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1 Introduction

Efficient markets incorporate all available information into stock prices. As a result, investors

can learn from equilibrium prices and update their expectations accordingly. But if investors

learn from equilibrium prices, anything that moves prices has an impact on expectations held by

all market participants. We explore the implications of this basic dynamic in a world in which

people are less than perfect – a world in which they make small correlated errors when forming

their expectations about the future.

We find that relaxing the rational paradigm in this minimal way results in a drastically

different equilibrium with important consequences for financial markets, capital accumulation,

and welfare: if information is dispersed across investors, the private return to making diligent

investment decisions is orders of magnitude lower than the social return. If we allow for indi-

viduals an economically small propensity to make common errors in their investment decisions,

information aggregation endogenously breaks down precisely when it is most socially valuable

(i.e., when information is highly dispersed). This endogenous informational inefficiency results

in higher conditional variance of asset returns and socially costly first-order distortions in the

level of capital accumulation, labor supply, output, and consumption.

Our model builds on the standard real business cycle (RBC) model in which a consumption

good is produced from capital and labor. Households supply labor to a representative firm and

invest their wealth by trading claims to capital (“stocks”) and bonds. The consumption good

can be transformed into capital, and vice versa, by incurring a convex adjustment cost. The

accumulation of capital is thus governed by its price relative to the consumption good (Tobin’s

Q). The only source of real risk in the economy are shocks to total factor productivity. We extend

this standard setup by assuming each household receives a private signal about productivity in

the next period, and solve for equilibrium expectations.

As a useful benchmark, we first examine two extreme cases in which the stock market has

no role in aggregating information. In the first case, the private signal is perfectly accurate such

that all households know next period’s productivity without having to extract any information

from the equilibrium price. In this case, our model is similar to the “News Shocks” model

of Jaimovich and Rebelo (2009), in which all information about the future is common. The

opposite extreme is the case in which the private signal consists only of noise. In this case, our

model resembles the standard RBC model in which no one in the economy has any information

about the future and there is consequently nothing to learn from the equilibrium stock price.

Households face less financial risk in the former case than in the latter: the more households

know about the future, the more information is reflected in the equilibrium price, and the lower

the conditional variance of equilibrium stock returns.

The paper centers on the more interesting case in which households’ private signals are
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neither perfectly accurate nor perfectly inaccurate: private signals contain both information

about future productivity and some idiosyncratic noise (information is dispersed). In this case,

households’ optimal behavior is to look at the equilibrium stock price and use it to learn about the

future. When information is dispersed, the stock market thus serves to aggregate information.

If all households are perfectly rational, the stock market is an effective aggregator of informa-

tion: as long as the noise in the private signal is purely idiosyncratic, the equilibrium stock price

becomes perfectly revealing about productivity in the next period (Grossman, 1976). When the

stock price is perfectly revealing, the conditional variance of stock returns is just as low as it is

in the case in which the private signal is perfectly accurate.

We then show that the economy behaves very differently if we allow households to deviate

slightly from their fully rational behavior. In the “near-rational expectations equilibrium”,

households make small, cross-sectionally correlated errors when forming their expectations about

future productivity. They are slightly too optimistic in some states of the world and slightly too

pessimistic in others but, on average, do not have a bias in their expectations. When the average

household is slightly too optimistic, it wants to invest slightly more of its wealth in stocks, and

the stock price must rise. Households that observe this higher stock price may interpret it in

one of two ways: as either a result of errors made by their peers or, with some probability,

a reflection of more positive information about future productivity received by other market

participants. Rational households should thus revise their expectations of future productivity

upwards whenever they see a rise in the stock price. As households revise their expectations

upward, the stock price must rise further, triggering yet another revision in expectations, and

so on. Small errors in the expectation of the average household may thus lead to much larger,

non-fundamental, deviations in the equilibrium stock price. The more dispersed information is

across households, the stronger this feedback effect, because households rely more heavily on

the stock price when their private signal is relatively uninformative. In fact, we show that small

correlated errors in household expectations may destroy the stock market’s capacity to aggregate

information if information is sufficiently dispersed. The stock market’s ability to aggregate

information is thus most likely to break down precisely when it is most socially valuable. As

small common errors reduce the amount of information reflected in the equilibrium stock price,

the conditional variance of stock returns increases, and thus in the amount of financial risk

households face rises.

The fact that we allow for small common deviations from fully rational behavior is central

to these results. Small common errors in household expectations affect information aggregation

through an information externality: an individual household does not internalize that making

a small error that is correlated with the common error affects other households’ ability to learn

about the future. This externality is more severe when information is more dispersed, and it

endogenously determines the market’s capacity to aggregate information. By contrast, common
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noise in the signals households observe has no such external effects on the market’s capacity to

aggregate information.

We show in a simple application of the envelope theorem that households have little economic

incentive to avoid small common errors in their expectation of future productivity – the expected

utility cost to an individual household due to small errors in its expectation is economically small.

A large literature in behavioral finance has developed a wide range of psychologically founded

mechanisms that prompt households to make common errors in their investment decisions.1 We

thus remain open to many possible interpretations of the small common errors households make

in our model. The idea is simply that households make small mistakes, and the integral over

these mistakes has a non-degenerate distribution.

Although households have little incentive to avoid such “near-rational” errors in their be-

havior, these errors entail a first-order cost to society. A collapse in the stock market’s capacity

to aggregate information increases the financial risk investors face, prompting them to demand

a higher equity premium. A rise in the equity premium in turn distorts the level of capital

accumulation, labor supply, output, and consumption in the long run (at the stochastic steady

state). Near-rational behavior thus has a level effect on output and consumption at the stochas-

tic steady state. In addition, amplified near-rational errors result in non-fundamental volatility

in stock prices, capital investment, labor supply, and all other economic aggregates.

We estimate our model to match key macroeconomic and financial data. Our results suggest

that stock prices aggregate a significant amount of dispersed information, but that much of this

information is crowded out in equilibrium.

We quantify the aggregate welfare losses attributable to near-rational behavior as the per-

centage rise in consumption that would make households indifferent between remaining in an

economy in which the conditional variance of stock returns is high (the near-rational expecta-

tions equilibrium) and transitioning to the stochastic steady state of an economy in which all

households behave fully rationally until the end of time. Our estimates of aggregate welfare

losses attributable to near-rational behavior range between 3.59% and 69.71% of lifetime con-

sumption, while the incentive to an individual household to avoid small common errors in its

expectations is economically small (0.01% of lifetime consumption). In all cases, the social cost

of near-rational behavior is two to three orders of magnitude larger than the private cost.

Related Literature To our knowledge, this paper is the first to address the welfare

costs of pathologies in information aggregation within a full-fledged dynamic stochastic general

1Some examples are Odean (1998), Odean (1999), Daniel, Hirshleifer, and Subrahmanyam (2001), Barberis,
Shleifer, and Vishny (1998), Bikhchandani, Hirshleifer, and Welch (1998), Hong and Stein (1999) and Allen and
Gale (2003). In Hassan and Mertens (2011) we give one such interpretation in which households that want to
insulate their investment decisions from the errors their peers make (“market sentiment”) have to pay a small
mental cost. In equilibrium, households then choose to make small, common errors of the type we assume in this
paper.
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equilibrium model.

In our model, investors’ near-rational errors are endogenously amplified and result in a

deterioration of the information content of asset prices. The equilibrium of the economy thus

behaves as if irrational noise traders are de-stabilizing asset prices, although all individuals are

almost perfectly rational. In this sense, our paper relates to the large literature on noisy rational

expectations equilibria following Hellwig (1980) and Diamond and Verrecchia (1981), in which

exogenous noise trading (or, equivalently, a stochastic supply of the traded asset) impede the

aggregation of information.2 Relative to this literature, we make progress on two dimensions.

First, we are able to make statements about social welfare because the introduction of near-

rational behavior puts discipline on the amount of noise in equilibrium asset prices, which is

consistent with the notion that the losses accruing to individual households that cause this noise

must be economically small. Second, we show that a given amount of near-rational errors has a

more detrimental effect on the aggregation of information when information is more dispersed.3

The recent literature on pathologies in information aggregation in financial markets has fo-

cused on information externalities arising either from strategic complementarities or from higher-

order uncertainty:4 Amador and Weill (2012) and Goldstein et al. (2013) study models in which

individuals have an incentive to overweight public information relative to private information

due to a strategic complementarity. In their models, noise in public signals is endogenously

amplified due to this over weighting. In Allen et al. (2006), Bacchetta and Van Wincoop (2008),

and Qiu and Wang (2010), agents have differing information sets about multi-period returns

and therefore must form expectations about the expectations of others. The dynamics of these

higher-order expectations drive a wedge between asset prices and their fundamentals. This

paper highlights a third, more basic type of information externality that arises even when no

strategic complementarities are present and first-order expectations fully determine asset prices:5

-individuals do not internalize how errors in their investment decisions affect others’ equilibrium

expectations. Pathologies similar to those outlined in this paper are thus likely to arise in any

setting in which households observe asset prices that aggregate dispersed information.

We also contribute to a large literature that studies the welfare cost of pathologies in stock

markets, including Stein (1987), Chauvin et al. (2011), and Lansing (2012). Most closely related

are DeLong, Shleifer, Summers, and Waldmann (1989), who analyze the general equilibrium ef-

fects of noise-trader risk in an overlapping generations model with endogenous capital accumula-

2Most closely related are Wang (1994), where noise in asset prices arises endogenously from time-varying private
investment opportunities, and Albagli (2011), where noise trader risk is amplified due to liquidity constraints on
traders.

3The notion of near-rationality is due to Akerlof and Yellen (1985) and Mankiw (1985). Our application is
closest to Cochrane (1989) and Chetty (2012), who use the utility cost of small deviations around an optimal policy
to derive ”economic standard errors.” Other recent applications include Woodford (2010) and Dupor (2005).

4For an approach to pathologies in social learning based on social dynamics rather than on information exter-
nalities, see Burnside et al. (2011).

5The provision of public information thus always raises welfare in our framework (see Appendix B.2).
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tion. A large literature in macroeconomics and in corporate finance focuses on the sensitivity of

firms’ investment to a given mispricing in the stock market. Some representative papers in this

area are Blanchard, Rhee, and Summers (1993), Baker, Stein, and Wurgler (2003), Gilchrist,

Himmelberg, and Huberman (2005), and Farhi and Panageas (2006).6 One conclusion from this

literature is that investment responds only moderately to mispricings in the stock market or that

the stock market is a “sideshow” with respect to the real economy (Morck, Shleifer, and Vishny

(1990)). We provide a new perspective on this finding: in our model, welfare losses are driven

mainly by a distortion in the stochastic steady state, rather than an intertemporal misallocation

of capital. In all of our calibrations, the observed sensitivity of the capital stock with respect

to stock prices is uninformative about the welfare consequences of non-fundamental volatility in

stock prices. Pathologies in the stock market may thus have large welfare consequences even if

the stock market appears to be a “sideshow. ”

This finding also relates to a large literature on the costs of business cycles:7 First, we em-

phasize that macroeconomic fluctuations affect the level of consumption if they create financial

risk. Standard cost-of-business cycles calculations in the spirit of Lucas (1987) do not capture

this level effect.8 Second, our model suggests this level effect may cause economically large

welfare losses if uncertainty about macroeconomic fluctuations indeed cause the large amounts

of financial risk which we observe in the data.

At a methodological level, an important difference from existing work is that our model

requires solving for equilibrium expectations under dispersed information in a non-linear general

equilibrium framework. Although a large body of general equilibrium models with dispersed

information exist, such existing models feature policy functions that are (log) linear in the

expectation of the shocks agents learn about (e.g. Hellwig (2005), Lorenzoni (2009), Angeletos

et al. (2012), and Angeletos and La’O (2013)). However, in the standard RBC model with capital

accumulation and decreasing returns to scale, households’ policies are non-linear functions of the

average expectation of future productivity. We are able solve our model due to recent advances

in computational economics. We follow the solution method in Mertens (2009), which builds on

Judd (1998) and Judd and Guu (2001) in using an asymptotically valid higher-order expansion

in all state variables around the deterministic steady state of the model in combination with a

nonlinear change of variables (Judd (2002)).9

In a closely related paper, Mertens (2009) derives welfare-improving policies for economies

6Also see Galeotti and Schiantarelli (1994); Polk and Sapienza (2004); Panageas (2005); and Chirinko and
Schaller (2006)

7See Barlevy (2005) for an excellent survey.
8This finding is similar to the level effect of uninsured idiosyncratic investment risk on capital accumulation

in Angeletos (2007).
9Closely related from a methodological perspective are Tille and van Wincoop (2008), who solve for portfolio

holdings of international investors, using an alternative approximation method developed in Tille and van Wincoop
(2010) and Devereux and Sutherland (2011).
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in which distorted beliefs create too much volatility in asset markets. He shows that the stabi-

lization of asset markets enhances welfare and that history-dependent policies may improve the

information content of asset prices.

The remainder of the paper is structured as follows. Section 2 derives the main theoretical in-

sights of the model in a simple three-period model. Section 3 discusses the robustness of the main

insights and compares our near-rational approach to the standard noisy rational expectations

model. Section 4 introduces our mechanism into a quantitative RBC model with endogenous

capital accumulation. Section 5 estimates the model and presents quantitative results.

2 Static Model

The model economy exists at three time periods t = 0, 1, 2. At t = 1, an endowment of a

numéraire good can be stored until t = 2, or converted into a unit of capital at adjustment cost
1

2κK
2, where κ ≥ 0. At t = 2, each unit of capital returns η units of the numéraire:

Y = ηK, η ∼ N
(
η̄, σ2

η

)
. (1)

The capital adjustment technology is operated by an investment goods sector that performs

instant arbitrage between the price of capital traded in a Walrasian stock market at t = 1, Q,

and the number of units of capital in circulation:

max
K

Π = QK −K − 1

2κ
K2.

Its first-order condition requires that it supply

K = κ(Q− 1) (2)

units of capital to maximize arbitrage profits.

A continuum of identical households indexed by i ∈ [0, 1] populates the economy. At t = 1,

each household observes Q and receives a private signal about productivity:

si = η + νi, (3)

where νi represents i.i.d. draws from a normal distribution with zero mean and variance σ2
ν .10

Given si, each household chooses to purchase zi units of capital (“stocks”) to maximize expected

10In section 3, we show that the conclusions of our model hold for more general information structures in which
the noise in the private signal is correlated across households and households observe a public signal in addition
to their private signal.

7



utility from terminal wealth, E1i [Ui] , where

Ui = w2i −
ρ

2
V1[w2i], (4)

with ρ > 0. V1[w2i] is the posterior variance given si and Q, and terminal wealth is given by

w2i = zi(η −Q) + Π, (5)

where Π is a lump-sum transfer of profits from the investment goods sector.

When forming their expectation about productivity, households make a small error. This

small error shifts the posterior probability density function of η by µi (ε+ ε̂i), where the constant

µi ≥ 0 measures household i’s exposure to the error ε+ ε̂i. We refer to a household as near-

rational if µi = 1 and as fully rational if µi = 0. The expectational error is positively correlated

across households, where ε ∼ N(0, σε) is the common component that is the same across all

households, ε̂i ∼ N(0, µ̂σε) is the idiosyncratic component, and µ̂ calibrates the size of the

correlation across households. The expectations operator E1i is thus the rational expectations

operator, except that it allows households to make small mistakes about the conditional mean

of η:

E1i [η] = E1i [η] + µi (ε+ ε̂i) , (6)

where E1i [η] = E [η|Q, si] is the rational expectations operator conditional on the informa-

tion available to the household at time 1. Although near-rational households make correlated

mistakes when forming their expectations, they understand the structure of the economy, un-

derstand the equilibrium mapping of information into Q, and have the correct perception of all

higher moments of the conditional distribution of η.11 Importantly, households know they and

others load on the common error, ε.

