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1 Introduction

For weeks now, the 1.1 million solar power systems in Germany have generated

almost no electricity. ... As is so often the case in winter, all solar panels more or

less stopped generating electricity at the same time. To avert power shortages,

Germany currently has to import large amounts of electricity [including by] pow-

ering up an old oil-fired plant in the Austrian city of Graz.

The German newsmagazine Der Spiegel, Jan. 16, 2012

Across the world, renewable energy capacity has increased dramatically due to falling

prices, policies favoring renewable energy, and concern over greenhouse gas (GhG) emissions

from fossil fuel generators. A key problem with both solar and wind generation is inter-

mittency.We use the term intermittency in a broad sense, to encompass both predictable

variability, such as diurnal cycles for solar generation, and largely unpredictable changes,

such as solar generation fluctuations due to passing clouds. Apart from hydroelectric energy,

wind and solar are the two biggest sources of renewable energy worldwide (EIA [2012]). The

Der Speigel quote illustrates some of the intermittency costs associated with large-scale solar

energy: operators may have to build and maintain backup generators such as oil-fired plants

and use them on days when the sun does not shine. While it is clear that intermittency adds

costs, the appropriate policy response to this is much less apparent. Would it be efficient for

Germany to invest in more backup power plants or to pay consumers to use less electricity

in winter? In the Southwest U.S., where peak electricity demand is driven by cooling needs,

should utilities invest in wind farms, which have relatively low levelized costs,1 or in solar

facilities, which produce during peak summer days, but have higher levelized costs?

This paper develops a method to quantify the social costs of large-scale renewable energy

generation. In conjunction with assumptions on the value of offset greenhouse gases, our ap-

proach can be used to evaluate the optimal levels and types of renewable energy. In order to

evaluate the social costs of renewables, we consider optimization over backup capacity invest-

ment, reserve operations, and demand-side management, which are the principal decisions

1The “levelized cost” of a generator is its discounted average cost of generation over its lifetime.
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made by grid operators to balance demand and supply and hence prevent system outages.

Our model endogenizes these decisions, as their optimal levels may be fundamentally different

in the presence of large-scale renewable energy.2 We apply our model to examine the social

costs of solar power in the southwest U.S., but our method could also be used to examine the

relative values of technologies such as wind power and market mechanisms such as real-time

pricing.

The starting point for our analysis is Section 4 of Joskow and Tirole [2007], who model

a system operator of an electricity market who seeks to maximize expected welfare when

faced with fossil fuel generators that can suddenly fail.3 Our model builds on this paper by

modeling renewable energy intermittency as similar to the unexpected failure of a traditional

generator; by modeling variability and uncertainty in demand; and by using the empirical

distribution of generator characteristics. In our model, the system operator is faced with

a fixed retail price and level of solar generation capacity, as specified by a state-mandated

renewable portfolio standard (RPS). At initial time 0 the operator chooses how many new

fossil fuel generators to build and sets the price for demand-side management “interruptible

power contracts”, which allow flexible customers to be paid not to consume electricity in

periods of high demand. Following this, in each (one hour) period the operator is faced

with a distribution of demand, and in the presence of renewables, a joint distribution of

demand and renewable output, which is derived from the previous day’s weather forecasts.

Observing the distribution, the operator must then decide how many generators to schedule

for generation and reserves and how much demand to curtail, with the goal of balancing

reserves and demand curtailment against system outages, which are very costly.

In our model, the costs of intermittency for a particular renewable energy source depend

crucially on three factors: (1) the variability of the source including the extent to which

the variability correlates with demand; (2) the extent to which output from the source is

forecastable; and (3) the costs of building backup generation required to maintain system

reliability. We apply our model to the portion of the electric grid operated by Tucson Electric

2For instance, system operators may want to invest in more backup generation.
3We use the terms “system operator” and “planner” interchangeably.
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Power (TEP), a regulated, investor-owned utility whose coverage area roughly consists of

southeastern Arizona. We obtained data for the Tucson area on generator heat rates, fuel

prices, retail electricity prices, line losses, demand at the hourly level, solar output at the

5-minute level, and day-ahead weather forecasts; as well as national data on capacity costs,

prices of spinning reserves, generator outages and system outage events. We estimate the

predictable and unpredictable components of demand and renewable outputs with regressions

of demand and renewable outputs on the weather forecast for that hour made the previous

day.4 We calibrate demand from the literature.5

The data reveal that the levelized cost of solar photovoltaic (PV) generation in Tucson is

$113.3/MWh (11.3 cents/kWh) higher than (or 3.0 times) the levelized cost of a new com-

bined cycle natural gas unit. Our model, which incorporates optimizing behavior of the

system operator, finds that the true social cost of renewable energy is higher than the lev-

elized cost difference and increasing in the level of solar capacity. Specifically, given the base

case of five solar sites in the metropolitan area, RPS policies ranging from 10 to 25% that are

implemented solely with solar PV impose equilibrium costs per MWh that range from 4 to 13

percent higher than the levelized cost difference, not accounting for the benefit of CO2 reduc-

tion. The upward slope is due to the increasing substitution from low cost generators and the

increasing need to construct backup fossil fuel generators. With large solar capacity, optimal

offered prices on demand-side management contracts are higher than under the base case,

and curtailment increases in periods with high demand and low solar output. Re-optimizing

policies is very important in making large-scale solar feasible: a planner who used the same

reserve operations, backup capacity investment, and demand-side management as under the

no-solar case would face a social cost that is 2.1 times higher than the cost under optimal

4Electricity system operators commonly schedule operating reserves one day ahead. For example, the
system operator for the Electric Reliability Council of Texas (ERCOT) obtains operating reserves for each
hour in one-day-ahead procurement auctions.

5Alternatively, we could structurally estimate demand by matching operating reserves from data to
predicted values assuming optimizing behavior. However, we believe that it may be problematic to assume
that current TEP decisions reflect optimizing behavior within the context of our model. For instance, Wolfram
[2005] finds evidence that regulated investor-owned utilities (such as TEP) operate generation units at higher
cost than do non-regulated utilities. Furthermore, the TEP system operator may act in a more risk averse
manner than in our model, due both to career concerns and to regulatory penalties for system outage.
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polices for a 20% RPS, due to a large increase in the average system outage probability.

We further seek to decompose the components of social costs for large-scale solar energy.

Without unforecastable intermittency, the equilibrium costs of the 20% RPS would drop

by 3.2 percent relative to the base equilibrium costs. With only one solar site within the

area, costs would increase by 4.3 percent. If solar power were fully dispatchable, as would

be feasible if solar was coupled with an efficient storage technology, social costs would drop

by 41 percent. If CO2 reductions are valued at $21 per ton as mandated by recent U.S.

government regulatory rules,6 the 20% RPS would be welfare neutral with a capacity cost of

$1.63/W, a cost that might be feasible given optimistic estimates of cost reductions.

Our work builds on a number of recent studies, that each seek to quantify the poten-

tial importance of intermittency by focusing in depth on one of a number of factors. Some

studies focus on how the time-varying generation profile of renewable energy affects its value

[see Denholm and Margolis, 2007, Borenstein, 2008, Cullen, 2010b, Joskow, 2011];7 others

model intermittency and its impact on operating reserves [see GE Energy, 2008, Mills and

Wiser, 2010, Helman et al., 2011]; and finally some address how capacity levels for dispatch-

able generators (e.g., backup capacity investment) should be adjusted in response to large

scale renewables [see Lamont, 2008, Skea et al., 2008, Campbell, 2011].8 By combining these

insights in one model, we derive an overall economic assessment of the value of large-scale

renewable generation. To our knowledge, our study is the first to to formalize reserve oper-

ations in an economic model that is taken to data, and to do so by using weather forecast

data to separate intermittency into its forecastable and unforecastable components.

Our model and application have three central limitations. First, we do not model any

dynamic linkages from period to period, as would occur with start-up costs for generators,

for instance.9 Second, we solve for the planner solution and hence do not model the impact

6See EPA [2010].
7Borenstein [2008] also considers potential savings from transmission and distribution costs, but finds

these to be negligible in his sample.
8Baker et al. [2013] discuss key economic factors that impact the value of solar PV, and review a range

of approaches that have been used to value solar PV in the short term, the medium term, and in very long
term settings that incorporate climate change factors.

9Cullen [2010a] estimates a dynamic model of start-up costs for generators. A similar model would hugely
complicate our analysis.
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of oligopoly power in the generation market.10 Finally, we do not model imports or exports

outside of the local market, which can serve to reduce the variability of net demand, and

hence lower the costs of intermittency.11

The remainder of the paper is divided as follows. Section 2 provides background on

the electricity market. Section 3 discusses the model; Section 4 the data, estimation and

computation; and Section 5 the results. Section 6 concludes.

2 Solar PV Energy and Intermittency

Solar PV systems utilize panels of materials (such as silicon) that convert solar radiation into

direct current (DC) electricity, coupled with inverters that convert DC current to alternating

current (AC) that is used by customers [see NREL, 2011]. Electricity generation from solar

PV panels varies with solar insolation, a measure of energy from sunlight. Higher solar

insolation yields more PV generation, holding everything else constant. Most solar PV panels

in the northern hemisphere – including those for which we have data – are mounted to face

south at a fixed tilt, with the tilt based on latitude. There are also single-axis tracking

systems in which the panels are typically rotated to track the motion of the sun through the

day, and double-axis systems in which both the angle of panels and the direction in which

panels face are controllable.12

To illustrate the issues of intermittency, Figures 1 and 2 show southeastern Arizona

demand quantity (or, system load) and solar PV output in solid lines, for Apr. 15 and Aug.

15, 2008 respectively.13 Demand (in our data and in the figures) is at the hourly level and

solar output at the five minute level. With dotted lines, Figures 1 and 2 also show the

hourly mean forecasted demand and output using day ahead weather forecasts.14 Because

southeastern Arizona power demand is driven by air conditioning, it peaks during hot and

10It is possible to design mechanisms that would generate the equilibrium of our model.
11A data limitation is that our solar PV generation data is from a single, relatively small installation.

However, we are able to use empirical results from other studies about output correlations across multiple
PV sites to simulate PV generation from multiple sites.

12Baker et al. [2013] describe the variety of solar PV technologies that are currently available, as well as
potential technological improvements that are likely to change PV cost and efficiency in the coming decades.

13The solar PV output is for a 1.536 kW test facility near the Tucson International Airport.
14We provide details on our forecast methodology in Section 4.
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Figure 1: Predicted and actual southeastern Arizona load and solar output, Apr. 15, 2008

0
10

00
20

00
30

00
M

W
h 

of
 lo

ad

0
.5

1
1.

