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1 Introduction

A considerable literature has examined how households should optimally allocate their sav-

ings between stocks and bonds over their lifecycle. Samuelson (1969) and Merton (1969)

first addressed this problem in discrete and continuous time, respectively, assuming complete

markets without labor income. Merton (1971) then introduced deterministic labor income

into the continuous time framework while Bodie, Merton and Samuelson (1992) allowed for

it to be elastically supplied. In more recent years, attention has shifted toward examining how

the presence of uninsurable labor income risk and uncertain lifespans might impact savings

and portfolio allocations over the life cycle.1

It is well known, though, that the actual portfolio decisions made by households are not

consistent with standard expected-utility model. Households could, therefore, be making

large mistakes and suffering significant welfare losses.

The standard expected utility model predicts a very high stock allocation (near 100% or

even exceeding it2) early in life that declines with age as human capital depreciates. When

a simple representation of a social security system is included in the model, the optimal

allocation is then often “U shaped” in age, caused by an inflection point that emerges at the

point of retirement.3 The homotheticity property of the standard model also leads to a similar

lifetime stock-bond allocation across varying levels of permanent income.4

In contrast, the actual empirical evidence suggests three stylized facts: (I) the portfolio

share in equities is much less than 100% for most households; (II) the portfolio’s equity share

tends to be “hump shape” (∩) in age; and (III) the lifetime poor tend to invest less in equities

than richer households.5

1See Bertaut and Haliassos (1997); Gakidis (1998); Storesletten, Telmer, and Yaron (2000, 2007); Viceira
(2001); Bodie, Detemple, and Walter (2004); Benzoni, Collin-Dufresne and Goldstein (2004); Cocco, Gomes and
Maenhout (2005) and Gomes and Michaelides (2005). Related papers by Balduzzi and Lynch (1997), Brennan
and Xia (1998), Campbell and Viceira (1999), and Kim and Omberg (1996) study the effects caused by the
changes of riskfree interest rate or equity premium over the time. Carroll (2002) and Campbell and Cochrane
(1999) propose models in which risk aversion varies with wealth.

2See, for example, Ayres and Nalebuff (2008).
3These models tie the social security benefit to an individual’s final year of earnings prior to retirement to

simplify the state space. That background risk is suddenly eliminated upon reaching retirement, creating an
immediate reversal of the allocation.

4The homothetic property, however, is the easiest to break by including borrowing constraints or a social
security system with a flat benefit that does not scale to permanent income.

5See Ameriks and Zeldes 2000, Heaton and Lucas 2000, and Poterba and Samwick, 2002.
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Several modifications to the standard model have been proposed in the past to deal with or

more of these empirical facts. These alterations include the addition of liquidity constraints

(Brown 1990; Ameriks and Zeldes 2000), saving for illiquid assets such as a house (Faig

and Shum 2002), habit persistence utility (Polkovnichenko, 2007), and, incomplete trading

markets between generations in a real business cycle economy where wages and stock returns

are perfectly correlated (Storesletten, Telmer, and Yaron, 2007).

The current paper returns to the standard expected utility framework and simply con-

siders the impact of a more detailed modeling of the social security system. For a majority

U.S. households, the U.S. Social Security program is their largest source of retirement in-

come (Social Security Administration 2002). Incorporating the key details of the system,

therefore, could be quite important.

One key feature that has been missing in previous analyses is the wage-indexation of

social security benefits. (We also more fully model the progressive nature of benefits.) In

particular, when determining a pensioner’s initial benefit level at retirement, the retiree’s past

wages are adjusted upward by wage-indexed factors that track the growth in the economy-

wide average wage over time. Wage indexation is, therefore, naturally exposed to some

of the same productivity shocks that influence stock returns over long periods of time. Even

though a single person’s own wage, which includes all sorts of idiosyncratic shocks, is poorly

correlated with stock returns, the economy-wide average wage is empirically more highly

correlated, especially over the longer periods of time that are most relevant for computing so-

cial security benefits. Wage indexation, therefore, causes a potentially strong low-frequency

correlation with stock returns for young savers, which becomes less correlated as they age.

The presence of this large unchosen wage-indexed pension asset, as we show, fundamentally

alters the household decision rules over their lifecycle.

Our study focuses on the “optimal” lifecycle portfolio allocation (normative analysis).

Our intention is not to explain the empirical evidence per se (positive analysis). Nonetheless,

it is interestingly that the optimal allocations that we find are not so different from actual

empirical behavior under reasonable parameter assumptions. In fact, we find that the “errors”

being made by households often produce smaller welfare losses in our model relative to

the standard advice given by financial planners. This standard advice has been recently
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incorporated into popular “target date" mutual funds. These funds have grown enormously

in popularity during the past six years, encouraged by recent government policy. While this

policy might improve welfare for some households, it appears to decrease it for many others.

2 Empirical Evidence

Although our study primarily focuses on determining the optimal stock-bond portfolio over

the lifecycle, it is helpful to start with an overview of the actual behavior of U.S. households

as background. The Survey of Consumer Finances (SCF) is generally considered the best

data source for reporting the financial wealth of U.S. families. It provides comprehensive

coverage of different measures of wealth as well as key characteristics (age, education, etc.)

that tend to be correlated with wealth. The SCF is conducted every three years with different

families; we report evidence from sample in 2004.6 However, as Ameriks and Zeldes (2000)

warn, the exact magnitude of these estimates should be taken with a “grain of salt” due to

data definitions and other issues. Appendix A describes the definitions and variables from

SCF 2004 that we use in our empirical estimation.

Figure 1 reports the average (mean) percent of a household’s portfolio invested in risky

stocks by age for families in which the “household head” (primary earner) falls into one of

three different education groups: “No High School” education; with “High School” educa-

tion only; with “College” education. Households are grouped into five-year “age buckets” in

order to increase the sample size per cell. Figure 1 reveals the three key stylized facts: (I) the

portfolio share in equities is much less than 100% for most households; (II) the portfolio’s

equity share tends to be “hump shape” (∩) in age; and (III) the lifetime poor tend to invest

less in equities than richer households.