The parameter σε calibrates the size of households’ expectational errors. In the limit in which

σε → 0, all households behave fully rationally and thus fully maximize their utility. A crucial

assumption of the model is that σε is small enough such that the utility gain to a near-rational

household of eliminating the expectational error from its own behavior is economically small.

Definition 2.1

A household’s behavior is near-rational if its time-zero willingness to pay to set µi = 0 rather

than µi = 1 is below a threshold level, λ̄ > 0 :

λi ≡ −
(
E0

[
Ui|µi=1

]
− E0

[
Ui|µi=0

])
≤ λ̄. (8)

11Formally,

E1i
[
(η − E1i (η))k

]
= E1i

[
(η − E1i (η))k

]
∀ k > 1. (7)
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We thus pick σε such that a near-rational households’ incentive to eliminate the expectational

error from its own behavior is economically small, 0 ≤ σε ≤ σ̄ε, where σ̄ε is the value of σε for

which (8) holds with equality.

Market clearing requires that aggregate demand for stocks is equal to the number of units

of capital in circulation: ∫ 1

0
zidi = K. (9)

We focus on symmetric equilibria such that µi = 1 ∀i and thus

E1i [η] = E [η|Q, si] + ε+ ε̂i. (10)

2.1 Solving the Model

Plugging (5) into (4) and taking the derivative with respect to zi yields households’ optimal

demand for stocks:

zi =
E1i [η]−Q
ρV1[η]

. (11)

We can then use the market-clearing condition (9) and plug in (11) and (2) to show that the

market price of capital is a linear function of the average expectation of η:

Q =

∫ 1
0 E1i [η] di+ κρV1[η]

1 + κρV1[η]
. (12)

Households can thus directly infer
∫
E1i [η] di from observing Q. We may guess that the equilib-

rium price function is linear in η and ε

Q = π0 + π1η + γε. (13)

Assuming this guess is correct, we can write the rational expectation of η given the private signal

and Q as

E1i[η] = α0 + α1si + α2

∫ 1

0
E1i [η] di, (14)

where the constants α0, α1, and α2 are the weights households give to the prior, the private

signal, and the average expectation, respectively. Using (10), substituting (3), and taking the

integral across individuals gives∫ 1

0
E1i[η]di =

α0

1− α2
+

α1

1− α2
η +

1

1− α2
ε, (15)

where the noise in private signals, νi, as well as the idiosyncratic errors, ε̂i, integrate to zero.

Plugging this expression back into (12) and matching coefficients with (13) verifies that the
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equilibrium price function is indeed linear.

It follows that in addition to si, households can extract an independent and unbiased signal

about η, (1−α2)
α1

∫ 1
0 E1i[η]di − α0

α1
= η + 1

α1
ε, from observing Q. Bayes’ rule then implies the

posterior variance is the inverse of the sum of the precision of the prior and the two signals:

V [η|si, Q] = V1[η] =
(
σ−2
η + σ−2

ν + α2
1σ
−2
ε

)−1
. (16)

Moreover, the conditional expectation of η is the precision-weighted sum of the signals and the

prior mean divided by the posterior precision:12

E[η|si, Q] =
σ−2
η η̄ + σ−2

ν si + α2
1σ
−2
ε

(
η + 1

α1
ε
)

V1[η]−1
. (17)

Matching coefficients with (14) yields

α0 =
η̄V1(η)σ2

ε

σ2
η (α1V1(η) + σ2

ε )
, (18) α1 =

V1 [η]

σ2
ν

, (19) α2 =
α1V1(η)

α1V1(η) + σ2
ε

. (20)

Solving the system equations consisting of the matched coefficients in (13), (16), (18), (19),

and (20) leads to expressions in terms of parameters. Because the closed-form solution for V1[η]

is somewhat cumbersome, it is convenient to rewrite the solution of all endogenous variables as

a function of V1[η] and parameters.

Lemma 2.2

The unique linear symmetric equilibrium of this economy is characterized as follows:

π0 =
V1[η]

(
η̄ + κρσ2

η

)
(1 + κρV1[η])σ2

η

, (21) π1 =
σ2
η − V1[η]

(1 + κρV1[η])σ2
η

, (22) γ =

(
σ2
η − V1[η]

)
σ2
ν

V1[η] (1 + κρV1[η])σ2
η

(23)

where the conditional variance is implicitly defined by

V1[η] =

(
σ−2
η + σ−2

ν +
V1 [η]2

σ4
ν

σ−2
ε

)−1

. (24)

Proof See Appendix A.2.

These results have two immediate implications. First, note the standard deviation of the

idiosyncratic component of expectational errors, µ̂, appears in none of the solutions above and

is thus irrelevant for the stock price, the conditional variance of η, and all aggregate variables.

12See Appendix A.1 for a more detailed proof.
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Second, although the sensitivity of the capital stock with respect to the stock price, κ,

influences the response of the stock price to η and ε, it does not affect households’ ability to

learn about η. To see this, note that the conditional variance of η in (24) is independent of κ.

Similarly, plugging (19) into (17) shows that the loadings of households’ expectation operators

on η and ε depend only on σε, σν , and σε, and not on κ. How much households can learn about

the future is thus unrelated to the function linking stock prices to the real economy. We will

show in section 4 that this insight carries over to a quantitative model in which the equilibrium

expectations operator continues to be a function of the same three variables, despite much more

complex and non-linear macroeconomic dynamics.

2.2 External Effect on Information Aggregation

The last two terms on the right-hand side of (15) reflect two channels through which near-

rational behavior affects equilibrium expectations. The last term shows that the small common

error is amplified with the multiplier 1/ (1− α2). Because α2 is a number between 0 and 1,

the multiplier is always larger than 1, reflecting the fact that the stock price also transmits

the common error whenever it transmits information. The extent of amplification depends on

how much households (rationally) rely on Q when forming their expectation of η. The bigger

the weight they place on the stock price, α2, the larger the error in equilibrium expectations

relative to ε. The second term on the right-hand side reflects the indirect effect of near-rational

behavior, which arises due to the fact that households optimally calculate the coefficients α1

and α2. When the market price of capital transmits an amplified common error in addition to

information about η, households rationally lower α2 and, as a result, decrease the equilibrium

information content of stock prices.

To understand these two effects, it is useful to consider the limiting case in which all house-

holds are fully rational (σε → 0). In this case, the model coincides with a standard rational

expectations equilibrium in which the stock price is perfectly revealing about future productiv-

ity (commonly referred to as the “Grossman equilibrium”). Appendix A.3 shows that

lim
σε→0

[V1 [η]] = 0 (25)

and

lim
σε→0

[π1] = 1. (26)

In this case, households put all weight on the stock price (α2 = 1) and no weight on their

private signal (α1 = 0). In this limit, a marginally small common error is infinitely amplified,

γ = 1/ (1− α2) = ∞. The direct effect of near-rational behavior is thus to generate large

non-fundamental errors in the market price of capital and large common errors in equilibrium
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expectations. The indirect effect of near-rational behavior is households’ rational reaction to

this fact. When the stock price transmits amplified common errors, households rationally reduce

α2, such that the multiplier on ε becomes finite. However, a reduction of α2 also reduces the

elasticity of the stock price with respect to information, π1. The following proposition formalizes

this intuition.

Proposition 2.3

Near-rational behavior globally decreases the elasticity of the stock price with respect to future

productivity:
∂π1

∂σε
< 0 ∀σε > 0. (27)

As the standard deviation of the small common error approaches 0, the marginal effect of near-

rational behavior on this elasticity becomes infinitely large:

lim
σε→0

[
∂π1

∂σε

]
= −∞. (28)

Proof See Appendix A.4.

It follows that near-rational behavior has a first-order detrimental effect on the stock market’s

capacity to transmit information. This result contrasts sharply with the utility considerations of

an individual household that loads on the small common error. At t = 0 (i.e., before the arrival

of information about η), a household would be willing to pay

λi ≡ −
(
E0 [Ui|µi=1]− E0

[
Ui|µi=0

])
= −

(
E0 [w2i|µi=1]− E0

[
w2i|µi=0

])
units of the numéraire to avoid loading on the near-rational error at t = 1. Note that for

the purposes of calculating this compensating variation, we use the rational utility measure,

i.e. the willingness to pay of a fully rational household that knows it has the opportunity to take

advantage of its near-rational peers’ errors at t = 1.

Proposition 2.4

As σε goes to zero, the marginal disutility accruing to an individual household from increasing

its loading on the near-rational error goes to zero:

lim
σε→0

[
∂λi

∂µi

]
= 0.

Proof See Appendix A.5.

This result follows directly from the envelope theorem. Both the demand schedule for stocks

in (11) and the expectations operator (14) are the result of an optimization. Near-rational errors,
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even if they contain a common component, represent a small deviation from the household’s

optimal program. Because the slope of the utility function at the optimum is 0, the marginal

effect of these deviations on utility is also 0.

The key to understanding this result is that a hypothetical rational household (µi = 0) that

lives in an economy populated by near-rational households
(
µj 6=i = 1

)
has no informational ad-

vantage. Near-rational households understand fully that they and other households are making

errors when forming their expectations. They react to this fact by lowering α2 in response to a

rise in the equilibrium amount of non-fundamental volatility in the market price of capital. Be-

cause learning about η is isomorphic to learning about ε, near-rational households thus already

do everything possible to learn about the common component of the near-rational error. (From

(13), it is clear that knowing η and Q is the same as knowing ε and Q; we could thus rewrite the

entire optimal program using a signal extraction about ε and obtain the same result.) Absent

an informational advantage, the optimal behavior of a fully rational household is then simply

to implement the same optimal program, but without the near-rational error. The utility gain

from behaving fully rationally instead of near rationally is thus 0 at the margin.

By continuity, propositions 2.3 and 2.4 imply that for small σε near-rational behavior repre-

sents an externality that has a first-order detrimental effect on the market’s ability to aggregate

information, whereas households have only a negligible (lower-order) incentive to avoid making

these errors. The stock market thus fails to aggregate information even though it is efficient

in the sense that a fully rational household cannot systematically outperform a near-rational

household with the same information set.

We next consider the comparative static of this result when private information becomes

more dispersed in the economy.

Proposition 2.5

1. Near-rational errors of a given size, σε, have a more detrimental effect on information

aggregation the more private information is more dispersed:

∂π1

∂σν
= −

(
1 + κρσ2

η

) (
2σ2

νσ
2
εV1 [η]2 + 4V1 [η]4

)
σ2
η(1 + κρV1[η])2

(
σ5
νσ

2
ε + 2σνV [η]3

)
< 0 if σε > 0

= 0 in the limit σε → 0.
(29)

2. Any strictly positive σε may destroy the stock market’s capacity to aggregate information

as the dispersion of private information goes to infinity:

lim
σν→∞

[
V1 [η]

σ2
η

]
=

1 if σε > 0

0 in the limit σε → 0.
(30)

Proof See Appendix A.6.
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Figure 1 illustrates this point. It plots the ratio of the conditional variance of η to its

unconditional variance over the level of dispersion of private information. To facilitate the

interpretation of the results, we scale all standard deviations with the standard deviation of the

productivity shock, ση. With this scaling, all standard deviations have a natural interpretation.

In particular, the ratio (σνση )2 measures the level of dispersion of information in the economy

as the number of individuals who, in the absence of a market price, would need to pool their

private information in order to reduce the conditional variance of η by one half. A value of 0 on

the vertical axis indicates households can perfectly predict tomorrow’s realization of η, whereas

a value of 1 indicates η is completely unpredictable.

The solid red line shows that when all households behave fully rationally (σε = 0), η is

perfectly predictable, regardless of how dispersed information is in the economy. In this case,

the market price of capital perfectly transmits all available information in the economy. This

situation changes drastically when σε
ση

> 0. The thick blue line plots the results for the case in

which the standard deviation of the common component of the near-rational error is 1% of the

standard deviation of η. The curve rises steeply and converges to 1. To the very left of the graph,

when the private signal is more precise and households thus rely relatively little on the stock

price when learning about the future, near-rational behavior has a relatively small detrimental

effect on information aggregation. However, when we move to the right of the graph, households

rely more on the stock price, and near-rational behavior has a larger detrimental effect. When

information is highly dispersed, near-rational behavior results in the total collapse of information

aggregation.

The second statement in Proposition 2.5 implies this qualitative result does not depend on

how near-rational households are. Figure 1 plots the comparative statics for near-rational errors

that are an order of magnitude larger ( σεση = 0.1) and an order of magnitude smaller ( σεση =

0.001) for comparison. In each case, the productivity shock becomes completely unpredictable

if information is sufficiently dispersed.

The implication of this finding is that information aggregation in financial markets is most

likely to break down precisely when it is most socially valuable – when information is highly

dispersed. If the private signal households receive is sufficiently noisy, any given amount of near-

rational errors in investor behavior may completely destroy the market’s capacity to aggregate

information.

Proposition 2.6

For a given level of σε, the utility loss accruing to an individual household due to its own near-

rational behavior decreases with the dispersion of private information in the economy:

∂λi

∂σν
= −σ2

ε

σ2
νσ

2
ε (1 + µ̂2) + 2µ̂2V1 [η]2 + 2σ2

νV1 [η]

ρ(σ2
εσ

5
ν + 2σνV1 [η]3)

< 0. (31)
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Proof See Appendix A.7.

Near-rational behavior thus becomes “cheaper” precisely when it is more harmful, because,

again, learning about ε is isomorphic to learning about η. When households’ private signals are

more precise, they know more about η and thus more easily detect the common component of

the near-rational error, which makes near-rational behavior costlier. When private signals are

noisier and information aggregation breaks down, no one can learn much about the future. The

less households can learn about the future, the less they can distinguish movements in the stock

prices that are due to η from movements that are due to ε.

A crucial feature of this result is again that any collapse in the aggregation of information

affects everyone in the economy: a fully rational household would do only a marginally better

job at predicting η than the near-rational households. Conditional on receiving the same private

signal, the difference in the expectation of the rational and near-rational household is small,

ε+ ε̂i. In fact, the posterior variance we plotted in Figure 1 is the conditional variance of such

a fully rational household. We can write it as

V1 [η]

σ2
η

=
1

σ2
η

(
α2

1σ
2
ν + (1− π1)2 σ2

η + (γ − 1)2 σ2
ε

)
. (32)

The expression for the precision of the forecast of a near-rational household is identical, except

the third term in brackets is then γ2σ2
ε .
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Figure 2 decomposes the conditional variance (32) into its three components. The thick blue

line in Figure 2 is the same as the thick blue in Figure 1. It plots the ratio of the conditional

variance of η to its unconditional variance over the level of dispersion of private information for

the case in which σε
ση

= 0.01. The dotted line plots the first term on the right-hand side of (32),

which is the error households make in their forecast of ηt+1 due to the noise in their private

signal. It is close to 0 throughout, reflecting the fact that households reduce α1 when the private

signal contains more noise, such that differences of opinion remain small in equilibrium. The

broken line plots the second term, which is the error households make in their forecast because

the stock price does not reflect all information about ηt+1 (the “indirect” effect of near-rational

behavior), and the third component is the error households make due to amplified common

errors in the stock price (the “direct” effect of near-rational behavior).