5
KW

h 
of

 s
ol

ar
 o

ut
pu

t

0 6 12 18 24
Hour

Solar output Mean forecasted solar output
TEP load Mean forecasted TEP load

sunny periods; but sunny periods also have a lot of solar production. Thus, solar output

correlates positively with demand during the daytime. Figures 1 and 2 also illustrate that

the correlation of solar output and demand is not perfect; daily peak demand tends to occur

later in the day than peak solar output. Moreover, particularly in August, the solar output

has large fluctuations that last only a few minutes at a time, resulting from clouds. On one

hand, the positive correlation between solar output and load will increase the value of solar

production because production occurs when demand, and hence marginal costs of displaced

fossil fuel generation, are high. On the other hand, the unforecastable intermittency in solar

production will lower its value.
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Figure 2: Predicted and actual southeastern Arizona load and solar output, Aug. 15, 2008
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3 Model

3.1 Overview

We develop a model of electricity generation, system operations, and the demand for power.

In our model, at time T = 0, the regulator exogenously chooses the level of solar capacity

and the retail price of electricity, p.15 Observing the solar capacity and existing fossil fuel

generators, the system operator decides on capacity investment for new generation units.

We assume that the new generation units, solar panels, and existing fossil fuel generators

all last until year T = 25. The system operator also chooses a price for interruptible power

contracts, which are fixed over a year.

Following the choice of interruptible power contracts, the system operator is faced with

a sequence of short-run production periods, each of which represents a particular hour of a

15We assume p is fixed, consistent with the relatively inflexible retail pricing observed in most U.S. elec-
tricity markets. It is possible to relax this assumption to understand the relationship between real time
pricing and the equilibrium value of renewables, among other questions.
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particular day of the year. Each day the operator obtains 24 weather forecasts corresponding

to the hours of the subsequent day. Using these weather forecasts, the operator computes

the forecastable distribution of the solar output and load for each of these 24 periods. The

operator also receives a report of which generators will be unavailable due to scheduled

maintenance at each period. The operator then chooses which generators to schedule for

production and reserves for each hour as well as how much load to curtail from the set of

users who have signed up for interruptible power contracts.

During each short-run period – and a day after the operator choice of generation and

reserves – generator failures, solar output levels, and load are realized. Load takes on one

value for each period, while solar output varies multiple times during each period, to max-

imally use our solar data which are at the 5-minute level. We can divide the realizations

for each 5-minute interval into three cases. First, load could be less than the sum of the

solar output and the realized output (from generators that have not failed) net of line losses.

In this case, the system operator will reduce the rate of generation for one or more units

to balance output with load. Second, load could be more than the output (also net of line

losses), but less than output plus reserves. In this case, the system operator will move some

of the capacity from reserves to production. Finally, load could be more than output plus

reserves. In this (hopefully rare) case, a system outage occurs and results in a fraction of

customers losing power, due to the system operator initiating an involuntary cut-off of power

to some customers, to avoid a complete system collapse. Let doutage denote the product of the

fraction of customer who lose power times the number of periods for which they lose power.

The system operator makes all decisions in order to maximize the expected discounted

value of future total surplus with a discount factor β. We assume that there are no linkages

from period to period, as would occur with ramping constraints or start-up costs, for instance,

implying that the short-term decisions of the operator have no dynamic consequences. More-

over, the same time periods in the year are repeated for each year of the T -year time horizon,

implying that the price of interruptible power contracts can be chosen once at the beginning.
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3.2 Demand and Consumer Welfare

At the start of each hour-long period, the planner knows two vector-valued state variables:

w, weather forecast information; and m, the scheduled maintenance status of each generation

unit. Included in w are the time of day, the day of the week, and the time since sunrise and

sunset, since these may predict load and/or solar output. Each state (w,m) thus implies

a joint distribution of demand and solar generation as well as a probability distribution for

generator failures. Although retail price is a constant p, we need to specify the demand

curve in order to quantify the cost of system outage and the response to interruptible power

contracts.

We choose a very parsimonious specification for demand in order to minimize the burden

of identification. Specifically, we assume that demand has a constant price elasticity η for

prices up to a reservation value, v. While the elasticity of demand is constant across states,

the level takes on a distribution that varies with w, D ∼ FD(·|w). Demand is then

QD(p,D) =

 0, p > v

Dp−η, p ≤ v.
(1)

We assume that FD(·|w) has a lower bound D
min

(w).

The term value of lost load (VOLL) is used in the electricity industry to describe the

average value of electricity per unit for customers; see Cramton and Lien [2000]. Let B(Q)

be the gross consumer benefit function (area under the inverse demand curve) as a function

of quantity Q. If Q is the quantity demanded at retail price p then B(Q) = V OLL × Q.

If there is a system outage during the period then the opportunity cost of the outage is

B(Q) × doutage. VOLL and the reservation value v have a simple, monotonic relation given

the price elasticity η:

Lemma 3.1. With demand specified in (1) and retail price fixed at p, VOLL is constant
across states and satisfies:

V OLL =

(
1

1− η

)
v1−ηpη −

(
η

1− η

)
p. (2)

Proof See Online Appendix A for derivation.
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The retail price of electricity is fixed in our analysis, and so retail prices are not relied

upon to ration demand as they would be under a real-time pricing mechanism. Instead,

our demand model allows for a system operator that offers interruptible power contracts, as

described in Baldick et al. [2006]. Interruptible power contracts are a widely used demand-

side management tool used by utilities as a way to manage demand and ration customers

in the absence of a price-rationing system.16 In the first stage, the system operator chooses

a curtailment price pc and offers contracts whereby users would agree to have their power

curtailed as necessary and be paid a net per-unit price of pc−p as compensation. At this point,

all users with valuation below pc will sign up for interruptible power contracts. In each second

stage period, knowing (w,m), the planner will choose the amount z of demand curtailment.

When demand is curtailed, the planner randomly selects customers for curtailment from the

set of customers who have signed up for interruptible power contracts and who are known to

use power at that time.17 We assume that the set of known users has mass D
min

(w).

The amount by which the planner can curtail demand in any period is limited by D
min

,

curtailment price pc, and the price elasticity of demand. Specifically,

Lemma 3.2. If pc < v, then curtailment quantity z satisfies 0 ≤ z ≤ D
min

(w) [p−η − p−ηc ],
with welfare loss of

WLC(z, pc) =
η(p1−η − p1−η

c )z

(η − 1)(p−η − p−ηc )
.

Proof See Online Appendix A for derivation.

The welfare loss function WLC(z, pc) indicates the loss in consumer benefits relative to the

amount of gross consumer benefit B(Q) when there is no curtailment. Note that there is

a tradeoff from increasing pc. An increase in pc implies that the planner can curtail more

demand, which increases expected welfare as it allows the planner to avoid system outage.

16See Cappers et al. [2009] for evidence about usage of interruptible power contracts. These contracts are
one of several types of demand response programs offered by utilities. In a related vein, retail price systems
for commercial and industrial customers may include a demand charge in addition to a price per unit of
energy; the demand charge is based on the customer’s peak energy usage during a billing period. A demand
charge incentivizes large customers to limit peak usage, thereby reducing the total amount of generation
capacity required by a utility to meet its peak demand.

17We assume that it is not possible for the planner to curtail demand from the lowest valuation users. If
possible, this would result in more efficient rationing.
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However, an increase in pc also implies an increase in the average valuation of the curtailed

user, which decreases welfare as it increases WLC(z, pc).

3.3 Generation from Fossil Fuel and Solar PV

All new and existing fossil fuel and solar generators last from year 0 through year T . We

assume that there is a set of existing dispatchable generation units indexed by j ∈ {1, ..., J}.

At any given period, each unit has a maintenance status mj, with mj = 1 implying that the

unit is unavailable for production. Maintenance probability is exogenous in our model and

stochastic from the point of view of the system operator; let Pmaint
j denote the probability

of scheduled maintenance. We use data on generation unit maintenance outages to estimate

the probability that a generation unit will be unavailable due to maintenance. Observing

(w,m), the planner will schedule each available unit for production at full capacity kj or

no production; let onj denote a 0-1 indicator for scheduled production. Note that mj = 1

implies that onj = 0.

Each unit uses a particular generation technology; coal-fired steam turbine, combined

cycle natural gas, etc. The marginal costs (MC) of generation for unit j are cj. The MC

of fossil fuel units depend on fuel cost, unit heat rate and costs associated with emissions.

We assume that generator maintenance and failure events are i.i.d. across generators and

independent from demand.

Generators can also be used to provide operating reserves which allows them to produce

electricity in the case of the failure of another generator or load in excess of forecasted load.

For any generator, we assume that the marginal cost of reserves is a fraction cs of the cost

of producing electricity for whatever fraction of capacity of the generator is under reserve.18

18Our model of the cost of reserves is a simplification of a much more complicated problem. In reality,
there are several types of costs associated with maintaining operating reserves. Fossil fuel generation units
typically have minimum and maximum generation rates and need to be operating at or above the minimum
in order to provide operating reserve. Some high cost generation units may be operating at their minimum
so that they have excess capacity from which reserves can be provided; this implies that some lower-cost
generation units may be operating below their maximum which then implies an increase in production costs
due to reserves. Also, it may be necessary to incur start-up costs for some of these higher cost units. Finally,
units that are providing spinning reserves are not available for maintenance implying that there may be
deferred maintenance costs associated with operating reserves.
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Our model of generation unit failures is based on probabilities of losing the capacity of

entire generating units. Potential output from (dispatchable) generation unit j is given by

xj(onj) =

 kj, with prob (1− P Fail
j )onj

0, otherwise
(3)

We allow the planner to invest in new fossil fuel generation capacity. Each of the new

fossil fuel generation units is an identical combined cycle gas generator, with the same failure

and maintenance probabilities as existing gas generators. We assume that each has fixed

capacity size kFF , investment cost of FCFF per MW of capacity, and operating costs of

cFF per MWh. Knowing these values, the planner chooses the number of new generators,

nFF ∈ {0, 1, 2, . . .}. We label the new fossil fuel units j = J + 1 through j = J + nFF .

Similarly, we assume that solar PV capacity costs FCsolar per MW of installed capacity.

