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1 Introduction

Effi cient markets incorporate all available information into stock prices. As a result, investors

can learn from equilibrium prices and update their expectations accordingly. But if investors

learn from equilibrium prices, anything that moves prices has an impact on the expectations

held by all market participants. We explore the implications of this basic dynamic in a world

in which people are less than perfect —a world in which they make small common errors when

investing their wealth.

We find that relaxing the rational paradigm in this minimal way results in a drastically

different equilibrium with important consequences for financial markets, capital accumulation,

and welfare: If information is dispersed across investors, the private return to making diligent

investment decisions is orders of magnitude lower than the social return. If we allow for indi-

viduals to have an economically small propensity to make common errors in their investment

decisions, information aggregation endogenously breaks down precisely when it is most socially

valuable (i.e. when information is highly dispersed). This endogenous informational ineffi ciency

results in higher equilibrium volatility of asset returns and socially costly first-order distortions

in the level of capital accumulation and in the level of consumption.

Our model builds on the standard real business cycle model in which a consumption good

is produced from capital and labor. Households supply labor to a representative firm and

invest their wealth by trading claims to capital (‘stocks’) and bonds. The consumption good

can be transformed into capital, and vice versa, by incurring a convex adjustment cost. The

accumulation of capital is thus governed by its price relative to the consumption good (Tobin’s

Q). The only source of real risk in the economy are shocks to total factor productivity. We

extend this standard setup by assuming that each household receives a private signal about

productivity in the next period and solve for equilibrium expectations.

As a useful benchmark, we first examine two extreme cases in which the stock market has

no role in aggregating information. In the first case, the private signal is perfectly accurate such

that all households know next period’s productivity without having to extract any information

from the equilibrium price. In this case, our model is similar to the “News Shocks” model

of Jaimovich and Rebelo (2009), in which all information about the future is common. The
opposite extreme is the case in which the private signal consists only of noise. In this case our

model resembles the standard real business cycle model in which no one in the economy has any

information about the future and there is consequently nothing to learn from the equilibrium

stock price. Households face less financial risk in the former case than in the latter: The more

households know about the future, the more information is reflected in the equilibrium price,

and the lower is the volatility of equilibrium stock returns.

The paper centers on the more interesting case in which households’ private signals are
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neither perfectly accurate nor perfectly inaccurate: private signals contain both information

about future productivity and some idiosyncratic noise (information is dispersed). In this case,

households’ optimal behavior is to look at the equilibrium stock price and to use it to learn

about the future. When information is dispersed, the stock market thus serves to aggregate

information.

We call the economy in which all households behave perfectly rationally the “rational expec-

tations equilibrium”. If households are perfectly rational in making their investment decisions,

the stock market is a very effective aggregator of information: As long as the noise in the pri-

vate signal is purely idiosyncratic, the equilibrium stock price becomes perfectly revealing about

productivity in the next period. (This is the well-known result in Grossman (1976).) Since the

equilibrium stock price in the rational expectations equilibrium reflects all information about

tomorrow’s productivity, the equilibrium volatility of stock returns is just as low as it is in the

case in which the private signal is perfectly accurate. (Loosely speaking, the level of financial
risk depends on how much information is reflected in the equilibrium stock price and not on how

it got there.)

We then show that the economy behaves very differently if we allow households to devi-

ate slightly from their fully rational behavior. In the “near-rational expectations equilibrium”

households make small common errors when forming their expectations about future productiv-

ity: they are slightly too optimistic in some states of the world and slightly too pessimistic in

others. When the average household is slightly too optimistic it wants to invest slightly more

of its wealth in stocks and the stock price must rise. Households who observe this higher stock

price may interpret it in one of two ways: It may either be due to errors made by their peers

or, with some probability, it may reflect more positive information about future productivity

received by other market participants. Rational households should thus revise their expectations

of future productivity upwards whenever they see a rise in the stock price. As households revise

their expectations upwards, the stock price must rise further, triggering yet another revision in

expectations, and so on. Small errors in the expectation of the average household may thus

lead to much larger deviations in the equilibrium stock price. The more dispersed information is

across households the stronger is this feedback effect, because households rely more heavily on

the stock price when their private signal is relatively uninformative. In fact, we show that small

common errors in household expectations may destroy the stock market’s capacity to aggre-

gate information if information is suffi ciently dispersed. The stock market’s ability to aggregate

information is thus most likely to break down precisely when it is most socially valuable. As

small common errors reduce the amount of information reflected in the equilibrium stock price,

they result in an increase in the volatility of equilibrium stock returns, and thus in a rise in the

amount of financial risk faced by households.

The fact that we allow for small common deviations from fully rational behavior is central
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to these results. Small common errors in household expectations affect information aggregation

through an information externality: An individual household does not internalize that making a

small error which is correlated with the common error affects the ability of other households to

learn about the future. This externality is more severe when information is more dispersed and it

endogenously determines the market’s capacity to aggregate information. In contrast, common

noise in the signals which households observe has no such external effects on the market’s capacity

to aggregate information.

We show in a simple application of the envelope theorem that households have little economic

incentive to avoid small common errors in their expectation of future productivity —the expected

utility cost accruing to an individual household due to small deviations from its optimal policy

is economically small. A large literature in behavioral finance has developed a wide range of

psychologically founded mechanisms that prompt households to make common errors in their

investment decisions.1 We thus remain open to many possible interpretations of the small

common errors that households make in our model. In Hassan and Mertens (2011) we give one

such interpretation where households who want to insulate their investment decision from the

errors made by their peers (“market sentiment”) have to pay a small mental cost. In equilibrium,

households then choose to make small, common errors of the type we assume in this paper.

While households have little incentive to avoid such “near-rational”errors in their behavior,

these errors entail a first-order cost to society. This fact is easiest to see if households can borrow

and lend at an exogenous international interest rate. Risk-averse investors demand a higher risk

premium for holding stocks when stock returns are more volatile. This risk premium determines

the marginal product of capital in the long run (at the stochastic steady state). In the near-

rational expectations equilibrium the marginal unit of capital installed must therefore yield a

higher expected return than in the rational expectations equilibrium, in order to compensate

investors for the additional risk they bear. It follows that an increase in the volatility of stock

returns depresses the equilibrium level of capital installed at the stochastic steady state and

consequently lowers the level of output and consumption in the long run.2 Moreover, it causes

an increase in the returns to capital and a drop in wages.3 A decrease in the informational

effi ciency of stock prices thus has a level effect on output and consumption at the stochastic

steady state.

We calibrate our model to match key macroeconomic and financial data. Our results suggest
1Some examples are Odean (1998); Odean (1999); Daniel, Hirshleifer, and Subrahmanyam (2001); Barberis,

Shleifer, and Vishny (1998); Bikhchandani, Hirshleifer, and Welch (1998); Hong and Stein (1999) and Allen and
Gale (2001).

2The stochastic steady-state is the level of quantities and prices at which these variables do not change in
expectation.

3 In a closed economy the fact remains that any distortion in the level of output and consumption is associated
with first-order welfare losses. However, the effects are slightly more complicated (due to the precautionary savings
motive), such that rises in the volatility of stock returns may drive consumption at the stochastic steady state up
or down.
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that stock prices aggregate a significant amount of dispersed information, but that much of this

information is crowded out in equilibrium. In our preferred calibration the conditional standard

deviation of stock returns in the near-rational expectations equilibrium is 18% higher than in

the rational expectations equilibrium.

We quantify the aggregate welfare losses attributable to near-rational behavior as the per-

centage rise in consumption that would make households indifferent between remaining in an

economy in which the volatility of stock returns is high (the near-rational expectations equilib-

rium) and transitioning to the stochastic steady state of an economy in which all households

behave fully rationally until the end of time (the rational expectations equilibrium). We find

that aggregate welfare losses attributable to near-rational behavior amount to 2.36% of lifetime

consumption, while the incentive to an individual household to avoid small common errors in its

expectations is economically small (0.01% of lifetime consumption). Almost all of the aggregate

welfare losses are attributable to distortions in the level of consumption. The results for a closed

economy are quantitatively and qualitatively similar.4

Related Literature This paper is to our knowledge the first to address the welfare

costs of pathologies in information aggregation within a full-fledged dynamic stochastic general

equilibrium model.

In our model, near-rational errors on the part of investors are endogenously amplified and

result in a deterioration of the information content of asset prices. The equilibrium of the

economy thus behaves as if irrational noise traders are de-stabilizing asset prices, although all

individuals are almost perfectly rational. In this sense, our paper relates to the large literature

on noisy rational expectations equilibria following Hellwig (1980) and Diamond and Verrecchia

(1981), in which the aggregation of information is impeded by exogenous noise trading (or

equivalently by a stochastic supply of the traded asset).5 Relative to this literature we make

progress on two dimensions. First, we are able to make statements about social welfare as the

introduction of near-rational behavior puts discipline on the amount of noise in equilibrium

asset prices which is consistent with the notion that the losses accruing to individual households

who cause this noise must be economically small. Second, we show that a given amount of near-

rational errors has a more detrimental effect on the aggregation of information when information

is more dispersed.6

4An important caveat with respect to our quantitative results is that we use the standard real business cycle
model as our model of the stock market. This model cannot simultaneously match the volatility of output and
the volatility of stock returns. We address this issue by calibrating the model to match the volatility of stock
returns observed in the data and make appropriate adjustments to our welfare calculations to ensure that they
are not driven by a counterfactually high standard deviation of consumption.

5Most closely related are Wang (1994), where noise in asset prices arises endogenously from time-varying private
investment opportunities, and Albagli (2009) where noise trader risk is amplified due to liquidity constraints on
traders.

6The notion of near-rationality is due to Akerlof and Yellen (1985) and Mankiw (1985). Our application is
closest to Cochrane (1989) and Chetty (2009) who use the utility cost of small deviations around an optimal policy
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The recent literature on pathologies in information aggregation in financial markets has fo-

cused on information externalities arising either from strategic complementarities or from higher

order uncertainty:7 Amador and Weill (2007) and Goldstein et al. (2009) study models in which

individuals have an incentive to over-weight public information relative to private information

due to a strategic complementarity. In their models noise in public signals is endogenously am-

plified due to this over weighting. In Allen et al. (2006), Bacchetta and van Wincoop (2008),

and Qiu and Wang (2010), agents have differing information sets about multi-period returns

and therefore must form expectations about the expectations of others. The dynamics of these

higher order expectations drive a wedge between asset prices and their fundamentals. This paper

highlights a third, more basic type of information externality which arises even when there are

no strategic complementarities and asset prices are fully determined by first-order expectations:8

Individuals do not internalize how errors in their investment decisions affect the equilibrium ex-

pectations of others. Pathologies similar to those outlined in this paper are thus likely to arise

in any setting in which households observe asset prices which aggregate dispersed information.

We also contribute to a large literature that studies the welfare cost of pathologies in stock

markets, including Stein (1987) and Lansing (2008). Most closely related are DeLong, Shleifer,

Summers, and Waldmann (1989) who analyze the general equilibrium effects of noise-trader risk

in an overlapping generations model with endogenous capital accumulation. A large literature

in macroeconomics and in corporate finance focuses on the sensitivity of firms’investment to a

given mispricing in the stock market. Some representative papers in this area are Blanchard,

Rhee, and Summers (1993); Baker, Stein, and Wurgler (2003); Gilchrist, Himmelberg, and

Huberman (2005); and Farhi and Panageas (2006).9 One conclusion from this literature is

that investment responds only moderately to mispricings in the stock market or that the stock

market is a “sideshow”with respect to the real economy (Morck, Shleifer, and Vishny (1990)).

We provide a new perspective on this finding: In our model welfare losses are driven mainly

by a distortion in the stochastic steady state rather than by an intertemporal misallocation of

capital. The observed sensitivity of the capital stock with respect to stock prices may therefore

be uninformative about the welfare consequences of highly volatile stock returns. Pathologies

in the stock market may thus have large welfare consequences even if the stock market appears

to be a “sideshow”.