At low levels of σν , amplified small common errors are the main source of households’ forecast

errors. As private information becomes more dispersed, the amplification rises and eventually

peaks as households, confronted with noisy private signals and a noisy stock price, begin to rely

13See Appendix A.1 for a formal derivation. By “precision”of the forecasts of near-rational household, we refer

to
Eit[(ηt+1−Eit(ηt+1))2]

σ2
η

. Note, however, that from (7), the near-rational household has the same “perceived”

conditional variance as a rational household,
Eit
[
(ηt+1 − Eit

(
ηt+1

)
)2
]

= Eit
[
(ηt+1 − Eit

(
ηt+1

)
)2
]
.
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more on their priors. At the same time, the information content of the stock price begins to fall.

In the region in which the broken line approaches 1, small common errors result in a complete

collapse of information aggregation.

2.3 Real Effects of Near-rational Behavior

Now that we understand the aggregation of information in our model, we can ask how near-

rational behavior affects the economy as a whole. Using (13), we can write equilibrium stock

returns as

η −Q = −π0 + η (1− π1)− γε. (33)

Near-rational behavior affects each of the three terms on the right-hand side. The third term on

the right-hand side shows that it induces non-fundamental volatility in stock returns. Second,

from (27), near-rational behavior reduces π1 and thus causes a rise in the volatility of equilibrium

stock returns and “excess volatility” (in the sense that the volatility of stock returns is 0 when

all households behave fully rationally and positive if and only if σε > 0):

V0 [η −Q] = γ2σ2
ε + (1− π1) 2σ2

η.

Near-rational behavior thus results in an increase in the amount of financial risk households face

that invest in the stock market. Third, this increase in financial risk in turn induces a rise in

the equity premium (the first term on the right-hand side). Taking time-zero expectations of

(33) and using (21) and (22) to substitute for π0 yields

E0 [η −Q] = κρ (η̄ − 1)

(
(1− π1)σ2

η

1 + κρσ2
η

)
. (34)

These three effects of near-rational behavior on equilibrium stock returns are mirrored in the

effect of near-rational behavior on the equilibrium capital stock.

Proposition 2.7

Near-rational behavior lowers the covariance between capital accumulation and productivity and

reduces the expected level of capital accumulation by impeding the stock market’s capacity to

aggregate information:

∂E0 [K]

∂σε
=
∂E0 [K]

∂π1

∂π1

∂σε
< 0 and

∂Cov0 [K, η]

∂σε
=
∂Cov0 [K, η]

∂π1

∂π1

∂σε
< 0 . (35)

Proof Plug (13) into (2) and to get

K = κ (π0 + π1η + γε− 1) . (36)
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Taking time-zero expectations of (36) and using (21) and (22) to substitute for π0 yields

E0 [K] = κ (η̄ − 1)

(
1 + π1κρσ

2
η

1 + κρσ2
η

)
. (37)

In addition, from (36) and (33), we have

Cov0 (K, η) = κπ1σ
2
η. (38)

It follows directly that ∂E0[K]
∂π1

> 0 and ∂Cov0[K,η]
∂π1

> 0. The remainder of the proof follows from

Proposition 2.3.

By impeding the market’s capacity to aggregate information, near-rational behavior thus

depresses the level of capital accumulation and induces a mis-allocation of capital across states.

Our model allows us to assess the welfare effects of these distortions while avoiding two common

difficulties in noisy rational expectations models. First, because the model features only a single

class of agents, we can calculate the ex-ante (time zero) utility of these agents without having

to consider the utility of non-maximizing “noise” or “liquidity” traders that are commonly used

as a modeling device to induce noise in the equilibrium stock price. Second, as near-rational

households are, by definition, “nearly” maximizing their utility, whether we consider welfare

under the fully rational or the near-rational measure is inconsequential. Because the biases in

the behavior of near-rational households are small, it does not matter whether we respect them

for the purposes of our utility calculations, that is, E0 [Ui] ≈ E0 [Ui] (see, e.g., Brunnermeier

et al. (2012)). Using these two insights, we can show the following lemma:

Lemma 2.8

The ex-ante utilitarian social welfare function can be written as:

SWF = E0 [Ui] = E0 [wa]−
(

1

2ρσ2
ν

+
ρ

2
E0

[
K2
])

V1[η], (39)

where

E0 [wa] = (η̄ − 1)E0 [K] + Cov0 (K, η)− 1

2κ
E0

[
K2
]
. (40)

Proof See Appendix A.8.

The first statement shows that the utilitarian social welfare function depends on the expected

level of aggregate wealth, wa ≡ K (η −Q) + K2

2κ , and the expected variance of portfolio returns.

The expected level of aggregate wealth depends on the expected level of capital accumulation, the

covariance of capital with productivity, and the expected capital adjustment costs. The expected

variance depends on two terms. The first reflects the cross-sectional variance induced by any

17



dispersion of portfolio holdings across households. The second term reflects the variance of the

average portfolio held by households (recall that
∫
zidi = K). Welfare increases monotonically

in the expected level of wealth and decreases in the two variance terms.

Proposition 2.9

Near-rational behavior lowers welfare by lowering the time-zero expected level and raising the
time-zero expected variance of wealth. This effect represents a negative externality of near-
rational behavior that transmits itself through the effect of near-rational errors on the stock
market’s capacity to transmit information:

lim
σε→0

[
∂SWF

∂σε
− ∂E0 [Ui]

∂µi

]
= lim
σε→0

[
∂SWF

∂π1

∂π1

∂σε

]
= σ2

η

σ2
νρκ

(
1 + κρ

(
(1− η̄)2 + σ2

η

))
+ 1

2σ2
νρ
(
1 + κρσ2

η

) lim
σε→0

[
∂π1

∂σε

]
< 0.

Proof See Appendix A.9.

By reducing the market’s capacity to transmit information, near-rational behavior thus has
a large (first-order) external effect on welfare. Using Lemma 2.8, it is easy to see that this effect
works through four channels:

∂SWF

∂σε
=

[
(η̄ − 1)

∂E0 [K]

∂π1
+
∂Cov0 (K, η)

∂π1
−
(

1

2κ
+
ρ

2
V1[η]

)
∂E0

[
K2
]

∂π1
−
(

1

2ρσ2
ν

+
ρ

2
E0

[
K2]) ∂V1[η]

∂π1

]
∂π1

∂σε
.

(41)

From Proposition 2.7, we know that the first two terms in the square brackets are positive. In

addition, from (22), it follows that ∂V1[η]
∂π1

< 0 , such that the fourth term is also positive. Near-

rational behavior thus lowers welfare by depressing the equilibrium capital stock, decreasing

Cov0 (K, η), increasing the dispersion of wealth, and increasing the variance of the average

portfolio held by households. The only term with an ambiguous sign is the third term, which

reflects an ambiguous effect of near-rational behavior on expected capital adjustment costs. We

show in Appendix A.9 that for small σε, near-rational behavior lowers expected adjustment

costs. However, the three other terms swamp this positive effect on welfare.

This result has important implications beyond its immediate application to the present

paper. A large literature on the real effects of stock market dysfunctionality has traditionally

focused on estimating either the sensitivity of capital investment with respect to stock prices,

κ, or the covariance of capital investment with non-fundamental movements of stock prices,

Cov0 (K, ε) = κγε. Although the latter expression is related to (38), how these two variables

map into the four channels outlined above is unclear. In particular, depending on the parameters

of the model, the distortion of the level of capital accumulation or the cross-sectional dispersion

of wealth may be costly even if the stock market appears as a “sideshow” (Morck, Shleifer, and

Vishny (1990)) in the sense that κ is low.
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3 Robustness and Extensions of the Static Model

3.1 Amplification of Other Shocks and Alternative Information Environ-

ments

The key result of the analysis above is that small correlated errors in household expectations

have a lower-order effect on an individual household’s utility but a first-order external effect on

social welfare. In this section, we show that the small deviations from rationality as specified in

(10) are crucial to this result. Using (9), (11), (14), and (10), we can rewrite the market-clearing

condition as
α0 + α1

∫
sidi+ α2Q+ ε−Q
ρV1[η]

= K, (42)

where for simplicity we consider the case in which the capital stock is exogenous (κ = 0), such

that from (12), we haveQ =
∫
E1i [η] di. There are two obvious alternative avenues to introducing

small disturbances into this relationship. We may introduce small common noise in the private

signal of the form

si = η + νi + ζ, (43)

where ζ ∼ N
(

0, σ2
ζ

)
(on the left-hand side) or small inelastic shocks to the supply of stocks

induced by noise traders (on the right-hand side). In this section, we show that both of these

alternative types of small disturbances do not result in a negative externality. In Appendix

B.4, we also consider near-rational errors about the conditional variance of η, which we show

to be isomorphic to the near-rational errors about the conditional expectation in (10) under

some additional assumptions. In addition, Appendix B.2 discusses the case in which households

observe an exogenous public signal in addition to the equilibrium stock price. To simplify the

exposition, we consider the case in which κ = 0 throughout.

3.1.1 Aggregate Noise in the Private Signal

Consider a model identical to the one given in section 2, with the exception that instead of (3),

we now have aggregate noise in the private signal (43).

Proposition 3.1

As the standard deviation of the small common error approaches 0, the marginal effect of near-

rational behavior on the elasticity of the stock price with respect to productivity becomes infinitely

large:

lim
σε→0

[
∂π1

∂σε

]
= −∞.

By contrast, the marginal effect of aggregate noise in the private signal on this elasticity goes to
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0 as the standard deviation of aggregate noise in the private signal goes to 0.

lim
σζ→0

[
∂π1

∂σζ

]
= 0.

Proof See Appendix B.1.1.

This proposition has two direct implications. First, small common noise in the private signal

is not amplified in equilibrium and thus has only a lower-order effect on the market’s capacity

to aggregate information. To see this, solve (42) for Q and plug in (43) to get

Q =
α0

1− α2
+

α1

1− α2
(η + ζ) +

1

1− α2
ε− ρV1[η]

1− α2
K. (44)

The result follows from the fact that α1
1−α2

= π1 is a number between 0 and 1. Small common

noise in the private signal thus has only a lower-order effect on welfare and thus does not result

in the kind of externality shown in Proposition 2.9.

Second, it demonstrates that none of the conclusions of the model in section 2 rely on the

stock price becoming perfectly revealing about η if all households are fully rational. Near-

rational behavior continues to have a first-order effect on information aggregation even if there

is (large) common noise in the private signal.

Figure 3 illustrates these results. The thick blue line plots the now familiar effect of a small

common error in household expectations with σε
ση

= 0.01. The red horizontal line plots the effect

of an identical amount of small common noise in the private signal (i.e.
σζ
ση

= 0.01). The red line

has an intercept of 0.012 and is perfectly horizontal. The common noise in the private signal is

not amplified, and does the fact that an individual household observes a signal with common

noise does not have an external effect on the market’s capacity to aggregate information. The

effect of common noise in the private signal is thus invariant to how dispersed information is in

the economy.

The broken lines in Figure 3 show the same comparative static, but in the presence of large

common noise in the private signal (
σζ
ση

= 1). Both lines retain their shape but now have a

higher intercept, reflecting the fact that less information is now available to aggregate, even

if the stock price is fully revealing. However, for the remaining dispersed information, the

information externality of near-rational behavior operates in the same way as in the model in

section 2. The externality is thus relevant whenever financial markets play an important role

in aggregating dispersed information, regardless of the exact information structure. Appendix

B.2 shows the same is true in a model in which households observe an exogenous public signal

in addition to the stock price.
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3.1.2 Noise Trading

Consider two modifications to the model in section 2: First, households have rational expecta-

tions:

µi = 0 ∀i.

Second, in addition to the unit interval of rational households, the economy is inhabited by a unit

interval of noise traders j ∈ [0, 1] inhabit the economy. Noise traders are identical to rational

households in that they have the same preferences (4), budget constraint (5), and information

set (they receive the signal (3) and observe the equilibrium stock price Q). However, when

making their portfolio decisions, noise traders do not maximize their utility but exogenously

and inelastically demand

zj = µjϑ, (45)

where ϑ ∼ N
(
0, σ2

ϑ

)
. This behavior makes the supply of stocks stochastic from the perspective

of rational households.

Because κ = 0 implies K = 0, market clearing requires that the sum of rational households’

and noise traders’ stock demands equals zero:∫ 1

0
zidi+

∫ 1

0
µjϑ dj = 0, (46)

where µj = 1 ∀j.

Proposition 3.2

Shocks to noise-trader demand lower the utility of noise traders but raise the welfare of ratio-

nal households. Noise traders’ demand shocks thus represent a positive externality on rational

households:
∂SWF

∂σϑ
> 0 ∀σϑ > 0 and

∂E0[Uj ]

∂µj
< 0 ∀µj > 0.

Proof See Appendix B.3.1.

The intuition behind this result is a redistribution of wealth between the two types of agents

in the model. Although rational households incur some losses due to the increased variability of

their portfolios, the market compensates them for the higher risk they take in the form of a higher

risk premium. Their welfare increases because they can “lean against” noise traders’ demand

and thus earn higher expected returns on their investments.14 Noise-trader demand shocks thus

represent a positive rather than negative externality on the welfare of rational households.

14With endogenous capital accumulation (κ > 0), there also exist parameter combinations for which the dead-
weight loss from distortions in the capital stock outweighs the redistribution of wealth from noise traders to
rational households such that the marginal effect on rational households’ utility becomes negative.
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In addition, the size of this externality shrinks to 0 in the limit in which noise-trader demand

shocks become small.

Proposition 3.3

As the standard deviation of noise-trader demand approaches 0, its marginal effect on the elas-

ticity of the stock price with respect to productivity goes to 0

lim
σϑ→0

∂π1

∂σϑ
= 0.

Proof See Appendix B.3.2.

To see the intuition for this result, replace K with ϑ in (44). Noise-trader demand shocks are

multiplied with ρV1[η]
1−α2

. For small σϑ, both the numerator and the denominator go to 0, such that

the fraction as a whole remains a finite number. (In Appendix B.3.2, we show that the multiplier

on noise traders’ demand shocks is always strictly smaller than ρσ2
ν .) Small common shocks to

noise traders’ demand thus have no first-order effect on the equilibrium informativeness of stock

prices. As a result, they affect neither noise traders’ own utility nor the welfare of rational

households. We show in the appendix that

lim
σϑ→0

[
∂SWF

∂σϑ

]
= lim

σϑ→0

[
∂E0[Uj ]

∂µj

]
= 0.

Small shocks to noise traders’ demand thus do not give rise to the type of externality we derive

in section 2. In addition, allowing for large shocks to noise-trader demand actually gives rise to

a positive rather than a negative externality.

3.2 Alternative Counterfactual

A guiding principle in our analysis of a near-rational household’s incentive to become fully

rational in section 2 was that households have the same information set, regardless of whether

they behave fully rationally or near-rationally. In particular, a rational household can condition

its decisions on si and Q, but does not know the small correlated error it would have made, had

it been near-rational.

We can relax this assumption by considering the willingness to pay of a rational household at

t = 0 for observing ε+ ε̂i at t = 1. A rational household can benefit from observing this error by

extracting the information it conveys about η (and equivalently about the common component

in the error, ε). Using (13), we can define

ŝi ≡
Q− γ (ε+ ε̂i)− π0

π1
= η − γε̂i

π1
, (47)
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where ŝi is the un-biased signal about η conveyed by ε+ ε̂i.