Figure 2 reports the average of total wealth relative to total (labor) income for these

same education groups, respectively. Overall, wealth-income ratios increase with age and

education. The age-shape of the accumulation profiles also suggest a significant bequest

motive that is increasing in the education class. However, the exact steepness post-retirement
6The SCF is a non-panel data dataset that uses a dual-frame sample design. One part is selected to obtain a

sufficiently large and unbiased sample. The other part is designed to disproportionately select wealthier families.
We use the provided weights to adjust the unequal probabilities of selection in the survey and for nonresponse.
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Figure 1: Stock Allocation from SCF2004

Figure 2: Wealth/Income Ratio from SCF2004
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should also be taken with a “grain of salt” due to potential survivor bias where wealthier

households tend to live longer on average.

We calibrate our model across different education groups using the population weighted

average wealth-income ratios presented in Figure 2. We then report how our resulting sim-

ulated portfolio allocations compare with the evidence shown in Figure 1. This approach to

calibration purposely reduces our ability to pick the model’s deep structural parameters in

order to try to simply match Figure 1. We will demonstrate that the stylized facts presented

in Figure 1 are potentially quite consistent with optimal decision rules within a standard

expected utility framework that is augmented with a wage-indexed social security system.

3 Specification of the Model

We now present a lifecycle portfolio choice model with standard preferences where house-

holds face uncertain wage earnings. Individuals make their consumption, saving and port-

folio decisions over risk-free bonds and risky stocks at the beginning of each period. Their

savings and portfolio choices are motivated by three main factors: precautionary savings in

the presence of incomplete insurance markets; consumption needs during retirement; and, a

joy-of-giving desire to leave a bequest. Individuals also pay a mandatory social security tax

during their working years in exchange for a benefit during retirement.

3.1 Preferences

Each individual i works from age t0 to retirement age M . The maximum length of life is

T and pt is the probability that the individual is still alive at age t + 1 conditional on being

alive at age t. Preferences take the standard Constant Relative Risk Aversion (CRRA) form

and are additively separable over time. The household’s maximum expected utility at t0 is

maxEt0

TX
t=t0

βt−t0

⎛⎝ t−2Y
j=t0−1

pj

⎞⎠Ãpt−1C1−γi,t

1− γ
+ b(1− pt−1)

W 1−γ
i,t

1− γ

!
(1)

where β < 1 is the weight placed on future utility, Ci,t is i’s consumption at age t, and γ

is the coefficient of relative risk aversion. Wi,t is the wealth (bequest) left at the time of the

death where b represents the intensity of the bequest motive.

5



3.2 Financial Assets

Investors have access to two investment instruments: risk-free bonds and risky stocks. The

riskless bonds pay a constant gross real return Rf , while the risky asset pays a gross real

return RS
t :

RS
t = Rf + μ+ ηt (2)

where μ is the deterministic equity premium and ηt is the innovation to this excess return

at time t. ηt is independently and identically distributed (i.i.d.) over time and normally

distributed N(0, ση).

3.3 Labor Income

Similar to Carroll (1997), Gourinchas and Parker (2002), Cocco, Gomes and Maenhout

(2005), and several other papers, exogenous labor income for agent i at time t is modeled as

Yi,t = exp(yi,t) with probability 1− λ (3)

= 0 with probability λ (4)

where λ is the probability of being unemployed. Before retirement, log income is composed

of three terms:

yi,t = g(t, Fi,t) + ωi,t + zi,t (5)

where g(t, Fi,t) is a deterministic function of age t and other individualistic characteristics

Fi,t. The term ωi,t is an idiosyncratic i.i.d. normally distributed shock N(0, σω). The

variable zi,t is a permanent first-order autoregressive shock:

zi,t = θzi,t−1 + ξt + φi,t (6)

with an autocorrelation coefficient equal to θ, an aggregate (economy-wide) component ξt
distributed i.i.d. N(0, σξ), and an idiosyncratic component φi,t distributed i.i.d. N(0, σφ).

We also allow the correlation between the innovation to excess stock returns ηt and the

aggregate labor income shock ξt to equal ρξη so that ηt and ξt are jointly bivariate distributed
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(see Appendix B).

Individuals pay a flat social security tax rate of τSS through their working years plus a

nonlinear labor income tax rate τw that is calibrated below. The (net of tax) disposable labor

income at time t for individual i, therefore, is:

Y d
i,t = (1− τSS)(1− τw [Yi,t])Yi,t for t < M (7)

= 0 for t ≥M

3.4 Wage-Indexed Social Security

In the United States, a retiree’s initial Social Security benefit level is calculated by first mul-

tiplying each year of his or her previous wage by the relevant wage-indexed factor. This

factor tracks the average wage growth experienced across the entire economy since the year

in which that particular wage was earned. For example, suppose that you retired today and

you earned $30,000 twenty years ago. Also suppose that the average wage in the economy

grew on average 5% (nominal) per year during the past 20 years. Your recorded wage of

$30,000 would, therefore, be multiplied upward by a factor of 1.0520 = 2.65, to create a

wage representation of $79,598.93 today. Similar wage factors are applied to each of your

other previous wages. Your individual Average Indexed Yearly Earnings (AIYE) is then set

equal to the average of these adjusted wages.7 Progressivity is then introduced by calculating

your Primary Insurance Amount (PIA) using a nonlinear (convex) function of your AIYE.

Your PIA then forms the basis of your Social Security benefit amount before some additional

adjustments are made (e.g., a spousal benefit).8

Empirically, these wage-index factors are highly correlated with stock returns over time.

At first glance, this fact might be surprising since wages and stock returns are not highly

correlated at “high frequency" (e.g., yearly) even at the sectorial level where some of the

idiosyncratic component has already been removed (e.g., Davis and Paul 2000). However,
7Technically speaking, in the United States, this calculation is done at monthly (not yearly) frequency to

calculuate the Average Indexed Monthly Earnings (AIME). Moreover, only the best “best 35” years of earnings
– those with the larged adjusted wages – are included in the AIME. We ignore these finer details in order to keep
the state space more manageable. The U.S. system also has a cap on yearly wages subject to the payroll tax, and
the AIME is, therefore, calculated over capped wages. Our calculations include this cap.