This finding also relates to a large literature on the costs of business cycles:10 First, we em-

phasize that macroeconomic fluctuations affect the level of consumption if they create financial

to derive "economic standard errors". Other recent applications include Woodford (2005) and Dupor (2005).
7For an approach to pathologies in social learning based on social dynamics rather than on information exter-

nalities see Burnside et al. (2011).
8The provision of public information thus always raises welfare in our framework (see Appendix C).
9Also see Galeotti and Schiantarelli (1994); Polk and Sapienza (2003); Panageas (2005); and Chirinko and

Schaller (2006)
10See Barlevy (2004) for an excellent survey.
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risk. This level effect is not captured in standard cost-of-business cycles calculations in the spirit

of Lucas (1987).11 Second, our model suggests that this level effect may cause economically large

welfare losses if uncertainty about macroeconomic fluctuations is indeed responsible for the large

amounts of financial risk which we observe in the data.

At a methodological level, an important difference to existing work is that our model requires

solving for equilibrium expectations under dispersed information in a non-linear general equi-

librium framework. While there is a large body of general equilibrium models with dispersed

information, existing models feature policy functions which are (log) linear in the expectation

of the shocks that agents learn about (e.g. Hellwig (2005), Lorenzoni (2009), Angeletos et al.

(2010), and Angeletos and La’O (2010)). However, in the standard real business cycles model

with capital accumulation and decreasing returns to scale, households’policies are non-linear

functions of the average expectation of future productivity. We are able solve our model due to

recent advances in computational economics. We follow the solution method in Mertens (2009)

which builds on Judd (1998) and Judd and Guu (2000) in using an asymptotically valid higher-

order expansion in all state variables around the deterministic steady state of the model in

combination with a nonlinear change of variables (Judd (2002)).12 This paper is thus one of the

first to model dispersed information within a full-fledged dynamic stochastic general equilibrium

model.

In a closely related paper, Mertens (2009) derives welfare improving policies for economies

in which distorted beliefs create too much volatility in asset markets. He shows that the stabi-

lization of asset markets enhances welfare and that history-dependent policies may improve the

information content of asset prices.

In the main part of the paper we concentrate on the slightly more tractable small open

economy version of the model (alternatively we may think of it as a closed economy in which

households have access to a certain type of storage technology). After setting up the model

in section 2 we discuss equilibrium expectations and how near-rational behavior may lead to

a collapse of information aggregation and to a rise in financial risk in section 3. In section 4

we build intuition for the macroeconomic implications of a rise in financial risk by presenting a

simplified version of the model which allows us to show all the main results with pen and paper.

In this simplified version of the model households consist of two specialized agents: a “capitalist”

who has access to the stock and bond markets and a “worker”who provides labor services but

is excluded from trading in the stock market. We then solve the full model computationally

in section 5. Section 6 gives the results of our calibrations and also gives results for a closed

11This finding is similar to the level effect of uninsured idiosyncratic investment risk on capital accumulation
in Angeletos (2007).
12Closely related from a methodological persepective are Tille and van Wincoop (2008) who solve for portfolio

holdings of international investors using an alternative approximation method developed in Tille and van Wincoop
(2007) and Devereux and Sutherland (2008).
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economy version of the model.

2 Setup of the Model

The model is a de-centralization of a standard small open economy (see Mendoza (1991)): A

continuum of households work and trade in stocks and bonds. A representative firm produces

a homogeneous consumption good by renting capital and labor services from households. Total

factor productivity is random in every period and the firm adjusts factor demand accordingly.

An investment goods sector has the ability to transform units of the consumption good into units

of capital, while incurring convex adjustment costs.13 All households and the representative firm

are price takers and plan for infinite horizons.

At the beginning of each period, households receive a private signal about productivity in

the next period. Given this signal and their knowledge of prices and the state of the economy,

they form expectations of future returns. Households make a small common error when forming

expectations about future productivity.

2.1 Economic Environment

Technology is characterized by a linear homogeneous production function that uses capital, Kt,

and labor, L as inputs

Yt = eηtF (Kt, L) , (1)

where Yt stands for output of the consumption good. Total factor productivity, ηt, is normally

distributed with a mean of −1
2σ

2
η and a variance of σ

2
η.
14 The equation of motion of the capital

stock is

Kt+1 = Kt (1− δ) + It, (2)

where It denotes aggregate investment and δ is the rate of depreciation. Furthermore, there

are convex adjustment costs to capital, 1
2χ

I2t
Kt
, where χ is a positive constant. There is costless

trade in the consumption good at the world price, which we normalize to one. All households

can borrow and lend abroad at rate r. Foreign direct investment and international contracts

contingent on η are not permitted.

13The alternative to introducing an investment goods sector is to incorporate the investment decision into the
firm’s problem. The two modeling devices are equivalent as long as there are no frictions in contracting between
management and shareholders.
14We assume i.i.d. productivity shocks for simplicity. The mechanism in the model operates in a parallel way

with serially correlated shocks.
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2.2 Households

There is a continuum of identical households indexed by i ∈ [0, 1]. At the beginning of every

period each household receives a private signal about tomorrow’s productivity:

st(i) = ηt+1 + νt(i). (3)

where νt(i) represents i.i.d. draws from a normal distribution with zero mean and variance σ2
ν .
15

Given st(i) and their knowledge about the economy, households maximize lifetime utility

by choosing an intertemporal allocation of consumption, {Ct(i)}∞t=0, and by weighting their

portfolios between stocks and bonds at every point in time, {ωt(i)}∞t=0, where ω represents the

share of stocks in their portfolio and each stock corresponds to one unit of capital. Formally, an

individual household’s problem is

max
{Ct(i)}∞t=0,{ωt(i)}∞t=0

Ut(i) = Eit

{ ∞∑
s=t

βs−t log(Cs(i))

}
(4)

subject to

Wt+1(i) = [(1− ωt(i))(1 + r) + ωt(i)(1 + r̃t+1)](Wt(i) + wtL− Ct(i)) + τ t(i) ∀t, (5)

where Eit stands for household i’s conditional expectations operator, Wt(i) stands for financial

wealth of household i at time t, r̃t+1 is the equilibrium return on stocks, wt is the wage rate,

L is a fixed amount of labor supplied by each household, and τ t(i) denotes payments from

contingent claims trading that we discuss below. We denote the market price of capital with Qt
and dividends with Dt:

1 + r̃t+1 =
Qt+1 (1− δ) +Dt+1

Qt
. (6)

Households observe the state of the economy at time t and understand the structure of the

economy as well as the equilibrium mapping of dispersed information into Qt. The rational

expectations operator, conditional on all the information available to household i at time t is

Eit (·) = E (·|st(i), Qt,Kt, Bt−1, ηt) , (7)

where Bt−1 stands for the aggregate level of borrowing at the beginning of period t. Given their

information set, households can perfectly infer the evolution of the capital stock in the next

period, but they must form an expectation about the realization of ηt+1.

15 In appendix C we show that the conclusions of our model hold for more general information structures in
which the noise in the private signal is correlated across households and households observe a public signal in
addition to their private signal.
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When forming this expectation households make a small common error, ε̃t. The expectations

operator E in (4) is thus the rational expectations operator with the only exception that the
conditional probability density function of ηt+1 is shifted by ε̃t:

Eit
(
ηt+1

)
≡ Eit

(
ηt+1

)
+ ε̃t, (8)

where ε̃t is zero in expectation and its variance, σ2
ε̃ , is small enough such that the expected

utility loss from making such a small common error is below a threshold level. The assumption

of small common errors rather than small correlated errors is just to economize on notation. In

a more general model we may think of ε̃t as the common component in correlated errors made

by individual households.

While households are sometimes too optimistic and sometimes too pessimistic about ηt+1

relative to the rational expectation (7), they hold the correct expectation on average and do

not make any mistakes about the structure of the economy. In particular, they have the correct

perception of all higher moments of the conditional distribution of ηt+1:

Eit
[
(ηt+1 − Eit

(
ηt+1

)
)k
]

= Eit

[
(ηt+1 − Eit

(
ηt+1

)
)k
]
∀ k > 1. (9)

Households in the model are thus near-rational in the sense that they adhere to the fully rational

policy in dimensions in which it is costly to make mistakes (they understand the structure of

the economy) but deviate from it in a dimension on which it is cheap to make mistakes.

This formulation of near-rational errors is a reduced form of a number of microfounded

mechanisms that have been suggested in the literature. In Hassan and Mertens (2011) we give

our favorite interpretation in which investors decide whether or to what degree they want to

allow their behavior to be influenced by “market sentiment”. Investors who choose to insulate

their decision from market sentiment earn higher expected returns, but incur a small mental cost.

We show that if information is moderately dispersed across investors, even a very small mental

cost (on the order of 0.001% of consumption) may generate a significant amount of sentiment in

equilibrium. Alternatively, we may think of “animal spirits”, small menu costs in the portfolio

decision (Mankiw (1985)), or of some form of expectational bias as in Dumas, Kurshev, and

Uppal (2006), where households falsely believe that an uninformative public signal contains a

tiny amount of information about future productivity.

Finally, the payments from contingent claims trading τ t(i) in (5) avoid having to keep track

of the wealth distribution across households. We assume that households can insure against

idiosyncratic risk which is due to their private signal: At the beginning of each period (and

before receiving their private signal), households can buy claims that are contingent on the state

of the economy and on the realization of the noise they receive in their private signal, νt (i).

These claims are in zero net supply and pay off at the beginning of the next period. As they are
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traded before any information about ηt+1 is known, their prices cannot reveal any information

about future productivity. Contingent claims trading thus completes markets between periods,

without impacting households’signal extraction problem. In equilibrium all households enter

each period with the same amount of wealth. In order to keep the exposition simple, we suppress

the notation relating to contingent claims except for when we define the equilibrium and relegate

details to Appendix A.

2.3 Representative Firm

A representative firm purchases capital and labor services from households. As it rents services

from an existing capital stock, its maximization collapses to a period-by-period problem.16 The

firm’s problem is to maximize profits

max
Kd
t ,L

d
t

eηtF
(
Kd
t , L

d
t

)
− wtLdt −RtKd

t , (10)

whereKd
t and L

d
t denote factor demands for capital and labor respectively. First order conditions

with respect to capital and labor pin down the market clearing wage, wt = FL (Kt, L) and the

rental rate of capital, Rt = FK (Kt, L). Both factors receive their marginal product. As the

production function is linear homogeneous, the representative firm makes zero economic profits.

2.4 Investment Goods Sector

The representative firm owns an investment goods sector which converts the consumption good

into units of capital, while incurring adjustment costs. It takes the price of capital as given and

then performs instant arbitrage:

max
It

QtIt − It −
1

2
χ
I2
t

Kt
, (11)

where the first term is the revenue from selling It units of capital and the second and third

terms are the cost of acquiring the necessary units of consumption goods (recall the price of the

consumption good is normalized to one) and the adjustment costs respectively. Since there are

decreasing returns to scale in converting consumption goods to capital, the investment goods

sector makes positive profits in each period. Profits are paid to shareholders as a part of dividends

16Note that by choosing a structure in which firms rent capital services from households, we abstract from all
principal agent problems between managers and stockholders. Managers therefore cannot prevent errors in stock
prices from impacting investment decisions, as in Blanchard, Rhee, and Summers (1993). On the other hand,
they do not amplify shocks or overinvest as in Albuquerque and Wang (2005).
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per share:17

Dt = Rt +
1

2
χ
I2
t+1

K2
t+1

. (12)

Taking the first order condition of (11), gives us equilibrium investment as a function of the

market price of capital:

It =
Kt

χ
(Qt − 1) (13)

Whenever the market price of capital is above one, investment is positive, raising the capital

stock in the following period. When it is below one the investment goods sector buys units of

capital and transforms them back into the consumption good. Note that the parameter χ scales

the adjustment costs and can be used to calibrate the sensitivity of capital investment with

respect to the stock price.

