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1 Introduction

Many recent empirical papers seek to estimate causal relationships using instrumental variables

or two-stage least squares estimators when concerns about causality arise. In many cases, only

a single valid instrument is available, so researchers are often limited to estimating a linear re-

lationship between the dependent and the potentially endogenous regressor.1 Conclusions about

consistency of the ordinary least squares estimator are then based on a comparison of OLS and

2SLS estimates. When a standard Hausman test (Hausman 1978) indicates that OLS estimates are

sufficiently different from 2SLS estimates, endogeneity of the regressor is typically concluded to play

an important confounding role in OLS. However, we demonstrate that when the true relationship is

non-linear but the estimated model is linear, OLS and IV/2SLS estimate different weighted average

effects and the standard Hausman test is uninformative about endogeneity. Based on this insight,

we develop a new endogeneity specification test that is robust to general non-linear relationships

and only requires a single (even binary) instrument.

While numerous empirical and econometric studies explore the implications of parameter het-

erogeneity for OLS and IV estimation, very few studies focus on the implications of non-linearity

when the estimated model is assumed to be linear.2 Angrist, Graddy, and Imbens (2000), Lochner

and Moretti (2001), and Mogstad and Wiswall (2010) are notable exceptions. Yet, in many ap-

plications in economics, there is no particular reason to expect the true relationship to be linear.

The empirical examples of Mogstad and Wiswall (2010) underscore this point. We discuss the

consequences of this mis-specification for OLS and IV/2SLS estimators.

We begin by clarifying the interpretation of OLS and IV estimators under assumptions and

specifications commonly employed in the empirical literature. We show that inappropriately as-

suming linearity will generally yield different OLS and IV/2SLS estimates even in the absence of

endogeneity. The reason is that the OLS and 2SLS estimators can be written as weighted averages

of causal responses to each marginal change in the regressor, where the sets of weights differ for the

two estimators. The weights have an intuitive interpretation, are functions of observable quantities,

and can be estimated easily under very general assumptions.3

These insights motivate and guide our main contribution: a new specification test for endogene-

1More generally, the number of available instruments constrains the extent of non-linearity that can be estimated.
2Studies focusing on parameter heterogeneity include Imbens and Angrist (1994), Angrist and Imbens (1995),

Yitzhaki (1996), Wooldridge (1997), Heckman and Vytlacil (1998), Card (1999), Heckman and Vytlacil (1999, 2005),

Kling (2000), Heckman, Urzua and Vytlacil (2006), Moffitt (2009), and Carneiro, Heckman and Vytlacil (2010).
3See Heckman and Vytlacil (1999, 2005), Heckman, Urzua and Vytlacil (2006), Moffitt (2009), and Carneiro,

Heckman and Vytlacil (2010) for estimation of marginal treatment effects and different average treatment effects

under parameter heterogeneity.
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ity in the presence of non-linearities. Because OLS and IV/2SLS applied to mis-specified linear

models identify different weighted averages of marginal effects, the traditional Hausman test is un-

informative about endogeneity of the regressor. It may reject equality of OLS and 2SLS estimates

even when the regressor is exogenous, and it may fail to reject equality when the regressor is en-

dogenous. We exploit the intuition underlying the failure of the standard Hausman test to develop

a new test for whether OLS estimation of a general non-linear model produces consistent estimates

of each unrestricted, level-specific marginal effect. This test can be thought of as a generalization

of the standard Hausman test.4

Notably, our test works well even when only a single valid instrument is available. This is

noteworthy, since in the presence of non-linearities, many parameters typically need to be estimated.

Thus, one might expect to need at least as many instruments to test for endogeneity (as with a

standard Hausman test).5 We show that this is not necessary, since the general non-linear model

need not be estimated via IV/2SLS to test for endogeneity.

The minimal requirements on instruments imply that our test has important practical implica-

tions for empirical researchers. Consider the common situation where only one valid instrument is

available, but the true model may be non-linear. A researcher can use OLS to estimate a model

that allows for a fully non-parametric relationship using a set of dummy variables for each level of

the regressor. For example, the researcher might regress wages on a full set of 20 schooling dummies

representing each year of potential schooling attainment. The researcher can then use our proposed

test to establish whether the OLS estimates are consistent. Despite the fact that there are 20 OLS

parameters of interest, the test only requires one instrument, which may be binary. Rather than

using the instrument for direct estimation of the general causal relation of interest, the instrument

is used here to determine whether OLS estimates of the non-linear model are consistent. Of course,

in the case where they are not, our test does not help in estimating the true model. Thus, our test

offers only a partial solution to the problem of non-linear models with few instruments.

To make things more concrete, consider a simple example where the true relationship between

an outcome, y, and years of schooling, s, is non-linear. Let βj represent the grade-specific effect

of moving from j − 1 to j years of schooling. For example, there are large empirical literatures

focusing on the case where y measures wages, earnings, labor force participation, health, crime

4Note that our test differs conceptually and practically from the omnibus specification tests developed by White

(1981), which essentially compare different weighted generalized least squares estimators for a general nonlinear

function.
5In theory, a single continuous instrument with broad support may enable identification. However, in practice,

nonparametric or general nonlinear instrumental variable estimates obtained using few instruments are typically very

imprecise.
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or numerous other social and economic outcomes. It is common in these literatures to estimate

this type of model by assuming a linear relationship between s and y, although in many of these

cases there is evidence of substantial non-linearities.6 The practical problem is that there are 20

potential schooling levels and βj parameters to estimate, while researchers typically have very few

valid instruments.

Our setting differs from the case most often discussed in the literature regarding heterogeneity

in the regression parameter (e.g., Wooldridge 1997, Heckman and Vytlacil 1998, Card 1999), where

everyone receives a constant marginal return to schooling regardless of their level of schooling (i.e. yi

is linear in si), but the constant marginal return is assumed to vary in the population. We focus on

the opposite extreme, assuming a non-linear relationship between yi and si that does not vary across

individuals. In our analysis, the marginal return to schooling varies in the population, because the

effects of schooling are non-linear and different individuals have different levels of schooling, but

the marginal effect at each schooling level is assumed to be homogenous in the population.

We first show that in the absence of any endogeneity bias, the OLS estimate of the mis-specified

linear model converges to a weighted average of the true grade-specific effects, βj . IV and 2SLS

estimates of the mis-specified linear model also converge to weighted averages of the true grade-

specific effects, but the weights are different. The stronger the effect of instruments on a particular

schooling transition, the greater the weight on the effect of that transition. Intuitively this means

that the more people crossing the grade j barrier in response to a change in the instrument, the

greater the weight placed on the marginal effect of finishing grade j, βj . In general, different

instruments yield estimates of different “weighted averages,” even if the instruments are all valid.

While OLS weights depend on the joint distribution of schooling and the controls, IV weights

depend on the joint distribution of schooling, the controls and the instrument. As a consequence,

IV and OLS estimates can be quite different even when schooling is exogenous. One appealing

feature of our setting is that it is easy to empirically estimate the weights, and therefore, it is

possible to directly compare the OLS and IV weights. One can obtain the grade-specific OLS

weights by regressing indicators for whether schooling is above each grade on years of schooling.

One can obtain the grade-specific IV weights by estimating the same set of models, instrumenting

for the schooling indicators.

Since OLS and IV estimates can differ even when schooling is exogenous, an important practical

issue in this context is how to appropriately test for endogeneity. To test whether all βj parameters

6For example, in the classic case of returns to schooling—where y reflects log wages or earnings—Hungeford and

Solon (1987), Jaeger and Page (1996), Park (1999), and Heckman, Lochner and Todd (2008) estimate significant

non-linearities.
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are consistent using a Hausman test, one would need at least 20 instruments in order to estimate

the full model using IV or 2SLS. We show that this is not necessary. Instead, our proposed

generalization of the Hausman test compares the 2SLS estimate for the linear specification with

the weighted sum of the unrestricted, level-specific OLS estimates of βj ’s, where the weights are

the estimated IV or 2SLS weights.7 The test statistic turns out to have an intuitive form and

is easy to implement empirically. Rejection implies that OLS estimation of the general model

is asymptotically biased (i.e. endogeneity bias is a problem).8 As mentioned above, a researcher

can estimate the grade-specific effects (i.e. βj ’s) by OLS using a fully non-parametric model with

dummies for each level of schooling, and then use our test to determine whether these estimates

are consistent, even in the case where only a single instrument is available.