Proposition 3.4

As the standard deviation of the near-rational error goes to 0, a rational household’s willingness

to pay to observe the near-rational error it would have made had it been near-rational goes to

lim
σε→0

[
E0

[
Ui|µi=0,ŝi

]
− E0

[
Ui|µi=0

]]
=

1

2µ̂2 . (48)

Proof See Appendix B.5.

The potential gain of observing this additional signal thus goes to one half of the ratio of

common variance to idiosyncratic variance in the error in household expectations. Since none

of the results in section 2 place restrictions on µ̂, the potential incentive to observe ε+ ε̂i is thus

small for a large range of plausible parameters.

4 Quantitative Model

In this section, we set up a quantitative DSGE model that allows us to estimate the welfare effects

and the equilibrium impact of near-rational behavior. To this end, we use a de-centralization

of the DSGE model by Croce (2013). We choose this model mainly because it performs well in

matching both macroeconomic and asset-pricing moments and because it can be readily solved

using perturbation methods.

4.1 Setup

Technology is characterized by a linear homogeneous production function that uses capital, Kt,

and labor, Nt, as inputs:

Yt = Kα
t (eatNt)

1−α, (49)

where Yt stands for output of the consumption good. The productivity of labor, at, has a

long-run component, ω, and a short-run component, ϕ:

∆at+1 = µa + ωt + ϕt+1, (50)

where the long-run component follows

ωt = ρωt−1 + ηt. (51)

Both shocks to productivity, ϕ and η, are i.i.d. normally distributed with mean zero and standard

deviations σϕ and ση, respectively.
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The equation of motion of the capital stock is

Kt+1 = (1− δk)Kt + It −GtKt, (52)

where It denotes aggregate investment and δk is the rate of depreciation. Furthermore, there

are convex adjustment costs to capital following Jermann (1998):

Gt =
It
Kt
−

(
v1

1− 1
ξ

(
It
Kt

)1− 1
ξ

+ v0

)
, (53)

where v1 and v2 are positive constants and the parameter ξ determines the equilibrium elasticity

of the capital stock with respect to the stock price.

A representative firm purchases capital and labor services from households. Because it

rents services from an existing capital stock, the firm’s objective collapses to a period-by-period

maximization problem:

max
Kt,Nt

Yt − dtKt − wtNt, (54)

where Kt and Nt denote factor demands for capital and labor respectively. First-order conditions

with respect to capital and labor, pin down the market-clearing wage,

wt = (1− α)
Yt
Nt
, (55)

and the rental rate of capital,

dt = α
Yt
Kt
. (56)

Both factors thus receive their marginal product. Because the production function is linear ho-

mogeneous, the representative firm makes zero economic profits from producing the consumption

good.

The representative firm owns an investment goods sector that converts the consumption

good into units of capital, while incurring adjustment costs. It takes the price of capital as given

and then performs instantaneous arbitrage:

max
It

Qt (It −GtKt)− It. (57)

Taking the first-order condition of (57) gives us the equilibrium price of capital (Tobin’s Q):

Qt =
1

1−G′t
. (58)

Since there are decreasing returns to scale in converting consumption goods to capital, the

investment goods sector makes positive profits in each period. Profits are paid to shareholders
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as a part of dividends per share:15

Dt = α
Yt
Kt

+Qt

(
G′t

It
Kt
−Gt

)
. (59)

A continuum of households on the interval i ∈ [0, 1] has Epstein and Zin (1989) preferences

over the consumption bundle C̃it:

Uit =

(1− δ)C̃
1− 1

ψ

it − π(bit) + δEit
[
U1−γ
it+1

] 1− 1
ψ

1−γ

 1

1− 1
ψ

, (60)

where the parameters ψ and γ measure the households’ intertemporal elasticity of substitution

and relative risk aversion, respectively. π(bit) is a small penalty for holding bonds that ensures

a well-defined portfolio choice at the deterministic steady state (Judd and Guu, 2001).16 The

consumption bundle C̃it is a Cobb-Douglas aggregate of consumption and leisure:

C̃it = Coit(e
at−1(1− nit))1−o, (61)

where leisure scales with aggregate productivity to ensure the existence of a balanced growth

path.

At the beginning of every period, each household receives a private signal about the shock

to long-run productivity:

sit = ηt+1 + νit, (62)

where νit again represents i.i.d. draws from a normal distribution with zero mean and variance

σ2
ν . Households observe all prices and aggregate state variables at time t and understand the

structure of the economy as well as the equilibrium mapping of dispersed information into prices

and economic aggregates. The rational expectations operator, conditional on all the information

available to household i at time t, is

Eit [·] = E [·|sit, Qt, rt, dt, wt, Ct, Nt,Kt, Yt, It, Gt, Rt, at, ωt−1] . (63)

The only sources of uncertainty are thus the two innovations, ηt+1 and ϕt+1. While households

have no information about the short-run shock (Eit
[
ϕt+1

]
= 0), they must form a conditional

expectation of ηt+1. As in the model in section 2, we assume households make a small common

error when forming this expectation. The expectations operator Eit in (60) is thus the rational

15Alternatively, profits may be paid to households as a lump-sum transfer; this assumption matters little for
the quantitative results of the model.

16We use the simple quadratic form π(bit) = 1
2000

e
at−1(1− 1

ψ
)
(

bit
e
at−1

)2

.
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expectations operator with the only exception that

Eit
[
ηt+1

]
= Eit

[
ηt+1

]
+ µi (εt+ε̂it) , (64)

where again εt ∼ N(0, σε) and ε̂it ∼ N(0, µ̂σε).

Given sit and their knowledge about the state of the economy, households maximize lifetime

utility (60) by choosing a time path for consumption and labor, and their holdings of stocks and

bonds {C̃it, nit, kit, bit}∞t=0. Each household’s optimization is subject to a budget constraint:

Qtkit+1 + bit = Qt−1Rtkit + (1 + rt−1)bit−1 +Hit − Cit + wtnit, (65)

where Qt is again the price of capital, Hit are transfers from state-contingent claims discussed

below, and wt is the wage rate. The returns to capital are defined as

Rt+1 =
(1− δk)Qt+1 + α Yt+1

Kt+1
+Qt+1

(
G′t+1

It+1

Kt+1
−Gt+1

)
Qt

. (66)

The market-clearing conditions for the stock, bonds, labor, and goods markets are

Kt+1 =

∫
kit+1di, (67)

0 =

∫
bitdi, (68)

Nt =

∫
nitdi, (69)

and

Yt = Ct + It. (70)

Finally, the payments from contingent claims, Hit, avoid having to keep track of the evolution

of wealth across households.17 At the beginning of each period (and before receiving their private

signal), households can trade claims that are contingent on the state of the economy and on

the realization of the noise they receive in their private signal, νit. These claims are in zero

net supply and pay off at the beginning of the next period. Because the claims are traded

before any information about ηt+1 is known, their prices cannot reveal any information about

future productivity. Contingent-claims trading thus completes markets between periods, without

affecting households’ signal-extraction problem. In equilibrium, all households choose to hold

17See Mertens and Judd (2013) for a perturbation-based approach to solving incomplete markets models with
substantial heterogeneity.
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these securities with net payoff

Hit =

Qt−1RtKt −Qt−1Rtkit − (1 + rt−1)bit−1 if {Cit, nit, kit, bit} = arg max (60)|Hit=0

0 otherwise
,

(71)

such that all households enter each period with the same amount of wealth. From (67) and (68),

it follows immediately that these claims are in zero net supply:∫
Hitdi = 0. (72)

Definition 4.1

Given a time path of shocks {ηt, εt, ϕt, {νit, ε̂it : i ∈ [0, 1]}}∞t=0, an equilibrium in this economy is

a time path of quantities {{Cit, bit, nit, kit : i ∈ [0, 1]}, Ct, Nt,Kt, Yt, It, Gt, Rt, at, ωt}∞t=0, signals

{sit : i ∈ [0, 1]}∞t=0, and prices {Qt, rt, dt, wt}∞t=0 with the following properties:

1. {{Cit} , {bit} , {nit} , {kit}}∞t=0 maximize households’ lifetime utility (60) given the vector

of prices, and the random sequences {εt, {νit, ε̂it}}∞t=0;

2. The demand for capital and labor services solves the representative firm’s maximization

problem (54) given the vector of prices;

3. {It}∞t=0 is the investment goods sector’s optimal policy, maximizing (57) given the vector

of prices;

4. {wt}∞t=0 clears the labor market, {Qt}∞t=0 clears the stock market, {rt}∞t=0 clears the bond

market, and {dt}∞t=0 clears the market for capital services;

5. {Yt}∞t=0 is determined by the production function (49), and {Kt}∞t=0, {Gt}∞t=0, {at}∞t=0,

{Rt}∞t=0, and {ωt}∞t=0 evolve according to (52), (53), (50), (66), and (51), respectively;

6. {Ct, Nt}∞t=0 are given by the identities

Xt =

∫ 1

0
Xitdi , X = C,N. (73)

The rational expectations equilibrium is the economy in which σε = 0, such that the ex-

pectations operator E in equation (60) coincides with the rational expectation in (63). The

near-rational expectations equilibrium posits that σε > 0; households make small errors as given

in (64).

We compute the first-order and envelope conditions for households in Appendix C.2.
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4.2 Solving the model

We use the solution method developed in Mertens (2009) to transform the equilibrium conditions

of the model into a form we can solve with standard techniques. The key to this approach is to

show that all prices and economic aggregates are a function of the usual “macroeconomic” state

variables of the model St = {Kt, ωt−1, ηt, ϕt} as well as households’ average expectation of ηt+1:

q̂t =

∫
Eit
[
ηt+1

]
di =

∫
Eit
[
ηt+1

]
di+ εt. (74)

Lemma 4.2

A recursive equilibrium exists satisfying the system of equations in definition 4.1 with the fol-

lowing properties:

(1) A household’s optimal behavior depends on the current (commonly known) state of the econ-

omy, St, the household’s conditional expectation of next period’s innovation to productivity,

Eit[ηt+1], and the average expectation of this innovation, q̂t. The conditional expectation, in

turn, depends on the private signal sit as well as q̂t. We can thus write the set of state variables

that determine individual behavior as

xit = x(St, q̂t, Eit[ηt+1]), x = C, n, k+1, b. (75)

(2) All prices and economic aggregates depend on the current state of the economy and q̂t:

Xt = X(St, q̂t), X = C,N,K+1, Y, I,G,R,Q, r, d, w. (76)

Proof: See Appendix C.3.

Given this lemma, we are able to use standard perturbation methods to solve for households’

equilibrium policies as a function of the vector {St, q̂t, Eit[ηt+1]} and for all economic aggregates

as a function of {St, q̂}. In other words, we can separate the solution of the non-linear model

from the information microstructure by simply treating Eit[ηt+1] and q̂t as state variables. The

final step of the solution is then to solve for Eit[ηt+1].

Condition 1 The equilibrium stock price, Q, or at least one other economic aggregate or

price is a strictly monotonic function of q̂.

An immediate implication of Lemma 4.2 is that all prices and economic aggregates have the

same information content. Given condition 1, q̂ is simply a monotonic transformation of Q.

Households can thus infer q̂ from observing the equilibrium stock price (or any other economic

aggregate that is monotonic in q̂). Learning from the stock price is then just as good as learning

from its monotonic transformation, because Q and q̂ span the same σ-algebra. Although we

cannot solve for the mapping of q̂ into Q in closed form, we can easily check for monotonicity
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using the numerical solution of the model.

Lemma 4.3

Households’ equilibrium expectations of ηt+1 are independent of the aggregate dynamics of the

model. Conditioning on sit and q̂t results in expectations of the form

Eit[ηt+1] =
σ−2
ν

(
ηt+1 + νit

)
+ α2

1σ
−2
ε

(
ηt+1 + 1

α1
εt

)
Vt[ηt+1]−1

, (77)

Vt[ηt+1] =
(
σ−2
η + σ−2

ν + α2
1σ
−2
ε

)−1
, (78)

where

α1 =
Vt[ηt+1]

σ2
ν

. (79)

Proof See Appendix C.4.

Households’ equilibrium expectations thus take exactly the same form as in the static model.

As a result, all the qualitative results concerning the effect of the near-rational error on equilib-

rium expectations derived in section 2.2 readily carry over to the quantitative model.

5 Estimation and Results

Our model depends on 16 parameters. Table 1 lists nine standard macroeconomic parameters

that we set equal to the values used in Croce (2013). In particular, α is set to match the

capital income share and δk is set to match the annualized capital depreciation rate in the US

economy (6%). In addition, the average annual growth rate of productivity, µa, is 1.8%. The

relative risk aversion and the intertemporal elasticity of substitution are set to values of 10 and

2, respectively. The annualized subjective discount factor, δ, is fixed at 0.965. The parameters

v1 and v2 in the adjustment-cost function are set such that, at the deterministic steady state,

Gt = 0 and ∂Gt/∂ (It/Kt) = 0. (This implies v0 =
(

1
1−ξ

)
(δ + eµ − 1) and v1 = (δ + eµ − 1)

1
ξ .)

We also follow Croce (2013) in calculating excess stock returns as the excess returns on a

levered claim to capital:

RLEVex,t = (Rt − rt−1)φlev . (80)

This practice is standard in the finance literature because, in the data, most claims to equity

are levered, where we set φlev = 2, consistent with the amount of financial leverage measured

by Rauh and Sufi (2012).

In addition, we set the standard deviation of the idiosyncratic component of near-rational

errors to 0 for simplicity, µ̂ = 0.
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We estimate the remaining six parameters according to two criteria. First, we choose σε

such that a near-rational household’s willingness to pay to set µi = 0 (and thus become fully

rational) is equal to 0.01% of permanent consumption. We maintain this condition throughout

all comparative statics shown below, such that across all specifications, the private cost of near-

rational behavior is held constant.

Second, we estimate the remaining five parameters (σϕ, ση, ρ, ξ, and σν) to minimize the loss

function:

(m− θ)′W (m− θ) , (81)

where m is a vector of moments generated by the model and θ is the vector of data targets for

these moments. W is a diagonal matrix where each entry is 1
Njθ

2
j
, where θj is the jth entry in θ

and Nj is the total number of moments in θ that are of the same type as j (distinguishing between

macroeconomic, asset-pricing, and information-related moments in the data). Our estimation

thus minimizes a weighted sum of squared deviations from the target vector, adjusting for the

number of each type of moment in the vector.

In all specifications below, we measure the private cost of near-rational behavior as the

compensating variation in terms of permanent consumption for individual i of setting µi = 0

in all future periods. Similarly, we measure the social cost of near-rational behavior as the

compensating variation for individual i of setting µj = 0 ∀j 6= i. Both calculations are performed

at the stochastic steady state of the model, such that our measure for the social cost of near-

rational behavior takes into account that the abolition of near-rational behavior today induces

an adjustment process to a new stochastic steady-state level of capital. See Appendix D.1 for

details on this calculation.

5.1 Results

The first column of Table 2 shows 16 data targets constructed from annual US data (1929-

2008), listing first the information-related, then the macroeconomic, and then the asset-pricing

moments. The data sources used for the latter two types of moments are standard. We construct

the two information-related moments from the Survey of Professional Forecasters 1969-2008.

The first is the ratio of conditional to unconditional variance of productivity growth, which we

take to correspond to Vt[ηt+1]/σ2
η in the model.18 The second is the variance of forecasts of

GDP growth across professional forecasters, which we take to correspond to the cross-sectional

dispersion in the equilibrium expectations of GDP growth across households in the model. See

18We have also attempted to separately identify the conditional variance of short-run vs. long-run shocks to
productivity growth in the data by estimating separate ARMA processes for forecasts and realizations of GDP
growth. However, due to the limited number of observations, these estimates, too noisy to allow a meaningful
distinction.
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the caption of Table 2 and Appendix D.2 for details.19

Specification (1) gives our benchmark estimation – the best fit to the data according to (81).