8Individuals with a larger AIYE receive a larger PIA, thereby recognizing that they paid more into the system.
However, the PIA / AIYE ratio – the “replacement rate” – is a declining function of the AIYE so that the lifetime
poor receives a relatively larger replacement rate of their previous earnings.
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idiosyncratic (including sector-specific) risks tend to cancel inside of the economy-wide av-

erage wage-index factor used by Social Security. Moreover, wage factors are often calculated

at a very “low frequency,” especially for wages earned early in the lifecycle. The economy-

wide average wage and stock returns are much more highly correlated at this low frequency

(Jermann, 1999).9

Returning to our model framework, social security benefits received at the point of re-

tirement at age M are a function of an individual’s Average Indexed Yearly Earnings (AIYE)

during their working years. The AIYE is calculated by adjusting upward each wage earned

by individual i during the previous year t by the growth in the aggregate (economy-wide)

average wage between year t and the retirement year, M . Denote Y A
t as the aggregate av-

erage wage level at time t. The appropriate wage index adjustment factor for wages earned

in year t, therefore, equals Y A
M

Y A
t

, which is the cumulative growth in aggregate wages between

times t and M . Individual i’s AIYE at the point of retirement, therefore, is equal to the sum

of all previous wages adjusted upward by their respective wage index factors, divided by the

number of working years:

Y i,M =
Yi,t0

Y A
M

Y A
t0

+ Yi,t0+1
Y A
M

Y A
t0+1

+ · · ·+ Yi,M−1
Y A
M

Y A
M−1

M − t0
(8)

=

µµ
Yi,t0

Y A
t0+1

Y A
t0

+ Yi,t0+1

¶
Y A
t0+2

Y A
t0+1

+ Yi,t0+2

¶
· · ·

M − t0

The aggregate wage level is modeled as a first-order autoregressive process with a unit-

root in logs:

Y A
t+1 = Y A

t · exp ξt+1 (9)

which we can rewrite as:

Y A
t+1

Y A
t

= exp ξt+1 (10)

We can then track individual i’s AIYE at each age based on his AIYE in the previous age
9This result is consistent with a neoclassical model with shocks to productivity and depreciation.
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with the additional of just one state variable:

Y i,t+1 =
(t− t0)Y i,t · exp ξt+1 + Yi,t+1

t− t0 + 1
(11)

Social security benefits at retirement, therefore, are a function of individual i’s AIYE:

SSi,t = Q
¡
Y i,M

¢
for t ≥M

= 0 for t < M

where Q() is a nonlinear function calibrated to the U.S. Social Security system (discussed

below).

The correlation between the aggregate average wage and stock returns, therefore, is

ρξη =
cov(ξt,ηt)
σξ·ση . However, the correlation between individual i’s (log) wage and stock

returns is approximately one-fourth of the size due to additional idiosyncratic risk that is

present in the individuals wage:

ρyη =
cov (ξt, ηt)

ση ·
q
σ2ξ + σ2

φ
+ σ2

ω

≈ cov (ξt, ηt)

ση ·
q
16 · σ2

ω

=
cov (ξt, ηt)

4 · σξ · ση

The distinction between these correlations allows us to increase the aggregate average wage

correlation with stocks (without the idiosyncratic terms) to a larger low-frequency value

while preserving a much smaller correlation value that households individually face at high

frequency (with idiosyncratic terms).10

3.5 Optimization Problem

As in several previous papers, we treat the share of income spent on housing, ht, as an

“above-the-line” expense (in both model and data) that exogenously reduces disposable in-

come. In each period t, individual i has some “cash on hand” denoted as Xi,t, which is

composed of the following resources: wealth Wi,t at the beginning of each period (which is

equal to the bequest in the case of death), plus disposable income net of housing expenditures
10The aggregate average wage correlation with stocks will, therefore, also be large even at a high frequency.

However, as described in the text, any individual household’s wage contains idiosyncractic components that
substantially reduce its own high frequency correlation with stock returns. Only wage-indexed factors and stock
returns are highly correlated at low frequency for households.
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received before retirement, plus social security benefits (after retirement):

Xi,t =Wi,t + (1− ht)Y
d
i,t + SSi,t (12)

Given the cash on hand at time t, individual i then jointly decides how much to consume Ci,t

and the share of the residual savings, Xi,t − Ci,t, that is invested into risky equities versus

risk-free bonds. Denote αi,t as the proportion invested into the risky asset; hence, (1− αi,t)

is the share invested into risk-free bonds. We assume αi,t ∈ [0, 1], so that the allocation into

bonds and stocks has to be non-negative during any period.11

For calibration purposes, we allow the investment return to be taxed at a rate τd. Ri,t

denotes the total gross real return on the portfolio at time t. When the net stock return is

positive RS
i,t > 1, the investor is taxed on both asset classes; otherwise, only the risk-free

asset is taxed:12

Ri,t =
£
αi,t ·RS

i,t + (1− αi,t) ·Rf − 1
¤
· (1− τd) + 1 for RS

i,t > 1 (13)

= αi,t ·RS
i,t + (1− αi,t) · [(Rf − 1) · (1− τd) + 1] for RS

i,t ≤ 1

Putting these pieces together, the amount of wealth in the following period t+1 equals13

Wi,t+1 = Ri,t(Xi,t − Ci,t) (14)

The model, therefore, has four state variables,
©
t,Xi,t, zi,t, Y i,t+1

ª
, along with two age-

indexed control variables: {Ci,t, αi,t}Tt=t0 .
14 Individual i’s maximization problem can be

11A short position in equities (α < 0) would expose agent i to potentially unbounded losses, a risk that would
never be taken under the Inada conditions implied by CRRA utility. However, a short position in bonds (α > 1)
is possible (with a low CRRA parameter γ and a large enough equity premium η) provided that unemployement
risk where zero (λ = 0) so there is some present value of “safe” future labor income.

