey assessments of
the business environment in the Enterprise Surveys help account for cross-regional differences within a
country. Some institutions or culture may matter only at the national level, but then large income
differences within countries calls for explanations other than culture and institutions. In contrast,
differences in educational attainment account for a large share of the regional income differences
within a country. The within country R? in the univariate regression of the log of per capita income on

the log of education is about 25 percent; this R? is not higher than 8 percent for any other variable.

Acemoglu and Dell (2010) examine sub-national data from North and South America to

disentangle the roles of education and institutions in accounting for development. The authors find that



about half of the within-country variation in levels of income is accounted for by education. This is
similar to the Mankiw et al. (1992) estimate that half of the differences in per capita incomes across
countries is attributable to education. We confirm the large role of education, but try to go further in
identifying the channels. Acemoglu and Dell also conjecture that institutions shape the remainder of
the local income differences. We do have regional data on several aspects of institutional quality, but

find that their ability to explain cross-regional differences is minimal®.

We next combine establishment-level and regional data to estimate the determinants of firm
productivity. As a first step, we merge our data with World Bank Enterprise Surveys, which provide
establishment-level information on sales, labor force, educational level of management and employees,
as well as energy and capital use for several thousand establishments in the regions for which we have
data. The Surveys tell us about the location of establishments, so we can estimate firm-level
productivity across regions as a function of establishment inputs but also regional education. Such
micro results may be less vulnerable to the reverse causality concern that income drives education,

since there is no reason why firm-level productivity should drive regional education.

Most importantly, the simultaneous use of regional and firm-level data enables us to explore the
effects of human capital by combining estimation with calibration. Because education is endogenous in
national and regional regressions, scholars have turned to calibration techniques, using Mincerian
estimates of private returns to education, to compute the parameters of the production function (e.g.,
Caselli 2005). We rely on previous research regarding factor shares (e.g., Gollin 2002, Caselli and Feyer

2007, Valentyi and Herrendorf 2008), but combine it with coefficient estimates from productivity

® A recent literature looks at colonial history within countries, and argues that regions that were treated particularly
badly by colonizers have poor institutions and lower income many years later (Banerjee and lyer 2005, Dell 2010).
Itis surely possible, even likely, that severe institutional shocks have long run consequences because they influence
human capital accumulation and institutions in the long run. But to the extent that we have adequate measures of
institutional quality, the consequences of such shocks for modern institutions do not appear to add a great deal of
explanatory power to understanding cross-regional evidence today.
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regressions to calculate the parameters of our production function. We find substantial consistency
between regional and firm-level results, as well as plausible estimates of the parameters of the

production function.

Specifically, the micro data show that establishments with employees and managers with higher
education are more productive, holding capital and energy inputs constant and including region-industry
fixed effects. These data establish quite clearly the huge role of managerial/entrepreneurial human
capital in raising firm productivity. When regional education is added to these regressions, it has a large
and positive coefficient. Of course, regional education may be correlated with omitted region-specific
productivity parameters, so we do not have perfect identification. We try to control for regional
characteristics, but also bring information from other studies to calibrate the parameters of the
production function consistent with our estimates. Our calibrations show that worker education,
entrepreneurial education, and externalities all contribute to productivity. Crucially, while we find the
role of workers’ human capital to be in line with standard calibration exercises (e.g., Caselli 2005), our
results indicate that focusing on worker education alone enormously underestimate both private and
social returns to education. Private returns are extremely high but to a substantial extent are earned by
entrepreneurs, and hence might appear as profits rather than wages, consistent with Lucas (1978).
Although we have less confidence in the findings for externalities, our best estimates suggest that those
are also substantial, in line with Lucas (1988, 2008). In sum, the evidence points to a large influence of

entrepreneurial human capital, and perhaps of human capital externalities, on productivity.

The model has a number of additional empirical implications, and we consider some of them
using a third data source, namely establishment censuses for a large number of countries, which also
provide geographic identifiers of firm location. We find that higher human capital regions have larger

establishments, but also sharply higher rates of participation in the official labor force. These results are



broadly consistent with the implications of the Lucas-Lucas model. To better understand some of this

evidence, however, one needs to draw the distinction between official and unofficial sectors.

In the next section, we present our model of regional development that organizes the evidence.
In section lll, we describe our data in some detail. Section IV presents the evidence on the role of
various factors in accounting for the differences in both national and regional development. Section V
presents firm-level evidence to disentangle the channels of through which human capital influences
productivity. We combine the regional and the micro estimates to assess the parameters of the model.
Section VI presents some of the census evidence to test additional implications of the model. Section VI

concludes.

Il. A Lucas-Lucas spatial model of regional and national income

A country consists of a measure 1 of regions, a share p of which has productivity A and a share
1- p of which has productivity Az < As. We refer to the former regions as “productive”, to the latter
regions as “unproductive”, and denote them by i = G, B. A measure 2 of agents is uniformly distributed

across regions. An agent j enjoys consumption and housing according to the utility function:

u(c,a)=ca”, (1)

where ¢ and a denote consumption and housing, respectively. Half the agents are “rentiers,” the
remaining half are “labourers”. Each rentier owns 1 unit of housing, T units of land, K units of physical
capital (and no human capital). Each labourer is endowed with h € R,, units of human capital. In region i
= G, B the distribution of human capital is Pareto in [h,+), with mean gh/(ui—1), where 1, h > 1. We
denote by H; = uih/(u—1) the initial human capital endowment of region i = G, B. Differences in H;

capture exogenous variation of human capital across regions.



A labourer can become either an entrepreneur or a worker. By operating in region i, an
entrepreneur with human capital h who hires physical capital K;;, , land T;, , and workers with total

human capital H;j, produces an amount of the consumption good equal to:
Yin = AN PHAKATA, a+ B+ <L (2)

As in Lucas (1978), a firm’s output increases, at a diminishing rate, in the entrepreneur’s human capital h
as well as in Hip, Kip and Tih. We first consider the Lucas-only model where A; captures exogenous
regional differences, such as institutions or geography. We then extend the analysis to the Lucas-Lucas
model, where A; depends also on regional human capital due to the presence of externalities. Either

way, productivity A;jinduces human and physical capital to sort across regions.

Rentiers rent land and physical capital to firms, housing to entrepreneurs and workers. In region
i, each rentier earns 4T and #; by renting land and housing, where A; and #; are rental rates, and piK by
renting physical capital. A region’s land and housing endowments T and 1 are immobile, physical capital
is fully mobile. Labourers use their human capital in work or in entrepreneurship. By operating in
region i, a labourer with human capital h earns either profits zj(h) as an entrepreneur or wage income
wi-h as a worker, where w; is the wage rate. All labourers, whether they become entrepreneurs or

workers, are partially mobile: a labourer moving to region i loses pw; units of income, where ¢ <h.*

At t = 0, a labourer with human capital h selects the location and occupation that maximize his
income. The housing market clears, so houses are allocated to each region’s labour. At t = 1,
entrepreneurs hire land, human, and physical capital. Production is carried out and distributed in

wages, land rental, capital rental, housing rental and profits. Consumption takes place.

*For simplicity, we assume that moving costs are a redistribution from migrants to locals (the latter may be viewed
as providing moving services) and are non-rival with the time spent working. This ensures that the human capital
employed in a region, as well as the aggregate income of laborers, do not depend on moving costs.
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A spatial equilibrium is a regional allocation (HiE, HiW , Ki)i of entrepreneurial human capital H iE
, workers’” human capital H!" , and physical capital K; such that: a) entrepreneurs hire workers, physical

capital, and land to maximize profits, b) labourers optimally choose location, occupation and the fraction
of income devoted to consumption and housing, and c) capital, labour, land and housing markets clear.
Because physical capital is fully mobile, there is a unique rental rate p. Since land and housing are
immobile, their rental rates 4; and #; vary across regions depending on productivity and population. To
determine the sorting of labourers across regions and their choice between work and entrepreneurship
within a region, we must compute regional wages w; and profits zi(h;). To do so, we first determine

regional output and factor returns at a given allocation (HiE,HiW,Ki)i. Second, we solve for the

equilibrium allocation. Throughout the analysis, the price of consumption is normalized to one.

The Lucas-only model: production and occupational choice
An entrepreneur with human capital h operating in region i maximizes his profit by solving:

max Ah"“ 7 HAKATA —wWH,, — oK, — AT, (3)

1
Hl‘thI,h'Kl‘h

implying that in each region firms employ factors in the same proportion. Since at (HiE, HY, Ki)i firm j

employs a share of entrepreneurial capital h;/ H iE , it hires the others factors according to:
Hi,=—%H', K, ,=—1K, T,=-LT. (4)

As in Lucas (1978), more skilled entrepreneurs run larger firms.

