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1 Introduction

Like just about everyone who has looked at the numbers on renewable energy,

solar power in particular, I was wowed by the progress. Something really good is

in reach.

Paul Krugman, The New York Times, Apr. 21, 2014

For weeks now, the 1.1 million solar power systems in Germany have generated

almost no electricity. ... As is so often the case in winter, all solar panels more or

less stopped generating electricity at the same time. To avert power shortages,

Germany currently has to import large amounts of electricity [including by] pow-

ering up an old oil-fired plant in the Austrian city of Graz.

The German newsmagazine Der Spiegel, Jan. 16, 2012

Across the world, renewable energy capacity has increased dramatically due to falling

prices, policies favoring renewable energy, and concern over greenhouse gas (GhG) emissions

from fossil fuel generators. A key problem with generation from solar and other renewable

sources is intermittency: solar generators only produce when the sun is shining.1 Intermit-

tency has the potential to hugely affect the economic value, or equivalently the social costs,

of renewable energy. The above Der Spiegel quote suggests that electricity system operators

use costly backup generation to manage the intermittency of large-scale solar. More gener-

ally, the implementation of large-scale solar may require significant changes in key decisions

of investment, operations, and demand-side management to mitigate its social costs.

This paper develops a method to quantify the social costs and reductions in carbon emis-

sions from large-scale renewable energy generation. We estimate social costs by solving for

the decisions that maximize total surplus under different levels of renewable energy capac-

ity. Social costs depend crucially on (1) the variability of the source including the extent to

which the variability correlates with demand; (2) the extent to which output from the source

is forecastable; and (3) the costs of building backup generation required to maintain system

1Notably, intermittency is a big issue for wind power as well and wind is the largest source of renewable
energy besides hydroelectric power [EIA, 2012].
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reliability. We use our model to estimate the social costs of solar power for one grid area as

well as to understand how the social costs vary under complementary policy environments

such as greater real-time pricing. Our method can also be used to examine the social costs

of different sources of renewable energy and in different contexts.

What does our economic analysis bring to the table? While there exists a systems en-

gineering literature that evaluates the costs of renewable energy, our welfare-maximizing

economic analysis is fundamentally different. We reoptimize operator decisions as a func-

tion of renewable energy penetration, which requires balancing the consumer welfare lost

from system outages and demand-side management against the extra costs of maintaining

and using backup capacity. Without reoptimization, output fluctuations from large-scale

solar will lead to suboptimal decisions – e.g., overly high probabilities of system outage, or

excess investment in backup capacity – which add to social costs. Moreover, an economic

model such as the one we develop is necessary to understand differences in social costs across

complementary policy environments.

The starting point for our analysis is Section 4 of Joskow and Tirole [2007], who model

a system operator of an electricity market who seeks to maximize expected welfare when

faced with fossil fuel generators that can suddenly fail. Our framework builds on Joskow and

Tirole by modeling renewable energy intermittency as similar to the unexpected failure of a

traditional generator, and by modeling a variety of factors (stochastic and variable demand,

duration of system outages, generation and reserve costs for existing and new generators)

that allow us to use available data in relatively simple ways. A contribution of our paper is

to show how to take this theoretical model to data and use it to evaluate the social costs of

renewable energy.

In our model, the system operator is faced with a fixed level of solar generation capacity

as specified by an exogenous policy mandate. Initially, the operator chooses how many new

fossil fuel generators to build and sets the price for contracts that curtail demand for flexible

customers in periods of scarcity. Following this, in each (one hour) period the operator is

faced with a distribution of demand, and in the presence of renewables, a joint distribution

of demand and renewable output. Observing the distribution, the operator must then decide
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how many generators to schedule for generation and reserves and how much demand to cur-

tail. Finally, demand and solar output are realized, resulting in a system outage if generation

and reserves are insufficient to meet demand.

We apply our model to the Tucson, Arizona grid area. We obtained solar output data

from 58 geographically dispersed sites in the Tucson area. We complement these data with a

variety of cost and failure information on generators, day-ahead weather forecast data, and

demand information. We forecast the demand and renewable output distributions that are

observable to the operator with regressions of demand and renewable outputs on the weather

forecasts made the previous day. We calibrate the demand elasticity from the literature.2

It is well understood that the average accounting cost of solar is higher than for fossil

fuel generators. Not surprisingly, we find that the gross social costs of solar are high and

increasing in penetration, going from $126.7 per MWh with 10% penetration to $138.4 per

MWh with 20% penetration. The increase in cost from increased solar penetration is caused

by solar generation substituting for cheaper fossil-fuel plants as penetration rises. Dividing

the social costs by the CO2 reductions, a ton of CO2 would have to have an environmental

cost of $275 or more to justify immediate large-scale investment in solar, a figure that is

much higher than the 2015 central U.S. government figure of $39 [EPA, 2015].

Perhaps more surprising than the high cost is a breakdown of its sources. Focusing on the

20% case, if solar were perfectly forecastable, the social costs would drop very little, by $6.1

per MWh. With perfect storage of solar, social costs would drop by $46 per MWh, implying

that intermittency overall is quantitatively much more important than unforecastable inter-

mittency. In contrast, the bulk of the cost of solar comes from its relatively high fixed costs:

if the fixed costs of solar dropped from their current level of $4.41 per watt to $2 per watt

(as is reflected by the Krugman quote and as many industry observers believe will occur),

then the social cost of solar would drop by $99 per MWh.

2Alternatively, we could structurally estimate demand by matching operating reserves from data to
predicted values assuming optimizing behavior. However, we believe that it may be problematic to assume
that current TEP decisions reflect optimizing behavior within the context of our model. For instance, Wolfram
[2005] finds evidence that regulated investor-owned utilities (such as TEP) operate generation units at higher
cost than do non-regulated utilities. Furthermore, the TEP system operator may act in a more risk averse
manner than in our model, due both to career concerns and to regulatory penalties for system outage.
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We find that geographic dispersion of solar sites is important in lowering the social costs

of solar generation: if all solar facilities were located within 10 kilometers of the center of

Tucson, the social costs of 20% solar would rise by $17 per MWh relative to the base case of

sites located within a 40 kilometer radius. In contrast, other changes to the environment –

notably allowing imports and exports, having forecasts made less than one day ahead, and

placing a substantial percent of customers on real-time pricing contracts – have very limited

impacts on the social costs of solar.

Our work builds on both a systems engineering and economics literature on valuing re-

newable energy. One strand of the systems engineering literature focuses on the variability of

renewable output and allows for changes in utility operations to be based on rules of thumb,

rather than reoptimizing policies in response to the renewable energy.3 A second strand uses

optimization models from power systems engineering.4 The analyses in these papers specify

the cost-minimizing combinations of generation units necessary to meet forecasted demand

and operating reserve requirements.5 However, this strand limits optimization to the genera-

tor scheduling decision, with changes to reserve operations and fossil fuel capacity still based

on rules of thumb. We find that a system operator who followed rules of thumb from this

literature would face social costs that are significantly higher than with optimizing policies.

An economics literature also seek to quantify the importance of intermittency.6 One

strand of this literature focuses on how the time-varying generation profile of renewable

energy affects its value.7 A natural starting point of valuation for some of these papers is the

equilibrium price of renewables, but since prices are informative only for valuations at the

margin, a price-based approach cannot easily be used to evaluate policies that lead to large-

scale investment in renewables. A second strand addresses how fossil fuel capacity should be

adjusted in response to large-scale renewables, but often does not focus on the time-varying

3See, for instance, Fabbri et al. [2005], Mills and Wiser [2010], Lueken et al. [2012].
4See, for instance, Tuohy et al. [2009], Madaeni and Sioshansi [2013], Mills et al. [2013], GE Energy

[2008].
5An advantage of this strand over our paper is that it often models dynamic linkages (e.g., ramping

constraints and startup costs)within a day. Our base model does not allow for dynamics but we provide
robustness analysis that quantifies the additional generator startup costs from large-scale solar.

6See Baker et al. [2013] for a review of this literature.
7See Denholm and Margolis [2007], Borenstein [2008], Cullen [2010b], Joskow [2011].
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generation profile of renewable energy [see Lamont, 2008, Skea et al., 2008, Campbell, 2011].8

Our model combines insights from both these strands. To our knowledge, our study is the

first to formalize reserve operations in an economic model that is taken to data, and the first

to use weather forecast data to separate intermittency into its forecastable and unforecastable

components.

The remainder of the paper is organized as follows. Section 2 provides background on

the electricity market and solar energy. Section 3 discusses the model; Section 4 the data,

estimation, and computation; and Section 5 the results. Section 6 concludes.

2 Electricity and solar energy

2.1 The electricity industry in the Tucson area

We now discuss some details of our market and explain how they motivate our later mod-

eling assumptions. We model the Tucson grid area, which includes most of southeastern

Arizona. Electricity service is provided by Tucson Electric Power (TEP), a vertically inte-

grated, investor-owned regulated utility. TEP’s service territory covers 1,155 square miles

and includes a population of approximately one million.9 In 2011, 41 percent of TEP retail

electricity consumption was residential, 21 percent commercial, and 38 percent industrial

and public. During this time period, average retail prices were 9.9 cents/kWh for residential

customers and 9.4 cents/kWh for commercial and industrial customers.10 Our simulations

specify a fixed retail price that lies between these two values.

As of the end of 2011, TEP owned or leased generation units with a total capacity of 2,275

MW. This capacity is virtually all powered by fossil fuel. In Arizona, there are 2,090 MW

of planned new fossil fuel generation capacity, all of which are from natural gas generators.

Combined cycle natural gas generators have lower marginal costs and greenhouse gas emis-

sions but higher construction costs than other natural gas generators. 91% of the planned

new fossil fuel capacity in Arizona is from combined cycle generators with the remaining from

8An exception is Lamont [2008], who does include time-varying generation.
9Detailed information about TEP customers and operations are found in the 2011 10-K annual report

for UniSource Energy Corp., TEP’s parent company; [see UniSource, 2012].
10UniSource [2012].
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gas turbine generators. Nationally, 88% of planned new natural gas capacity is combined

cycle.11 Given these figures, our base specifications allow new fossil fuel investment only in

combined cycle natural gas generators.

Tucson is situated within the Western Interconnection, the electrical grid that encom-

passes the Western U.S. and part of Western Canada. TEP is responsible for system op-

erations and for scheduling generation and transmission power flows within its grid area.

At different times, TEP both imports and exports power over the Western Interconnection.

Our base model treats Tucson in isolation but we also consider robustness specifications that

allow for imports and exports.