It returns standard deviations of the short-run and long-run shocks to productivity of 2.82%

and 0.50%, respectively, where the latter has a persistence of ρ = 0.995. The adjustment-cost

parameter is ξ = 4 and the dispersion of private information is σν/ση = 182, implying that in

the absence of a stock price, 1822 = 33, 124 households would have to pool their private signals

to reduce the conditional variance of η by one half.

The standard deviation of the common error in household expectations is 0.003% of the

standard deviation of the shock to long-term productivity, but is amplified by a factor of 14,046,

such that a one-standard-deviation shock to ε results in a 0.42 ση rise in the average expectation

of η. Consequently, equilibrium stock prices transmit more noise than information, with a noise-

to-signal ratio of 2.37. In this situation, a given household in the model would be willing to

give up 66.86% of its lifetime consumption in order to abolish other households’ near-rational

behavior. The social cost of near-rational behavior is thus three orders of magnitude larger than

the private cost (0.01% of permanent consumption).

The model delivers a good fit to the data. In particular, the standard deviation of output is

estimated at 4.33, and thus only slightly higher than the data target (3.34, s.e.=0.39). Similarly,

the model estimates an equity premium that is slightly too high (4.16 vs. 3.89, s.e.=2.17 in the

data). Although the model almost matches the standard deviation of stock prices (33.65%), it

falls short of matching the standard deviation of stock returns.20 Overall, the performance of

the model in matching standard moments is similar to that of standard long-run risk models.

In addition, the model matches almost perfectly the conditional variance of productivity shocks

in the data but falls short of generating a large dispersion in equilibrium expectations across

households (0.001% vs. 0.27% in the data). An obvious reason for the latter failure is that in the

data, we only observe disagreement about next year’s GDP growth, whereas private information

about shocks to long-run productivity growth generates differences in opinion about GDP growth

many years in the future. (We return to this issue below.)

Specification (2) shows the case in which all households are fully rational, σε = 0. In

this case, the dispersion of private information is irrelevant because the stock market perfectly

reveals ηt+1, such that any specification with σν < ∞ returns the same moments. Comparing

the results of specifications (1) and (2) shows that near-rational behavior has relatively small

effects on standard business-cycle moments, and larger but still moderate effects on asset-pricing

moments. For example, the equity premium is 4.16% when households are near-rational and

3.96% when households are fully rational. Nevertheless, the estimated effect of near-rational

19Note that we deviate from standard practice in the long-run risk literature in that we calibrate the model
directly at the annual frequency to match annual moments.

20Note that in the interest of parsimony, we do not artificially raise the standard deviation of stock returns by
introducing an additional cash-flow shock as is standard in the literature.
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behavior on capital accumulation is sizable. When households are near-rational, the stochastic

steady-state level of capital accumulation is 0.88% higher than when they are fully rational. Note

that this distortion in the level of capital accumulation has the opposite sign of the distortion

we found in the static model. The reason near-rational behavior increases rather than decreases

the level of capital in the quantitative model is the precautionary savings motive that arises

in general equilibrium. An increase in the conditional variance of η makes households more

reluctant to invest in stocks versus bonds, but also induces them to save more, such that the

risk-free rate falls. The sign of the overall distortion thus depends on the size of these opposing

forces.

Despite this sizable distortion in the level of capital accumulation, the effects of near-rational

behavior on the moments of the model appear small compared to its effect on welfare (66.86% of

permanent consumption). The reason for this apparent discrepancy is that with an intertemporal

elasticity of substitution larger than 1, households have a preference for early resolution of

uncertainty. Aside from its effects on the level and the dynamics of economic activity, the

availability of information about the future thus has an additional, direct effect on households’

utility. The same mechanism that allows the model to produce a relatively large equity premium

(Bansal and Yaron, 2004) and large costs of business cycles (Epstein et al., 2013; Croce, 2012)

thus also results in a surprisingly large social cost of near-rational behavior when it prevents

households from learning about long-term shocks to productivity.

Figure 4 shows a comparative static of selected moments over the level of dispersion in

private information, σν , corresponding to specification (1) in Table 2. In all panels, the black

dotted line shows the limit σν → ∞. The red dashed line shows the results corresponding

to specification (2), where the stock price perfectly aggregates all private information about η

(σε = 0). Throughout, we adjust σε to fix the private cost of near-rational behavior at 0.01% of

permanent consumption.

Consistent with its counterpart in the static model, the first panel of Figure 4 shows that a

given amount of near-rational behavior (now fixed in terms of its utility cost to the individual) has

a larger effect on the stock market’s capacity to aggregate information when private information

is more dispersed. The larger this external effect, the larger the social cost of near-rational

behavior and the distortion in the level of capital accumulation (up to 1.25% if information

aggregation is completely destroyed).

The following panel shows the multiplier on the near-rational error, 1/(1− α2). Consistent

with Figure 2 in the static model, it shows the amplification peaks around factor 15,000 for

intermediate values of σν . As we move farther to the right in the graph, the noise-to-signal ratio

in stock prices increases to the point that households give up learning from stock prices, begin

to lower α2, and instead rely on their priors. During this process, the multiplier decreases and

eventually converges to 1, while the noise-to-signal ratio and the conditional variance of stock
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returns continue to increase monotonically.

The remaining panels show that a higher conditional variance of stock returns results in

a higher equity premium of up to 4.25%. While the conditional variance of η, and thus the

conditional variance of stock returns, rises monotonically as we move from left to right in the

graph, the unconditional variance of stock returns is initially lower and only rises above the level

it obtains under full rationality at high levels of σν . The same is true for the standard deviation

of output and investment. The reason for this “dip” is in the dynamic effects of near-rational

behavior.

The solid blue lines in all panels of Figure 5 show impulse-response functions based on

specification (1) in Table 2. The black dotted lines again show the case in which information

aggregation breaks down completely (σν → ∞), and the red dashed line shows the results

corresponding to full rationality (specification (2)). The left panels depict responses to a two-

standard-deviation common error in household expectations in period 10. They show that

the near-rational error induces noise in stock returns and all other economic aggregates.21 Of

particular interest is the size of the response in stock returns. Recall that in this specification, the

standard deviation of the common error is 0.003% of ση, which means households’ expectations

of η in period 11 are 0.00003 ∗ ση, although they should be zero. Through its external effect on

household expectations, this extremely small disturbance moves stock returns by approximately

1.1 percentage points, consumption growth by 0.3 percentage points, and output growth by 0.25

percentage points in equilibrium. The positive excess return in period 10 is then followed by a

negative excess return of similar magnitude in period 11.

The right panels of Figure 5 show responses to a two-standard-deviation shock to η in

period 11. The graphs show that learning about the shock in advance allows households to

adjust their behavior ex ante. Interestingly, however, the amplitude of the solid blue line is

smaller than the amplitudes of the dashed and dotted lines. When stock prices transmit both

noise and information, households partially adjust their behavior in both periods 10 and 11,

instead of fully adjusting in a single period (period 10 in the full-information case and period

11 in the no-information case). As a result, near-rational behavior also dampens the dynamic

response to fundamental shocks. Depending on which of the dynamic effects dominates, near-

rational behavior may thus lower the unconditional variance of stock returns and other economic

aggregates for some range of parameters, explaining the “dip” in some of the plots in Figure 4.

21Note that, due to Jensen’s inequality, the level of the excess stock return in the absence of shocks shown in
Figure 5 differs from the unconditional mean excess stock return shown in Table 2.
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5.2 Robustness

An important insight from Figure 4 is that the quantitative effects of near-rational behavior

depend crucially on the degree of dispersion in private information across households. Specifica-

tions (3) and (4) in Table 2 thus reestimate σν using alternative vectors of data targets. Holding

constant our benchmark estimates of σϕ, ση, ρ, and ξ, specification (3) estimates σν using only

our seven macroeconomic moments as data targets. The result, σν/ση = 190, is almost identical

to the estimate in specification (1), yielding a social cost of near-rational behavior of 69.71% and

a large amplification of near-rational errors (factor 13,186). The model thus delivers a better

fit to macroeconomic moments when economic aggregates show a relatively large response to

non-fundamental shocks.

Specification (4) repeats the same exercise but now also includes the seven asset-pricing

moments in the target vector. The estimation returns a lower number, σν/ση = 48, resulting

in an amplification of near-rational errors of factor 10,083 and a social cost of near-rational

behavior of 17.47% of permanent consumption.

Specifications (5) and (6) in Table 2 repeat the analysis of specifications (1) and (2), but

for an alternative model in which households receive private signals about the short-run rather

than about the long-run shock to productivity,

sit = ϕt+1 + νit.

Specification (5) again maximizes the fit of the alternative model according to the loss function

(81). It shows a social cost of near-rational behavior of 3.59% of consumption and an effect on

the stochastic steady-state level of capital accumulation of 0.58%.

Despite this now much smaller external effect of near-rational behavior on social welfare, the

estimates in specification (5) and (6) show much larger effects of near-rational behavior on all

business-cycle and asset-pricing moments. Figure 6 depicts the effects graphically. It shows that,

depending on the dispersion of private information, near-rational behavior may raise the equity

premium by up to 0.5 percentage points and may lower the standard deviation of output by 0.4

percentage points. Because households now learn about the i.i.d. component of the productivity

shock, the standard deviation of investment falls from 3.6 times the standard deviation of output

in the full-information case to 2.3 times the standard deviation of output in the no-information

case. The less households learn about the future, the less they adjust their capital holdings

over time. In this case, near-rational behavior thus indirectly dampens the volatility of the

capital stock, such that the unconditional variance of stock returns actually falls when stock

prices transmit relatively more noise. Near-rational behavior can thus affect conditional and

unconditional moments in opposite directions, depending on the parameters of the model.
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5.3 The Stock Market: Not a “Sideshow”

Figure 7 revisits the question of whether non-fundamental volatility in stock prices can be

socially costly even if capital investment is relatively unresponsive to stock prices. It shows a

comparative static of the social cost of near-rational behavior over the elasticity of the capital

stock with respect to stock prices, ξ. The calculations in the top and bottom panels are based

on specifications (1) and (5) in Table 2, respectively. In both cases, we show results for values

of ξ ranging from one half to double our benchmark estimate. The right graphs in each of

the two panels show the same comparative static for the standard deviation of investment for

comparison.

The plots show that the social cost of a breakdown in the stock market’s capacity to aggregate

information is almost completely invariant to variation in the elasticity of the capital stock with

respect to stock prices. If households have private information about the long-run shock to

productivity, our point estimate of the social cost of near-rational investment is stable at around

67% of permanent consumption, regardless of whether this elasticity is 2 or 8. The social cost

of a breakdown in the stock market’s capacity to aggregate information is therefore almost

completely independent of the size of the dynamic response of the capital stock to a given

mispricing.

6 Conclusion

This paper shows that the stock market may fail to aggregate information even if it appears to

be efficient in the sense that rational investors cannot systematically outperform the market.

The resulting decrease in the information content of stock prices may drastically reduce welfare

even if the elasticity of the capital investment with respect to stock prices is low.

In our model, each household has some private information about future productivity. If all

households behave perfectly rationally, the equilibrium stock price reflects the information held

by all market participants and directs resources to their most efficient use. This core function of

financial markets may break down if we allow for the possibility that households do not respond

to economically small incentives (i.e., on the order of 0.01% of consumption). In particular,

if households make small, cross-sectionally correlated, errors when forming their expectations

about future productivity, these errors give rise to an information externality: households do

not internalize how errors in their investment decisions affect others’ equilibrium expectations.

This information externality leads information aggregation to break down precisely when it is

most socially valuable, that is, when private information is highly dispersed.

The resulting collapse of the information content of stock prices increases the amount of

financial risk households face and thus induces them to demand higher risk premia for hold-
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ing stocks. Higher risk premia in turn distort the level of capital accumulation, output, and

consumption in the long run. The social return to diligent investor behavior is thus orders of

magnitude larger than the private return.

Our quantitative estimates for the social cost of near-rational behavior range between 3.6%

and 69.7% of permanent consumption. The social value of the stock market’s capacity to ag-

gregate information is particularly large if it prevents households from learning about long-run

shocks to productivity.
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Figure 1: Ratio of the conditional variance of η to its unconditional variance plotted over the
level of dispersion of private information, σν/ση.

Figure 2: Decomposition of the ratio of the conditional variance of η to its unconditional variance
plotted over the level of dispersion of private information.
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Figure 3: Comparison of the effects of small common errors in household expectations with the
effects of small common noise in the private signal (solid lines) and large common noise in the
private signal (broken lines).
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Figure 4: Comparative statics over σν for selected business-cycle and asset-pricing moments.
All plots are based on specification (1) in Table 2. Lowercase letters denote logs. E[.] and σ(.)
denote means and standard deviations, respectively. d stands for the first difference in the time
series. 44



Figure 5: The solid blue lines in all panels of Figure 5 show impulse-response functions based
on specification (1) in Table 2. The black dotted lines show the case in which information
aggregation breaks down completely (σν → ∞), and the red dashed line shows the results
corresponding to full rationality (specification (2)). Left panels: responses to a two-standard-
deviation common error in household expectations in period 10. Right panels: responses to a
two-stand-deviation shock to η in period 11. Lowercase letters denote logs. d stands for the first
difference in the time series.
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Figure 6: Comparative statics over σν for selected business-cycle and asset-pricing moments.
All plots are based on specification (5) in Table 2. Lowercase letters denote logs. E[.] and σ(.)
denote means and standard deviations, respectively. d stands for the first difference in the time
series.
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Figure 7: Comparative statics for aggregate welfare losses and the standard deviation of invest-
ment over the elasticity of capital investment with respect to the stock price, ξ. Top panels:
based on specification (1) of Table 2. Bottom panels: based on specification (5) of Table 2.
Lowercase letters denote logs. σ(.) denotes means and standard deviations. d stands for the
first difference in the time series.
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Online Appendix

A Appendix to Section 2

A.1 Derivation of (16), (17), and (32)

Plugging (15) back into (12) and matching coefficients with (13) yields

π0 =
α0 + ρV1[η]κ(1− α2)

(1− α2)(1 + ρV1[η]κ)
,

(82)

π1 =
α1

(1− α2)(1 + ρV1[η]κ)
,

(83)

γ =
1

(1− α2)(1 + ρV1[η]κ)
.

(84)

Using (3) and (13), the vector (η, si, Q) has unconditional expectation (η̄, η̄, π0 + π1η̄) and

the following variance covariance matrix:

Σ =

 σ2
η σ2

η π1σ
2
η

σ2
η σ2

η + σ2
ν π1σ

2
η

π1σ
2
η π1σ

2
η π2

1σ
2
η + γ2σ2

ε

 .

Thus, by the property of the conditional variance of the multi-normal distribution,

V1 [η] = σ2
η −

(
σ2
η π1σ

2
η

)( σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε

)−1(
σ2
η

π1σ
2
η

)
=

1

σ−2
η +

(
π2

1γ
−2σ−2

ε + σ−2
ν

) . (85)

Plugging (83) and (84) into this expression gives (16).

Similarly, by the properties of the multi-normal distribution,

E[η|si, Q] = η̄ +
(
σ2
η π1σ

2
η

)( σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε

)−1(
si − η̄

Q− (π0 + π1η̄)

)
.