Equation (4) implies that the aggregate regional output is given by:



(5)

= AlEF Y T

Equation (5) allows us to determine wages, profits, and capital rental rates as a function of regional
factor supplies via the usual marginal product pricing. That is:

LY,
'oHY
m:éZ;=a—a_ﬂ_@.AGm/HfYWJHfY&/mﬂﬂ

=5 AHE/K " (HY 1K, S (TIK,).

a-AHEHY (K RV Ty,
(6)

o,
P7oK,

Thus, profit zi(h) is equal to z; (the marginal product of the entrepreneur’s human capital in region i),

times the entrepreneur’s human capital h, namely z;(h) = z;-h

Using Equation (6) we can solve for a labourer’s occupational choice. A labourer j with human
In equilibrium,

capital hj chooses to be an entrepreneur if zi-h; > wi-h; and a worker if 7-hj<wi-h;

labourers must be indifferent between the two occupations (i.e., 7 =w;), which implies:

(7)

HE =

l-a-p-0 H HY _ o H
1-p-6 ) " " \1-p-s)

where H, = HF +H" is total human capital in region i. H increases with the share of the total private

return to human capital earned by entrepreneurs [i.e. with (1-a—B-3)/(1-B-05)]. Equation (7) yields the

allocation of labour within in a region from the total quantities of human and physical capital (H;,Kj).

Equation (7) does not say whether entrepreneurial human capital is allocated to few firms run

by very skilled entrepreneurs or to many firms run by less skilled ones. Assuming a fixed income cost of
setting up a firm would pin down the number of firms: now the most skilled labourers become

entrepreneurs, as in Lucas (1978). In this case, though, a wedge between profits and wages would arise
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to compensate the marginal entrepreneur for bearing the fixed cost. This wedge complicates regional
mobility by creating non trivial choices between becoming an entrepreneur in one region versus a
worker in another. To simplify the analysis, we focus on the limiting case where the cost of setting up a
firm tends to zero. In this case, there is no wedge between profits and wages, so that moving decisions

only depend on regional wages, but it is still the case that the most skilled labourers become
entrepreneurs. With density Fi(h) of human capital in region i, there is a threshold hiE defined as:

jhm hdF, (h) = (mjm : (8)

In region i, labourers become entrepreneurs if and only if h> hiE, and the number of firms is 1 — Fi(hiE ),
where the density Fi(h) and the quantity H; of human capital in the region are endogenously

determined by labour mobility, which we study next. The number of firms is irrelevant for most of our

results, and becomes relevant only for the predictions of Proposition 3.

The Lucas-only spatial equilibrium: consumption, housing and mobility

We consider symmetric spatial equilibria in which all productive regions share the same factor
allocation (Hg,Kg), the same wage Wg and rental rates Ag and #g, and unproductive regions share the
same allocation (Hg,Kg), wage Wz, and rentals Ag and 7. The uniformity of the capital rental p across
regions pins down the allocation of physical capital as a function of the regional allocation of human

capital. By exploiting Equations (7) and (6) one finds that p is constant across regions provided:

1 1-p-5

Ke (A J?(He ) ¥ (9)
KB AB HB
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Intuitively, the physical capital stock allocated to productive regions increases in their productivity

advantage Ac/Ag and in their relative human capital stock Hg/Hg.

To find the allocation of human capital, we must characterize labour mobility by computing the
utility that labourers obtain from operating in different regions. Labourers maximize their utility in (2)
by devoting a share 6 of their income to housing and the remaining share (1 — 6) to consumption. Since
the aggregate income of labourers in region i is equal to w;H;, the demand for housing in the regions is

6-wiHi/x;. With the unitary supply of housing, the housing rental rate is equal to:

ni= O-w;-H; . (10)

As a consequence, the utility (gross of moving costs) of a labourer in region i is equal to:

w.h
u,..(c,a)=—r=—"--.——+, 11
Wvl( ) 77_0 00 H_6’ ( )

which rises with the wage and falls with regional human capital H; due to higher rents. We assume:
A.1 Ho/Hs < (Ac/Ag)'™7,

which bounds the relative abundance of human capital in productive regions so that the autarky wage

rate is higher there and thus both capital and labour tend to move there. We can establish:

Proposition 1 In equilibrium, the human capital allocation Hg and Hg has the following features:

a) There is a cutoff hy, such that agent j migrates from an unproductive to a productive region if

and only if hj > hy,. The cutoff hyincreases in the mobility cost ¢.

b) Denote by H=pH, +(1—-p)H; the aggregate human capital. Then, when ¢ = 0 the

equilibrium allocation satisfies:
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1-6
AGﬁ(l—B)JrH(lfb‘)

Ho =H{™ = ‘H. (17)

1-0
E A P(1-0)+0(1-5)

When ¢ > 0, we have that Hg < Héree and Hg increases in Hg holding H constant.

Since wages (and profits) are higher in the productive than in the unproductive regions,
migration occurs to the former from the latter. The cutoff rule in a) is intuitive: more skilled people have
a greater incentive to pay the migration cost because the wage (or profit) gain they experience from
doing so is higher. Even if mobility costs are zero, migration to the more productive regions is not
universal. This is due to the limited supply of land T, which causes decreasing returns in production, and
to the limited supply of housing, which implies that migration causes housing costs to rise until the
incentive to migrate disappears. In equilibrium, wages are higher in the more productive regions, wg >
Wg, but the housing rental rate is also higher there, #g > 7g. Critically, while (17) shows that under free
migration the human capital employed in a region only depends on that region’s productivity, when
mobility is imperfect (i.e. ¢ > 0) a region exogenously endowed with more human capital will employ

more human capital in equilibrium. This property will be important for the empirical analysis.

More generally, in our model productive regions attract both human and physical capital. In the

proof of Proposition 1 we show that under perfect mobility this implies that national output is equal to:
Y= AHEJ(HY Y ROTY, (18)

where A is a function A(ﬂ,é', 0,A;, A, p) of exogenous parameters.

The Lucas-Lucas spatial equilibrium
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We model externalities by assuming that regional total factor productivity is equal to:

A=A[EM LY, »>0p21, (19)

where Ej(h) is the average level of human capital in region i and L; is the measure of labour in that
region. Productivity depends not only on exogenous regional conditions but also on the sorting of
human capital. Parameter y captures the importance of the quality of human capital: when y = 1 only
the total quantity of human capital H; = E;(h)L; matters for externalities; as y becomes larger the quality
of human capital becomes relatively more important than quantity. Parameter y captures the overall
importance of externalities. In our regional and firm level regressions, we employ the flexible

specification of Equation (20), which the appendix shows to yield the following result:

Proposition 2 With human capital externalities, under the parametric restriction:
(B—yy)(1-0)+06(1-6)>0, (20)
there is a stable equilibrium allocation Hg and Hg. In this allocation:

a) There is a cutoff hy, such that agent j migrates from an unproductive to a productive region if

and only if hj > hy,. The cutoff hyincreases in the mobility cost ¢.

b) When ¢ = 0, the equilibrium level of human capital in region i is independent of the region’s

initial human capital endowment. In particular, for y = 1 the full mobility allocation satisfies:

1-0
Aéﬁ—y)(l—9)+€(1—t5)

He =HZ™ = H. (21)

1-6
E| A-1-0)+00-)

When ¢ > 0 and y > 1, we have that Hg < I-~|éree and Hg increases in Hg holding H constant.
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The main change introduced by externalities is that now the effect of fixed supplies of land and
housing on hindering mobility are moderated by regional externalities. In fact, for migration to be
interior condition (20) must be met, which requires external effects yy to be sufficiently small relative
to: i) the diminishing returns § due to land and ii) the sensitivity § of house prices to regional human

capital. When =1 and ¢ =0, national output is equal to:

Y = AH/(HEJ“ " (H" F KT, (22)
where A is a function A(ﬂ,& 0,A;, As, Py, 7) of exogenous parameters. More generally, under
condition (20) the Lucas-Lucas model yields the following equation for firm level output:

yij =AEM)” Liyh}fafﬁigHi!,zj Ki‘?jTiﬁ ’ (23)

and the following equation for regional output:

Y, = AE (07 L (HE) P (H) KT/ 24)

Empirical Predictions of the Model

To obtain predictions on the role of schooling, we need to specify a link between human capital
(which we do not observe) and schooling (which we do observe). We follow the Mincerian approach in

which for an individual j the link between human capital and schooling is:
h; =exply;S,), (25)

where §; 2 0 and g; > 0 are two random variables (distributed to ensure that the distribution of h; is

Pareto). The return to schooling y; varies across individuals, potentially due to talent. This allows us to

15



estimate different returns to schooling for workers and entrepreneurs. Card (1999) offers some

evidence of heterogeneity in the returns to schooling. Human capital in region i is then equal to

J.hm hdF, (h) = ”S . Oe"sgi (S, #)dSdy, where dF; (h) is the density of region i labourers with human
h 20, u>

capital h and gi(S,y) is the density of region i labourers having human capital h=e*, so that
.[.L>o >Ogi(S,,u)de,u =L;. Inline with macro studies, in our regressions we express average human
>0, 1>

capital in the region as a first order expansion around the mean Mincerian return and years of schooling:
E(h)=ze"™, (26)

where Si is average schooling while M, is the average Mincerian return, both computed in region i.