In the last part of the paper, we conduct a Monte Carlo study and revisit data from some

recent empirical papers to illustrate the value of our approach. In the Monte Carlo simulation,

we show how varying the degree of non-linearity can induce differences between the OLS and the

2SLS estimates, even in the absence of endogeneity bias. We base this analysis on the return to

schooling model discussed in Card (1999). We then focus on three recent empirical papers in which

estimated 2SLS effects differ from OLS effects. We find that in some cases the standard Hausman

test would lead the researcher to incorrectly conclude that OLS estimates are consistent, while our

test leads us to conclude the opposite. We also find that in some cases re-weighting the OLS βj

estimates by the 2SLS weights suggests that some of the discrepancy between the linear OLS and

2SLS estimators may be explained by non-linearity in the true relationship.

We are not the first to point out that estimates from a mis-specified linear model will yield

weighted averages of each grade-specific effect. This point has been made by Angrist and Im-

bens (1995) and Heckman, Urzua, and Vytlacil (2006), who discuss weights from 2SLS in the

presence of parameter heterogeneity. More recently, Mogstad and Wiswall (2010) also emphasize

the importance of accounting for non-linearities in a number of empirical contexts. As discussed

earlier, numerous studies discuss the weighting of OLS and/or 2SLS in the presence of parameter

heterogeneity, showing that under some conditions 2SLS estimates a local average treatment ef-

fect (LATE), or the effect of a regressor on those individuals induced to change their behavior in

response to a change in the value of the instrument. In addition, Heckman and Vytlacil (2005)

emphasize that the interpretation of OLS and 2SLS estimators can be quite complicated in the

presence of parameter heterogeneity. There is no single ‘effect’ of the regressor on the outcome,

7Lochner and Moretti (2001) and Mogstad and Wiswall (2010) suggest that comparing re-weighted OLS estimates

with IV/2SLS estimates may be a useful heuristic approach for assessing the importance of non-linearities. In this

paper, we develop a formal econometric test for exogeneity based on this insight.
8Alternatively, it my also indicate the presence of individual parameter heterogeneity.
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and different estimation strategies provide estimates of different ‘parameters of interest’ or different

‘average effects’.9

Our paper complements the existing literature in two respects. First, unlike the existing litera-

ture, we propose a test for endogeneity. Second, relative to the existing literature, our models are a

step closer to the models typically estimated by researchers in practice. Because both Angrist and

Imbens (1995) and Heckman, Urzua, and Vytlacil (2006) focus attention on the role of parameter

heterogeneity, their estimating equations differ from those commonly employed in empirical studies.

Angrist and Imbens (1995) only consider regressors that are indicators that place observations into

mutually exclusive categories, and they interact their instrument with each of these regressors to

create a large set of effective instruments. The Heckman, Urzua, and Vytlacil (2006) discussion of

instrumental variables estimation in ordered choice models is left implicit on all covariates affecting

the outcome variable. By contrast, our model considers estimation under common assumptions

about covariates and the way they enter estimation. In addition, our analysis is not centered on

finding an ‘economic interpretation’ for the IV estimator, as in Angrist and Imbens (1995) or Heck-

man, Urzua, and Vytlacil (2006). Instead, we are primarily interested in empirically comparing the

OLS and IV weights and deriving a test for whether the different weights can explain differences

between the two estimators when linearity is incorrectly assumed.

The remainder of the paper is organized as follows. In Section 2 we compare the OLS and 2SLS

estimators when the true model is non-linear, but a linear model is estimated. In Section 3 we

develop a test of consistency of the OLS estimator. Section 4 presents the results from a simple

Montecarlo study, while Section 5 focuses on three real world examples. Section 6 concludes.

2 Estimating Non-Linear Models Under Linearity Assumptions

In this section, we consider instrumental variable and OLS estimators when the estimated model

is linear but the true data generating process need not be. Assume that an outcome, yi, for person

i is given by

yi =
S∑

j=1

Dijβj + x′iγ + εi, (1)

where total years of schooling is represented by si ∈ {0, 1, 2, 3, ..., S}, Dij = 1[si ≥ j] reflects a

dummy variable equal to one if total years of schooling are at least j, and xi is a k × 1 vector of

other exogenous covariates (including an intercept), and εi are iid error terms with E(εi|xi) = 0.

9Heckman, Urzua, and Vytlacil (2006) also discuss 2SLS weights in general ordered and unordered multinomial

choice models with parameter heterogeneity.
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In this general model, the parameter βj reflects the grade-specific effect of moving from j − 1 to j

years of schooling. The βj effects are assumed to be identical for everyone in the population.10

Suppose that instead of estimating the general nonlinear model described above, a researcher

estimates a mis-specified version that is linear in schooling:

yi = siβ
L + x′iγ

L + νi. (2)

We are interested in estimates of βL and how those estimates relate to the underlying βj ’s. We

assume a sample size N is available.

2.1 IV Estimation with a Single Instrument

We show that under standard assumptions – the instrument zi is correlated with si after pro-

jecting on xi and uncorrelated with εi – the IV estimator for βL in equation (2) converges in

probability to a “weighted average” of all grade-specific effects, βj .

It is useful to decompose schooling in the population as si = x′iδs+ηi, where δs = [E(xix
′
i)]

−1E(xisi)

by construction and E(xiηi) = 0.

Assumption 1. The instrument is uncorrelated with the error in the outcome equation, E(εizi) =

0, and correlated with schooling after linearly controlling for xi, E(ηizi) ̸= 0.

Let Mx = I − x(x′x)−1x′ and s̃ = Mxs for any variable s. (We drop the i subscripts when

we refer to the vector or matrix version of a variable that vertically stacks all individual-specific

values.) With a single instrument, two stage least squares (2SLS) estimation of the linear model

(equation 2) is equivalent to the following IV estimator:

β̂LIV = (z′Mxs)
−1z′Mxy

= (z̃′s̃)−1z̃′

 S∑
j=1

Djβj

+ (z̃′s̃)−1z̃′ε

=
S∑

j=1

W IV
j βj + (z̃′s)−1z̃′ε

where

W IV
j = (z̃′s̃)−1z̃′Dj =

1
N

N∑
i=1

z̃iDij

1
N

N∑
i=1

z̃is̃i

. (3)

10For expositional purposes, it is assumed that there are no gaps in the schooling distribution, so the empirical

density for schooling is strictly positive for all S + 1 schooling levels. It is straightforward to generalize these results

to account for such gaps.
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Since
S∑

j=1
Dij = si, these W

IV
j sum to one over j = 1, ..., S. We refer to them as “weights” even

though they may be negative for some j.11

We show that the IV estimator of the mis-specified linear model converges to a “weighted

average” of each grade-specific βj effect. In general, the asymptotic “weights” sum to one but need

not be non-negative; however, we discuss a set of conditions that yield more interpretable weights

that are non-negative.

In terms of interpretation, one helpful assumption is monotonicity in the effects of the instrument

on schooling. Though monotonicity is not necessary for deriving and estimating “weights”, it does

help ensure that they are non-negative and facilitates a more intuitive interpretation along the lines

of the Local Average Treatment Effect (LATE) analysis of Angrist and Imbens (1995). Monotonicity

implies that the instrument either causes everyone to weakly increase or causes everyone to weakly

decrease their schooling. Without loss of generality, we assume that si is weakly increasing in zi.

Define si(z) to be the value of si for individual i when zi = z.

Assumption 2. (Monotonicity) The instrument does not decrease schooling:

Pr[si(z) < si(z
′)] = 0 for all z > z′.

To facilitate the discussion, decompose zi = x′iδz + ζi where δz = [E(xix
′
i)]

−1E(xizi) and

E(xiζi) = 0. We assume that xi is distributed according to the density function F (x).

Proposition 1. If Assumption 1 holds, then β̂LIV
p→

S∑
j=1

ωIV
j βj, where

ωIV
j =

Pr(si ≥ j)E(ζi|si ≥ j)
S∑

k=1

[Pr(si ≥ k)E(ζi|si ≥ k)]

(4)

sum to unity over all j = 1, ..., S. Furthermore, if E(zi|xi) = xiδz and Assumption 2 (Monotonicity)

holds, then the weights are non-negative and can be written as

ωIV
j =

E{Cov(zi, Dij |xi)}
S∑

k=1

E{Cov(zi, Dik|xi)}
≥ 0. (5)

Proof: It is straightforward to show that W IV
j

p→ ωIV
j , since the numerator for W IV

j equals

1
N

N∑
i=1

z̃iDij
p→ E(Dijζi) = Pr(si ≥ j)E(ζi|si ≥ j), the denominator is 1

N

N∑
i=1

z̃is̃i
p→ E(ηizi) which

is assumed to be non-zero, and W IV
j and ωIV

j sum to one over j = 1, ..., S. The assumption that

11When they cannot be shown to be non-negative, we use “weights” with quotation marks to distinguish them

from cases when they are known to be proper weights that are both non-negative and sum to one.
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E(εizi) = 0 along with E(εi|xi) = 0 implies that 1
N (z̃′ε)

p→ 0. This proves the first part of the

result.