Replacing Q by (12) and plugging in (15) and (85) gives (17).

Matching the coefficients of (17) with (14)(
α1

α2(1 + ρV1[η]κ)

)
=
(
σ2
η π1σ

2
η

)( σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε

)−1

,
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and solving for α1, α2 yields

α1 =
γ2σ2

ησ
2
ε

γ2σ2
νσ

2
ε + σ2

η

(
π2

1σ
2
ν + γ2σ2

ε

) , (86)

α2 =
π1σ

2
ησ

2
ν(

γ2σ2
νσ

2
ε + σ2

η

(
π2

1σ
2
ν + γ2σ2

ε

))
(1 + ρV1[η]κ)

. (87)

Combining (87) with (83), (84), and (16) yields (32).

A.2 Proof of Lemma 2.2

Use the law of total variance and (13) and (14) to get

σ2
η = V1[η] + V0[E1i[η]]

= V1[η] + V0[α1νi + (α1 + α2π1(1 + ρV1[η]κ)) η + α2γε(1 + ρV1[η]κ)]

= V1[η] + α2
1σ

2
ν + (α1 + α2π1(1 + ρV1[η]κ))2σ2

η + α2
2γ

2σ2
ε (1 + ρV1[η]κ)2. (88)

Now note from (19) and (20) that

α2
1σ

2
ν + α2

2γ
2σ2

ε (1 + ρV1[η]κ)2 =
V1 [η]2

σ2
ν

+
V1 [η]4

σ4
νσ

2
ε

=
V1 [η]2

σ2
ν

+
V1 [η]2 α2

1

σ2
ε

,

and from (16) that
α2

1
σ2
ε

= 1
V1[η] −

(
σ−2
η + σ−2

ν

)
such that

α2
1σ

2
ν + α2

2γ
2σ2

ε (1 + ρV1[η]κ)2 = V1 [η]− V1 [η]2 σ−2
η .

In addition, using (83) we can show that

(α1 + α2π1(1 + ρV1[η]κ))2 = ((1− α2)π1(1 + ρV1[η]κ) + α2π1(1 + ρV1[η]κ))2

= π2
1 (1 + ρV1[η]κ)2 .

Substituting these two expressions back into (88) yields

σ2
η = 2V1 [η]− V1 [η]2 σ−2

η + π2
1 (1 + ρV1[η]κ)2 σ2

η.

Solving this expression for V1[η] gives

V1[η] =
σ2
η(1− π1)

1 + κρπ1σ2
η

. (89)
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Now take the market-clearing condition (9), plug in (10) and (11) on the left-hand side and (2)

on the right to get ∫ 1
0 E1i[η]di−Q+ ε

ρV1[η]
= κ(Q− 1).

Take the unconditional expectation on both sides:

E0[η −Q] = ρκV1[η](E0[Q]− 1).

Now note from (13) that E0[Q] = π0 + π1η̄ and therefore:

−π0 + (1− π1)η̄ = ρκV1[η](E0[Q]− 1).

Solving for π0 and plugging in (89) yields

π0 =
(1− π1)(η̄ + κρσ2

η)

1 + κρσ2
η

. (90)

Similarly, from (83), (84), and (19), it follows that

γ = π1
σ2
ν

V1 [η]
. (91)

Again plugging in (89) yields

γ =
π1σ

2
ν

(
1 + κρπ1σ

2
η

)
σ2
η(1− π1)

. (92)

To solve for π1, substitute (19), (20), and (91) into (83) to get

π1 = σ−2
ν

(
V1 [η]−1 − V1 [η]2

π1σ4
νσ

2
ε

+ ρκ

)−1

. (93)

Combining this expression with (89) and solving yields (22). Plugging (22) into (90) and (91)

separately gives (21) and (23). And substituting α1 using (19) in (16) yields (24).

A.3 Deriving (25) and (26)

Solving (24) for V1[η] yields three roots, one of which is real and in the interval [0, σ2
η]:

V1[η] =

3
√

2
(

9σ6
ησ

4
νσ

2
ε +
√

3
√
σ6
ησ

6
νσ

4
ε

(
27σ6

ησ
2
ν + 4σ2

ε

(
σ2
η + σ2

ν

)
3
))

2/3 − 2 3
√

3σ2
ησ

2
νσ

2
ε

(
σ2
η + σ2

ν

)
62/3σ2

η
3

√
9σ6
ησ

4
νσ

2
ε +
√

3
√
σ6
ησ

6
νσ

4
ε

(
27σ6

ησ
2
ν + 4σ2

ε

(
σ2
η + σ2

ν

)
3
) . (94)
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Rewrite this expression in order form of σε:

V1(η) =
O(1)

(
O(1)O(σ2

ε ) +
√
O(1)O(σ4

ε ) +O(1)O(σ6
ε )
)2/3

−O(1)O(σ2
ε )

O(1)
(
O(1)O(σ2

ε ) +
√
O(1)O(σ4

ε ) +O(1)O(σ6
ε )
)1/3

(95)

= O(1)
O(σ2

ε )

O(σε)
= O(1)O(σε),

where we denote y = O(x) if y
x = constant as σε → 0. It follows directly that

lim
σε→0

[V1 [η]] = 0.

Plugging this into (22) yields (26).

A.4 Proof of Proposition 2.3

Solve (89) for π1 and differentiate with respect to V1[η] to get

∂π1

∂V1[η]
= −

1 + κρσ2
η

σ2
η(1 + κρV1[η])2

< 0. (96)

In addition, differentiate both sides of (24) with respect to σε and rearrange to get

∂V1[η]

∂σε
=

2V1 [η]4

2σ2
εV1 [η]3 + σ3

εσ
4
ν

> 0.

Then the fact that ∂π1
∂σε

= ∂π1
∂V1[η]

∂V1[η]
∂σε

yields (27), and applying (25) with (95) yields (28).

A.5 Proof of Proposition 2.4

Lemma A.1

A near-rational household’s ex-ante willingness to pay for eliminating the near-rational error

from its own behavior is

λi =
1

2
µ2
i

σ2
ε (1 + µ̂2)

ρV1[η]
+

1

ρ
µi
V1[η]

σ2
ν

. (97)

Proof Taking (4), plugging in (5), taking time-zero expectations, and rearranging yields

E0Ui = E0 [zi(η −Q) + Π]− ρ

2
E0

[
z2
i

]
V1[η],

where zi = E1i[η]+µi(ε+ε̂i)−Q
ρV1[η] from (11) and (6). It follows that the compensating variation from
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the perspective of a near-rational individual who considers becoming fully rational is

λi ≡ −
(
E0 [Ui]− E0

[
Ui|µi=0

])
(98)

= −E0

[
µi (ε+ ε̂i)

ρV1[η]
(η −Q)

]
+
ρ

2
E0

[(
µi (ε+ ε̂i)

ρV1[η]

)2

+ 2
E1i [η]−Q
ρV1[η]

µi (ε+ ε̂i)

ρV1[η]

]
V1[η]

= −E0

[
µi (ε+ ε̂i)

ρV1[η]
η

]
+ E0

[
ρ

2

(
µi (ε+ ε̂i)

ρV1[η]

)2

V1[η]

]
+ E0

[
E1i [η]µi (ε+ ε̂i)

ρV1[η]

]
=

1

ρV1[η]

(
E0

[
1

2
µ2
i (ε+ ε̂i)

2

]
+ E0 [E1i [η]µi (ε+ ε̂i)]

)
.

Plugging in (12), (13), and (14) and simplifying yields

λi =
1

ρV1[η]

(
1

2
µ2
iσ

2
ε (1 + µ̂2) + (1 + ρV1[η]κ)E0

[(
α2γµiε

2 + α2γεµiε̂i
)])

=
1

ρV1[η]

(
1

2
µ2
iσ

2
ε (1 + µ̂2) + µiα2γσ

2
ε (1 + ρV1[η]κ)

)
=

1

2
µ2
i

σ2
ε

(
1 + µ̂2

)
ρV1[η]

+ µi
α2γσ

2
ε

ρV1[η]
(1 + ρV1[η]κ).

In addition, note that from (19), (20), (84), and (92), we have that α2γσ2
ε

V1[η] = V1[η]
σ2
ν(1+ρV1[η]κ)

.

Plugging this in yields the expression given in the proposition.

Using this lemma, the proof of Proposition 2.4 proceeds as follows: taking the derivative of

(97) yields

∂λi

∂µi
= µi

σ2
ε

(
1 + µ̂2

)
ρV1[η]

+
V1[η]

ρσ2
ν

.

From (95), we have that the numerator of the first term on the right-hand side approaches 0 at

a faster rate than the denominator. The second term collapses to 0 as V1 [η] approaches 0 as

σε → 0.

A.6 Proof of Propsition 2.5

For the first part of the proposition, differentiate both sides of (24) with respect to σν and

rearrange to get
∂V1[η]

∂σν
=

2σ2
νσ

2
εV1 [η]2 + 4V1 [η]4

σ5
νσ

2
ε + 2σνV1 [η]3

> 0. (99)

Combing this with (96) proves the first equality and the inequality for strictly positive σε. The
proof of the case σε → 0 follows directly from (25).

For the second part of the proposition, similar to (95), rewriting V1[η]
σ2
η

in the order form of σν
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and σε for them going to infinity and 0 respectively,

V1[η]

σ2
η

=

3
√

2
(

9σ6
ησ

4
νσ

2
ε +
√

3
√
σ6
ησ

6
νσ

4
ε

(
27σ6

ησ
2
ν + 4σ2

ε

(
σ2
η + σ2

ν

)
3
))

2/3 − 2 3
√

3σ2
ησ

2
νσ

2
ε

(
σ2
η + σ2

ν

)
62/3σ4

η
3

√
9σ6
ησ

4
νσ

2
ε +
√

3
√
σ6
ησ

6
νσ

4
ε

(
27σ6

ησ
2
ν + 4σ2

ε

(
σ2
η + σ2

ν

)
3
)

=
O(1)

(
O(1)O(σ4

ν)O(σ2
ε ) +

√
O(1)O(σ12

ν )O(σ6
ε )
)2/3

−O(1)O(σ2
ν)O(σ2

ε )−O(1)O(σ4
ν)O(σ2

ε )

O(1)
(
O(1)O(σ4

ν)O(σ2
ε ) +

√
O(1)O(σ12

ν )O(σ6
ε )
)1/3

=O(1)
O(σ4

ν)O(σ2
ε )

O(σ2
ν)O(σε)

= O(1)O(σ2
ν)O(σε)

gives the second line of (30) and the first line follows directly from (24).

A.7 Proof of Proposition 2.6

Taking the derivative with respect to σν on both sides of (97) with µi = 1 and simplifying yields

∂λi

∂σν
= −2

V1 [η]

σ3
νρ
− 1

2ρ

(
− 2

σ2
ν

+
σ2
ε

(
1 + µ̂2

)
V1 [η]2

)
∂V1[η]

∂σν
.

Plugging in (99) and simplifying yields (31).

A.8 Proof of Lemma 2.8

Combine (3), (6), (9), (10), (11), (14), and (19) to show that

zi −K =
νi
ρσ2

ν

. (100)

From (2), equilibrium profits are

Π = κ
(Q− 1)2

2
. (101)

Taking (4), plugging in (5), and substituting Π using (101) and (2) yields

Ui = zi(η −Q) +
K2

2κ
− ρ

2
z2
i V1[η].

Replacing zi = νi
ρσ2
ν

+ K, applying the definition wa = K (η −Q) + K2

2κ , and taking time-zero

expectations on both sides yields

E0 [Ui] = E0

[
νi
ρσ2

ν

(η −Q) +K (η −Q) +
K2

2κ

]
− ρ

2
E0

[(
νi
ρσ2

ν

+K

)2
]
V1[η].
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The second equality in (39) follows from the fact that E0 [νi] = 0 and νi is uncorrelated η, K,

and Q. As a result, the first term in the left square brackets drops out and E0

[
2 νi
ρσν

K
]

= 0 in

the right square brackets.

The first equality follows from noting that E0 [Ui] does not depend on νi. It is thus independent

of i, and we have that

SWF ≡
∫ 1

0
E0 [Ui] di = E0 [Ui] .

Finally, use (2) to substitute Q out of (5):

wa = K(η − 1)− K2

2κ
= (Kη − E0[K]η̄) + (E0[K]η̄ −K)− K2

2κ
. (102)

Taking time-zero expectations on both sides yields (40) .

A.9 Proof of Proposition 2.9

From (98), we have ∂λi

∂µi
= −∂E0[Ui]

∂µi
. Thus it follows directly from Proposition 2.4 that

lim
σε→0

[
−∂E0[Ui]

∂µi

]
= 0.

For the second and third equality, note that the social welfare function (39) depends on three

terms: the level of expected wealth, the idiosyncratic component in the expected volatility of

portfolio returns, and the aggregate component in the expected volatility of portfolio returns.

We first solve each of the three components as a function of the parameters of the model and

π1. Equating (16) and (89) gives

γ =

√
(1− π1)π2

1σ
2
νση2

σ2
ε

(
π1σ2

ν + σ2
η (π1σ2

νκρ+ (π1 − 1))
) . (103)

Squaring both sides of (36) and taking expectations gives E0[K2]. Plugging E0[K2], (37), and

(38) into (40) and substituting in (90) and (103) yields

E0 [wa] = −1

2
κ{2η̄

(
1−

(π1 − 1) 2
(
η̄ + κρσ2

η

)
κρσ2

η + 1

)
+

(π1 − 1) 2
(
η̄ + κρσ2

η

)
2(

κρσ2
η + 1

)
2

+ (π1 − 2)π2
1η̄

2 +
(1− π1)π2

1σ
2
νσ

2
η

π1σ2
ν + σ2

η (π1 (σ2
νκρ+ 1)− 1)

+ (π1 − 2)π1σ
2
η − 1}.

We can then show that

lim
σε→0

[
∂E0 [wa]

∂σε

]
= lim

σε→0

[
∂E0 [wa]

∂π1

∂π1

∂σε

]
=

κσ2
η

2
(
1 + κρσ2

η

) lim
σε→0

[
∂π1

∂σε

]
< 0,
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where the last equality uses (27). Using (27) and (96) from Proposition 2.3,

lim
σε→0

[
− 1

2ρσ2
ν

∂V1 [η]

∂σε

]
= − 1

2ρσ2
ν

lim
σε→0

(
∂π1

∂V1[η]

)−1

lim
σε→0

[
∂π1

∂σε

]
< 0.

Similarly, taking time-zero expectations of the third term and plugging in (90), (103), and (89)
yields

E0

[
K2
]
V1[η] = (1− π1)κ2σ2

η

σ2
η

(
κρ(π2

1(η̄−1)2−1)
κρσ2

η+1
+
κρ(−(π1−2)π1(η̄−1)2−1)(

κρσ2
η+1

)
2

− (π1−1)π2
1σ

2
ν

σ2
η(π1(σ2

νκρ+1)−1)+π1σ2
ν

+ π2
1

)
+

(η̄−2)η̄(
κρσ2

η+1
)
2

+ 1

π1κρσ2
η + 1

.

Again taking the derivative with respect to σε, taking the limit as σε goes to zero and using (27)

yields

lim
σε→0

[
−ρ

2

∂E0

[
K2
]
V1[η]

∂σε

]
=
κ2ρσ2

η

(
(1− η̄)2 + σ2

η

)
2
(
1 + κρσ2

η

) lim
σε→0

[
∂π1

∂σε

]
< 0

and concludes the proof.