Regional Income Differences

To test Equation (24) we need to specify a regression in terms of observables, which entails
regressing regional per capita income on human capital and population (we do not have regional data

1 1-p-6
on physical capital). From the Equation for p in (6) we obtain the condition Ki= B A" H, -/

where B

> 0is a constant. By substituting this condition as well as Equation (26) into Equation (24) we find that:
In(Yi/L;) = C+ [1/(1 - d)]InA; + [1+ yw —BI(1 - 6)] /_li gi + [y = pI(1 - 8)]InL;, (27)

where C is a constant absorbed by the country fixed effect. Estimating (27) using OLS implies that the

coefficient on average regional schooling should be interpreted as the product of the “technological”

parameter (1+ yy — f8) and the nation-wide average ,L_t of the regional Mincerian returns ;.

16



The coefficient [y — B/(1 — 8)] on population L; captures the benefit y of increasing regional
workforce in terms of externalities minus the cost f of crowding the fixed land supply. A similar
interpretation holds with respect to the schooling coefficient (1+ yw — ). The estimation of Equation
(27) raises a serious concern: since in our model human capital migrates to more productive regions, any
mismeasurement in regional productivity A; may contaminate the coefficient of regional human capital.
We deal with this issue in two steps. First, we control in regression (27) for proxies of A;. Second, we
compare these results to the coefficients obtained from the firm level regressions and to the calibration
exercises performed by the development accounting literature. These comparisons allow us to assess

the severity of the endogeneity problem in the estimation of (27).

Firm-Level Productivity

In (23), the output of a firm j operating in region i depends on the human capital hg; of the

entrepreneur, as determined by his schooling Sgj and return to schooling Ui, and on the average

human capital E(hw;) of workers, which again we approximate by ghwa St (where ;W,j and §W,j are

average values in the firm’s workforce). Ceteris paribus, in our model entrepreneurs have a higher

return to schooling than workers because in region i an entrepreneur with schooling S is someone

whose return satisfies e”SZhEYi, where hg;is the human capital threshold for becoming an

entrepreneur in region i. At a schooling level S, the entrepreneurial class includes talented labourers

whose return satisfies > u ;(S) =Inhg; /S while labourers with z < 11 ;(S) become workers.

By writing Equation (23) in terms of firm-level output per worker y;j/l;j and by exploiting the

expressions for entrepreneurs’ and workers human capital, we obtain the prediction:
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In(yi,jlli,j) = InAi + (1— Ot—ﬁ—(S) /uE,j SE,ij + a;W,j §W,j +

(L=a=p=0)In( 15, /liy) + adn( 1Y, 71+ Olnki + intiy + inLi + yw 42, i, (28)

where x;j = Xij/lij denote per-worker values, |iI’Ej/Ii,j and |i\{\/j/li,j capture the share of a firm’s total

employment on managerial and non-managerial jobs, respectively.

When estimating (28) using OLS, the coefficient on the entrepreneur’s schooling should be

interpreted as the product of entrepreneurs’ rents (1-a—f-0J) and a nation-wide average Mincerian

entrepreneurs’ return to education x . The coefficient on worker’s average schooling should be

interpreted as the labour share a times a nation-wide average Mincerian returns to workers s, . The
coefficient on regional schooling should be interpreted as the product of the externality parameter yy

and the population-wide average Mincerian return ; N

The estimation of (28) allows us to separate the role of the “low human capital” of workers from
the “high human capital” of entrepreneurs in shaping firm productivity. Since the selection of talented
entrepreneurs into more productive regions/industries may contaminate our results, we first estimate
(28) by controlling for the full set of region-industry dummies. In addition, we estimate (28) by directly

controlling for region specific variables to assess the importance of externalities from the coefficient y

on population and the coefficient yy &£ on regional schooling. In this case, however, migration of

human capital to more productive regions may give the false impression of positive externalities,
creating the identification issue present in estimating (27). We deal with this problem by controlling for

proxies for Aj and by comparing our estimation results to standard calibrations of externalities.

® Both the regional level Equation (27) and the firm level Equation (28) imply that the average return to human
capital should vary across regions. One way to empirically account for such possibility is to run random coefficient
regressions. We have performed this analysis and the results change very little (the results on human capital
become slightly stronger). We do not report the results to save space.
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The Size of Firms and Regional employment

In our model the human capital of more productive regions is of better quality, namely Eg(h) >
Eg(h), because migrants are more skilled than average.® The black bold line in Figure 2 below is the skill
distribution in the unproductive region, which is truncated at h,. The skill distribution in the productive

region coincides with the black bold line until hy, and jumps to the red line for h > hy,.
A

—

~___—

hm h

Figure 2: regional distributions of human capital

1>

Since in productive regions the right tail of the skill distribution is fatter, in these regions there are likely
to be fewer but higher skilled entrepreneurs running larger firms than in unproductive regions. The

result below (proved in the Appendix) identifies one set of conditions in which this indeed true:

Proposition 3 Consider a full mobility equilibrium for w = 1 and ug = us. If p is sufficiently large, there

1-0
are two thresholds z; and z, such that for (A, /A, )neerews) €(z,,2,) we have lglfg > Ig/fs. That is,

productive regions have: i) a larger average firm, ii) a larger share of workers in the population.

Being rich in very skilled labour, productive regions will have — relative to the unproductive ones
—a larger workforce, concentrated into fewer, larger, more productive firms. If there is a sizeable supply

of very skilled entrepreneurs, most labourers choose to work for the latter rather than to set up a firm.

® This should not be viewed as literally saying that all or even the majority of migrants are very skilled labourers,
but rather that among the skilled people those who have the highest skill have the greatest incentive to migrate.
This is the most important ingredient needed to obtain our main result. One could add to the model a completely
unskilled part of the population that provides unskilled labour services, which constitute a different input in
production. In this case, unskilled workers may have an incentive to migrate even if middle skilled people do not.
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lll. Data.

Our analysis is based on measures of income, geography, institutions, infrastructure, and culture
in up to 110 (out of 193 recognized sovereign) countries for which we found regional data on either
income or education.  Almost all countries in the world have administrative divisions.” In turn,
administrative divisions may have different levels. For instance a country may be divided into states or

provinces, which are further subdivided into counties or municipalities. For each variable, we collect

data at the highest administrative division available (i.e., states and provinces rather than counties or
municipalities) or, when such data does not exist, at the statistical division (e.g. the Eurostat NUTS in
Europe) that is closest to it. Because we focus on regions, and typically run regressions with country

fixed effects, we do not include countries with no administrative divisions in the sample.

The reporting level for data on income, geography, institutions, infrastructure, and culture
differs across variables. GDP and education are typically available at the first-level administrative
division (i.e., states and provinces). In contrast, GIS geo-spatial data on geography, climate, and
infrastructure is typically available for areas as small as 10 km?. Finally, survey data on institutions and
culture are typically available at the municipal level. In our empirical analysis, we aggregate all variables

for each country to a region from the most disaggregated level of reporting available.® To illustrate, we

" The exceptions are Cook Islands, Hong Kong, Isle of Man, Macau, Malta, Monaco, Niue, Puerto Rico, Vatican City,
Singapore, and Tuvalu.

® We used a variety of aggregation procedures. Specifically, we computed population-weighted averages for GDP
per capita and years of schooling. We computed regional averages for temperature, precipitation, distance to
coast, travel time, and soil characteristics by first summing the (average) values of the relevant variable for all grid
cells lying within a region and then dividing by the number of cells lying within a region. We computed regional
averages for the density (e.g., power lines) and natural resources variables (oil and gas) by first summing the
relevant variable for all grid cells within a region and then dividing by the region’s population. We averaged the
responses within a region for all the variables from the Enterprise and World Value Surveys. We sum up the
number of unique ethnic groups and computed the probability that people within a region speak the same
language based on the total number of people in each “language” area.
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have GDP data for 27 first-level administrative regions in Brazil, corresponding to its 26 states plus the
Federal District, but survey data on institutions for 248 municipalities. For our empirical analysis, we
aggregate the data on institutions by taking the simple average of all observations for establishments
located in the same first-level administrative division. Similarly, we aggregate the GIS geo-spatial data
on geography, climate, and infrastructure at the first-administrative level using the Collins-Bartholomew

World Digital Map.

The final data set has 1,569 regions in 110 countries: (1) 79 countries have regions at the first-
level administrative division; and (2) 31 countries have regions at a more aggregated level than the first-
administrative level because one or several variables (often education) are unavailable at the first-
administrative level. For example, Ireland has 34 first-level divisions (i.e. 29 counties and 5 cities), but
publishes GDP per capita data for 8 regions and education for 2 regions. Thus, we aggregate all the Irish
data to match the 2 regions for which education statistics are available. Appendix A identifies the
reporting level for the regions in our dataset. As noted earlier, all countries have administrative
divisions (although 31 countries in our sample report statistics for statistical regions). The principal
constraint on the sample is the availability of human capital data. Of course, all countries have periodic

censuses and thus have sub-national data on human capital, but these data are hard to find.