TEP is subject to a state-mandated Renewable Portfolio Standard which calls for an

increasing fraction of load to be generated from renewable sources until 15 percent of load is

from renewables by 2025. For 2011 the standard was 3 percent. TEP satisfies the standard

through a combination of its own solar generation, wholesale purchases of renewable energy,

distributed solar generation by its customers, and retirement of banked renewable energy

credits.12 Total distributed (i.e., customer-sited) solar capacity in TEP’s service territory was

30.4 MW as of the end of 2011; enough to supply 0.3% of annual electricity consumption.13

Given its small scale and lack of available data, we do not model the distributed solar that

is already present in our base environment. The Renewable Portfolio Standard figure of 15

percent, together with the near-absence of wind generation in Arizona, motivates our choice

of examining scenarios where 10, 15, and 20 percent of generation is from solar.

Since storage is very limited for TEP and most electricity systems, the supply of power

must equal (almost exactly) load on a real time basis. Moreover, load can vary unpredictably

over the course of a day (e.g., due to weather changes) and available supply can vary quickly

and unpredictably due to equipment malfunction or breakdown and due to intermittent

renewable generation. To ensure matching of supply and load, the electricity grid operator

engages in system operations. System operations involve control of generators, decisions

11Source: Authors’ calculations from EIA [2014b], Table 6.5.
12TEP owns no wind generation. While there is some wind generation in Arizona, wind is not expected

by be a major source of renewable generation in the state.
13TEP [2012], Table 2.1.
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about rationing power to customers, and control of backup systems. The system operator

ensures reliability in part by having generators available on a stand-by basis so that customers

can continue to be served in the event that one or more generators fails and/or load exceeds

forecast. In the absence of grid operations, each supplier imposes externalities, because it

does not bear the full cost of a system outage [see Joskow and Tirole, 2007]. The modeling

of system operations, and endogenizing system operations in response to large-scale solar, is

a key part of our analysis.

The generation capacity that is scheduled by the system operator over and above the

amount required to serve forecasted load is called operating reserves. Broadly speaking,

utilities carry two types of operating reserves: contingency reserves, used in the event of

a generator failure; and balancing reserves, used to smooth out fluctuations in load and

renewable output. The North American Electric Reliability Corporation (NERC) requires

utilities in the Western Interconnection to have access to contingency reserves sufficient to

cover the failure of their largest unit;14 for TEP this is a 403 MW coal generator, which is

20.9% of mean load. Ela et al. [2011] note that balancing reserves are typically set between

1-1.5% of peak load. Together, these imply that TEP should maintain approximately a 23%

ratio of operating reserves to load.15 The 23% ratio provides a benchmark against which we

can compare the baseline predictions of our model.

2.2 Solar energy

Solar photovoltaic (PV) systems utilize panels of materials (typically silicon) that convert

solar radiation into direct current (DC) electricity, coupled with inverters that convert DC

to alternating current (AC) [see NREL, 2011]. Electricity generation from solar PV panels

varies with solar insolation, a measure of energy from sunlight. Solar PV technology has

been improving rapidly.16

14See NERC [2015].
15Operating reserves may be lower because TEP is part of the Southwest Reserve Sharing Group. Partic-

ipation in this group allows TEP to call upon other utilities during emergencies, such as plant outages and
system disturbances, and reduce the amount of reserves TEP is required to carry [UniSource, 2012].

16Baker et al. [2013] describe the variety of solar PV technologies that are currently available, as well as
potential technological improvements that are likely to change PV cost and efficiency in the coming decades.
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Figure 1: Photovoltaic solar resource

Source: http://www.nrel.gov.

Investment in solar PV capacity has grown considerably in recent years, while wind capac-

ity investment has recently declined. Roca [2013] projects that solar PV capacity investment

would exceed wind capacity investment worldwide in 2013. Figure 1 shows solar insolation

across the U.S. The Tucson area has a relatively high solar insolation as does most of the

Southwest, which comprises about one-fifth of the continental U.S. land mass.

Because open land is plentiful near population centers in the Southwest U.S., it is common

to locate large utility-scale solar PV near existing transmission links. New plants have to

pay and report interconnection costs, which cover the extra transmission costs necessary to

tie them into the grid. In Arizona, the mean interconnection costs for plants built between

2003 and 2011 were $45,454 per MW for natural gas combined cycle plants and $64,802 for

solar PV plants.17 Applying our data on solar production rates, and our assumed discount

factor and plant lifespan to these numbers, the extra interconnection costs for solar are very

small, about $0.78 per MWh generated, and hence we do not model these extra costs.

17EIA [2011b]
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In addition, Arizona’s Renewable Portfolio Standard mandates that 30% of total renew-

able energy consist of distributed generation, e.g. solar PV on customers’ rooftops. Our

model allows distributed solar to have different capital costs from non-distributed solar and

to reduce electricity transmission costs.

Figure 2: Load and solar output for different U.S. sites, Aug. 14-16, 2011
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Note: The Berthoud, New York, and San Diego solar generation data are from SMA Solar Technology AG’s
Sunny Portal (https://www.sunnyportal.com/). The Tucson data displayed here are from one of 58 sites
used in our main analysis and are from the University of Arizona Photovoltaics Lab. The site shown here
was chosen because it is the near the center of the city. The load data are from Federal Energy Regulation
Commission Form 714. Load is measured hourly while solar output is measured at the 15-minute level.

To illustrate the issues of intermittency, Figure 2 shows load and solar PV output for

four sites across the U.S., for three summer days during our sample period, Aug. 14-16, 2011.

We chose three sites from the Western U.S. with high solar potential (Figure 1), as well as

New York. During these three days, the solar installation in New York produces far below

its rated capacity at all times. The other installations all reach a peak output of 75% of
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capacity or higher at some point each day and have similar normalized total output. None

of the installations produce electricity at night, and output is minimal in the early morning

and late evening.

For all four locations, the timing of load and solar production peaks are similar, which

generates a positive correlation between load and solar output. The positive correlation

increases the value of solar installations because production occurs when load, and hence

the marginal cost of displaced fossil fuel generation, are high. Even though solar output

correlates positively with load, peak load tends to occur later in the day than peak solar

output. To the extent that system operators have to deal with late afternoons with high load

but low solar output, they will not be able to reduce fossil fuel capacity much in the presence

of large scale solar.

Finally, note that during these three days, all the solar installations except for the San

Diego facility show large fluctuations over a fine time scale. These fluctuations are not easily

forecastable and hence will lead to increased reserve operation costs. Hence, ideally, solar

output would look like the San Diego installation over these days rather than the others.

3 Model

3.1 Overview

We now describe our base model of electricity generation, demand, and system operations.

Our model takes as given the retail price of electricity and a state-mandated level of solar

capacity.

Our model has two stages. In stage one, the system operator decides on capacity invest-

ment for new generation units, which are all combined cycle natural gas generators. The new

generation units, solar capacity, and existing fossil fuel generators all last a fixed number of

years. At this stage, the operator also chooses a price for interruptible power contracts and

offers these contracts to customers.

In stage two, the operator is faced with a sequence of generator scheduling and demand-
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side management decisions for each hour of each year over the lifespan of the generators.18

Here, she observes the weather forecast (made the previous day) and a list of which fossil fuel

generators will be unavailable due to scheduled maintenance. Observing this information,

the operator forecasts load and solar output and then chooses which fossil fuel generators to

schedule for production and reserves and how much load to curtail from the set of customers

who have signed up for interruptible power contracts.19

In each hour, following the scheduling and curtailment decisions, solar output and load

are realized and some fossil fuel generators may fail. These realizations lead to one of two

possible outcomes. First, load could be less than the sum of electricity output and operating

reserves, adjusting for line losses. In this case, the operator will adjust the rate of generation

for one or more generators to balance output with load. Second, load could be more than

output plus reserves, adjusting for line losses. In this (hopefully rare) case, a system outage

occurs and a random subset of customers involuntarily lose power.

Appendix B includes extensions to this model in the form of multiple solar observations

per hour, real-time pricing contracts, and imports and exports outside the market. We now

exposit demand, generation, and the operator’s solution.

3.2 Demand and consumer welfare

We assume that retail price is a constant p. We need to specify the demand curve in order

to quantify the costs of system outage and the take-up of interruptible power contracts. We

let demand be a random function of the weather forecast, denoted ~w. We let ~w include cloud

cover, temperature, and similar variables as well as any factors that might affect load or solar

output, notably the time of day, day of week, and time since sunrise and sunset.

We choose a parsimonious specification for demand in order to more easily calibrate the

model. Specifically, we assume that demand has a constant price elasticity η for prices up

to a reservation value, v, but that the scale D varies stochastically with ~w, D ∼ FD(·|~w).

18Our base model abstracts from linkages between hours, as would occur with ramping or startup costs.
19System operators commonly schedule operating reserves one day ahead. For example, the system op-

erator for the Electric Reliability Council of Texas (ERCOT) obtains operating reserves for each hour in
one-day-ahead procurement auctions.
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Demand is then

QD(p,D) =

 0, p > v

Dp−η, p ≤ v.
(1)

We assume that FD(·|~w) has a lower bound D
min

(~w).

The term value of lost load (VOLL) is used in the electricity industry to describe the

mean value of electricity per unit for customers [see Cramton and Lien, 2000]. VOLL and

the reservation value v have a closed-form and monotonic relation, detailed in Appendix A.

In our base model, the system operator manages demand through voluntary arrangements

to curtail demand when necessary, in exchange for a payment at the time of curtailment.

These contracts are known as pay-as-you-go interruptible power contracts [see Baldick et al.,

2006]. Many utilities offer this type of contract20 and there exist firms (e.g., EnerNoc.com)

that intermediate these contracts between small- to medium-sized commercial customers and

utilities.

The specifics of our curtailment contracts are as follows. In the first stage, the operator

offers interruptible power contracts at price pc. Customers who sign up agree to have their

power curtailed as necessary and be paid a net per-unit price of pc − p as compensation. In

each stage 2 period, the operator chooses a quantity z of demand curtailment and randomly

selects customers for curtailment from the set of customers who have signed up and who are

known to use power in that period.21

The amount by which the system operator can curtail demand in any period is limited

by the curtailment price pc, as users will sign up for the interruptible contract if and only if

their valuation is below pc. Note that there is a tradeoff from increasing pc. An increase in

pc implies that the operator can curtail more demand, which increases expected welfare as it

lowers the probability of a system outage. However, an increase in pc also implies an increase

in the average valuation of the curtailed user, which decreases welfare. Let WLC(z, pc)

denote the welfare loss from curtailment in any stage 2 period; Appendix A derives a closed

form expression for WLC(z, pc) and shows that it does not depend on D.