B Appendix to Section 3

B.1 Dispersed Information with Aggregate Noise in Private Signal

We may guess that

Q = π0 + π1 (η + ζ) + γε,

where both the expectation (14) and the coefficients π0, π1, and γ are the ones given in the

main text. However, the variance-covariance matrix of the vector (η, si, Q) changes to
σ2
η σ2

η π1σ
2
η

σ2
η σ2

ζ + σ2
η + σ2

ν π1

(
σ2
ζ + σ2

η

)
π1σ

2
η π1

(
σ2
ζ + σ2

η

)
π2

1

(
σ2
ζ + σ2

η

)
+ γ2σ2

ε

 .

Applying the projection theorem yields

α1 =
γ2σ2

ησ
2
ε

σ2
ζ(γ2σ2

ε+π
2
1σ

2
ν)+σ2

η(γ2σ2
ε+π

2
1σ

2
ν)+γ2σ2

νσ
2
ε

α2 =
π1σ2

ησ
2
ν

σ2
ζ(γ2σ2

ε+π
2
1σ

2
ν)+σ2

η(γ2σ2
ε+π

2
1σ

2
ν)+γ2σ2

νσ
2
ε

(104)

and

V1 [η] =
σ2
η

(
σ2
ζ

(
γ2σ2

ε + π2
1σ

2
ν

)
+ γ2σ2

νσ
2
ε

)
σ2
ζ

(
γ2σ2

ε + π2
1σ

2
ν

)
+ σ2

η

(
γ2σ2

ε + π2
1σ

2
ν

)
+ γ2σ2

νσ
2
ε

.
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B.1.1 Proof of Proposition 3.1

Combining (83), (84), and (104) yields

π1 = σ2
η

(
σ2
ζ + σ2

η

)−1 − 21/33−1/3σ2
ν

(
σ2
ζ + σ2

η + σ2
ν

)
σ2
εΦ
−1 +

2−1/33−2/3Φ(
σ2
ζ + σ2

η

)
3
, (105)

where

Φ =

(
−9σ2

η

(
σ2
ζ + σ2

η

)
5σ4
νσ

2
ε +
√

3

√(
σ2
ζ + σ2

η

)
9σ6
νσ

4
ε

(
27σ4

η

(
σ2
ζ + σ2

η

)
σ2
ν + 4

(
σ2
ζ + σ2

η + σ2
ν

)
3σ2
ε

))
1/3.

Rewriting this expression in order form of σε yields

π1 = O(1)− 21/33−1/3O(1)O(σ2
ε )Φ
−1 + 2−1/33−2/3O(1)Φ

and

Φ =
(
−9O(σ2

ε ) +
√

3 (O(σ2
ε ) + 4O(σ6

ε ))
) 1

3
= O(σε),

where we denote y = O(x) if y
x = constant as σε → 0. Taking the derivative with respect to σε

yields

∂π1

∂σε
= −24/33−1/3O(σε)Φ

−1 + 21/33−1/3O(σ2
ε )Φ
−2 ∂Φ

∂σε
+ 2−1/33−2/3O(1)

∂Φ

∂σε

and
∂Φ

∂σε
=

1

3
Φ−2

(
−18O(σε) +

1

2

(
O(σ2

ε ) + 4O(σ6
ε )
)− 1

2
(
2O(σε) + 24O(σ5

ε )
))

.

Cancelling coefficients and taking the limit on both sides yields the proof of the first statement:

lim
σε→0

∂π1

∂σε
= − lim

σε→0
O(σε)Φ

−1 + lim
σε→0

O(σ2
ε )Φ
−2 ∂Φ

∂σε
+ lim
σε→0

∂Φ

∂σε
= − lim

σε→0
O(σε)O(σ−1

ε ) + lim
σε→0

(
O(σ2

ε )O(σ−4
ε ) + 1

)
O(σ−2

ε )
(
−O(σε) +O(σ2

ε )
)

= −∞.

Similarly, rewriting (105) in order form of σζ yields

π1 = O(1)O(σ−2
ζ )− 21/33−1/3O(1)O(σ2

ζ)Φ
−1 + 2−1/33−2/3O(σ−6

ζ )Φ

and

Φ =

(
−9O(1)O(σ10

ζ ) +

√
3
(

27O(1)O(σ20
ζ ) + 4O(σ24

ζ )
)) 1

3

= O(σ4
ζ).
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Taking the derivative with respect to σζ yields

∂π1

∂σζ
= −O(1)O(σ−3

ζ )− 24/33−1/3O(1)O(σζ)Φ
−1 + 21/33−1/3O(1)O(σ2

ζ)Φ
−2 ∂Φ

∂σζ

−22/331/3O(σ−7
ζ )Φ + 2−1/33−2/3O(σ−6

ζ )
∂Φ

∂σζ

and

∂Φ

∂σζ
=

1

3
Φ−2

(
−90 O(1)O(σ9

ζ) +

√
3

2

(
27 O(1)O(σ20

ζ ) + 4 O(σ24
ζ )
)−1/2 (

540 O(1)O(σ19
ζ ) + 96O(σ23

ζ )
))

.

The proof of the second statement follows from applying L’Hopital’s rule to this expression.

Because the analytical expressions become rather cumbersome, we refer the reader to the Math-

ematica file provided on the authors’ websites for the remainder of the proof of the second

statement.

B.2 Dispersed Information with an Exogenous Public Signal

Consider a model identical to the one given in section 2 with the exception that in addition to

their private signal, households also observe a public signal about future productivity,

g = η + ζ,

where ζ ∼ N(0, σ2
ζ). We may then guess that the solution for Q is some linear function of η, ζ,

and ε:

Q = π0 + π1η + π2ζ + γε,

where the rational expectation of η given Q and the private and public signals is

Eit
(
ηt+1

)
= α0 + α1si + α2Q+ α3g.

A matching coefficients algorithm parallel to that in section 2.1 gives

π1 =
α1 + α3

1− α2
, π2 =

α3

1− α2
, γ =

1

1− α2
.

The amplification of near-rational errors is thus influenced only in so far as the presence of

public information may induce households to put less weight on the market price of capital

when forming their expectations.
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Figure 8: Ratio of the conditional variance of the productivity shock to its unconditional variance
plotted over the level of dispersion of information, σν/ση, and for varying precisions of the public
signal. In each case, σε/ση is set to 0.01.

The vector (η, si, Q, g) has the following variance covariance matrix:
σ2
η σ2

η π1σ
2
η σ2

η

σ2
η σ2

η + σ2
ν π1σ

2
η σ2

η

π1σ
2
η π1σ

2
η π2

2σ
2
ζ + π2

1σ
2
η + γ2σ2

ε π2σ
2
ζ + π1σ

2
η

σ2
η σ2

η π2σ
2
ζ + π1σ

2
η σ2

ζ + σ2
η

 .

Solving the signal-extraction problem returns

α1 =
γ2σ2

ζσ
2
ησ

2
ε

σ2
ζ(σ2

η(γ2σ2
ε+(π1−π2)2σ2

ν)+γ2σ2
νσ

2
ε)+γ2σ2

ησ
2
νσ

2
ε

α2 =
(π1−π2)σ2

ζσ
2
ησ

2
ν

σ2
ζ(σ2

η(γ2σ2
ε+(π1−π2)2σ2

ν)+γ2σ2
νσ

2
ε)+γ2σ2

ησ
2
νσ

2
ε

α3 =
σ2
ησ

2
ν(γ2σ2

ε+π2(π2−π1)σ2
ζ)

σ2
ζ(σ2

η(γ2σ2
ε+(π1−π2)2σ2

ν)+γ2σ2
νσ

2
ε)+γ2σ2

ησ
2
νσ

2
ε

.

Based on these results, Figure 8 plots the conditional variance of η for the rational and near-

rational expectations equilibrium and for varying levels of precision of the public signal.

In the absence of near-rational behavior, the provision of public information makes no dif-

ference, because households are already fully informed from the outset. When households are

near-rational, the presence of the public signal is relevant only insofar as a collapse of informa-

tion aggregation affects only the subset of information that is dispersed across households and

not the information that is publicly available. If the public information provided is relatively
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precise, V1[η]
σ2
η

now converges to values less than 1 as σν goes to infinity.

B.3 Comparison with Noise-Trader Model

B.3.1 Proof of Proposition 3.2

Because households are now fully rational, their demand schedule is

zi =
E1i[η]−Q
ρV1[η]

. (106)

Taking time-zero expectations of (4), plugging in (5) and (106), and simplifying by law of iterated

expectations yields

E0 [Ui] = E0

[
E1i[η −Q](η −Q)

ρV1[η]

]
− ρ

2
E0

[
(E1i[η −Q])2

ρ2V1[η]

]
=

1

2
E0

[
(E1i[η −Q])2

ρV1[η]

]
=

1

2ρV1[η]

(
V0 [E1i[η −Q]] + (E0 [η −Q])2

)
,

where we have used that Π = 0 when κ = 0. Using the law of total variance, we can then replace

V0 [E1i[η −Q]] = V0 [η −Q]− V1 [η] and simplify to get

E0 [Ui] =
(E0[η −Q])2 + V0[η −Q]

2ρV1[η]
− 1

2ρ
= SWF,

where the second equality uses the fact that E0 [Ui] is no longer a function of i and thus SWF =∫
E0 [Ui] di = E0 [Ui].

Plugging in (13) and the expressions from (108) yields

SWF =
1

2
σ2
νσ

2
ϑρ−

1

2

σ6
νσ

4
ϑρ

3

σ4
νσ

2
ϑρ

2 + σ2
η

(
σ2
νσ

2
ϑρ

2 + 1
) .

It follows immediately that

∂SWF

∂σϑ
=
σ8
νσ

5
ϑρ

6σ2
η + σϑσ

4
η

(
σ3
νσ

2
ϑρ

3 + σνρ
)2

ρ
(
σ2
η

(
σ2
νσ

2
ϑρ

2 + 1
)

+ σ4
νσ

2
ϑρ

2
)

2
> 0.

To calculate expected utility of noise traders, again take time-zero expectations of (4), plug in

(5) and (45), and simplify to get

E0[Uj ] = E0

[
µjϑ(η −Q)

]
− ρ

2
E0

[
µ2
jϑ

2
]
V1 [η]

= −µjγσ2
ϑ −

ρ

2
µ2
jσ

2
ϑV1 [η] .
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Taking the derivative with respect to µj yields

∂E0[Uj ]

∂µj
= −γσ2

ϑ − ρµjσ2
ϑV1 [η] < 0. (107)

B.3.2 Proof of Proposition 3.3

Substituting E1i[η] in (106) with E1i[η] = α0 + α1si + α2Q and (3), plugging the resulting

expression into (46), and simplifying yields

α0 + α1

(
η +

∫ 1

0
νidi

)
+ (α2 − 1)Q = ρV1[η]ϑ.

Solving this expression for Q and matching coefficients with (13) yields

π0 =
α0

1− α2
, π1 =

α1

1− α2
, γ =

ρV1[η]

1− α2
.

Note that the expressions π0 and π1 are identical to (82) and (83). Similarly, repeating the steps

in section 2.1, we find that the expressions for (18), (19), and (20) are identical to those in the

near-rational model. However, the expression for γ is now multiplied with ρV1[η] relative to its

counterpart in (84). Solving the system yields

π0 =
σ−2
η η̄

σ−2
η + σ−2

ν + ρ−2σ−2
ϑ σ−4

ν
, π1 =

σ−2
ν + ρ−2σ−2

ϑ σ−4
ν

σ−2
η + σ−2

ν + ρ−2σ−2
ϑ σ−4

ν
, γ = ρσ2

νπ1. (108)

Taking the derivative of π1 with respect to σϑ in (108) and simplifying yields

∂π1

∂σϑ
= −

2σ4
νσϑρ

2σ2
η(

σ2
η

(
σ2
νσ

2
ϑρ

2 + 1
)

+ σ4
νσ

2
ϑρ

2
)

2
.

As σϑ approaches 0 the denominator approaches σ4
η while the numerator approaches 0.

B.4 Errors about Higher Moments

Rather than making near-rational errors about the conditional mean of η, we may consider a

model identical to the one in section 2, but in which households make a small common error

about the second conditional moment rather than about the first conditional moment. We could

then rewrite (42) as
α0 + α1

∫
sidi+ α2Q−Q

ρV1[η] + εV
= K.
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Solving for Q yields
α0 −KρV1[η]

1− α2
+

α1

1− α2
η − K

1− α2
εV = Q.

In a model with an exogenous and strictly positive supply of capital, near-rational errors about

the first and second conditional moments are thus isomorphic. However, with an endogenous

capital stock, errors about the second conditional moment break the Gaussian structure of the

model and are more complicated to analyze.

B.5 Proof of Proposition 3.4

Lemma B.1

A rational household would pay

E0

[
Ui|µi=0,ŝi

]
− E0

[
Ui|µi=0

]
=
π2

1

(
((π1 − 1) η̄ + π0) 2 + γ2σ2

ε + (π1 − 2)π1σ
2
η + σ2

η

)
2γ2σ2

ε µ̂
2 (109)

to observe the near-rational error it would have made, had it been near-rational.

Proof First, a household using additional signal ŝi has a conditional variance of

V [η|si, Q, ŝi] ≡ V̂1[η] =
(
σ−2
η + σ−2

ν + π2
1γ
−2σ−2

ε

(
1 + µ̂−2

))−1
(110)

and holds the posterior expectation

E[η|si, Q, ŝi] ≡ Êi1[η] =
σ−2
η η̄ + σ−2

ν si + π2
1σ
−2
ε γ−2(η + γ

π1
ε) + π2

1σ
−2
ε γ−2µ̂−2ŝi

V̂1[η]−1
. (111)

Second, plugging (5) into (4), taking time-zero expectations, and rearranging yields

E0

[
Ui|µi=0,ŝi

]
= E0 [zi(η −Q) + Π]− ρ

2
E0

[
z2
i

]
V̂1[η],

where zi = Ê1i[η]−Q
ρV̂1[η]

from (11). It follows that a rational household’s willingness to pay to observe

ŝi is

E0

[
Ui|µi=0,ŝi

]
− E0

[
Ui|µi=0

]
= E0

[
Ê1i [η]−Q
ρV̂1[η]

(η −Q) + κ
(Q− 1)2

2

]
−
ρ

2
E0

( Ê1i [η]−Q
ρV̂1[η]

)2
 V̂1[η] (112)

−
(
E0

[
E1i [η]−Q
ρV1[η]

(η −Q) + κ
(Q− 1)2

2

]
−
ρ

2
E0

[(
E1i [η]−Q
ρV1[η]

)2
]
V1[η]

)
.

Plugging in (3), (13), (16), (17), (47), (110), and (111) and applying the expectations operator

yields the expression in the proof. Note that this calculation is somewhat involved.
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Using this lemma, we now proof the Proposition. From (89), we have

1− π1 =
V1[η]

(
κρσ2

η + 1
)

σ2
η (κρV1 [η] + 1)

. (113)

From (94), we have

V1 [η] =
O(σ2

ε )

O(σε)
−O(σε) = O(σε). (114)

Combining (113) and (114) yields 1− π1 = O(σε). Thus, using (90) and (103), we have

π0 = O(1− π1) = O(σε),

γ = O(

√
π1(1− π1)

σ2
ε

) = O(

√
π1σε
σ2
ε

) = O(π
1
2
1 σ
− 1

2
ε ).