Figure 3 presents the 1,569 regions in our sample. It shows that coverage is extensive outside of
North and sub-Saharan Africa. Sample coverage is strongly related to a country’s surface area,
presumably because very small countries do not report regional data. For example, the smallest country
in our dataset is Lebanon (10,400 km?), leaving out of our sample some very prosperous countries such
as Luxembourg (2,590 km?) and Singapore (699 km?). Among countries ranked by their surface area, we
only have data for 14% of the first (smallest) 50 countries, 44% of the first 100 countries, and 53% of the

first 150 countries. Similarly, sample coverage rises with the absolute level of GDP but not with GDP per
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capita. For example, we have data for 18% the first 50 countries ranked in terms of GDP in 2005, 38% of
the first 100 countries, and 49% of the first 150 countries. The comparable figures for countries ranked
on the basis of GDP per capita are 52%, 57% and 57%, respectively. Since sample coverage rises with

GDP, it turns out that the countries in our sample account for 97% of world GDP in 2005.

Our final dataset has regional income data for 107 countries in 2005, drawn from sources
including National Statistics Offices and other government agencies (42 countries), Human Development
Reports (36 countries), OECDStats (26 countries), the World Bank Living Standards Measurement Survey
(Ghana and Kazhakstan), and IPUMS (Israel). When regional income data for 2005 is missing, we use
log-linear interpolation based on as much data as it is available for the period 1990-2008 or, when
interpolation is not possible, the closest available year.” Our measure of regional income per capita is
typically based on value added but we use data on income (6 countries), expenditure (8 countries),
wages (3 countries), gross value added (2 countries), and consumption, investment and government
expenditure (1 country) to fill-in missing values. We measure regional GDP in current purchasing-
power-parity dollars as we lack data on regional price indexes. To ensure consistency with the national
GDP figures reported by World Development Indicators, we adjust regional income values so that --
when weighted by population-- they total GDP at the country level. Not surprisingly, adjustments
exceeding 20% were necessary in 19 out of the 20 countries for which use GDP proxies rather than
actual GDP. Adjustments exceeding 20% were also necessary in 13 countries (Democratic Republic of
Congo, Lebanon, Lesotho, Madagascar, Malaysia, Nepal, Niger, Philippines, Senegal, Swaziland, Syria,

Uganda, and Venezuela) where our GDP data are in real terms.

We compute regional income per capita using population data from Thomas Brinkhoff: City

Population, which collects official census data as well as population estimates for regions where official

° We are missing regional GDP per capita for Bangladesh and Costa Rica and national GDP per capita in PPP terms
for Cuba.
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census data are unavailable.’

We adjust these regional population values so that their sum matches
the country’s population in the World Development Indicators database. This adjustment exceeds 10%

for 6 countries: Bangladesh (+13%), Benin (+11%), Democratic Republic of Congo (-10.5%), Gabon (-

25%), Swaziland (+16%) and Uzbekistan (-22%).

In addition to GDP per capita, we also examine two other dimensions of regional economic
development. First, we gather data on the number of manufacturing and service establishments as well
as on their employment for up to 1,068 regions in 69 countries from economic censuses (62 countries)
and official business directories (7, mostly OECD, countries). Note that both censuses and directories
track establishments rather than firms. This distinction is relevant for large firms as we wouldn’t want
to allocate, for example, Wal-Mart’s 2.2 million world-wide employees to Arkansas. Economic censuses
are carried out periodically (e.g. every 10 years) while business directories are continuously updated.
Critically, they both cover establishments that are registered with the tax authorities, and largely miss

the informal economy. Appendix B provides further details regarding our census data.

Second, we examine productivity and its determinants using establishment-level data from the
Enterprise Survey for as many as 53,957 establishments in 82 countries and 539 of the regions in our
sample.11 We collect operating data on sales, cost of raw materials, cost of labor, cost of electricity, and
the cost of communications. We also collect data on the book value of property, plant, and equipment.
Critically, the Enterprise Survey keeps track of the highest educational attainment of the establishment’s
top manager as well as of its workers. Finally, we collect the two-digit ISIC code (e.g., food, textiles,

chemicals, etc) of the establishments in our sample. Like the economic census and business registry

1% \We also used data from OECDStats (for Denmark, Greece, Ireland, Italy, and the UK) and the National Statistics
Office of Macedonia.

" The Enterprise Survey data was collected between 2002 and 2009. When data from the Enterprise Survey for
one of the countries in our sample are available for multiple years, we use the most recent one.
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data, the Enterprise Survey data only covers registered establishments. A limitation of the Enterprise

Survey data is that it largely excludes OECD countries (Ireland and Mexico are the exceptions).

We relate regional economic development to five sets of potential determinants: (1)
geography, (2) education, (3) institutions, (4) infrastructure, and (5) culture. To narrow down the list of
candidate variables, we restrict attention to variables that are available at the regional level for at least

40 countries and 200 regions.

We use three measures of geography and natural resources obtained from the WorldClim
database, which are available for all regions of the world. They include the average temperature during
the period 1950-2000, the (inverse) average distance between the cells in a region and the nearest

coastline, and the estimated volume of oil production and reserves in the year 2000."

We gather data on the educational attainment of the population 15 years and older for 106

countries and 1491 regions from EPDC Data Center (55 countries), Eurostat (17 countries), National
Statistics Offices (27 countries) and IPUMS (7 countries).”> We collect data on school attainment during
the period 1990-2006 and use data for the most recently available period. We compute years of
schooling following Barro and Lee (1993). Specifically, we use UNESCO data on the duration of primary
and secondary school in each country and assume: (a) zero years of school for the pre-primary level, (b)
4 additional years of school for tertiary education, and (c) zero additional years of school for post-
graduate degrees. We do not use data on incomplete levels because it is only available for about half of

the countries in the sample. For example, we assume zero years of additional school for the lower

2 The results in the paper are robust to controlling for the standard deviation of temperature, the average annual
precipitation during the period 1950-2000, the average output for multiple cropping of rain-fed and irrigated
cereals during the period 1960-1996, the estimated volume of natural gas production and reserves in year 2000,
and dummies for the presence of various minerals in the year 2005.

3 Appendix C provides further details regarding data sources for educational attainment data.
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secondary level. For each region, we compute average years of schooling as the weighted sum of the
years of school required to achieve each educational level, where the weights are the fraction of the

population aged 15 an older that has completed each level of education.

To illustrate these calculations consider the Mexican state of Chihuahua. The EPDC data on the
highest educational attainment of the population 15 years and older in Chihuahua in 2005 shows that
4.99% of the that population had no schooling, 13.76% had incomplete primary school, 22.12% had
complete primary school, 5.10% had incomplete lower secondary school, 23.04% had complete lower
secondary school, 17.94% had complete upper secondary school, and 13.05% had complete tertiary
school. Next, based on UNESCOQO’s mapping of the national educational system of Mexico, we assign six
years of schooling to people who have completed primary school and 12 years of schooling to those that
have completed secondary school. Finally, we calculate the average years of schooling in 2005 in
Chihuahua as the sum of: (1) six years times the fraction of people whose highest educational
attainment level is complete primary school (22.12%), incomplete lower secondary (5.1%), or complete
lower secondary school (23.04%); (2) 12 years times the fraction of people whose highest attainment
level is complete upper secondary school (17.94%); and (3) 16 years times the fraction of people whose
highest attainment level is complete tertiary school. Accordingly, we estimate that the average years of
schooling of the population 15 and older in Chihuahua in 2005 is 7.26 years

(=6*0.5026+12*0.1794+16*0.1305).

We compute years of schooling at the country-level by weighting the average years of schooling
for each region by the fraction of the country’s population 15 and older in that region. The correlation
between this measure and the number of years of schooling for the population 15 years and older in
Barro and Lee (2010) is 0.9. For the average (median) country in our sample, the number of years of

schooling in Barro and Lee (2010) is 8.18 vs. 6.88 in ours (8.56 vs. 6.92 years). Two factors could
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potentially explain why the Barro-Lee dataset yields a higher level of educational attainment than ours:
(1) Barro-Lee captures incomplete degrees while we do not; and (2) education levels have increased
rapidly over time but some of our educational attainment data is stale (e.g. for 14 countries our
educational attainment data is for the year 2000 or earlier). To make the Barro and Lee (2010) measure
of educational attainment more comparable to ours, we make two adjustments to their data. First, we
apply our methodology to the Barro-Lee dataset and compute the level of educational attainment in
2005. After this first adjustment, the level of educational attainment computed with the Barro-Lee
dataset for the average (median) country in our sample drops to 7.07 (7.23). Second, we apply our
methodology to the Barro-Lee dataset but —rather than use data for 2005 -- use figures for the year that
best matches the year in our dataset. After this second adjustment, the level of educational attainment
using the Barro-Lee dataset for the average (median) country in our dataset drop further to 6.95
(7.22).** Since most of our results are run with country-fixed effects, country-level biases in our

measure of human capital do not affect our results.”