20See [FERC, 2012].
21We assume that it is not possible for the operator to curtail demand selectively from the lowest valuation

users. If possible, this would result in more efficient rationing.
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3.3 Generation, transmission, and reserves

We index existing generators by j = 1, . . . , J . For any given hour, each unit has a maintenance

status mj ∈ {0, 1}, with mj = 1 implying that the unit is unavailable for production. We

assume that maintenance occurs with probability Pmaint
j , and that its occurrence is i.i.d.

across periods and generators. At each stage 2 period, the system operator schedules available

units for production and reserves; let onj denote a 0 − 1 scheduling indicator. Note that

mj = 1 implies that onj = 0.

Each unit uses a particular generation technology, e.g., coal-fired steam turbine, combined

cycle natural gas; has marginal costs (MC) cj; and capacity kj. Generators are used for both

production and operating reserves. For any generator, we assume that the marginal cost of

reserves is a fraction cr of the cost of producing electricity for whatever fraction of capacity

of the generator is under reserve.22

We specify that each generator has a probability P fail
j of failure in any hour. Analogously

to Pmaint
j , we assume that failure occurrences are also i.i.d. Maximum output from generation

unit j is then given by

xj(onj) =

 kj, with prob. (1− P Fail
j )onj

0, otherwise.
(2)

Let ~x( ~on) denote the vector of maximum outputs for all generators.

Moving back to stage 1 of our model, the system operator chooses the number of new fossil

fuel generators, nFF . Each of the new units is an identical combined cycle gas generator, with

the same failure and maintenance probabilities as existing gas generators. We assume that

each has fixed capacity size kFF , capacity costs of FCFF per MW of capacity, and operating

costs of cFF per MWh. We label the new fossil fuel units j = J + 1, . . . , J + nFF .

22Our model of the cost of reserves is a simplification of a much more complicated problem. In reality,
there are several types of costs associated with maintaining operating reserves. Fossil fuel generation units
typically have minimum and maximum generation rates and need to be operating at or above the minimum
in order to provide operating reserve. Some high-cost generation units may be operating at their minimum
so that they have excess capacity from which reserves can be provided; this implies that some lower-cost
generation units may be operating below their maximum which then implies an increase in production costs
due to reserves. Also, it may be necessary to incur startup costs for some of these higher cost units. Finally,
units that are providing operating reserves are not available for maintenance implying that there may be
deferred maintenance costs associated with operating reserves.
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The system operator is faced with a fixed solar PV capacity nSL, which is generated from

a set number of installations spread over a metropolitan area. In contrast to fossil fuel units,

we assume that solar units have zero MC and maintenance and failure probabilities, and are

continuously scalable. Solar capacity costs are FCSL per MW of capacity, which include

installation and scheduled maintenance costs. Solar units are not dispatchable. Production

from solar PV generation takes on a state-contingent distribution nSLS, where S ∼ F S(·|~w).

Let ~F (·|~w) denote the joint distribution (FD(·|~w), F S(·|~w)) of forecasted load and solar out-

put. This formulation allows for the possibility of correlation between forecast errors for

demand and for solar generation.

We do not model the possibility that solar generators will be sited distant from existing

transmission lines. If renewable facilities are sited far from cities and existing transmission

lines – as is often the case with wind but not with solar – then a mandate for increased

renewables might imply the need to construct such lines.23

In contrast, we assume that a fraction dSL of solar capacity is installed in a distributed

environment, which lowers transmission costs in two ways. First, we allow distributed solar

to lower the fixed costs of transmission lines. Here, we assume that the discounted present

value of equipment investment and maintenance costs is a function of the maximum expected

load net of distributed solar:

TFC(nSL) = AFCT max
~w
{E[D(~w)p−η − dSLnSLS(~w)]} (3)

where AFCT is a parameter and E[·] denotes the expectation operator. From (3), solar

production will lower the fixed costs of transmission to the extent that it is positive in hours

with the highest load.

Second, we allow distributed solar to lower line losses. Following Bohn et al. [1984] and

Borenstein [2008], we assume that line losses from transmission in any hour are equal to a

constant α times the square of non-distributed generation. Letting Q be load net of demand

curtailment and distributed solar generation, line losses satisfy LL = α(Q + LL)2. We let

23For example, the 290 MW Agua Caliente Solar Project, which went into operation in 2014, is located
in southwestern Arizona, right next to an existing 500 kV transmission line.
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LL(Q) be the function implicitly defined by this relationship, and obtain:24

LL(Q) = (2α)−1(1− 2αQ−
√

1− 4Qα). (4)

Equation (4) implies that distributed solar production will reduce line losses, especially when

it occurs during hours with high load.

3.4 System operator’s problem

The operator seeks to maximize expected discounted total surplus, subject to p and nSL.

Her discount factor is β and the lifespan for her decisions is T , the life of the generators.

Although we have developed our model using a single-agent social optimum approach, our

results could be replicated by a competitive market-based model. For example, with multi-

unit firms, Vickrey auctions for the generation and reserves markets could be used to induce

efficient short-run outcomes.25 Cullen and Reynolds [2013] show that the long-run compet-

itive equilibrium of a generation market will generate the operator’s solution; they do not

consider reserve operations.

In the first stage, the system operator chooses nFF and pc. In each second-stage period,

the operator makes two decisions conditional on weather forecast ~w, maintenance statuses

~m, and first-stage decisions: (1) generator scheduling decisions ~on and (2) the amount of

demand to be curtailed, z.

We model the choice of operating reserves as a simplified version of how reserves are

treated in unit commitment models.26 Upon learning (~w, ~m), the operator chooses onj for

each unit with mj = 0. Then, the state-specific random variables are realized. Possibly,

a system outage occurs. Otherwise, the operator will adjust generation to exactly match

24There are two roots to the quadratic equation. Welfare is maximized at the smaller root.
25A Vickrey auction specifies that a firm that sells k units is paid the lowest k losing offers submitted by

rival firms [see Krishna, 2010]. Vickrey auctions are not used by current wholesale markets such as ERCOT,
likely due to their complexity. For instance, one would have to have Vickrey auctions for both generation
and reserve operations.

26A unit commitment model specifies the cost of generation (including startup costs) as well as costs for
several types of reserves: spinning reserve up (to provide for an increased rate of generation), spinning reserve
down (to provide for a reduced rate of generation), and non-spinning reserves [see Bouffard et al., 2005]. Our
model is simplified in that we have a single type of operating reserve and no startup costs but, in contrast,
our reserve policies are endogenously determined.
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load, by using the generators with the lowest marginal costs to satisfy demand, leaving

the generators with the highest marginal costs as reserves. Let PC(D,~x) denote the ex-

post minimized costs of power generation and reserves, where D denotes demand (net of

curtailment) plus line loss minus solar production, and ~x denotes generator output realization

vectors.

We illustrate the calculation of PC with a simple example. Consider a case with two

scheduled generators each with capacity 1, with c2 > c1, D = 1.6 and no generator failures.

Following the demand realization, the operator would set output at generator 2 below its

full capacity as it has higher costs. Thus, the total production plus reserve costs would be

PC(1.6, (1, 1)) = c1 + 0.6× c2 + 0.4× c2 × cr.

Let outage denote a 0− 1 indicator for a system outage. We have:

outage( ~on, z, ~w) = 1{
J+nFF∑
j=1

xj(onj) + nSLS < Dp−η − z + LL(Dp−η − z − dSLnSLS)}. (5)

In words, (5) indicates that an outage occurs when the maximum realized fossil fuel and solar

output is less than demand and line losses net of curtailed demand. Let doutage denote the

fraction of customers who lose power times the number of hours for which they lose power

in the event of a system outage.

Using these definitions, we now define the system operator’s problem for a second stage

period as:

W (~w, ~m|nFF , pc) = max ~on,z E
[
(1− doutageoutage( ~on, z, ~w)) (Dp−ηV OLL−WLC(z, pc))

−PC
(
Dp−η − z − nSLS + LL(·), ~x( ~on)

)
| ~w, ~m

]
such that mj = 1 =⇒ onj = 0,

(6)

where the expectation is taken over the random variables F (·, ~w) and ~x( ~on) and the argument

of LL(·) is the same as in (5). In (6), the first line indicates the gross consumer benefit and

the second line indicates the production costs. Generators can only be operated if they are

not undergoing scheduled maintenance, which constitutes the third line.

We now analyze the stage one decisions of pc and nFF . The system operator rolls up the

second-stage payoffs by taking the expected value of W in (6) over all the hours in one year.
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Let H be the number of hours in a year. Given the stock of generators nFF , the system

operator chooses the price for curtailment contracts pc to maximize expected welfare each

year:27

V (nFF ) = max
pc

E[H ·W (~w, ~m | nFF , pc)], (7)

where the random variables are now ~w and ~m. Finally, the investment decision for the system

operator may be expressed as:

V ∗ = max
nFF

{
1− βT

1− β
V (nFF )− nSLFCSL − nFFFCFF − TFC(nSL)

}
. (8)

The function V ∗ provides the maximized expected total surplus. It will vary based on the

solar capacity nSL as chosen by the regulator.

4 Data, estimation, and computation

4.1 Data

In order to estimate and calibrate the parameters of our model, we use public data from a

variety of sources, notably different federal agencies and grid operators. Our data pertain

mostly to a one-year period from May, 2011 until April, 2012.

We obtain hourly load data for the Tucson service area from a Federal Energy Regula-

tory Commission Form 714 filing by TEP. Summary statistics on load data are provided in

Figure C.1. March was the month with the lowest load and August with the highest. Tucson

load typically peaks during the summer due to high air conditioning use (average August

temperature is 88 degrees Fahrenheit). Electricity load in the Tucson area has grown by

roughly one percent per year.

We draw our data on generation units serving Tucson in 2011 from several sources. The

Energy Information Administration (EIA) maintains a database on all existing generation

units in the U.S. This database includes information about capacity, fuel source, and location.

We take from this database the generators owned by TEP, as reported in UniSource [2012].28

27We could equivalently express the problem as one of simultaneous choice of pc and nFF in stage one.
28TEP has partial ownership stake in four plants, Luna Energy, Navajo, Four Corners, and San Juan,
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We also use EIA information on the average retail electricity price and capacity investment

cost for new generation units.

We obtain information on heat rates from the Environmental Protection Agency (EPA)’s

eGRID2010 database. This database provides heat rates at the plant level, where a plant

may have multiple generation units. We assume that each generation unit at a plant has the

same heat rate.

Since our analysis is forward-looking, we use information about projected future fuel costs.