To prove the second part of the result, note that the assumption E(zi|xi) = xiδz implies

1

N

N∑
i=1

z̃iDij =
1

N

N∑
i=1

[zi − xiδ̂z]Dij
p→ E[(zi − E(zi|xi))Dij ] = E{Cov(zi, Dij |xi)},

where δ̂z = (x′x)−1x′z
p→ δz. Denoting the density function for z conditional on x by F (z|x),

the Cov(zi, Dij |x) =
∫
[z − E(z|x)]Pr(Dij = 1|z, x)dF (z|x) is non-negative for all x and j if

∂Pr(Dij = 1|z, x)/∂z ≥ 0 for all x and j. This is ensured by Assumption 2. Using the fact

that the weights sum to one concludes the proof.

QED

This result shows that estimating the mis-specified linear model using IV yields a consistent

estimate of a weighted average of all grade-specific marginal effects. (This result is quite similar to

that of Theorem 1 in Angrist and Imbens (1995). Their result allows for individual heterogeneity

in βj coefficients, but it assumes a binary instrument and does not consider additional covariates.)

The weights on all grade-specific effects are straightforward to estimate. From a 2SLS regression

of Dij on si and xi using zi as an instrument for si, the coefficient estimate on si equals W
IV
j .

These “weights” depend on the joint distribution of s, x, and z. When the instrument affects all

persons in the same direction and its expectation conditional on xi is linear (e.g. x’s are mutually

exclusive and exhaustive categorical indicator variables), the weights are non-negative and depend

on the strength of the relationship between the instrument and each schooling transition indicator

conditional on other covariates. The stronger the effect of the instrument on a particular schooling

transition, the greater the weight on the effect of that transition. In general, different instruments

yield estimates of different “weighted averages,” even if the instruments are all valid.

2.1.1 Weighting across different observable types

Under Assumption 1 and E(zi|xi) = xiδz, it is straightforward to show that

β̂LIV
p→
∫
βIV (x)h(x)dF (x)

where βIV (x) =
Cov(zi,yi|x)
Cov(zi,si|x) is the population analogue of the IV estimator conditional on xi = x and

h(x) = Cov(zi,si|x)∫
Cov(zi,si|a)dF (a)

is a weighting function (that integrates to one) for different x. (The h(x)

weights are non-negative under Assumption 2.) Thus, the IV estimator converges to a weighted

average of all conditional (on x) IV estimators, where the h(x) weights are proportional to the

covariance between the instrument and schooling conditional on x. βIV (x) estimators for those
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types whose schooling is affected most by the instrument receive the greatest weight in calculating

the average affect of schooling on y. Further, notice that βIV (x) =
S∑

j=1
βjω

IV
j (x), where ωIV

j (x) =

Cov(zi,Dij |xi)
Cov(zi,si|x) are x-specific IV “weights” (i.e. they sum to one over all j) for each grade-specific

effect, βj .
12 So, each x-specific IV estimator is simply a weighted average of the grade-specific

βj effects, where the weights are proportional to the covariance between the instrument and Dij

conditional on x. Some re-arranging shows that we can write the IV weights from equations (4) or

(5) as ωIV
j =

∫
ωIV
j (x)h(x)dF (x).

With a binary instrument, the ωIV
j (x) weights can be more easily interpreted along the lines of

the LATE analysis of Angrist and Imbens (1995). For zi ∈ {0, 1} and π(x) ≡ Pr(zi = 1|x),

Cov(zi, Dij |x) = π(x)[1− π(x)][Pr(Dij = 1|zi = 1, x)− Pr(Dij = 1|zi = 0, x)].

In this case, the x-specific weights simplify to

ωIV
j (x) =

Pr(Dij = 1|z = 1, x)− Pr(Dij = 1|z = 0, x)
S∑

k=1

[Pr(Dik = 1|z = 1, x)− Pr(Dik = 1|z = 0, x)]

.

Thus, βIV (x) weights each βj based on the fraction of all grade increments (for xi = x individuals)

induced by a change in the instrument that are due to persons switching from less than j to j or

more years of school. The effects of grade transitions at schooling levels that are unaffected by the

instrument receive zero weight. The IV estimator for the full sample weights each of the x-specific

estimators according to the relative covariance of schooling with the outcome measure conditional

on x.

Under Assumptions 1 and 2, if E(xi|zi) = E(xi), then the weights in equations (4) or (5)

simplify considerably, becoming independent of xi:

ωIV
j =

Pr(Dij = 1|z = 1)− Pr(Dij = 1|z = 0)
S∑

k=1

[Pr(Dik = 1|z = 1)− Pr(Dik = 1|z = 0)]

=
Pr[si(0) < j ≤ si(1)]

S∑
k=1

Pr[si(0) < k ≤ si(1)]

.13 (6)

The additional mean independence assumption E(x|z) = E(x) may apply naturally to many ‘nat-

ural experiments’, making this simple expression useful in those contexts. The resulting weights

reflect the fraction of all grade increments induced by a change in the instrument that are due

to persons switching from less than j to j or more years of school. The IV estimator, therefore,

identifies the average effect of an additional year of schooling, where the average is taken across

all grade increments induced by the instrument. If individuals change schooling no more than one

12These ωIV
j (x) weights are non-negative under Assumption 2.

13See the Appendix for a proof of this result.
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grade in response to a change in z, then the IV estimator reflects the average marginal effect of an

additional year of school among individuals affected by the instrument.

Angrist and Imbens (1995) and Heckman, Urzua, and Vytlacil (2006) derive very similar weights

on local average grade-specific effects when the βj ’s vary across individuals. However, in order to

ease interpretation, they make strong assumptions about the additional xi covariates and how

they enter the estimation procedure. For example, Angrist and Imbens (1995) assume that the xi

regressors are indicator variables that place individuals into mutually exclusive categories and that

the instrumental variable is interacted with all of these additional covariates. Heckman, Urzua,

and Vytlacil (2006) explicitly condition their ordered choice analysis on all covariates. Our analysis

ignores heterogeneity in the grade-specific effects; however, it considers estimation under common

assumptions about covariates and the way they enter during estimation. We are not focused

on finding an ‘economic interpretation’ for the IV estimator (as in Angrist and Imbens (1995),

Heckman and Vytlacil 2005), since the weights we consider can easily be estimated. Instead, we

are interested in empirically comparing the OLS and IV weights and deriving a test for whether the

different weights can explain differences between the two estimators when linearity is incorrectly

assumed.

2.1.2 Special Case: OLS Estimation of the Linear Specification

Since OLS is a special case of IV estimation, it is clear that in the absence of endogeneity (i.e.

E(εi|si) = 0), the OLS estimator for the linear model also converges to a weighted average of the

grade-specific effects, βj , where the weights are non-negative and sum to one.

Corollary 1. If E(εisi) = 0 then

β̂LOLS
p→

S∑
j=1

ωOLS
j βj (7)

where the

ωOLS
j =

Pr(si ≥ j)E(ηi|si ≥ j)
S∑

k=1

Pr(si ≥ k)E(ηi|si ≥ k)

≥ 0 (8)

sum to unity over all j = 1, ..., S.

Proof: This result largely follows from Proposition 1 replacing zi with si. The appendix shows that

the OLS weights are always non-negative.

The empirical counterpart to ωOLS
j , WOLS

j , is simply the coefficient estimate on si in an OLS

regression of Dij on si and xi. Therefore, only data on xi and si are needed to construct consistent
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estimates of the asymptotic weights. Note that WOLS
j

p→ ωOLS
j even if E(si|xi) ̸= x′iδs and some

“weights” are negative.

Of course, the weights implied by OLS estimation will not generally equal the weights implied

by IV estimation. For example, consider the case with no x regressors (except an intercept). In this

case, it is straightforward to show that ωOLS
j+1 −ωOLS

j ∝ (E(si)−j)×Pr(si = j), which is positive for

j < E(si), zero for j = E(si), and negative when j > E(si). This implies that OLS estimation of

the linear specification places the most weight on grade-specific βj effects near the mean schooling

level. When schooling is uniformly distributed in the population, the weights decay symmetrically

as one moves away from the mean in either direction. The weights first decline slowly, then decline

faster the further one gets away from the mean generating an inverted-U shape.

Contrast this with the weights implied by equation (6) in the case of a binary instrument

zi ∈ {0, 1} satisfying the monotonicity assumption. In this case, IV places all the weight on schooling

margins that are affected by the instrument, while the underlying distribution of schooling in the

population is irrelevant. In Section 5, we graph estimated OLS and IV weights in a few different

empirical applications.