We gather data on seven measures of the quality of institutions from the Enterprise Survey and
the Sub-national Doing Business Reports. The Enterprise Survey covers as many as 80 of the countries

and 410 of the regions in our sample.’® The Enterprise Survey asked business managers to quantify: (1)

14 After the second adjustment, there are 5 countries (i.e., Great Britain,

Poland, Switzerland, Syria, and Uruguay) for which our educational attainment numbers remain 25% or more
above the adjusted Barro-Lee numbers, and 12 countries (i.e., Armenia, Bangladesh, Benin, Bolivia, Cambodia,
Honduras, Laos, Morocco, Niger, Pakistan, Senegal, and Sri Lanka) for which our numbers remain 25% or more
below the adjusted Barro-Lee numbers. In all but two of these 17 cases (Great Britain and Poland are the two
exceptions), data sources differ (our data for these two countries comes from household or individual surveys and
theirs from national censuses). For Great Britain we have 12.14 years of schooling, as does the OECD, while Barro-
Lee has 9.21. For Poland, we have 11.15 years of schooling while Barro-Lee has 9.65 and the OECD has 10.55.

> Results for our cross-country regressions are qualitatively similar if we use educational attainment from Barro-
Lee (2010) rather than the population-weighted average of regional values.

'® The main reason why we have fewer regions with measures of institutions than regions with productivity data is
because we imposed a filter of a minimum of 10 establishments answering the particular institutions question. The
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informal payments in the past year (percent of sales spent in informal payments by a typical firm in the
respondent’s industry), (2) the number of days spent in meeting with tax authorities in the past year, (3)
the number of days without electricity in the previous year, and (4) security costs (cost of security
equipment, personnel, or professional security service as a percentage of sales). The Enterprise Survey
also asks managers to rate a variety of obstacles to doing business, including: (1) access to land, and (2)
access to finance.”” For each of these obstacles to doing business, we keep track of the percentage of
the respondents that rate the item as a moderate, a major, or a very severe obstacle to business. The
final Enterprise Survey variable that we examine is the perception of government predictability
(measured as the percentage of respondents who tend to agree, agree in most cases, or fully agree that

government officials’ interpretations of regulations are consistent and predictable).

To make sure that our results on the importance of institutions are not driven by measurement
error, we also gather objective measures of the quality of institutions from the Sub-national Doing
Business Reports, which are available for 19 countries and 180 regions in our sample. We focus on the
number of procedures and their cost in four areas: starting a new business, enforcing contracts,
registering property, and dealing with licenses. Interestingly, variation in the cost of regulation swamps
the variation in the number of procedures. For example, there is no variation in the number of steps
required to enforce a contract in the 30 Chinese cities tracked by the Sub-National Doing Business
Report. However, the estimated time to enforce a contract ranges from 112 days in the city of Nanjing
(Jiangsu) to 540 days in the city of Changchun (Jilin). As it turns out, results using objective measures of

institutions are qualitatively similar to the results using subjective measures that we have described.

rest of the discrepancy in the number of regions is because some questions about institutions were not included in
the survey for some countries.

Y From the Enterprise Survey, we also assembled data on the number of days in the past year with telephone
outages, the percentage of sales reported to the tax authorities, and the confidence that the judicial system would
enforce contracts and property rights in business. Results for these variables are available upon request.

27



We use two measures of infrastructure. The first is the density of power lines in 1997 from the
US Geological Survey Global GIS database.’® The second measure is the average estimated travel time
between cells in a region and the nearest city of 50,000 people or more in the year 2000 from the Global

Environment Monitoring Unit. Both measures of infrastructure are available for all regions of the world.

Cultural variables are the last set of potential determinants of regional income that we examine.
We gather two proxies for cultural values and attitudes from the World Value Survey for as many as 75

of our sample countries and 745 of our regions.'>*

The first survey measure is the percentage of
respondents in each region that answer that “most people can be trusted” when asked whether
"Generally speaking, would you say that most people can be trusted, or that you can't be too careful in
dealing with people?" The second measure is a proxy for civic values based on whether each of the
following behaviors "can always be justified, never be justified or something in between.": (a) "claiming
government benefits which you are not entitled to"; (b) "avoiding a fare on public transport"; (c)

"cheating on taxes if you have the chance"; and (d) "someone taking a bribe" (Knack and Keefer, 1997).%

In addition, we gather two measures of fractionalization for up to 1,568 regions and 110 of our sample

'8 Results using other density measures of infrastructure (e.g. air fields, highways, and roads) also available on the
US Geological Survey Global GIS database are qualitatively similar.

¥ We set to missing World Value Survey data for five countries (France, Japan, Philippines, Russia, and the United
States) because they are only available at a very coarse level.

%% The World Value Survey was collected between 1981 and 2005. When data from the World Value Survey for
one of the countries in our sample are available for multiple years, we use the most recent one.

! We also examined proxies for confidence in various institutions (government, parliament, armed forces,
education, civil service, police, and justice), for what is important in people’s lives (family, friends, leisure, politics,
work, and religion) as well as for characteristics valued in children (determination, faith, hard work, imagination,
independence, obedience, responsibility, thrift, and unselfishness). Moreover, we also examined proxies for broad
cultural attitudes with regards to authority (percent who think that one must always love and respect one’s
parents regardless of their qualities and faults), tolerance for other people (percent who select tolerance and
respect for other people as an important quality for children to learn), and family (percent who think that parents
have a duty to do their best for their children even at the expense of their own well-being). Finally, we examined
the percentage of respondents that participate in professional and civic associations. The results for these
variables are qualitatively similar to the results for the WVS variables that we discuss in the text.
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countries. The first one is simply the number of ethnic groups that inhabited each region in 1964. The
second one is the probability that a randomly chosen person in a region shares the same mother

language with a randomly chosen people from the rest of the country in 2004.

Finally, in addition to running regressions using regional data, we examine GDP per capita at the
country level, which come from World Development Indicators. All the other country-level variables in
the paper are computed based on our regional data rather than drawn from primary sources.
Specifically, the country-level analogs of our regional measures of education, geography, institutions,
public goods, and culture are the area- and population-weighted averages of the relevant regional

variables, as appropriate.

Table 1 summarizes our data. For each variable we examine in the regional regressions, it
shows the number of regions for which we have the information, the number of countries these regions
are in, the median and the average number of regions per country, and the median range and standard
deviation within a country. The data show substantial income inequality among regions within a
country. On average, the ratio of the income in the richest region to that in the poorest region is 4.41.
This ratio is 3.74 in both Africa and Europe, 4.60 in North America, 5.61 in South America, and 5.63 in
Asia. The country with the highest ratio of incomes in the richest to that in the poorest region is Russia
(43.3); the country with the lowest ratio is Pakistan (1.32). Interestingly, this ratio is 5.16 for the United
States, 2.59 for Germany, 1.93 for France, and 2.03 for Italy. Italy has attracted enormous attention
because of differences in income between its North and its South, usually attributed to culture. As it
turns out, Italian regional inequality is not unusual. We also note that regional inequality of incomes
within a country, as measured by the standard deviation of the logarithm of per capita incomes, declines

with income, perhaps because richer countries have more equalizing policies (Figure 4).
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There is likewise substantial inequality in education among regions within a country. On
average, the ratio of educational attainment in the richest region to that in the poorest region is 1.80.
This ratio is 2.71 for Africa, 1.68 for Asia, 1.16 for Europe, 1.33 for North America, and 1.81 for South
America. The highest ratio is in Burkina Faso (14.66), where education is 0.22 in the Sahel region and
3.20 in the Centre region. The lowest ratio is 1.05 in Ireland. One striking fact in this data is the much
great regional equality in the distribution of education in the richer than in the poorer countries. Figure
5 presents the evidence for the relationship between standard deviation of education levels in a country
and its per capita income. Such tendency to equality might follow from the more uniform educational

policies in richer countries, and may account for greater regional income equality in the richer countries.

The patterns of inequality among regions within countries is interesting for some of the other
variables as well. Table 1 shows that differences in endowments, such as temperature and distance to
coast, are small, which suggests that these variables will have difficulty in explaining regional differences
in per capita income. Density of power lines and travel time to the next big city varies a great deal
across regions, suggesting that urban theories of development might be helpful in explaining regional
inequality. There is also considerable variation across regions in the estimates of the quality of
institutions, which suggests that, at least in principle, there is a regional aspect to institutional quality

that could relate to differences in economic development.

Iv. Accounting for National and Regional Productivity.

In this section, we present cross-country and cross-region evidence on the determinants of
productivity. We present national regressions only for comparison. These regressions are difficult to

interpret in our model because it is not possible to express national output in closed form. More
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importantly, the problem of endogeneity of education is particularly severe in the national context,
which of course turned some scholars to calibration. In Section V, we interpret the coefficients in the
context of regional and firm level regressions. With respect to regional income, our benchmark is
Equation (27). As already mentioned, we have measures of average education at the regional level, but
we do not have either national or regional data on physical capital (except for public infrastructure) or

other inputs, so these variables only appear in the firm-level regressions in Section V.