2.5 Definition of Equilibrium

Definition 2.1
Given a time path of shocks {ηt, ε̃t, {νt(i) : i ∈ [0, 1]}}∞t=0 an equilibrium in this economy is a

time path of quantities {{Ct(i), Bt(i),Wt(i), ωt(i), τ t (i) : i ∈ [0, 1]}, Ct, Bt,Wt, ωt,K
d
t , L

d
t , Yt,Kt

, It}∞t=0,signals {st(i) : i ∈ [0, 1]}∞t=0 and prices {Qt, r, Rt, wt}∞t=0 with the following properties:

1. {{Ct(i)}, {ωt(i)}}∞t=0 solve the households’maximization problem (4) given the vector of

prices, initial wealth, and the random sequences {ε̃t, {ν̃t(i)}}∞t=0;

2. {Kd
t , L

d
t }∞t=0 solve the representative firm’s maximization problem (10) given the vector of

prices;

3. {It}∞t=0 is the investment goods sector’s optimal policy (13) given the vector of prices;

4. {wt}∞t=0 clears the labor market, {Qt}∞t=0 clears the stock market, and {Rt}∞t=0 clears the

market for capital services;

5. There is a perfectly elastic supply of the consumption good and of bonds in world markets.

Bonds pay the rate r and the price of the consumption good is normalized to one;

6. {Yt}∞t=0 is determined by the production function (1), {Kt}∞t=0 evolves according to (2),

{{Wt(i)}}∞t=0 evolve according to the budget constraints (5), where τ t (i) is defined in Ap-

pendix A and ensures that all households enter each period with the same amount of wealth

and {st(i)}∞t=0 is determined by (3);

17Alternatively, profits may be paid to households as a lump-sum transfer; this assumption matters little for
the results of the model.
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7. {{Bt(i)}, Ct, Bt,Wt, ωt}∞t=0 are given by the identities

Bt(i) = (1− ωt(i)) (Wt(i)− Ct (i)) , (14)

Xt =

∫ 1

0
Xt(i)di , X = C,B,W (15)

and

ωt =
QtKt+1

Wt − Ct
. (16)

The rational expectations equilibrium is the economy in which σε̃ = 0, such that the expecta-

tions operator E in equation (4) coincides with the rational expectation in (7). The near-rational
expectations equilibrium posits that σε̃ > 0; households make small errors around their optimal

policy, as given in (8). The following definition formalizes what it means for near-rational

households to suffer only “economically small”losses:

Definition 2.2
A near-rational expectations equilibrium is k-percent stable if the welfare gain to an individual

household of obtaining rational expectations is less than k% of consumption.

3 Equilibrium Expectations

In this section we show that if we allow for small common errors in households’expectations,

information aggregation endogenously breaks down precisely when it is most socially valuable

(i.e. when information is highly dispersed).

To fix ideas, let us define the error in market expectations of ηt+1 as the difference between

the average expectation held by households in the near-rational expectations equilibrium and

the average expectation they would hold if ε̃t happened to be zero in this period. We call the

error in the market expectations

εt = γε̃t

and solve for γ below.18 The main insight is that the multiplier γ may be large. This amplifi-

cation of errors is a result of households learning from equilibrium prices: a rise in prices causes

households to revise their expectations upwards; and when households act on their revised ex-

pectations, the price rises further. Trades that are correlated with the small common error made

by investors thus represent an externality on other households’expectations.

18More formally, εt =
∫
Eit
(
ηt+1

)
di|ε̃t>0,σε̃>0 −

∫
Eit
(
ηt+1

)
di|ε̃t=0,σε̃>0.
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3.1 Solving for Expectations in General Equilibrium

In order to say more about the relationship between ε̃t and εt we need to solve for equilibrium

expectations. Households’optimal behavior is characterized by two Euler equations which take

the form
Ct [κt, νt(i)]

−1 = βEit
(

(1 + r̃t+1)Ct+1 [κt+1, νt+1(i)]−1
)

Ct [κt, νt(i)]
−1 = βEit

(
(1 + r)Ct+1 [κt+1, νt+1(i)]−1

)
,

(17)

where equilibrium consumption is a function of the noise in the private signal νt (i) and the state

variables κt =
(
Kt, Bt−1, ηt, ηt+1, ε̃t

)
. Of these state variables, the first three (Kt, Bt−1, ηt) are

known to households at time t. The remaining two (ηt+1, ε̃t) are unknown, but households are

able to form an expectation about them based on their knowledge of st (i) and Qt.

Solving for equilibrium behavior thus poses two diffi culties: First, households care about

the payoff they receive from stocks and about their future consumption, but they receive infor-

mation about ηt+1, and there is a complicated non-linear relationship between these variables.

Second, households learn from Qt about ηt+1, but Qt in turn depends non-linearly on the average

expectation of ηt+1.

We use the solution method developed in Mertens (2009) to transform the Euler equations

(17) into a form which we can solve with standard techniques. In Appendix B.1 we show that

we can re-write the market price of capital (as well as all other aggregate variables in our model)

as a function of the known state variables (Kt, Bt−1, ηt) and the average expectation of next

period’s productivity (
∫
Eit
(
ηt+1

)
di). Since households know the equilibrium mapping of the

known state variables into Qt, they can infer this average expectation from observing Qt.

To show this formally, we apply a non-linear change of variables to the stock price. The

transformed stock price, q̂t, is linear in the average expectation and has the same information

content as the original stock price (i.e. both variables span the same σ-algebra). The basic

intuition is that Qt is a monotonic function of the average expectation of ηt+1, such that learning

from Qt is just as good as learning from its monotonic transformation. This transformation is

not available in closed form. However, its existence suffi ces to solve for equilibrium expectations.

When we quantify the effects of our model, we have to solve for the transformation numerically.

To this end, we apply perturbation methods which we describe in section 5.2.

Framed in terms of the transformed stock price, q̂t, the equilibrium boils down to computing

prices and expectations such that the following equation is satisfied:

q̂t =

∫
Eit
(
ηt+1

)
di =

∫
E
(
ηt+1|q̂t, st(i)

)
di+ ε̃t, (18)

where in the second equality it suffi ces to condition on q̂t, st(i) as all other variables contained in

households’information sets (the known state variables) are determined before any information
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about ηt+1 is known and thus are not useful for predicting ηt+1. Equation (18) is the familiar

linear equilibrium condition of a standard noisy rational expectations model. We can now apply

standard methods to solve for equilibrium expectations in terms of q̂t (Hellwig (1980)) and then

transform the system back to recover the equilibrium Qt.

3.2 Amplification of Small Errors

We now obtain equilibrium expectations by solving for q̂. As it turns out we are able to show

all the main qualitative results on the aggregation of information in this linear form. In section

6, we map the solution back into its non-linear form to show the quantitative implications for

the equilibrium stock price and for stock returns.

Since q̂t equals the market expectation of ηt+1 in (18), we may guess that the solution for q̂t
is some linear function of ηt+1 and ε̃t :

q̂t = π0 + π1ηt+1 + γε̃t. (19)

This guess formally defines the multiplier γ. Our task is to solve for this γ and for the coeffi cients

π0 and π1 in this equation. Assuming that our guess for q̂t is correct, the rational expectation

of ηt+1 given the private signal and q̂t is

Eit
(
ηt+1

)
= A0 +A1st(i) +A2q̂t, (20)

where the constants A0, A1 and A2 are the weights that households give to the prior, the private

signal and the market price of capital respectively. We get market expectations by adding the

near-rational error and summing up across households. Combining this expression with our

guess (19) yields∫
Eit
(
ηt+1

)
di = (A0 +A2π0) + (A1 +A2π1) ηt+1 +A2γε̃t + ε̃t, (21)

where we have used the fact that
∫
st(i)di = ηt+1. This expression reflects all the different ways

in which ε̃t affects market expectations: The last term on the right hand side is the direct effect of

the small common error on individual expectations. If we introduced a fully rational household

into the economy and gave it the same private signal as one of the near-rational households, the

two households’expectations of ηt+1 would differ exactly by ε̃t. The following two terms reflect

two channels through which the information externality affects equilibrium expectations: The

third term on the right hand side reflects the fact that the market price transmits the small

common error as well as information about future productivity. The extent of this amplification

depends on how much weight the market price has in the rational expectation (20) and on how

sensitive q̂t is to ε̃t in (19). The second term on the right hand side reflects the fact that stock
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prices which contain amplified common errors may become less informative about ηt+1 (the

coeffi cients A1 and A2 change with σε̃).

Plugging (21) into (18) and matching coeffi cients with (18) allows us to solve for the ampli-

fication of ε̃t:

Proposition 3.1
Through its effect on the market price of capital, the small common error, ε̃t, feeds back into the

rational expectation of ηt+1. The more weight households place on the market price of capital

when forming their expectations about ηt+1, the larger is the error in market expectations relative

to ε̃t. We have that

γ =
1

1−A2
. (22)

Proof. See appendix B.

It follows that the larger the weight on the market price of capital in the rational expectation,

A2, the larger is the variance in εt relative to the variance in ε̃. Small common errors may thus

generate large deviations in the equilibrium price, if households rely heavily on the market price

of capital when forming their expectations about the future.

The same matching coeffi cients algorithm also gives us the coeffi cient determining the amount

of information reflected in the market price of capital: π1 = A1
1−A2 . We can solve for the weights

A1, A2 by applying the projection theorem. With explicit solutions in hand, we can show that:

Proposition 3.2
The absolute amount of information aggregated in the stock price decreases with σε̃,

∂π1

∂σε̃
< 0

Proof. See appendix B.

While the small common errors amplify and lead to potentially large deviations in the stock

price, they simultaneously hamper the capacity of the stock market to transmit and aggregate

information. The conditional variance of ηt+1 in the near-rational expectations equilibrium

therefore exceeds the conditional variance in the rational expectations equilibrium for two rea-

sons: First, because the stock price becomes noisy and second because it contains less information

about the future.19

When information is highly dispersed in the economy, households rely relatively more on the

stock price when forming their expectations. But when households pay a lot of attention to the

stock price (A2 is large), near-rational errors are amplified most, and the information content of

19See Appendix B.4 for an analytical solution for the conditional variance of ηt+1.

16



5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Var t 1 st i , qt

2

0.001

0.01

0.1

0

Figure 1: Ratio of the conditional variance of the productivity shock to its unconditional variance
plotted over the level of dispersion of information, σν/ση.

prices is most vulnerable to near-rational behavior. The following proposition takes this insight

to its logical conclusion:

Proposition 3.3
Any strictly positive σε̃ may destroy the stock market’s capacity to aggregate information as the

dispersion of information goes to infinity,

lim
σν→∞

V ar
(
ηt+1|st (i) , q̂t

)
σ2
η

= 1.

Proof. See appendix B.

As information becomes more dispersed across households, the private signal becomes less

informative relative to the stock price. Households adjust by paying relatively more attention to

the stock price. If households put less weight on their private signal, less information enters the

equilibrium price; and the more attention they pay to the market price, the larger is the ampli-

fication of ε̃t. Both effects result in a rise of the conditional variance of ηt+1. The implication

of this finding is that information aggregation in financial markets is most likely to break down

precisely when it is most socially valuable —when information is highly dispersed. If the private

signal received by households is suffi ciently noisy, any given amount of near-rational errors in

investor behavior may completely destroy the market’s capacity to aggregate information.

Figure 1 illustrates this point. It plots the ratio of the conditional variance of the productivity

shock to its unconditional variance over the level of dispersion of information. To facilitate the

interpretation of the results, we scale all standard deviations with the standard deviation of the
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productivity shock, ση. With this scaling all standard deviations have a natural interpretation.