Researchers often estimate linear specifications rather than more general non-linear models,

because they are limited in the instrumental variables at their disposal. Yet, there is no reason to

expect OLS and IV estimators for a mis-specified linear model to be equal even in the absence of

endogeneity (i.e. if si and zi are both uncorrelated with εi) or individual-level parameter hetero-

geneity (i.e. all βj parameters are the same for everyone). As a result, standard Hausman tests

applied to the mis-specified linear model may reject the null hypothesis of ‘exogenous s’ due simply

to non-linearity in the relationship between s and y. Below, we develop a chi-square test for whether

OLS estimation of equation (1) yields consistent estimates of the underlying βj parameters (i.e.

whether E(εi|si) = 0) even when only a single valid instrumental variable is available. However,

first, we generalize our key results to the case of many instruments.

2.2 2SLS Estimation with Multiple Instruments

In Section 2.1 we have focused on the case where only one instrumental variable for schooling

is available. Here we generalize the results to the case where we have I distinct instruments for

schooling, zi = (zi1 ... ziI)
′, but the researcher still estimates the linear-in-schooling model (2).

Let si = x′iθx + z′iθz + ξi, with θ̂x and θ̂z reflecting the corresponding OLS estimates of θx and

12



θz. Further define the predicted value of schooling conditional on x and z: ŝ = x′iθ̂x + z′iθ̂z. Then,

β̂L2SLS = (ŝ′Mxŝ)
−1ŝ′Mxy

=

S∑
j=1

Wjβj + (ŝ′Mxŝ)
−1ŝ′Mxε,

where the “weights” Wj = (ŝ′Mxŝ)
−1ŝ′MxDj = (θ̂′zz

′Mxzθ̂z)
−1θ̂′zz

′MxDj reflect consistent esti-

mates of ωj from 2SLS estimation of

Dij = siωj + x′iαj + ψij , ∀j ∈ {1, ..., S}. (9)

We will assume that Assumption 1 holds for all ziℓ instruments and that we have sufficient

variation in zi conditional on xi for identification. Let ζi = (ζi1, ..., ζiI)
′ be the I×1 vector collecting

all ζiℓ = ziℓ − x′iδzℓ, where δzℓ = [E(xix
′
i)]

−1E(xiziℓ) was introduced above in the single-instrument

case.

Assumption 3. The covariance matrix for zi after partialling out xi, E(ζiζ
′
i), is full rank.

As with the single-instrument IV estimator, we can show that the linear 2SLS estimator con-

verges in probability to a “weighted” average of all grade-specific effects. Letting ωIV
jℓ reflect the

grade j “weight” from the single-instrument IV estimator using ziℓ as the instrument as defined

by equation (4), the 2SLS estimator “weight” on any βj is a weighted average of each of these

single-instrument IV estimator “weights”.

Proposition 2. Under Assumptions 1 and 3, β̂L2SLS
p→

S∑
j=1

ωjβj, where

ωj =

I∑
ℓ=1

Ωℓω
IV
jℓ

sum to unity over all j = 1, ..., S and

Ωℓ =

θzℓ
S∑

k=1

Pr(si ≥ k)E(ζiℓ|si ≥ k)

I∑
m=1

θzm
S∑

k=1

Pr(si ≥ k)E(ζim|si ≥ k)

(10)

sum to unity over all ℓ = 1, ..., I. Furthermore, if each instrument satisfies Assumption 2 and

E(ziℓ|xi) = xiδzℓ, then all ωIV
jℓ , Ωℓ, and ωj are non-negative.

Proof: See the Appendix.
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Not surprisingly, one can also show that the 2SLS estimator converges in probability to a

weighted average of the probability limits of all single-instrument IV estimators, where the weights

are given by Ωℓ in equation (10).14

3 A Wald Test for Consistent OLS Estimation of All βj’s

When at least one valid instrumental variable is available, the analysis of Section 2 suggests a

practical test for whether OLS estimates of B ≡ (β1, ..., βS) from equation (1), B̂, are consistent.15

We now develop a test that compares the 2SLS estimator for the linear model with the weighted

sum of the unrestricted grade-specific OLS estimates of the βj ’s, using the estimated 2SLS weights

W ≡ (W1, ...,WS)
′. Intuitively, if E(εi|si) = 0 so OLS estimates of equation (1) are consistent,

then the re-weighted sum of these OLS estimates (using the 2SLS weights) should asymptotically

equal the 2SLS estimator from the linear model, i.e. β̂L2SLS −W ′B̂
p→ 0. This will not generally be

true when E(εiDij) ̸= 0 for any j.

Recall that B̂ is given by OLS estimation of equation (1), while β̂L2SLS is given by 2SLS esti-

mation of equation (2). Applying 2SLS to equation (9) yields estimates Wj and α̂j for all j. In

order to derive our test statistic, we frame estimation of B̂, β̂L2SLS , and W as a stacked generalized

method of moments (GMM) problem. This establishes joint normality of (B̂, β̂L2SLS ,W ) and facil-

itates estimation of the covariance matrix for all of these estimators. From this, a straightforward

application of the delta-method yields the variance of β̂L2SLS −W ′B̂, which is used in developing a

chi-square test statistic for the null hypothesis that T̂ ≡ β̂L2SLS −W ′B̂
p→ 0.

While most details are relegated to the Appendix, it is necessary to introduce some additional

notation in order to define the test statistic. We first define the regressors for OLS estimation of

equation (1), X1i = (D′
i x

′
i), and the regressors, X2i = (si x

′
i), and instruments, Z2i = (z′i x

′
i), used

in 2SLS estimation of equations (2) and (9). Denote the corresponding matrices for all individuals

as X1, X2, and Z2, respectively. Next, let Θ = (B′ γ′ βL γL′ W ′
1 α

′
1 ... W

′
S α′

S)
′ reflect the full

set of parameters to be estimated. Finally, let Θ̂ denote the corresponding vector of parameter

estimates, where (B′ γ′) is estimated by OLS and (βL γL′) and all (W ′
j α

′
j) are estimated via 2SLS.

As shown in the Appendix, the variance of Θ can be consistently estimated from

V̂ = ÂΛ̂Â′, (11)

14If we define βL
IV,ℓ = plim β̂L

IV,ℓ where β̂L
IV,ℓ is the single-instrument IV estimator using ziℓ as an instrument for

si in estimating equation (2), then β̂L
2SLS

p→
I∑

ℓ=1

Ωℓβ
L
IV,ℓ, where Ωℓ is defined by equation (10).

15Formally, B̂ = (D′MxD)−1D′Mxy, where Mx and y are defined earlier and D reflects the stacked N × S matrix

of (Di1, ..., DiS) for all individuals.
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where

Â =

 [X ′
1X1]

−1 0

0 I2 ⊗ [X̂ ′
2X̂2]

−1Γ̂′
2

 , (12)

Γ̂2 = (Z ′
2Z2)

−1Z ′
2X2, X̂2 = Z2Γ̂2, and 0 reflects conformable matrices of zeros. Furthermore,

Λ̂ =
1

N

N∑
i=1


ε̂2i (X

′
1iX1i) ε̂iν̂i(X

′
1iZ2i) ε̂iΨ̂

′
i ⊗ (X ′

1iZ2i)

ε̂iν̂i(Z
′
2iX1i) ν̂2i (Z

′
2iZ2i) ν̂iΨ̂

′
i ⊗ (Z ′

2iZ2i)

ε̂iΨ̂i ⊗ (Z ′
2iX1i) ν̂iΨ̂i ⊗ (Z ′

2iZ2i) Ψ̂iΨ̂
′
i ⊗ (Z ′

2iZ2i)

 , (13)

where ε̂i = yi − D′
iB̂ − x′iγ̂, ν̂i = yi − siβ̂

L
2SLS − x′iγ̂

L, and Ψ̂i = (ψ̂1i ψ̂2i ... ψ̂Si)
′ with ψ̂ij =

Dij − siWj − α̂′
jxi.

Finally, define T̂ ≡ T (Θ̂) = β̂L2SLS −W ′B̂, and let

Ĝ ≡ ∇T̂ = (−Ŵ ′ 0′x 1 0′x (−β̂1 0′x) (−β̂2 0′x) ... (−β̂S 0′x))

represent the (2S + 1 + (S + 2)K)× 1 jacobian vector for T (Θ̂) (where 0x is a K × 1 zero vector).

It is now possible to derive a chi-square test statistic.

Theorem 1. Under Assumptions 1 and 3, if E(εi|si) = 0, then

WN = N

[
(β̂L2SLS −W ′B̂)2

ĜV̂ Ĝ′

]
d→ χ2(1). (14)

Proof: See the Appendix.

It is important to note that T̂
p→ 0 need not imply that B̂

p→ B for two reasons. First, this test

cannot tell us anything about whether β̂j
p→ βj for some grade transition j if ωj = 0. In other words,

the test only provides information about the effects of grade transitions that are affected by the in-

strument. Second, the β̂j OLS estimates may be asymptotically biased upward for some j and down-

ward for others. In general, B̂
p→ B∗ ≡ B + {E(DiD

′
i) − E(Dix

′
i)[E(xix

′
i)]

−1E(xiD
′
i)}−1E(Diεi).