12Thus, we take a conservative view on the value of the carry forward provisions in the tax law for loss offsets.
13In some simulation results not reported herein, we imposed the constraint that the total amount of saving

invested into the risky asset αi,t(Xi,t − Ci,t) exceed a minimum threshold m in each period of life. This
constraint is potentially relevant for households without access to employer-based defined-contribution plans.
However, this constraint did not seem to materially impact our key results.

14Despite our choice of homothetic utility, our model is not homogenous of degree 1 due to the presence
of nonlinear fiscal policies. We, therefore, cannot drop the current state of income. We must also track the
household’s average wage.
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restated recursively as follows

Vi,t(Xi,t, zi,t) = max
Ci,t,αi,t

(
(Ci,t)

1−γ

1− γ
+ βEt

"
pt · Vi,t+1 (Xi,t+1, zi,t+1) + b(1− pt) ·

Ã
(Wi,t+1)

1−γ

1− γ

!#)
(15)

subject to15

αi,t ∈ [0, 1] (16)

Xi,t+1 = Ri,t(Xi,t − Ci,t) + (1− ht+1)Y
d
i,t+1 + SSi,t (17)

3.6 Numerical Solution

This maximization problem cannot be solved analytically. So numerical dynamic program-

ming methods are used. We pay a considerable amount of attention to “implementation

details" in order to ensure that our results produced small Euler errors away from boundaries

(Appendix C), which is ultimately the best way to double-check the accuracy of the results.

The model is solved using backward iteration over the time (that is, age) dimension

to derive the policy functions Ci,t(Xi,t, zi,t, Y i,t+1) and αi,t(Xi,t, zi,t, Y i,t+1).The continu-

ous state space is approximated using a power-spaced discrete grid. The value of the func-

tion Vi,t+1 must be approximated between grid points across the three non-time dimensions:

Schumaker shape-preserving quadratic splines are used for interpolating within the cash-on-

hand dimension while bilinear interpolation is inside the other two dimensions.16 There exist

three labor income shocks (ωi,t, ξt and φi,t) as well as uncertainty in excess stock returns ηt.

Gauss-Hermite quadrature is used for the numerical integration to compute the expectations.

However, since the innovations to stock returns are allowed to be correlated with an aggre-
15We also require that total savings at time t be positive (i.e., (Xi,t − Ci,t) > 0) to prevent any attempt to

borrow against the “safe” portion of future labor income or social security benefits. To be sure, this constraint
should also never bind for households before retirement under the Inada conditions. The reason is that, under our
distributional assumptions, the individual i’s labor income in any year could be zero, as could the aggregate wage
index factor. (In other words, there is actually no positive levels of “safe” labor or social security income prior
to retirement.) Of course, in actual simulations, both of these terms must be bounded above zero when using
standard numerical integration methods. Hence, the constraint is enforced by making sure that the minimum
integrated node is sufficiently small.

16We thanks Ken Judd for this suggestion. Consistent with suggestions in Judd (1998), we found several
other approximation methods to be very inaccurate, including Chebyshev polynomials. Schumaker splines do
not generalize easily to more than one dimension.
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gate permanent income shock, a transformation to the Gauss-Hermite quadrature is required

in order to implement the bivariate normal distribution (Appendix B). Maximization at each

grid point is performed using a combination of simplex optimization (Nelder-Mead) and

Brent’s method. While slower than gradient-based methods, they are more reliable.17

Correctly imposing the constraint (16) requires some care. The optimization problem is

first solved (using simplex optimization) at the given grid point without the constraint (16)

imposed. If the constraint (16) is not violated then that solution is obviously used. Otherwise,

two additional conditional optimization problems are solved (now using Brent’s method):

where αi,t = 0 and where αi,t = 1. The best solution (highest value function) of those

two optimizations is then chosen, which under our convexity assumptions, must be larger

than any interior point where 0 < αi,t < 1. Solving individual i’s lifetime maximization

problem, therefore, requires up to 600,000,000 optimization subproblems to be solved.18

The simulation is solved with FORTRAN 90 MPI using a grid network with parallelizatio.

Following Judd (1992, 1998), the accuracy of any simulation is judged from the Euler

equation errors produced by the approximation. Appendix C describes how we calculate

the Euler errors for our model as a fraction of consumption, thereby giving a meaningful

(scale independent) interpretation to the errors. Except at corner constraints (where the Euler

equation does not hold), the optimizations are required to satisfy a small sup norm error.

4 Calibration

Our model is calibrated to the United States economy in 2004, prior to the rise of target

date funds. We group individuals by their maximum amount of education obtained: i ∈

{“No High School”,“High School”, “College”}. Specifically, individuals with “No High

School” do not have a high school diploma; individuals with “High School” have a high

school diploma but not college; individuals with “College” have obtained a college degree.
17Several other maximization methods and approaches were explored, including derivative-based methods as

well as quasi-Newton methods that ensure a correctly signed inverse Hessian matrix. A high-end commerical
package was also tested. However, none of them were either as accurate (based on Euler Equation errors) or even
as as fast (due to many interations caused by instability) as the approaches that we eventually settled upon.

18We reject any simulation (and, hence, try another approach) if any of the subproblems fail to solve. Hence,
we are forced to use methods that are very stable and perform well globally.
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4.1 Preferences

Individual iwithout a college degree starts working at age 20 while individuals with a college

degree begin working at age 22. All households retire at age 65 and can live up to age

100. The mortality data for the whole population follow the National Vital Statistics Reports

from National Center for Health Statistics (Elizabeth Arias 2004). The benchmark bequest

intensity parameter b is set equal to 3 to help best calibrate the model.

4.2 Asset Properties

The riskfree return Rf is set equal to 2.00% while the average equity premium μ is equal to

4.00% per year, close to their empirical averages. The standard deviation of the innovation

to excess returns ση is set equal to its historical value 0.157.19 Empirically, the correlation

of stocks and individual i’s wages at an annual frequency ρyη is fairly small. The value of

the correlation between the aggregate average wage and stock returns ρξη, however, is quite

large at a low (30-year) frequency, although it is measured with considerable uncertainty. We

use a point estimate of 0.80 as our benchmark parameter which is consistent with Jermann

(1999) and with our own estimates.