Solar units have zero MC and maintenance and failure probabilities; scheduled maintenance

costs are included in FCsolar. Unlike gas generators, solar PV generators are continuously

scalable. We assume that the planner is faced with a fixed level of listed solar PV generation

capacity nsolar generated from a given number of installations spread over a metropolitan area,

as specified by an RPS-type mandate. Solar units are not dispatchable. Production from

solar PV generation will take on a state-contingent distribution nsolarS, where S ∼ F S(·|w) is

a vector, providing multiple measures of the rate of solar output during the hour, consistent

with our high-frequency data. Denote S ≡ (S
1
, . . . , S

Y
) where Y is the number of solar output

observations in an hour; generally Y = 12 as we use 5-minute solar output data. Without

loss of generality, order the solar output draws within a period so that S
1 ≤ . . . ≤ S

Y
,∀S.

Let F (·|w) denote the joint distribution FD, F S of forecasted load and solar output. This

formulation allows for the possibility of correlation between forecast errors for demand and

for solar generation.

Even though TEP imports and exports power from the Western Interconnection, we do

not model this possibility.19 It would be problematic to model imports and exports since

19This assumption of not allowing imports or exports has been used in the literature that uses electric-
ity data from the Western U.S. An example is the analysis of real-time-pricing using California data; see
Borenstein and Holland [2005].
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the import and export market will not necessarily stay constant as other jurisdictions may

implement similar RPSs.

Finally, we discuss transmission costs. These costs may change with solar capacity because

solar capacity can be partly locally distributed, e.g. on customers’ rooftops. We assume that a

fraction dsolar of solar capacity is installed in a distributed environment. We let the distributed

nature of solar production affect transmission costs in two ways. First, we assume that the

fixed costs of transmission (the DPV of equipment investment and maintenance costs) are a

function of the maximum expected load across states net of distributed solar:

TFC(nsolar) = AFCT max
w
{E[D(w)p−η − 1

Y

Y∑
y=1

dsolarnsolarS
y
(w)]} (4)

where AFCT is the average transmission fixed cost per MW of non-distributed capacity.20

To the extent that solar production is positive in periods with the highest load, solar capacity

will lower the fixed costs of transmission.

Second, we model line losses using the identity that generation must equal consumption

plus line losses. Following Bohn et al. [1984] and Borenstein [2008], we assume that line losses

from transmission in any period are equal to a constant α times the square of non-distributed

generation. Let Q be load minus demand curtailment minus distributed solar generation. If

line loss is given by LL then the quantity Q+LL is equal to total non-distributed generation.

Line loss satisfies LL = α(Q + LL)2; let LL(Q) be the function implicitly defined by this

relationship,21

LL(Q) = (2α)−1(1− 2αQ−
√

1− 4Qα) (5)

We model line losses using (5). Distributed solar production will reduce line losses, especially

when it occurs during periods with high load.

20We assume that local distribution costs are not impacted by a change in the amount of distributed solar
capacity. Local distribution costs tend to be driven by factors such as population and population density.

21There are two roots to the quadratic equation. Welfare is maximized at the smaller root.
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3.4 Planner’s Problem

We seek to characterize the social planner’s problem of maximizing expected discounted total

surplus, subject to p and nsolar.22 In the first stage, the planner chooses nFF and pc. In each

second-stage period, the planner makes two decisions conditional on the state (w,m) and

first-stage decisions: (1) generator scheduling decisions on and (2) amount of demand to be

curtailed, z.

We model the choice of spinning reserves as a simplified version of how reserves are treated

in unit commitment models.23 Upon learning the state (w,m), the planner chooses onj for

each unit with mj = 0. Then, the state-specific random variables are realized. Possibly, a

system outage occurs, with a large fraction of customers not getting power. Otherwise, the

planner will adjust actual generation to be exactly equal to demand. Observing actual de-

mand and generator failure, the system operator can minimize costs by using the generators

with the lowest marginal costs to satisfy demand, leaving the generators with the highest

marginal costs as reserves. Let PC(D, x) denote the ex-post minimized costs of power gen-

eration and reserves, where D denotes demand (net of curtailment) plus line loss minus solar

production, and x denotes generator output realization vectors.

We illustrate the calculation of PC with a simple example. Consider a case with two

scheduled generators each with capacity 1, with c2 > c1, D = 1.6 and no generator failures.

Following the demand realization, the planner would partially shut down generator 2 as it

has higher costs. Thus, the total production plus reserve costs would be PC(1.6, (1, 1)) =

c1 + 0.6× c2 + 0.4× c2 × cs.

A system outage occurs when fossil fuel generation is less than demand minus the mini-

22Although we have developed our model using a single-agent social optimum approach, our results would
be replicated by a market-based model, similar to ERCOT. With multi-unit firms, Vickrey auctions for the
generation and reserves markets could be used to induce efficient outcomes. A Vickrey auction specifies that
a firm that sells k units is paid the lowest k losing offers submitted by rival firms [see Krishna, 2010].

23A unit commitment model specifies the cost of generation as well as costs of several types of reserves
for each unit: spinning reserve up (to provide for an increased rate of generation), spinning reserve down (to
provide for a reduced rate of generation), and non-spinning reserves [see Bouffard et al., 2005]. Our model is
simplified in that we have a single type of operating reserve, which is essentially both a spinning reserve up
and down. We also note that unit commitment models typically impose exogenous operating reserve policies,
in contrast to our endogenous reserve policies.
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mum solar production plus line losses, taking into account both generator failures and demand

curtailment. The system outage probability, conditional on the state and actions is then

SOP (z, on, w, nFF , nsolar) =

Prob

J+nFF∑
j=1

xj(onj) < D(w)p−η − z − nsolarS1
(w) + LL

(
D(w)p−η − z − dsolarnsolarS1

(w)
) .

The planner’s second-stage problem for a single period may now be defined as

W (w,m | nFF , nsolar, pc) = maxz,on{
E
[
(1− doutageSOP (z, on, w, nFF , nsolar))

(
B(D(w)p̄−η)−WLC(z, pc)

)
− 1
Y

∑Y
y=1 PC

(
p̄−ηD(w)− z + LL

(
p̄−ηD(w)− z − dsolarnsolarSy(w)

)
− nsolarSy(w), x(on)

)
| w
]}

such that mj = 1 =⇒ onj = 0.

(6)

From (6), the planner trades off the expected consumer welfare accounting for the system

outage possibility and demand curtailment (the first line) against the production costs (the

second line). Generators can only be operated if they are not undergoing scheduled mainte-

nance (the third line).

The expected operating reserves associated with a decision are fossil fuel production plus

reserves minus demand (net of curtailment) minus line losses plus solar:

E

J+nFF∑
j=1

xj(onj)− (D(w)p−η − z)− 1

Y

Y∑
y=1

[
LL(p̄−ηD(w)− z − dsolarnsolarSy(w))

]
| w,m


Extra generation in the form of operating reserves provides a “cushion” in the event that one

or more generators fail, load exceeds forecast load, and/or renewable generation falls short

of forecast renewable generation.

The planner rolls up the second-stage payoffs by taking the expected value of W in (6)

over all the hours in one year, and then discounting the expected annual welfare over the

life of generators. Specifically, defining N to be the number of hours in a year, expected

discounted surplus is

TS(nFF , nsolar, pc) = N × 1− βT

1− β
× (7)

E[W (w,m) | nFF , nsolar, pc]− FCFFkFFnFF − FCsolarnsolar − TFC(nsolar).
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In the first stage the planner chooses the number of new fossil fuel units nFF and compensa-

tion pc per unit for demand curtailment to maximize TS(nFF , nsolar, pc) in (7). The amount

of solar PV generating capacity, nsolar, is constrained via RPS regulations.

4 Data, Estimation, and Computation

4.1 Data

In order to estimate and calibrate the parameters of our model, we use data from a variety

of sources. These include the Energy Information Administration (EIA), the Environmental

Protection Agency (EPA), ERCOT, TEP, Federal Energy Regulatory Commission (FERC)

and National Oceanic and Atmospheric Administration (NOAA). Our data pertain mostly

to the Tucson area in 2008.

We use 2008 hourly load data for the Tucson service area from a FERC Form 714 filing

by TEP. Summary statistics on load data are provided in Table 1. The peak month for

electricity demand was August, due to hot weather and high air conditioning use. March

was the month with the lowest electricity demand. Demand for electricity has grown by

roughly one percent per year in southeastern Arizona.

We draw our data on generation units serving Tucson in 2008 from several sources. The

EIA maintains a database on all existing generation units in the U.S. This database includes

information about capacity, fuel source, and location. We obtain information on heat rates

from EPA eGRID2010. This EPA database provides heat rates at the plant level, where a

plant may have multiple generation units. We assume that each generation unit at a plant

site has the same heat rate.24 The EIA also has information about capacity investment cost

for new generation units and average retail electricity price. We use information about total

line losses for TEP from UniSource [2012].

The eGRID2010 database has average annual emission rates for CO2, SO2, and NOx at

the plant level. We apply the same emission rates for each generation unit at a plant. SO2

24We make one exception to this assumption. We use data on heat rates at the individual generation unit
level from the 2008 EIA form 923 report for the H. Wilson Sundt Generation Plant. This plant has several
types of units with large differences in heat rates across units. Online Appendix C provides additional details
about TEP generation facilities.
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Table 1: Summary Statistics for TEP Hourly Load (MWh), 2008
 

 
Month Average Standard deviation 
January 1,344 118 
February 1,314 123 
March 1,288 125 
April 1,345 182 
May 1,432 262 
June 2,041 477 
July 2,088 407 

August 2,101 408 
September 1,913 386 
October 1,597 281 

November 1,434 163 
December 1,506 144 

Number of observations: 8,784 
 

permit fees are from the EPA’s annual advance auctions for years 2011 – 2017. TEP units

are not subject to NOx permit fees. EPA’s NOx Budget Trading program, a cap and trade

program for NOx, applies to 20 eastern states, but does not apply to Arizona [see EPA, 2011].

Since our analysis is forward looking, we use information about projected future fuel costs.

EIA Form 423 contains information about the terms of multi-year fuel contracts for each of

the coal-fired generators. For natural gas we use NYMEX futures prices at Henry Hub in

Louisiana [see CME, 2012]. We collect the last settlement price for each month for futures

contracts in September 2012 for delivery from October 2012 through September 2017. Our

natural gas price is the average of these prices.

We use actual solar generation data for 2008 from a solar PV test site near the Tucson

International Airport run jointly by TEP and the University of Arizona [see TEP, 2011]

and measured at the 5 minute level. This system has 24 solar PV modules with total rated

capacity of 1.536 kW (DC power).25 The modules are at a fixed 30 degree tilt facing south.