Thus, T̂
p→ 0 for any B∗ satisfying ω′(B − B∗) = 0. A test based on Theorem 1 would have no

power against these alternatives; although, rejection of the null hypothesis would imply that B̂

does not consistently estimate B.

Under reasonable conditions, WN can serve as a valid test statistic for the null hypothesis that

B̂
p→ B. If ωj > 0 for all j (a testable assumption) and if E(εiDij) = E(εi|si ≥ j) were either

non-negative for all j or non-positive for all j, then all β̂j would be asymptotically biased in the

same direction and B∗ ̸= B ⇔ ω′(B − B∗) ̸= 0. In this case, testing whether T̂
p→ 0 would be

equivalent to testing for consistency of B̂.16

16In the case where some ωj = 0, the test would be equivalent to testing for consistency of all βj with ωj > 0.
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To better understand these conditions, consider a standard latent index ordered choice model

for schooling of the form:

s∗i = µ(zi, xi) + vi (15)

si = j if and only if j ≤ s∗i < j + 1. (16)

Assume that all x regressors and instruments z are independent of both errors: (εi, vi) ⊥⊥ (zi, xi). It

is straightforward to show that if E(ε|v) is weakly monotonic in v, then E(εi|si ≥ j) will be either

non-positive or non-negative for all j.17 Monotonicity of E(ε|v) is trivially satisfied by all joint

elliptical distributions (e.g. bivariate normal or t distributions), which produce linear conditional

expectation functions.

Intuitively, one is only likely to fail to reject the null hypothesis of T̂
p→ 0 when B∗ ̸= B in cases

where individuals with both high and low propensities for education (conditional on observable

characteristics) have a higher (or lower) unobserved ε than individuals with an average propensity

for schooling. In the case of an ordered choice model, this would imply a U-shaped (or inverted

U-shaped) relationship for E(ε|v). In many economic contexts, these perverse cases seem unlikely.

Finally, we note that if more than one valid instrument are available, then those instruments

can be used in different combinations to perform separate tests. Because each 2SLS estimator

(distinguished by the set of instruments used) converges to a different weighted average of the true

B parameters (i.e. ω′
zB where z denotes the set of instruments used), it is unlikely that one would

reject the null of ω′
zB = ω′

zB
∗ for all sets of instruments unless B = B∗.18

4 A Monte Carlo Study

In this section, we use a Monte Carlo simulation exercise to show how varying degree of non-

linearity can induce differences between the OLS and the IV estimates, even in the absence of

endogeneity bias. As a setting, we consider a modified version of Card (1995) model of investment

in human capital. An individual choose schooling si to maximize Vi(si) = log[yi(si)]−Ci(si) where

yi(si) is earnings and Ci(si) is cost of schooling. We assume that the relation between log earnings

and schooling is non-linear by allowing for jumps of size κ in earnings at an arbitrary schooling

level J

17Strictly speaking, weak monotonicity is only required over the range of v covered by j − µ(z, x) (i.e. for v ∈

[1− µ(z, x), S − µ(z, x)]), so behavior in the tails of the distribution is irrelevant. See the Appendix for details.
18Because these test statistics are not generally independent, the critical values for this type of joint testing

procedure are likely to be quite complicated. We do not address this issue here.
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log[yi(si)] = a+ bsi + κ1(si ≥ J) + εi (17)

where κ measures the degree of non-linearity between log earnings and schooling. A larger κ implies

a stronger non-linearity. The individual-specific cost of schooling is assumed to be

Ci(si) = c+ risi +
k2
2
s2i + κ1(si ≥ J), (18)

where the inclusion of κ here ensures that the non-linearity in earnings does not affect schooling

choices. This allows us to focus on the extent to which non-linearity in the outcome variable affects

IV and OLS estimators and our exogeneity test given a fixed set of OLS and IV weights.19 Finally,

we assume that the instrumental variable zi shifts the cost of schooling

ri = dzi + ηi, (19)

and that individuals can only choose s ∈ {0, 1, 2, ..., S}.20

If we let  εi

ηi

 ∼ N

 0

0

 ,
 σ2ε σεη

σεη σ2η


we can control the amount of ‘endogeneity’ by varying ρ =

σεη

σεση
. Note that we naturally have

monotonicity in the effects of zi on schooling.

We set the sample size for each Monte Carlo simulation equal to 1,000. For each indepen-

dent observation, we randomly draw a binary instrument zi ∈ {0, 1} independently from bivariate

normally distributed errors (ϵi, ηi). Given the value of the parameters, the level of schooling is

determined and realized values of log(yi) are constructed. Given this information, point estimates

and standard errors are computed and saved. For each choice of ρ and k, we use 10,000 simulated

samples.

For each model, defined by a combination of endogeneity (ρ) and jump size (κ), we compute

point estimates and standard errors for OLS estimator and IV estimator. Specifically, we estimate

the model for all possible combinations of

ρ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.3} and κ ∈ {0, 0.1, 0.5, 1.0}.
19Including κ in both the log earnings and cost functions is equivalent to assuming that individuals do not consider

any non-linearities when making their schooling decisions. Although the IV and OLS weights will not vary with κ in

our analysis, they will vary with the extent of ‘endogeneity’ as defined by ρ below.
20We have made two changes to Card’s original model. First, Card allows for variation in bi, while we set bi = b for

all i. Second, in Card log earnings are quadratic in schooling. In our case, log earnings are non-linear, but non-linearity

is parameterized with discrete jumps. This allows for an easier interpretation of the Monte Carlo estimates.
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We randomly draw zi with probability Pr(zi = 1) = 0.5 and set other parameters of the model as

follows: a = 1.5; b = .04; c = 0; d = 0.01; k2 = .003; σ2ε = .25; σ2η = .00005; J = 12; and S = 20.

This set of parameters generates a reasonable earnings and schooling distribution (for ρ = κ = 0)

relative to recent Census years.

The estimation results for these Monte Carlo exercises are shown in Table 1. For each model,

we report the average point estimates and their standard deviation from the simulation samples

for OLS and 2SLS estimators from the mis-specified linear model, as well as the re-weighted OLS

estimates from the non-linear model using the estimated 2SLS weights,
S∑

j=1
Wj β̂j . (Estimated OLS

and 2SLS weights are shown in Figure 1.) We next report the fraction of cases where we reject the

null hypothesis of equality between the IV and re-weighted OLS estimates using the general Wald

test given in Theorem 1. Finally, we report the fraction of cases we reject the null of exogeneity

based on the linear specification using the standard Durbin-Wu-Hausman (DWH) test. We use the

critical value of 3.841 associated with a 0.05 significance level for both tests. Using our test, we

should reject the null hypothesis that the re-weighted OLS estimates equal the IV estimates 5%

of the time when schooling is exogenous (i.e. ρ = 0) regardless of the amount of non-linearity (i.e.

for any value of κ). We only expect to reject the null 5% of the time using the DWH test when

ρ = κ = 0.

The first row in Table 1 indicates that when the true relation between earnings and schooling

is linear, and there is no endogeneity, both OLS and 2SLS estimated returns to schooling are

4%. The next few rows (all with ρ = 0) indicate that the difference between IV and OLS grows

when we introduce increasingly large non-linearities in the relation between earnings and schooling.

However, re-weighting the OLS estimates accounts for all of the difference between the linear OLS

and IV estimators. Thus, our test rejects the null only about 5% of the time as it should. The

standard DWH test rejects the null about 5% of the time for small or no non-linearity (i.e. κ values

of 0 and 0.1), but rejects much more frequently as non-linearity becomes a more important feature

of the data. For κ = 1, the DWH test rejects over 40% of the time despite the fact that schooling

is exogenous.

The remaining panels repeat the same exercise progressively increasing the amount of endo-

geneity. While re-weighting the OLS estimates using the IV weights often accounts for much of

the difference between the linear OLS and IV estimates, it does not generally account for all of

the difference. The greater the endogeneity (i.e. the higher is ρ), the more the difference remains

unexplained. Most importantly, our test begins to reject equality of the re-weighted OLS and IV

estimates (i.e. exogeneity of schooling) at noticeably higher rates for even minor deviations from

exogeneity (e.g. ρ = 0.05). For ρ ≥ 0.2, our test almost always rejects exogeneity. Consider, for
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example, the set of results with ρ = 0.2. In the linear model (κ = 0), the IV estimate is basi-

cally 0.04; however, the OLS estimate is much lower at 0.012 due to the endogeneity of schooling.