4.3 Labor Income and Housing Expenditures

Our labor income process follows the careful empirical analysis of Cocco, Gomes and Maen-

hout (CGM) (2005), who used the Panel Study of Income Dynamics (PSID) to estimate the

deterministic function of labor income g(t, Fi,t), which they interpret broadly to include

all of the sources of income listed in Appendix A. The variable g(t, Fi,t) is assumed to be

additively separable in t and Fi,t and a third-order polynomial that is estimated to fit the

age-wage profiles. Like them, we adopt the variances of transitory shocks and permanent

shocks on labor income from Carroll (1997). The unemployment probability is set to be

0.5%, approximately equal to the percentage of zero income observations in CGM. The cor-

relation coefficient between stock returns shocks and labor income shocks follows Campbell
19This value has been used in a couple previous papers; most of the literature uses a value between 0.15 - 0.20.
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Table 1: Common Parameters in All Simulations
Description Parameter Value
Start working age (t0) 20/22
Retirement age (M ) 65
Coefficient of relative risk aversion (γ) 5
Riskless returns (Rf ) 1.02
Mean risky returns (Rf + μ) 1.06
Variance of transitory income shocks (σ2ω) 0.01
Variance of permanent income shocks (σ2u) 0.01
Standard deviation of stock returns (ση) 0.157
Correlation between stock returns and income shocks (ρξη) 0.8
Social security tax rate (τSS) 0.124
Investment return tax rate (τSS) 0.20
Bequest intensity (b) 3
Unemployment probability (λ) 0.5%
Minimum income (m) $10,000
Marital status single
Family size 1

Table 2: Labor Income Process
Coefficient of characteristic variables for labor income No High School High School College
Constant 2.6275 2.7004 2.3831
Marital status 0.4008 0.4437 0.4831
Family size -0.0176 -0.0236 -0.0228
Coefficient of age dummies for labor income
Constant -2.1361 -2.1700 -4.3148
Age 0.1684 0.1682 0.3194
Age2/10 -0.0353 -0.0323 -0.0577
Age3/100 0.0023 0.0020 0.0033

et al. (2001).20 We also impose a minimum income threshold of $10,000 to model the safety

net for poor people.21 The share of expenditures spent on housing ht is taken from Gomes

and Michaelides (2005), which they estimate using PSID data between 1976 and 1993 as a

function of age. Table 1 reports the key parameter values while Table 2 reports the income

process coefficients by education grouping.
20Since the underlying data was in 1992 dollars while the fiscal policy part of our model is scaled to 2004

dollars, we use the change in the Consumer Price Index 34.11% as the inflation rate from 1992 to 2004.
21This threshold is approximately equal to the 2004 US Department of Health & Human services poverty

threshold. See http://aspe.hhs.gov/poverty/04poverty.shtml

14



Table 3: 2004 Progressive Federal Personal Income Tax Rates
Tax Rate Single Filers

10% Up to $7,150
15% $7,151 - $29,050
25% $29,051 - $70,350
28% $70,351 - $146,750
33% $146,751 - $319,100
35% $319,101 or more

4.4 Progressive Federal Tax and Social Security Benefit Formula

We adopt the 2004 federal personal income tax rates (shown in Table 3 for single filers).

Taxes on both risky and riskless asset returns τd are set at proportional rate of 20%.The

social security tax rate τSS is 12.4%. After calculating the AIYE, we calculate the annual

social security benefit using the following three-region “bend point” formula used by the

U.S. Social Security system in 2004: 90 percent of the first $7,344 of AIYE, plus 32 percent

of the AIYE over $7,344 through 44,268, plus 15 percent of the AIYE above 44,268.

5 Results for High School Education

After obtaining the optimal policy functions for each grid point on the state, we generate an

initial distribution of random variables for labor income shocks and portfolio return shocks

then simulate over 10,000 households. This section reports the average (mean) outcomes by

age for those individuals in the middle education group, namely, those people with a high

school degree. We calibrate the value of β = 0.9 so that the model generates a population-

weighted average wealth-income ratio that is close to its empirical counterpart for the High

School group.22

Figure 3 shows the average labor (plus social security) income and consumption profiles

by age for the High School group. Average labor income takes the standard “hump shape”

(∩) and drops to zero at retirement when Social Security benefits become positive. Con-

sumption is also hump shaped, which is not standard in a deterministic lifecycle model where

consumption should be monotonic in age. Intuitively, in the presence of income uncertainty
22Hence, we are not separately targeting the portfolio choice over the lifecycle. Moreoever, we are not able to

control the wealth-income ratio over the entire lifecycle.
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Figure 3: Income and Consumption Profile for High School Group

and CRRA utility (where the third derivative in consumption is positive), individuals save for

precautionary reasons in addition to standard retirement reasons. Hump-shaped consumption

profiles emerge as a combination of precautionary savings and impatience, producing an op-

timal consumption path that often closely tracks income (Zeldes 1989; Deaton 1991; Carroll

1992; Hubbard, Skinner and Zeldes 1994).

Figure 4 shows that the model’s simulated wealth-income ratio appears to match the data

quite closely over the lifecycle. One obvious exception is at the oldest age group where

survivor bias might play a role in the data since wealthier households tend to live longer

than poorer households. Our simulations do not attempt to correct for this wealth-longevity

correlation.23

Figure 5 shows the share of financial assets allocated to stocks versus bonds for the

benchmark case as well as the empirical allocation in the SCF from Figure 1. Notice that the

simulated stock allocation is much less than 100% and fairly close to the actual empirical
23While allowing for a wealth-longevity correlation would not require an additional state variable, it is actually

fairly complicated when γ > 1, due to negative utility. In particular, longer longevity would actually reduce
utility. In effect, allowing for longer longevity changes the preference parameters (the augmented utility weight)
of an individual, making it difficult to compare.
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Figure 4: High School Group Wealth/Income Ratio

Figure 5: High School Group Stock Allocation
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data. This result is in contrast to the traditional lifecycle model where the stock allocation is

near 100% when young and decreases to about 60% nearer retirement. Moreover, the stock

allocation profile in Figure 5 is fairly reasonable to the “hump shape” (∩) pattern observed in

empirical data. Of course, the results are not a perfect fit by any means. Our model is clearly

stylized and the data itself likely also contains a fair amount of “noise.”