EIA Form 423 contains information about the terms of multi-year fuel contracts for each of

the coal-fired generators. For natural gas we use NYMEX futures prices at Henry Hub in

Louisiana [see CME, 2012]. We collect the last settlement price for each month for futures

contracts in September 2012 for delivery from October 2012 through September 2017. Our

natural gas price is the average of these prices.

The eGRID2010 database has mean annual emission rates for CO2, SO2, and NOx at the

plant level. We apply the same emission rates for each generation unit at a plant. SO2 permit

fees are from the EPA’s annual advance auctions for years 2011 – 2017. TEP units are not

subject to NOx permit fees. EPA’s NOx Budget Trading program, a cap and trade program

for NOx, applies to 20 eastern states, but does not apply to Arizona [see EPA, 2011].

We use solar generation data from 58 geographically dispersed installations located within

40 kilometers of the center of Tucson, Arizona. The data were collected by the University

of Arizona Photovoltaics Research Lab. They record the power generated (in kilowatts of

alternating current) by each site at 15-minute intervals from May 1, 2011 to April 30, 2012.

All installations have fixed tilt PV panels, mainly south-facing. The average system size in

the sample is 9.0 (all sizes are in kW of rated DC power), minimum size is 2.3, and maximum

size is 84.2. Total capacity for the 58 sites is 517 kW. The age of installations (as of the start

of data collection period) ranges from one month to 3.5 years, with a mean of 9.5 months.

See Figure 3 for a map of the installations. The circles represent distances of 10, 20, 30, and

40 kilometers from the center of Tucson. Figure C.2 shows the mean and standard deviation

each with multiple generators. For these plants, we assume that TEP owns one generator each with capacity
equal to total plant capacity times TEP’s ownership share.
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Figure 3: Map of Tucson with solar sites in our data

Source: University of Arizona Photovoltaics Research Lab.
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of solar output by each 15-minute interval.

A novel aspect of this project is collection and use of weather forecast data which are

used to determine the day-ahead forecasts of load and solar generation. We collect weather

forecast data from the National Oceanic and Atmospheric Administration [see NOAA, 2014].

The forecasts are generally made at 2 AM, and forecast weather for the next day at 3 hour

intervals. We interpolate to convert to hourly forecasts. Information includes cloud cover,

wind speed, temperature, relative humidity, and dew point. All information is reported as a

continuous measure except for cloud cover, which is reported as one of six discrete measures

(“overcast” to “clear”) each corresponding to an interval in terms of the numerical percent of

sunlight passing through. We convert cloud cover to a continuous measure using the midpoint

of the interval. Our weather forecast data are from the KTUS weather station, located at the

Tucson International Airport. We supplement the weather information with data on sunrise

and sunset times at the daily level [see Sunrise, 2011].

We measure net import quantity as follows. We collect hourly data on generation for

all TEP units from the EPA Continuous Emissions Monitoring System database [see EIA,

2011a].29 Since some of these units are only partially owned by TEP, we multiply each unit’s

hourly output by its respective share of TEP ownership. We then calculated the difference

between hourly total generation output for TEP and the hourly load to get our measure of

net imports. We also obtain a “system λ” for each hour from TEP’s FERC Form 714 filing.

As this value is meant to reflect the shadow price of additional generation, we use it to proxy

for the import price of electricity. Finally, we use data on mean daily temperatures at each

weather station in the states of Arizona, California, Nevada, Utah, and New Mexico.

We obtain startup costs from a National Renewable Energy Laboratory report [see Kumar

et al., 2012] that calculates median capital and maintenance costs and associated fuel usage

per cold, warm, and hot startup by generator type and size category. Data for generation unit

outages come from the Generating Availability Data System of NERC. These data include

outages due to maintenance and forced outages. We use these data for 2007–2011 for all U.S.

29The generation information for four small natural gas turbine generators with a combined capacity of
108 MW was missing.
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generation units. We obtain data from the U.S. on system outage durations and number

of affected customers from “Major Disturbances and Unusual Occurrences” reports [EIA,

2010].

Finally, we use ancillary service auction price data from the ERCOT grid in Texas to

define operating reserve costs ERCOT [2011]. Unlike TEP, ERCOT operates a deregulated

electricity market with prices. Finally, we obtain total line losses from TEP [see UniSource,

2012].

4.2 Estimation and calibration of parameters

Table 1: Demand parameters

Parameter Interpretation Value Source

η Demand elasticity 0.1 Espey and Espey [2004]
p Retail price per MWh $98.1 EIA
g Demand growth factor 1.2 Based on historical rate

of demand growth
VOLL Value of lost load $8,000/MWh Cramton and Lien [2000]
F ≡ (FD, F S) Forecastable distribution of

demand and solar output
Estimated

Table 1 lists the demand parameters of our base model. Short-run electricity demand is

typically estimated to be quite price inelastic – see Espey and Espey [2004] for a survey and

meta-analysis. Our value of η = 0.1 is somewhat lower than the median estimate reported

in Espey and Espey [2004], but well within their range. Our value of p is based on EIA data

for Arizona in 2011. To be consistent with the loads projected during the middle part of the

life of new generation units, we scale demand quantities by g = 1.2, based on historical rates

of population and electricity consumption growth in Arizona. Importantly, the 20% growth

yields non-zero investment in new fossil fuel generators for all counterfactuals.

Using mostly customer surveys, Cramton and Lien [2000] report estimates of VOLL that

range from $1,500/MWh to $20,000/MWh. We choose a fairly conservative estimate of

VOLL=$8,000/MWh (with results from a higher value in Table 7).
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To recover FD and F S, we estimate a seemingly unrelated regression (SUR) with load

and solar output as the dependent variables. The unit of observation is a 15-minute interval

for all daytime hours over our sample period. As solar output is zero at night, we estimate

a separate nighttime load regression. We include linear splines and interaction terms of

forecast information as regressors. To predict the joint density of solar output and demand,

we simulate from the estimated residuals. We use our load estimates to recover the demand

constant D by inverting the demand equation (1). We trim the solar output at 0 and at the

rated maximum capacity.

We follow the approach outlined in Wolfram [1999] and Borenstein et al. [2002] to con-

struct the marginal cost of operation for generation units. We compute the marginal cost of

a fossil fuel generation unit as the sum of fuel cost per unit plus SO2 emissions cost per unit.

We report summary statistics for existing TEP generators in Table 2. Apart from two small

solar PV facilities, all of TEP’s generation units are fossil-fuel based. We treat the two solar

units as though they were dispatchable units producing constantly at full capacity.

Table 2 also lists characteristics of potential new generators. We use a combined cycle

natural gas generator with capacity size of kFF = 191 MW. This number is the mean of

the capacities of ten planned new units of this type in Arizona throughout 2023 as reported

in EIA [2014a]. We assume that the other characteristics of new generators are the ones

given in the EIA forecasts of emissions of new plants reported in EIA [2013]. For one of the

extensions of the model, we also allow for potential new natural gas turbine generators. We

also use the mean size of these planned units for Arizona, which is is 91 MW.

We calculate startup costs by multiplying the extra reported fuel used for startups by our

fuel prices and adding the reported capital and maintenance costs to obtain our startup cost

measure. Table C.1 (in the Appendix) provides details on our calculated startup costs for

generators in our sample. These match closely with the startup costs for Spanish electricity

generators estimated by Reguant [2014].30

A key input into our analysis is the installed cost per unit of solar PV capacity. Based

30Another potential cost is ramping costs, which are the costs of changing output. Reguant [2014] finds
that the costs of ramping a substantial amount over one hour, 100 MW, are vastly lower than the costs of
starting up a unit. Hence we do not account for ramping costs.
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Table 2: Summary statistics for TEP generators, 2011 - 2012

Unit type # Mean Mean Mean Mean Mean
Units size MC NOx SO2 CO2

Solar PV 2 6.5 (0.5) 0 (0) 0 (0) 0 (0) 0 (0)

Coal 6 263 (133) 23 (10) 3.0 (1.7) 1.6 (1.3) 1.0 (.06)

Natural gas combined cycle 1 185 (0) 35 (0) .09 (0) .01 (0) .4 (0)

Natural gas steam turbine 3 89 (13) 54 (0) 1.5 (0) .03 (0) .5 (0)

Natural gas turbine 6 39 (20) 71 (13) 3.5 (2.0) .05 (.01) .8 (.2)

Potential new natural gas
combined cycle

– 191 32.6 0.05 0.01 0.4

Potential new natural gas
turbine

– 91 47.6 0.31 0.01 0.5

Note: standard deviations in parentheses. MC figures include emissions permits. Size is measured in
MW, MC in dollars per MWh, NOx and SO2 emissions in pounds per MWh, and CO2 emissions in tons
per MWh. Source: authors’ calculations based on a variety of data sources.

on results for 2012 from Barbose et al. [2013] we find that the installed cost is $3.93 per watt

of DC power.31 We add the net present value of the cost of replacing inverter equipment, to

arrive at a capacity cost of $4.41 per watt of DC power.32

Table 3 lists solar PV capacity cost and the remaining supply parameters. We compute

the ratio of the hourly reserve marginal cost to the hourly generation marginal cost, cr,

using data from the deregulated ERCOT market on the 2008 prices in the up-regulation

and responsive reserve markets, which pay firms in exchange for giving ERCOT the option

to force them to operate with short notice.33 If they operate, they receive the price on the

balancing market. The average price is $65.41/MWh in the balancing (production) market;

$27.05 in the responsive reserve market; and $22.71 in the up-regulation market. The average

of the ratio of the responsive reserve market to balancing market prices over all hours is 0.42,

31Using data for 2012, Barbose et al. [2013] report a U.S. average installed cost of $3.30 per watt DC
for utility-scale projects (> 2 MW) and an average installed cost of $5.40 per watt DC for distributed PV
projects in Arizona (based on their Table B-3). These installed costs are averaged using the Arizona standard
that a fraction dSL = 0.3 of solar PV capacity must be distributed generation.

32Following Baker et al. [2013] we assume inverter equipment is priced at $0.60/W, real inverter prices
fall by two percent per year, and inverters are replaced twice over the life of the modules.

33The up regulation market gives firms 3 to 5 seconds to adjust production while the responsive reserve
market gives 10 minutes.
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Table 3: Remaining supply parameters

Param. Interpretation Value Source

doutage system outage hours times per-
cent of affected customers

0.98 EIA

dSL Fraction of solar generation that
is distributed

0.3 Arizona Renewable Portfolio
Standard

FCFF New combined cycle gas genera-
tor capital cost per MW

$1,095,458 EIA

New gas turbine gas generator
capital cost per MW

$921,927 EIA

FCsolar Solar capital cost per MW DC $4,410,000 Barbose et al. [2013], Baker
et al. [2013]

cr Ratio of MC for operating re-
serves to production MC

0.41 Calculated from ERCOT data

α Line loss constant 0.000035 Calculated fromTEP Form 10K
AFCT Average transmission fixed cost

per MW
$1,259,000 Borenstein and Holland [2005],

Baughman and Bottaro [1976],
& TEP line loss cost

β Discount factor 0.94
T Lifetime of generators in years 25

while the average of the ratio of the up regulation to balancing market prices over all hours

is 0.40. Our estimate of the reserve costs is the average of these two numbers.