Re-weighting has a negligible effect on the OLS estimate, and we almost always reject the null of

exogeneity. When κ = 1, the linear OLS estimate is still smaller than the IV estimate, but the

re-weighted OLS estimate is much closer. Indeed, it appears that the different weights and non-

linearity explain roughly one-third of the difference between linear OLS and IV estimates in this

case. Still, our test correctly rejects the null in almost all cases. In general, the share of rejections

is independent of the amount of non-linearity, but sharply increasing in the degree of endogeneity.

It is also interesting to note that when the true underlying model is linear (i.e. κ = 0), our more

general test has very similar power to the DWH test: rejection rates for our test are typically less

than 2% lower than for the DWH when κ = 0.

5 Three Empirical Examples

In this section, we focus on three recent empirical papers in which estimated 2SLS effects are

different from the OLS effects: estimates of the effect of schooling on the probability of incarceration,

using compulsory schooling laws as instruments (Lochner and Moretti, 2004); estimates of the effect

of mother schooling on child health at birth, using opening of new colleges as an instrument (Currie

and Moretti, 2003); and estimates of the private return to schooling using compulsory schooling

laws as instruments (Acemoglu and Angrist, 2001). In all cases, the econometric specification

assumed linearity.21 In the presence of non-linearities, differences between OLS and 2SLS weights

may explain at least some of the difference between the two estimates. For each of the three

cases, we examine the extent to which re-weighting the OLS estimates of the βj ’s helps reconcile

the difference between the linearly mis-specified OLS and 2SLS estimates. We then test whether

schooling is exogenous using both the standard Hausman test and our proposed generalization that

accounts for potential non-linearities.

Results are reported in Table 2. Columns 1 and 2 reproduce OLS and 2SLS estimates using

the same models and similar data used in the original papers. For example, the first row indicates

that using the Lochner and Moretti (2004) data for white men, a regression of an indicator for

incarceration on years of schooling and controls yields an OLS coefficient equal to -.0010, and a

2SLS coefficient equal to -.0011. The 2SLS estimates use as instrumental variables 3 dummies for

different compulsory schooling ages. The difference between OLS and 2SLS is reported in column

21However, Lochner and Moretti (2001) explore the extent to which non-linearities may explain the difference

between their 2SLS and OLS estimates.
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3. The 2SLS estimate is about 10% larger than the OLS one in absolute value, even if reasonable

assumptions on the endogeneity of schooling would suggest that the OLS estimate is likely to

overstate the importance of schooling. The corresponding OLS and 2SLS estimates for Blacks are

-.0037 and -.0048, respectively.

There are several well-understood reasons why one might find a larger 2SLS estimate (relative

to the OLS estimate), including the presence of measurement error and heterogeneous effects.22 It

is possible that non-linearity in the incarceration-schooling relationship may also play a role. This

is particularly true here, since non-linearities appear to be important. In the top panel of Figures 2

and 3, we plot OLS estimates of the grade-specific effect of moving from j−1 to j years of schooling

— i.e. the OLS estimates of the βj coefficients. If the linearity assumption were correct, all the βj

would be the same. Instead, the estimated βj suggest that the grade-specific effect of moving from

j − 1 to j years of schooling varies considerably across years of schooling. Overall, the figures are

consistent with strong non-linearities in the effect of schooling on imprisonment, with the strongest

effect for high school graduation (11 to 12). Based on these findings, Lochner and Moretti (2004)

suggest that high school graduation is an important margin for incarceration among men, but they

are hesitant to draw strong conclusions from these general OLS estimates due to concerns about

endogeneity.

The bottom panels in Figures 2 and 3 report estimates of the OLS weights and the IV weights,

as defined in Section 2. These weights are clearly very different for white men: the OLS weights are

high for years of schooling between 12 and 16, while the 2SLS weights are highest at exactly 12 years

of schooling, implying that the effect of moving from 11 to 12 years of schooling figures prominently

in the 2SLS estimates. This makes sense, given that the instruments adopted (compulsory schooling

laws) are most effective at shifting schooling levels just before or at high school graduation. For

black men, the effect of compulsory schooling is strong at earlier grades, so that the weights are

more shifted to the left. In column 4 of Table 1, we re-weight the estimates the grade-specific

effect of moving from j− 1 to j years of schooling (βj) using the 2SLS weights in the bottom panel

of Figure 2. For whites, the re-weighted OLS estimates are 0.0012, larger than the IV estimates.

Intuitively, the re-weighted OLS estimates are larger because the 2SLS weights put more weights

on the large βj that represent the effect of moving from 11 to 12 years of schooling. For blacks,

22With heterogenous effects, 2SLS estimates reflect the effects of schooling for those individuals whose schooling

is affected by the instrument. For example, Kling (2001) shows that college proximity largely affects the schooling

achievement of individuals from lower socioeconomic backgrounds. OLS will tend to reflect the impact for a broader

population. If returns to schooling are higher for individuals from lower socioeconomic backgrounds, this could

translate into a larger effect of schooling on criminal behavior for individuals most affected by the instrument. This

may lead to larger 2SLS estimates relative to OLS estimates.

20



the re-weighted OLS estimate is smaller, because the 2SLS weights are more shifted to the left and

therefore put less weight on βj that are large.

The last three columns of Table 2 are the most important, since they report on different tests

for the endogeneity of schooling. Column 5 presents test statistics and associated p-values for on

our proposed test of endogeneity (see Theorem 1), which is valid in the presence of non-linearities.

Columns 6 and 7 present results from the standard Hausman-based Wald test and the Durbin-

Wu-Hausman test, respectively, which are both incorrect in the presence of non-linearities. For

white men, our test fails to reject, which is quite important in practice. Based on this finding,

we can confidently take the OLS estimates of the βj in Figure 2 as consistent. This confirms the

speculation by Lochner and Moretti (2004) that high school completion has the greatest effect on

incarceration rates, and that college attendance has weaker effects. This is extremely useful, since

with only three available instruments, it is impossible to estimate all 20 βj parameters by 2SLS.

Indeed, it is not possible to precisely estimate highly restricted two-parameter non-linear models.

Fortunately, our test suggests that this is not necessary in this context.

The case of incarceration for black men is different: our test clearly rejects the hypothesis

that the re-weighted OLS and 2SLS estimates are the same, with a p-value of .0005. Notably,

the standard Hausman test fails to reject. This is particularly interesting, since it shows how

the standard test may fail to detect an endogeneity problem when one exists if non-linearity is a

problem. Our test, of course, correctly identifies the problem. Again, this is important in practice.

A priori, one might have expected the endogeneity of schooling to produce OLS estimates that are

too large (in absolute value); yet, a comparison of columns 1 and 2 suggests that there is little

evidence of any bias. Despite the similarity of the linear OLS and 2SLS estimates, our test clearly

implies that schooling is endogenous. Thus, in this case, a researcher would be wrong in concluding

from the Hausman or Durbin-Wu-Hausman tests that schooling was exogenous. The unrestricted

OLS coefficients reported in Table 2 are not consistent.

In the second panel, we turn to estimates of the effect of maternal schooling on infant health

and health inputs from Currie and Moretti (2003). The instrument in this case is a dummy for

college proximity. In this case, the re-weighted OLS estimates (column 4) are generally similar to

the OLS estimates (column 1). Looking at Figures 4 and 5, it is clear why: the OLS and 2SLS

weights are nearly identical. Not surprisingly, our test and the standard Hausman test produce the

same conclusion.

Finally, in the bottom panel, we turn to estimates of the private return to schooling using

three dummies for compulsory schooling as instruments. While the original Acemoglu and Angrist

paper includes estimates of the social return to schooling, we focus only on the more standard
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private return to schooling, consistent with much of the literature. The dependent variable is log

annual earnings. OLS estimates indicate that an additional year of schooling translates into 8.2%

increase in annual earnings, while the 2SLS estimates suggest a much larger return. The re-weighted

OLS estimates are in between, although the effect of re-weighting is minor despite the substantially

different OLS and 2SLS weights (see Figure 6). Our test rejects the hypothesis that the re-weighted

OLS and 2SLS estimates are equal.

6 Conclusions

In applied work, it is often the case that OLS and IV estimates differ, and sometimes the

direction of the difference is not what one might expect based on economic theory and plausible

assumptions on the direction of endogeneity bias. Influential work by Angrist and Imbens (1994,

1995) and Heckman and Vytlacil (2005) has clarified the interpretation of IV estimates as a local

average treatment effect when the regression parameter of interest is heterogenous. Our work

complements the existing understanding of the differences between IV and OLS estimates when

the model is mis-specified. We focus on the case where the true model is non-linear, but the

researcher estimates a linear model. This case has become increasingly relevant as the growing

emphasis on the validity of instruments has led many empirical researchers to estimate linear

relationships with only a few instruments. Yet, in many instances the true relationship between

the dependent and independent variables may be quite non-linear, as is frequently suggested by

more general specifications estimated using OLS.