The hump shape is produced by the model in presence of several competing factors that

vary by age. First, risky stocks and social security are highly substitutable during young ages

where aggregate wage-indexed social security benefits are still quite uncertain. However, as a

person ages, bonds and social security become more substitutable over time as social security

benefits accrue and the potential risk in the wage-indexed factor is reduced. The net effect

is to cause the allocation in stocks to start relatively low at a young age and then increase in

age. Second, similar to previous models, agent i’s specific human capital depreciates over

the lifecycle. Since stock returns and individual wages are not highly correlated, this effect

produces a larger stock allocation in middle age that then decreases with additional age.

Third, the background risk caused by non-insurability of human capital returns interacting

with the utility function’s Inada condition diminishes over the lifecycle, which can increase

the share allocated toward risky stocks. Putting these competing factors together produces a

“hump” shaped stock allocation.

In fact, a “second hump” (creating a “M” like pattern) also emerges as households retire.

After retirement – that is, once the initial benefit amount is calculated – Social Security

benefits are not adjusted for wage growth and only keep pace with inflation. As households

retire and the Social Security benefit is safe, households with longer horizons (more weight

on future utility) will shift their allocation again toward stocks.

6 College and No High School

We also calibrated our model for the College and No High School groups by targetting

the empirical population-weighted average wealth-income ratios for the respective educa-

tion group. The resulting value of β is equal to 0.95 for the College group and 0.8 for No

High School group. (Recall that β = 0.9 for the baseline High School group considered

earlier.) Notice that the required calibrated value of β increases with education level, which
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Figure 6: College Group Wealth/Income Ratio

Figure 7: College Group Stock Allocation
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Figure 8: No High School Group Wealth/Income Ratio

Figure 9: No High School Group Stock Allocation
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is intuitive because the education decision likely reflects their time preferences. People who

choose to invest in more education are likely to be relatively more patient.

Figures 6 and 8 show the corresponding lifecycle wealth-income ratios for each education

group, compared with the empirical counterpart. Figure 7 and 9 show the stock allocation

for College group and the No High School group, respectively. The stock allocation pattern

produced by the model for households with College eduction (Figures 7) is similar to the

benchmark High School group considered earlier. One key exception is that College educated

households hold relative more equities at younger ages, which produces a smoother portoflio

over the lifecycle. Intuitively, the progressive nature of Social Security benefits in our model

implies that wage indexation is relatively less important for College educated households. As

a result, a College educated household invests a greater fraction of their assets into equities

at a younger age relative to the High School group (i.e., our model is not homogenous of

degree 1). Consistently, the poorest No High School group hold fewer equities (Figure 9).

7 Sensitivity Analysis

7.1 Low correlation between aggregate average wage and stock returns

To explore the importance of the role of wage-indexed Social Security, Figure 10 shows the

stock allocation of the benchmark High School group when the correlation between the ag-

gregate average wage and stock returns is smaller (ρξη = 0.15). The results are similar to

those found in previous papers. The stock allocation starts near 100% for younger house-

holds and declines over time. Reducing the correlation between the aggregate average wage

and stock returns makes social security less correlated with stocks, therefore significantly

increasing the demand for stocks.

7.2 Risk aversion

We now also show the results for the High School group with a lower risk aversion (γ = 3)

and with a higher risk aversion (γ = 7). In order to rematch the empirical average wealth-

income ratio, the beta is recalibrated accordingly (0.95 for γ = 3 and 0.8 for γ = 7).

Figure 11 shows the stock allocation when risk aversion is low (γ = 3). Since households

are less risk averse relative to the baseline, their stock allocation is relatively larger and close
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Figure 10: Stock Allocation with Low Correlation

to 100% throughout the entire lifecycle. Figure 12 shows the stock allocation when risk

aversion is large (γ = 7). Now, the stock allocation is much lower than the benchmark and

the empirical data.

8 Target Date Funds

“Target date” (or “lifecycle”) funds have grown enormously during the past five years in the

United States.24 A given target date fund targets a given retirement date (e.g., 2035) and au-

tomatically rebalance the stock-bond allocation over time toward more bonds as the targeted

retirement date is approached. Their main purpose is to essentially simplify the portfolio al-

location process along the lines that is consistent with the traditional financial advice, thereby

reducing “mistakes.” The Pension Protection Act of 2006 increased the popularity of target

date funds by allowing employers to make them the “default option” in their 401(k) plans

without fear of liability.25 Of the 380 target-date funds currently in existence, more than 300
24The SCF data presented herein corresponds to a period before the popularity of target date funds.
25To encourage savings by less affluent households, the Pension Protection Act of 2006 allows for automatic

(“opt out”) enrollment, which is especially important for less affluent households who do not make active deci-
sions. Plan sponsors (employers) are protected from liability associated with potential future losses in fund value
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Figure 11: Stock Allocation with Low Risk Aversion

Figure 12: Stock Allocation with High Risk Aversion
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Figure 13: Model Generated Stock Allocation vs. Data and Target Date Fund

are less than six years old and have originated after the 2004 SCF data was collected.26

Of course, relative to our model, any lifecycle allocation rule would, by definition, pro-

duce a lower level of welfare than the age-based allocation produced by our model itself.

So, we instead ask a more meaningful question: do target date funds actually produce a

higher level of welfare relative to what households were achieving on their own before they

these funds were introduced? In other words, do target date funds potentially introduce more

mistakes than what households were already making?