In particular, the ratio (σνση )2 measures the level of dispersion of information in the economy

as the number of individuals who, in the absence of a market price, would need to pool their

private information to reduce the conditional variance of ηt+1 by one half. A value of zero on the

vertical axis of Figure 1 indicates that households can perfectly predict tomorrow’s realization

of ηt+1, whereas a value of 1 indicates that ηt+1 is completely unpredictable. The solid red

line shows that in the rational expectations equilibrium ( σε̃ση = 0), productivity is perfectly

predictable, regardless of how dispersed information is in the economy. If all households are

perfectly rational, the conditional variance of ηt+1 is always zero, because the market price of

capital perfectly aggregates the information in the economy. This situation changes drastically

when σε̃
ση
> 0: The thick blue line plots the results for the case in which the standard deviation

of the near-rational error is 1% of the standard deviation of the productivity shock. The curve

rises steeply and quickly converges to one: When information is highly dispersed and we allow

for near-rational behavior, the aggregation of information collapses.

The implication of Proposition 3.3 is that this qualitative result does not depend on how near-

rational households are. Figure 1 plots the results for near-rational errors that are an order of

magnitude larger ( σε̃ση = 0.1) and an order of magnitude smaller ( σε̃ση = 0.001) for comparison. In

each case, the productivity shock becomes completely unpredictable if information is suffi ciently

dispersed.

One important feature of such a breakdown in the aggregation of information is that it

affects everyone in the economy: If we placed a fully rational household into our economy,

this fully rational household would do only a marginally better job at predicting ηt+1 than the

near rational households: Conditional on receiving the same private signal, the difference in

the expectation of the a rational and a near-rational household is ε̃t. In fact, the conditional

variance we plotted in Figure 1, is the conditional variance of ηt+1 from the perspective of such

a fully rational household. We can write it as

V ar
(
ηt+1|st (i) , q̂t

)
σ2
η

=
1

σ2
η

(
A2

1σ
2
ν + (1− πt)2 σ2

η + (γ − 1)2 σ2
ε̃

)
, (23)

The expression for the precision of the forecast of a near-rational households is identical, except

that the third term in brackets is then γ2σ2
ε̃ .
20 This is the reason why the cost to the individual of

behaving near-rationally is low: As a rational household is only marginally better at predicting

ηt+1 it is, by construction, also only marginally better at predicting ε̃t, and if it cannot predict

ε̃t, it cannot hedge against the errors made by its peers.

20By “precision” of the forecasts of near-rational households we refer to
Eit[(ηt+1−Eit(ηt+1))2]

σ2η
. Note however

that from (9), the near-rational household has the same “perceived”conditional variance as a rational household,
Eit
[
(ηt+1 − Eit

(
ηt+1

)
)2
]
= Eit

[
(ηt+1 − Eit

(
ηt+1

)
)2
]
.
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Figure 2: Decomposition of the ratio of the conditional variance of the productivity shock to its
unconditional variance plotted over the level of dispersion of information, σν/ση.

Figure 2 decomposes the conditional variance (23) into its three components. The thick blue

line in Figure 2 is the same as the thick blue in Figure 1, it plots the ratio of the conditional

variance of the productivity shock to its unconditional variance over the level of dispersion of

information for the case in which σε̃
ση

= 0.01. The dotted line plots the first term on the right

hand side of (23), which is the error that households make in their forecast of ηt+1 due to the

noise in their private signal. It is close to zero throughout, reflecting the fact that households

downweight their private signal when it contains more noise, such that differences of opinion

remain small in equilibrium. The broken line plots the second term, which is the error that

households make in their forecast because the stock price does not reflect all information about

ηt+1, and the third component is the error that they make due to amplified small common errors

in the stock price.

At low levels of σν , amplified small common errors are the main source of households’forecast

errors. As information becomes more dispersed, the amplification rises and eventually peaks as

households, confronted with noisy private signals and a noisy stock price begin to rely more on

their priors. At the same time, the information content of the stock price begins to fall rapidly.

In the region in which the broken line approaches one, small common errors result in a complete

collapse of information aggregation.

The fact that we allow for small common deviations from fully rational behavior is central

to these results. To see this point, it is useful to contrast the effect of small common errors

in household expectations to the effect of small common noise in the signals which households

receive (i.e. the situation in which
∫
st(i)di 6= ηt+1). The thick blue line in Figure 3 plots the now

familiar effect of a small common error in household expectations with σε̃
ση

= 0.01. The broken
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Figure 3: Comparison of the effects of small common errors in household expectations with the
effects of small common noise in the private signal. Thick blue line: σε̃

ση
= 0.01. Broken black

line: σε̃
ση

= 0 and standard deviation of common noise in the private signal = 1% of the standard
deviation of the productivity shock.

horizontal line plots the effect of an identical amount of small common noise in the private signal

(i.e. the situation in which the standard deviation of common noise in the private signal is 1% of

the standard deviation of the productivity shock). The broken line has an intercept of 0.012 and

is perfectly horizontal. The common noise in the private signal is neither amplified nor does the

fact that an individual household observes a signal with common noise have an external effect

on the market’s capacity to aggregate information. The effect of common noise in the private

signal is thus invariant to how dispersed information is in the economy.

The logic of these results is not particular to the exact information structure we choose. For

example, we may think of a situation in which there is larger common noise in the private signal,

in which case the broken black line in Figure 3 and the intercept of the thick blue line would

shift upwards (as shown in Figure 8 of Appendix C); or we may think of a situation in which

households receive a public as well as a private signal about ηt+1, in which case the information

contained in the public signal would survive in the near-rational expectations equilibrium (the

thick blue line in Figure 3 would converge to a value less than one as shown in Figure 7 of

Appendix C). In each case, near-rational behavior impedes the aggregation of the part of the

information which is dispersed across households. The information externality we highlight here

is thus relevant whenever financial markets play an important role in aggregating dispersed

information, regardless of the exact information structure.21 (See Appendix C for a detailed

21 In this sense near-rational behavior has implications which are similar to the implications of noise trader risk,
with the important difference of course that near-rational behavior endogenously determines the market’s capacity
to aggregate information whereas noise trader risk represents an exogenous assumption about this capacity.
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discussion of alternative information structures.)

Now that we understand the aggregation of information in our model we can ask how near-

rational behavior impacts the economy as a whole. Intuitively, the less information is reflected

in the stock price, the higher is the conditional variance of stock returns and the more financial

risk households face in equilibrium. It follows that the conditional variance of stock returns must

be strictly higher in the near-rational expectations equilibrium than in the rational expectations

equilibrium. For the purposes of our discussion below, we define this difference in financial risk

as “excess volatility”:

Definition 3.4
Excess volatility in stock returns is the percentage amount by which the conditional standard

deviation of stock returns in the near-rational expectations equilibrium, σ, exceeds the conditional

standard deviation of stock returns in the rational expectations equilibrium, σ∗,

σ − σ∗
σ

100.

The amount of excess volatility in stock returns that may arise due to near-rational errors

depends on the non-linearities of the model. Before we turn to quantifying these effects we first

build some intuition for the impact that this particular pathology in financial markets may have

on the macroeconomy.

4 Intuition: The Macroeconomic Effects of Financial Risk

In this section we turn to the effect that near-rational behavior has on the macroeconomic

equilibrium. To provide a maximum of intuition for the mechanisms at work, this section focuses

on a simplified version of the model for which we are able to derive the main results analytically.

In section 6 we show computationally that the relevant implications of the simplified model carry

over to the full model.

Assume that households consist of two specialized agents, a “capitalist”who trades in the

stock and bond markets and a “worker” who provides labor services, receives wages and the

profits from the investment goods sector, but is excluded from trading in financial markets.

This division eliminates labor income from the capitalist’s portfolio choice problem such that

we can solve it with pen and paper. A capitalist’s budget constraint is

Wt+1(i) = ((1− ωt(i))(1 + r) + ωt(i)(1 + r̃t+1))(Wt(i)− Ct(i)) + τ t(i) ∀t. (24)

Taking as given that the distribution of equilibrium asset returns is approximately log-normal
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(this is true to a first-order approximation), we can solve for the capitalist’s optimal consumption

and portfolio allocation:22

Lemma 4.1
If equilibrium stock returns are log-normally distributed, capitalists’ optimal consumption is a

constant fraction of financial wealth

Ct(i) = (1− β)Wt(i) (25)

and the optimal portfolio share of stocks is the expected excess return divided by the conditional

variance of stock returns, σ2

ωt(i) =
Eit (1 + r̃t+1)− (1 + r)

σ2
. (26)

Proof. Appendix D gives a detailed derivation which proceeds analogous to Samuelson (1969).

The stock market clears when the value of shares demanded equals the value of shares in

circulation. We can apply the definition (6), as well as (25) and use the fact that all capitalists

hold the same beginning of period wealth in equilibrium to get∫ 1

0
Eit
(
Qt+1(1− δ) +Dt+1

Qt

)
di = 1 + r + ωtσ

2, (27)

where ωt is defined in equation (16) and represents the aggregate degree of leverage required in

order to finance the domestic capital stock. In equilibrium, the average capitalist holds a share

ωt of her wealth in stocks. The left hand side of (27) is the market expectation of stock returns;

the right hand side is the required return that investors demand given the risk that they are

exposed to. The equity premium, ωtσ2, rises with the conditional variance of stock returns and

with the amount of leverage required to hold the domestic capital stock.

Any error in market expectations has two important channels through which it affects the

real side of the model. First, it causes a temporary misallocation of capital by distorting Qt
and aggregate investment (13). Second, a rise in the conditional variance of stock returns

raises the equity premium and with it the expected dividend demanded by capitalists in general

equilibrium. While the former channel mainly influences the dynamics of the model, the latter

channel has a direct effect on the stochastic steady state.

Definition 4.2
The stochastic steady-state is the level of quantities and prices at which these variables do not

change in expectation.

In the simplified version of the model we are able to obtain a closed form solution for the
22We require approximate log-normality for the analytical solution below but not for the computational results.

22



stochastic steady state and thus analytically show the following result:

Proposition 4.3
The equilibrium has a unique stochastic steady state iff β ≤ 1

1+r . At the stochastic steady state

the aggregate degree of leverage is

ωo =

√
1

σ2

(
1− β
β
− r
)

; (28)

and the stochastic steady state capital stock is characterized by

(1 + δχ)
(
r + ωoσ

2 + δ
)

= FK (Ko, L) . (29)

Proof. See Appendix E.

The intuition for the first result is simple: If the time discount factor is larger than 1
1+r ,

investors are so patient that even those holding a perfectly riskless portfolio containing only

bonds would accumulate wealth indefinitely. In that case, no stochastic steady state can exist.

However, if β ≤ 1
1+r , there exists a unique value ωo at which the average capitalist has an

expected portfolio return that exactly matches her time discount factor: β =
(
1 + r + ω2

oσ
2
)−1.

At this value, there is no expected growth in consumption and the economy is at its stochastic

steady state.23

The second result, (29), follows directly from applying the steady state to equation (27). On

the left hand side, 1+δχ is the market price of one unit of capital at the stochastic steady state.

This is multiplied with the required return to capital: the risk free rate plus the equity premium

and the rate of depreciation. At the stochastic steady state, the required return on one unit of

capital must equal the expected dividend, which is precisely the expected marginal product of

capital (on the right hand side of the equation). This brings us to one of the main results of

this paper:

Proposition 4.4
A rise in the conditional variance of stock returns unambiguously depresses the stochastic steady

state level of capital stock and output.
∂Ko

∂σ
< 0

Proof. We use (28) to eliminate ωo in (29) and take the total differential, see Appendix E for

details.

The higher the risk of investing in stocks, the higher is the risk premium demanded by

23Conversely we can determine the wealth of our economy relative to the value of its capital stock at the
stochastic steady state by choosing an appropriate time discount factor. We shall make use of this feature when
we calibrate the model in section 5.
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capitalists. A higher risk premium implies higher dividends at the stochastic steady state and,

with a neoclassical production function, a lower level of capital stock. The conditional variance

of stock returns thus has a level effect on the amount of capital accumulated at the stochastic

steady state; and less installed capital in turns implies lower production.

Interestingly, this level effect may operate even if the stock market seems to have little

influence on the intertemporal allocation of capital in the economy:

Corollary 4.5
A rise in the conditional variance of stock returns depresses the stochastic steady state level of

output even if the sensitivity of the capital stock with respect to stock prices is low.