Table 3 presents our basic regional results in perhaps the most transparent way. The table
reports the results of univariate regressions of regional GDP per capita on its possible determinants, all
with country fixed effects. Such specifications are loaded in favor of each variable seeming important
since it does not need to compete with any other variable. We report both the within country and
between countries R of these regressions.  The first row presents the main result: education explains
58% of between country variation of per capita income, and 38% of within country variation of per
capita income.  Although several other variables explain a significant share of between country

variation, none comes close to education in explaining within country variation in income per capita.

Starting with geographical variables, temperature and inverse distance to coast — taken
individually — explain 27 and 13 percent of between country income variation, but 1 and 4 percent
respectively of within country variation. Oil explains a trivial amount of variation at either level.
Turning to institutions, some of the variables, such as access to finance or the number of days it takes to
file a tax return, explain a considerable share of cross-country variation, consistent with the empirical
findings at the cross-country level such as King and Levine (1993) or Acemoglu et al. (2001), but none
explains more than 2 percent of within country variation of per capita incomes. Indicators of
infrastructure or other public good provision do slightly better: on their own many explain a large share

of between country variation, while density of power lines and travel time account for up to 7% of
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within country variation. These variables are obviously highly endogenous, and still do much worse than
education. Some of the cultural variables account for a substantial share of between country variation,
none account for much of within country variation. Of course, culture might operate at the national
rather than the sub-national level, although we note that much of the research on trust focuses on
regional rather than national differences (e.g., Putnam 1993). After presenting the regression results,

we try to explain why some of these variables do so poorly.

Tables 4 through 6 show the multivariate regression results at the national and regional level.
Table 4 presents the baseline regressions of national (Panel A) and regional (Panel B) per capita income
on geography and education, controlling in some instances for population or employment, as suggested
by our model. At the country level, temperature, inverse distance to coast, and oil endowment are all
highly statistically significant in explaining cross-country variation in incomes, and explain an impressive
50% of the variance. Education is also statistically significant, with a coefficient of .25, raising the R* to

63%. Note that oil comes in positive and highly statistically significant.

As Panel B shows, the coefficients on geography and education continue to be significant at the
regional level. However, the within country R* is much higher for education than for the geographic
variables. The coefficient on the regional labour force is now positive and statistically significant, and

ranges from .01 for population to .07 for employment. The coefficient on education is around .27.

Table 5 presents country-level regressions with measures of institutions (Panel A) and of
infrastructure and culture (Panel B) added to the specification in Table 4. Education remains highly
statistically significant in each specification, and its coefficient does not fall much. At the country level,
only the logarithm of tax days is statistically significant. The last two rows of Table 5 show the adjusted

R? of each regression if we omit the institutional (or infrastructure or cultural) variable, as well as the
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adjusted R’ if we omit education. Dropping education sharply reduces explanatory power, while the

only institutional variable that adds explanatory power is the logarithm of tax days.

Table 6 presents the corresponding results at the regional level. The education coefficient is
slightly higher than in Table 4, and is highly significant, as illustrated in Figure 6. Institutional variables
are almost never significant, and their incremental explanatory power is tiny. We find a small adverse
effect of ethnic heterogeneity on income at the regional level, although the incremental explanatory

power of all the institutional and cultural variables is small*.

As a robustness check, we have rerun but do not present here all the regressions breaking down
our aggregated educational attainment measure into measures, for each level of educational attainment
between 1 and 13 years, of the presence of individuals at that level of education in that region.
Educational variables continue to be highly correlated with per capita income, and the coefficients
increase monotonically with the level of attainment. That is, having more people at a higher level of

education is associated with higher income.

What are some of the possible explanations of the low explanatory power of institutions,
keeping in mind that endogeneity of institutions should if anything raise the coefficients? It is possible
that we have inappropriate measures of institutions, although the measures we have are commonly
considered to be relevant to economic outcomes. It is also possible that the measures from Enterprise
Surveys are particularly noisy, although one should remember that these are surveys of managers who
should be particularly focused on institutional constraints. In general, such subjective assessments

correlate much better with measures of development than objective measures of institutions (Glaeser

22 We have tested the robustness of these results using data on regional luminosity instead of per capita income
(see Henderson, Storeygard, and Weil 2009). The results are highly consistent with the evidence we have
described, both with respect to the importance of human capital, and the evidence of relative unimportance of
other factors, in accounting for cross-regional differences.
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et al. 2004). It is also likely that at least some institutions only matter at the national level, if, for

example, the critical-to-development business activity is concentrated in the capital.

To shed further light on these issues, Table 7 presents at the national level (we have no regional
data) regressions in the same format as Table 5, but using standard measures of institutions, including
autocracy, constraints on the executive, expropriation risk, proportional representation, and corruption.
Except for proportional representation, all of these variables are highly statistically significant in these
specifications. However, with the exception of expropriation risk and corruption, both of which are
highly endogenous, the incremental explanatory power of institutional variables is minimal, and in most
cases much smaller than the incremental explanatory power of education. Perhaps the more important
point is that Enterprise Surveys do not cover rich countries. If we run the regressions in Table 7 for the
72 countries with data on informal payments, we find that proportional representation is insignificant,
autocracy and executive constraints are significant at only 10% level, expropriation risk is significant at
the 5% level, and corruption is significant at the 1% level. Critically, the value of estimated coefficients
falls, rather than standard errors rising. Our bottom line is that the weakness of institutional variables
results in part from different (and possibly but not definitely inferior) data, and in part from the focus on

poorer countries, for which institutional variables indeed matter less.

We have previously indicated that, due to potential migration of better educated workers to
more productive regions, we cannot interpret the large education coefficients - which appear to come
through with a similar magnitude across a range of specifications — as the causal impact of human
capital on regional income. To address this problem, we next present the micro evidence based on
Enterprise Surveys and combine it with calibration results to interpret the regional and firm-level

coefficients in a unified framework.
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V. Firm-Level Evidence.

In Tables 8-10, we turn to the micro evidence and estimate essentially Equation (28). We use
the Enterprise Survey data described in Section Ill. In establishment-level regressions, we can try to
disentangle entrepreneurial human capital, worker human capital, and human capital externalities, as
well as to some extent control for regional effects. To address the concern that the sorting of
entrepreneurs by unobservable skills into more productive regions may contaminate our firm-level
estimates of the returns to schooling, in Table 8 we use an extremely flexible specification that controls
for region-industry interactions by including region-industry fixed effects. This enables us to focus on
the effect of managerial/entrepreneurial education on productivity without worrying about
disentangling human capital externalities and regional productivity factors, since both are subsumed in
the fixed effects. In Tables 9 and 10 we then turn to an examination of human capital externalities, first

without regional controls and then adding those controls to the regressions.

We use three dependent variables to proxy for productivity. First, we look at the log of the
establishment sales per worker, yij/lij. Second, we look at a rough measure of value added, namely the
logarithm of sales net out raw material inputs, per worker. Third, we run regressions with the log of
average wages paid by the establishment (which in our Cobb-Douglas production function correspond to
a constant fraction of output) as a dependent variable. > We measure capital (which includes both land
tij and physical capital ki;) by the log of property, plant and equipment per employee. As an alternative,

we proxy for capital by the log of expenditure on energy per employee. We also use the log of the

number of employees, which is a proxy of lij, to control for the share of the entrepreneur’s labour |ﬁ-

% The Enterprise Survey questionnaire varies from country to country. Data on the cost of raw materials used in
production is available for roughly 23,000 establishments, i.e. roughly half the number of observations than wages
per employee. As an alternative productivity measure, we computed value added as sales net of wages and raw
material. The correlation between value added per employee and sales per employee is 0.93. The correlation
between value added per employee and wages per employee is 0.95.

35



/lij and of the workers’ labour |,WJ /l;j. Indeed, assuming that each firm has only one entrepreneur we

have |i’Ej/Ii,j = 1/lij and |,WJ Nlij = (lij-1)/l;j.  Unfortunately, the regression coefficient of the log of

employees is not susceptible of a clean interpretation in terms of technological parameters.

Most important, to trace out the effects of human capital, we include the years of schooling of
the manager Sg and the years of schooling of workers Sy in Table 8, and subsequently the average years
of schooling in the region S; in Tables 9 and 10. As we explained in Section 2, the Mincer model of the
relationship between education and human capital implies that schooling should enter the specification

in levels, rather than in logs. Accordingly, the regression coefficients of the schooling variables should
respectively capture parameters (1- a—ﬁ—é)/_jEyi , “;w,i and yy w; in Equation (28). To capture scale

effects in regional externalities, in Tables 9 and 10 we control for the log of the region’s population L;.
The regression coefficient on this variable should capture y in Equation (28). After presenting the basic

estimation results, we compute values for these coefficients by combining estimation and calibration.