Figure 13 shows the lifecycle stock allocation corresponding to a standard target date

fund (“Advisory”), which starts at 90% and declines over time to about 20% by age 99. This

allocation is informally recommended by the U.S. Securities and Exchange Commission.27

It is also very similar to allocations offered by commercial providers. For comparison, Figure

13 also shows the actual empirical allocation for our baseline “High School” education class

(“Data”) as well as our model generated allocation (“Model”).

if they follow the safe harbor guidelines of a Qualified Default Investment Account (QDIA). Target date funds
are an acceptable and popular QDIA choice.

26http://money.cnn.com/2009/04/27/news/companies/kimes_targetfunds.fortune/index.htm?postversion=2009042713
27http://www.sec.gov/investor/pubs/assetallocation.htm
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Notice that above age 55, the Advisory allocation already closely tracks the Data alloca-

tion pretty well. As a result, a target date fund provides very little opportunity to improve

welfare for older households relative to their existing behavior; indeed, older households

with more assets are already likely to be aware of the traditional advice that underlies the

target date funds. For households between age 35 and 50, the Advisory allocation traces the

optimal Model allocation fairly well, indicating that the target date fund may provide optimal

recommendation. However, for household before age 35, the Model allocation is generally

closer to the Data allocation relative to the Advisory allocation. This fact suggests that the

adoption of a target date fund could be welfare decreasing; households might be better off

with their current allocations. Overall, the effect on lifetime utility, therefore, is ambiguous

and needs formal measurement.

To measure the change in welfare from adopting a target date fund, we solve a con-

strained version of our model where the asset allocation is taken as exogenous. The con-

strained optimal solution is calculated under the Advisory allocation. The constrained opti-

mal solution is also calculated under the Data allocation shown in Figure 13. In each case,

households are allowed to reoptimize their lifetime savings decision under the given sttock-

bond allocation.

Let Ω =
R
X

R
z Vi,20(Xi,20, zi,20)dX20dz20 denote the ex-ante expected utility at age 20

across the different sources of uncertainty upon entering age 20. The corresponding com-

pensating variation (welfare change) associated with adopting the target date fund at age 20

is then defined as
h
ΩAdvisory

ΩData

i 1
1−γ − 1, where ΩAdvisory and ΩData are the expected utilities

from the Advisory and Data allocations, respectively. A positive compensating variation in-

dicates a welfare gain from adopting the target date allocation, while a negative compensating

variation indicates a welfare loss.

The compensating variation for the College group and No High School group are both

negative (at -0.2% and -0.3% respectively), indicating a small welfare loss from adopting the

target date fund. The compensating variation for the High School education group, though,

is positive (about 1.4%), indicating a small welfare gain from adopting the target date fund.

These losses grow (and the positive gain turns negative) at higher level of risk aversion,

which, incidentially, is consistent with the literature examining the equity premium puzzle.
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It is, therefore, unclear that the recent government policy encouraging the adoptation of

target funds actually improves welfare. Of course, more work on this issue is needed. To the

extent that target date funds move people to save and invest in the first place, they could be

welfare improving. However, to the extent that an otherwise participating household believes

that a target date fund was created by experts and provides a better allocation, investing

in the target date fund could be welfare decreasing. Future analysis should consider these

counterfactual scenarios at the household level in more detail.

9 Conclusion

Social security benefits are the largest asset for a majority of U.S. households. This paper

examines how households should optimally allocate their portfolio choices between stocks

and bonds when we recognize that this large unchosen benefit is progressive and wage in-

dexed. The household decision rules are fundamentally altered. Empirically, households

appear to be doing quite well and make only small “mistakes” at reasonable parameter val-

ues. Recent government attempts to simplify the investment process could very well leave

many households worse off.
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Appendix A
To construct the the household income, we include wages and salaries (X5702), prac-

tice/business/partnership/farm income (X5704), rent/trusts/royolties (X5714), unemployment
or worker’s compensation (X5716), child support or alimony (X5718), food stamps and wel-
fare income (X5720) and other income (X5724).

Bonds and stocks are constructed as follows. All the acronym-variables are defined in
the SAS program supplied by the SCF, which creates summary variables for SCF. Bonds
consist of SAVING and MMA (savings and money market accounts), CDS (cerfiticates of
deposit), TFBMUTF (tax free bond mutual funds), GBMUTF (government bond mutual
funds), OBMUTF (other bond mutual funds), BOND (state, US government and corporate
bonds), SAVBND (saving bonds) and COMUTF (combination and other mutual funds), for
which we assume that half is invested to bonds. We also add ANNUIT (annuities) and
TRUSTS (trusts), for which we count the full value if the individuals invest all in interest
earning assets, while the percentage other than stock allocation if the individuals split the
investment. Other bond investment includes bonds in IRA/KEOGH plans, bonds in account-
type retirement plans and FUTPEN (other future pension benefits). We also subtract CCBAL
(revolving credit card debt), OTHLOC (unsecured loans and loans secured by pensions)
and other debt, which includes loans against pensions (X11027, X11127, X11327, X11427,
X11527), loans against life insurance (X4010) and loans against margin loans (X3932).

Stocks are made up of STOCKS (directly held stocks), STMUTF (stock mutual funds),
half of COMUTF (combination and other mutual funds), OMUTF (other non-bond mutual
funds), PENEQ (thrift amounts invested in stock), ANNUIT (annuities) and TRUSTS (trusts)
that are invested in stocks. Other stock investment includes stocks in IRA/KEOGH plans,
stocks in account-type retirement plans and FUTPEN (other future pension benefits).

The total financial wealth is defined as the total of bonds, stocks, CHECKING (checking
accounts) and CALL (call accounts).
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Appendix B
f(·) denotes the p.d.f. of the variables. I, J,K,L are the numbers of interpolation nodes

for labor income shocks and stock returns shocks η, ξ, ω, φ, respectively. The distributions
of the shocks are summarized as,

ω
d−→ N(μω, σ

2
ω) (18)

φ
d−→ N(μφ, σ

2
φ) (19)

µ
η

ξ

¶
d−→ N

µ
μη
μξ

,
σ2η ρξησξση

ρξησξση σ2ξ

¶
(20)

For each individual i, at any time t and any state point (Xi,t, zi,t), the expectation of the
value function can be expressed as follows.