Summary statistics on solar output are given in Table 2. Our data include most, but not all,

25These modules were produced by Uni-Solar and installed in 2003; each module has peak power of 64 W.
A 1.536 kW facility is relatively small, somewhat smaller than the size of a typical residential installation.
Solar PV panels generate electricity with roughly constant returns to scale, so we are able to use generation
data from this facility to make generation projections for a much larger facility. Also, the fact that the panels
were five years old at the time of sampling means that the data reflect to some degree the effect of aging on
solar PV generation. PV cell production declines by one-half to one percent per year over the life of the cell
[see Borenstein, 2008].
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hours in 2008. There are now solar PV panels available with higher efficiency, and hence lower

average generation cost, than the panels from which our data are drawn. We use measured

solar generation from a particular PV installation, rather than simulated solar data as studies

such as Borenstein [2008] have used. Our use of measured solar PV generation allows us to

match these data with contemporaneous load data and as well as to weather forecast data

from the previous day, as we explain below.

Mills and Wiser [2010] provide evidence on how geographic dispersion of solar PV sites

impacts variability of aggregate solar generation. In our baseline scenario, we assume there

are five identical solar plants in the city at a distance from each other such that deviations of

their individual output from forecasted output are independently distributed.26 The overall

capacity of these five plants is the exogenous RPS level.

A novel aspect of this project is collection and use of weather forecast data which are used

to determine the day-ahead forecasts of load and solar generation. We collect weather forecast

data from the National Climatic Data Center of NOAA [see NOAA, 2011]. The forecasts are

generally at 3 a.m. for the next day at windows of 3 hours. We interpolate to convert to hourly

forecasts. Information includes cloud cover, wind speed, temperature, relative humidity and

dew point. All information is reported as a continuous measure except for cloud cover, which

is reported as one of six discrete measures (“overcast” to “clear”) each corresponding to an

interval in terms of the numerical percent of sunlight passing through. We convert cloud

cover to a continuous measure using the midpoint of the interval. Our weather forecast

data is from the KTUS NOAA weather station, located at the Tucson International Airport.

These data also include most, but not all, hours in 2008. Table 3 provides information on

the variables used in the weather forecast. We supplement the NOAA weather information

with data on sunrise and sunset times at the daily level [see Sunrise, 2011].

Data for generation unit outages come from the Generating Availability Data System

(GADS) of NERC. GADS includes data for outages due to maintenance and for forced out-

ages. We use GADS data for 2005-2009 for all U.S. generation units. An outage probability

26Mills and Wiser [2010] analyze high frequency solar insolation data collected from multiple sites in the
Midwest U.S. They find that the correlation in solar insolation deltas (change in output from one time interval
to the next) across sites is near zero for sites located 20 km or more apart.

18



Table 2: Summary Statistics for Tucson Solar Test Site, 2008

Month Mean output (kWh) Hour Mean output (kWh) 
Jan. 2008 0.282 5 AM 0.0001 
Feb. 2008 0.325 6 AM 0.015 
Mar. 2008 0.376 7 AM 0.151 
Apr. 2008 0.403 8 AM 0.471 
May 2008 0.373 9 AM 0.792 
Jun. 2008 0.363 10 AM 1.022 
Jul. 2008 0.334 11 AM 1.145 
Aug. 2008 0.352 12 PM 1.172 
Sep. 2008 0.389 1 PM 1.128 
Oct. 2008 0.374 2 PM 0.984 
Nov. 2008 0.320 3 PM 0.752 
Dec. 2008 0.243 4 PM 0.443 

  5 PM 0.150 
  6 PM 0.020 

Rated capacity: 1.536 kW 7 PM 0.001  
Average output: 0.345 kWh 8 PM  4 AM 0 

 

Table 3: Summary Statistics for Information Used in Weather Forecasts, 2008 
 

Forecast Variable Average Standard deviation 
Cloud cover (%) 27.7 20.0 
Temperature (ºF) 70.4 16.9 
Dew point (ºF) 36.5 15.2 

Relative humidity (%) 34.3 19.1 
Wind speed (MPH) 8.53 4.06 

Number of observations: 8,448 
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is calculated as the ratio of average number of occurrences to average total available hours.

We compute maintenance outage and forced outage probabilities separately for coal units

and for natural gas units.

We obtain U.S. data on system outage durations and number of affected customers from

“Major Disturbances and Unusual Occurrences” reports [EIA, 2010]. Finally, we use ERCOT

price data from ancillary service auctions to define the costs of operating reserves.

4.2 Estimation and Calibration of Parameters

Table 4: Demand parameters

Parameter Interpretation Value Source

η Demand elasticity 0.1 Espey and Espey [2004]
p Retail price per MWh $95.6 EIA
g Demand growth factor 1.2 Based on historical rate

of demand growth
v Demand reservation value per

MWh
$11,655 Computed so that VOLL

is $8,000/MWh
F ≡ (FD, F S) Forecastable distribution of de-

mand and solar output
Estimated

Table 4 lists the demand parameters. Short-run electricity demand is typically estimated

to be quite price inelastic – see Espey and Espey [2004] for a survey and meta-analysis. Our

value of η = 0.1 is somewhat lower than the median estimate reported in Espey and Espey

[2004], but well within their range. Our value of p is based on EIA data for Arizona in 2008.

To be consistent with the loads projected during the middle part of the life of new generation

units, we scale demand quantities by g = 1.2, based on historical rates of population and

electricity consumption growth in Arizona. The 20% growth yields non-zero investment in

new fossil fuel generators for all counterfactuals.

The reservation value can be recovered from (2) using numerical values for elasticity,

average price and VOLL. Using mostly customer surveys, Cramton and Lien [2000] report

estimates of VOLL that range from $1,500/MWh to $20,000/MWh. We choose a fairly

conservative estimate of VOLL=$8,000/MWh. Note that a higher VOLL estimate would
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imply a higher opportunity cost of system outage and an incentive for the planner to maintain

higher reserves. We report the impact of a higher VOLL in sensitivity tests in the last part

of the paper.

We estimate FD, the relationship between day-ahead weather forecasts and load, jointly

with F S, the relationship between day-ahead weather forecasts and solar output. Specifi-

cally, we estimate a seemingly unrelated regression (SUR) specification with two dependent

variables, Tucson load and solar output.27 The time scale for data is five minute intervals,

for all daytime hours (defined as the hours after sunrise until the hour past sunset) in 2008.

We replicate the hourly load dependent variable for each of the 12 periods within the hour.

We cluster standard errors at the one hour level. As solar output is zero outside of daytime

hours, we estimate a separate regression with just load, for all the other hours in 2008. For

all regressions, the regressors include the day-ahead weather forecasts and other factors that

might affect load or solar output such as the day-of-the-week. The large number of observa-

tions allows for a flexible functional form for the regressors and hence we use linear splines.

For our simulations, we need to predict the joint density of solar output and the demand con-

stant D at any hour. Rather than parameterizing the joint density of residuals, we directly

simulate from this density in order to predict the joint distribution of solar output and load

at any hour. For each data element, we take 20 discrete draws from this distribution for use

in the simulation procedure. For a given load level, we recover D by inverting the demand

equation (1). For the minimum demand constant, D
min

, we use the lowest D recovered from

the 20 discrete draws. We trim the solar output at 0.

A number of studies have constructed the marginal cost of operation for generation units.

We follow the approach outlined in Wolfram [1999] and Borenstein et al. [2002]. We compute

the marginal cost of a fossil fuel generation unit as the sum of fuel cost per unit plus emissions

cost per unit. Fuel cost per unit is the product of the heat rate (MMBTU/MWh) and the

cost of fuel (in $/MMBTU). Emissions cost per unit is the product of the SO2 emission rate

and the average price for SO2 emission permits available for years 2011 – 2017.

We report summary statistics for existing TEP generators in Table 5. Except for a 5.1

27The estimates are equivalent to OLS since we use the same regressors for both dependent variables.
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MW solar PV facility in Springerville, AZ, all of TEP’s generation units are fossil fuel based.

We treat this solar unit as though it were producing constantly at its mean output level

of 0.756 MWh. We believe that the bias from not modeling the output of this unit more

accurately will be small, given its relatively small size.

Table 5 also lists characteristics of potential new generators. We use a relatively small

generator capacity size of kFF = 60 MW, as the small size is close to the average size of 51.3

MW for TEP’s gas generators and hence likely reflects the optimal generator size for a rela-

tively small market such as southeastern Arizona. We assume that the other characteristics

of new generators are the same as for TEP’s existing combined cycle gas generators, which

are all at the Luna Energy Facility. This facility began operating in 2006 and reflects modern

technology.

Table 5: Summary Statistics for TEP Generators, 2008

Unit type #
Units

Mean
Size

(MW)

Mean
MC

($/MWh)

Mean
NOx

(lbs/MWh)

Mean
SO2

(lbs/MWh)

Mean
CO2
(lbs/MWh)

Solar PV 1 0.756 0 0 0 0
(−) (−) (−) (−) (−)

Coal 10 155
(138)

22.25
(4.72)

4.07
(1.10)

1.95
(1.54)

2,337
(448)

Natural Gas – Com-
bined Cycle

3 62
(20.7)

32.00
(0)

0.09
(0)

0.01
(0)

894
(0)

Natural Gas – Steam
Turbine

3 89
(13.9)

46.89
(0)

3.33
(0)

0.01
(0)

1,433
(0)

Natural Gas – Gas
Turbine

7 30.5
(18.5)

122.54
(85.8)

3.58
(1.76)

0.05
(0.02)

1,964
(136)

Potential New Natural
Gas – Combined Cycle

By
eqm.

60
(0)

32.0
(0)

0.09
(0)

0.01
(0)

894
(0)

Note: Standard deviations in parentheses. MC figures include emissions permits.