We estimate the transmission cost parameters as follows. For line losses, we find the value

of α that matches TEP’s reported line losses of 6.6% of 2011 load, using LL(Q) defined in

equation (4) to calculate line loss as a function of α in any hour and then summing across

every hour in 2011 to get total line losses as a function of α. To calculate AFCT , we ap-

proximate average generating costs by $70/MWh, so that the 6.6 percent line loss represents

$4.62/MWh. We difference the line loss from the total transmission and distribution (T&D)

cost of $40/MWh from Borenstein and Holland [2005] to obtain an average T&D fixed cost of

$35.38/MWh. Using information in Baughman and Bottaro [1976] we calculate that 55.3%

of T&D fixed cost can be attributed to transmission. We obtain AFCT in (3) by multiplying

55.3% of $35.38 by the discounted sum of expected load and then dividing by the maximum

expected load.
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To estimate doutage we use major disturbances reported by EIA [2010] whose causes were

due to equipment failure (not, for example, due to storms) that impacted more than 50,000

customers. For 2008 there were 21 such disturbances for which we could find both the total

number of customers and the number of affected customers, from which we calculate the

percent of customers affected. For each of the 21, we multiplied the duration by the percent

of customers affected. We estimate doutage as the mean of this product.34

We calculate generator maintenance probabilities as the ratio of number of occurrences

of outages due to maintenance to total available hours; for failure probabilities we use forced

outages. We compute maintenance outage and forced outage probabilities separately for

coal units and for natural gas units. We report the probabilities in Table 4. Note that coal

generators report a higher P fail than do gas generators.

4.3 Computation of system operator’s problem

We compute the system operator’s problem conditional on a solar capacity level nSL by

finding the values of the long-run choice variables, nFF and pc from (8) and (7) respectively,

that maximize social welfare. Since nFF is a discrete variable, we perform a grid search for

this variable, and a search using the simplex method for pc.

The social welfare of any long-run choice depends on the discounted sum of the welfare

Table 4: Mean hourly maintenance and failure probabilities

Failure probability,
P fail

Maintenance proba-
bility, Pmaint

Mean number of
units per hour

Natural gas generator 0.0492% 0.0382% 342

(0.01%) (0.008%)

Coal generator 0.099% 0.047% 859

(0.027%) (0.010%)

Note: time period covered is 2007-2011. Standard errors in parentheses. Source: Generating Avail-
ability Data System of NERC.

34Our estimate here is an approximation because some of these system outages may be due to failure of
equipment other than generators.
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levels at each hour in the T -year lifespan of the generators, net of the fixed costs. The

observable data (to the economist) for an hour is the weather forecast, ~w. We assume that

the weather forecasts for the year-long sample period are repeated for each of the T years.

The operator also observes maintenance status ~m, and we integrate over this variable with

simulation as it is not observed.

For a given hour, observing (nFF , pc, ~w, ~m), the operator chooses ~on and z. For each value

of (nFF , pc, ~m, ~w, ~on, z), we simulate generator failures ~x( ~on) and demand and solar output

F (·, ~w), and solve for the social welfare at that hour. We then perform a grid search in ~on

and z to maximize social welfare at that hour. For each nFF and pc, we sum the maximum

welfare levels across (~w, ~m) to obtain the total welfare that feeds into our simplex search.

We make a couple of simplifications to our short-run optimization algorithm, in the in-

terest of computational tractability. First, we assume that the operator schedules generators

in ascending order of MC when computing optimal generation for a second-stage period.35

Although this point is intuitively reasonable, because of differences in sizes and failure prob-

abilities across generators, it is possible that a system operator would want to schedule a

higher MC generator and not a lower MC one. Second, we assume that the operator curtails

demand only if all available generators for which MC is below the marginal cost of curtail-

ment, dWLC(z)/dz, are scheduled. Again, this point is intuitively reasonable but may not

hold exactly because generators come in discrete chunks.

We now provide some details on the simulation procedures. We use 20 draws to simulate

from the estimated residuals of the joint distribution of load and solar output conditional on

a forecast. Note that the operator’s problem also involves simulation of generator failures.

Failure probabilities for individual generators are small, and probabilities of multiple failures

– which might cause a system outage – are very small, but the adverse consequences of a

system outage are very large. Thus, our computation is challenging because integration using

a direct simulation method would be very inefficient. Instead, for each type of generator, we

integrate over the probability of a given number of failures given a total number of generators

operating, and then simulate the identity of failed generators conditional on the number of

35This is called “sequential optimization” in the electricity literature [see IESO, 2012].
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failures. We integrate over maintenance probabilities using the same method.

Finally, note that our results compare the baseline to a number of different counterfac-

tual environments. To minimize the impact of simulation error on our results, we use the

same demand, solar output, maintenance and failure simulation draws for all environments

when possible. For the counterfactuals where we use different forecasting technology (e.g.,

afternoon weather forecasts instead of morning ones), we cannot use the same distribution of

predicted residuals for demand and solar output as in the baseline. Here, we normalize the

simulated draws so that the mean demand and solar output are the same as in the baseline.

5 Results

We first discuss the results of our forecast estimation. We then analyze the baseline predic-

tions of our model; breakdown the sources of social costs for solar energy; and evaluate the

social costs of solar energy under different complementary environments.

5.1 Forecast estimation results

The estimated relationship from the SUR model of daytime load and solar output on weather

forecasts is reported in Appendix Table C.2. The nighttime impact of weather forecast on

load is reported in Appendix Table C.3.

We find a U-shaped relation between forecasted temperature and load in both regressions,

which occurs because electricity is used for both heating and cooling. For solar output,

forecasted cloud cover variables are negative and are increasing in magnitude with more

cloud cover, as expected. The R2s are 0.959, 0.945, and 0.878 for daytime load, nighttime

load, and solar output, respectively. The correlation in the residuals between load and solar

output is 0.093 and statistically significant (χ2(1) = 152, P = 0.00).

Given that we assume that the system operator can use our regression output for genera-

tor scheduling and demand-side management, it is useful to understand how the precisions of

our forecasts compare to those used by electricity firms and in the systems engineering litera-

ture. While we could not obtain TEP forecast information, HydroOne, the largest electricity
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provider in Ontario, reports R2 values between 0.84 and 0.92 for their load predictions [Hydro

One, 2012]. Many engineering studies report the mean absolute percentage error (MAPE),

defined as the mean of the absolute value of load minus predicted load all divided by load,

rather than R2. Our daytime and nighttime MAPEs are both 0.03. A variety of studies on

forecasting report MAPEs for load that range from 0.017 to 0.027 [see Fay and Ringwood,

2010, Weron and Misiorek, 2004].

For solar, MAPE will be infinite, because output can be zero. It is common to report

the relative root mean square error (rRMSE) here, which is the square root of mean squared

forecast error, divided by mean output. We find a daytime rRMSE of 0.23. This compares to

daytime rRMSE values of 0.17 to 0.46 reported from a variety of solar studies using several

different forecasting models [see Larson, 2013]. Thus, we believe that our forecast precision –

for both load and solar output – is well within the range of forecasts that are currently used

by utilities.

5.2 Social costs of large-scale solar energy

Table 5 reports our computational results for the social costs of large-scale solar generation,

with more details in Appendix Table C.4. The first column reports the baseline with no solar

PV investment. The remaining columns progressively add more solar capacity up to 20% of

generation being produced by solar. Overall, we find that the social cost of large-scale solar

energy – not accounting for CO2 benefits – ranges from $126.7 to $138.4 per MWh.

Comparisons between solar PV and conventional generation are often based on levelized

cost, which is the average cost over the life of the unit. The realized solar output and our

assumption about the cost of solar panels together yield a levelized cost of $181.2 per MWh

for solar PV generation. The levelized cost for a new combined cycle generation unit is $66.3

per MWh [see EIA, 2014]. Thus, on the basis of a simple average cost comparison, solar PV

imposes an additional per unit cost of $114.9 per MWh. Our analysis, which endogenizes

choices in response to a solar mandate, finds that the social costs of 20% solar penetration

are higher than the levelized cost difference by $23.5 per MWh.

We now evaluate the predictions of our model in a little more depth. Building solar
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Table 5: The social costs of large-scale solar (base specification)

Fraction of generation from solar 0% 10% 15% 20%

Foregone new gas generators (#) 0 2 2 3

Mean system outage probability 4.76e-5 5.82e-5 5.81e-5 8.4e-5

Reserves (as % of energy consumed) 30.5 32.1 33.6 35.2

Curtailment quantity (as % of total load) 0.11 0.19 0.14 0.24

Curtailment price pc ($/MWh) 661 469 431 804

Production costs 437.2 380.0 355.2 332.2

Reserve costs 78.1 81.5 82.8 84.8

Gas generator investment costs 2,090 1,672 1,672 1,463

Solar capacity investment costs 0 4,148 6,221 8,295

Transmission fixed costs 331.4 319.4 317.4 316.2

Loss in $ surplus per MWh solar produced – 126.7 133.7 138.4

Loss in $ surplus per ton CO2 reduced – 293.1 283.5 279.1

Note: cost variables are measured in millions of dollars per year. The second to last row (Loss in
$ surplus per MWh solar produced) does not account for environmental benefits except for SO2

permits.

capacity causes the system operator to forgo natural gas generators. While the number of

new gas generators is weakly monotonically decreasing in solar output, the decrease is very

non-linear, with the planner forgoing two generators with 10% or 15% solar, and 3 generators

with 20% solar. For the 20% solar case, the three gas generators have a combined capacity

of 573 MW, while the listed solar capacity is 1,881 MW.

A system outage occurs with probability 0.0048% each hour in the baseline, rising to

0.0084% with 20% solar. NERC mandates a “one day in ten years” standard for system

outage. The interpretation of the NERC standard varies across utilities [see Cramton et al.,

2013]. If the standard is interpreted as “one event in ten years” then this corresponds to a

system outage probability of 0.0011% for each hour. If it is interpreted as “24 hours of system

outage in ten years,” then it corresponds to an expected failure probability of 0.027% in any

hour. Our model uses a mean system outage duration of 4 hours implying an analogous

figure of 0.019% for our model. Thus, depending on the interpretation, our model predicts

a baseline optimal failure probability that is either 30% lower or 4 times higher than the
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NERC outage standard. Moreover, the optimal outage probability rises significantly but not

dramatically given large-scale solar.