EξηωφVt(ξ, η, ω, φ,Xt, zt) =

∞Z
−∞

∞Z
−∞

∞Z
−∞

∞Z
−∞

Vt(ξ, η, ω, φ,Xt, zt)f(ξ, η, ω, φ)dξdηdωdφ (21)

=

∞Z
−∞

∞Z
−∞

∞Z
−∞

∞Z
−∞

Vt(ξ, η, ω, φ,Xt, zt)f(η|ξ)dη · f(ξ)dξ · f(ω)dω · f(φ)dφ

For the bivariate normal distribution, the conditional distribution for one of the variables,
given the value for the other variable, is normally distributed. Therefore,

η|ξ d−→ N(μη|ξ, σ
2
η|ξ) (22)

where

μη|ξ = μη +
ρξηση

σξ
(ξ − μξ) (23)

σ2η|ξ = σ2η(1− ρ2ξη) (24)

Following P.262 of Kenneth Judd, if a normal random variableX is distributedN(μ, σ2),
then the general Gauss-Hermite quadrature rule for expectation of X is as follows,
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E(X) = π−1/2
nX
i=1

wi · (
√
2σxi + μ)

where wi are the Gauss-Hermite quadrature weights, and xi are the quadrature nodes,
i = 1, 2, ..., n.

So, the functional approximation of Gauss-Hermite quadrature to η is

EξηωφVt(ξ, η, ω, φ,Xt, zt) = π−
1
2

∞Z
−∞

∞Z
−∞

∞Z
−∞

IX
i=1

wi,ηVt(ξ,
√
2ση|ξ + μη|ξ, ω, φ,Xt, zt) (25)

· f(ξ)dξ · f(ω)dω · f(φ)dφ

= π−
1
2

∞Z
−∞

∞Z
−∞

∞Z
−∞

IX
i=1

wi,ηVt(ξ,
√
2ση

q
1− ρ2ξηηi + μη +

ρξηση

σξ
(ξ − μξ), ω, φ,Xt, zt) · f(ξ)dξ · f(ω)dω · f(φ)dφ

where wi,η is the weights, ηi is the nodes over [−∞,∞].The procedure of discretizing ξ
is to substitute

√
2σξξj + μξ for ξ, which yields the following,

EξηωφVt(ξ, η, ω, φ,Xt, zt) (26)

= π−1
∞Z
−∞

∞Z
−∞

JX
j=1

IX
i=1

wi,ηwj,ξVt(
√
2ση(

q
1− ρ2ξηηj + ρξηξj) + μη, ω, φ,Xt, zt) · f(ω)dω · f(φ)dφ

Again wj,ξ and ξj are the Gauss-Hermite quadrature weights and nodes, respetively. Pro-
ceeding with the integral over ω and φ,

EξηωφVt(ξ, η, ω, φ,Xt, zt) (27)

= π−2
LX
l=1

KX
k=1

JX
j=1

IX
i=1

wi,ηwj,ξwk,ωwl,φ · Vt(
√
2ση(

q
1− ρ2ξηηj + ρξηξj) + μη,

√
2σωωk

+ uw,
√
2σφφl + uφ;Xt, zt)

This model is expensive to compute. The number of nodes in the dynamic programming
tree is I×J×K×L×T×S1×S2×S3×2, where I, J,K,L are the nodes for different shocks
as described above, T is the maximum age that individual can live up to, S1, S2 and S3 are
the numbers of nodes for three state variables separately. Taking 80 as the total life periods
and 5 nodes for each shock, the number of nodes for cash on hand is 60, while the number of
nodes for income and indexed wage is 10, separately. A non-uniform power function is used
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to map grid points into state values (details available from the authors). When the minimum
stock investment threshold, m, is imposed we have two optimization problems at each state:
one with bond investment only, the other with both bonds and stocks. Altogether, there are
I × J ×K × L× T × Smax1 × Smax2 × Smax3 × 2 = 600, 000, 000 optimization problems.
If any single optimization problem fails to converge, the entire program is repeated.
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Appendix C
Take the first-order condtion of Bellman equation

Vi,t(Xi,t, zi,t) = max
Ci,t,αi,t

{U(Ci,t) + β [pt ·EtVi,t+1 (Xi,t+1, zi,t+1) + b(1− pt) ·EtU(Wi,t+1)]}

(28)

Subject to

Xi,t+1 = Ri,t(Xi,t − Ci,t) + (1− ht+1)Y
d
i,t+1 (29)

Xi,t =Wi,t + (1− ht)Y
d
i,t (30)

We have

∂Vi,t(Xi,t, zi,t)

∂Ci,t
(31)

= U 0(Ci,t) + β {pt ·Et [Vi,t+10 (Xi,t+1, zi,t+1) · (−Ri,t)] + b(1− pt) ·Et [U 0(Wi,t+1) · (−Ri,t)]}(32)
= 0 (33)

Change the equation, we have

U 0(Ci,t) = β {pt ·Et[Vi,t+10 (Xi,t+1, zi,t+1) ·Ri,t] + b(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]}
(34)

According to the Envelope Therorem, the partial derivative with respect to Xi,t is

∂Vi,t(Xi,t, zi,t)

∂Xi,t
= β {pt ·Et [Vi,t+10 (Xi,t+1, zi,t+1) ·Ri,t] + b(1− pt) ·Et[U 0(Wi,t+1) ·Ri,t]}

(35)

The right hand sides of Equations (34) and (35) are equal, which gives us

U 0(Ci,t) = Vi,t0 (Xi,t, zi,t) (36)

Thus, we rewrite Equation (34) as follows,

U 0(Ci,t) = βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t] (37)
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Ci,t = U 0−1 {βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]} (38)

We define the Euler error as

Ci,t·(1+error) = U 0−1 {βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]}
(39)

error =
U 0−1 {βpt ·Et [U 0(Ci,t+1) ·Ri,t] + βb(1− pt) ·Et [U 0(Wi,t+1) ·Ri,t]}− Ci,t

Ci,t

(40)

We then take a log10 of the error, the acceptable range is around -3 or smaller.
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