A key input into our analysis is the installed cost per unit of solar PV capacity. Based

on results for 2011 from Barbose et al. [2012] we find that the installed cost is $4.14 per watt
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Table 6: Remaining supply parameters

Param. Interpretation Value Source

doutage system outage hours times per-
cent of affected customers

0.98 EIA

dsolar Fraction of solar generation that
is distributed

0.3 Arizona RPS

FCFF New gas generator capital cost
per MW

$984,000 EIA

FCsolar Solar capital cost per MW DC $4,621,000 Barbose et al. [2012], Baker
et al. [2013]

cs Ratio of MC for spinning re-
serves to production MC

0.41 Calculated from ERCOT data

α Line loss constant 0.000035 Calculated fromTEP Form 10K
AFCT Average transmission fixed cost $19.6 Borenstein and Holland [2005],

Baughman and Bottaro [1976],
& TEP line loss cost

β Discount factor 0.94
T Lifetime of generators in years 25

of DC power.28 We add the net present value of the cost of replacing inverter equipment, to

arrive at a capacity cost of $4.62 per watt of DC power.29 Table 6 lists solar PV capacity

cost and the remaining supply parameters. We compute the ratio of the hourly reserve

marginal cost to the hourly generation marginal cost, cs, using data from the deregulated

ERCOT market on the 2008 prices in the up-regulation and responsive reserve markets,

which pay firms in exchange for giving ERCOT the option to force them to operate with

short notice.30 If they operate, they receive the price on the balancing market. The average

price is $65.41/MWh in the balancing (production) market; $27.05 in the responsive reserve

market; and $22.71 in the up regulation market. The average of the ratio of the responsive

reserve market to balancing market prices over all hours is 0.42, while the average of the

28Using data for 2011, Barbose et al. [2012] report a U.S. average installed cost of $3.40 per watt DC
for utility-scale projects (> 2 MW) and an average installed cost of $5.88 per watt DC for distributed PV
projects in Arizona (based on their Table B-3). These installed costs are averaged using the Arizona RPS
requirement that fraction dsolar of solar PV capacity must be distributed generation.

29Following Baker et al. [2013] we assume inverter equipment is priced at $0.60/W, real inverter prices
fall by two percent per year, and inverters are replaced twice over the life of the modules.

30We obtained the data from ERCOT [2011]. The up regulation market gives firms 3 to 5 seconds to
adjust production while the responsive reserve market gives 10 minutes.
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ratio of the up regulation to balancing market prices over all hours is 0.40. Our estimate of

the reserve costs is the average of these two numbers.

We estimate transmission cost savings from solar as follow. The Arizona RPS states that

30% of solar energy must be generated in a distributed environment which motivates our

choice of dsolar. For line losses, we find the value of α that matches TEP’s reported line losses

of 6.6% of 2008 load, using LL(Q) defined in equation (5) to calculate line loss as a function of

α in any period and then summing across periods in 2008 to get total line losses as a function

of α. To calculate AFCT , we approximate average generating costs by $70/MWh, so that

the 6.6 percent line loss represents $4.62/MWh. We difference the line loss from the total

transmission and distribution (T&D) cost of $40/MWh from Borenstein and Holland [2005]

to obtain an average T&D fixed cost of $35.38/MWh. Using information in Baughman and

Bottaro [1976] we calculate that 55.3% of T&D fixed cost can be attributed to transmission.

We obtain AFCT in (4) by multiplying 55.3% of $35.38 by the discounted sum of expected

load and then dividing by the maximum expected load.

To estimate doutage we use major disturbances reported by the EIA whose causes were

due to equipment failure (not, for example, due to storms) that impacted more than 50,000

customers. For 2008 there were 21 such disturbances for which we could find both the total

number of customers and the number of affected customers, from which we calculate the

percent of customers affected. For each of the 21, we multiplied the duration by the percent

of customers affected. We estimate doutage as the mean of this product.

4.3 Computation of Planner’s Problem

We compute solutions to the planner’s problem using the estimated and calibrated model

parameters. We assume that the distribution of forecasted load for TEP remains constant

at its 2008 level over time, adjusted by the 20% growth factor. We proceed by maximizing

the DPV of welfare over the first stage decisions of the number of new gas generators and

the curtailment price, taking as given the retail price of electricity and the solar output level.

For each first stage decision vector, we compute the optimal policy for each second stage

period, and the value that results from this optimal policy. The computation of the first
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stage involves a grid search over nFF . For each value of nFF , we search over pc using the

simplex method.

To compute the second stage optimal policy, we make two assumptions to ease the com-

putational burden that we believe will not significantly bias the results. First, we assume

that the planner schedules generators in ascending order of MC when computing optimal

generation for a second-stage period. Although this point is intuitively reasonable, because

of differences in sizes and failure probabilities across generators, it is possible that a planner

would want to schedule a higher MC generator and not a lower MC one. Second, we assume

that the planner curtails demand only if all available generators for which MC is below the

marginal cost of curtailment, dWLC(z)/dz, are scheduled. Again, this point is intuitively

reasonable but may not hold exactly because generators come in discrete chunks.

We now discuss our computation of the second-stage policies. At each second-stage period,

we condition on the state (w,m), which encapsulates the units with planned outages and the

joint forecastable distribution of load and solar generation. We then choose the production

and curtailment decisions, integrating over remaining sources of uncertainty (forced outages

and the realization of load and solar generation given the forecastable distribution) in order

to solve for the probability of system outage and the associated expected welfare. We then

maximize expected welfare over these choices. Finally, we integrate over the three ex-ante

decisions to obtain the expected welfare associated with any first stage policy.

We perform the integration using simulation. Specifically, we use 20 discrete draws to

integrate over the joint distribution of load and solar generation conditional on a forecast.

Each of the 20 draws includes one hourly load draw and 12 5-minute solar output draws. Note

that the planner’s problem also involves simulation of generator failures. Failure probabilities

for individual generation units are small, and probabilities of multiple failures – which might

cause a system outage – are very small, but the adverse consequences of a system outage are

very large. Thus, our computation is challenging because integration using a direct simulation

method would be very inefficient. Instead, for each type of generator, we integrate over

the probability of a given number of failures given a total number of generators operating,

and then simulate the identity of failed generators conditional on the number of failures.
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Similarly, at the first stage, we need to integrate over the distribution (w,m). We integrate

over the forecastable weather distribution by simulating with replacement from the observed

distribution and over generator scheduled maintenance with an analogous method to our

simulation for sudden generator failure.

5 Results

5.1 Forecast Estimation Results

The estimated relationship from the SUR model of daytime load and solar output on weather

forecasts is reported in Table 7. The unit of observation is the 5-minute level although load

and all regressors are the same within an hour. Standard errors are clustered at the hour

level. We estimate splines for each regressor. For cloud coverage, the knots of the splines

correspond to the categorical cloud cover variable in weather forecasts. For other forecast

variables, we use 10 splines where the knots are the deciles of the distribution. We report

coefficients on the lowest, median and highest levels. We also include month, hour and

day-of-week dummies, as well as interactions of cloud cover with other variables.

We find a U-shaped relation between forecasted temperature and load, as electricity

is needed for both heating and cooling. Another important predictor for load is relative

humidity, where the relation is inverse U-shaped. On the other hand, the coefficients of

temperature on solar output suggest that increases in temperature in the upper deciles have

no significant impact on solar output. Forecasted cloud cover variables have negative signs

and of increasing absolute value on solar output, as expected. Hours since sunrise before noon

and hours until sunset after noon are also both strong positive predictors of solar output.

The R2 is 0.967 for load and 0.831 for solar output, suggesting that both levels are highly,

though not perfectly, forecastable. The correlation in the residuals between load and solar

output is 0.077 and statistically significant (χ2(1) = 298, P < 0.01). The nighttime impact

of weather forecast on load is reported in Table 8. Temperature is an important predictor

for nighttime demand as are hourly dummies.

The outage probabilities for gas and coal generators are reported in Table 9. Note that coal
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Table 7: Estimation of Daytime Load and Solar Output Forecasts 
 Load (MWh) Solar output (Wh) 
 Coefficient on spline for Coefficient on spline for 
 1stdecile 5thdecile 10thdecile 1stdecile 5thdecile 10thdecile 

Temperature –19.4** 
(2.6) 

5.3*  
(2.3) 

48.6** 
(2.3) 

12.9**  
(4.5) 

2.9 
(4.1) 

–0.6  
(2.9) 

Dew point –3.8 
(2.7) 

2.8 
(3.1) 

-3.5  
(3.8) 

–1.4  
(3.8) 

–23.3** 
(5.8) 

–7.9  
(5.6) 

Relative 
humidity  

27.8** 
(7.2) 

3.9 
(2.6) 

–4.4** 
(1.3) 

6.4  
(10.0) 

4.8  
(4.3) 

2.4 
(2.4) 

Wind –9.4* 
(3.9) 

–10.3 
(5.3) 

–3.6** 
(0.9) 

53.7**  
(12.3) 

11.6 
(9.6) 

6.0**  
(1.8) 

 2–15% 38–60% 78–94% 2–15% 38–60% 78–94% 

Cloud cover 28 
(103) 

–17 
(98) 

174 
(140) 

–731** 
(244) 

–1514** 
(268)  

–2718** 
(607) 

 Coefficient on hour Coefficient on hour 
 1  4  6 1  4  6  
Hours since 
sunrise, AM 

–36.3** 
(13.9) 

–2.2 
(10.1) 

17.3 
(13.9) 

179.5** 
(23.4) 

133.9** 
(24.3) 

112.9** 
(29.6) 

Hours till 
sunset, PM 

–154** 
(20) 

37** 
(11) 

26*  
(12) 

–289** 
(47) 

171** 
(19) 

110** 
(27) 

Temp × cloud –0.09     (1.6) 7.8*    (3.4)  
RH × cloud  3.5*    (1.5) 1.9    (3.6) 
Wind × cloud   3.1*    (1.4) –12.1**  (3.9) 
Dew × cloud  –3.9*    (1.9) 6.4    (4.0) 
6AM dummy  –541**  (88) 
…   
12PM dummy  261**    (48) –107**  (24) 
…   
6PM dummy 33*    (17) –276**  (77.187) 

R–squared 0.967 0.831 

Correlation of 
residuals 0.077** 

Note: Model estimated with a SUR specification. Unit of observation is 5 minute 
interval in 2008. Standard errors are clustered at hour level. Number of 
observations is 50,124. We include as regressors day-of-week and month-of-year 
indicators and full sets of spline coefficients.  
** Statistically significant at 1% level 
* Statistically significant at 5% level  

27



Table 8: Estimation of Nighttime Load Forecast

 Nighttime Load Forecast  
 
 
 
 Load (MWh) 
 Coefficinet on spline for 
 1stdecile 5thdecile 10thdecile 
Temperature –14.7** 

(3.3) 
10.3** 
(3.1) 

55.0** 
(4.9) 

Dew point –3.6 
(3.8) 

–5.0 
(3.7) 

–4.7 
(3.4) 

Relative humidity  27.3** 
(10.3) 

3.9  
(3.1) 

–1.1 
(1.2) 

Wind –7.6*  
(3.5) 

–3.8  
(3.8) 

–9.5** 
(1.9) 

    
 2–15% 38–60% 78–94% 
Cloud cover 228*  

(101) 
123  
(98) 

-38 
(129) 

    
Temperature × cloud cover –6.6**    (1.9) 
Relative humidity × cloud  –1.2    (1.2) 
Wind × cloud cover  9.3**   (1.5) 
Dew point × cloud cover  5.2*   (2.0) 
  
9PM dummy 272**   (5.1) 
…  
3AM dummy  –58.0**  (3.7) 

 
R–squared 0.959 

 
Note: Model estimated with OLS. Unit of observation is 5 minute 
interval in 2008. Standard errors are clustered at hour level. Number of 
observations is 48,852. We include as regressors day-of-week and month-
of-year indicators and full sets of spline coefficients.  
** Statistically significant at 1% level 
* Statistically significant at 5% level 

28



generators report a higher rate of sudden failure (0.123%) than do gas generators (0.054%).