On average over all hours, operating reserves are 30.5 percent of load with 0% solar, going

up to 35.2% for the 20% solar case. Thus, our predicted reserves for 0% solar are higher than

the 23% ratio necessary to meet NERC reserve standards (noted in Section 2.1). Given

that we use an approach for choosing reserves that differs from the NERC criteria we would

not expect predicted reserves to match the 23% benchmark. Extra reserves may also arise

because we approximate the scheduling problem with sequential optimization, whereby the

operator turns on generators solely in increasing order of marginal cost. Even though reserve

operations increase with the solar penetration, this effect adds only $6.7 million in annual

costs for 20% solar relative to the baseline. This is, for instance, far less than the decrease

in production costs ($105 million) over this range.

Baldick et al. [2006] report that prices for curtailment contracts range from $150 to $600

per MWh. The comparable price for our baseline is $661 minus the retail price of electricity,

or $563 per MWh. Thus, our baseline number is within the range that exists in the real

world.

We find that the probability of some demand curtailment in July at 6PM rises monoton-

ically with solar penetration, from 9.7% without solar to 58% with 20% solar. July at 6PM

is a time of moderately high demand but low solar output. In contrast, the probability of

some demand curtailment in July at noon goes down monotonically with more solar output.

Overall, the curtailment quantity and price chosen are not monotonic in solar output, though

both are higher with 20% solar than with no solar. Here, the multiple tradeoffs between solar

generation, backup fossil fuel generation, system outage probability, and curtailment do not

lead to an easily quantifiable trend.

We find that the probability of having at least one gas generator scheduled goes down

from 97% to 90% as we go from 0% or 10% solar to 20% solar and that the social costs of

solar increase over the 10-20% range. Borenstein [2008], Lamont [2008], and Joskow [2011]

point out that valuation of a renewable generation source should be based on the marginal

cost of the generation it displaces. Since coal generators have lower marginal costs, the fact
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that solar substitutes more from coal at higher capacity levels contributes to the increase in

the social costs of solar as solar capacity increases.

Figure 4: Solar capital costs versus social costs for 20% solar
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Note: $4.41 is our baseline solar capital costs. $39 is the EPA mean social cost of carbon
and $116 is the 95-percentile social cost of carbon, both using a 3% discount rate.

Table 5 also compares the loss in social surplus from each solar policy relative to the

baseline to the offset CO2 emissions. We find that the dollar cost per ton CO2 reduced

ranges from $293.1 with 10% solar penetration to $279.1 with 20% solar penetration. The

U.S. government baseline value for the social cost of CO2 in 2015 is $39 per ton [EPA, 2015].

Thus, using our capital cost numbers, one could not justify large-scale investment in solar

on a social cost basis using the U.S. government figures. However, solar capital costs have

been dropping dramatically and are expected to drop further. For this reason, we expect this

result to change over time. Figure 4 considers the social break-even point for 20% solar as a

function of solar capital costs. We find that solar capacity costs would have to drop to $1.52

per W for 20% solar to be welfare neutral at the central 2015 U.S. government figure, or to

$2.43 per W for welfare neutrality at the 95th percentile figure [EPA, 2015].36

36The displacement of fossil fuel generation displaces other pollutants beside CO2. Our analysis accounts
for part of this benefit by including the EPA permit price for SO2 emissions. However, the recent SO2 permit
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Finally, Appendix Table C.5 examines the social costs of solar including startup costs of

fossil fuel generators. We find that adding large-scale solar does add to the total costs of

startups. For instance, with 20% solar penetration, the total costs per startup accounts for an

increase in $5.3 per MWh of solar generated, raising the social cost of solar from $138.4 per

MWh to $143.7 per MWh. Note that this likely overstates the extra startup costs generated

by large-scale solar as, in our model, the system operator does not account for these costs in

making her decisions.

5.3 Components of social costs for solar

Table 6 decomposes the sources of the social costs of 20% solar. The first row repeats the base

20% solar case from Table 5. The next four rows examine the impact of different components

of intermittency on the social costs of solar. First, we find that eliminating the unforecastable

component of solar output lowers social cost by $6.1 per MWh relative to the base case. This

drop is small compared to the overall additional social cost of solar generation. System

engineering studies that account for backup capacity and operating reserve changes often

find higher costs of unforecastable intermittency,37 while studies that employ a narrower set

of cost factors find somewhat lower costs.38

We next consider the total intermittency costs, which we define to be the difference in

social costs between large-scale solar and a perfectly dispatchable energy source that produced

the same total output.39 We find that perfect dispatchability would lower the social cost of

20% solar by a substantial $46 per MWh. While many factors together result in the relative

price we use is close to zero and likely understates the marginal damage of SO2 emissions [Schmalensee and
Stavins, 2013]. Muller and Mendelsohn [2009] estimate marginal social damages from SO2 and NOx. Using
their values, we nonetheless find very small benefits to solar from offset emissions of these pollutants.

37For instance, Skea et al. [2008] find a cost of roughly 15% of the cost of wind generation for 20% wind
power penetration in the U.K. This figure is based on the difference between the capacity credit for wind and
average wind production. The capacity credit of a generation resource is meant to capture its contribution
to system reliability and hence is similar to our notion of unforecastable intermittency.

38For 9-17% solar PV penetration in the Arizona Public Service (Phoenix, Arizona) territory, Mills et al.
[2013] estimate that eliminating PV forecast errors would reduce costs by $2-4 per MWh of solar generation.
Their analysis does not adjust backup generation, for instance.

39The systems engineering literature has no single accepted definition for total intermittency costs, or as
it is often called in this literature, integration costs. A common approach is to define integration costs as
the difference between total system cost with renewables and total system cost for a reference case without
renewables, although such a definition depends on how the reference case is defined [Milligan et al., 2011].
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unimportance of unforecastable intermittency, it is worth noting that the R2 of 0.878 for

solar output is very similar to the ratio of 0.867 of forecastable to total intermittency costs.

Table 6: Decomposition of social costs of 20% solar

Experiment Loss in $ surplus per MWh
solar

Base case – feasible solar 138.4

No unforecastable intermittency 132.3

Fully dispatchable 92.4

Equal generation profile 133.8

Eliminate distributed generation: dSL = 0 118.7

Fixed costs FCSL drop from $4.41/W to $2/W 39.4

Same policies as without solar 281.6

Rule-of-thumb policy with 10% solar capacity credit 154.8

Rule-of-thumb policy with 12.5% solar capacity credit 153.2

Note: “no unforecastable variance” produces at the forecastable mean. “Fully dispatchable” solar can
be dispatched based on the demand forecast. “Equal generation profile” produces equally at every hour
with the same total capacity as the baseline. “Rule-of-thumb” policies reduce fossil fuel capacity by the
capacity credit of installed solar capacity and increase daytime reserves until the mean system outage
probability is the same as in the base case.

A hypothetical solar facility that always produced at its mean output level would be

better than the base case by $4.6 per MWh. Distributed generation is also costly, raising

the cost of solar by $19.7 per MWh. Here, the transmission cost savings from distributed

generation are small relative to the extra capacity costs.

All of these savings are small compared to the fixed cost of solar. Our fixed costs of

$4.41 per W reflects average installed costs in 2012 for a mix of utility-scale and distributed

(residential and commercial) sites, but the lowest cost utility-scale projects in the U.S. were

approximately $3.00/W DC power (including costs of inverter replacements) [see Barbose

et al., 2013]. If the cost of solar were to drop to $2 per W as many industry observers believe

will occur, then the social costs of large-scale solar would drop by $99 per MWh.

The final three rows of Table 6 compare the social cost of solar under alternative policy

environments. We first examine a policy where the system operator uses the same nFF and
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pc as in the base case, and, in each stage 2 period, employs the same quantity of operating

reserves and curtailed demand.40 We find that this policy results in a much higher social cost

of large-scale solar: $281.6 per MWh instead of $138.4 in the base case. Part of the reason

is the extra generator cost. Not reported in Table 6, much of the loss comes from a much

higher system outage probability than in the base case, of 0.3% in each period.

We also examine social costs where the system operator adjusts capacity and reserve

operations using rules of thumb similar to those suggested by the systems engineering lit-

erature. First, we assume that the system operator reduces gas generator capacity by the

solar capacity credit, which indicates the percentage of the solar capacity that is reliably

available to meet load during peak demand periods. Utilities in the Southwest U.S. use solar

capacity credits that range from 11.7% to 14.4% [Sigrin et al., 2014, Table 1]. Mills and

Wiser [2012a,b], Sigrin et al. [2014] all note that simulation studies of reliability yield lower

capacity credits for solar PV as PV penetration rises. We consider two different capacity

credits: 12.5% (which is roughly the midpoint from Sigrin et al.), and 10% (which lowers

this number to account for the higher PV penetration in our study).41 Second, we assume

that system operators would preserve the same mean system outage probability as in the

baseline, by increasing reserve operations by a fixed amount in all daytime hours until the

mean system outage probability matches the baseline level.

We find that both rule-of-thumb policies have social costs that are about $15 per MWh

higher than under the optimum, implying that reoptimization may be important in lowering

social costs of renewable energy. More generally, utilities often express concern over the

costs of integration for large-scale renewable energy. We believe that this may be because

they are not sure of how policies should optimally change in the case of large-scale solar.

The envelope theorem implies that it is not necessary to reoptimize policies with only a

small amount of solar on the grid. But, the envelope theorem no longer holds with 20% of

electricity generation from solar. Thus, a very useful complement to large-scale renewable

40Since reserve operations come in discrete quantities, we cannot implement exactly the same reserve
operations. We use the smallest level of reserve operations that is weakly greater than in the base case.

41Both are lower than the solar capacity factor (mean production level per unit of capacity) in our data,
which is 20.1%.
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energy is policy reoptimization with the goal of minimizing social costs.

5.4 Robustness to environment

Table 7: Social costs of 20% solar given different environments

Environment Surplus without solar
(million $/year)

Loss in $ surplus
per MWh solar

Base environment 134,481 138.4

No interruptible power contracts 134,453 137.8

Imports and exports allowed 134,508 139.2

Investment in additional generator type 134,482 138.4

2PM (instead of 2AM) forecasts 134,482 139.3

Forecasts with 24-hour lagged demand 134,485 138.5

VOLL increased to $12,000 202,225 138.9

Note: “investment in additional generator type” allows the system operator to invest in both natural gas
combined cycle and natural gas turbine generators.