Estimation Results

While in Tables 8 we control for region-industry fixed effects, in Tables 9 and 10 we directly
control for proxies of regional productivity A; by including regional schooling and measures of
geography, as well as country and industry fixed effects, using dummies for 16 industries. All standard
errors are clustered at the regional level. We have experimented with some indicators of regional
institutions and infrastructure as independent variables, but consistent with the findings for regional

data, they are usually insignificant, and hence we do not focus on these results.
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Begin with the results in Table 8, which includes region-industry fixed effects. In the (log) sales
per employee specification, the coefficient on energy per employee is .34, while that on capital per
employee is .30. These coefficients, however, are closer to .3 in the value added specification, and to .2
in the average wage specifications. When both variables are included in the specification, their sum is
higher. Based on these estimates, we will use .35 as capital share when we calibrate the model and

assess its ability to account for variation in productivity across space.

The coefficient on worker schooling averages to about .03 in the sales per employee
specifications, roughly the same in the value added specifications, but is closer to .015 in the wage
specifications. The coefficient on management schooling is also about .03 in the sales per employee
specification, slightly lower in the valued added specification, but falls to about .02 in the wage

specification. The coefficient on the log employment (firm size) is about .1 across specifications.

In Table 9, we include country and industry fixed effects, but add regional years of education to
the regressions. There are some changes in parameter estimates, but the coefficients on worker
education remain around .03, those on manager education likewise remain around .03, and capital
shares stay around .35, like in the specifications of Table 8. In addition, we find consistent evidence of
large effects on productivity from regional factors. The coefficient on regional schooling is amazingly
consistent and statistically significant across specifications, and varies between .05 and .1. The
coefficient on regional population varies across specifications, but we will take it to be around .09 based

on the results for sales per employee and value added per employee.

In our analysis of determinants of regional productivity, geographic variables, but not measures
of culture or institutions, have been consistently statistically significant. Accordingly, in Table 10 we
examine the robustness of the results in Table 9 by controlling for the important geographic factors.

Such controls might also go some way toward enabling us to attribute the coefficient on regional human
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capital to externalities rather than omitted regional productivity factors. The coefficients on geography
variables are quite unstable in these specifications, with inverse distance to coast exerting a large
positive influence on productivity in four specifications (but not the other eleven), and oil endowment
exerting now a large negative effect in some specifications. The most obvious measures of omitted
regional productivity thus do not appear to be important. Critically, the coefficients on years of
education of managers and years of education of workers do not fall much relative to the specifications
in Table 8, indicating that returns to education of entrepreneurs remain high even with controls. The
coefficient on years of education in the region falls a bit in some specifications relative to its value in

Table 9. We will use the average estimate of .05 in our calculations.

We added additional controls to these regressions, and obtained similar results. This evidence
needs to be explored further, but most of the specifications confirm both the general findings, and
parameter estimates, computed from Tables 8 and 9. There does not appear to be much evidence of
significant omitted regional effects, although since we do not have a complete set of determinants of

regional productivity, our assessment of external effects might be exaggerated.

Combining Estimation with Calibration

So what do these coefficients mean in light of our model, and how do they fit with the work in
development accounting? Can the effects estimated from firm level regressions account for the

important role of schooling in the regional regressions?

We address these questions by starting with the roles of managers’ and workers’ schooling. The

coefficient on workers’ average schooling in the firm level regressions is about 0.03, which in our model

implies a/_jw = 0.03. If we take the standard calibration for the U.S. labour share a = 0.6, we back out an
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average Mincerian ;w return of workers equal to ;w = 0.05, which is slightly lower than the ballpark

0.06-0.1 of micro evidence on workers’ Mincerian returns (Psacharopoulos 1994). If we calibrate a =

0.55 to capture the fact that in developing countries the labour share tends to be lower than in the U.S.
(also because part of labour income goes to self employment, Gollin 2002), we obtain ;w = 0.06, which

is the value we stick to. The fact that Mincerian returns to education implied by our empirical evidence
are consistent with existing research suggests that our firm level productivity regressions help reduce

identification problems, at least as far as firm-level variables are concerned.

The regressions also point to an overall capital share (considering energy or equipment) roughly
equal to 0.35. In our model, this captures the income share ¢ + f going to K and T which leaves — under

constant returns — a share of 0.15 going to entrepreneurial rents. That is, (1-a—f—J) = (1—0.55 —0.35) =

0.1. Since the estimated coefficient on managerial education roughly implies (1- a—ﬁ—é);E = 0.03, our

results are consistent with a Mincerian return . equal to 30% for entrepreneurs. This preliminary

assessment suggests that a neglected but critical channel through which schooling and human capital
affect productivity is via entrepreneurial inputs. Individuals selected into entrepreneurship appear to be
vastly more talented than workers, driving up productivity. Of course, entrepreneurial talent may be
more important than entrepreneurial schooling in explaining this finding. Our analysis cannot
adequately address this issue (which would require better data and an endogenous determination of
the connection between schooling and talent). Our analysis is, nevertheless, sufficient to identify a

critical role of management and entrepreneurship in determining productivity.

The large returns to entrepreneurial education, compared to the modest returns to worker
education, might explain the problem that the previous literature on development accounting has

experienced with the Mincer regressions (Caselli 2005, Hsieh and Klenow 2010): the returns to the
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education of labor are indeed low unless a worker becomes an entrepreneur. Entrepreneurial returns

might not be measured in surveys seeking to capture returns to education.

We can then use the estimates of Tables 9 and 10 to assess the magnitude of human capital
externalities. The coefficient on population in Table 9, roughly equal to 0.09, suggests that y is also
about 0.09. This assessment is consistent with the regional regressions in Table 4, where the coefficient
on population is positive and roughly equal to 0.01, which implies that y — /(1 — 8) = 0.01 in Equation
(27). Given that y = 0.09 and £ + & = 0.35, this condition yields S to be roughly 0.06, which is in the
ballpark of the land share estimated from income accounts (Valentiny and Herrendorf 2008). In sum, 8

=0.06, 0 = 0.29 and y = 0.09 are roughly consistent with both firm level and regional regressions.

The coefficient on regional schooling in the firm-level regressions of Table 9 is about .065. This
implies (given y = 0.09) that y/; is about .72. To separate the effect of the population-wide Mincerian
return ; from the strength of the externalities y, we exploit the regional regressions. According to
Equation (27) describing regional output, in these regressions the coefficient on schooling is equal to [1+

y —pI(1 - 6)];. In Table 4, this coefficient is about 0.26. Since we have already established that y =

0.09 and S/(1 — 8) = 0.08 are reasonable estimates, we are left with two equations with two unknowns,

namely (1+ 0.09y — 0.08); = 0.26 and z//; = 0.72. These equations imply an average population-wide

Mincerian return ; of about 0.21 (which is in between our estimates of workers’ and entrepreneurs’
values) and that the social return to schooling y of about 3.45.* These estimates point to a large effect
of schooling for productivity via social interactions, consistent with Lucas (1985, 2008) as well as with

the literature in urban economics cited in the introduction. Finally, note that at the above parameter
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values and at a reasonable share of housing consumption of 8 = 0.4, the spatial equilibrium is stable,

since (8 —wy)(1 - 0) + (1 - 0) =—(0.25)(0.6) + (0.4)(0.74) > 0.

We can now use our results to assess the magnitude of the effect of schooling. Begin with the
role of workers’ and entrepreneurs’ inputs. In regional regressions, the population-wide Mincerian
return of 0.21 is needed to make sense of the data, while the firm level regressions suggest that the
Mincerian return is 6% for workers and 30% for entrepreneurs. Although we lack direct data on the
number of entrepreneurs in the economy, it is useful to make a back-of-the-envelope calculation to
assess whether our firm level evidence is consistent with a 21% Mincerian return population-wide. It
turns out that if: (1) an average entrepreneur is as educated as the entrepreneurs in the enterprise
survey on average, i.e. entrepreneurs have 14 years of schooling; and that (2) an average worker in the
economy is as educated as the average person in the sample, i.e. workers have roughly 7 years of
schooling, to obtain an average population-wise Mincerian return of 21% entrepreneurs need to
account for only 4.8% of the workforce.”® Our estimates thus suggest that private returns to schooling

may be much larger than what previously thought due to the neglected role of entrepreneurial inputs.

Consider now the role of externalities. Using our estimated parameters, raising the
educational level from the sample mean of 6.58 years by one year can be calculated to increase regional
TFP by about 6.7%. Rauch (1993) estimates a comparable magnitude of 3-5%. Acemoglu and Angrist
(2000) estimate that a one year increase in average schooling is associated with a 7% increase in average
wages. Moretti (2004) examines the impact of spillovers associated with the share of college graduates
living in a city. If we run the regressions in Table 9 using the fraction of the population with college
degrees instead of our measure of years of schooling, our estimates imply that a one percentage point

increase in the share of region’s population with a college degree increases output per capita by 7.9%.