5.2 Equilibrium Costs of Solar RPS Policies

Table 10 reports equilibrium computational results using the estimated and calibrated pa-

rameters, gross of the benefit from reduced CO2 emissions (which we address below in Sec-

tion 5.4). The first column reports results with no solar PV investment and other columns

progressively add higher RPS requirements up to 25%.31

Without solar PV investment, the planner chooses 32 new natural gas generation units.

Demand curtailment accounts for 0.6% of operating reserves although at peak times such as

July at noon, the probability of some demand curtailment is over 13 percent. On average over

all hours, operating reserves are 24.2 percent of load. The 24.2 percent figure for operating

reserves appears to be higher than average actual reserves for many systems. Two factors

might account for this. First, there may be room for improvement in our forecasting model

for load and solar. A better forecasting model (with additional explanatory variables and/or

a different specification) could yield a lower variance for forecast errors and lead to lower

optimal operating reserves. Second, TEP has a relatively small number of generation units

and its largest units comprise a significant fraction of load. For instance, TEP would need

to have operating reserves amounting to 19% of average load to replace the output of its two

largest coal units.

Table 9: Average Hourly Outage Probabilities

Forced outage
probability

Planned outage
probability

Avg. number of
units over period

Natural gas generator 0.0535% 0.0395% 358
(0.122%) (0.105%)

Coal generator 0.123% 0.049% 866
(0.119%) (0.075%)

Note: The time period covered is 2005-2009. Standard errors in parentheses.

31Arizona specifies a 15% RPS by 2025 while California specifies a 33% RPS by 2020. Solar is likely
to contribute the majority of renewable energy in Arizona, while wind and geothermal are projected to
contribute more than solar in California [Helman et al., 2011].
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Table 10: Outcomes with Different RPS Levels

RPS Policy 0% 10% 15% 20% 25%

Solar PV capacity (MW) 0 854 1,281 1,708 2,135
Solar production (1000 MWh/year) 0 1,701 2,551 3,401 4,252
Load (1000 MWh / year) 17,007 17,007 17,007 17,007 17,007
New 60MW natural gas generators (#) 32 27 26 26 26
Foregone new gas generators (#) – 5 6 6 6
Scheduled non-solar prod. + res. (1000
MWh/year)

22,947 21,393 20,705 20,000 19,272

Realized non-solar prod. + reserves
(1000 MWh/year)

22,929 21,375 20,688 19,982 19,255

Reserves as % of energy consumed 24.2% 25.7% 26.9% 27.9% 28.8%
Average system outage prob. (%) 4.51e-3 4.13e-3 4.26e-3 4.18e-3 3.11e-3

Curtailment price pc ($/MWh) 716 839 921 891 891
Total curtailment quan. (MWh/year) 24,460 29,083 28,194 23,994 21,318
Prob. of some curtailment Jul. 12PM 13.1% 0.02% 7.9e-3% 0% 0%
Prob. of some curtailment Jul. 6PM 13.1% 42.1% 51.7% 51.2% 48.6%

Production costs (million $/year) 539.1 473.2 442.5 414.4 389.5
Reserve costs (million $/year) 74.2 75.8 77.4 78.2 78.1
Gas generator investment costs (mil. $) 1,889 1,594 1,535 1,535 1,535
Solar capacity investment costs (mil. $) 0 3,946 5,920 7,893 9,866
Transmission FC (million $/year) 332.7 326.0 324.4 322.9 321.3
Transmission line losses (1000
MWh/year)

1,485 1,385 1,340 1,298 1,258

Loss in surplus relative to baseline (mil-
lion $/year)

– 200.5 312.1 427.3 545.6

Loss in surplus per unit solar production
($/MWh)

– 117.9 122.4 125.6 128.3

NOx emissions (1000 metric tons / year) 20.9 20.5 20.1 19.5 18.8
SO2 emissions (1000 metric tons / year) 14.3 14.0 13.7 13.2 12.6
CO2 emissions (mill. metric tons / year) 18.9 18.0 17.5 16.6 15.9

30



The second column of numbers in Table 10 reports results for a solar RPS of 10% of load.

This output level would require 854 MW of solar PV capacity, with an investment cost of $4

billion. The solar PV panels would yield roughly 1.7 million MWh per year, which represents

a capacity factor (i.e., average output as a percent of capacity) of 23%. Optimal new fossil

fuel generators falls by 5, reducing fossil fuel generation capacity by 300 MW. This yields a

capital cost offset of $295.2 million (about 7.5% of solar investment cost). Optimal operating

reserves rise compared to the no-solar case, from 24.2% to 25.7% of electricity consumed.

Under the no RPS case, the planner chooses a curtailment price of $716/MWh, which is

7.5 times the retail price.32 With the 10% RPS, the optimal curtailment price rises, as it is

optimal to be able to curtail more demand in periods of low solar output and high demand.

The times when curtailment occur shift as a result of the RPS. For instance, the probability

of demand curtailment at noon in July drops, as solar output is high, but the probability of

curtailment at 6PM in July – when solar output is low but load is still high – rises.

The overall impact of a 10% RPS standard is to reduce expected welfare over the life of

the units by about $200.5 million per year, gross of the value of CO2 emissions reduction.

Dividing by solar production, the reduction in welfare is $117.9/MWh of electricity produced,

again gross of the CO2 emissions reduction. Put differently, the net welfare cost of the solar

mandate is approximately 69 percent of the $4 billion investment cost for solar PV capacity.

These results factor in the value of SO2 emission reductions to the extent that SO2 permit

prices reflect marginal environmental damages.

Columns 3 through 5 in Table 10 report results for solar RPS policies of 15%, 20% and

25% of load, respectively. There is little or no offset in fossil fuel capacity investment as the

RPS is increased above 10% but otherwise, the welfare and cost results move in the same

direction as the change from 0 to 10%. Because of the lack of fossil fuel capacity offset and

the fact that solar generation will increasingly substitute from low cost fossil fuel generators,

the welfare loss per MWh of solar generation rises monotonically from $117.9 to $128.3 as the

32Baldick et al. [2006] note that compensation per MWh for curtailed demand in interruptible power
contracts ranges from about 1.5 to 6 times higher than average retail price. Our results give a ratio slightly
above this upper bound from the literature. This may reflect greater social value for these contracts, with
increasing amounts of intermittent renewable capacity.
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RPS increases from 10% to 25%. For the 25% RPS policy, peak solar generation exceeds load

for some hours. We find that just under one percent of solar generation is wasted under a

25% RPS; for lower RPS policies the amount of wasted solar generation is zero or negligible.

Comparisons between solar PV and conventional generation are often based on levelized

cost, which is the average cost over the life of the unit.33 The realized solar output and

our assumption about the cost of solar panels together yield a levelized cost of $171.3/MWh

for solar PV generation. The levelized cost for a new combined cycle generation unit is

$58/MWh.34 Thus, on the basis of a simple average cost comparison, solar PV imposes an

additional per unit cost of $113.3/MWh. The levelized cost difference does not account for

the time-profile of generation or endogenize the choice of planner policies in response to a

solar mandate.

Borenstein [2008], Lamont [2008], and Joskow [2011] point out that valuation of a renew-

able generation source should be based on the marginal cost of the generation it displaces;

a positive correlation of renewable generation and system marginal cost contributes value to

the renewable source. Borenstein [2008] uses California wholesale electricity prices as a mea-

sure of system marginal cost, and finds that the positive correlation of wholesale prices and

solar generation narrows the gap between solar PV and conventional generation due to the

time-profile of solar generation. Our analysis takes into account the value of solar generation

at different times of day and in different seasons, just as in Borenstein [2008].35 However,

in the case of large-scale renewable mandates, it is also important to consider the impact of

the mandate on optimal system-wide policies, including operating reserves, backup fossil fuel

capacity and demand-side management through interruptible power contracts.

Our analysis endogenizes these three factors and finds that, together with the ‘solar

33See EIA [2011]
34See EIA [2011].
35A key difference is that system marginal costs are endogenous in our model, since fossil fuel capacity

investment and operating decisions are endogenous, whereas Borenstein [2008] examines small additions to
solar capacity and treats wholesale prices (and hence system marginal costs) as exogenous. The envelope
theorem implies that it is not necessary to re-optimize policies with only a small amount of solar on the
grid. Lamont [2008] makes system marginal cost endogenous via optimizing decisions for fossil fuel capacity
investment and plant operations, although his analysis does not consider operating reserves or demand-side
management.
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timing’ effect noted by Borenstein and others, they imply that, for a 20% RPS standard,

solar is $12.3/MWh more costly than the levelized cost difference. In contrast, if the planner

did not re-optimize in response to a 20% RPS (and instead used the same operating reserve

quantity, backup fossil fuel capacity, and curtailment quantity and price), we calculate that

the mandate would have a welfare effect of $257.0/MWh. This very high figure is due to the

fact that the 20% RPS would then result in a 0.3% probability of system outage. Thus, with

sub-optimal policies, the costs of renewable energy can indeed be much higher.

5.3 Components of Equilibrium Costs for Solar

Table 11 evaluates further the sources of the equilibrium costs of solar for the 20% RPS case.

Each row corresponds to one scenario (which was column 4 in Table 10). We omit most of

the detail from Table 10, presenting only two columns for each experiment: the foregone new

gas generators and loss in surplus.

Table 11: Costs Associated with 20% RPS

RPS policy Foregone new gas
generators

Loss in surplus per
MWh solar

Feasible solar 6 $125.6
Solar cost drop from $4.62 to $2/W 6 $28.2
Eliminate distributed generation: dsolar = 0 6 $103.0
No unforecastable variance 7 $121.6
Equal generation profile 7 $120.2
Fully dispatchable 26 $74.4
VOLL increased to $12,000 7 $125.6
No interruptible power contracts 4 $127.7
Rule of thumb policy 4 $170.8

“Equal generation profile” is a hypothetical solar facility which produces equally at every hour.
“Fully dispatchable” is a hypothetical solar facility which can be dispatched based on the
demand forecast.
“No unforecastable variance” is a hypothetical solar facility that produces at the
forecastable mean.