We now examine how the social cost of solar changes across different environments, with

results in Table 7 and Figure 5. The first row of Table 7 repeats the base environment, now

presenting both the total surplus in the absence of solar, and the change in surplus per MWh

solar output for 20% solar. The second row presents the case without curtailment contracts.

In this case, the baseline welfare goes down by about $28 million per year. But, the loss in

surplus from 20% solar is almost the same in the base environment and without curtailment

contracts. The net effect is that the social cost of solar is virtually unchanged from the base

environment, at $137.8 instead of $138.4 per MWh solar.

A similar pattern is repeated across all rows in Table 7. The third row examines the value

of adding imports and exports, which we obtain by first estimating a net import function

and then by solving the operator’s problem with the estimated net import function.42 With

imports and exports allowed, the baseline welfare increases by $27 million per year, but the

social cost of solar is very similar to the base environment, although net exports increase

42We follow the estimation method of Bushnell et al. [2008] here. See Appendix B for details on the
estimation and model.
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substantially in the presence of 20% solar production. The assumption of no imports or

exports has been used in other studies of electricity in the Western U.S. [see, for instance,

Borenstein and Holland, 2005, Mills et al., 2013]. While these studies measure a wider

geographic area, our results show that this assumption does not have a large impact on solar

valuation for even the relatively small area that we consider. An important caveat is that,

by holding constant the current import elasticity into the future, we are essentially assuming

that TEP expands solar while other utilities do not.

We next examine the impact of allowing the system operator to choose two types of new

gas generators: combined cycle and gas turbine. The values from this change in environment,

both with and without solar, are very modest. However, not reported in the table, the system

operator does choose some gas turbine generators. For instance, with 20% solar, the system

operator goes from building 7 new combined cycle generators under the base environment to

building 6 combined cycle and 3 (smaller) gas turbines when allowed.

We next consider the value of better forecasts, and again find little change. Finally,

Table 7 examines the impact of increasing the value of lost load from $8,000 to $12,000. The

higher VOLL causes a huge increase in the total welfare – but only changes the social cost

of solar by a tiny amount, of 50 cents per MWh.

Figure 5 shows the impact of three more environments. Part (a) shows the impact of

the intermittency costs as the time scale of solar output observations increases.43 We find

a $3.5 decrease in the social cost of solar per MWh with 60 minute data. Our results on

the impact of the solar generation time scale are roughly consistent with results in Mills and

Wiser [2010]. Thus, the high frequency nature of solar intermittency adds costs.

Our baseline analysis uses data from 58 solar sites within 40 kilometers of the center of

Tucson. Part (b) shows the impact of having fewer, more geographically concentrated sites,

on the social cost of high solar penetration. Here, we find that the results are quantitatively

important: having only sites within 10 kilometers of the center results in social costs that

are $17.0 per MWh higher than the baseline. Relatedly, the R2 of the solar forecast increases

monotonically from 0.866 with the 10 kilometer radius to 0.878 with the 40 kilometer radius.

43Appendix B provides modeling details for the model with multiple solar observations per hour.
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Figure 5: Social costs of 20% solar from unforecastable intermittency, geographic dispersion,
and real-time pricing
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By including all sites within 20 kilometers of the center, the social costs are very similar

to the 40 kilometer costs. As a caveat, we note that we are comparing sites that may use

slightly different solar technologies and have different environmental characteristics, such as

shade prevalence.

Finally, Part (c) shows the impact of real-time pricing contracts on the social cost of

solar.44 Adding customers on real-time pricing adds to the social value. For instance, without

solar, having 75% of customers on real-time pricing contracts adds $36 million to annual social

surplus relative to having no real-time pricing (the dashed line). Yet, a very similar total

benefit of real-time pricing arises in the presence of solar. Thus, real-time pricing has a

negligible effect in changing the social costs of large-scale solar.

6 Conclusions

A variety of current and potential policies have stimulated investment in renewable energy

generation. Intermittency of renewable generation may have a significant impact on electric

grid reliability, system operations, and requirements for backup generation capacity. Because

a grid operator must make different long- and short-run decisions in response to intermittent

renewable output, we believe that the social costs of intermittency can best be understood

in the context of a model that maximizes welfare.

We develop an empirical approach to estimate the social costs of renewable energy ac-

counting for their intermittent nature. Our approach has three parts: (1) a theoretical model

that is based on the work of Joskow and Tirole [2007]; (2) a process to estimate and calibrate

the parameters of this model using publicly-available data; and (3) a computational approach

to evaluate the impact of counterfactual policies and environments.

The biggest limitations of our approach are that we do not optimize over dynamic linkages

from period to period45 and that we do not consider market power, evaluating only the social

optimum. Moreover, our assumed operating reserve costs are at best an approximation of

44In our model, the system operator chooses the prices for these contracts at the same time as she schedules
generators, one day in advance. Appendix B provides modeling details for this model also.

45Cullen [2010a] estimates a dynamic model of startup costs for generators. A similar model would hugely
complicate our analysis.
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reality.

We examined the impact of large-scale solar on the Tucson, Arizona grid area. We find

that the social cost of 20 percent solar generation are $138.4 per MWh of which unforecastable

intermittency only accounts for $6.1 per MWh. While these numbers only pertain to one

metropolitan area, evidence from solar potential maps and output and load at different sites

throughout the U.S. suggests that the social costs would be similar for the southwestern

quadrant of the U.S. Other environments, such as allowing imports and exports outside of

the grid area or allowing a greater fraction of consumers on real-time pricing contracts have

very small impacts in terms of changing the social costs of large-scale solar.

Our study has a number of broader implications beyond the results for solar generation

in Arizona. First, our finding that the costs of intermittency for solar energy are lower

than many industry observers believe may be important. In particular, costs associated

with intermittency are a relatively small component of the overall welfare cost of large-scale

solar; the bulk of the welfare cost is simply the high installation cost of solar. Our results

on intermittency stem from the assumption that utilities implement substantial changes in

demand-side management policies, reserve operations, and investment in backup fossil fuel

generators in response to substantial solar capacity. It is possible that utilities need to obtain

knowledge about how these decisions should change in the presence of substantial renewable

generation, and our study provides a framework that can be used to guide utilities along this

dimension.

Second, our study has implications about the benefits of different renewable energy poli-

cies. While we find that an immediate investment in large-scale solar with current technology

would reduce welfare, if solar capacity costs drop below $1.52, large-scale solar PV generation

becomes welfare increasing when accounting for the benefit from offset CO2 emissions.

Finally, our approach can be used to analyze a variety of other energy policies many

of which might require changes in complementary policies to minimize social costs. These

policies include understanding the social costs of reducing emissions from a renewable energy

standard versus a carbon tax; and how technologies such as battery storage and electric

cars which change the effective time pattern of demand can change the value of renewable
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mandates.
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Appendix A: Derivations of demand-side properties

Lemma 1. With demand specified in (1) and retail price fixed at p, VOLL is constant across
states. The relation between VOLL and v is monotonic and satisfies

v =
(
(1− η)p−ηVOLL + ηp1−η) 1

1−η . (9)

Proof

VOLL =

∫ v
p̄
D(p,D)dp+ pD(p,D)

D(p,D)
=
D( 1

1−η )(v(1−η) − p(1−η)) + pDp−η

Dp−η

=
D( 1

1−η )(v(1−η) − ηp(1−η))

Dp−η
=
v1−η pη − ηp

1− η
Solving for v in terms of VOLL and the other parameters, we obtain the expression in the

statement of the lemma.

Lemma 2. Assume that the demand that can be curtailed in any period is limited by the

minimum demand scale, D
min

(~w). If pc < v, then curtailment quantity is bounded above by

D
min

(~w) [p−η − p−ηc ]. The welfare loss associated with curtailment quantity z is:

WLC(z, pc) =
η(p1−η − p1−η

c )z

(η − 1)(p−η − p−ηc )
.

Proof Let P (q,D) denote the inverse demand curve. Then, the welfare cost of z is

WLC(z, pc) =

(
z

D(p,D)−D(pc, D)

)∫ D(p,D)

D(pc,D)

P (q,D)dq

=
zη(p̄1−η − p1−η

c )

(η − 1)(p̄−η − p−ηc )
.

Note that D drops out of the welfare cost, which depends on the state only through the

quantity z of rationing chosen at that state.

Appendix B: Extensions to the model

Multiple solar observations per hour

Most of our specifications, including our base specification, include solar data measured at

the 15-minute level even though decision-making occurs at the one-hour level. In the interest
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of ease of exposition, the model described in Section 3 considered the case where the decision-

making, solar output, and load all occur at the hourly level. We now consider the case where

there are Y ≥ 1 solar observations per hour period.

Allowing for multiple solar observations per hour results in S being vector-valued, S ≡

(S
1
, . . . , S

Y
). Let S

mean
denote the mean over the Y values, and S

min
the minimum over the

Y values.

With this new model, (3), the transmission fixed costs will then include S
mean

instead of

S. Equation (5), the outage event, substitutes S
min

for S. Finally, for the system operator[s

second-stage maximization problem W in (6), the PC term becomes:

Y∑
y=1

PC
(
Dp−η − z − nSLSy + LL(Dp−η − z − dSLnSLSy), ~x( ~on)

)
.

The model is then computable using this modified version of the operator’s problem.

Real-time pricing

For this extension, we specify that an exogenous fraction γ of customers are on real-time pric-

ing (RTP) contracts, with the remaining customers paying a fixed retail price. We assume

that the system operator sets the real-time prices at the same time as scheduling generators,

which is one day in advance. This RTP specification is similar to Borenstein and Holland

[2005]. In this extension, we eliminate demand-side management through curtailment con-

tracts that are in the base model.

As before, p is the fixed retail price for customers not on RTP. Let pRTP (~m, ~w) be the

real time price, where we make explicit that this price is a function of maintenance status

and the weather forecast. The demand for electricity is then:

QD(pRTP (~m, ~w), p,D) =

 D(1− γ)p−η, pRTP (~m, ~w) > v

D(γpRTP (~m, ~w)−η + (1− γ)p−η), pRTP (~m, ~w) ≤ v.
(10)

Our computation of the RTP solution solves for the optimal pRTP (~m, ~w) via a grid search.

We let pRTP be bounded between $0 and $5000 per MWh.

Finally, note that there are many other potential demand-side management tools besides

the two that we consider. For example, Borenstein [2012] explores the use of critical peak
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pricing (CPP) for residential customers. Customers on a CPP plan pay relatively low retail

electricity prices except during a limited number of days of exceptionally high demand. These

types of contracts could also be considered within our framework.