We develop a simple framework for thinking about the effects of nonlinearity when estimating

mis-specified linear models using IV and OLS. In our setting, it is easy to compare IV estimates and

OLS estimates and to interpret the difference. IV estimates and OLS estimates are both weighted

averages of marginal effects, with different weights. For OLS, the marginal effects for levels near

the average of the regressor tend to be weighted more heavily than marginal effects at low or high

levels of the regressor. For IV, the stronger the effect of the instrument on a particular transition,

the greater the weight on the effect of that transition. As a consequence, IV and OLS estimates

may differ even in the absence of endogeneity. We show that it is easy to estimate these weights.

The level-specific OLS weights can be obtained by regressing indicators for whether the regressor

is above each level on the regressor. The IV weights can be estimated with a similar model, where

the indicators for whether the regressor is above each level are instrumented for.

Building on these insights, the main contribution of this paper is to develop a simple general-

ization of the Hausman test to assess whether different weighting and non-linearity explains the
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difference between linear IV/2SLS and OLS estimators. Under fairly weak conditions, this serves

as a specification test for exogeneity of the regressor in a general non-linear context. A particularly

appealing feature of our test is that it only requires a single instrument, the primary reason many

researchers turn to linear models rather than estimate more general non-linear models that can be

estimated using OLS. Our test offers researchers the ability to estimate general non-linear models

using OLS and then easily test whether those estimates are consistent.
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Appendix: Proofs and Technical Results

Derivation of Equation (6)

Equation (6) is easily verified using a slightly different decomposition of the empirical weights

from the main text. Decompose Dij = x′iδDj+ξij , where δDj = [E(xix
′
i)]

−1E(xiDij) and E(xiξij) =

0. With this, re-write

ωIV
j =

E(ziξij)
S∑

k=1

E(ziξik)

.

Letting π ≡ Pr(zi = 1), observe that E(ziξij) = π(1− π)[E(ξij |zi = 1)− E(ξij |zi = 0)], so

ωIV
j =

E(ξij |zi = 1)− E(ξij |zi = 0)
S∑

k=1

[E(ξik|zi = 1)− E(ξik|zi = 0)]

.

Mean independence E(xi|zi) = E(xi), further simplifies the weights to

ωIV
j =

E(Dij |zi = 1)− E(Dij |zi = 0)
S∑

k=1

[E(Dik|zi = 1)− E(Dik|zi = 0)]

,

since E(x′iδDj |zi) = E(x′i|zi)δDj = E(x′i)δDj . Monotonicity of schooling in the instrument yields

the final expression for ωIV
j in the text.

Proof that OLS Weights are Non-negative in Corollary 1

To see that the OLS weights are always non-negative, note that the numerator for ωOLS
j equals

E(ηiDij). To see that this is non-negative, notice that

E(ηi) =

∞∫
−∞

∞∫
j−x′δs

ηdF (η|x)dG(x) +
∞∫

−∞

j−x′δs∫
−∞

ηdF (η|x)dG(x), (20)

where G(x) reflects the density of x and F (η|x) the conditional density of η conditional on x.

Assuming x includes a constant term, E(ηi) = 0. Since the first term in equation (20) is clearly

greater than or equal to the second term and their sum is zero, the first term must be non-negative.

Of course, the first term equals E(ηiDij).

QED

Proof of Proposition 2

First, note that ŝ′Mxŝ = s′Mxz(z
′Mxz)

−1z′Mxs. Since,
1
N s

′Mxz
p→ E[(si−x′iδs)z′i] = E(ηiz

′
i) ̸=

0 by Assumption 1 and 1
N z

′Mxz
p→ E[zi(z

′
i − x′iδz)] = E(ziζ

′
i) = E(ζiζ

′
i), which is full rank by

Assumption 3, the denominator for ωj is non-zero.
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Since
S∑

j=1
ŝ′MxDj = ŝ′Mxs = ŝ′Mxŝ, both Wj and ωj sum to one. Now, consider the numerator

for Wj :

1

N
θ̂′zz

′MxDj
p→

I∑
ℓ=1

θzℓE(Dijζiℓ),

where θzℓ corresponds to the θz coefficient on ziℓ. Since the ωj sum to one, we can write

ωj =

I∑
ℓ=1

θzℓE(Dijζiℓ)

S∑
k=1

I∑
m=1

θzmE(Dikζim)

=

I∑
ℓ=1

θzℓ

[
ωIV
jℓ

S∑
k=1

E(Dikζiℓ)

]
S∑

k=1

I∑
m=1

θzmE(Dikζim)

=

I∑
ℓ=1

ωIV
jℓ

[
θzℓ

S∑
k=1

E(Dikζiℓ)

]
I∑

m=1
θzm

S∑
k=1

E(Dikζim)

=

I∑
ℓ=1

Ωℓω
IV
jℓ

where ωIV
jℓ =

E(Dijζiℓ)
S∑

k=1
E(Dikζiℓ)

since E(Dijζiℓ) = Pr(si ≥ j)E(ζiℓ|si ≥ j). Substituting the latter in

where it appears above, Ωℓ is given by equation (10).

Also, note that 1
N ŝ

′Mxε
p→ θz[E(ziεi) + E(zix

′
i)E(xix

′
i)E(xiεi)] = 0, since E(εi|xi) = 0 and

E(ziεi) = 0. This implies that β̂L2SLS
p→

S∑
j=1

ωjβj .

Finally, it is clear from the proof of Proposition 1 that if each instrument satisfies Assumption 2

and E(ziℓ|xi) = xiδzℓ, then all Ωℓ, ω
IV
jℓ , and ωj are non-negative.

QED

Proof of Theorem 1

Proposition 2 shows that the linear 2SLS estimator converges to a “weighted average” of the true

βj ’s with the “weights”, ω = (ω1, ..., ωS)
′, consistently estimated by 2SLS estimation of equation

(9). That is, W
p→ ω and β̂2SLS

p→ ω′B. If E(εi|si) = 0, then B̂
p→ B, which implies that

β̂L2SLS −W ′B̂
p→ 0.

We write the estimation problems for equations (1), (2), and (9) in the form of a stacked linear

GMM problem. (Note that equation (1) is estimated using OLS while the remaining equations are

estimated using 2SLS.) This establishes joint normality of (B̂, β̂L2SLS ,W ) in the limit and facilitates
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estimation of their covariance matrix. A straightforward application of the delta-method yields

the variance of T̂ ≡ β̂L2SLS −W ′B̂, which is used in deriving a chi-square test statistic for the null

hypothesis that T̂
p→ 0.

Diagonally stack the regressor and instrument vectors for all equations as follows:

Xi =

 X1i 0

0 I2 ⊗X2i

 and Zi =

 X1i 0

0 I2 ⊗ Z2i

 ,

where I2 is an identity matrix of dimension S+1 and 0’s reflect conformable vectors of zeros. Next,

define Yi = (yi yi D
′
i)
′ and Ui = (εi νi Ψ

′
i)
′, where Ψi = (ψ1i ψ2i ... ψSi)

′. Recall from Section 3

that Θ = (B′ γ′ βL γL′ W ′
1 α

′
1 ... W

′
S α

′
S)

′ is the full set of parameters to be estimated. (Θ̂ reflects

the corresponding vector of parameter estimates). Now, the three sets of estimating equations can

be compactly re-written as:

Yi = XiΘ+ Ui.

Equation-by-equation estimation of (1), (2), and (9) (the first by OLS and the second and third

by 2SLS) is mathematically equivalent to GMM estimation for this system:

min
Θ

[
N∑
i=1

Z ′
i(Yi −XiΘ)

]′

Ω̂

[
N∑
i=1

Z ′
i(Yi −XiΘ)

]
,

using the weighting matrix Ω̂ =

[
1
N

N∑
i=1

Z ′
iZi

]−1
p→ [E(Z ′

iZi)]
−1 ≡ Ω. Stacking all individual-

specific matrices into large matrices and using matrix notation, this system GMM estimator is

Θ̂ =
[
X ′Z(Z ′Z)−1Z ′X

]−1
X ′Z(Z ′Z)−1Z ′Y .