For reference, the first row repeats the baseline 20% case from Table 10. The installed

cost of solar PV has fallen considerably during the last 10 years. Our figure of $4.62/W

reflects average installed costs in 2011 for a mix of utility-scale and distributed (residential

and commercial) sites, but the lowest cost utility-scale projects in the U.S. were approx-
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imately $3.50/W DC power (including cost of inverter replacements) [see Barbose et al.,

2012, Goodrich et al., 2012]. The second row simulates dropping the cost of solar from $4.62

to $2/W as many industry observers believe will occur. Note that optimal policies for the

system operator remain unchanged with this drop in capacity cost; the reduction in surplus

loss per MWh of solar is due only to reduced up-front capacity cost. The loss in surplus

from solar drops dramatically in this case, from $125.6 to $28.2. The third row examines the

effect of eliminating the distributed generation requirement. While distributed generation

offers advantages in terms of lower transmission costs, the optimal response is to shift all

solar investment to utility-scale installations, due to economies of scale in installation costs

[see Barbose et al., 2012]. The net effect is to lower welfare loss to $103.0/MWh.

The next three rows examine the impact of different components of intermittency on the

equilibrium costs of solar. First, we find that eliminating the unforecastable component of

solar output raises value by $4/MWh relative to the base case. The planner foregoes 1 extra

generator in this case. This drop is small compared to the overall additional equilibrium cost

of solar generation and is less than drops reported in the literature.36 This may be in part

because other studies have not fully endogenized policies in response to renewable energy

mandates. Relatedly, utilities often express concern over the high cost of intermittency with

large-scale solar. We believe that this may be because utilities do not fully understand the

optimal policies in the case of large-scale solar.

Second, we find that a hypothetical solar facility that always produced at its mean output

level would be better than the baseline – with a loss of $120.2 instead of $125.6/MWh. The

planner foregoes 1 extra generator in this case. Moreover, the equal generation case would

be better than even the case without unforecastable intermittency, by $1.4. Thus, even

though solar facilities tend to produce during peak periods, the forecastable part of their

intermittency reduces their value.

Third, we examine the value of solar if its energy could be dispatched at the times with

36For 20% wind power penetration in Great Britain, Skea et al. [2008] calculate that the back-up generation
capacity required to address intermittency would add roughly 15% to the cost of wind generation. Hoff et al.
[2008] estimates that back-up generation capacity required to address solar intermittency would represent
about 15% of solar PV average cost. These studies do not consider costs of additional operating reserves that
might be required.
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the highest demand, as might occur with perfect storage mechanisms. In this case, the value

of solar would rise by $51.2/MWh relative to the base case – a substantial amount, but much

less than the $97.4 rise from reducing solar capacity costs to $2/W.

The next two rows test the robustness of our findings to the demand curtailment speci-

fication and VOLL measures, respectively. A 50% increase in VOLL has virtually no effect

on the value of solar PV. However, if the system operator is constrained to zero demand

curtailment then the optimal number of new fossil fuel generators decreases by four instead

of six from the no solar to the solar case. In effect, the system operator replaces demand

curtailment with the additional generators. Eliminating demand curtailment reduces the

value of solar by $2.1/MWh.

The final row of Table 10 compares the optimal policy with a rule of thumb policy similar

to what has been proposed in some studies of renewable intermittency.37 Our rule of thumb

policy starts with the no-solar policy and modifies it in two ways. First, we reduce fossil

fuel capacity by a “capacity credit” for solar PV capacity of 393 MW, which is equal to

the solar PV capacity factor (23%) times solar capacity of 1,708 MW. Second, we increase

operating reserves by a fixed amount to address solar intermittency, with a corresponding

addition to fossil fuel capacity. We adopt the heuristic for operating reserves proposed by

Mills and Wiser [2010], who suggest increasing reserves by three standard deviations of the

change in solar from one period to the next.38 The welfare cost of this rule of thumb policy is

$170.8/MWh; 1.4 times higher than the welfare cost associated with optimal policies. This

comparison illustrates the importance of policy optimization.

Figure 3 shows how the intermittency costs decrease as the time scale for solar output

observations increases. As reported in Table 11, the 5 minute data imply unforecastable

intermittency costs of $4.0/MWh. With 60 minute data, we calculate the costs to be only

37Madaeni and Sioshansi [2011] examine the impact of changes in wind forecast accuracy. Operating
reserves are constrained to be greater than or equal to a fixed fraction of load throughout their analysis.
Mills and Wiser [2010] examine how operating reserve costs change depending on the degree of variability of
solar generation. They set operating reserves equal to a fixed percentile of the distribution of period-to-period
changes in solar generation.

38We compute the standard deviation of 5 minute changes in solar generation. Three standard deviations
amounts to 130 MW. Thus, we add 130 MWh of operating reserves to optimal baseline operating reserves
for all daylight hours, and adjust fossil fuel capacity downward by 393− 130 MW.
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$1.1/MWh.39 Thus, it is the high frequency nature of the solar intermittency that is the

most problematic. The results also suggest that data at an even finer level than 5 minutes

may give an even higher cost to solar.

Our baseline analysis assumes that non-distributed solar capacity is spread across five

geographically dispersed sites. Figure 3 also shows the intermittency costs associated with

having this capacity concentrated at fewer sites. Relative to the five sites case, having only

one site increases the costs by $5.5/MWh, whereas having two sites instead increases the

costs by only $2.4/MWh.40

Figure 3: Unforecastable intermittency costs: Solar output frequency and multiple sites
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39Our results on the impact of the solar generation time scale are roughly consistent with results in Mills
and Wiser [2010]. Using a heuristic decision rule for operating reserves, they find that operating reserves
required to address variability of solar PV generation for a single site at a one minute time scale are three
times as costly as operating reserves required to address solar PV generation variability at a one hour time
scale.

40Our results on geographic dispersion are consistent with Mills and Wiser [2010], who also find that
geographic dispersion of solar PV sites significantly reduces intermittency costs.
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5.4 RPS Policies and Benefits from CO2 Reductions

Finally, we analyze whether RPS policies would increase or decrease social welfare, when

one accounts for the reduction in CO2 emissions that would be caused by the RPS. The

policy impact of an RPS depends crucially on two elements: first, on the environmental

benefit per unit reduction in CO2 emissions; and second, on the impact of ongoing R&D in

reducing the costs of renewable power generation. Note that we can derive the cost of CO2

emission reductions under current technological conditions from Table 10. For example, CO2

is reduced by 2.3 million tons per year at a cost of $186/ton for the 20% RPS case.

The U.S. government has recently set social cost of carbon values to be used in the regula-

tory approval process. They specify a range of values corresponding to different assumptions

about discount rates, the impact of temperature change, and loss functions. The central

value is $21/(metric) ton in 2007 dollars. We use the four values developed by the U.S.

government as well as a baseline of $0.41 Using these values, we calculate the “target” cost

of solar capacity generation at which the RPS policy would be welfare neutral. The RPS will

be welfare increasing if and only if solar capacity costs are lower than the target costs.

Table 12 presents the results, which can be derived without recomputing the model, since

solar capital costs enter linearly into welfare. At the current cost of $4.62/W, any RPS would

reduce welfare even if CO2 emissions are valued at the highest reported figure of $65/ton.

At this emissions cost, solar capital costs would have to fall to $2.46 for the 10% RPS to be

welfare neutral, and $2.43 for the 25% RPS to be welfare neutral. As one would expect, the

target capital costs are increasing in the value of offset CO2 emissions. For instance, the 20%

RPS welfare neutral capital costs rise from $1.24 to $2.44, as CO2 emissions costs increase

from $0 to $65.

Less evident is the impact of an increase of an RPS on the welfare neutral capacity

cost. On one hand, with a higher RPS, solar capacity will substitute more from lower cost

generators, which will decrease its equilibrium value. On the other hand, the lower cost

generators will tend to be coal instead of gas, and coal generators emit more than double the

41These values appear in EPA [2010]. See also Greenstone et al. [2011] for details on this policy. Tol [2005]
provides a survey of estimates of the social cost of carbon and finds a median estimate similar to this value.
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Table 12: Welfare Neutral Solar PV Capital Costs with Benefits from CO2 Reductions

RPS Policy 10% 15% 20% 25%
Benefit per ton of CO2 reduction

$0 1.45 1.33 1.24 1.17
$5 1.53 1.41 1.33 1.27
$21 1.77 1.69 1.63 1.58
$35 1.99 1.93 1.89 1.85
$65 2.46 2.44 2.44 2.43
Note: solar capital costs are in dollars per rated watt DC power

CO2 per unit energy output than combined cycle natural gas units (see Table 5), which will

increase its value. Under the social optimum, the generation cost effect dominates, but not

by very much. For instance, for the central $21 CO2 cost case, the welfare neutral capacity

costs fall from $1.77 to $1.58 from the 10% to 25% RPS cases.

6 Conclusions

A variety of current and potential policies are intended to stimulate investment in renewable

energy generation. Intermittency of renewable generation may have a significant impact on

electric grid reliability, system operations, and requirements for back-up generation capacity.

Because a grid operator must make different long- and short-run decisions in response to

intermittent renewable output, we believe that the costs of intermittency can best be under-

stood in the context of optimizing an equilibrium model. Thus, we developed an empirical

approach to estimate the equilibrium costs of renewable energy accounting for their inter-

mittent nature. Our approach has three parts: (1) a theoretical model that is based on the

work of Joskow and Tirole [2007]; (2) a process to estimate and calibrate the parameters of

this model using publicly-available data; and (3) a computational approach to evaluate the

impact of counterfactual RPS and other policies. We believe that the biggest limitations of

our approach are that we do not allow for dynamic linkages from period to period; that we

consider only the social optimum; and that we do not model imports and exports outside the

local area. Moreover, other of our assumptions, notably our assumed spinning reserve costs,

are at best approximations of reality.
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Using our approach, we examined the impact of a renewable portfolio standard (RPS) on

Tucson Electric Power, the public utility that serves southeastern Arizona. We find that the

equilibrium cost of a 20 percent solar PV RPS would be $125.6/MWh. Perfectly dispatchable

solar energy would lower costs by $51.2/MWh. Unforecastable intermittency accounts for

$4/MWh and high frequency unforecastable intermittency within an hour is the most costly

part of this. If CO2 reductions are valued at $21/ton, a 20% RPS would be welfare increasing

if solar capacity costs dropped below $1.63/W from their current level of $4.62/W.