Proof. From (13) we have that ∂(It/Kt)
∂Qt

= 1
χ . The sensitivity of physical investment as a share

of the existing capital stock with respect to the stock price is fully determined by the adjustment

cost parameter χ. From (28) and (29) we have that ∂2FK(Ko,L)
∂σ2∂χ

= δ

√
1
σ2

(
1−β
β − r

)
> 0.

If the adjustment cost parameter χ is suffi ciently large, the stock market in this economy

may appear as a “sideshow” (Morck, Shleifer, and Vishny (1990)) in the sense that a given

change in the stock price has little influence on investment. To the casual observer it may

therefore seem as though pathologies in the stock market should not have much influence on

the real economy. However, a low responsiveness of physical investment to the stock price is

uninformative about the impact that the volatility of stock returns has on the stochastic steady

state. Excess volatility in stock returns may thus cause a depression of output at the stochastic

steady state while leaving virtually no evidence to the econometrician. Since our model does not

exempt replacement investments from capital adjustment costs, the impact of an incremental

rise in stock market volatility on the stochastic steady state level of capital actually rises with

χ, implying that excess volatility may actually have a larger effect on the stochastic steady state

in economies in which the stock market appears to be a “sideshow”.

Finally, the volatility of stock returns has an important implication for the distribution of

income in the economy:

Corollary 4.6
A rise in the conditional variance of stock returns unambiguously lowers wages and raises divi-

dends at the stochastic steady state.

Proof. The result follows directly from (12), the fact that factors receive their marginal

products, and from proposition 4.4.

Excess volatility may thus (paradoxically) raise the incomes of stock market investors: As K

falls, dividends rise relative to wages, increasing the return to each unit of capital. Over some

range, such a decrease in K raises the total payments to capital. As the conditional variance of
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stock returns rises, it pushes the economy towards higher dividends, compensating capital for

the loss of aggregate output at the expense of payments to labor.

The dynamics of the model are such that the economy transitions to the stochastic steady

state in expectation. To understand this, imagine an economy that is at its stochastic steady

state and receives a positive productivity shock. Capitalists will save a fraction of the currently

high dividends and are now on average richer than they were before. This implies that the

aggregate portfolio share required to finance the domestic capital stock in the following period

falls, ωo+1 < ωo. As capitalists are now less leveraged, they require a lower risk premium for the

next period. Expected returns therefore tend to be lower following a positive shock and higher

following a negative shock. Equilibrium returns thereby generate stationary dynamics.24

To summarize, the near-rational expectations equilibrium of the simplified version of our

model exhibits a higher volatility of returns around a lower stochastic steady state level of

capital and output. Expected returns to capital are higher and expected wages are lower than

in the rational expectations equilibrium. As we show below, these conclusions carry over to the

full version of the model.

5 Quantifying the Model

In this section we return to the full version of our model and quantify the welfare cost of near-

rational behavior. To this end, we first derive a standard welfare metric, based on a simple

experiment in which near-rational behavior is purged from financial markets and the economy

transitions to the stochastic steady state of the rational expectations equilibrium. We then

briefly describe the computational algorithm used to solve this problem and calibrate the model

to the data.

5.1 Welfare Calculations

Consider an economy that is at the stochastic steady state of the near-rational expectations

equilibrium and suppose that at time 0, there is a credible announcement that all households

henceforth commit to fully rational behavior until the end of time. Immediately after the

announcement, the conditional variance of stock returns falls and households require a lower

risk-premium for holding stocks. The stochastic steady state levels of capital and output rise.

Although the economy does not jump to the new stochastic steady state immediately, it ac-

24There is a large body of literature discussing the non-stationarity of small open economy models (see for
example Schmitt-Grohé and Uribe (2003)). The issue of non-stationarity is, however, a consequence of the
linearization techniques typically employed to solve these models and not an inherent feature of the small open
economy setup. Since we solve our model using higher order expansions we obtain stationary dynamics. See also
Coerdacier et al. (2011).
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cumulates capital over time and converges to it in expectation. Over the adjustment process,

output rises, wages rise and returns to capital fall. The level of consumption increases; and due

to the reduction in uncertainty about future productivity the variance of consumption may fall

as well.

Formally, we ask by what fraction λ we would have to raise the average household’s con-

sumption in order to make it indifferent between remaining in the near-rational expectations

equilibrium and transitioning to the stochastic steady state of the rational expectations equilib-

rium. λ then indicates the magnitude of the welfare loss attributable to near-rational behavior

as a fraction of lifetime consumption. It is defined as

E

∫ ∞∑
t=0

βt log ((1 + λ)Ct(i)) di ≡ E
∫ ∞∑

t=0

βt log (C∗t (i)) di, (30)

where we denote variables pertaining to the rational expectations equilibrium with an asterisk.

From (30) we can see that welfare losses may result either from a lower level of consumption

or from a higher volatility of consumption. In appendix F we decompose λ into two compo-

nents, λ∆, measures the change in welfare due to a change in the level of consumption and

λσ measures the change in welfare due to a change in the volatility of consumption, where

1 + λ =
(
1 + λ∆

)
(1 + λσ) .

5.2 Numerical Solution

The non-linear change of variables of section 3.1 allowed us to solve for equilibrium expectations.

For a quantitative analysis of our model, we need to transform the linear transformation of the

stock price back into the original stock price. This transformation, however, is not available in

closed form.

Therefore, we employ perturbation methods to get an approximate numerical solution for our

model. We obtain the two conditions of optimality (17) and plug in for the households’budget

constraint, stock returns, optimal investment, wages and dividends. Ultimately, we obtain two

functions of the known state variables (Kt, Bt−1, ηt), the average expectation of next period’s

productivity
∫
Eit
(
ηt+1

)
di, and the idiosyncratic component of households’expectations νt(i).

These functions characterize the equilibrium behavior of our economy.

We start by solving for the deterministic steady state of the system. We then build a higher-

order expansion in state variables and shocks around this point. The crucial step which gets us

back to a stochastic economy is to build at least a second-order expansion in the standard devi-

ation of shocks in our economy. The first-order approximation is certainty equivalent and thus

does suffi ce for quantifying distortions in the stochastic steady-state level of capital accumula-

tion. Financial risk thus affects the economy through the second moments of shocks. We use
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a fourth order expansion to generate the results below. All variances and covariances reported

are calculated at the deterministic steady state of the system by analytically integrating over

the second order expansion. For details on perturbation methods see Judd (2002).

5.3 Calibration

An important caveat with respect to our quantitative results is that we use the standard real

business cycle model as our model of the stock market. A well known issue with this model is

that it cannot simultaneously match the volatility of output and the volatility of asset prices.

Rather than complicating the analysis by incorporating one of the standard remedies for this

issue (such as habit formation, long-run risk, or rare disasters) into our model, we side-step the

issue by choosing ση to match the standard deviation of stock returns in the data and then

adjust our welfare calculations to ensure that they are not driven by a counterfactually high

standard deviation of consumption.25

In our preferred calibration we set the standard deviation of ε̃ to a very low level as to ensure

that the losses of individual households due to their near-rational errors remain economically

small; we set σε̃
ση

= 0.01. We choose an adjustment cost parameter of χ = 2, a risk free rate of

r = 0.04, and a rate of depreciation of δ = 0.15. We pick the time discount factor β such that

the entire capital stock is owned by domestic households at the stochastic steady state of the

near-rational expectations equilibrium, ωo = 1. Finally, we choose a Cobb-Douglas production

technology with a capital share of 1
3 . Since our economy is scale independent, we normalize

labor supply to one without loss of generality. Finally, we choose ση to match the conditional

standard deviation of stock returns in the data for our preferred calibration at which σν
ση

= 7.6.

We begin by presenting comparative statics with respect to the level of dispersion of information

in the economy and then calibrate σν
ση
to match various moments in the data that reflect the

information content of stock prices.

6 Results

Figure 4 relates the equilibrium level of financial risk to the level of dispersion of information

in the economy. The solid red line plots the conditional standard deviation of stock returns

in the rational expectations equilibrium (σ∗). The line is perfectly horizontal, as the stock

market perfectly aggregates the information held by all households regardless of how dispersed

information is in the economy. However, the fact that the stock price is perfectly informative

about ηt+1 does not mean that households do not face financial risk. In the next period, they

25We suspect that our results would look very similar if we introduced habit formation (Campbell and Cochrane
(1999)) or if instead of learning about productivity shocks, households learned about growth rates (Bansal and
Yaron (2004)) or about disaster probabilities (Barro (2009), Gabaix (2010), and Gourio (2010)).
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learn about ηt+2, and the stock price adjusts to this information such that stock returns remain

uncertain. This is why the solid line intercepts the vertical axis at a positive value. Learning

about tomorrow’s productivity can reduce the variance of stock returns to 0.14, but not to zero.

The solid upward sloping line gives the conditional variance of stock returns in the near-rational

expectations equilibrium (σ). When information is dispersed and we allow for near-rational

errors, the aggregation of information in the economy deteriorates and eventually collapses. The

result is a higher volatility of stock returns and thus more financial risk. If information is highly

dispersed the stock price becomes completely uninformative about the future and σ converges

to approximately 0.20.

The conditional standard deviation of stock returns is the standard deviation of stock returns

from the perspective of a household who knows Kt, Bt−1, ηt, and extracts information about

future productivity from Qt and st (i). Figure 4 also plots the unconditional standard deviation

of stock returns which is not conditional on any information about future productivity (i.e.

from the perspective of a household that knows the Kt, Bt−1, ηt, but does not receive a private

signal and does not know the equilibrium stock price). In the rational expectations equilibrium

the conditional and unconditional standard deviation are identical, because all information is

common in equilibrium and there remain no differences of opinion about tomorrow’s productivity.

The equilibrium stock price thus always adjusts such that the expected stock return equals the

return required by investors. The dashed line in Figure 4 is the unconditional standard deviation

of stock returns in the near-rational expectations equilibrium. It is almost identical with the

conditional standard deviation as even in the near-rational expectations equilibrium differences

of opinion remain small regardless of the level of dispersion of information in the economy

(compare this to Figure 2 where the term A2
1σ

2
ν remains small throughout).

The vertical distance between the two solid lines in Figure 4 reflects the amount of excess

volatility in stock returns which is attributable to near-rational behavior. If information is

highly dispersed, the conditional standard deviation of stock returns is up to 28.1% lower in the

rational expectations equilibrium than in the near-rational expectations equilibrium. Moreover,

it is striking that even relatively moderate levels of dispersion of information make the stock

market vulnerable to near-rational behavior. At σν
ση

= 5 near-rational errors result in excess

volatility of 13% although a mere
(
σν
ση

)2
= 25 private signals contain enough information to

reduce the conditional variance of ηt+1 by one half.

A striking result of our calibration is that the welfare cost of near-rational behavior is very

large, even for moderate amounts of excess volatility. The thick red line in Figure 5 plots the

compensating variation for households over a range of σν/ση. For our preferred calibration in

which σν/ση = 7.6 excess volatility in stock returns is 18.38% and the compensating variation

amounts to 2.32% of consumption. At higher levels of dispersion of information welfare losses

are even higher and reach up to 4.65% of consumption in the extreme case in which information
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Figure 4: Solid blue line: Conditional standard deviation of stock returns in the near-rational
expectations equilibrium. Dashed line: Unconditional standard deviation of stock returns in
the near-rational expectations equilibrium. Horizontal red line: Conditional and unconditional
standard deviation of stock returns in the rational expectations equilibrium.

is infinitely dispersed.

Households would thus be willing to give up a significant fraction of their consumption if they

could get all other households in the economy to behave fully rationally. In contrast, individual

households stand almost nothing to gain from eliminating small common errors from their own

expectations. Figure 6 plots the compensating variation for eliminating small common errors

from an individual household’s expectation. The potential gain from behaving fully rather than

near-rationally is uniformly less than 0.015% of consumption and thus at least two orders of

magnitude lower than the social gain.