Imports and exports

Finally, we add imports and exports to our model by introducing a net import supply function

for the home (TEP, for our application) grid area. Denote the net import quantity as qI ; a

positive value indicates imports into the home area and a negative value indicates exports

from the home area. Correspondingly, denote the price of imports pI . We assume that the

system operator is faced with an expected net supply curve for imports of:

qIt = αIt + βI log pIt , (11)

where αIt , the import supply level, varies across hourly time periods t, and βI is the net

import supply semi-elasticity.

Our model with imports and exports is as follows. Net import decisions are made one day

ahead, at the same time as scheduling generators. For each hour-long period, the operator

observes ~w, ~m and the net import supply curve for that time, and then commits (except in

the case of system outage) to a point on the net import supply curve.

The operator’s objective function includes the cost (benefit) of imports (exports), but is

otherwise the same as in the base model – she does not internalize the fact that if there is a

system outage, she may not export the amount that she promised, which may cause system

outages in other localities. In this extension, we do not allow demand-side management. The

reason is that the system operator can obtain electricity at lower social cost by importing it

than by curtailing demand. Our computation of the import/export solution solves for the

optimal import quantity, as a function of (t, ~w, ~m), via a grid search.

We estimate the parameters of net import supply using the methods of Bushnell et al.

[2008]. Specifically, we parametrize αIt to include the cooling and heating needs of the sur-

rounding states of California, Nevada, Utah, and New Mexico. For each of these states at
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each hour, we include for αIt the mean cooling and heating degree days and their squares.46

We calculate the mean by averaging over all weather stations within a state. In addition to

these 16 variables, we also include indicators for month, day of the week, and hour of the

day in αIt . We also obtain pI and qI as described in Section 4.1.

As in Bushnell et al. [2008], we estimate (11) with an instrumental variables regression

and instrument for pI with the local (TEP) load, as local load is correlated with pI but not

with the unobservable component of the operator’s chosen import and export quantity. The

unit of observation for our analysis is every hour during our sample period. We estimate

βI = 8, 862.2 (with a standard error of 963.0). Our mean estimated αIt is −30, 616.4. At the

mean αIt , the system operator would pay $32.7 per MWh to import 300 MW in an hour and

would receive $30.6 per MWh to export 300 MW in an hour.47

Appendix C: Additional figures and tables

Table C.1: Summary statistics for startup costs of TEP generators, 2011 – 2012

Unit type # Additional Capital and Total
units fuel costs maintenance costs costs per

per startup per startup startup

Solar PV 2 0 0 0
Coal (< 300 MW) 3 20.3 132.7 152.9
Coal (> 300 MW) 3 29.0 76.3 105.3
Natural gas combined cycle 1 1.0 56.3 57.3
Natural gas steam turbine 3 1.0 56.3 57.3
Natural gas turbine 6 1.9 87.0 88.9

Potential new natural gas
combined cycle

– 1.0 56.3 57.3

Potential new natural gas
turbine

– 1.9 87.0 88.9

Note: All costs in $/MW. Source: Kumar et al. [2012] .

46Heating degree days is defined as 0 if the day’s mean temperature is greater than 65 and it is equal
to (65 - day’s mean temperature) if the mean is less than 65. cooling degree days is 0 if the day’s mean
temperature is less than 65, and as (day’s mean temperature - 65) if the mean is greater than 65.

47Our numbers cannot directly be compared to Bushnell et al. [2008], since their equivalent of qI included
local production by a fringe.
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Figure C.1: Summary statistics for TEP hourly load (MWh), May 2011 - Apr. 2012
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Figure C.2: Summary statistics for Tucson solar output, 2011 - 2012
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Table C.2: Estimation of daytime load and solar output forecasts

 
 Load (MWh) Solar output (kWh) 
 Coefficient on spline for Coefficient on spline for 
 1stdecile 5thdecile 10thdecile 1stdecile 5thdecile 10thdecile 

Temperature –25.7** 
  (1.4) 

–2.3  
 (1.3) 

39.0** 
(1.0) 

4.3**  
(0.8) 

 1.5* 
(0.7) 

1.9** 
(0.6) 

Dew point   0.6 
 (1.3) 

 7.7** 
(1.9) 

22.3**  
(1.5) 

–4.1** 
(0.7) 

–3.4** 
(1.0) 

–1.3  
(0.8) 

Relative 
humidity  

  8.1*      
(3.9) 

–10.8** 
(1.4) 

–3.0** 
(0.6) 

10.2**  
(2.1) 

2.8**  
(0.8) 

1.6** 
(0.3) 

Wind   5.9*   
(2.7) 

–1.0  
(3.3) 

–2.1** 
(0.5) 

–3.7*  
(1.5) 

6.4** 
(1.8) 

1.2**  
(0.3) 

 2–15% 38–60% 78–94% 2–15% 38–60% 78–94% 

Cloud cover 568** 
(52) 

296** 
(51) 

502** 
(102) 

–108**    
(28) 

–238**   
(27)  

–332**   
(55) 

 Coefficient on hour Coefficient on hour 
 1  4  6 1  4  6  
Hours since 
sunrise, AM 

–146.2**         
(7.7) 

–55.5**      
(6.3) 

 0.7     
(7.6) 

43.3** 
(4.2) 

35.0** 
(3.4) 

36.4** 
(4.1) 

Hours till 
sunset, PM 

306.8  
(22.5) 

49.0** 
(5.2) 

 8.6     
(6.1) 

63** 
(12.2) 

52.4** 
(2.8) 

35.1** 
(3.3) 

Temp × cloud –7.5**   (0.7) 1.5**    (0.4)  
RH × cloud –3.4**    (0.7) 1.0**    (0.4) 
Wind × cloud  –1.6*    (0.7) –4.6**   (0.4) 
Dew × cloud    5.8**    (0.8) –0.2    (0.5) 
6AM dummy  132**             (8.3) –5.3       (4.5) 
…   
12PM dummy   667**            (31.1) 124**           (16.8) 
…   
6PM dummy  118**            (20.3) –93**           (11.0) 
R–squared 0.959 0.878 
MAPE 3.4%  
rRMSE  0.234 
Correlation of 
residuals 0.093** 
Note: Model estimated with a SUR specification. Unit of observation is 15 minute 
interval in May 2011 – April 2012. Standard errors are clustered at hour level. Number 
of observations is 17,825. We include as regressors day-of-week and month-of-year 
indicators and full sets of spline coefficients. MAPE is the mean absolute percentage 
error. rRMSE is the relative root mean squared error. 
** Statistically significant at 1% level. 
* Statistically significant at 5% level. 
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Table C.3: Estimation of nighttime load forecast

 Nighttime Load Forecast  
 
 
 
 Load (MWh) 
 Coefficient on spline for 
 1stdecile 5thdecile 10thdecile 
Temperature –22.0** 

(2.8) 
  2.2        
(2.5) 

36.7** 
(5.3) 

Dew point   3.9 
(3.0) 

 8.2* 
(3.2) 

12.7** 
(3.3) 

Relative humidity  –0.3      
(9.1) 

–6.3*  
(3.0) 

–3.1** 
(1.0) 

Wind –5.0  
(4.1) 

–3.2  
(4.0) 

–5.4**  
(1.2) 

    
 2–15% 38–60% 78–94% 
Cloud cover 257**  

(74) 
  83  
(69) 

  31 
(130) 

    
Temperature × cloud cover –5.5**    (1.2) 
Relative humidity × cloud  –1.6*    (0.8) 
Wind × cloud cover  4.1**   (1.4) 
Dew point × cloud cover  5.1**   (1.5) 
  
9PM dummy 263**   (5.5) 
…  
3AM dummy  –67**              (4.1) 

 
R–squared 0.945 

 
MAPE 3.2% 
 
Note: Model estimated with OLS. Unit of observation is 15 minute interval in 
May 2011 – April 2012. Standard errors are clustered at hour level. Number of 
observations is 17,311. We include as regressors day-of-week and month-of-
year indicators and full sets of spline coefficients. MAPE is the mean absolute 
percentage error.  
** Statistically significant at 1% level. 
* Statistically significant at 5% level. 
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Table C.4: Detailed results for base specification in Table 5

Fraction of generation from solar 0% 10% 15% 20%

Solar PV capacity (MW) 0 941 1,411 1,881
Solar production (1000 MWh/year) 0 1,694 2,541 3,387
Load (1000 MWh / year) 16,937 16,937 16,937 16,937
New 191MW natural gas generators (#) 10 8 8 7
Foregone new gas generators (#) 0 2 2 3
Scheduled non-solar prod. + res. (1000
MWh/year)

24,021 22,466 21,852 21,216

Realized non-solar prod. + reserves (1000
MWh/year)

24,003 22,449 21,835 21,199

Reserves as % of energy consumed 30.5 32.1 33.6 35.2
Average system outage prob. 4.76e-5 5.82e-5 5.81e-5 8.4e-5

Curtailment price pc ($/MWh) 661 469 431 804
Total curtailment (as % of total load) 0.11 0.19 0.14 0.24
Prob. of some curtailment Jul. 12PM 0.033 0.032 7.8e-5 2.6e-7
Prob. of some curtailment Jul. 6PM 0.097 0.37 0.33 0.58

Production costs 437.2 380.0 355.2 332.2
Reserve costs 78.1 81.5 82.8 84.8
Gas generator investment costs 2,090 1,672 1,672 1,463
Solar capacity investment costs 0 4,148 6,221 8,295
Transmission FC 331.4 319.4 317.4 316.2
Transmission line losses (1000MWh/yr) 1,480 1,378 1,335 1,287
Prob. natural gas generator scheduled 0.97 0.97 0.95 0.90

Loss in surplus relative to baseline (million
$/year)

– 214.5 339.7 468.9

Loss in surplus per unit solar production
($/MWh)

– 126.7 133.7 138.4

Loss in $ surplus per ton CO2 reduced – 293.1 283.5 279.1

NOx emissions (1000 metric tons / year) 12.8 12.6 12.2 11.8
SO2 emissions (1000 metric tons / year) 6.3 6.3 6.1 6.0
CO2 emissions (mill. metric tons / year) 15.1 14.4 13.9 13.4

Note: Cost variables are measured in millions of dollars per year.

Table C.5: The social costs of large-scale solar including startup costs

Fraction of generation from solar 0% 10% 15% 20%

Startup costs 20.9 24.0 29.8 38.7
Loss in surplus per unit solar prod. ($/MWh) – 128.5 137.2 143.7

Note: Cost variables are measured in millions of dollars per year. Last two rows
include the startup costs.
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