Standard results in GMM estimation (under the assumptions specified in Theorem 1) imply

that
√
N(Θ̂−Θ)

d→ N(0, V ) where

V = (C ′ΩC)−1C ′ΩΛΩC(C ′ΩC)−1

C = E(Z ′
iXi)

Λ = E(Z ′
iUiU

′
iZi)

and Ω is defined above.23

Letting Γ̂ = (Z ′Z)−1Z ′X, X̂i = ZiΓ̂, and Ûi = Yi − XiΘ̂, the covariance matrix V can be

consistently estimated by

V̂ = [X̂ ′X̂]−1Γ̂′Λ̂Γ̂[X̂ ′X̂]−1 p→ V,

23Substituting in for C and Ω and simplifying yields

V =
{
E(X ′

iZi)[E(Z′
iZi)]

−1E(Z′
iXi)

}−1
E(X ′

iZi)[E(Z′
iZi)]

−1Λ[E(Z′
iZi)]

−1E(Z′
iXi)

{
E(X ′

iZi)[E(Z′
iZi)]

−1E(Z′
iXi)

}−1
.
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where

Λ̂ =
1

N

N∑
i=1

(Z ′
iÛiÛ

′
iZi)

p→ Λ.

Due to the ‘diagonal’ structure of Xi and Zi, it is possible to simplify the expressions for V̂ , Â, and

Λ̂ as provided in equations (11), (12) and (13) in the text.

Standard application of the delta-method implies that the variance of T (Θ̂) can be estimated

by ĜV̂ Ĝ′, where Ĝ is the jacobian vector for T (Θ̂) as defined in the text. With this, it is clear that

WN = NT̂ ′[ĜV̂ Ĝ′]−1T̂
d→ χ2(1),

which can be more simply written as equation (14).

QED

Ordered Choice Model

Assume schooling is determined by the ordered choice model defined by equations (15) and

(16). Then, the sign of the asymptotic bias for OLS estimation of any βj in equation (1) depends

on the sign of

E(εDj) = E(ε|s ≥ j)

= E(E[ε|v, z, x, v ≥ j − µ(z, x)]).

For illustrative purposes, consider the case in which the bias is non-negative for all βj . Clearly,

if E(ε|z, x) = 0 and ∂E(ε|v,z,x)
∂v ≥ 0, then E[ε|v, z, x, v ≥ j − µ(z, x)] ≥ 0 for any j. Furthermore,

if (ε, v) ⊥⊥ (z, x), then E(ε|v) = E(ε|v, z, x). Altogether, if (ε, v) ⊥⊥ (z, x) and ∂E(ε|v)
∂v ≥ 0, then

E(εDj) ≥ 0 for all j. This implies that the asymptotic bias from OLS estimation will be non-

negative for all βj parameters.
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ρ κ Linear OLS Linear IV Re-weighted OLS

General Wald Test 
(fraction reject using 

.05 sig. level)

DWH Test      
(fraction reject using 

.05 sig. level)
0 0 0.0399 0.0399 0.0399 0.050 0.049

(0.0054) (0.0096) (0.0056)
0 0.1 0.0540 0.0557 0.0556 0.051 0.054

(0.0054) (0.0095) (0.0056)
0 0.5 0.1099 0.1180 0.1179 0.056 0.172

(0.0057) (0.0100) (0.0063)
0 1 0.1801 0.1961 0.1960 0.047 0.434

(0.0063) (0.0111) (0.0080)

0.05 0 0.0330 0.0399 0.0332 0.139 0.144
(0.0055) (0.0096) (0.0057)

0.05 0.1 0.0470 0.0556 0.0489 0.139 0.206
(0.0054) (0.0095) (0.0056)

0.05 0.5 0.1030 0.1179 0.1112 0.139 0.472
(0.0056) (0.0099) (0.0063)

0.05 1 0.1729 0.1960 0.1892 0.146 0.721
(0.0063) (0.0111) (0.0080)

0.1 0 0.0260 0.0402 0.0265 0.428 0.444
(0.0054) (0.0094) (0.0056)

0.1 0.1 0.0399 0.0557 0.0420 0.430 0.527
(0.0055) (0.0095) (0.0057)

0.1 0.5 0.0959 0.1179 0.1044 0.424 0.784
(0.0057) (0.0100) (0.0064)

0.1 1 0.1659 0.1960 0.1823 0.429 0.911
(0.0063) (0.0112) (0.0081)

0.15 0 0.0191 0.0402 0.0197 0.762 0.783
(0.0055) (0.0096) (0.0057)

0.15 0.1 0.0331 0.0558 0.0354 0.760 0.836
(0.0055) (0.0096) (0.0057)

0.15 0.5 0.0890 0.1180 0.0977 0.761 0.954
(0.0057) (0.0100) (0.0064)

0.15 1 0.1590 0.1962 0.1757 0.763 0.984
(0.0063) (0.0113) (0.0080)

0.2 0 0.0119 0.0401 0.0129 0.949 0.956
(0.0053) (0.0096) (0.0055)

0.2 0.1 0.0261 0.0558 0.0286 0.951 0.971
(0.0054) (0.0095) (0.0056)

0.2 0.5 0.0820 0.1182 0.0910 0.950 0.995
(0.0057) (0.0101) (0.0064)

0.2 1 0.1519 0.1958 0.1688 0.949 0.999
(0.0063) (0.0112) (0.0081)

0.3 0 -0.0021 0.0401 -0.0007 1.000 1.000
(0.0053) (0.0097) (0.0055)

0.3 0.1 0.0120 0.0557 0.0149 1.000 1.000
(0.0052) (0.0095) (0.0054)

0.3 0.5 0.0679 0.1181 0.0772 1.000 1.000
(0.0055) (0.0101) (0.0063)

0.3 1 0.1379 0.1959 0.1552 1.000 1.000
(0.0062) (0.0112) (0.0081)

Table 1: Monte Carlo Simulations for 'Card Model'



Table 2: Replication Results and Application of Wald Tests for Endogeneity 

OLS IV IV - OLS
Re-weighted 

OLS1

Our 
Generalized 
Wald Test                                            

Naïve Wald Test 2 DWH Test 3

1 2 3 4 5 6 7

1. Lochner and Moretti (2004) Effect of Years of Schooling on Imprisonment

White Males -0.0010 -0.0011 -0.0002 -0.0012 0.0225 0.2021 0.1600
0.0000 0.0004 0.0004 0.0000 0.8808 0.6530 0.6858

Black Males -0.0037 -0.0048 -0.0011 -0.0007 11.9441 0.9757 0.5154
0.0001 0.0012 0.0011 0.0002 0.0005 0.3233 0.4728

2. Currie & Moretti (2003) Effect of Maternal Education on Infant Health and Health Inputs

Low birth weight -0.0050 -0.0098 -0.0048 -0.0053 1.4376 1.7022 1.5566
0.0001 0.0038 0.0037 0.0002 0.2305 0.1920 0.2122

Preterm birth -0.0044 -0.0104 -0.0060 -0.0046 1.7639 2.0472 1.7749
0.0002 0.0044 0.0042 0.0002 0.1841 0.1525 0.1828

3. Acemoglu & Angrist (2001) Private Returns to Schooling
Annual Earnings 0.0822 0.1442 0.0620 0.0832 5.7093 6.0028 6.0218

0.0003 0.0256 0.0253 0.0017 0.0169 0.0143 0.0141

Notes: Re-weighted OLS reports the weighted average of all OLS βj estimates using the 2SLS weights. 'Our Generalized Wald Test' reports test statistics and p-
values for the test developed in Theorem 1 of this paper.  The 'Niave Wald Test' reports standard Hausman (1978) test stastics and p-values for the difference 
between the linear 2SLS and OLS estimates.  'DWH' reports test statistics and p-values for the Durbin-Wu-Hausman test using an augmented regression.  
Specifications for Lochner and Moretti (2004) use men ages 20-60 friom the 1960-80 U.S. Censuses and include indicators for three-year age categories, year, 
state of birth, and state of residence.  Specifications from Currie and Moretti (2003) use first-time white mothers ages 24-35 from Vital Statistics Natality 
records from 1970-99 and include median county income, percent urban in county when the mother was 17, and indicators for ten-year birth cohorts, mother's 
age, and county-specific year of child's birth effects.  Specifications for Acemoglu and Angrist (2001) results differ slightly from theirs, since we only use 
compulsory attendance indicators for instruments and do not estimate the 'social return' to schooling.  Specifications use 40-49 year-old white men from the 
1960-80 U.S. Censuses and include indicators for Census year, year of birth, state of birth, and state of residence.
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Figure 1: 2SLS and OLS weights for Monte Carlo Study (ρ=0)
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(Estimated OLS Effects and Weights)
Figure 2: Effects of Schooling on Probability of Incarceration for White Males
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Figure 3: Effects of Schooling on Probability of Incarceration for Black Males
(Estimated OLS Effects and Weights)
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Figure 4: Effects of Maternal Schooling on Probability of Low Birth Weight
(Estimated OLS Effects and Weights)
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Figure 5: Effects of Maternal Schooling on Probability of Pre-Term Birth
(Estimated OLS Effects and Weights)
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Figure 6: Effects of Schooling on Log Annual Earnings for Men
(Estimated OLS Effects and Weights)
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