Another interesting result is that while the social gain of eliminating near-rational behavior

in Figure 5 rises monotonically, the individual gain peaks around the levels of dispersion of

information at which the amplification of the small common error is largest (compare to the

solid red line in Figure 2), and then falls off towards zero. When information is highly dis-

persed the social gain from eliminating near-rational behavior is largest, while the private gain

becomes economically infinitessimal (in the limit it reaches 0.001% of consumption). The reason

is that as the information content of stock prices falls and investors learn less and less about

future productivity a hypothetical rational household would also be less and less able to hedge

against suspected small common errors. If information is highly dispersed, even economically

infinitesimal common errors in household expectations will thus cause large aggregate welfare

losses.

Our estimates for the welfare losses attributable to near-rational behavior exceed even rel-

atively high estimates of the costs of business cycles (see for example Alvarez and Jermann

(2005)). The reason is that standard costs of business cycles calculations consider the welfare
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Figure 5: Thick red line: Compensating variation for eliminating all present and future near-
rational errors from the behavior of all households and transitioning to the stochastic steady
state of the rational expectations equilibrium. Dashed line: Upper bound for the amount of the
total compensating variation that could be attributable to a higher volatility of consumption in
the near-rational expectations equilibrium versus the rational expectations equilibrium
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Figure 6: Compensating variation for eliminating near-rational errors from an indvidual house-
hold’s behavior.
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cost of fluctuations around a given level of consumption, and these are typically small (Lucas

(1987)). In our model, near-rational behavior affects both the volatility and the level of con-

sumption. The dashed line in Figure 5 shows an upper bound for the share of the overall welfare

costs that could be attributable to a higher volatility of consumption in the near-rational ex-

pectations equilibrium versus the rational expectations equilibrium, λσ. (It is the willingness

to pay of the average household for eliminating all of the variability in consumption which is

due to productivity shocks and near-rational errors, while keeping the path and the level of

capital accumulation the same as in the near-rational expectations equilibrium.) Throughout,

this upper bound is less than 0.2% of consumption, indicating that the vast majority of the

welfare loss caused by near-rational behavior is attributable to the distortions it causes in the

level of consumption.

We now impose discipline on the remaining free parameter in our calibration, σν , by using it

to match key financial and macroeconomic data. Column 1 gives the four moments of the data

which we attempt to match. In our preferred calibration we choose ση to match the conditional

standard deviation of stock returns, and choose σν to match the correlation of stock price growth

with GDP growth one year ahead, the standard deviation of the average forecast of GDP growth,

and the average forecast error of GDP growth. The latter two moments are constructed using

the survey of professional forecasters and are normalized with the standard deviation of (1600

HP filtered) GDP. All moments are taken from US data as they are not readily available for

other countries. Details are in Appendix G.

Column 2 gives our preferred calibration in which the standard deviation of the error in the

private signal is 7.6 times the standard deviation of the productivity shock. Columns 3 and 4

contrast it with two limiting cases in which the stock market has no role in the aggregation of

information in the economy. The calibration in column 3 is the case in which the private signal

is perfectly accurate (σνση = 0) such that all households know next period’s productivity without

having to extract any information from the equilibrium stock price (we call this the “News

Shocks”calibration). The calibration in column 4 gives the other extreme in which the private

signal is perfectly inaccurate (σνση = ∞) such that no one in the economy has any information
about the future and there is consequently nothing to learn from the equilibrium stock price

(we call this the “RBC”calibration). Column 5 gives the results for the rational expectations

equilibrium. It uses our preferred calibration and imposes perfectly rational behavior ( σε̃ση = 0).

In our preferred calibration we match the correlation of stock price growth with GDP growth

perfectly and simultaneously come very close to matching the two other moments: The standard

deviation of the average forecast comes in slightly too low (0.69 rather than 0.73 in the data),

and the standard deviation of the average forecast error comes in slightly too high (0.72 rather

than 0.59 in the data). The last three lines show that our preferred calibration implies an excess

volatility of 18.38% of the conditional standard deviation of stock returns, an aggregate welfare
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loss attributable to near-rational errors of 2.32% of consumption, and an individual welfare loss

from near-rational behavior of 0.014% of lifetime consumption.

By construction, the standard deviation of stock returns is lower in the News Shocks calibra-

tion, and all three variables reflecting the information content of stock prices show (almost) full

revelation of information, as households are perfectly informed about future productivity from

the outset. In this case, near-rational behavior is of almost no consequence: Excess volatility is

minimal (0.01) as small common errors have no external effects when the stock market has no

role in aggregating information.

In the RBC calibration the conditional standard deviation of stock returns is higher than

in the near-rational expectations equilibrium and all three moments reflecting the information

content of stock prices show no revelation of information, as households have no information

about the future at all. For example, stock price growth and future GDP growth are almost

completely uncorrelated in the RBC calibration.

Table 1

(1) (2) (3) (4) (5)

Data N-REE “News “RBC” REE

Shocks”

Near-rational error, σε̃ση 0.01 0.01 0.01 0

Dispersion of Information, σνση 7.6 0 ∞ 7.6

Conditional standard deviation of stock returns, σ ≈ 0.17 0.17 0.14 0.2 0.14

Corr. (growth in stock prices, future GDP growth) 0.67 0.67 0.99 0.01 0.99

Std.(average forecast of GDP)/Std.(GDP) 0.73 0.69 1.00 0.01 1.00

Std.(average forecast error of GDP)/Std.(GDP) 0.59 0.72 0.00 1.00 0.00

Excess Volatility, σ−σ
∗

σ 18.38 0.01 28.1

Welfare loss attributable to near-rational errors, λ 2.32 0.00 4.65

Individual cost of near-rational behavior 0.014 0.001 0.001

In summary, our calibration suggests that stock markets do reveal some information about

the future, but that near-rational behavior may significantly reduce the information content

of stock prices, resulting in an economically significant rise in financial risk as well as large

aggregate welfare losses.

6.1 Closed Economy

In the closed economy version of our model the interest rate r becomes an endogenous variable

and bonds are in zero net supply, Bt = 0. The dynamics of the model are slightly more involved

in the closed economy case as the capital stock at the stochastic steady state of the rational
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expectations equilibrium may be either higher or lower. This is due to the precautionary savings

motive which may or may not dominate the effect of a higher risk premium. Nevertheless, the

basic economic intuition holds: Any distortion in capital accumulation causes a distortion in the

level of consumption; and any distortion in the level of consumption causes first-order welfare

losses.

We calibrate the closed economy version to the parameters of our preferred calibration above.

The compensating variation for eliminating near-rational behavior in this specification is 2.44%

of consumption, which is very close to the result we get for the small open economy.

7 Conclusion

This paper shows that financial markets may fail to aggregate information even if they appear

to be effi cient and that a decrease in the information content of asset prices may drastically

reduce welfare.

In our model, each household has some private information about future productivity. If all

households behave perfectly rationally, the equilibrium stock price reflects the information held

by all market participants and directs resources to their most effi cient use. We show that this

core function of financial markets may break down if we allow for the possibility that house-

holds do not respond to incentives which are economically small (i.e. on the order of 0.01% of

consumption). In particular, if households make small common errors when forming their expec-

tations about future productivity, these errors give rise to an information externality: households

do not internalize how errors in their investment decisions affect the equilibrium expectations

of others. This information externality leads information aggregation to break down precisely

when it is most socially valuable, i.e. when information is highly dispersed. This information

externality operates whenever information is dispersed and households observe an endogenous

price. It relies neither on strategic complementarities nor on higher order uncertainty.

We show that the resulting collapse of the information content of stock prices increases the

amount of financial risk faced by households and thus induces them to demand higher risk

premia for holding stocks. Higher risk premia in turn distort the level of capital accumulation,

output and consumption in the long run. The social return to diligent investor behavior is thus

orders of magnitude larger than the private return.

Our model is one of the first non-linear dynamic stochastic general equilibrium models with

dispersed information. We calibrate it to the data and estimate that small common errors in

household expectations result in an 18.38% rise in the conditional standard deviation of stock

returns. The social cost of these near-rational errors is on the order of 2.32% of lifetime consump-

tion, while the incentive to individual households to avoid near-rational errors is economically
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small —on the order of 0.01% of lifetime consumption.
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Online Appendix

A Details on Contingent Claims

This appendix gives a formal definition of contingent claims trading which ensures that all

households hold the same amount of wealth in equilibrium. Each period is divided into two

sub-periods. In the first sub-period the productivity shock realizes, contingent claims pay off

and households buy state contingent claims for the next period. In the second sub-period

they consume, receive their private signal of next period’s productivity shock, choose their

consumption and their portfolio. Households thus face the following problem for choosing a

portfolio of contingent claims:

max
{ϕt(i;η,̃ε,ν)}

E

[
max

Ct(i),ωt(i),
Eit

{ ∞∑
s=t

βs−t log(Cs(i))

}
|Kt, Bt−1, ηt

]
(31)

subject to

Wt+1(i) = [(1− ωt(i))(1 + r) + ωt(i)(1 + r̃t+1)] (Wt(i) + wtL− Ct(i) + τ t(i)) ∀t (32)

where the payments from contingent claims are defined as

τ t(i) =

∫
ϕt (i; η, ε̃, ν) (Φt+1 (i; η, ε̃, ν)− ρt (η, ε̃, ν)) d(η, ε̃, ν).

ϕt (i; η, ε̃, ν) is the quantity of contingent claims bought by household i that pay off if the

realization
(
ηt+1, ε̃t, νt (i)

)
coincides with (η, ε̃, ν). Φt+1 (i; η, ε̃, ν) is an indicator function that

is one if the realization coincides with (η, ε̃, ν) and zero otherwise, and ρt (η, ε̃, ν) is the time t

price of a claim that pays off one if the realization coincides with (η, ε̃, ν) and zero otherwise.

The crucial assumption is that households trade state contingent claims in the first sub-

period, during which they have homogeneous information. Contingent claims are in are in zero

net supply (
∫
ϕt (i; η, ε̃, ν) di = 0 ∀t), such that, in equilibrium, households use these claims to

insure against the idiosyncratic risk arising from the heterogeneity in the private signal they

receive.

Recall that the noise in private signals, νt (i), is by definition uncorrelated and independent

of the realization of aggregate shocks in the next period. Since households do not know their

own realization of νt (i), they cannot predict the payoff they receive from the state-contingent

securities and this payoff is uncorrelated and independent of any of the other variables influencing

their decisions. It follows that trading in state contingent claims does not distort the portfolio

and consumption decisions of the household, while ensuring that the wealth distribution collapses
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to its average at the beginning of each period.

B Details on Equilibrium Expectations

B.1 Non-linear Change of Variables

In this section, we apply the solution method in Mertens (2009) to our setup. We proceed in three

steps: we rearrange the equilibrium conditions, show that the stock price is a nonlinear function

of the known state variables as well as the average expectation of next period’s productivity, and

then apply a non-linear change of variables to transform this non-linear function into a linear

form. For a more concise exposition, we only demonstrate how to solve for the stock price.

However, the method applies to the consumption function analogously.

Step 1: We bring the equilibrium conditions in the desired form.

We start with the optimality conditions in (17), use (6), rearrange, and integrate on both

sides

Qt

∫
Ct[κt, νt(i)]

−1di =

∫
βEit

(
Ct+1[κt, νt(i)]

−1 ((1− δ)Qt+1 +Dt+1)
)
di (33)∫

Ct[κt, νt(i)]di =

∫
β−1Eit

(
Ct+1[κt, νt(i)]

−1 (1 + r)
)−1

di (34)

Step 2: We re-write the stock price as a non-linear function of known state variables and the
average expectation of next period’s total factor productivity.