% The population-wise average Mincerian return is computed as the return ; that solves the equation exp(;[
f-14+@Q-f)-7)= fexp(0.3-14) + (1— f)exp(0.06-7) where f is the fraction of entrepreneurs.
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Iranzo and Peri (2009) estimate that one extra year of college per worker increase the state’s TFP by a
very significant 6-9%, whereas the effect of an extra year of high school is closer to 0-1%. The
agreement among the various estimates is quite striking. Even if we use the coefficients obtained in

Table 10 when controlling for factors potentially affecting regional productivity, the change is very

modest, increasing the required population-wide Mincerian return 4 to .23 and reducing the

externality parameter y to 2.4. Notwithstanding the difficulties involved in the identification of

externalities, the quantitative role of the latter seems to be quite robust.

As a final step, we assess the importance of our evidence on the returns to entrepreneurial
inputs and human capital externalities in explaining cross-country differences in income per capita in the

context of standard macro development accounting exercises. To do so, define a factor-based model of

A

national income as Y = E(h)"” L” H*”% K", which is national income level predicted by our model

when: i) all regions in a country are identical and all countries are equally productive, and ii) where — in
line with standard development accounting - we consider only physical and human capital, thereby
attributing land rents to physical capital (deducting these rents would not change much our results).
This simplified model with no regional mobility provides a benchmark to assess the role of physical and

human capital when productivity differences are absent.

Following Caselli (2005), one measure of the success of the model in explaining cross-country

income differences is

var(logé )
var(log(t)) -

Success =

where Y is observed GDP. Using Caselli’s (2005) dataset, the observed variance of (log) GDP per worker

is 1.32. Ignoring human capital externalities (i.e., assuming y=y=0) and using the standard 8% average
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Mincerian return on human capital for both workers and entrepreneurs (i.e. setting ¢ = 8%), the

variance of (log) ¥ equals 0.76, i.e. physical and human capital explain 57% (0.76/1.32) of the observed
variation in income per worker. This calculation reproduces the standard development accounting
finding that, under standard Mincerian returns, a big chunk of the cross country income variation is

accounted for by the productivity residual.

To isolate the role of entrepreneurial capital, we compute ¥ by assuming no human capital
externalities (i.e., y =y =0) while still keeping an population-wide Mincerian return ; of 21%, which is
consistent with our firm-level estimates. Under these assumptions, success rises to 83%. This
improvement is solely due to accounting for managerial schooling. Finally, to assess the incremental
explanatory power of human capital externalities, we compute ¥ assuming our estimated values (i.e., U
= 3.45 and y = 0.09), while retaining the assumption that the average Mincerian return equals 21%.
Under these new assumptions, success rises to 99%. Of course, these results need to be interpreted
cautiously since there is considerable uncertainty regarding the true values of the underlying
coefficients. Nevertheless, these calculations illustrate the large role that entrepreneurial inputs may

play in increasing the explanatory power of the factor-based model.

The comparison between Mozambique and the US illustrates the importance of entrepreneurial
inputs to understand cross-country income differences. Income per worker is roughly 33 times higher in
the US than in Mozambique (557,259 vs. $1,752), while the stock of physical capital is 185 times higher
in the US than in Mozambique ($125,227 vs. $676). The average number of years of schooling for the
population 15 years and older is 1.01 years Mozambique and 12.69 years in the United States. These
large differences in schooling imply that the (per capita) stock of human capital is 11.6 higher
(HUS/HMoz=e‘21*(12‘69'1'01)) in the US than in Mozambique if the average Mincerian return is 21%. In

contrast, the (per capita) stock of human capital is only 2.5 times higher (Hys/Hprc=e® **%*%Y) in the US
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than in Mozambique if the average Mincerian return is 8%. Using weights of 1/3 and 2/3 for physical
and human capital, these differences in physical and human capital imply that income per worker should
be 29 times higher in the US than in Mozambique (29=11.6"°x185"%), which is much closer to the actual

value of 33 times than the 10.6 multiple implied by 8% Mincerian return (10.6=2.5%°x185"?).

In sum, our firm level and regional regressions suggest that: i) in line with the development
accounting literature, workers’ human capital is an important but not a large contributor to productivity
differences, ii) entrepreneurial inputs are a fundamental and relatively neglected channel for
understanding the role of schooling in shaping productivity differences, and iii) human capital
externalities might also be extremely important determinants of regional productivity differences. Our
parameter estimates point to very large returns to entrepreneurial schooling (perhaps due to

entrepreneurs’ general talent) and to large social returns at the regional level arising from education.

VI. Additional Implications.

The model has a number of additional implications. Specifically, it predicts that higher human
capital regions within a country should have larger establishments, as well as a higher share of
employment in population. As described in Section Ill, we have collected data from official censuses of
establishments and population for 1, 068 regions from 69 countries in our sample. Before looking at the
data, note that in our model these additional predictions are influenced by regional variation in the
average firm size li/f;. Since by Proposition 3 productive regions have larger firms on average and since
they have a larger number of workers (i.e., Ig > Ig), they should also have a higher share of the workforce
in total population li/(f; + I; + r), where r is the measure of rentiers in productive and unproductive
regions (recall we assumed r = 1, but here for clarity we keep it general). Accordingly, the number of
establishments relative to the population would also be higher in productive regions provided these
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regions have a sufficiently higher number of firms than unproductive ones, i.e., if (fg — fg) > (fefa/r)(lc/fs

— Ig/fg). This latter condition however is not satisfied in the parameter region of Proposition 3.

Table 11 presents the results on the effects of human capital in the region (holding country fixed
effect constant) on the number of official establishments relative to the population, two indicators of
establishment size, and the number of formal employees relative to the population. It shows that
higher human capital in the region is strongly associated with larger establishments, higher labor force
participation rate, a larger share of employees working in large establishments, but also a higher

number of establishments per person. Figure 7 presents the graphs of these relationships.

All of these facts are consistent with Proposition 1 except for the last one. Although there might
be parameter constellations where our model reproduces all of the facts of Table 8, we believe that the
most likely reason why in the data productive regions have a larger number of firms per capita is the
presence of an informal sector, which is not currently included in our model. In fact, the share of
unofficial firms and workers is probably lower in more productive regions because the larger firms of
productive regions are less likely to be informal, an observation that is true empirically (La Porta and
Shleifer 2008). In this respect, adding to our model the notion that larger firms are less likely to be
informal would naturally yield the conclusion that productive regions, having a greater number of large

Ill

firms, also have fewer firms in the informal sector, featuring a larger “official” firms/population ratio

notwithstanding the fact that these regions have a larger average firm [i/fi.

More broadly, these results suggest the possibility that one channel through which higher
human capital raises regional income is by drawing more workers out of the unofficial sector (or
agriculture) into the productive formal sector. The externality from social interactions might be larger in
higher human capital regions because more of the firms and workers in such regions benefit from

informational spillovers associated with human capital. These results are consistent with the
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predictions of the model, but also suggest that the analysis of human capital externalities, particularly in

the developing countries, should take into account the massive role of informality.

VILI. Conclusion.

We have presented evidence from more than 1500 sub-national regions of the world on the
determinants of regional income and labor productivity. The evidence suggests that regional education
is the critical determinant of regional development, and the only such determinant that explains a
substantial amount of regional variation. Using data on several thousand firms located in these regions,
we have also found that regional education influences regional development through education of
workers, education of entrepreneurs, and substantial regional externalities. Moreover, the externalities
come primarily from education (the quality of human capital), and not from its total quantity (the
number of people with some education). Finally, we found that better educated regions have larger,

more productive firms, and higher labor force participation.

A simple Cobb-Douglas production function specification used in development accounting would
have difficulty accounting for all this evidence. Instead, we presented what we called a Lucas-Lucas
model of an economy, which combines the allocation of talent between work and entrepreneurship,
human capital externalities, and migration of labour across regions within a country. Although many
issues remain to be resolved, the empirical findings we presented are both consistent with the general
predictions of this model, and provide plausible values for the model’s parameters. In addition, we
follow Caselli (2005) in assessing the ability of the model to account for variation of output per worker
across countries. When we use our Lucas-Lucas model, we can roughly double the ability of the model
to account for cross-country income differences relative to the traditional specification. Our
parameterization can explain 99% of income differences across countries.
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The central message of the estimation/calibration exercise is that, while private returns to
worker education are modest and close to previous estimates, but private returns to entrepreneurial
education (in the form of profits) and possibly also social returns to education through external
spillovers, are large. This evidence suggests that earlier estimates of return to education have perhaps
underestimated one of its important benefits — the externalities, and largely missed the other —

entrepreneurship. This final observation has significant implications for economic development.

Our data points most directly to the role of the supply of educated entrepreneurs for the
creation and productivity of firms. From the point of view of development accounting, having such
entrepreneurs seems much more important than having educated workers. Consistent with earlier
observations of Banerjee and Duflo (2005) and LaPorta and Shleifer (2008), economic development
occurs in educated regions that concentrate entrepreneurs, who run large productive firms. These
entrepreneurs, as well, appear to contribute to the exchange of ideas, leading so significant regional
externalities. The observed large benefits of education through the creation of a supply of
entrepreneurs and through externalities offer an optimistic assessment of the possibilities of economic

development through raising educational attainment.
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