We believe that our study has a number of broader implications beyond the results for

solar generation in Arizona. First, our finding that the costs of intermittency for solar

energy are lower than many industry observers believe may be important. In particular,

costs associated with intermittency are a relatively small component of the overall welfare

cost of a solar RPS mandate; the bulk of the welfare cost is simply the high installation

cost of solar. Our results on intermittency stem from the fact that our approach calculates

the costs if utilities use forecasts to optimally schedule reserves, design demand interruptible

power contracts, and build capacity in response to solar PV mandates. It is possible that

utilities need to obtain knowledge about how these decisions should change in the presence

of substantial renewable generation, and our study provides a framework that can be used

to guide utilities along this dimension.

Second, we believe that our study has implications about the optimality of different

potential RPS policies. While we find that an immediate RPS with 2012 technology would

reduce welfare, we also find that once solar capacity costs drop below $2.00 or $1.50, solar

PV generation becomes welfare increasing. More surprisingly, at this point, capacity costs

do not have to drop much further before it is optimal for solar to account for a significant

proportion of generation in a sunny location such as Arizona.

Finally, we believe that our approach can be used to analyze a variety of other energy

policies many of which might also have important equilibrium impacts. These policies include

understanding the impact of real-time pricing on reducing GhG emissions and intermittency

costs; the relative costs of reducing emissions from an RPS versus a carbon tax; how geo-

graphically disparate wind or solar installations might lower intermittency costs; and how
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technologies such as battery storage and electric cars which change the effective time pattern

of demand can change the value of renewable mandates.

Appendix A Proofs

For Online Publication

Proof of Lemma 3.1

V OLL =

∫ v
p̄
D(p,D)dp+ pD(p,D)

D(p,D)
=
D( 1

1−η )(v(1−η) − p(1−η)) + pDp−η

Dp−η

=
D( 1

1−η )(v(1−η) − ηp(1−η))

Dp−η
.

Dividing through by Dp−η, we obtain the expression in the statement of the lemma.

Proof of Lemma 3.2

Let P (q,D) denote the inverse demand curve. Then, the welfare cost of z is

WLC(z, pc) =

(
z

D(p,D)−D(pc, D)

)∫ D(p,D)

D(pc,D)

P (q,D)dq

=
zη(p̄1−η − p1−η

c )

(η − 1)(p̄−η − p−ηc )
.

Note that D drops out of the welfare cost, which depends on the state only through the

quantity z of rationing chosen at that state.

Appendix B System Operations

For Online Publication

The electricity system is a multi-nodal network that connects a number of different types

of generation plants to load centers (e.g., cities) via high-voltage transmission lines and

ultimately delivers power to customers via lower voltage distribution lines. Since storage is

very limited on most systems, the supply of power must equal (almost exactly) the demand
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for power, called load, on a real time basis. Moreover, load can vary unpredictably over

the course of a day (e.g., due to weather changes) and available supply can vary quickly and

unpredictably due to equipment malfunction or breakdown and due to intermittent renewable

generation. To ensure matching of supply and demand, the manager of an electricity grid

engages in “system operations.” System operations involve control of generators, decisions

about rationing power to customers, and control of backup systems. The system operator

insures reliability in part by having generators available on a stand-by basis so that customers

can continue to be served in the event that one or more generators fails and/or load exceeds

forecast. Operating reserves consist of generation capacity that is scheduled by the system

operator over and above the amount required to serve forecasted load. Operating reserves

are part of a set of ancillary services used by the system operator to regulate voltage and

maintain stability of the system. It is common for ancillary network-support services to

require scheduling generation capacity equal to 10-12 percent of load at any point in time.42

If available electricity supply is not sufficient to meet demand then a system operator will

typically shut off power to some customers or some geographic areas, resulting in a partial

blackout of the system. This is what we refer to as a system outage. The system operator

initiates an involuntary cut-off of power to some customers, so as to avoid a complete system

collapse. A total system collapse is a rare outcome in which demand and generation are shut

off over a large area in an uncontrolled fashion.43 A system collapse should not occur if the

system operator responds appropriately to a power shortage by cutting off power to some

customers.

In the absence of coordination by a system operator, the operator of a generation unit may

impose externalities on other suppliers and on consumers. This is because a power generator

may not face the additional cost of being the marginal producer that is causing the system

to have to shut out users or, in some cases, completely collapse [see Joskow and Tirole, 2007].

This externality problem is potentially larger with more intermittency problems, suggesting

42Joskow and Tirole [2007], p. 78.
43An example was the 2003 blackout in the Northeast U.S. and Ontario in which 50 million customers lost

power [Minkel, 2008]. In this case, a transmission line fault led to deviations in network frequency, causing
generators and transmission lines to trip out in a cascading fashion, which led to a blackout over a large area.
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that the role of the system operator may be more important with more renewable energy.

The North American Electric Reliability Corporation (NERC), an industry trade group,

has developed a set of standards for safe and reliable operation of the electric grid. These

standards cover many aspects of grid operations, including management of operating re-

serves.44 NERC standards are aimed at achieving a level of reliability such that a loss of load

occurs no more than one day in ten years. NERC Standard BAL-002-0 deals with what is

termed “Disturbance Control Performance.” This standard dictates the amount of reserve

capacity that is to be available in the event of a loss of supply (typically from failure of a

generator). Two key provisions of this standard are:

1. The Balancing Authority shall carry at least enough reserve to cover the most severe

single contingency (e.g., failure of the largest generation unit in operation).

2. The maximum amount of time permitted for recovery from a disturbance is 15 min-

utes.45

The NERC standards were approved by the Federal Energy Regulatory Commission (FERC)

in 2007 and are now mandatory for electric utilities in the U.S.

All electric grids have operating reserves, although there is variation in their management

across grids. We have limited information about how TEP manages operating reserves but

more information from the Electricity Reliability Council of Texas (ERCOT), which covers

most of the state of Texas. ERCOT operates in a deregulated framework in which there

is competition both in the wholesale market and among retail service providers. Wholesale

electricity service is traded via bilateral contracts and in an energy balancing spot mar-

ket. However, even in ERCOT’s deregulated framework, there is a system operator that is

responsible for managing operating reserves so as to maintain reliability.

The ERCOT system operator runs auctions to procure operating reserves from generation

suppliers for several categories of reserves. ERCOT utilizes four main types of ancillary

services [see Baldick and Niu, 2005]: (1) Up Regulation Service; (2) Responsive Reserve

44See, NERC [2011].
45The recovery period is defined as the amount of time it takes to return the area control error to the

minimum of zero and its pre-disturbance value.
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Services; (3) Non-spinning Reserves; and (4) Down Regulation Service. The first three of

these services pay firms in exchange for giving ERCOT the option to force them to operate

with short notice. If they are forced to operate, they then receive the market price on the

balancing market. These three services differ mostly in the length of time which they have to

increase production. The shortest is the Up Regulation, which allows firms 3 to 5 seconds to

adjust production, and the longest is non-spinning reserves, which allows an hour to adjust.

Down Regulation service pays firms that are operating generation units for giving ERCOT

the option to reduce their rate of generation. ERCOT would exercise this option when

demand is lower than expected. ERCOT conducts these ancillary service markets one day

ahead and operates one auction for each service category for each hour.

Appendix C Electricity Provision in

southeastern Arizona

For Online Publication

Most people in southeastern Arizona live in the Tucson metropolitan area, which is one of

the best locations in the U.S. for solar electricity generation, as evidenced by the solar ra-

diation map in Figure 4. Electricity service is provided by Tucson Electric Power (TEP),

a vertically integrated, investor-owned utility that is regulated by the Arizona Corporation

Commission (ACC). TEP’s service territory covers 1,155 square miles and includes a popu-

lation of approximately one million in the greater Tucson metropolitan area.46 Retail energy

consumption by customer class in 2008 was distributed as follows: 41 percent residential, 21

percent commercial, and 38 percent industrial and public. Copper mining is the largest in-

dustrial user of electricity, accounting for about one-third of industrial consumption. Tucson

is a summer peaking system, with very hot summers and high usage of air conditioning. The

highest load in 2008 was 3,063 MWh for 3-4 p.m., August 1.

Tucson is situated within the Western Interconnection, the electrical grid that encom-

46Detailed information about TEP customers and operations are found in the 2008 10-K annual report
for UniSource Energy Corp., TEP’s parent company; [see UniSource, 2012].
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Figure 4: Photovoltaic Solar Resource: Source www.NREL.gov

passes the Western U.S. and part of Western Canada. TEP is responsible for system op-

erations and for scheduling generation and transmission power flows within its balancing

authority area, which covers most of southeastern Arizona. At different times, TEP both

imports and exports power over the Western Interconnection. TEP has been a net exporter

of electricity over the 2007-2011 period, with a net export amount in 2008 of 11.4% relative

to in-house generation.47 As of the end of 2008, TEP owned or leased generation units with

total capacity of 2,222 MW. This capacity is virtually all powered by fossil fuel. 48 The

primary sources for data for TEP generators are described in Section 4.1. Most of these

generators are wholly owned and controlled by TEP. However, TEP has a partial ownership

stake in the Luna Energy natural gas plant and in the Navajo, Four Corners, and San Juan

47[See UniSource, 2012]
48Other utilities in Arizona own and operate non-fossil fuel generation plants. The Salt River Project

has several hydroelectric plants. Arizona Public Service operates the nation’s largest nuclear generator, Palo
Verde. There is some wind generation in Arizona. However, wind is not expected by be a major source of
renewable generation in the state.
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coal plants [see TEP’s FERC Form 714 filing and UniSource, 2012]. For our analysis, we

specify the generation capacity for each unit at a jointly owned plant as total unit capacity

times TEP’s plant ownership share.

TEP is subject to a Renewable Portfolio Standard (RPS), mandated by the ACC, which

calls for an increasing fraction of load to be generated from renewable sources until 15 percent

of load is from renewables by 2025. For 2008 the RPS was 1.75 percent. TEP satisfies the

RPS through a combination of its own solar PV generation, wholesale purchases of renewable

energy, distributed solar generation by its customers, and retirement of banked renewable

energy credits. Many TEP customers have solar PV panels at their business or residence.

However, total distributed solar PV capacity in TEP’s service territory was only 2.7 MW as

of the end of 2008.49
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