Since we want to solve for the stock price, we start with equation of (33). The right-hand

side of the equation consists of expectations over variables in period t + 1 while the left-hand

side consists of variables know at time t. We replace consumption on the left-hand side and the

entire expression inside the expectations operator on the right-hand side with its Taylor series

expansion in each element of κt and νt(i). A standard Taylor expansion of the expression in the

expectations operator on the right-hand side reads:

Ct+1[κt, νt(i)]
−1 ((1− δ)Qt+1 +Dt+1) =∑

j

cj(Kt+1 − K̄)j1(Bt − B̄)j2(ηt+1 − E[ηt+1])j3(ηt+2 − E[ηt+2])j4 ε̃j5t+1νt+1(i)j6

where K̄ and B̄ are the levels of capital and bonds at the deterministic steady state and cj
denotes the coeffi cients of the Taylor series and j = (j1, j2, j3, j4, j5, j6) a multi-index for the

expansion.
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Now we take the expectation conditional on st(i) and Qt (Eit). The terms that depend only
on Kt+1 and Bt are known at time t and can thus be taken outside the expectations operator.

Moreover, we get a series of terms depending on the conditional expectation of ηt+2. Since ηt+2

is unpredictable for an investor at time t, the first-order term is 0, and all the higher-order terms

depending on Eit[ηt+2] are just moments of the unconditional distributions of η. The same is true

for the terms depending on ε̃t and νt+1 (i). The only terms remaining inside the expectations

operator are then those depending on ηt+1. We can thus write

Eit
[
Ct+1 [κt, νt (i)]−1 ((1− δ)Qt+1 +Dt+1)

]
=
∞∑
k=0

ck(Kt+1, Bt)Eit[(ηt+1 − E[ηt+1])j ], (35)

where the coeffi cients ck(Kt+1, Bt) collect all the terms depending on the Kt+1, Bt, and higher

moments of η, ε̃, and νt(i).

We solve for the coeffi cients ck(·, ·) using standard perturbation methods which we describe
in section 5.2.

Next, take the term in the expectations operator on the right hand side and expand it to get

Eit[(ηt+1 − E[ηt+1])j ]

= Eit[
(
(ηt+1 − Eit[ηt+1]) + (Eit[ηt+1]− E[ηt+1])

)j
]

=

j∑
k=0

(
j

k

)
Eit
[
(ηt+1 − Eit[ηt+1])k(Eit[ηt+1]− E[ηt+1])j−k

]

=

j∑
k=0

(
j

k

)
Eit
[
(ηt+1 − Eit[ηt+1])k

]
(Eit[ηt+1]− E[ηt+1])j−k

=

j∑
k=0

(
j

k

)
m(k)(Eit[ηt+1] +

1

2
σ2
η)
j−k,

(36)

We get from the first row to the second row by adding and subtracting Eit[ηt+1]. From the

second to the third row we use the multinomial formula. In going from the third to the fourth row

we use the fact that the second term inside the expectations operator is known. In going from

the fourth to the fifth row we replace E[ηt+1] = −1
2σ

2
η and write m(k) = Eit

[
(ηt+1 − Eit[ηt+1])k

]
.

Households have the correct perception of all higher moments as given in (9). This means that

m(k) = Eit

[
(ηt+1 − Eit[ηt+1])k

]
for all k > 1,

where for k = 1, the expression collapses to zero. m (k) thus denotes the k-th moment of the

conditional distribution of η.
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Plugging (36) back into (35) demonstrates that the conditional expectation that households

hold of all higher-order terms in the Taylor series involving ηt+1 is a non-linear function of their

conditional expectation (the first moment) of ηt+1 and all higher conditional moments, m(k).

However, since ηt+1 is normally distributed, we know that its conditional distribution must

also be normal. Therefore all the higher conditional moments depend only on the conditional

variance and on known parameters. Moreover, the conditional variance is constant.

We can now collect terms in the expression above and integrate to get∫
Eit
(
Ct+1 [κt+1, νt (i)]−1 ((1− δ)Qt+1 +Dt+1)

)
di

=

∫ ∞∑
j=0

cj (Kt+1, Bt)

(
j∑

k=0

(
j

k

)
m (k)

(
Eit
[
ηt+1

]
− E

[
ηt+1

])j−k)
di (37)

In the last step, we want to replace individual expectations with the average expectation.

Therefore, we use (8) and (20) in combination with (3) and integrate over households to write

Eit[ηt+1] = A1νt(i) +

∫
Eit[ηt+1]di,

where A1νt(i) is the weight households put on their private signal multiplied with the idiosyn-

cratic noise in their private signal. This term represents the only source of idiosyncratic variation

in household expectations. We then substitute this expression into (37) and use the multinomial

formula to expand the sum in its polynomial terms. We then integrate over households. In

the resulting expression, all terms containing νt(i) give us the unconditional moments of the

distribution of ν, which is known.

Plugging the resulting expression back into (33) gives us the right-hand side of the equation as

a function of the capital stock Kt, bond holdings Bt−1, ηt, and
∫
Eit[ηt+1]di and the conditional

variance of ηt+1. This implies that the left hand side of the equation (and thus all period t

variables) is a function of the known state variables,
∫
Eit[ηt+1]di and νt (i). The shocks ηt+1

and ε̃t thus matter only insofar as they affect the average expectation held at time t. In sum,

we show that the stock price is a non-linear function of the average expectation of next period’s

productivity that depends on known state variables. We solve the expression for Qt and call the

expression on the right hand side h(·;Kt, Bt−1, ηt):

Qt =

∫
Eit
(
βCt+1[κt+1, νt+1 (i)]−1 ((1− δ)Qt+1 +Dt+1)

)
di∫

Ct[κt, νt (i)]−1

≡ h
(∫
Eit[ηt+1]di;Kt, Bt−1, ηt

) (38)
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Step 3: Non-linear change of variables.

The last step is to show that we can find a linear form for the stock price. We check

computationally that the function h(·;Kt, Bt−1, ηt) is invertible with

h(0;Kt, Bt−1, ηt) = 0 h′(·;Kt, Bt−1, ηt) > 0 h(∞;Kt, Bt−1, ηt) =∞. (39)

We can thus invert the relationship (38) to define the variable q̂t ≡ h−1 (Qt;Kt, Bt−1, ηt).

Therefore, we arrive at a linear form

q̂ = h−1

(
h(

∫
E
(
ηt+1|q̂t, st(i)

)
di);Kt, Bt−1, ηt

)
=

∫
E
(
ηt+1|q̂t, st(i)

)
di+ ε̃t.

Analogously, we solve for the consumption function.

B.2 Proof of Proposition 3.1

Matching coeffi cients between (21) and (19) yields three equations: A0 +A2π0=π0, A1 +A2π1 =

π1, and 1 +A2γ = γ. Solving the three equations and three unknowns yields

π0 =
A0

1−A2
, (40)

π1 =
A1

1−A2
, (41)

and

γ =
1

1−A2
. (42)

B.3 Proof of Proposition 3.3

The vector (ηt+1, st(i), q̂t) has the following variance covariance matrix:

Σ =

 σ2
η σ2

η π1σ
2
η

σ2
η σ2

η + σ2
ν π1σ

2
η

π1σ
2
η π1σ

2
η π2

1σ
2
η + γ2σ2

ε̃


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Applying the projection theorem yields the coeffi cients A1 and A2 that correspond to the rational

expectation of ηt+1 given st(i) and q̂t in (20):(
A1

A2

)
=
(
σ2
η π1σ

2
η

)( σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε̃

)−1

,

yielding

A1 =
γ2σ2

ησ
2
ε̃

γ2σ2
νσ

2
ε̃ + σ2

η

(
π2

1σ
2
ν + γ2σ2

ε̃

) , A2 =
π1σ

2
ησ

2
ν

γ2σ2
νσ

2
ε̃ + σ2

η

(
π2

1σ
2
ν + γ2σ2

ε̃

) . (43)

These coeffi cients are still functions of endogenous variables π1 and γ. Combining them with

equations (41) and (42) yields the following closed-form solutions:

γ =
1

6σ4
η

 2σ2
η

(
σ2
η − 2σ2

ν

)
+

221/3σ4η(σ2η+σ2ν)2σ2ε̃(
27σ12η σ

2
νσ

4
ε̃+2σ6η(σ2η+σ2ν)3σ6ε̃+3

√
3
√
σ18η σ

2
νσ

8
ε̃(27σ6ησ

2
ν+4(σ2η+σ2ν)3σ2ε̃)

)
1/3

+
22/3

(
27σ12η σ

2
νσ

4
ε̃+2σ6η(σ2η+σ2ν)3σ6ε̃+3

√
3
√
σ18η σ

2
νσ

8
ε̃(27σ6ησ

2
ν+4(σ2η+σ2ν)3σ2ε̃)

)
1/3

σ2ε̃


and

π1 = (922/3σ16η σ
2
νσ

6
ε̃ + 922/3σ14η σ

4
νσ

6
ε̃ + 22/3

√
3σ4ησ

2
ε̃

√
σ18η σ

2
νσ

8
ε̃

(
27σ6ησ

2
ν + 4

(
σ2η + σ2ν

)
3σ2ε̃
)

+22/3
√

3σ2ησ
2
νσ

2
ε̃

√
σ18η σ

2
νσ

8
ε̃

(
27σ6ησ

2
ν + 4

(
σ2η + σ2ν

)
3σ2ε̃
)
− 921/3σ12η σ

2
νσ

4
ε̃ (Ψ) 1/3

−21/3
√

3
√
σ18η σ

2
νσ

8
ε̃

(
27σ6ησ

2
ν + 4

(
σ2η + σ2ν

)
3σ2ε̃
)

(Ψ) 1/3 + 6σ10η σ
2
ε̃ (Ψ) 2/3)/

(
6σ10η σ

2
ε̃ (Ψ) 2/3

)
,

where Ψ =27σ12
η σ

2
νσ

4
ε̃ + 2σ6

η

(
σ2
η + σ2

ν

)
3σ6

ε̃ + 3
√

3
√
σ18
η σ

2
νσ

8
ε̃

(
27σ6

ησ
2
ν + 4

(
σ2
η + σ2

ν

)
3σ2

ε̃

)
. Given

these results

lim
σν→∞

V ar
(
ηt+1|st (i) , q̂t

)
σ2
η

= 1

can easily be calculated using a mathematical software package.

B.4 Conditional Variance

The projection theorem also gives us the conditional variance of ηt+1 as

V ar
(
ηt+1|q̂t, st (i)

)
= σ2

η −
(
σ2
η π1σ

2
η

)( σ2
η + σ2

ν π1σ
2
η

π1σ
2
η π2

1σ
2
η + γ2σ2

ε̃

)−1(
σ2
η

π1σ
2
η

)
(44)

=
γ2σ2

ησ
2
νσ

2
ε̃

γ2σ2
νσ

2
ε̃ + σ2

η

(
π2

1σ
2
ν + γ2σ2

ε̃

) . (45)

A closed form solution follows from combining this expression with equations (41) and (42).
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B.5 Proof of Proposition 3.2

The derivative ∂π1
∂σε̃

can easily be calculated from (41). However, the resulting expression is too

complex to be reproduced here. The fact that ∂π1
∂σε̃

< 0 can be verified using a mathematical

software package.

C Alternative Information Structures

This appendix discusses the case of more complex information environments.

C.1 Public Signal

Assume that households observe a public signal about future productivity in addition to the

private signal they receive,

gt = ηt+1 + ζt,

where ζt represents i.i.d. draws from a normal distribution with zero mean and variance σ2
ζ . We

may then guess that the solution for q̂t is some linear function of ηt+1, ζt, and ε̃t:

q̂t = π0 + π1ηt+1 + π2ζt + γε̃t,

where the rational expectation of ηt+1 given q̂t and the private and public signals is

Eit
(
ηt+1

)
= A0 +A1st(i) +A2q̂t +A3gt.

A matching coeffi cients algorithm parallel to that in Appendix B.2 gives

π1 =
A1 +A3

1−A2
, π2 =

A3

1−A2
, γ =

1

1−A2
.

The amplification of near-rational errors is thus influenced only in so far as that the presence

of public information may induce households to put less weight on the market price of capital

when forming their expectations.