With these two facts, taking the limit of (109) of Lemma B.1 as σε → 0 yields

lim
σε→0

[
E0

[
Ui|µi=0,ŝi

]
− E0

[
Ui|µi=0

]]
= lim

σε→0

π2
1

(
O
(
σ2
ε

)
+ (π1 − 2)π1σ2

η + σ2
η

)
2 O

(
π1
σε

)
σ2
ε µ̂

2
+ lim
σε→0

π2
1

1

2µ̂2

= lim
σε→0

π2
1

O
(
σ2
ε

)
2 O(π1σε)µ̂

2
+ lim
σε→0

π2
1

(π1 − 2)π1σ2
η + σ2

η

2 O(π1σε)µ̂
2

+ lim
σε→0

π2
1

1

2µ̂2

Then using (26) and simply plugging in π1 = 1 gives (48).

C Appendix to Section 4

C.1 Equation of Motion for Capital

Plugging (71) into (65) and integrating over individuals on both sides with market-clearing

conditions (67), (68), and (69) gives

QtKt+1 = Qt−1RtKt − Ct + wtNt. (115)

Plugging in (55), (66), and (70) yields (52).

C.2 Deriving the Equilibrium Conditions

After taking the ratio of the first-order conditions with respect to labor and consumption, we

get the marginal rate of substitution between labor and consumption:

1− o
o

(1− nit)−1

C−1
it

= wt. (116)
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The optimal choice of stock holdings is determined by the familiar asset-pricing equation,

Eit[Mit+1Rt+1] = 1, (117)

where the stochastic discount factor Mi,t+1 is given by

Mit+1 = δ

(
Cit+1

Cit

)−1
(
C̃it+1

C̃it

)1− 1
ψ

 Uit+1

Eit
[
U1−γ
it+1

] 1
1−γ


1
ψ
−γ

, (118)

and returns Rt+1 are defined in (66).

Similarly, by combining the first-order and envelope conditions for bonds, the optimal choice

of bonds holdings is determined by

Eit[Mit+1](1 + rt)−
π′(bit)

o(1− δ)(1− 1
ψ )C̃

1− 1
ψ

it C−1
it

= 1. (119)

Given these conditions of optimality, capital and labor markets clear when conditions (67) and

(69) hold, and the optimal consumption follows from the household’s budget constraint (65).

C.2.1 Detailed Derivation

Agents maximize utility (60) subject to budget constraint (65). State variables in individual

optimization are the holdings of capital and bonds, namely, Uit = Uit(kit, bit−1). We denote the

derivatives of the value function with respect to kit and bit−1 by Uikt and Uibt respectively. Thus

the first-order conditions and envelope conditions are as follows:

First-order condition with respect to consumption:

(1− δ)C̃
− 1
ψ

it C̃itoC
−1
it = δEit

[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U−γit+1Uikt+1
1

Qt
]. (120)

First-order condition with respect to bonds:

δEit[U1−γ
it+1]

γ− 1
ψ

1−γ Eit
[
U−γit+1

(
Uikt+1

1

Qt
− Uibt+1

)]
+ (1− 1

ψ
)−1π′(bit) = 0. (121)

First-order condition with respect to labor:

(1− δ)C̃
− 1
ψ

it C̃it(1− o)(1− nit)−1 = δEit
[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U−γit+1Uikt+1
wt
Qt

]. (122)
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Envelope condition for capital:

Uikt = U
1
ψ

it δEit
[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U−γit+1Uikt+1
Qt−1

Qt
Rt]. (123)

Envelope condition for bonds:

Uibt = U
1
ψ

it δEit
[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U−γit+1Uikt+1
1

Qt
(1 + rt−1)]. (124)

Taking the ratio of first-order conditions with respect to labor (122) and consumption (120)

gives (116), where wt is given by (55).

Plugging the first-order condition with respect to consumption (120) into the right-hand side

of the envelope condition for capital (123) gives

Uikt = U
1
ψ

it (1− δ)C̃
1− 1

ψ

it oC−1
it Qt−1Rt. (125)

Iterating (125) to t+1, plugging
Uikt+1

Qt
into the first-order condition with respect to consumption

(120), and rearranging yields

C̃
− 1
ψ

it C̃itoC
−1
it = δEit

[
U1−γ
it+1

] γ− 1
ψ

1−γ Eit[U−γit+1U
1
ψ

it+1C̃
1− 1

ψ

it+1 oC
−1
it+1Rt+1]. (126)

Using (118) in (126) yields (117).

Analogously, for bond holdings, combining first-order conditions with respect to bonds (121)

and consumption (120) gives

(1− δ)C̃
− 1
ψ

it C̃itoC
−1
it = δEit[U1−γ

it+1]
γ− 1

ψ
1−γ Eit

[
U−γit+1Uibt+1

]
− π′(bit)

1− 1
ψ

. (127)

Combining the first-order condition with respect to consumption (120) and the envelope condi-

tion for bond holdings (124) gives

Uibt = U
1
ψ

it (1− δ)C̃
1− 1

ψ

it oC−1
it (1 + rt−1). (128)

Substituting (128) into (127) for Uibt+1 simplifies to (119).

C.3 Proof of Lemma 4.2

We proceed in three steps that demonstrate the consistency of the two statements in Lemma

4.2.
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First, individual state variables are functions of the set of commonly known state variables

St as they would be in a representative agent economy. Furthermore, households form beliefs

about next period’s innovation to productivity using their private signal and the market price

of capital. Any individual choice by households xi (where x can be consumption c, labor n, or

capital holdings k′) is thus a function of the state space xi(Sit), where Sit =
{
St, q̂t, Eit[ηt+1]

}
.

Plugging this structure into our equilibrium condition results in a form

gl(Sit) = Eit [gr(Sit, Sit+1)] . (129)

Note here that Sit contains all possible state variables in period t, and hence aggregate variables

can be determined by a subset of this state vector as well.

Now we show that given the structure on the right-hand side of the equation, the left-hand

side is a function of the state space Sit. We replace the function inside the expectation on the

right-hand side by its Taylor series:

gr
[
Sit,Kt+1, ωt, ηt+1, ϕt+1, q̂t+1, Eit+1

]
=
∑
j

cj(Sit)

j!
(Kt+1 −K0)j1ωj2t η

j3
t+1ϕ

j4
t+1q̂

j5
t+1E

j6
it+1,

(130)

where K0 is the level of capital at the deterministic steady state, Eit = Eit[ηt+1], cj(Sit) denotes

the (state-t dependent) coefficients of the Taylor series, and j = (j1, j2, j3, j4, j5, j6) a multi-index

for the expansion.

Now we take near-rational expectations conditional on sit and q̂t. As Lemma 4.3 shows,

the conditional expectation is a sufficient statistic for the entire posterior distribution due to

normality and a constant conditional variance. The terms depending on Kt+1 and ωt are known

at time t and can thus be taken outside the expectations operator. Moreover, we get a series

of terms depending on the conditional expectation of ϕt+1. Because ϕt+1 is unpredictable for

an investor at time t and all shocks are uncorrelated with each other, the first-order term is

0, and all the higher-order terms depending on Eit[ϕt+1] are just moments of the unconditional

distributions of ϕ. The same is true for the terms depending on q̂t+1, and Eit+1. The only terms

remaining inside the expectations operator are then those depending on ηt+1. We can thus write

Eit [gr[Sit, Sit+1]] =
∞∑
j=0

ĉj(Sit,Kt+1, ρωt−1 + ηt)

j!
Eit[ηjt+1]

= gl(Kt, ωt−1, ηt, ϕt, q̂t, Eit),

(131)

where the coefficients ĉj(Sit,Kt+1, ωt) collect all the terms depending on the Kt+1, ωt, and

higher moments of the shocks ηt+1 and Eit+1. The third line follows from the second since
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all expectations of higher-order monomials of ηt+1 are known. This step again follows from the

conditional normality with constant variance and known (deterministic) higher moments. Hence

we only need to keep track of the expectation of the innovation to productivity but its higher

conditional moments are constant.

Finally, in deriving the set of individual state variables, we notice that contingent-claims

trading eliminates any meaningful distribution of capital across time, and thus show the consis-

tency of the individual state space.

Second, we show that aggregate quantities depend on known state variables as well as the av-

erage expectation of next period’s innovation to productivity q̂. Therefore, consider an aggregate

variable of the form

X̄(S̄) =

∫
xi(Si)di, (132)

where X̄ can represent labor (as in (69)), consumption (73), or capital (67). Again, we plug in

the Taylor series representation for individual state variables:∫
xi(Si)di =

∫ ∑
j

cj
j!

(Kt −K0)j1ωj2t−1η
j3
t ϕ

j4
t q̂

j5
t E

j6
it di. (133)

Only the last term differs across households, and thus all other variables can be taken outside

the integral. Integrating over individual expectations can be rewritten as

∫
Ejitdi =

∫
(Eit − q̂t + q̂t)

jdi =

j∑
k=0

(
j

k

)∫
(Eit − q̂t)kdiq̂j−kt . (134)

Again, all moments of Eit− q̂t, which only depends on νit, are known and thus the integral only

depends on q̂. Therefore, equation (132) holds.

Using these insights, we solve the model using standard perturbation techniques. Pertur-

bation methods approximate equilibrium policy functions by their Taylor series around the

deterministic steady state. To arrive at the coefficients of the Taylor series, we bring all equilib-

rium conditions into the appropriate form shown in equation (129). Successively differentiating

the equation, evaluating at the steady state, and solving the resulting system of equations for

the coefficients in the Taylor series delivers the approximate solutions for the equilibrium policy

functions and prices.
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C.4 Proof of Lemma 4.3

Given Lemma 4.2, it follows immediately that

Eit
[
ηt+1

]
= E

[
ηt+1|sit, St

]
= E

[
ηt+1|sit, q̂t

]
, (135)

where q̂t is defined by (74).

We can thus guess that the rational expectation of ηt+1 is the linear function

Eit[ηt+1] = α0 + α1sit + α2q̂t, (136)

where α0, α1, and α2 are the optimal weights on the prior, the private signal, and the average

expectation, respectively. Substituting in (74), taking the integral across individuals, and solving

for
∫
Eit
[
ηt+1

]
di gives∫

Eit[ηt+1]di =
α0

1− α2
+

α1

1− α2
ηt+1 +

α2

1− α2
εt. (137)

Adding εt on both sides of the equation, substituting (74) and simplifying yields

1− α2

α1
q̂t −

α0

α1
= ηt+1 +

1

α1
εt. (138)

Thus with the normality of the fundamental shock εt and the demand statistic q̂t, (77) and

(78) follows directly from Bayes’ rule. Matching coefficients of (77) with (136) gives (79), which

concludes Lemma 4.3.

D Appendix to Section 5

D.1 Welfare Calculations

Lemma D.1

The share increase in lifetime consumption that makes a household indifferent with respect to

the implementation of a given policy experiment at time 0 can be written as

λ =
log
(
Û0

)
− log

(
Ū0

)
o

,

where Û0 = E0

[
U
({
Ĉit, n̂it

}∞
t=1

)]
, Ū0 = E0

[
U
({
C̄it, n̄it

}∞
t=1

)]
, and the sequences

{
Ĉ, n̂

}
refer to the household’s sequences of consumption and labor if the policy is implemented, and{
C̄, n̄

}
are the corresponding sequences if the policy is not implemented.

67



Proof First note that the utility function (60) is homogeneous of degree o in consumption:

U
({
eλCit, nit

}∞
t=1

)
= eoλU ({Cit, nit}∞t=1) .

Using this property, it follows that the share increase in consumption, λ, that compensates the

household for not adopting the policy can be written as

Û0 = eoλŪ0.

The lemma follows from solving this equation for λ.

D.2 Data Sources

Consumption (Ct). Per-capita consumption data are from the National Income and Prod-

uct Accounts (NIPA) annual data reported by the Bureau of Economic Analysis (BEA). The

data are constructed as the sum of consumption expenditures on nondurable goods and services

(Table 1.1.5, Lines 5 and 6) deflated by corresponding price deflators (Table 1.1.9, Lines 5 and 6).

Physical Investment (It). Per-capita physical investment data are also from the NIPA tables.

We measure physical investment by fixed investment (Table 1.1.5, Line 8) minus information-

processing equipment (Table 5.5.5, Line 3) deflated by its price deflator (Table 1.1.9, Line 8).

Information-processing equipment is interpreted as investment in intangible capital and is there-

fore subtracted from fixed investment.

Output (Yt). It is the sum of total consumption and investment, that is, Ct + It. We exclude

government expenditure and net export because they are not explicitly modeled in our economy.

Labor (Nt). It is measured as the total number of full-time and part-time employees as reported

in the NIPA Table 6.4. Data are annual.

Stock market return (Rt) and Risk-free rate. (rt) The stock market returns are from the

Fama-French dataset available online on K. French′s webpage at

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F Research Data Factors.zip.

The nominal risk-free rate is measured by the annual three-month T-bill return. The real stock

market returns and risk-free rate are computed by subtracting realized inflation (annual CPI

through FRED) from the nominal risk-free rate.
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Price-dividends (pdt) ratio and Tobin′s Q (Qt). Data on annual price-dividend ratio, and

dividend are obtained from CRSP. Annual dividends are obtained by time-aggregating monthly

dividends. Nominal dividends are turned into real dividends using the CPI index. Data on

Tobin′s Q are from the Flow of Funds (FoF) and are obtained directly from the St. Louis Fed

by dividing the variable MVEONWMVBSNNCB (Line 35 of Table B.102 in the FoF report) by

TNWMVBSNNCB (Line 32 of table B.102 in the FoF report).

GDP Forecast (ŷit and ŷt). GDP forecast data during 1969-2010 are from the Survey of

Professional Forecasters provided by the Philadelphia Federal Reserve at

http://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/

where ŷit is the forecast of forecaster i for time t and ŷ is the mean forecast of all forecasters for

time t.

D.3 Moments Generation

Annual data from 1929 to 2008 are used to generate the target moments in Table 2. Lowercase

letters denote log-units, dx denotes growth rate of variable x, and E[.], σ(.), and corr(., .) denote

the mean, volatility, and correlation, respectively. rf is the risk-free rate and rlevex is the excess

return of the stock market. All returns and growth rates are in percentages. For instance,

σ(dy)(%) is the standard deviation of log(GDPt+1)− log(GDPt) in percentage terms. Standard

errors of moments and moment ratios are calculated by bootstrapping.

σxs(E[dy]) is the dispersion in GDP forecasts across forecasters, calculated as the time-series

average of the cross-sectional standard deviation of one-year-ahead forecasts (1969-2008).

Vt[η]
σ2
η

is calculated by 1
nΣn

i=1
vari(dat+1−Eit[dat+1])

var(dat+1) , the cross-sectional average of time-series

variances of individual forecast errors of productivity growth, standardized by the variance of

realized productivity growth.

Productivity growth dat+1 and its forecasts Eit[dat+1] are calculated by Solow residuals.

Taking logs of the production function and differencing across time gives d yt+1 = αdkt+1 +

(1− α) dnt+1 + (1− α) dat+1. Regress dyt+1 on dkt+1 and dnt+1 to obtain the residual dat+1.

Similarly, using individual forecasts Eit[dyt+1] and assuming dkt+1 and dnt+1 are known at t

gives individual forecasts of productivity growth Eit[dat+1].

The standard error is calculated from one million random draws of vari (dat+1 − Eit[dat+1])

and var(dat+1), assuming each of them is normally distributed with the variance itself as the

mean and its bootstrapped standard error as the standard deviation, among which negative

draws are omitted.

To get reasonable forecasts, only professional forecasters who participated in the survey for
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more than 20 years between 1969 and 2008 are used to calculate varit (dat+1 − Eit[dat+1]).
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