The vector (ηt+1, st(i), q̂t, gt) has the following variance covariance matrix:


σ2
η σ2

η π1σ
2
η σ2

η

σ2
η σ2

η + σ2
ν π1σ

2
η σ2

η

π1σ
2
η π1σ

2
η π2

2σ
2
ζ + π2

1σ
2
η + γ2σ2

ε̃ π2σ
2
ζ + π1σ

2
η

σ2
η σ2

η π2σ
2
ζ + π1σ

2
η σ2

ζ + σ2
η


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Figure 7: Ratio of the conditional variance of the productivity shock to its unconditional variance
plotted over the level of dispersion of information, σν/ση, and for varying precisions of the public
signal. In each case, σε̃/ση is set to 0.01.

Solving the signal extraction problem returns

A1 =
γ2σ2ζσ

2
ησ

2
ε̃

σ2ζ(σ2η(γ2σ
2
ε̃+(π1−π2)2σ2ν)+γ2σ2νσ

2
ε̃)+γ2σ2ησ

2
νσ

2
ε̃

A2 =
(π1−π2)σ2ζσ

2
ησ

2
ν

σ2ζ(σ2η(γ2σ
2
ε̃+(π1−π2)2σ2ν)+γ2σ2νσ

2
ε̃)+γ2σ2ησ

2
νσ

2
ε̃

A3 =
σ2ησ

2
ν(γ2σ2ε̃+π2(π2−π1)σ2ζ)

σ2ζ(σ2η(γ2σ
2
ε̃+(π1−π2)2σ2ν)+γ2σ2νσ

2
ε̃)+γ2σ2ησ

2
νσ

2
ε̃

Based on these results Figure 7 plots the conditional variance of ηt+1 for the rational and near-

rational expectations equilibrium and for varying levels of precision of the public signal .

In the rational expectations equilibrium the provision of public information makes no differ-

ence, as households are already fully informed from the outset. In the near-rational expectations

equilibrium the presence of the public signal is relevant only insofar as a collapse of information

aggregation affects only the subset of information that is dispersed across households and not

the information that is publicly available. If the public information provided is relatively precise,
V ar(ηt+1|st(i),q̂t,gt)

σ2η
now converges to values less than one as σν goes to infinity.

C.2 Common Noise in Private Signals

Alternatively, we may consider a situation in which that the private signal received by households

contains some common noise:

st (i) = ηt+1 + νt (i) + ζt
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Figure 8: Ratio of the conditional variance of the productivity shock to its unconditional variance
plotted over the level of dispersion of information, σν/ση, and for varying amounts of aggregate
noise in the private signal.

In this case we may guess that

q̂t = π0 + π1

(
ηt+1 + ζt

)
+ γε̃t,

where both the rational expectation (20), and the coeffi cients π1 and γ are the ones given in the

main text. However, the variance covariance matrix of the vector (ηt+1, st(i), q̂t) changes to
σ2
η σ2

η π1σ
2
η

σ2
η σ2

ζ + σ2
η + σ2

ν π1

(
σ2
ζ + σ2

η

)
π1σ

2
η π1

(
σ2
ζ + σ2

η

) (
σ2
ζ + σ2

η

)
π2

1 + γ2σ2
ε̃

 ,

and we get

A1 =
γ2σ2ησ

2
ε̃

σ2ζ(γ2σ
2
ε̃+π

2
1σ

2
ν)+σ2η(γ2σ2ε̃+π

2
1σ

2
ν)+γ2σ2νσ

2
ε̃

A2 =
π1σ2ησ

2
ν

σ2ζ(γ2σ
2
ε̃+π

2
1σ

2
ν)+σ2η(γ2σ2ε̃+π

2
1σ

2
ν)+γ2σ2νσ

2
ε̃

.

Based on these calculations Figure 8 plots the conditional variance of ηt+1 for the rational and

near-rational expectations equilibrium and for varying levels of common noise in the private

signal. The more common noise there is in the private signal the less information is there to

aggregate, and the intercept of the curves in Figure 8 shift upwards.
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D Proof of Lemma 4.1

We can re-write (4) in Bellman form:

V (Wt, πt(i)) = max
Ct(i),ωt(i)

log(Ct(i)) + βEit [V (Wt+1, πt+1(i))] ,

where we abbreviate πt(i) = Eit (1 + r̃t+1) − (1 + r) and use the fact that beginning of period

wealth is the same for all households due to contingent claims payments. The conditions of

optimality are:
1

Ct(i)
= βEit

[
Rpi,t+1V

′(Wt+1, πt+1(i))
]
, (46)

Eit
(

(r̃t+1 − r) (Wt − Ct(i))V ′(Rpi,t+1(Wt − Ct(i)), πt+1(i))
)

= 0, (47)

and

V ′(Wt, πt(i)) = βEit
(
Rpi,t+1V

′(Wt+1, πt+1(i))
)
,

where Rpi,t+1 ≡ ((1− ωt(i))(1 + r) + ωt(i)(1 + r̃t+1)) and V ′ denotes ∂V
∂W . It follows immediately

that
1

Ct(i)
= V ′(Wt). (48)

Guess the value function:

Vt(Wt) = κ1 log (Wt) + κ2(πt(i)) + κ3 (49)

Verification yields:

κ1 =
1

1− β

κ2 =
1

1− β Eit

{ ∞∑
s=1

βs log(Rp∗t+s(i))

}

κ3 =
1

1− β log(1− β) +
β

(1− β)2
log(β),

where Rp∗t is the optimized portfolio return. Furthermore, the transversality condition has to

hold:

lim
s→∞

βsκ2(Rp∗t+s(i)) = 0

The first result in Proposition 4.1 follows directly from taking the derivative with respect to

Wt (i) in (49) and combining it with (48). For the second result, combine (47) with (49) to

obtain

(1 + r)Eit
(
Rpt+1(i)

)−1
= Eit

(
(1 + r̃t+1)

(
Rpt+1(i)

)−1
)
,
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take logs on both sides, use the fact that

log Eit (·) = Eit log (·) +
1

2
V ar (log (·)) ,

and re-arrange the resulting expression to recover (26).

E Solving for the stochastic steady state

E.1 Proof of Proposition 4.3

If at any time o the economy is at its stochastic steady state, we can write EoBo+1 = Bo,

EoKo+1 = Ko and Io = δKo, where Eo is the expectations operator, which conditions only on

the known state variables at time o, Eo (·) = E (·|Ko, Bo, ηo). From equation (13) it immediately

follows that Qo = EoQo+1 = 1 + δχ. We first calculate the steady state dividend, from which

we then back out the steady state capital stock. Finally we derive the steady state value of ω.

From equation (12),

Dt+1 = eηt+1FK (Kt+1, L) ,

At the steady state:

EoDo+1 = FK (Ko, L)

Taking the unconditional expectation of (27) and plugging in yields

r + ωoσ
2 = −δ +

1

1 + δχ
(FK (Ko, L))

and

(1 + δχ)
(
r + ωoσ

2 + δ
)

= FK (Ko, L) .

This proves the second statement in Proposition 4.3.

We now turn to solving for ωo. The first step is to derive the equilibrium resource constraint

for capitalists from (2), (12), (13), (24) and (16): From (16) we get that Wt−Ct = QtKt+1 +Bt

plugging this into (24) yields

QtKt+1 +Bt + Ct = (1 + r)Bt−1 + (Qt (1− δ) +Dt)Kt.

Now we can use (2) to eliminate Kt+1:

Qt (1− δ)Kt +QtIt +Bt + Ct = (1 + r)Bt−1 + (Qt (1− δ) +Dt)Kt.
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This simplifies to

QtIt +Bt + Ct = (1 + r)Bt−1 +DtKt. (50)

The next step is to re-write (50) in terms of Ko and ωo. For this purpose note that

Co = (1− β)Wo,

βWo = Ko (1 + δχ) +Bo,

Bo = βWo(1− ωo),

and

(1 + δχ)Ko = βWoωo

→ Bo =
1− ωo
ωo

(1 + δχ)Ko

Plugging these conditions into (50) and simplifying yields

(1 + δχ)

(
δ +

1− β
β

+
1− ωo
ωo

(
1− β
β
− r
))

= FK (Ko, L) (51)

We can eliminate Ko from this equation by substituting in (29). Some manipulations yield

ωo =

√
1

σ2

(
1− β
β
− r
)
,

proving the first statement in Proposition 4.3.

E.2 Proof of Proposition 4.4

Combining (28) and (29) and taking the total differential gives

dKo

dσ
=

1 + δχ

FKK (Ko, L)

(
1− β
β
− r
).5

.

Proposition 4.3 states that a stochastic steady state exists iff β ≤ 1
1+r . Proposition 4.4 then

follows directly from the fact that FKK (Kt, L) < 0.

F Decomposition of welfare losses

This section decomposes households’total welfare loss into components attributable to additional

variability of consumption and a distortion in level of consumption. Given the parameters of

the model and initial conditions Ko, ωo, Bo (see Appendix E), define the expected utility level
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of the average household in the near-rational expectations equilibrium U as

U = Eo

∫ ∞∑
t=0

βt log (Ct(i)) di,

where Eo is the expectations operator which conditions only on the known state variables at

time o, Eo (·) = E (·|Ko, Bo, ηo). Similarly, given the same parameters and initial conditions

define the expected utility level U∗ of transitioning to the stochastic steady state of the rational

expectations equilibrium as

U∗ = Eo

∫ ∞∑
t=0

βt log (C∗t (i)) di.

We can solve (30) for λ to obtain

1 + λ = exp [(EoU
∗ − EoU) (1− β)] . (52)

We now define a reference level of utility, Cσ. In this scenario, the path and the level of capital

accumulation remain the same as in the near-rational expectations equilibrium, but households

exogenously receive compensation for the variability in consumption which is due to η and

ε̃. In technical terms, we calculate the lifetime utility of households which consume Cσt =

C (Kt, Bt−1, 1, 1, 1, 0), rather than C
(
Kt, Bt−1, ηt, ηt+1, ε̃t, νt (i)

)
: Households are exogenously

given the level of consumption they would have received had productivity shocks and near

rational errors been at their mean.

Uσ = Eo

∫ ∞∑
t=0

βt log (Cσt (i)) di.

This reference level of utility allows us to calculate an upper bound for the welfare costs that

could be attributable to a higher volatility of consumption in the near-rational expectations

equilibrium versus the rational expectations equilibrium. The remainder of the difference be-

tween the reference utility and welfare in the rational expectations equilibrium must thus be

due to a distortion in the level of consumption.26 We can write

U∆ = U∗ − Uσ

We can now apply these definitions in (30):

1 + λ = exp [(U∗ − Uσ + Uσ − U) (1− β)]

26We subsume the second order effect due to the variability of the capital stock in this category.
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and

1 + λ = exp [(U∗ − Uσ) (1− β)]

· exp [(Uσ − U) (1− β)] .

This implies that

1 + λ =
(
1 + λ∆

)
(1 + λσ) .

G Construction of Moments

The unconditional standard deviation of stock returns is around 0.18 in international data

(Campbell (2003)). Regressing stock returns on lagged price dividend and price earnings ratios

(both variables available to the households in our model) yields an R2 of about 4% (Cochrane,

2005, p.393), suggesting that the conditional variance of stock returns in the data is about 0.17.

The correlation of stock price growth with one year ahead GDP growth is calculated from

the annual log returns on the S&P 500 given in

http : //pages.stern.nyu.edu/˜dbackus/Disasters/Matlab/Shiller_data.xls

and real GDP growth from the BEA NIPA tables.

The remaining moments are calculated using quarterly data from the survey of professional

forecasters provided by the Philadelphia Federal Reserve. We use an HP filter of 1600 to extract

the cyclical component of real quarterly GDP (CGDP ). The standard deviation of the average

forecast of GDP is calculated as std(CGDPt+predt)
std(CGDPt+realt)

, where predt is the average forecast of the annual

GDP growth rate between quarter t and quarter t+ 4 and realt is the realization of this growth

rate. The standard deviation of the average forecast error is calculated as std(predt−realt)
std(CGDPt+realt)

.

All moments are calculated based on data for the years 1969 - 2009.
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